xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ThreadSafety.cpp (revision 65f8467e3351c38a9d57b538b85cf6c5fab5818e)
1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
11 //
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 #include <memory>
55 #include <optional>
56 #include <string>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
60 
61 using namespace clang;
62 using namespace threadSafety;
63 
64 // Key method definition
65 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
66 
67 /// Issue a warning about an invalid lock expression
68 static void warnInvalidLock(ThreadSafetyHandler &Handler,
69                             const Expr *MutexExp, const NamedDecl *D,
70                             const Expr *DeclExp, StringRef Kind) {
71   SourceLocation Loc;
72   if (DeclExp)
73     Loc = DeclExp->getExprLoc();
74 
75   // FIXME: add a note about the attribute location in MutexExp or D
76   if (Loc.isValid())
77     Handler.handleInvalidLockExp(Loc);
78 }
79 
80 namespace {
81 
82 /// A set of CapabilityExpr objects, which are compiled from thread safety
83 /// attributes on a function.
84 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85 public:
86   /// Push M onto list, but discard duplicates.
87   void push_back_nodup(const CapabilityExpr &CapE) {
88     if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89           return CapE.equals(CapE2);
90         }))
91       push_back(CapE);
92   }
93 };
94 
95 class FactManager;
96 class FactSet;
97 
98 /// This is a helper class that stores a fact that is known at a
99 /// particular point in program execution.  Currently, a fact is a capability,
100 /// along with additional information, such as where it was acquired, whether
101 /// it is exclusive or shared, etc.
102 ///
103 /// FIXME: this analysis does not currently support re-entrant locking.
104 class FactEntry : public CapabilityExpr {
105 public:
106   /// Where a fact comes from.
107   enum SourceKind {
108     Acquired, ///< The fact has been directly acquired.
109     Asserted, ///< The fact has been asserted to be held.
110     Declared, ///< The fact is assumed to be held by callers.
111     Managed,  ///< The fact has been acquired through a scoped capability.
112   };
113 
114 private:
115   /// Exclusive or shared.
116   LockKind LKind : 8;
117 
118   // How it was acquired.
119   SourceKind Source : 8;
120 
121   /// Where it was acquired.
122   SourceLocation AcquireLoc;
123 
124 public:
125   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126             SourceKind Src)
127       : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128   virtual ~FactEntry() = default;
129 
130   LockKind kind() const { return LKind;      }
131   SourceLocation loc() const { return AcquireLoc; }
132 
133   bool asserted() const { return Source == Asserted; }
134   bool declared() const { return Source == Declared; }
135   bool managed() const { return Source == Managed; }
136 
137   virtual void
138   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139                                 SourceLocation JoinLoc, LockErrorKind LEK,
140                                 ThreadSafetyHandler &Handler) const = 0;
141   virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142                           const FactEntry &entry,
143                           ThreadSafetyHandler &Handler) const = 0;
144   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146                             bool FullyRemove,
147                             ThreadSafetyHandler &Handler) const = 0;
148 
149   // Return true if LKind >= LK, where exclusive > shared
150   bool isAtLeast(LockKind LK) const {
151     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
152   }
153 };
154 
155 using FactID = unsigned short;
156 
157 /// FactManager manages the memory for all facts that are created during
158 /// the analysis of a single routine.
159 class FactManager {
160 private:
161   std::vector<std::unique_ptr<const FactEntry>> Facts;
162 
163 public:
164   FactID newFact(std::unique_ptr<FactEntry> Entry) {
165     Facts.push_back(std::move(Entry));
166     return static_cast<unsigned short>(Facts.size() - 1);
167   }
168 
169   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
170 };
171 
172 /// A FactSet is the set of facts that are known to be true at a
173 /// particular program point.  FactSets must be small, because they are
174 /// frequently copied, and are thus implemented as a set of indices into a
175 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
176 /// locks, so we can get away with doing a linear search for lookup.  Note
177 /// that a hashtable or map is inappropriate in this case, because lookups
178 /// may involve partial pattern matches, rather than exact matches.
179 class FactSet {
180 private:
181   using FactVec = SmallVector<FactID, 4>;
182 
183   FactVec FactIDs;
184 
185 public:
186   using iterator = FactVec::iterator;
187   using const_iterator = FactVec::const_iterator;
188 
189   iterator begin() { return FactIDs.begin(); }
190   const_iterator begin() const { return FactIDs.begin(); }
191 
192   iterator end() { return FactIDs.end(); }
193   const_iterator end() const { return FactIDs.end(); }
194 
195   bool isEmpty() const { return FactIDs.size() == 0; }
196 
197   // Return true if the set contains only negative facts
198   bool isEmpty(FactManager &FactMan) const {
199     for (const auto FID : *this) {
200       if (!FactMan[FID].negative())
201         return false;
202     }
203     return true;
204   }
205 
206   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
207 
208   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209     FactID F = FM.newFact(std::move(Entry));
210     FactIDs.push_back(F);
211     return F;
212   }
213 
214   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215     unsigned n = FactIDs.size();
216     if (n == 0)
217       return false;
218 
219     for (unsigned i = 0; i < n-1; ++i) {
220       if (FM[FactIDs[i]].matches(CapE)) {
221         FactIDs[i] = FactIDs[n-1];
222         FactIDs.pop_back();
223         return true;
224       }
225     }
226     if (FM[FactIDs[n-1]].matches(CapE)) {
227       FactIDs.pop_back();
228       return true;
229     }
230     return false;
231   }
232 
233   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234     return std::find_if(begin(), end(), [&](FactID ID) {
235       return FM[ID].matches(CapE);
236     });
237   }
238 
239   const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240     auto I = std::find_if(begin(), end(), [&](FactID ID) {
241       return FM[ID].matches(CapE);
242     });
243     return I != end() ? &FM[*I] : nullptr;
244   }
245 
246   const FactEntry *findLockUniv(FactManager &FM,
247                                 const CapabilityExpr &CapE) const {
248     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249       return FM[ID].matchesUniv(CapE);
250     });
251     return I != end() ? &FM[*I] : nullptr;
252   }
253 
254   const FactEntry *findPartialMatch(FactManager &FM,
255                                     const CapabilityExpr &CapE) const {
256     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257       return FM[ID].partiallyMatches(CapE);
258     });
259     return I != end() ? &FM[*I] : nullptr;
260   }
261 
262   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264       return FM[ID].valueDecl() == Vd;
265     });
266     return I != end();
267   }
268 };
269 
270 class ThreadSafetyAnalyzer;
271 
272 } // namespace
273 
274 namespace clang {
275 namespace threadSafety {
276 
277 class BeforeSet {
278 private:
279   using BeforeVect = SmallVector<const ValueDecl *, 4>;
280 
281   struct BeforeInfo {
282     BeforeVect Vect;
283     int Visited = 0;
284 
285     BeforeInfo() = default;
286     BeforeInfo(BeforeInfo &&) = default;
287   };
288 
289   using BeforeMap =
290       llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291   using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
292 
293 public:
294   BeforeSet() = default;
295 
296   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297                               ThreadSafetyAnalyzer& Analyzer);
298 
299   BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300                                    ThreadSafetyAnalyzer &Analyzer);
301 
302   void checkBeforeAfter(const ValueDecl* Vd,
303                         const FactSet& FSet,
304                         ThreadSafetyAnalyzer& Analyzer,
305                         SourceLocation Loc, StringRef CapKind);
306 
307 private:
308   BeforeMap BMap;
309   CycleMap CycMap;
310 };
311 
312 } // namespace threadSafety
313 } // namespace clang
314 
315 namespace {
316 
317 class LocalVariableMap;
318 
319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
320 
321 /// A side (entry or exit) of a CFG node.
322 enum CFGBlockSide { CBS_Entry, CBS_Exit };
323 
324 /// CFGBlockInfo is a struct which contains all the information that is
325 /// maintained for each block in the CFG.  See LocalVariableMap for more
326 /// information about the contexts.
327 struct CFGBlockInfo {
328   // Lockset held at entry to block
329   FactSet EntrySet;
330 
331   // Lockset held at exit from block
332   FactSet ExitSet;
333 
334   // Context held at entry to block
335   LocalVarContext EntryContext;
336 
337   // Context held at exit from block
338   LocalVarContext ExitContext;
339 
340   // Location of first statement in block
341   SourceLocation EntryLoc;
342 
343   // Location of last statement in block.
344   SourceLocation ExitLoc;
345 
346   // Used to replay contexts later
347   unsigned EntryIndex;
348 
349   // Is this block reachable?
350   bool Reachable = false;
351 
352   const FactSet &getSet(CFGBlockSide Side) const {
353     return Side == CBS_Entry ? EntrySet : ExitSet;
354   }
355 
356   SourceLocation getLocation(CFGBlockSide Side) const {
357     return Side == CBS_Entry ? EntryLoc : ExitLoc;
358   }
359 
360 private:
361   CFGBlockInfo(LocalVarContext EmptyCtx)
362       : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
363 
364 public:
365   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
366 };
367 
368 // A LocalVariableMap maintains a map from local variables to their currently
369 // valid definitions.  It provides SSA-like functionality when traversing the
370 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
371 // unique name (an integer), which acts as the SSA name for that definition.
372 // The total set of names is shared among all CFG basic blocks.
373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374 // with their SSA-names.  Instead, we compute a Context for each point in the
375 // code, which maps local variables to the appropriate SSA-name.  This map
376 // changes with each assignment.
377 //
378 // The map is computed in a single pass over the CFG.  Subsequent analyses can
379 // then query the map to find the appropriate Context for a statement, and use
380 // that Context to look up the definitions of variables.
381 class LocalVariableMap {
382 public:
383   using Context = LocalVarContext;
384 
385   /// A VarDefinition consists of an expression, representing the value of the
386   /// variable, along with the context in which that expression should be
387   /// interpreted.  A reference VarDefinition does not itself contain this
388   /// information, but instead contains a pointer to a previous VarDefinition.
389   struct VarDefinition {
390   public:
391     friend class LocalVariableMap;
392 
393     // The original declaration for this variable.
394     const NamedDecl *Dec;
395 
396     // The expression for this variable, OR
397     const Expr *Exp = nullptr;
398 
399     // Reference to another VarDefinition
400     unsigned Ref = 0;
401 
402     // The map with which Exp should be interpreted.
403     Context Ctx;
404 
405     bool isReference() { return !Exp; }
406 
407   private:
408     // Create ordinary variable definition
409     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410         : Dec(D), Exp(E), Ctx(C) {}
411 
412     // Create reference to previous definition
413     VarDefinition(const NamedDecl *D, unsigned R, Context C)
414         : Dec(D), Ref(R), Ctx(C) {}
415   };
416 
417 private:
418   Context::Factory ContextFactory;
419   std::vector<VarDefinition> VarDefinitions;
420   std::vector<std::pair<const Stmt *, Context>> SavedContexts;
421 
422 public:
423   LocalVariableMap() {
424     // index 0 is a placeholder for undefined variables (aka phi-nodes).
425     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
426   }
427 
428   /// Look up a definition, within the given context.
429   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430     const unsigned *i = Ctx.lookup(D);
431     if (!i)
432       return nullptr;
433     assert(*i < VarDefinitions.size());
434     return &VarDefinitions[*i];
435   }
436 
437   /// Look up the definition for D within the given context.  Returns
438   /// NULL if the expression is not statically known.  If successful, also
439   /// modifies Ctx to hold the context of the return Expr.
440   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441     const unsigned *P = Ctx.lookup(D);
442     if (!P)
443       return nullptr;
444 
445     unsigned i = *P;
446     while (i > 0) {
447       if (VarDefinitions[i].Exp) {
448         Ctx = VarDefinitions[i].Ctx;
449         return VarDefinitions[i].Exp;
450       }
451       i = VarDefinitions[i].Ref;
452     }
453     return nullptr;
454   }
455 
456   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
457 
458   /// Return the next context after processing S.  This function is used by
459   /// clients of the class to get the appropriate context when traversing the
460   /// CFG.  It must be called for every assignment or DeclStmt.
461   Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462     if (SavedContexts[CtxIndex+1].first == S) {
463       CtxIndex++;
464       Context Result = SavedContexts[CtxIndex].second;
465       return Result;
466     }
467     return C;
468   }
469 
470   void dumpVarDefinitionName(unsigned i) {
471     if (i == 0) {
472       llvm::errs() << "Undefined";
473       return;
474     }
475     const NamedDecl *Dec = VarDefinitions[i].Dec;
476     if (!Dec) {
477       llvm::errs() << "<<NULL>>";
478       return;
479     }
480     Dec->printName(llvm::errs());
481     llvm::errs() << "." << i << " " << ((const void*) Dec);
482   }
483 
484   /// Dumps an ASCII representation of the variable map to llvm::errs()
485   void dump() {
486     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487       const Expr *Exp = VarDefinitions[i].Exp;
488       unsigned Ref = VarDefinitions[i].Ref;
489 
490       dumpVarDefinitionName(i);
491       llvm::errs() << " = ";
492       if (Exp) Exp->dump();
493       else {
494         dumpVarDefinitionName(Ref);
495         llvm::errs() << "\n";
496       }
497     }
498   }
499 
500   /// Dumps an ASCII representation of a Context to llvm::errs()
501   void dumpContext(Context C) {
502     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503       const NamedDecl *D = I.getKey();
504       D->printName(llvm::errs());
505       const unsigned *i = C.lookup(D);
506       llvm::errs() << " -> ";
507       dumpVarDefinitionName(*i);
508       llvm::errs() << "\n";
509     }
510   }
511 
512   /// Builds the variable map.
513   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
514                    std::vector<CFGBlockInfo> &BlockInfo);
515 
516 protected:
517   friend class VarMapBuilder;
518 
519   // Get the current context index
520   unsigned getContextIndex() { return SavedContexts.size()-1; }
521 
522   // Save the current context for later replay
523   void saveContext(const Stmt *S, Context C) {
524     SavedContexts.push_back(std::make_pair(S, C));
525   }
526 
527   // Adds a new definition to the given context, and returns a new context.
528   // This method should be called when declaring a new variable.
529   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
530     assert(!Ctx.contains(D));
531     unsigned newID = VarDefinitions.size();
532     Context NewCtx = ContextFactory.add(Ctx, D, newID);
533     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
534     return NewCtx;
535   }
536 
537   // Add a new reference to an existing definition.
538   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
539     unsigned newID = VarDefinitions.size();
540     Context NewCtx = ContextFactory.add(Ctx, D, newID);
541     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
542     return NewCtx;
543   }
544 
545   // Updates a definition only if that definition is already in the map.
546   // This method should be called when assigning to an existing variable.
547   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
548     if (Ctx.contains(D)) {
549       unsigned newID = VarDefinitions.size();
550       Context NewCtx = ContextFactory.remove(Ctx, D);
551       NewCtx = ContextFactory.add(NewCtx, D, newID);
552       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
553       return NewCtx;
554     }
555     return Ctx;
556   }
557 
558   // Removes a definition from the context, but keeps the variable name
559   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
560   Context clearDefinition(const NamedDecl *D, Context Ctx) {
561     Context NewCtx = Ctx;
562     if (NewCtx.contains(D)) {
563       NewCtx = ContextFactory.remove(NewCtx, D);
564       NewCtx = ContextFactory.add(NewCtx, D, 0);
565     }
566     return NewCtx;
567   }
568 
569   // Remove a definition entirely frmo the context.
570   Context removeDefinition(const NamedDecl *D, Context Ctx) {
571     Context NewCtx = Ctx;
572     if (NewCtx.contains(D)) {
573       NewCtx = ContextFactory.remove(NewCtx, D);
574     }
575     return NewCtx;
576   }
577 
578   Context intersectContexts(Context C1, Context C2);
579   Context createReferenceContext(Context C);
580   void intersectBackEdge(Context C1, Context C2);
581 };
582 
583 } // namespace
584 
585 // This has to be defined after LocalVariableMap.
586 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
587   return CFGBlockInfo(M.getEmptyContext());
588 }
589 
590 namespace {
591 
592 /// Visitor which builds a LocalVariableMap
593 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
594 public:
595   LocalVariableMap* VMap;
596   LocalVariableMap::Context Ctx;
597 
598   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
599       : VMap(VM), Ctx(C) {}
600 
601   void VisitDeclStmt(const DeclStmt *S);
602   void VisitBinaryOperator(const BinaryOperator *BO);
603 };
604 
605 } // namespace
606 
607 // Add new local variables to the variable map
608 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
609   bool modifiedCtx = false;
610   const DeclGroupRef DGrp = S->getDeclGroup();
611   for (const auto *D : DGrp) {
612     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
613       const Expr *E = VD->getInit();
614 
615       // Add local variables with trivial type to the variable map
616       QualType T = VD->getType();
617       if (T.isTrivialType(VD->getASTContext())) {
618         Ctx = VMap->addDefinition(VD, E, Ctx);
619         modifiedCtx = true;
620       }
621     }
622   }
623   if (modifiedCtx)
624     VMap->saveContext(S, Ctx);
625 }
626 
627 // Update local variable definitions in variable map
628 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
629   if (!BO->isAssignmentOp())
630     return;
631 
632   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
633 
634   // Update the variable map and current context.
635   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
636     const ValueDecl *VDec = DRE->getDecl();
637     if (Ctx.lookup(VDec)) {
638       if (BO->getOpcode() == BO_Assign)
639         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
640       else
641         // FIXME -- handle compound assignment operators
642         Ctx = VMap->clearDefinition(VDec, Ctx);
643       VMap->saveContext(BO, Ctx);
644     }
645   }
646 }
647 
648 // Computes the intersection of two contexts.  The intersection is the
649 // set of variables which have the same definition in both contexts;
650 // variables with different definitions are discarded.
651 LocalVariableMap::Context
652 LocalVariableMap::intersectContexts(Context C1, Context C2) {
653   Context Result = C1;
654   for (const auto &P : C1) {
655     const NamedDecl *Dec = P.first;
656     const unsigned *i2 = C2.lookup(Dec);
657     if (!i2)             // variable doesn't exist on second path
658       Result = removeDefinition(Dec, Result);
659     else if (*i2 != P.second)  // variable exists, but has different definition
660       Result = clearDefinition(Dec, Result);
661   }
662   return Result;
663 }
664 
665 // For every variable in C, create a new variable that refers to the
666 // definition in C.  Return a new context that contains these new variables.
667 // (We use this for a naive implementation of SSA on loop back-edges.)
668 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
669   Context Result = getEmptyContext();
670   for (const auto &P : C)
671     Result = addReference(P.first, P.second, Result);
672   return Result;
673 }
674 
675 // This routine also takes the intersection of C1 and C2, but it does so by
676 // altering the VarDefinitions.  C1 must be the result of an earlier call to
677 // createReferenceContext.
678 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
679   for (const auto &P : C1) {
680     unsigned i1 = P.second;
681     VarDefinition *VDef = &VarDefinitions[i1];
682     assert(VDef->isReference());
683 
684     const unsigned *i2 = C2.lookup(P.first);
685     if (!i2 || (*i2 != i1))
686       VDef->Ref = 0;    // Mark this variable as undefined
687   }
688 }
689 
690 // Traverse the CFG in topological order, so all predecessors of a block
691 // (excluding back-edges) are visited before the block itself.  At
692 // each point in the code, we calculate a Context, which holds the set of
693 // variable definitions which are visible at that point in execution.
694 // Visible variables are mapped to their definitions using an array that
695 // contains all definitions.
696 //
697 // At join points in the CFG, the set is computed as the intersection of
698 // the incoming sets along each edge, E.g.
699 //
700 //                       { Context                 | VarDefinitions }
701 //   int x = 0;          { x -> x1                 | x1 = 0 }
702 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
703 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
704 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
705 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
706 //
707 // This is essentially a simpler and more naive version of the standard SSA
708 // algorithm.  Those definitions that remain in the intersection are from blocks
709 // that strictly dominate the current block.  We do not bother to insert proper
710 // phi nodes, because they are not used in our analysis; instead, wherever
711 // a phi node would be required, we simply remove that definition from the
712 // context (E.g. x above).
713 //
714 // The initial traversal does not capture back-edges, so those need to be
715 // handled on a separate pass.  Whenever the first pass encounters an
716 // incoming back edge, it duplicates the context, creating new definitions
717 // that refer back to the originals.  (These correspond to places where SSA
718 // might have to insert a phi node.)  On the second pass, these definitions are
719 // set to NULL if the variable has changed on the back-edge (i.e. a phi
720 // node was actually required.)  E.g.
721 //
722 //                       { Context           | VarDefinitions }
723 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
724 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
725 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
726 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
727 void LocalVariableMap::traverseCFG(CFG *CFGraph,
728                                    const PostOrderCFGView *SortedGraph,
729                                    std::vector<CFGBlockInfo> &BlockInfo) {
730   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
731 
732   for (const auto *CurrBlock : *SortedGraph) {
733     unsigned CurrBlockID = CurrBlock->getBlockID();
734     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
735 
736     VisitedBlocks.insert(CurrBlock);
737 
738     // Calculate the entry context for the current block
739     bool HasBackEdges = false;
740     bool CtxInit = true;
741     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
742          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
743       // if *PI -> CurrBlock is a back edge, so skip it
744       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
745         HasBackEdges = true;
746         continue;
747       }
748 
749       unsigned PrevBlockID = (*PI)->getBlockID();
750       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
751 
752       if (CtxInit) {
753         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
754         CtxInit = false;
755       }
756       else {
757         CurrBlockInfo->EntryContext =
758           intersectContexts(CurrBlockInfo->EntryContext,
759                             PrevBlockInfo->ExitContext);
760       }
761     }
762 
763     // Duplicate the context if we have back-edges, so we can call
764     // intersectBackEdges later.
765     if (HasBackEdges)
766       CurrBlockInfo->EntryContext =
767         createReferenceContext(CurrBlockInfo->EntryContext);
768 
769     // Create a starting context index for the current block
770     saveContext(nullptr, CurrBlockInfo->EntryContext);
771     CurrBlockInfo->EntryIndex = getContextIndex();
772 
773     // Visit all the statements in the basic block.
774     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
775     for (const auto &BI : *CurrBlock) {
776       switch (BI.getKind()) {
777         case CFGElement::Statement: {
778           CFGStmt CS = BI.castAs<CFGStmt>();
779           VMapBuilder.Visit(CS.getStmt());
780           break;
781         }
782         default:
783           break;
784       }
785     }
786     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
787 
788     // Mark variables on back edges as "unknown" if they've been changed.
789     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
790          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
791       // if CurrBlock -> *SI is *not* a back edge
792       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
793         continue;
794 
795       CFGBlock *FirstLoopBlock = *SI;
796       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
797       Context LoopEnd   = CurrBlockInfo->ExitContext;
798       intersectBackEdge(LoopBegin, LoopEnd);
799     }
800   }
801 
802   // Put an extra entry at the end of the indexed context array
803   unsigned exitID = CFGraph->getExit().getBlockID();
804   saveContext(nullptr, BlockInfo[exitID].ExitContext);
805 }
806 
807 /// Find the appropriate source locations to use when producing diagnostics for
808 /// each block in the CFG.
809 static void findBlockLocations(CFG *CFGraph,
810                                const PostOrderCFGView *SortedGraph,
811                                std::vector<CFGBlockInfo> &BlockInfo) {
812   for (const auto *CurrBlock : *SortedGraph) {
813     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
814 
815     // Find the source location of the last statement in the block, if the
816     // block is not empty.
817     if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
818       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
819     } else {
820       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
821            BE = CurrBlock->rend(); BI != BE; ++BI) {
822         // FIXME: Handle other CFGElement kinds.
823         if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
824           CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
825           break;
826         }
827       }
828     }
829 
830     if (CurrBlockInfo->ExitLoc.isValid()) {
831       // This block contains at least one statement. Find the source location
832       // of the first statement in the block.
833       for (const auto &BI : *CurrBlock) {
834         // FIXME: Handle other CFGElement kinds.
835         if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
836           CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
837           break;
838         }
839       }
840     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
841                CurrBlock != &CFGraph->getExit()) {
842       // The block is empty, and has a single predecessor. Use its exit
843       // location.
844       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
845           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
846     } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
847       // The block is empty, and has a single successor. Use its entry
848       // location.
849       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
850           BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
851     }
852   }
853 }
854 
855 namespace {
856 
857 class LockableFactEntry : public FactEntry {
858 public:
859   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
860                     SourceKind Src = Acquired)
861       : FactEntry(CE, LK, Loc, Src) {}
862 
863   void
864   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
865                                 SourceLocation JoinLoc, LockErrorKind LEK,
866                                 ThreadSafetyHandler &Handler) const override {
867     if (!asserted() && !negative() && !isUniversal()) {
868       Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
869                                         LEK);
870     }
871   }
872 
873   void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
874                   ThreadSafetyHandler &Handler) const override {
875     Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
876                              entry.loc());
877   }
878 
879   void handleUnlock(FactSet &FSet, FactManager &FactMan,
880                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
881                     bool FullyRemove,
882                     ThreadSafetyHandler &Handler) const override {
883     FSet.removeLock(FactMan, Cp);
884     if (!Cp.negative()) {
885       FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
886                                 !Cp, LK_Exclusive, UnlockLoc));
887     }
888   }
889 };
890 
891 class ScopedLockableFactEntry : public FactEntry {
892 private:
893   enum UnderlyingCapabilityKind {
894     UCK_Acquired,          ///< Any kind of acquired capability.
895     UCK_ReleasedShared,    ///< Shared capability that was released.
896     UCK_ReleasedExclusive, ///< Exclusive capability that was released.
897   };
898 
899   struct UnderlyingCapability {
900     CapabilityExpr Cap;
901     UnderlyingCapabilityKind Kind;
902   };
903 
904   SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
905 
906 public:
907   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
908       : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
909 
910   void addLock(const CapabilityExpr &M) {
911     UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
912   }
913 
914   void addExclusiveUnlock(const CapabilityExpr &M) {
915     UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
916   }
917 
918   void addSharedUnlock(const CapabilityExpr &M) {
919     UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
920   }
921 
922   void
923   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
924                                 SourceLocation JoinLoc, LockErrorKind LEK,
925                                 ThreadSafetyHandler &Handler) const override {
926     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
927       const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
928       if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
929           (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
930         // If this scoped lock manages another mutex, and if the underlying
931         // mutex is still/not held, then warn about the underlying mutex.
932         Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
933                                           UnderlyingMutex.Cap.toString(), loc(),
934                                           JoinLoc, LEK);
935       }
936     }
937   }
938 
939   void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
940                   ThreadSafetyHandler &Handler) const override {
941     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
942       if (UnderlyingMutex.Kind == UCK_Acquired)
943         lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
944              &Handler);
945       else
946         unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
947     }
948   }
949 
950   void handleUnlock(FactSet &FSet, FactManager &FactMan,
951                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
952                     bool FullyRemove,
953                     ThreadSafetyHandler &Handler) const override {
954     assert(!Cp.negative() && "Managing object cannot be negative.");
955     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
956       // Remove/lock the underlying mutex if it exists/is still unlocked; warn
957       // on double unlocking/locking if we're not destroying the scoped object.
958       ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
959       if (UnderlyingMutex.Kind == UCK_Acquired) {
960         unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
961       } else {
962         LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
963                             ? LK_Shared
964                             : LK_Exclusive;
965         lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
966       }
967     }
968     if (FullyRemove)
969       FSet.removeLock(FactMan, Cp);
970   }
971 
972 private:
973   void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
974             LockKind kind, SourceLocation loc,
975             ThreadSafetyHandler *Handler) const {
976     if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
977       if (Handler)
978         Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
979                                   loc);
980     } else {
981       FSet.removeLock(FactMan, !Cp);
982       FSet.addLock(FactMan,
983                    std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
984     }
985   }
986 
987   void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
988               SourceLocation loc, ThreadSafetyHandler *Handler) const {
989     if (FSet.findLock(FactMan, Cp)) {
990       FSet.removeLock(FactMan, Cp);
991       FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
992                                 !Cp, LK_Exclusive, loc));
993     } else if (Handler) {
994       SourceLocation PrevLoc;
995       if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
996         PrevLoc = Neg->loc();
997       Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
998     }
999   }
1000 };
1001 
1002 /// Class which implements the core thread safety analysis routines.
1003 class ThreadSafetyAnalyzer {
1004   friend class BuildLockset;
1005   friend class threadSafety::BeforeSet;
1006 
1007   llvm::BumpPtrAllocator Bpa;
1008   threadSafety::til::MemRegionRef Arena;
1009   threadSafety::SExprBuilder SxBuilder;
1010 
1011   ThreadSafetyHandler &Handler;
1012   const CXXMethodDecl *CurrentMethod;
1013   LocalVariableMap LocalVarMap;
1014   FactManager FactMan;
1015   std::vector<CFGBlockInfo> BlockInfo;
1016 
1017   BeforeSet *GlobalBeforeSet;
1018 
1019 public:
1020   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1021       : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1022 
1023   bool inCurrentScope(const CapabilityExpr &CapE);
1024 
1025   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1026                bool ReqAttr = false);
1027   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1028                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1029 
1030   template <typename AttrType>
1031   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1032                    const NamedDecl *D, til::SExpr *Self = nullptr);
1033 
1034   template <class AttrType>
1035   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1036                    const NamedDecl *D,
1037                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1038                    Expr *BrE, bool Neg);
1039 
1040   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1041                                      bool &Negate);
1042 
1043   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1044                       const CFGBlock* PredBlock,
1045                       const CFGBlock *CurrBlock);
1046 
1047   bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1048 
1049   void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1050                         SourceLocation JoinLoc, LockErrorKind EntryLEK,
1051                         LockErrorKind ExitLEK);
1052 
1053   void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1054                         SourceLocation JoinLoc, LockErrorKind LEK) {
1055     intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1056   }
1057 
1058   void runAnalysis(AnalysisDeclContext &AC);
1059 };
1060 
1061 } // namespace
1062 
1063 /// Process acquired_before and acquired_after attributes on Vd.
1064 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1065     ThreadSafetyAnalyzer& Analyzer) {
1066   // Create a new entry for Vd.
1067   BeforeInfo *Info = nullptr;
1068   {
1069     // Keep InfoPtr in its own scope in case BMap is modified later and the
1070     // reference becomes invalid.
1071     std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1072     if (!InfoPtr)
1073       InfoPtr.reset(new BeforeInfo());
1074     Info = InfoPtr.get();
1075   }
1076 
1077   for (const auto *At : Vd->attrs()) {
1078     switch (At->getKind()) {
1079       case attr::AcquiredBefore: {
1080         const auto *A = cast<AcquiredBeforeAttr>(At);
1081 
1082         // Read exprs from the attribute, and add them to BeforeVect.
1083         for (const auto *Arg : A->args()) {
1084           CapabilityExpr Cp =
1085             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1086           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1087             Info->Vect.push_back(Cpvd);
1088             const auto It = BMap.find(Cpvd);
1089             if (It == BMap.end())
1090               insertAttrExprs(Cpvd, Analyzer);
1091           }
1092         }
1093         break;
1094       }
1095       case attr::AcquiredAfter: {
1096         const auto *A = cast<AcquiredAfterAttr>(At);
1097 
1098         // Read exprs from the attribute, and add them to BeforeVect.
1099         for (const auto *Arg : A->args()) {
1100           CapabilityExpr Cp =
1101             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1102           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1103             // Get entry for mutex listed in attribute
1104             BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1105             ArgInfo->Vect.push_back(Vd);
1106           }
1107         }
1108         break;
1109       }
1110       default:
1111         break;
1112     }
1113   }
1114 
1115   return Info;
1116 }
1117 
1118 BeforeSet::BeforeInfo *
1119 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1120                                 ThreadSafetyAnalyzer &Analyzer) {
1121   auto It = BMap.find(Vd);
1122   BeforeInfo *Info = nullptr;
1123   if (It == BMap.end())
1124     Info = insertAttrExprs(Vd, Analyzer);
1125   else
1126     Info = It->second.get();
1127   assert(Info && "BMap contained nullptr?");
1128   return Info;
1129 }
1130 
1131 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1132 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1133                                  const FactSet& FSet,
1134                                  ThreadSafetyAnalyzer& Analyzer,
1135                                  SourceLocation Loc, StringRef CapKind) {
1136   SmallVector<BeforeInfo*, 8> InfoVect;
1137 
1138   // Do a depth-first traversal of Vd.
1139   // Return true if there are cycles.
1140   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1141     if (!Vd)
1142       return false;
1143 
1144     BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1145 
1146     if (Info->Visited == 1)
1147       return true;
1148 
1149     if (Info->Visited == 2)
1150       return false;
1151 
1152     if (Info->Vect.empty())
1153       return false;
1154 
1155     InfoVect.push_back(Info);
1156     Info->Visited = 1;
1157     for (const auto *Vdb : Info->Vect) {
1158       // Exclude mutexes in our immediate before set.
1159       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1160         StringRef L1 = StartVd->getName();
1161         StringRef L2 = Vdb->getName();
1162         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1163       }
1164       // Transitively search other before sets, and warn on cycles.
1165       if (traverse(Vdb)) {
1166         if (CycMap.find(Vd) == CycMap.end()) {
1167           CycMap.insert(std::make_pair(Vd, true));
1168           StringRef L1 = Vd->getName();
1169           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1170         }
1171       }
1172     }
1173     Info->Visited = 2;
1174     return false;
1175   };
1176 
1177   traverse(StartVd);
1178 
1179   for (auto *Info : InfoVect)
1180     Info->Visited = 0;
1181 }
1182 
1183 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1184 static const ValueDecl *getValueDecl(const Expr *Exp) {
1185   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1186     return getValueDecl(CE->getSubExpr());
1187 
1188   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1189     return DR->getDecl();
1190 
1191   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1192     return ME->getMemberDecl();
1193 
1194   return nullptr;
1195 }
1196 
1197 namespace {
1198 
1199 template <typename Ty>
1200 class has_arg_iterator_range {
1201   using yes = char[1];
1202   using no = char[2];
1203 
1204   template <typename Inner>
1205   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1206 
1207   template <typename>
1208   static no& test(...);
1209 
1210 public:
1211   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1212 };
1213 
1214 } // namespace
1215 
1216 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1217   const threadSafety::til::SExpr *SExp = CapE.sexpr();
1218   assert(SExp && "Null expressions should be ignored");
1219 
1220   if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1221     const ValueDecl *VD = LP->clangDecl();
1222     // Variables defined in a function are always inaccessible.
1223     if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1224       return false;
1225     // For now we consider static class members to be inaccessible.
1226     if (isa<CXXRecordDecl>(VD->getDeclContext()))
1227       return false;
1228     // Global variables are always in scope.
1229     return true;
1230   }
1231 
1232   // Members are in scope from methods of the same class.
1233   if (const auto *P = dyn_cast<til::Project>(SExp)) {
1234     if (!CurrentMethod)
1235       return false;
1236     const ValueDecl *VD = P->clangDecl();
1237     return VD->getDeclContext() == CurrentMethod->getDeclContext();
1238   }
1239 
1240   return false;
1241 }
1242 
1243 /// Add a new lock to the lockset, warning if the lock is already there.
1244 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1245 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1246                                    std::unique_ptr<FactEntry> Entry,
1247                                    bool ReqAttr) {
1248   if (Entry->shouldIgnore())
1249     return;
1250 
1251   if (!ReqAttr && !Entry->negative()) {
1252     // look for the negative capability, and remove it from the fact set.
1253     CapabilityExpr NegC = !*Entry;
1254     const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1255     if (Nen) {
1256       FSet.removeLock(FactMan, NegC);
1257     }
1258     else {
1259       if (inCurrentScope(*Entry) && !Entry->asserted())
1260         Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1261                                       NegC.toString(), Entry->loc());
1262     }
1263   }
1264 
1265   // Check before/after constraints
1266   if (Handler.issueBetaWarnings() &&
1267       !Entry->asserted() && !Entry->declared()) {
1268     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1269                                       Entry->loc(), Entry->getKind());
1270   }
1271 
1272   // FIXME: Don't always warn when we have support for reentrant locks.
1273   if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1274     if (!Entry->asserted())
1275       Cp->handleLock(FSet, FactMan, *Entry, Handler);
1276   } else {
1277     FSet.addLock(FactMan, std::move(Entry));
1278   }
1279 }
1280 
1281 /// Remove a lock from the lockset, warning if the lock is not there.
1282 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1283 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1284                                       SourceLocation UnlockLoc,
1285                                       bool FullyRemove, LockKind ReceivedKind) {
1286   if (Cp.shouldIgnore())
1287     return;
1288 
1289   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1290   if (!LDat) {
1291     SourceLocation PrevLoc;
1292     if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1293       PrevLoc = Neg->loc();
1294     Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1295                                   PrevLoc);
1296     return;
1297   }
1298 
1299   // Generic lock removal doesn't care about lock kind mismatches, but
1300   // otherwise diagnose when the lock kinds are mismatched.
1301   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1302     Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1303                                       ReceivedKind, LDat->loc(), UnlockLoc);
1304   }
1305 
1306   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1307 }
1308 
1309 /// Extract the list of mutexIDs from the attribute on an expression,
1310 /// and push them onto Mtxs, discarding any duplicates.
1311 template <typename AttrType>
1312 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1313                                        const Expr *Exp, const NamedDecl *D,
1314                                        til::SExpr *Self) {
1315   if (Attr->args_size() == 0) {
1316     // The mutex held is the "this" object.
1317     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1318     if (Cp.isInvalid()) {
1319       warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1320       return;
1321     }
1322     //else
1323     if (!Cp.shouldIgnore())
1324       Mtxs.push_back_nodup(Cp);
1325     return;
1326   }
1327 
1328   for (const auto *Arg : Attr->args()) {
1329     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1330     if (Cp.isInvalid()) {
1331       warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1332       continue;
1333     }
1334     //else
1335     if (!Cp.shouldIgnore())
1336       Mtxs.push_back_nodup(Cp);
1337   }
1338 }
1339 
1340 /// Extract the list of mutexIDs from a trylock attribute.  If the
1341 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1342 /// any duplicates.
1343 template <class AttrType>
1344 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1345                                        const Expr *Exp, const NamedDecl *D,
1346                                        const CFGBlock *PredBlock,
1347                                        const CFGBlock *CurrBlock,
1348                                        Expr *BrE, bool Neg) {
1349   // Find out which branch has the lock
1350   bool branch = false;
1351   if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1352     branch = BLE->getValue();
1353   else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1354     branch = ILE->getValue().getBoolValue();
1355 
1356   int branchnum = branch ? 0 : 1;
1357   if (Neg)
1358     branchnum = !branchnum;
1359 
1360   // If we've taken the trylock branch, then add the lock
1361   int i = 0;
1362   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1363        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1364     if (*SI == CurrBlock && i == branchnum)
1365       getMutexIDs(Mtxs, Attr, Exp, D);
1366   }
1367 }
1368 
1369 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1370   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1371     TCond = false;
1372     return true;
1373   } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1374     TCond = BLE->getValue();
1375     return true;
1376   } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1377     TCond = ILE->getValue().getBoolValue();
1378     return true;
1379   } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1380     return getStaticBooleanValue(CE->getSubExpr(), TCond);
1381   return false;
1382 }
1383 
1384 // If Cond can be traced back to a function call, return the call expression.
1385 // The negate variable should be called with false, and will be set to true
1386 // if the function call is negated, e.g. if (!mu.tryLock(...))
1387 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1388                                                          LocalVarContext C,
1389                                                          bool &Negate) {
1390   if (!Cond)
1391     return nullptr;
1392 
1393   if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1394     if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1395       return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1396     return CallExp;
1397   }
1398   else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1399     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1400   else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1401     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1402   else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1403     return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1404   else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1405     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1406     return getTrylockCallExpr(E, C, Negate);
1407   }
1408   else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1409     if (UOP->getOpcode() == UO_LNot) {
1410       Negate = !Negate;
1411       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1412     }
1413     return nullptr;
1414   }
1415   else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1416     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1417       if (BOP->getOpcode() == BO_NE)
1418         Negate = !Negate;
1419 
1420       bool TCond = false;
1421       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1422         if (!TCond) Negate = !Negate;
1423         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1424       }
1425       TCond = false;
1426       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1427         if (!TCond) Negate = !Negate;
1428         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1429       }
1430       return nullptr;
1431     }
1432     if (BOP->getOpcode() == BO_LAnd) {
1433       // LHS must have been evaluated in a different block.
1434       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1435     }
1436     if (BOP->getOpcode() == BO_LOr)
1437       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1438     return nullptr;
1439   } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1440     bool TCond, FCond;
1441     if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1442         getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1443       if (TCond && !FCond)
1444         return getTrylockCallExpr(COP->getCond(), C, Negate);
1445       if (!TCond && FCond) {
1446         Negate = !Negate;
1447         return getTrylockCallExpr(COP->getCond(), C, Negate);
1448       }
1449     }
1450   }
1451   return nullptr;
1452 }
1453 
1454 /// Find the lockset that holds on the edge between PredBlock
1455 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1456 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1457 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1458                                           const FactSet &ExitSet,
1459                                           const CFGBlock *PredBlock,
1460                                           const CFGBlock *CurrBlock) {
1461   Result = ExitSet;
1462 
1463   const Stmt *Cond = PredBlock->getTerminatorCondition();
1464   // We don't acquire try-locks on ?: branches, only when its result is used.
1465   if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1466     return;
1467 
1468   bool Negate = false;
1469   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1470   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1471 
1472   const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1473   if (!Exp)
1474     return;
1475 
1476   auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1477   if(!FunDecl || !FunDecl->hasAttrs())
1478     return;
1479 
1480   CapExprSet ExclusiveLocksToAdd;
1481   CapExprSet SharedLocksToAdd;
1482 
1483   // If the condition is a call to a Trylock function, then grab the attributes
1484   for (const auto *Attr : FunDecl->attrs()) {
1485     switch (Attr->getKind()) {
1486       case attr::TryAcquireCapability: {
1487         auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1488         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1489                     Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1490                     Negate);
1491         break;
1492       };
1493       case attr::ExclusiveTrylockFunction: {
1494         const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1495         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1496                     A->getSuccessValue(), Negate);
1497         break;
1498       }
1499       case attr::SharedTrylockFunction: {
1500         const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1501         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1502                     A->getSuccessValue(), Negate);
1503         break;
1504       }
1505       default:
1506         break;
1507     }
1508   }
1509 
1510   // Add and remove locks.
1511   SourceLocation Loc = Exp->getExprLoc();
1512   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1513     addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1514                                                         LK_Exclusive, Loc));
1515   for (const auto &SharedLockToAdd : SharedLocksToAdd)
1516     addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1517                                                         LK_Shared, Loc));
1518 }
1519 
1520 namespace {
1521 
1522 /// We use this class to visit different types of expressions in
1523 /// CFGBlocks, and build up the lockset.
1524 /// An expression may cause us to add or remove locks from the lockset, or else
1525 /// output error messages related to missing locks.
1526 /// FIXME: In future, we may be able to not inherit from a visitor.
1527 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1528   friend class ThreadSafetyAnalyzer;
1529 
1530   ThreadSafetyAnalyzer *Analyzer;
1531   FactSet FSet;
1532   /// Maps constructed objects to `this` placeholder prior to initialization.
1533   llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1534   LocalVariableMap::Context LVarCtx;
1535   unsigned CtxIndex;
1536 
1537   // helper functions
1538   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1539                           Expr *MutexExp, ProtectedOperationKind POK,
1540                           til::LiteralPtr *Self, SourceLocation Loc);
1541   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1542                        til::LiteralPtr *Self, SourceLocation Loc);
1543 
1544   void checkAccess(const Expr *Exp, AccessKind AK,
1545                    ProtectedOperationKind POK = POK_VarAccess);
1546   void checkPtAccess(const Expr *Exp, AccessKind AK,
1547                      ProtectedOperationKind POK = POK_VarAccess);
1548 
1549   void handleCall(const Expr *Exp, const NamedDecl *D,
1550                   til::LiteralPtr *Self = nullptr,
1551                   SourceLocation Loc = SourceLocation());
1552   void examineArguments(const FunctionDecl *FD,
1553                         CallExpr::const_arg_iterator ArgBegin,
1554                         CallExpr::const_arg_iterator ArgEnd,
1555                         bool SkipFirstParam = false);
1556 
1557 public:
1558   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1559       : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1560         LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1561 
1562   void VisitUnaryOperator(const UnaryOperator *UO);
1563   void VisitBinaryOperator(const BinaryOperator *BO);
1564   void VisitCastExpr(const CastExpr *CE);
1565   void VisitCallExpr(const CallExpr *Exp);
1566   void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1567   void VisitDeclStmt(const DeclStmt *S);
1568   void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1569 };
1570 
1571 } // namespace
1572 
1573 /// Warn if the LSet does not contain a lock sufficient to protect access
1574 /// of at least the passed in AccessKind.
1575 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1576                                       AccessKind AK, Expr *MutexExp,
1577                                       ProtectedOperationKind POK,
1578                                       til::LiteralPtr *Self,
1579                                       SourceLocation Loc) {
1580   LockKind LK = getLockKindFromAccessKind(AK);
1581 
1582   CapabilityExpr Cp =
1583       Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1584   if (Cp.isInvalid()) {
1585     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind());
1586     return;
1587   } else if (Cp.shouldIgnore()) {
1588     return;
1589   }
1590 
1591   if (Cp.negative()) {
1592     // Negative capabilities act like locks excluded
1593     const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1594     if (LDat) {
1595       Analyzer->Handler.handleFunExcludesLock(
1596           Cp.getKind(), D->getNameAsString(), (!Cp).toString(), Loc);
1597       return;
1598     }
1599 
1600     // If this does not refer to a negative capability in the same class,
1601     // then stop here.
1602     if (!Analyzer->inCurrentScope(Cp))
1603       return;
1604 
1605     // Otherwise the negative requirement must be propagated to the caller.
1606     LDat = FSet.findLock(Analyzer->FactMan, Cp);
1607     if (!LDat) {
1608       Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1609     }
1610     return;
1611   }
1612 
1613   const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1614   bool NoError = true;
1615   if (!LDat) {
1616     // No exact match found.  Look for a partial match.
1617     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1618     if (LDat) {
1619       // Warn that there's no precise match.
1620       std::string PartMatchStr = LDat->toString();
1621       StringRef   PartMatchName(PartMatchStr);
1622       Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1623                                            LK, Loc, &PartMatchName);
1624     } else {
1625       // Warn that there's no match at all.
1626       Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1627                                            LK, Loc);
1628     }
1629     NoError = false;
1630   }
1631   // Make sure the mutex we found is the right kind.
1632   if (NoError && LDat && !LDat->isAtLeast(LK)) {
1633     Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1634                                          LK, Loc);
1635   }
1636 }
1637 
1638 /// Warn if the LSet contains the given lock.
1639 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1640                                    Expr *MutexExp, til::LiteralPtr *Self,
1641                                    SourceLocation Loc) {
1642   CapabilityExpr Cp =
1643       Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1644   if (Cp.isInvalid()) {
1645     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind());
1646     return;
1647   } else if (Cp.shouldIgnore()) {
1648     return;
1649   }
1650 
1651   const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1652   if (LDat) {
1653     Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1654                                             Cp.toString(), Loc);
1655   }
1656 }
1657 
1658 /// Checks guarded_by and pt_guarded_by attributes.
1659 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1660 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1661 /// Similarly, we check if the access is to an expression that dereferences
1662 /// a pointer marked with pt_guarded_by.
1663 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1664                                ProtectedOperationKind POK) {
1665   Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1666 
1667   SourceLocation Loc = Exp->getExprLoc();
1668 
1669   // Local variables of reference type cannot be re-assigned;
1670   // map them to their initializer.
1671   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1672     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1673     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1674       if (const auto *E = VD->getInit()) {
1675         // Guard against self-initialization. e.g., int &i = i;
1676         if (E == Exp)
1677           break;
1678         Exp = E;
1679         continue;
1680       }
1681     }
1682     break;
1683   }
1684 
1685   if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1686     // For dereferences
1687     if (UO->getOpcode() == UO_Deref)
1688       checkPtAccess(UO->getSubExpr(), AK, POK);
1689     return;
1690   }
1691 
1692   if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1693     switch (BO->getOpcode()) {
1694     case BO_PtrMemD: // .*
1695       return checkAccess(BO->getLHS(), AK, POK);
1696     case BO_PtrMemI: // ->*
1697       return checkPtAccess(BO->getLHS(), AK, POK);
1698     default:
1699       return;
1700     }
1701   }
1702 
1703   if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1704     checkPtAccess(AE->getLHS(), AK, POK);
1705     return;
1706   }
1707 
1708   if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1709     if (ME->isArrow())
1710       checkPtAccess(ME->getBase(), AK, POK);
1711     else
1712       checkAccess(ME->getBase(), AK, POK);
1713   }
1714 
1715   const ValueDecl *D = getValueDecl(Exp);
1716   if (!D || !D->hasAttrs())
1717     return;
1718 
1719   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1720     Analyzer->Handler.handleNoMutexHeld(D, POK, AK, Loc);
1721   }
1722 
1723   for (const auto *I : D->specific_attrs<GuardedByAttr>())
1724     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1725 }
1726 
1727 /// Checks pt_guarded_by and pt_guarded_var attributes.
1728 /// POK is the same  operationKind that was passed to checkAccess.
1729 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1730                                  ProtectedOperationKind POK) {
1731   while (true) {
1732     if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1733       Exp = PE->getSubExpr();
1734       continue;
1735     }
1736     if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1737       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1738         // If it's an actual array, and not a pointer, then it's elements
1739         // are protected by GUARDED_BY, not PT_GUARDED_BY;
1740         checkAccess(CE->getSubExpr(), AK, POK);
1741         return;
1742       }
1743       Exp = CE->getSubExpr();
1744       continue;
1745     }
1746     break;
1747   }
1748 
1749   // Pass by reference warnings are under a different flag.
1750   ProtectedOperationKind PtPOK = POK_VarDereference;
1751   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1752 
1753   const ValueDecl *D = getValueDecl(Exp);
1754   if (!D || !D->hasAttrs())
1755     return;
1756 
1757   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1758     Analyzer->Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1759 
1760   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1761     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, nullptr,
1762                        Exp->getExprLoc());
1763 }
1764 
1765 /// Process a function call, method call, constructor call,
1766 /// or destructor call.  This involves looking at the attributes on the
1767 /// corresponding function/method/constructor/destructor, issuing warnings,
1768 /// and updating the locksets accordingly.
1769 ///
1770 /// FIXME: For classes annotated with one of the guarded annotations, we need
1771 /// to treat const method calls as reads and non-const method calls as writes,
1772 /// and check that the appropriate locks are held. Non-const method calls with
1773 /// the same signature as const method calls can be also treated as reads.
1774 ///
1775 /// \param Exp   The call expression.
1776 /// \param D     The callee declaration.
1777 /// \param Self  If \p Exp = nullptr, the implicit this argument.
1778 /// \param Loc   If \p Exp = nullptr, the location.
1779 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1780                               til::LiteralPtr *Self, SourceLocation Loc) {
1781   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1782   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1783   CapExprSet ScopedReqsAndExcludes;
1784 
1785   // Figure out if we're constructing an object of scoped lockable class
1786   CapabilityExpr Scp;
1787   if (Exp) {
1788     assert(!Self);
1789     const auto *TagT = Exp->getType()->getAs<TagType>();
1790     if (TagT && Exp->isPRValue()) {
1791       std::pair<til::LiteralPtr *, StringRef> Placeholder =
1792           Analyzer->SxBuilder.createThisPlaceholder(Exp);
1793       [[maybe_unused]] auto inserted =
1794           ConstructedObjects.insert({Exp, Placeholder.first});
1795       assert(inserted.second && "Are we visiting the same expression again?");
1796       if (isa<CXXConstructExpr>(Exp))
1797         Self = Placeholder.first;
1798       if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1799         Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1800     }
1801 
1802     assert(Loc.isInvalid());
1803     Loc = Exp->getExprLoc();
1804   }
1805 
1806   for(const Attr *At : D->attrs()) {
1807     switch (At->getKind()) {
1808       // When we encounter a lock function, we need to add the lock to our
1809       // lockset.
1810       case attr::AcquireCapability: {
1811         const auto *A = cast<AcquireCapabilityAttr>(At);
1812         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1813                                             : ExclusiveLocksToAdd,
1814                               A, Exp, D, Self);
1815         break;
1816       }
1817 
1818       // An assert will add a lock to the lockset, but will not generate
1819       // a warning if it is already there, and will not generate a warning
1820       // if it is not removed.
1821       case attr::AssertExclusiveLock: {
1822         const auto *A = cast<AssertExclusiveLockAttr>(At);
1823 
1824         CapExprSet AssertLocks;
1825         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1826         for (const auto &AssertLock : AssertLocks)
1827           Analyzer->addLock(
1828               FSet, std::make_unique<LockableFactEntry>(
1829                         AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1830         break;
1831       }
1832       case attr::AssertSharedLock: {
1833         const auto *A = cast<AssertSharedLockAttr>(At);
1834 
1835         CapExprSet AssertLocks;
1836         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1837         for (const auto &AssertLock : AssertLocks)
1838           Analyzer->addLock(
1839               FSet, std::make_unique<LockableFactEntry>(
1840                         AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1841         break;
1842       }
1843 
1844       case attr::AssertCapability: {
1845         const auto *A = cast<AssertCapabilityAttr>(At);
1846         CapExprSet AssertLocks;
1847         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1848         for (const auto &AssertLock : AssertLocks)
1849           Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1850                                       AssertLock,
1851                                       A->isShared() ? LK_Shared : LK_Exclusive,
1852                                       Loc, FactEntry::Asserted));
1853         break;
1854       }
1855 
1856       // When we encounter an unlock function, we need to remove unlocked
1857       // mutexes from the lockset, and flag a warning if they are not there.
1858       case attr::ReleaseCapability: {
1859         const auto *A = cast<ReleaseCapabilityAttr>(At);
1860         if (A->isGeneric())
1861           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1862         else if (A->isShared())
1863           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1864         else
1865           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1866         break;
1867       }
1868 
1869       case attr::RequiresCapability: {
1870         const auto *A = cast<RequiresCapabilityAttr>(At);
1871         for (auto *Arg : A->args()) {
1872           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1873                              POK_FunctionCall, Self, Loc);
1874           // use for adopting a lock
1875           if (!Scp.shouldIgnore())
1876             Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1877         }
1878         break;
1879       }
1880 
1881       case attr::LocksExcluded: {
1882         const auto *A = cast<LocksExcludedAttr>(At);
1883         for (auto *Arg : A->args()) {
1884           warnIfMutexHeld(D, Exp, Arg, Self, Loc);
1885           // use for deferring a lock
1886           if (!Scp.shouldIgnore())
1887             Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1888         }
1889         break;
1890       }
1891 
1892       // Ignore attributes unrelated to thread-safety
1893       default:
1894         break;
1895     }
1896   }
1897 
1898   // Remove locks first to allow lock upgrading/downgrading.
1899   // FIXME -- should only fully remove if the attribute refers to 'this'.
1900   bool Dtor = isa<CXXDestructorDecl>(D);
1901   for (const auto &M : ExclusiveLocksToRemove)
1902     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1903   for (const auto &M : SharedLocksToRemove)
1904     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1905   for (const auto &M : GenericLocksToRemove)
1906     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1907 
1908   // Add locks.
1909   FactEntry::SourceKind Source =
1910       !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1911   for (const auto &M : ExclusiveLocksToAdd)
1912     Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1913                                                                 Loc, Source));
1914   for (const auto &M : SharedLocksToAdd)
1915     Analyzer->addLock(
1916         FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1917 
1918   if (!Scp.shouldIgnore()) {
1919     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1920     auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1921     for (const auto &M : ExclusiveLocksToAdd)
1922       ScopedEntry->addLock(M);
1923     for (const auto &M : SharedLocksToAdd)
1924       ScopedEntry->addLock(M);
1925     for (const auto &M : ScopedReqsAndExcludes)
1926       ScopedEntry->addLock(M);
1927     for (const auto &M : ExclusiveLocksToRemove)
1928       ScopedEntry->addExclusiveUnlock(M);
1929     for (const auto &M : SharedLocksToRemove)
1930       ScopedEntry->addSharedUnlock(M);
1931     Analyzer->addLock(FSet, std::move(ScopedEntry));
1932   }
1933 }
1934 
1935 /// For unary operations which read and write a variable, we need to
1936 /// check whether we hold any required mutexes. Reads are checked in
1937 /// VisitCastExpr.
1938 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1939   switch (UO->getOpcode()) {
1940     case UO_PostDec:
1941     case UO_PostInc:
1942     case UO_PreDec:
1943     case UO_PreInc:
1944       checkAccess(UO->getSubExpr(), AK_Written);
1945       break;
1946     default:
1947       break;
1948   }
1949 }
1950 
1951 /// For binary operations which assign to a variable (writes), we need to check
1952 /// whether we hold any required mutexes.
1953 /// FIXME: Deal with non-primitive types.
1954 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1955   if (!BO->isAssignmentOp())
1956     return;
1957 
1958   // adjust the context
1959   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1960 
1961   checkAccess(BO->getLHS(), AK_Written);
1962 }
1963 
1964 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1965 /// need to ensure we hold any required mutexes.
1966 /// FIXME: Deal with non-primitive types.
1967 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1968   if (CE->getCastKind() != CK_LValueToRValue)
1969     return;
1970   checkAccess(CE->getSubExpr(), AK_Read);
1971 }
1972 
1973 void BuildLockset::examineArguments(const FunctionDecl *FD,
1974                                     CallExpr::const_arg_iterator ArgBegin,
1975                                     CallExpr::const_arg_iterator ArgEnd,
1976                                     bool SkipFirstParam) {
1977   // Currently we can't do anything if we don't know the function declaration.
1978   if (!FD)
1979     return;
1980 
1981   // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
1982   // only turns off checking within the body of a function, but we also
1983   // use it to turn off checking in arguments to the function.  This
1984   // could result in some false negatives, but the alternative is to
1985   // create yet another attribute.
1986   if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
1987     return;
1988 
1989   const ArrayRef<ParmVarDecl *> Params = FD->parameters();
1990   auto Param = Params.begin();
1991   if (SkipFirstParam)
1992     ++Param;
1993 
1994   // There can be default arguments, so we stop when one iterator is at end().
1995   for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
1996        ++Param, ++Arg) {
1997     QualType Qt = (*Param)->getType();
1998     if (Qt->isReferenceType())
1999       checkAccess(*Arg, AK_Read, POK_PassByRef);
2000   }
2001 }
2002 
2003 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2004   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2005     const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2006     // ME can be null when calling a method pointer
2007     const CXXMethodDecl *MD = CE->getMethodDecl();
2008 
2009     if (ME && MD) {
2010       if (ME->isArrow()) {
2011         // Should perhaps be AK_Written if !MD->isConst().
2012         checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2013       } else {
2014         // Should perhaps be AK_Written if !MD->isConst().
2015         checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2016       }
2017     }
2018 
2019     examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2020   } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2021     OverloadedOperatorKind OEop = OE->getOperator();
2022     switch (OEop) {
2023       case OO_Equal:
2024       case OO_PlusEqual:
2025       case OO_MinusEqual:
2026       case OO_StarEqual:
2027       case OO_SlashEqual:
2028       case OO_PercentEqual:
2029       case OO_CaretEqual:
2030       case OO_AmpEqual:
2031       case OO_PipeEqual:
2032       case OO_LessLessEqual:
2033       case OO_GreaterGreaterEqual:
2034         checkAccess(OE->getArg(1), AK_Read);
2035         [[fallthrough]];
2036       case OO_PlusPlus:
2037       case OO_MinusMinus:
2038         checkAccess(OE->getArg(0), AK_Written);
2039         break;
2040       case OO_Star:
2041       case OO_ArrowStar:
2042       case OO_Arrow:
2043       case OO_Subscript:
2044         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2045           // Grrr.  operator* can be multiplication...
2046           checkPtAccess(OE->getArg(0), AK_Read);
2047         }
2048         [[fallthrough]];
2049       default: {
2050         // TODO: get rid of this, and rely on pass-by-ref instead.
2051         const Expr *Obj = OE->getArg(0);
2052         checkAccess(Obj, AK_Read);
2053         // Check the remaining arguments. For method operators, the first
2054         // argument is the implicit self argument, and doesn't appear in the
2055         // FunctionDecl, but for non-methods it does.
2056         const FunctionDecl *FD = OE->getDirectCallee();
2057         examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2058                          /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2059         break;
2060       }
2061     }
2062   } else {
2063     examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2064   }
2065 
2066   auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2067   if(!D || !D->hasAttrs())
2068     return;
2069   handleCall(Exp, D);
2070 }
2071 
2072 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2073   const CXXConstructorDecl *D = Exp->getConstructor();
2074   if (D && D->isCopyConstructor()) {
2075     const Expr* Source = Exp->getArg(0);
2076     checkAccess(Source, AK_Read);
2077   } else {
2078     examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2079   }
2080   if (D && D->hasAttrs())
2081     handleCall(Exp, D);
2082 }
2083 
2084 static const Expr *UnpackConstruction(const Expr *E) {
2085   if (auto *CE = dyn_cast<CastExpr>(E))
2086     if (CE->getCastKind() == CK_NoOp)
2087       E = CE->getSubExpr()->IgnoreParens();
2088   if (auto *CE = dyn_cast<CastExpr>(E))
2089     if (CE->getCastKind() == CK_ConstructorConversion ||
2090         CE->getCastKind() == CK_UserDefinedConversion)
2091       E = CE->getSubExpr();
2092   if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2093     E = BTE->getSubExpr();
2094   return E;
2095 }
2096 
2097 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2098   // adjust the context
2099   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2100 
2101   for (auto *D : S->getDeclGroup()) {
2102     if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2103       const Expr *E = VD->getInit();
2104       if (!E)
2105         continue;
2106       E = E->IgnoreParens();
2107 
2108       // handle constructors that involve temporaries
2109       if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2110         E = EWC->getSubExpr()->IgnoreParens();
2111       E = UnpackConstruction(E);
2112 
2113       if (auto Object = ConstructedObjects.find(E);
2114           Object != ConstructedObjects.end()) {
2115         Object->second->setClangDecl(VD);
2116         ConstructedObjects.erase(Object);
2117       }
2118     }
2119   }
2120 }
2121 
2122 void BuildLockset::VisitMaterializeTemporaryExpr(
2123     const MaterializeTemporaryExpr *Exp) {
2124   if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2125     if (auto Object =
2126             ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr()));
2127         Object != ConstructedObjects.end()) {
2128       Object->second->setClangDecl(ExtD);
2129       ConstructedObjects.erase(Object);
2130     }
2131   }
2132 }
2133 
2134 /// Given two facts merging on a join point, possibly warn and decide whether to
2135 /// keep or replace.
2136 ///
2137 /// \param CanModify Whether we can replace \p A by \p B.
2138 /// \return  false if we should keep \p A, true if we should take \p B.
2139 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2140                                 bool CanModify) {
2141   if (A.kind() != B.kind()) {
2142     // For managed capabilities, the destructor should unlock in the right mode
2143     // anyway. For asserted capabilities no unlocking is needed.
2144     if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2145       // The shared capability subsumes the exclusive capability, if possible.
2146       bool ShouldTakeB = B.kind() == LK_Shared;
2147       if (CanModify || !ShouldTakeB)
2148         return ShouldTakeB;
2149     }
2150     Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2151                                      A.loc());
2152     // Take the exclusive capability to reduce further warnings.
2153     return CanModify && B.kind() == LK_Exclusive;
2154   } else {
2155     // The non-asserted capability is the one we want to track.
2156     return CanModify && A.asserted() && !B.asserted();
2157   }
2158 }
2159 
2160 /// Compute the intersection of two locksets and issue warnings for any
2161 /// locks in the symmetric difference.
2162 ///
2163 /// This function is used at a merge point in the CFG when comparing the lockset
2164 /// of each branch being merged. For example, given the following sequence:
2165 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2166 /// are the same. In the event of a difference, we use the intersection of these
2167 /// two locksets at the start of D.
2168 ///
2169 /// \param EntrySet A lockset for entry into a (possibly new) block.
2170 /// \param ExitSet The lockset on exiting a preceding block.
2171 /// \param JoinLoc The location of the join point for error reporting
2172 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2173 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2174 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2175                                             const FactSet &ExitSet,
2176                                             SourceLocation JoinLoc,
2177                                             LockErrorKind EntryLEK,
2178                                             LockErrorKind ExitLEK) {
2179   FactSet EntrySetOrig = EntrySet;
2180 
2181   // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2182   for (const auto &Fact : ExitSet) {
2183     const FactEntry &ExitFact = FactMan[Fact];
2184 
2185     FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2186     if (EntryIt != EntrySet.end()) {
2187       if (join(FactMan[*EntryIt], ExitFact,
2188                EntryLEK != LEK_LockedSomeLoopIterations))
2189         *EntryIt = Fact;
2190     } else if (!ExitFact.managed()) {
2191       ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2192                                              EntryLEK, Handler);
2193     }
2194   }
2195 
2196   // Find locks in EntrySet that are not in ExitSet, and remove them.
2197   for (const auto &Fact : EntrySetOrig) {
2198     const FactEntry *EntryFact = &FactMan[Fact];
2199     const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2200 
2201     if (!ExitFact) {
2202       if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2203         EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2204                                                  ExitLEK, Handler);
2205       if (ExitLEK == LEK_LockedSomePredecessors)
2206         EntrySet.removeLock(FactMan, *EntryFact);
2207     }
2208   }
2209 }
2210 
2211 // Return true if block B never continues to its successors.
2212 static bool neverReturns(const CFGBlock *B) {
2213   if (B->hasNoReturnElement())
2214     return true;
2215   if (B->empty())
2216     return false;
2217 
2218   CFGElement Last = B->back();
2219   if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2220     if (isa<CXXThrowExpr>(S->getStmt()))
2221       return true;
2222   }
2223   return false;
2224 }
2225 
2226 /// Check a function's CFG for thread-safety violations.
2227 ///
2228 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2229 /// at the end of each block, and issue warnings for thread safety violations.
2230 /// Each block in the CFG is traversed exactly once.
2231 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2232   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2233   // For now, we just use the walker to set things up.
2234   threadSafety::CFGWalker walker;
2235   if (!walker.init(AC))
2236     return;
2237 
2238   // AC.dumpCFG(true);
2239   // threadSafety::printSCFG(walker);
2240 
2241   CFG *CFGraph = walker.getGraph();
2242   const NamedDecl *D = walker.getDecl();
2243   const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2244   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2245 
2246   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2247     return;
2248 
2249   // FIXME: Do something a bit more intelligent inside constructor and
2250   // destructor code.  Constructors and destructors must assume unique access
2251   // to 'this', so checks on member variable access is disabled, but we should
2252   // still enable checks on other objects.
2253   if (isa<CXXConstructorDecl>(D))
2254     return;  // Don't check inside constructors.
2255   if (isa<CXXDestructorDecl>(D))
2256     return;  // Don't check inside destructors.
2257 
2258   Handler.enterFunction(CurrentFunction);
2259 
2260   BlockInfo.resize(CFGraph->getNumBlockIDs(),
2261     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2262 
2263   // We need to explore the CFG via a "topological" ordering.
2264   // That way, we will be guaranteed to have information about required
2265   // predecessor locksets when exploring a new block.
2266   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2267   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2268 
2269   // Mark entry block as reachable
2270   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2271 
2272   // Compute SSA names for local variables
2273   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2274 
2275   // Fill in source locations for all CFGBlocks.
2276   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2277 
2278   CapExprSet ExclusiveLocksAcquired;
2279   CapExprSet SharedLocksAcquired;
2280   CapExprSet LocksReleased;
2281 
2282   // Add locks from exclusive_locks_required and shared_locks_required
2283   // to initial lockset. Also turn off checking for lock and unlock functions.
2284   // FIXME: is there a more intelligent way to check lock/unlock functions?
2285   if (!SortedGraph->empty() && D->hasAttrs()) {
2286     const CFGBlock *FirstBlock = *SortedGraph->begin();
2287     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2288 
2289     CapExprSet ExclusiveLocksToAdd;
2290     CapExprSet SharedLocksToAdd;
2291 
2292     SourceLocation Loc = D->getLocation();
2293     for (const auto *Attr : D->attrs()) {
2294       Loc = Attr->getLocation();
2295       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2296         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2297                     nullptr, D);
2298       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2299         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2300         // We must ignore such methods.
2301         if (A->args_size() == 0)
2302           return;
2303         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2304                     nullptr, D);
2305         getMutexIDs(LocksReleased, A, nullptr, D);
2306       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2307         if (A->args_size() == 0)
2308           return;
2309         getMutexIDs(A->isShared() ? SharedLocksAcquired
2310                                   : ExclusiveLocksAcquired,
2311                     A, nullptr, D);
2312       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2313         // Don't try to check trylock functions for now.
2314         return;
2315       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2316         // Don't try to check trylock functions for now.
2317         return;
2318       } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2319         // Don't try to check trylock functions for now.
2320         return;
2321       }
2322     }
2323 
2324     // FIXME -- Loc can be wrong here.
2325     for (const auto &Mu : ExclusiveLocksToAdd) {
2326       auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2327                                                        FactEntry::Declared);
2328       addLock(InitialLockset, std::move(Entry), true);
2329     }
2330     for (const auto &Mu : SharedLocksToAdd) {
2331       auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2332                                                        FactEntry::Declared);
2333       addLock(InitialLockset, std::move(Entry), true);
2334     }
2335   }
2336 
2337   for (const auto *CurrBlock : *SortedGraph) {
2338     unsigned CurrBlockID = CurrBlock->getBlockID();
2339     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2340 
2341     // Use the default initial lockset in case there are no predecessors.
2342     VisitedBlocks.insert(CurrBlock);
2343 
2344     // Iterate through the predecessor blocks and warn if the lockset for all
2345     // predecessors is not the same. We take the entry lockset of the current
2346     // block to be the intersection of all previous locksets.
2347     // FIXME: By keeping the intersection, we may output more errors in future
2348     // for a lock which is not in the intersection, but was in the union. We
2349     // may want to also keep the union in future. As an example, let's say
2350     // the intersection contains Mutex L, and the union contains L and M.
2351     // Later we unlock M. At this point, we would output an error because we
2352     // never locked M; although the real error is probably that we forgot to
2353     // lock M on all code paths. Conversely, let's say that later we lock M.
2354     // In this case, we should compare against the intersection instead of the
2355     // union because the real error is probably that we forgot to unlock M on
2356     // all code paths.
2357     bool LocksetInitialized = false;
2358     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2359          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2360       // if *PI -> CurrBlock is a back edge
2361       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2362         continue;
2363 
2364       unsigned PrevBlockID = (*PI)->getBlockID();
2365       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2366 
2367       // Ignore edges from blocks that can't return.
2368       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2369         continue;
2370 
2371       // Okay, we can reach this block from the entry.
2372       CurrBlockInfo->Reachable = true;
2373 
2374       FactSet PrevLockset;
2375       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2376 
2377       if (!LocksetInitialized) {
2378         CurrBlockInfo->EntrySet = PrevLockset;
2379         LocksetInitialized = true;
2380       } else {
2381         // Surprisingly 'continue' doesn't always produce back edges, because
2382         // the CFG has empty "transition" blocks where they meet with the end
2383         // of the regular loop body. We still want to diagnose them as loop.
2384         intersectAndWarn(
2385             CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2386             isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2387                 ? LEK_LockedSomeLoopIterations
2388                 : LEK_LockedSomePredecessors);
2389       }
2390     }
2391 
2392     // Skip rest of block if it's not reachable.
2393     if (!CurrBlockInfo->Reachable)
2394       continue;
2395 
2396     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2397 
2398     // Visit all the statements in the basic block.
2399     for (const auto &BI : *CurrBlock) {
2400       switch (BI.getKind()) {
2401         case CFGElement::Statement: {
2402           CFGStmt CS = BI.castAs<CFGStmt>();
2403           LocksetBuilder.Visit(CS.getStmt());
2404           break;
2405         }
2406         // Ignore BaseDtor and MemberDtor for now.
2407         case CFGElement::AutomaticObjectDtor: {
2408           CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2409           const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2410           if (!DD->hasAttrs())
2411             break;
2412 
2413           LocksetBuilder.handleCall(nullptr, DD,
2414                                     SxBuilder.createVariable(AD.getVarDecl()),
2415                                     AD.getTriggerStmt()->getEndLoc());
2416           break;
2417         }
2418         case CFGElement::TemporaryDtor: {
2419           auto TD = BI.castAs<CFGTemporaryDtor>();
2420 
2421           // Clean up constructed object even if there are no attributes to
2422           // keep the number of objects in limbo as small as possible.
2423           if (auto Object = LocksetBuilder.ConstructedObjects.find(
2424                   TD.getBindTemporaryExpr()->getSubExpr());
2425               Object != LocksetBuilder.ConstructedObjects.end()) {
2426             const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2427             if (DD->hasAttrs())
2428               // TODO: the location here isn't quite correct.
2429               LocksetBuilder.handleCall(nullptr, DD, Object->second,
2430                                         TD.getBindTemporaryExpr()->getEndLoc());
2431             LocksetBuilder.ConstructedObjects.erase(Object);
2432           }
2433           break;
2434         }
2435         default:
2436           break;
2437       }
2438     }
2439     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2440 
2441     // For every back edge from CurrBlock (the end of the loop) to another block
2442     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2443     // the one held at the beginning of FirstLoopBlock. We can look up the
2444     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2445     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2446          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2447       // if CurrBlock -> *SI is *not* a back edge
2448       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2449         continue;
2450 
2451       CFGBlock *FirstLoopBlock = *SI;
2452       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2453       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2454       intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2455                        LEK_LockedSomeLoopIterations);
2456     }
2457   }
2458 
2459   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2460   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2461 
2462   // Skip the final check if the exit block is unreachable.
2463   if (!Final->Reachable)
2464     return;
2465 
2466   // By default, we expect all locks held on entry to be held on exit.
2467   FactSet ExpectedExitSet = Initial->EntrySet;
2468 
2469   // Adjust the expected exit set by adding or removing locks, as declared
2470   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2471   // issue the appropriate warning.
2472   // FIXME: the location here is not quite right.
2473   for (const auto &Lock : ExclusiveLocksAcquired)
2474     ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2475                                          Lock, LK_Exclusive, D->getLocation()));
2476   for (const auto &Lock : SharedLocksAcquired)
2477     ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2478                                          Lock, LK_Shared, D->getLocation()));
2479   for (const auto &Lock : LocksReleased)
2480     ExpectedExitSet.removeLock(FactMan, Lock);
2481 
2482   // FIXME: Should we call this function for all blocks which exit the function?
2483   intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc,
2484                    LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2485 
2486   Handler.leaveFunction(CurrentFunction);
2487 }
2488 
2489 /// Check a function's CFG for thread-safety violations.
2490 ///
2491 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2492 /// at the end of each block, and issue warnings for thread safety violations.
2493 /// Each block in the CFG is traversed exactly once.
2494 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2495                                            ThreadSafetyHandler &Handler,
2496                                            BeforeSet **BSet) {
2497   if (!*BSet)
2498     *BSet = new BeforeSet;
2499   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2500   Analyzer.runAnalysis(AC);
2501 }
2502 
2503 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2504 
2505 /// Helper function that returns a LockKind required for the given level
2506 /// of access.
2507 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2508   switch (AK) {
2509     case AK_Read :
2510       return LK_Shared;
2511     case AK_Written :
2512       return LK_Exclusive;
2513   }
2514   llvm_unreachable("Unknown AccessKind");
2515 }
2516