1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/StringRef.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 #include <memory> 55 #include <optional> 56 #include <string> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace clang; 62 using namespace threadSafety; 63 64 // Key method definition 65 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 66 67 /// Issue a warning about an invalid lock expression 68 static void warnInvalidLock(ThreadSafetyHandler &Handler, 69 const Expr *MutexExp, const NamedDecl *D, 70 const Expr *DeclExp, StringRef Kind) { 71 SourceLocation Loc; 72 if (DeclExp) 73 Loc = DeclExp->getExprLoc(); 74 75 // FIXME: add a note about the attribute location in MutexExp or D 76 if (Loc.isValid()) 77 Handler.handleInvalidLockExp(Loc); 78 } 79 80 namespace { 81 82 /// A set of CapabilityExpr objects, which are compiled from thread safety 83 /// attributes on a function. 84 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 85 public: 86 /// Push M onto list, but discard duplicates. 87 void push_back_nodup(const CapabilityExpr &CapE) { 88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) { 89 return CapE.equals(CapE2); 90 })) 91 push_back(CapE); 92 } 93 }; 94 95 class FactManager; 96 class FactSet; 97 98 /// This is a helper class that stores a fact that is known at a 99 /// particular point in program execution. Currently, a fact is a capability, 100 /// along with additional information, such as where it was acquired, whether 101 /// it is exclusive or shared, etc. 102 /// 103 /// FIXME: this analysis does not currently support re-entrant locking. 104 class FactEntry : public CapabilityExpr { 105 public: 106 /// Where a fact comes from. 107 enum SourceKind { 108 Acquired, ///< The fact has been directly acquired. 109 Asserted, ///< The fact has been asserted to be held. 110 Declared, ///< The fact is assumed to be held by callers. 111 Managed, ///< The fact has been acquired through a scoped capability. 112 }; 113 114 private: 115 /// Exclusive or shared. 116 LockKind LKind : 8; 117 118 // How it was acquired. 119 SourceKind Source : 8; 120 121 /// Where it was acquired. 122 SourceLocation AcquireLoc; 123 124 public: 125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 126 SourceKind Src) 127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {} 128 virtual ~FactEntry() = default; 129 130 LockKind kind() const { return LKind; } 131 SourceLocation loc() const { return AcquireLoc; } 132 133 bool asserted() const { return Source == Asserted; } 134 bool declared() const { return Source == Declared; } 135 bool managed() const { return Source == Managed; } 136 137 virtual void 138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 139 SourceLocation JoinLoc, LockErrorKind LEK, 140 ThreadSafetyHandler &Handler) const = 0; 141 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 142 const FactEntry &entry, 143 ThreadSafetyHandler &Handler) const = 0; 144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 145 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 146 bool FullyRemove, 147 ThreadSafetyHandler &Handler) const = 0; 148 149 // Return true if LKind >= LK, where exclusive > shared 150 bool isAtLeast(LockKind LK) const { 151 return (LKind == LK_Exclusive) || (LK == LK_Shared); 152 } 153 }; 154 155 using FactID = unsigned short; 156 157 /// FactManager manages the memory for all facts that are created during 158 /// the analysis of a single routine. 159 class FactManager { 160 private: 161 std::vector<std::unique_ptr<const FactEntry>> Facts; 162 163 public: 164 FactID newFact(std::unique_ptr<FactEntry> Entry) { 165 Facts.push_back(std::move(Entry)); 166 return static_cast<unsigned short>(Facts.size() - 1); 167 } 168 169 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 170 }; 171 172 /// A FactSet is the set of facts that are known to be true at a 173 /// particular program point. FactSets must be small, because they are 174 /// frequently copied, and are thus implemented as a set of indices into a 175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 176 /// locks, so we can get away with doing a linear search for lookup. Note 177 /// that a hashtable or map is inappropriate in this case, because lookups 178 /// may involve partial pattern matches, rather than exact matches. 179 class FactSet { 180 private: 181 using FactVec = SmallVector<FactID, 4>; 182 183 FactVec FactIDs; 184 185 public: 186 using iterator = FactVec::iterator; 187 using const_iterator = FactVec::const_iterator; 188 189 iterator begin() { return FactIDs.begin(); } 190 const_iterator begin() const { return FactIDs.begin(); } 191 192 iterator end() { return FactIDs.end(); } 193 const_iterator end() const { return FactIDs.end(); } 194 195 bool isEmpty() const { return FactIDs.size() == 0; } 196 197 // Return true if the set contains only negative facts 198 bool isEmpty(FactManager &FactMan) const { 199 for (const auto FID : *this) { 200 if (!FactMan[FID].negative()) 201 return false; 202 } 203 return true; 204 } 205 206 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 207 208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 209 FactID F = FM.newFact(std::move(Entry)); 210 FactIDs.push_back(F); 211 return F; 212 } 213 214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 215 unsigned n = FactIDs.size(); 216 if (n == 0) 217 return false; 218 219 for (unsigned i = 0; i < n-1; ++i) { 220 if (FM[FactIDs[i]].matches(CapE)) { 221 FactIDs[i] = FactIDs[n-1]; 222 FactIDs.pop_back(); 223 return true; 224 } 225 } 226 if (FM[FactIDs[n-1]].matches(CapE)) { 227 FactIDs.pop_back(); 228 return true; 229 } 230 return false; 231 } 232 233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 234 return std::find_if(begin(), end(), [&](FactID ID) { 235 return FM[ID].matches(CapE); 236 }); 237 } 238 239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 240 auto I = std::find_if(begin(), end(), [&](FactID ID) { 241 return FM[ID].matches(CapE); 242 }); 243 return I != end() ? &FM[*I] : nullptr; 244 } 245 246 const FactEntry *findLockUniv(FactManager &FM, 247 const CapabilityExpr &CapE) const { 248 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 249 return FM[ID].matchesUniv(CapE); 250 }); 251 return I != end() ? &FM[*I] : nullptr; 252 } 253 254 const FactEntry *findPartialMatch(FactManager &FM, 255 const CapabilityExpr &CapE) const { 256 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 257 return FM[ID].partiallyMatches(CapE); 258 }); 259 return I != end() ? &FM[*I] : nullptr; 260 } 261 262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 263 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 264 return FM[ID].valueDecl() == Vd; 265 }); 266 return I != end(); 267 } 268 }; 269 270 class ThreadSafetyAnalyzer; 271 272 } // namespace 273 274 namespace clang { 275 namespace threadSafety { 276 277 class BeforeSet { 278 private: 279 using BeforeVect = SmallVector<const ValueDecl *, 4>; 280 281 struct BeforeInfo { 282 BeforeVect Vect; 283 int Visited = 0; 284 285 BeforeInfo() = default; 286 BeforeInfo(BeforeInfo &&) = default; 287 }; 288 289 using BeforeMap = 290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 292 293 public: 294 BeforeSet() = default; 295 296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 297 ThreadSafetyAnalyzer& Analyzer); 298 299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 300 ThreadSafetyAnalyzer &Analyzer); 301 302 void checkBeforeAfter(const ValueDecl* Vd, 303 const FactSet& FSet, 304 ThreadSafetyAnalyzer& Analyzer, 305 SourceLocation Loc, StringRef CapKind); 306 307 private: 308 BeforeMap BMap; 309 CycleMap CycMap; 310 }; 311 312 } // namespace threadSafety 313 } // namespace clang 314 315 namespace { 316 317 class LocalVariableMap; 318 319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 320 321 /// A side (entry or exit) of a CFG node. 322 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 323 324 /// CFGBlockInfo is a struct which contains all the information that is 325 /// maintained for each block in the CFG. See LocalVariableMap for more 326 /// information about the contexts. 327 struct CFGBlockInfo { 328 // Lockset held at entry to block 329 FactSet EntrySet; 330 331 // Lockset held at exit from block 332 FactSet ExitSet; 333 334 // Context held at entry to block 335 LocalVarContext EntryContext; 336 337 // Context held at exit from block 338 LocalVarContext ExitContext; 339 340 // Location of first statement in block 341 SourceLocation EntryLoc; 342 343 // Location of last statement in block. 344 SourceLocation ExitLoc; 345 346 // Used to replay contexts later 347 unsigned EntryIndex; 348 349 // Is this block reachable? 350 bool Reachable = false; 351 352 const FactSet &getSet(CFGBlockSide Side) const { 353 return Side == CBS_Entry ? EntrySet : ExitSet; 354 } 355 356 SourceLocation getLocation(CFGBlockSide Side) const { 357 return Side == CBS_Entry ? EntryLoc : ExitLoc; 358 } 359 360 private: 361 CFGBlockInfo(LocalVarContext EmptyCtx) 362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 363 364 public: 365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 366 }; 367 368 // A LocalVariableMap maintains a map from local variables to their currently 369 // valid definitions. It provides SSA-like functionality when traversing the 370 // CFG. Like SSA, each definition or assignment to a variable is assigned a 371 // unique name (an integer), which acts as the SSA name for that definition. 372 // The total set of names is shared among all CFG basic blocks. 373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 374 // with their SSA-names. Instead, we compute a Context for each point in the 375 // code, which maps local variables to the appropriate SSA-name. This map 376 // changes with each assignment. 377 // 378 // The map is computed in a single pass over the CFG. Subsequent analyses can 379 // then query the map to find the appropriate Context for a statement, and use 380 // that Context to look up the definitions of variables. 381 class LocalVariableMap { 382 public: 383 using Context = LocalVarContext; 384 385 /// A VarDefinition consists of an expression, representing the value of the 386 /// variable, along with the context in which that expression should be 387 /// interpreted. A reference VarDefinition does not itself contain this 388 /// information, but instead contains a pointer to a previous VarDefinition. 389 struct VarDefinition { 390 public: 391 friend class LocalVariableMap; 392 393 // The original declaration for this variable. 394 const NamedDecl *Dec; 395 396 // The expression for this variable, OR 397 const Expr *Exp = nullptr; 398 399 // Reference to another VarDefinition 400 unsigned Ref = 0; 401 402 // The map with which Exp should be interpreted. 403 Context Ctx; 404 405 bool isReference() const { return !Exp; } 406 407 private: 408 // Create ordinary variable definition 409 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 410 : Dec(D), Exp(E), Ctx(C) {} 411 412 // Create reference to previous definition 413 VarDefinition(const NamedDecl *D, unsigned R, Context C) 414 : Dec(D), Ref(R), Ctx(C) {} 415 }; 416 417 private: 418 Context::Factory ContextFactory; 419 std::vector<VarDefinition> VarDefinitions; 420 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 421 422 public: 423 LocalVariableMap() { 424 // index 0 is a placeholder for undefined variables (aka phi-nodes). 425 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 426 } 427 428 /// Look up a definition, within the given context. 429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 430 const unsigned *i = Ctx.lookup(D); 431 if (!i) 432 return nullptr; 433 assert(*i < VarDefinitions.size()); 434 return &VarDefinitions[*i]; 435 } 436 437 /// Look up the definition for D within the given context. Returns 438 /// NULL if the expression is not statically known. If successful, also 439 /// modifies Ctx to hold the context of the return Expr. 440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 441 const unsigned *P = Ctx.lookup(D); 442 if (!P) 443 return nullptr; 444 445 unsigned i = *P; 446 while (i > 0) { 447 if (VarDefinitions[i].Exp) { 448 Ctx = VarDefinitions[i].Ctx; 449 return VarDefinitions[i].Exp; 450 } 451 i = VarDefinitions[i].Ref; 452 } 453 return nullptr; 454 } 455 456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 457 458 /// Return the next context after processing S. This function is used by 459 /// clients of the class to get the appropriate context when traversing the 460 /// CFG. It must be called for every assignment or DeclStmt. 461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 462 if (SavedContexts[CtxIndex+1].first == S) { 463 CtxIndex++; 464 Context Result = SavedContexts[CtxIndex].second; 465 return Result; 466 } 467 return C; 468 } 469 470 void dumpVarDefinitionName(unsigned i) { 471 if (i == 0) { 472 llvm::errs() << "Undefined"; 473 return; 474 } 475 const NamedDecl *Dec = VarDefinitions[i].Dec; 476 if (!Dec) { 477 llvm::errs() << "<<NULL>>"; 478 return; 479 } 480 Dec->printName(llvm::errs()); 481 llvm::errs() << "." << i << " " << ((const void*) Dec); 482 } 483 484 /// Dumps an ASCII representation of the variable map to llvm::errs() 485 void dump() { 486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 487 const Expr *Exp = VarDefinitions[i].Exp; 488 unsigned Ref = VarDefinitions[i].Ref; 489 490 dumpVarDefinitionName(i); 491 llvm::errs() << " = "; 492 if (Exp) Exp->dump(); 493 else { 494 dumpVarDefinitionName(Ref); 495 llvm::errs() << "\n"; 496 } 497 } 498 } 499 500 /// Dumps an ASCII representation of a Context to llvm::errs() 501 void dumpContext(Context C) { 502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 503 const NamedDecl *D = I.getKey(); 504 D->printName(llvm::errs()); 505 llvm::errs() << " -> "; 506 dumpVarDefinitionName(I.getData()); 507 llvm::errs() << "\n"; 508 } 509 } 510 511 /// Builds the variable map. 512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 513 std::vector<CFGBlockInfo> &BlockInfo); 514 515 protected: 516 friend class VarMapBuilder; 517 518 // Get the current context index 519 unsigned getContextIndex() { return SavedContexts.size()-1; } 520 521 // Save the current context for later replay 522 void saveContext(const Stmt *S, Context C) { 523 SavedContexts.push_back(std::make_pair(S, C)); 524 } 525 526 // Adds a new definition to the given context, and returns a new context. 527 // This method should be called when declaring a new variable. 528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 529 assert(!Ctx.contains(D)); 530 unsigned newID = VarDefinitions.size(); 531 Context NewCtx = ContextFactory.add(Ctx, D, newID); 532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 533 return NewCtx; 534 } 535 536 // Add a new reference to an existing definition. 537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 538 unsigned newID = VarDefinitions.size(); 539 Context NewCtx = ContextFactory.add(Ctx, D, newID); 540 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 541 return NewCtx; 542 } 543 544 // Updates a definition only if that definition is already in the map. 545 // This method should be called when assigning to an existing variable. 546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 547 if (Ctx.contains(D)) { 548 unsigned newID = VarDefinitions.size(); 549 Context NewCtx = ContextFactory.remove(Ctx, D); 550 NewCtx = ContextFactory.add(NewCtx, D, newID); 551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 552 return NewCtx; 553 } 554 return Ctx; 555 } 556 557 // Removes a definition from the context, but keeps the variable name 558 // as a valid variable. The index 0 is a placeholder for cleared definitions. 559 Context clearDefinition(const NamedDecl *D, Context Ctx) { 560 Context NewCtx = Ctx; 561 if (NewCtx.contains(D)) { 562 NewCtx = ContextFactory.remove(NewCtx, D); 563 NewCtx = ContextFactory.add(NewCtx, D, 0); 564 } 565 return NewCtx; 566 } 567 568 // Remove a definition entirely frmo the context. 569 Context removeDefinition(const NamedDecl *D, Context Ctx) { 570 Context NewCtx = Ctx; 571 if (NewCtx.contains(D)) { 572 NewCtx = ContextFactory.remove(NewCtx, D); 573 } 574 return NewCtx; 575 } 576 577 Context intersectContexts(Context C1, Context C2); 578 Context createReferenceContext(Context C); 579 void intersectBackEdge(Context C1, Context C2); 580 }; 581 582 } // namespace 583 584 // This has to be defined after LocalVariableMap. 585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 586 return CFGBlockInfo(M.getEmptyContext()); 587 } 588 589 namespace { 590 591 /// Visitor which builds a LocalVariableMap 592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 593 public: 594 LocalVariableMap* VMap; 595 LocalVariableMap::Context Ctx; 596 597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 598 : VMap(VM), Ctx(C) {} 599 600 void VisitDeclStmt(const DeclStmt *S); 601 void VisitBinaryOperator(const BinaryOperator *BO); 602 }; 603 604 } // namespace 605 606 // Add new local variables to the variable map 607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 608 bool modifiedCtx = false; 609 const DeclGroupRef DGrp = S->getDeclGroup(); 610 for (const auto *D : DGrp) { 611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 612 const Expr *E = VD->getInit(); 613 614 // Add local variables with trivial type to the variable map 615 QualType T = VD->getType(); 616 if (T.isTrivialType(VD->getASTContext())) { 617 Ctx = VMap->addDefinition(VD, E, Ctx); 618 modifiedCtx = true; 619 } 620 } 621 } 622 if (modifiedCtx) 623 VMap->saveContext(S, Ctx); 624 } 625 626 // Update local variable definitions in variable map 627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 628 if (!BO->isAssignmentOp()) 629 return; 630 631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 632 633 // Update the variable map and current context. 634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 635 const ValueDecl *VDec = DRE->getDecl(); 636 if (Ctx.lookup(VDec)) { 637 if (BO->getOpcode() == BO_Assign) 638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 639 else 640 // FIXME -- handle compound assignment operators 641 Ctx = VMap->clearDefinition(VDec, Ctx); 642 VMap->saveContext(BO, Ctx); 643 } 644 } 645 } 646 647 // Computes the intersection of two contexts. The intersection is the 648 // set of variables which have the same definition in both contexts; 649 // variables with different definitions are discarded. 650 LocalVariableMap::Context 651 LocalVariableMap::intersectContexts(Context C1, Context C2) { 652 Context Result = C1; 653 for (const auto &P : C1) { 654 const NamedDecl *Dec = P.first; 655 const unsigned *i2 = C2.lookup(Dec); 656 if (!i2) // variable doesn't exist on second path 657 Result = removeDefinition(Dec, Result); 658 else if (*i2 != P.second) // variable exists, but has different definition 659 Result = clearDefinition(Dec, Result); 660 } 661 return Result; 662 } 663 664 // For every variable in C, create a new variable that refers to the 665 // definition in C. Return a new context that contains these new variables. 666 // (We use this for a naive implementation of SSA on loop back-edges.) 667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 668 Context Result = getEmptyContext(); 669 for (const auto &P : C) 670 Result = addReference(P.first, P.second, Result); 671 return Result; 672 } 673 674 // This routine also takes the intersection of C1 and C2, but it does so by 675 // altering the VarDefinitions. C1 must be the result of an earlier call to 676 // createReferenceContext. 677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 678 for (const auto &P : C1) { 679 unsigned i1 = P.second; 680 VarDefinition *VDef = &VarDefinitions[i1]; 681 assert(VDef->isReference()); 682 683 const unsigned *i2 = C2.lookup(P.first); 684 if (!i2 || (*i2 != i1)) 685 VDef->Ref = 0; // Mark this variable as undefined 686 } 687 } 688 689 // Traverse the CFG in topological order, so all predecessors of a block 690 // (excluding back-edges) are visited before the block itself. At 691 // each point in the code, we calculate a Context, which holds the set of 692 // variable definitions which are visible at that point in execution. 693 // Visible variables are mapped to their definitions using an array that 694 // contains all definitions. 695 // 696 // At join points in the CFG, the set is computed as the intersection of 697 // the incoming sets along each edge, E.g. 698 // 699 // { Context | VarDefinitions } 700 // int x = 0; { x -> x1 | x1 = 0 } 701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 705 // 706 // This is essentially a simpler and more naive version of the standard SSA 707 // algorithm. Those definitions that remain in the intersection are from blocks 708 // that strictly dominate the current block. We do not bother to insert proper 709 // phi nodes, because they are not used in our analysis; instead, wherever 710 // a phi node would be required, we simply remove that definition from the 711 // context (E.g. x above). 712 // 713 // The initial traversal does not capture back-edges, so those need to be 714 // handled on a separate pass. Whenever the first pass encounters an 715 // incoming back edge, it duplicates the context, creating new definitions 716 // that refer back to the originals. (These correspond to places where SSA 717 // might have to insert a phi node.) On the second pass, these definitions are 718 // set to NULL if the variable has changed on the back-edge (i.e. a phi 719 // node was actually required.) E.g. 720 // 721 // { Context | VarDefinitions } 722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 725 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 726 void LocalVariableMap::traverseCFG(CFG *CFGraph, 727 const PostOrderCFGView *SortedGraph, 728 std::vector<CFGBlockInfo> &BlockInfo) { 729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 730 731 for (const auto *CurrBlock : *SortedGraph) { 732 unsigned CurrBlockID = CurrBlock->getBlockID(); 733 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 734 735 VisitedBlocks.insert(CurrBlock); 736 737 // Calculate the entry context for the current block 738 bool HasBackEdges = false; 739 bool CtxInit = true; 740 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 741 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 742 // if *PI -> CurrBlock is a back edge, so skip it 743 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 744 HasBackEdges = true; 745 continue; 746 } 747 748 unsigned PrevBlockID = (*PI)->getBlockID(); 749 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 750 751 if (CtxInit) { 752 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 753 CtxInit = false; 754 } 755 else { 756 CurrBlockInfo->EntryContext = 757 intersectContexts(CurrBlockInfo->EntryContext, 758 PrevBlockInfo->ExitContext); 759 } 760 } 761 762 // Duplicate the context if we have back-edges, so we can call 763 // intersectBackEdges later. 764 if (HasBackEdges) 765 CurrBlockInfo->EntryContext = 766 createReferenceContext(CurrBlockInfo->EntryContext); 767 768 // Create a starting context index for the current block 769 saveContext(nullptr, CurrBlockInfo->EntryContext); 770 CurrBlockInfo->EntryIndex = getContextIndex(); 771 772 // Visit all the statements in the basic block. 773 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 774 for (const auto &BI : *CurrBlock) { 775 switch (BI.getKind()) { 776 case CFGElement::Statement: { 777 CFGStmt CS = BI.castAs<CFGStmt>(); 778 VMapBuilder.Visit(CS.getStmt()); 779 break; 780 } 781 default: 782 break; 783 } 784 } 785 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 786 787 // Mark variables on back edges as "unknown" if they've been changed. 788 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 789 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 790 // if CurrBlock -> *SI is *not* a back edge 791 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 792 continue; 793 794 CFGBlock *FirstLoopBlock = *SI; 795 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 796 Context LoopEnd = CurrBlockInfo->ExitContext; 797 intersectBackEdge(LoopBegin, LoopEnd); 798 } 799 } 800 801 // Put an extra entry at the end of the indexed context array 802 unsigned exitID = CFGraph->getExit().getBlockID(); 803 saveContext(nullptr, BlockInfo[exitID].ExitContext); 804 } 805 806 /// Find the appropriate source locations to use when producing diagnostics for 807 /// each block in the CFG. 808 static void findBlockLocations(CFG *CFGraph, 809 const PostOrderCFGView *SortedGraph, 810 std::vector<CFGBlockInfo> &BlockInfo) { 811 for (const auto *CurrBlock : *SortedGraph) { 812 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 813 814 // Find the source location of the last statement in the block, if the 815 // block is not empty. 816 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 817 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 818 } else { 819 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 820 BE = CurrBlock->rend(); BI != BE; ++BI) { 821 // FIXME: Handle other CFGElement kinds. 822 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 823 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 824 break; 825 } 826 } 827 } 828 829 if (CurrBlockInfo->ExitLoc.isValid()) { 830 // This block contains at least one statement. Find the source location 831 // of the first statement in the block. 832 for (const auto &BI : *CurrBlock) { 833 // FIXME: Handle other CFGElement kinds. 834 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 835 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 836 break; 837 } 838 } 839 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 840 CurrBlock != &CFGraph->getExit()) { 841 // The block is empty, and has a single predecessor. Use its exit 842 // location. 843 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 844 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 845 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { 846 // The block is empty, and has a single successor. Use its entry 847 // location. 848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 849 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; 850 } 851 } 852 } 853 854 namespace { 855 856 class LockableFactEntry : public FactEntry { 857 public: 858 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 859 SourceKind Src = Acquired) 860 : FactEntry(CE, LK, Loc, Src) {} 861 862 void 863 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 864 SourceLocation JoinLoc, LockErrorKind LEK, 865 ThreadSafetyHandler &Handler) const override { 866 if (!asserted() && !negative() && !isUniversal()) { 867 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc, 868 LEK); 869 } 870 } 871 872 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 873 ThreadSafetyHandler &Handler) const override { 874 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(), 875 entry.loc()); 876 } 877 878 void handleUnlock(FactSet &FSet, FactManager &FactMan, 879 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 880 bool FullyRemove, 881 ThreadSafetyHandler &Handler) const override { 882 FSet.removeLock(FactMan, Cp); 883 if (!Cp.negative()) { 884 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 885 !Cp, LK_Exclusive, UnlockLoc)); 886 } 887 } 888 }; 889 890 class ScopedLockableFactEntry : public FactEntry { 891 private: 892 enum UnderlyingCapabilityKind { 893 UCK_Acquired, ///< Any kind of acquired capability. 894 UCK_ReleasedShared, ///< Shared capability that was released. 895 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 896 }; 897 898 struct UnderlyingCapability { 899 CapabilityExpr Cap; 900 UnderlyingCapabilityKind Kind; 901 }; 902 903 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes; 904 905 public: 906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {} 908 909 void addLock(const CapabilityExpr &M) { 910 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired}); 911 } 912 913 void addExclusiveUnlock(const CapabilityExpr &M) { 914 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive}); 915 } 916 917 void addSharedUnlock(const CapabilityExpr &M) { 918 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared}); 919 } 920 921 void 922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 923 SourceLocation JoinLoc, LockErrorKind LEK, 924 ThreadSafetyHandler &Handler) const override { 925 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 926 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap); 927 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) || 928 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) { 929 // If this scoped lock manages another mutex, and if the underlying 930 // mutex is still/not held, then warn about the underlying mutex. 931 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(), 932 UnderlyingMutex.Cap.toString(), loc(), 933 JoinLoc, LEK); 934 } 935 } 936 } 937 938 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 939 ThreadSafetyHandler &Handler) const override { 940 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 941 if (UnderlyingMutex.Kind == UCK_Acquired) 942 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(), 943 &Handler); 944 else 945 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler); 946 } 947 } 948 949 void handleUnlock(FactSet &FSet, FactManager &FactMan, 950 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 951 bool FullyRemove, 952 ThreadSafetyHandler &Handler) const override { 953 assert(!Cp.negative() && "Managing object cannot be negative."); 954 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 955 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 956 // on double unlocking/locking if we're not destroying the scoped object. 957 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 958 if (UnderlyingMutex.Kind == UCK_Acquired) { 959 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler); 960 } else { 961 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared 962 ? LK_Shared 963 : LK_Exclusive; 964 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler); 965 } 966 } 967 if (FullyRemove) 968 FSet.removeLock(FactMan, Cp); 969 } 970 971 private: 972 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 973 LockKind kind, SourceLocation loc, 974 ThreadSafetyHandler *Handler) const { 975 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 976 if (Handler) 977 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(), 978 loc); 979 } else { 980 FSet.removeLock(FactMan, !Cp); 981 FSet.addLock(FactMan, 982 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed)); 983 } 984 } 985 986 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 987 SourceLocation loc, ThreadSafetyHandler *Handler) const { 988 if (FSet.findLock(FactMan, Cp)) { 989 FSet.removeLock(FactMan, Cp); 990 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 991 !Cp, LK_Exclusive, loc)); 992 } else if (Handler) { 993 SourceLocation PrevLoc; 994 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 995 PrevLoc = Neg->loc(); 996 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc); 997 } 998 } 999 }; 1000 1001 /// Class which implements the core thread safety analysis routines. 1002 class ThreadSafetyAnalyzer { 1003 friend class BuildLockset; 1004 friend class threadSafety::BeforeSet; 1005 1006 llvm::BumpPtrAllocator Bpa; 1007 threadSafety::til::MemRegionRef Arena; 1008 threadSafety::SExprBuilder SxBuilder; 1009 1010 ThreadSafetyHandler &Handler; 1011 const CXXMethodDecl *CurrentMethod; 1012 LocalVariableMap LocalVarMap; 1013 FactManager FactMan; 1014 std::vector<CFGBlockInfo> BlockInfo; 1015 1016 BeforeSet *GlobalBeforeSet; 1017 1018 public: 1019 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1020 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1021 1022 bool inCurrentScope(const CapabilityExpr &CapE); 1023 1024 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1025 bool ReqAttr = false); 1026 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1027 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind); 1028 1029 template <typename AttrType> 1030 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1031 const NamedDecl *D, til::SExpr *Self = nullptr); 1032 1033 template <class AttrType> 1034 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1035 const NamedDecl *D, 1036 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1037 Expr *BrE, bool Neg); 1038 1039 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1040 bool &Negate); 1041 1042 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1043 const CFGBlock* PredBlock, 1044 const CFGBlock *CurrBlock); 1045 1046 bool join(const FactEntry &a, const FactEntry &b, bool CanModify); 1047 1048 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1049 SourceLocation JoinLoc, LockErrorKind EntryLEK, 1050 LockErrorKind ExitLEK); 1051 1052 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1053 SourceLocation JoinLoc, LockErrorKind LEK) { 1054 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK); 1055 } 1056 1057 void runAnalysis(AnalysisDeclContext &AC); 1058 }; 1059 1060 } // namespace 1061 1062 /// Process acquired_before and acquired_after attributes on Vd. 1063 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1064 ThreadSafetyAnalyzer& Analyzer) { 1065 // Create a new entry for Vd. 1066 BeforeInfo *Info = nullptr; 1067 { 1068 // Keep InfoPtr in its own scope in case BMap is modified later and the 1069 // reference becomes invalid. 1070 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1071 if (!InfoPtr) 1072 InfoPtr.reset(new BeforeInfo()); 1073 Info = InfoPtr.get(); 1074 } 1075 1076 for (const auto *At : Vd->attrs()) { 1077 switch (At->getKind()) { 1078 case attr::AcquiredBefore: { 1079 const auto *A = cast<AcquiredBeforeAttr>(At); 1080 1081 // Read exprs from the attribute, and add them to BeforeVect. 1082 for (const auto *Arg : A->args()) { 1083 CapabilityExpr Cp = 1084 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1085 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1086 Info->Vect.push_back(Cpvd); 1087 const auto It = BMap.find(Cpvd); 1088 if (It == BMap.end()) 1089 insertAttrExprs(Cpvd, Analyzer); 1090 } 1091 } 1092 break; 1093 } 1094 case attr::AcquiredAfter: { 1095 const auto *A = cast<AcquiredAfterAttr>(At); 1096 1097 // Read exprs from the attribute, and add them to BeforeVect. 1098 for (const auto *Arg : A->args()) { 1099 CapabilityExpr Cp = 1100 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1101 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1102 // Get entry for mutex listed in attribute 1103 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1104 ArgInfo->Vect.push_back(Vd); 1105 } 1106 } 1107 break; 1108 } 1109 default: 1110 break; 1111 } 1112 } 1113 1114 return Info; 1115 } 1116 1117 BeforeSet::BeforeInfo * 1118 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1119 ThreadSafetyAnalyzer &Analyzer) { 1120 auto It = BMap.find(Vd); 1121 BeforeInfo *Info = nullptr; 1122 if (It == BMap.end()) 1123 Info = insertAttrExprs(Vd, Analyzer); 1124 else 1125 Info = It->second.get(); 1126 assert(Info && "BMap contained nullptr?"); 1127 return Info; 1128 } 1129 1130 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1131 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1132 const FactSet& FSet, 1133 ThreadSafetyAnalyzer& Analyzer, 1134 SourceLocation Loc, StringRef CapKind) { 1135 SmallVector<BeforeInfo*, 8> InfoVect; 1136 1137 // Do a depth-first traversal of Vd. 1138 // Return true if there are cycles. 1139 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1140 if (!Vd) 1141 return false; 1142 1143 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1144 1145 if (Info->Visited == 1) 1146 return true; 1147 1148 if (Info->Visited == 2) 1149 return false; 1150 1151 if (Info->Vect.empty()) 1152 return false; 1153 1154 InfoVect.push_back(Info); 1155 Info->Visited = 1; 1156 for (const auto *Vdb : Info->Vect) { 1157 // Exclude mutexes in our immediate before set. 1158 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1159 StringRef L1 = StartVd->getName(); 1160 StringRef L2 = Vdb->getName(); 1161 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1162 } 1163 // Transitively search other before sets, and warn on cycles. 1164 if (traverse(Vdb)) { 1165 if (!CycMap.contains(Vd)) { 1166 CycMap.insert(std::make_pair(Vd, true)); 1167 StringRef L1 = Vd->getName(); 1168 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1169 } 1170 } 1171 } 1172 Info->Visited = 2; 1173 return false; 1174 }; 1175 1176 traverse(StartVd); 1177 1178 for (auto *Info : InfoVect) 1179 Info->Visited = 0; 1180 } 1181 1182 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1183 static const ValueDecl *getValueDecl(const Expr *Exp) { 1184 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1185 return getValueDecl(CE->getSubExpr()); 1186 1187 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1188 return DR->getDecl(); 1189 1190 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1191 return ME->getMemberDecl(); 1192 1193 return nullptr; 1194 } 1195 1196 namespace { 1197 1198 template <typename Ty> 1199 class has_arg_iterator_range { 1200 using yes = char[1]; 1201 using no = char[2]; 1202 1203 template <typename Inner> 1204 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1205 1206 template <typename> 1207 static no& test(...); 1208 1209 public: 1210 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1211 }; 1212 1213 } // namespace 1214 1215 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1216 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1217 assert(SExp && "Null expressions should be ignored"); 1218 1219 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1220 const ValueDecl *VD = LP->clangDecl(); 1221 // Variables defined in a function are always inaccessible. 1222 if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) 1223 return false; 1224 // For now we consider static class members to be inaccessible. 1225 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1226 return false; 1227 // Global variables are always in scope. 1228 return true; 1229 } 1230 1231 // Members are in scope from methods of the same class. 1232 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1233 if (!CurrentMethod) 1234 return false; 1235 const ValueDecl *VD = P->clangDecl(); 1236 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1237 } 1238 1239 return false; 1240 } 1241 1242 /// Add a new lock to the lockset, warning if the lock is already there. 1243 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1244 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1245 std::unique_ptr<FactEntry> Entry, 1246 bool ReqAttr) { 1247 if (Entry->shouldIgnore()) 1248 return; 1249 1250 if (!ReqAttr && !Entry->negative()) { 1251 // look for the negative capability, and remove it from the fact set. 1252 CapabilityExpr NegC = !*Entry; 1253 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1254 if (Nen) { 1255 FSet.removeLock(FactMan, NegC); 1256 } 1257 else { 1258 if (inCurrentScope(*Entry) && !Entry->asserted()) 1259 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(), 1260 NegC.toString(), Entry->loc()); 1261 } 1262 } 1263 1264 // Check before/after constraints 1265 if (Handler.issueBetaWarnings() && 1266 !Entry->asserted() && !Entry->declared()) { 1267 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1268 Entry->loc(), Entry->getKind()); 1269 } 1270 1271 // FIXME: Don't always warn when we have support for reentrant locks. 1272 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1273 if (!Entry->asserted()) 1274 Cp->handleLock(FSet, FactMan, *Entry, Handler); 1275 } else { 1276 FSet.addLock(FactMan, std::move(Entry)); 1277 } 1278 } 1279 1280 /// Remove a lock from the lockset, warning if the lock is not there. 1281 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1282 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1283 SourceLocation UnlockLoc, 1284 bool FullyRemove, LockKind ReceivedKind) { 1285 if (Cp.shouldIgnore()) 1286 return; 1287 1288 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1289 if (!LDat) { 1290 SourceLocation PrevLoc; 1291 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1292 PrevLoc = Neg->loc(); 1293 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc, 1294 PrevLoc); 1295 return; 1296 } 1297 1298 // Generic lock removal doesn't care about lock kind mismatches, but 1299 // otherwise diagnose when the lock kinds are mismatched. 1300 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1301 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(), 1302 ReceivedKind, LDat->loc(), UnlockLoc); 1303 } 1304 1305 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler); 1306 } 1307 1308 /// Extract the list of mutexIDs from the attribute on an expression, 1309 /// and push them onto Mtxs, discarding any duplicates. 1310 template <typename AttrType> 1311 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1312 const Expr *Exp, const NamedDecl *D, 1313 til::SExpr *Self) { 1314 if (Attr->args_size() == 0) { 1315 // The mutex held is the "this" object. 1316 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self); 1317 if (Cp.isInvalid()) { 1318 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1319 return; 1320 } 1321 //else 1322 if (!Cp.shouldIgnore()) 1323 Mtxs.push_back_nodup(Cp); 1324 return; 1325 } 1326 1327 for (const auto *Arg : Attr->args()) { 1328 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); 1329 if (Cp.isInvalid()) { 1330 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1331 continue; 1332 } 1333 //else 1334 if (!Cp.shouldIgnore()) 1335 Mtxs.push_back_nodup(Cp); 1336 } 1337 } 1338 1339 /// Extract the list of mutexIDs from a trylock attribute. If the 1340 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1341 /// any duplicates. 1342 template <class AttrType> 1343 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1344 const Expr *Exp, const NamedDecl *D, 1345 const CFGBlock *PredBlock, 1346 const CFGBlock *CurrBlock, 1347 Expr *BrE, bool Neg) { 1348 // Find out which branch has the lock 1349 bool branch = false; 1350 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1351 branch = BLE->getValue(); 1352 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1353 branch = ILE->getValue().getBoolValue(); 1354 1355 int branchnum = branch ? 0 : 1; 1356 if (Neg) 1357 branchnum = !branchnum; 1358 1359 // If we've taken the trylock branch, then add the lock 1360 int i = 0; 1361 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1362 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1363 if (*SI == CurrBlock && i == branchnum) 1364 getMutexIDs(Mtxs, Attr, Exp, D); 1365 } 1366 } 1367 1368 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1369 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1370 TCond = false; 1371 return true; 1372 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1373 TCond = BLE->getValue(); 1374 return true; 1375 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1376 TCond = ILE->getValue().getBoolValue(); 1377 return true; 1378 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1379 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1380 return false; 1381 } 1382 1383 // If Cond can be traced back to a function call, return the call expression. 1384 // The negate variable should be called with false, and will be set to true 1385 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1386 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1387 LocalVarContext C, 1388 bool &Negate) { 1389 if (!Cond) 1390 return nullptr; 1391 1392 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1393 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1394 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1395 return CallExp; 1396 } 1397 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1398 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1399 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1400 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1401 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1402 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1403 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1404 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1405 return getTrylockCallExpr(E, C, Negate); 1406 } 1407 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1408 if (UOP->getOpcode() == UO_LNot) { 1409 Negate = !Negate; 1410 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1411 } 1412 return nullptr; 1413 } 1414 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1415 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1416 if (BOP->getOpcode() == BO_NE) 1417 Negate = !Negate; 1418 1419 bool TCond = false; 1420 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1421 if (!TCond) Negate = !Negate; 1422 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1423 } 1424 TCond = false; 1425 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1426 if (!TCond) Negate = !Negate; 1427 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1428 } 1429 return nullptr; 1430 } 1431 if (BOP->getOpcode() == BO_LAnd) { 1432 // LHS must have been evaluated in a different block. 1433 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1434 } 1435 if (BOP->getOpcode() == BO_LOr) 1436 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1437 return nullptr; 1438 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1439 bool TCond, FCond; 1440 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1441 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1442 if (TCond && !FCond) 1443 return getTrylockCallExpr(COP->getCond(), C, Negate); 1444 if (!TCond && FCond) { 1445 Negate = !Negate; 1446 return getTrylockCallExpr(COP->getCond(), C, Negate); 1447 } 1448 } 1449 } 1450 return nullptr; 1451 } 1452 1453 /// Find the lockset that holds on the edge between PredBlock 1454 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1455 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1456 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1457 const FactSet &ExitSet, 1458 const CFGBlock *PredBlock, 1459 const CFGBlock *CurrBlock) { 1460 Result = ExitSet; 1461 1462 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1463 // We don't acquire try-locks on ?: branches, only when its result is used. 1464 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1465 return; 1466 1467 bool Negate = false; 1468 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1469 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1470 1471 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1472 if (!Exp) 1473 return; 1474 1475 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1476 if(!FunDecl || !FunDecl->hasAttrs()) 1477 return; 1478 1479 CapExprSet ExclusiveLocksToAdd; 1480 CapExprSet SharedLocksToAdd; 1481 1482 // If the condition is a call to a Trylock function, then grab the attributes 1483 for (const auto *Attr : FunDecl->attrs()) { 1484 switch (Attr->getKind()) { 1485 case attr::TryAcquireCapability: { 1486 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1487 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1488 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1489 Negate); 1490 break; 1491 }; 1492 case attr::ExclusiveTrylockFunction: { 1493 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1494 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1495 A->getSuccessValue(), Negate); 1496 break; 1497 } 1498 case attr::SharedTrylockFunction: { 1499 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1500 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1501 A->getSuccessValue(), Negate); 1502 break; 1503 } 1504 default: 1505 break; 1506 } 1507 } 1508 1509 // Add and remove locks. 1510 SourceLocation Loc = Exp->getExprLoc(); 1511 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1512 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1513 LK_Exclusive, Loc)); 1514 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1515 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1516 LK_Shared, Loc)); 1517 } 1518 1519 namespace { 1520 1521 /// We use this class to visit different types of expressions in 1522 /// CFGBlocks, and build up the lockset. 1523 /// An expression may cause us to add or remove locks from the lockset, or else 1524 /// output error messages related to missing locks. 1525 /// FIXME: In future, we may be able to not inherit from a visitor. 1526 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1527 friend class ThreadSafetyAnalyzer; 1528 1529 ThreadSafetyAnalyzer *Analyzer; 1530 FactSet FSet; 1531 /// Maps constructed objects to `this` placeholder prior to initialization. 1532 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects; 1533 LocalVariableMap::Context LVarCtx; 1534 unsigned CtxIndex; 1535 1536 // helper functions 1537 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1538 Expr *MutexExp, ProtectedOperationKind POK, 1539 til::LiteralPtr *Self, SourceLocation Loc); 1540 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1541 til::LiteralPtr *Self, SourceLocation Loc); 1542 1543 void checkAccess(const Expr *Exp, AccessKind AK, 1544 ProtectedOperationKind POK = POK_VarAccess); 1545 void checkPtAccess(const Expr *Exp, AccessKind AK, 1546 ProtectedOperationKind POK = POK_VarAccess); 1547 1548 void handleCall(const Expr *Exp, const NamedDecl *D, 1549 til::LiteralPtr *Self = nullptr, 1550 SourceLocation Loc = SourceLocation()); 1551 void examineArguments(const FunctionDecl *FD, 1552 CallExpr::const_arg_iterator ArgBegin, 1553 CallExpr::const_arg_iterator ArgEnd, 1554 bool SkipFirstParam = false); 1555 1556 public: 1557 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1558 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1559 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1560 1561 void VisitUnaryOperator(const UnaryOperator *UO); 1562 void VisitBinaryOperator(const BinaryOperator *BO); 1563 void VisitCastExpr(const CastExpr *CE); 1564 void VisitCallExpr(const CallExpr *Exp); 1565 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1566 void VisitDeclStmt(const DeclStmt *S); 1567 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); 1568 }; 1569 1570 } // namespace 1571 1572 /// Warn if the LSet does not contain a lock sufficient to protect access 1573 /// of at least the passed in AccessKind. 1574 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1575 AccessKind AK, Expr *MutexExp, 1576 ProtectedOperationKind POK, 1577 til::LiteralPtr *Self, 1578 SourceLocation Loc) { 1579 LockKind LK = getLockKindFromAccessKind(AK); 1580 1581 CapabilityExpr Cp = 1582 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1583 if (Cp.isInvalid()) { 1584 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); 1585 return; 1586 } else if (Cp.shouldIgnore()) { 1587 return; 1588 } 1589 1590 if (Cp.negative()) { 1591 // Negative capabilities act like locks excluded 1592 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1593 if (LDat) { 1594 Analyzer->Handler.handleFunExcludesLock( 1595 Cp.getKind(), D->getNameAsString(), (!Cp).toString(), Loc); 1596 return; 1597 } 1598 1599 // If this does not refer to a negative capability in the same class, 1600 // then stop here. 1601 if (!Analyzer->inCurrentScope(Cp)) 1602 return; 1603 1604 // Otherwise the negative requirement must be propagated to the caller. 1605 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1606 if (!LDat) { 1607 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1608 } 1609 return; 1610 } 1611 1612 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1613 bool NoError = true; 1614 if (!LDat) { 1615 // No exact match found. Look for a partial match. 1616 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1617 if (LDat) { 1618 // Warn that there's no precise match. 1619 std::string PartMatchStr = LDat->toString(); 1620 StringRef PartMatchName(PartMatchStr); 1621 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1622 LK, Loc, &PartMatchName); 1623 } else { 1624 // Warn that there's no match at all. 1625 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1626 LK, Loc); 1627 } 1628 NoError = false; 1629 } 1630 // Make sure the mutex we found is the right kind. 1631 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1632 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1633 LK, Loc); 1634 } 1635 } 1636 1637 /// Warn if the LSet contains the given lock. 1638 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1639 Expr *MutexExp, til::LiteralPtr *Self, 1640 SourceLocation Loc) { 1641 CapabilityExpr Cp = 1642 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1643 if (Cp.isInvalid()) { 1644 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); 1645 return; 1646 } else if (Cp.shouldIgnore()) { 1647 return; 1648 } 1649 1650 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); 1651 if (LDat) { 1652 Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1653 Cp.toString(), Loc); 1654 } 1655 } 1656 1657 /// Checks guarded_by and pt_guarded_by attributes. 1658 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1659 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1660 /// Similarly, we check if the access is to an expression that dereferences 1661 /// a pointer marked with pt_guarded_by. 1662 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1663 ProtectedOperationKind POK) { 1664 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1665 1666 SourceLocation Loc = Exp->getExprLoc(); 1667 1668 // Local variables of reference type cannot be re-assigned; 1669 // map them to their initializer. 1670 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1671 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1672 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1673 if (const auto *E = VD->getInit()) { 1674 // Guard against self-initialization. e.g., int &i = i; 1675 if (E == Exp) 1676 break; 1677 Exp = E; 1678 continue; 1679 } 1680 } 1681 break; 1682 } 1683 1684 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1685 // For dereferences 1686 if (UO->getOpcode() == UO_Deref) 1687 checkPtAccess(UO->getSubExpr(), AK, POK); 1688 return; 1689 } 1690 1691 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) { 1692 switch (BO->getOpcode()) { 1693 case BO_PtrMemD: // .* 1694 return checkAccess(BO->getLHS(), AK, POK); 1695 case BO_PtrMemI: // ->* 1696 return checkPtAccess(BO->getLHS(), AK, POK); 1697 default: 1698 return; 1699 } 1700 } 1701 1702 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1703 checkPtAccess(AE->getLHS(), AK, POK); 1704 return; 1705 } 1706 1707 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1708 if (ME->isArrow()) 1709 checkPtAccess(ME->getBase(), AK, POK); 1710 else 1711 checkAccess(ME->getBase(), AK, POK); 1712 } 1713 1714 const ValueDecl *D = getValueDecl(Exp); 1715 if (!D || !D->hasAttrs()) 1716 return; 1717 1718 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1719 Analyzer->Handler.handleNoMutexHeld(D, POK, AK, Loc); 1720 } 1721 1722 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1723 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, nullptr, Loc); 1724 } 1725 1726 /// Checks pt_guarded_by and pt_guarded_var attributes. 1727 /// POK is the same operationKind that was passed to checkAccess. 1728 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1729 ProtectedOperationKind POK) { 1730 while (true) { 1731 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1732 Exp = PE->getSubExpr(); 1733 continue; 1734 } 1735 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1736 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1737 // If it's an actual array, and not a pointer, then it's elements 1738 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1739 checkAccess(CE->getSubExpr(), AK, POK); 1740 return; 1741 } 1742 Exp = CE->getSubExpr(); 1743 continue; 1744 } 1745 break; 1746 } 1747 1748 // Pass by reference warnings are under a different flag. 1749 ProtectedOperationKind PtPOK = POK_VarDereference; 1750 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1751 1752 const ValueDecl *D = getValueDecl(Exp); 1753 if (!D || !D->hasAttrs()) 1754 return; 1755 1756 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1757 Analyzer->Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc()); 1758 1759 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1760 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, nullptr, 1761 Exp->getExprLoc()); 1762 } 1763 1764 /// Process a function call, method call, constructor call, 1765 /// or destructor call. This involves looking at the attributes on the 1766 /// corresponding function/method/constructor/destructor, issuing warnings, 1767 /// and updating the locksets accordingly. 1768 /// 1769 /// FIXME: For classes annotated with one of the guarded annotations, we need 1770 /// to treat const method calls as reads and non-const method calls as writes, 1771 /// and check that the appropriate locks are held. Non-const method calls with 1772 /// the same signature as const method calls can be also treated as reads. 1773 /// 1774 /// \param Exp The call expression. 1775 /// \param D The callee declaration. 1776 /// \param Self If \p Exp = nullptr, the implicit this argument. 1777 /// \param Loc If \p Exp = nullptr, the location. 1778 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1779 til::LiteralPtr *Self, SourceLocation Loc) { 1780 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1781 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1782 CapExprSet ScopedReqsAndExcludes; 1783 1784 // Figure out if we're constructing an object of scoped lockable class 1785 CapabilityExpr Scp; 1786 if (Exp) { 1787 assert(!Self); 1788 const auto *TagT = Exp->getType()->getAs<TagType>(); 1789 if (TagT && Exp->isPRValue()) { 1790 std::pair<til::LiteralPtr *, StringRef> Placeholder = 1791 Analyzer->SxBuilder.createThisPlaceholder(Exp); 1792 [[maybe_unused]] auto inserted = 1793 ConstructedObjects.insert({Exp, Placeholder.first}); 1794 assert(inserted.second && "Are we visiting the same expression again?"); 1795 if (isa<CXXConstructExpr>(Exp)) 1796 Self = Placeholder.first; 1797 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) 1798 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false); 1799 } 1800 1801 assert(Loc.isInvalid()); 1802 Loc = Exp->getExprLoc(); 1803 } 1804 1805 for(const Attr *At : D->attrs()) { 1806 switch (At->getKind()) { 1807 // When we encounter a lock function, we need to add the lock to our 1808 // lockset. 1809 case attr::AcquireCapability: { 1810 const auto *A = cast<AcquireCapabilityAttr>(At); 1811 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1812 : ExclusiveLocksToAdd, 1813 A, Exp, D, Self); 1814 break; 1815 } 1816 1817 // An assert will add a lock to the lockset, but will not generate 1818 // a warning if it is already there, and will not generate a warning 1819 // if it is not removed. 1820 case attr::AssertExclusiveLock: { 1821 const auto *A = cast<AssertExclusiveLockAttr>(At); 1822 1823 CapExprSet AssertLocks; 1824 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1825 for (const auto &AssertLock : AssertLocks) 1826 Analyzer->addLock( 1827 FSet, std::make_unique<LockableFactEntry>( 1828 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted)); 1829 break; 1830 } 1831 case attr::AssertSharedLock: { 1832 const auto *A = cast<AssertSharedLockAttr>(At); 1833 1834 CapExprSet AssertLocks; 1835 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1836 for (const auto &AssertLock : AssertLocks) 1837 Analyzer->addLock( 1838 FSet, std::make_unique<LockableFactEntry>( 1839 AssertLock, LK_Shared, Loc, FactEntry::Asserted)); 1840 break; 1841 } 1842 1843 case attr::AssertCapability: { 1844 const auto *A = cast<AssertCapabilityAttr>(At); 1845 CapExprSet AssertLocks; 1846 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1847 for (const auto &AssertLock : AssertLocks) 1848 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1849 AssertLock, 1850 A->isShared() ? LK_Shared : LK_Exclusive, 1851 Loc, FactEntry::Asserted)); 1852 break; 1853 } 1854 1855 // When we encounter an unlock function, we need to remove unlocked 1856 // mutexes from the lockset, and flag a warning if they are not there. 1857 case attr::ReleaseCapability: { 1858 const auto *A = cast<ReleaseCapabilityAttr>(At); 1859 if (A->isGeneric()) 1860 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); 1861 else if (A->isShared()) 1862 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); 1863 else 1864 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); 1865 break; 1866 } 1867 1868 case attr::RequiresCapability: { 1869 const auto *A = cast<RequiresCapabilityAttr>(At); 1870 for (auto *Arg : A->args()) { 1871 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1872 POK_FunctionCall, Self, Loc); 1873 // use for adopting a lock 1874 if (!Scp.shouldIgnore()) 1875 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1876 } 1877 break; 1878 } 1879 1880 case attr::LocksExcluded: { 1881 const auto *A = cast<LocksExcludedAttr>(At); 1882 for (auto *Arg : A->args()) { 1883 warnIfMutexHeld(D, Exp, Arg, Self, Loc); 1884 // use for deferring a lock 1885 if (!Scp.shouldIgnore()) 1886 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1887 } 1888 break; 1889 } 1890 1891 // Ignore attributes unrelated to thread-safety 1892 default: 1893 break; 1894 } 1895 } 1896 1897 // Remove locks first to allow lock upgrading/downgrading. 1898 // FIXME -- should only fully remove if the attribute refers to 'this'. 1899 bool Dtor = isa<CXXDestructorDecl>(D); 1900 for (const auto &M : ExclusiveLocksToRemove) 1901 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive); 1902 for (const auto &M : SharedLocksToRemove) 1903 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared); 1904 for (const auto &M : GenericLocksToRemove) 1905 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic); 1906 1907 // Add locks. 1908 FactEntry::SourceKind Source = 1909 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; 1910 for (const auto &M : ExclusiveLocksToAdd) 1911 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, 1912 Loc, Source)); 1913 for (const auto &M : SharedLocksToAdd) 1914 Analyzer->addLock( 1915 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source)); 1916 1917 if (!Scp.shouldIgnore()) { 1918 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1919 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc); 1920 for (const auto &M : ExclusiveLocksToAdd) 1921 ScopedEntry->addLock(M); 1922 for (const auto &M : SharedLocksToAdd) 1923 ScopedEntry->addLock(M); 1924 for (const auto &M : ScopedReqsAndExcludes) 1925 ScopedEntry->addLock(M); 1926 for (const auto &M : ExclusiveLocksToRemove) 1927 ScopedEntry->addExclusiveUnlock(M); 1928 for (const auto &M : SharedLocksToRemove) 1929 ScopedEntry->addSharedUnlock(M); 1930 Analyzer->addLock(FSet, std::move(ScopedEntry)); 1931 } 1932 } 1933 1934 /// For unary operations which read and write a variable, we need to 1935 /// check whether we hold any required mutexes. Reads are checked in 1936 /// VisitCastExpr. 1937 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1938 switch (UO->getOpcode()) { 1939 case UO_PostDec: 1940 case UO_PostInc: 1941 case UO_PreDec: 1942 case UO_PreInc: 1943 checkAccess(UO->getSubExpr(), AK_Written); 1944 break; 1945 default: 1946 break; 1947 } 1948 } 1949 1950 /// For binary operations which assign to a variable (writes), we need to check 1951 /// whether we hold any required mutexes. 1952 /// FIXME: Deal with non-primitive types. 1953 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1954 if (!BO->isAssignmentOp()) 1955 return; 1956 1957 // adjust the context 1958 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1959 1960 checkAccess(BO->getLHS(), AK_Written); 1961 } 1962 1963 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1964 /// need to ensure we hold any required mutexes. 1965 /// FIXME: Deal with non-primitive types. 1966 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 1967 if (CE->getCastKind() != CK_LValueToRValue) 1968 return; 1969 checkAccess(CE->getSubExpr(), AK_Read); 1970 } 1971 1972 void BuildLockset::examineArguments(const FunctionDecl *FD, 1973 CallExpr::const_arg_iterator ArgBegin, 1974 CallExpr::const_arg_iterator ArgEnd, 1975 bool SkipFirstParam) { 1976 // Currently we can't do anything if we don't know the function declaration. 1977 if (!FD) 1978 return; 1979 1980 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1981 // only turns off checking within the body of a function, but we also 1982 // use it to turn off checking in arguments to the function. This 1983 // could result in some false negatives, but the alternative is to 1984 // create yet another attribute. 1985 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 1986 return; 1987 1988 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 1989 auto Param = Params.begin(); 1990 if (SkipFirstParam) 1991 ++Param; 1992 1993 // There can be default arguments, so we stop when one iterator is at end(). 1994 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 1995 ++Param, ++Arg) { 1996 QualType Qt = (*Param)->getType(); 1997 if (Qt->isReferenceType()) 1998 checkAccess(*Arg, AK_Read, POK_PassByRef); 1999 } 2000 } 2001 2002 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2003 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2004 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2005 // ME can be null when calling a method pointer 2006 const CXXMethodDecl *MD = CE->getMethodDecl(); 2007 2008 if (ME && MD) { 2009 if (ME->isArrow()) { 2010 // Should perhaps be AK_Written if !MD->isConst(). 2011 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2012 } else { 2013 // Should perhaps be AK_Written if !MD->isConst(). 2014 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2015 } 2016 } 2017 2018 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2019 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2020 OverloadedOperatorKind OEop = OE->getOperator(); 2021 switch (OEop) { 2022 case OO_Equal: 2023 case OO_PlusEqual: 2024 case OO_MinusEqual: 2025 case OO_StarEqual: 2026 case OO_SlashEqual: 2027 case OO_PercentEqual: 2028 case OO_CaretEqual: 2029 case OO_AmpEqual: 2030 case OO_PipeEqual: 2031 case OO_LessLessEqual: 2032 case OO_GreaterGreaterEqual: 2033 checkAccess(OE->getArg(1), AK_Read); 2034 [[fallthrough]]; 2035 case OO_PlusPlus: 2036 case OO_MinusMinus: 2037 checkAccess(OE->getArg(0), AK_Written); 2038 break; 2039 case OO_Star: 2040 case OO_ArrowStar: 2041 case OO_Arrow: 2042 case OO_Subscript: 2043 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2044 // Grrr. operator* can be multiplication... 2045 checkPtAccess(OE->getArg(0), AK_Read); 2046 } 2047 [[fallthrough]]; 2048 default: { 2049 // TODO: get rid of this, and rely on pass-by-ref instead. 2050 const Expr *Obj = OE->getArg(0); 2051 checkAccess(Obj, AK_Read); 2052 // Check the remaining arguments. For method operators, the first 2053 // argument is the implicit self argument, and doesn't appear in the 2054 // FunctionDecl, but for non-methods it does. 2055 const FunctionDecl *FD = OE->getDirectCallee(); 2056 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2057 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2058 break; 2059 } 2060 } 2061 } else { 2062 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2063 } 2064 2065 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2066 if(!D || !D->hasAttrs()) 2067 return; 2068 handleCall(Exp, D); 2069 } 2070 2071 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2072 const CXXConstructorDecl *D = Exp->getConstructor(); 2073 if (D && D->isCopyConstructor()) { 2074 const Expr* Source = Exp->getArg(0); 2075 checkAccess(Source, AK_Read); 2076 } else { 2077 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2078 } 2079 if (D && D->hasAttrs()) 2080 handleCall(Exp, D); 2081 } 2082 2083 static const Expr *UnpackConstruction(const Expr *E) { 2084 if (auto *CE = dyn_cast<CastExpr>(E)) 2085 if (CE->getCastKind() == CK_NoOp) 2086 E = CE->getSubExpr()->IgnoreParens(); 2087 if (auto *CE = dyn_cast<CastExpr>(E)) 2088 if (CE->getCastKind() == CK_ConstructorConversion || 2089 CE->getCastKind() == CK_UserDefinedConversion) 2090 E = CE->getSubExpr(); 2091 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2092 E = BTE->getSubExpr(); 2093 return E; 2094 } 2095 2096 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2097 // adjust the context 2098 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2099 2100 for (auto *D : S->getDeclGroup()) { 2101 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2102 const Expr *E = VD->getInit(); 2103 if (!E) 2104 continue; 2105 E = E->IgnoreParens(); 2106 2107 // handle constructors that involve temporaries 2108 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2109 E = EWC->getSubExpr()->IgnoreParens(); 2110 E = UnpackConstruction(E); 2111 2112 if (auto Object = ConstructedObjects.find(E); 2113 Object != ConstructedObjects.end()) { 2114 Object->second->setClangDecl(VD); 2115 ConstructedObjects.erase(Object); 2116 } 2117 } 2118 } 2119 } 2120 2121 void BuildLockset::VisitMaterializeTemporaryExpr( 2122 const MaterializeTemporaryExpr *Exp) { 2123 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { 2124 if (auto Object = 2125 ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr())); 2126 Object != ConstructedObjects.end()) { 2127 Object->second->setClangDecl(ExtD); 2128 ConstructedObjects.erase(Object); 2129 } 2130 } 2131 } 2132 2133 /// Given two facts merging on a join point, possibly warn and decide whether to 2134 /// keep or replace. 2135 /// 2136 /// \param CanModify Whether we can replace \p A by \p B. 2137 /// \return false if we should keep \p A, true if we should take \p B. 2138 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, 2139 bool CanModify) { 2140 if (A.kind() != B.kind()) { 2141 // For managed capabilities, the destructor should unlock in the right mode 2142 // anyway. For asserted capabilities no unlocking is needed. 2143 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { 2144 // The shared capability subsumes the exclusive capability, if possible. 2145 bool ShouldTakeB = B.kind() == LK_Shared; 2146 if (CanModify || !ShouldTakeB) 2147 return ShouldTakeB; 2148 } 2149 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(), 2150 A.loc()); 2151 // Take the exclusive capability to reduce further warnings. 2152 return CanModify && B.kind() == LK_Exclusive; 2153 } else { 2154 // The non-asserted capability is the one we want to track. 2155 return CanModify && A.asserted() && !B.asserted(); 2156 } 2157 } 2158 2159 /// Compute the intersection of two locksets and issue warnings for any 2160 /// locks in the symmetric difference. 2161 /// 2162 /// This function is used at a merge point in the CFG when comparing the lockset 2163 /// of each branch being merged. For example, given the following sequence: 2164 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2165 /// are the same. In the event of a difference, we use the intersection of these 2166 /// two locksets at the start of D. 2167 /// 2168 /// \param EntrySet A lockset for entry into a (possibly new) block. 2169 /// \param ExitSet The lockset on exiting a preceding block. 2170 /// \param JoinLoc The location of the join point for error reporting 2171 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. 2172 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. 2173 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, 2174 const FactSet &ExitSet, 2175 SourceLocation JoinLoc, 2176 LockErrorKind EntryLEK, 2177 LockErrorKind ExitLEK) { 2178 FactSet EntrySetOrig = EntrySet; 2179 2180 // Find locks in ExitSet that conflict or are not in EntrySet, and warn. 2181 for (const auto &Fact : ExitSet) { 2182 const FactEntry &ExitFact = FactMan[Fact]; 2183 2184 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact); 2185 if (EntryIt != EntrySet.end()) { 2186 if (join(FactMan[*EntryIt], ExitFact, 2187 EntryLEK != LEK_LockedSomeLoopIterations)) 2188 *EntryIt = Fact; 2189 } else if (!ExitFact.managed()) { 2190 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc, 2191 EntryLEK, Handler); 2192 } 2193 } 2194 2195 // Find locks in EntrySet that are not in ExitSet, and remove them. 2196 for (const auto &Fact : EntrySetOrig) { 2197 const FactEntry *EntryFact = &FactMan[Fact]; 2198 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact); 2199 2200 if (!ExitFact) { 2201 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations) 2202 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc, 2203 ExitLEK, Handler); 2204 if (ExitLEK == LEK_LockedSomePredecessors) 2205 EntrySet.removeLock(FactMan, *EntryFact); 2206 } 2207 } 2208 } 2209 2210 // Return true if block B never continues to its successors. 2211 static bool neverReturns(const CFGBlock *B) { 2212 if (B->hasNoReturnElement()) 2213 return true; 2214 if (B->empty()) 2215 return false; 2216 2217 CFGElement Last = B->back(); 2218 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2219 if (isa<CXXThrowExpr>(S->getStmt())) 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 /// Check a function's CFG for thread-safety violations. 2226 /// 2227 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2228 /// at the end of each block, and issue warnings for thread safety violations. 2229 /// Each block in the CFG is traversed exactly once. 2230 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2231 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2232 // For now, we just use the walker to set things up. 2233 threadSafety::CFGWalker walker; 2234 if (!walker.init(AC)) 2235 return; 2236 2237 // AC.dumpCFG(true); 2238 // threadSafety::printSCFG(walker); 2239 2240 CFG *CFGraph = walker.getGraph(); 2241 const NamedDecl *D = walker.getDecl(); 2242 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2243 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2244 2245 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2246 return; 2247 2248 // FIXME: Do something a bit more intelligent inside constructor and 2249 // destructor code. Constructors and destructors must assume unique access 2250 // to 'this', so checks on member variable access is disabled, but we should 2251 // still enable checks on other objects. 2252 if (isa<CXXConstructorDecl>(D)) 2253 return; // Don't check inside constructors. 2254 if (isa<CXXDestructorDecl>(D)) 2255 return; // Don't check inside destructors. 2256 2257 Handler.enterFunction(CurrentFunction); 2258 2259 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2260 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2261 2262 // We need to explore the CFG via a "topological" ordering. 2263 // That way, we will be guaranteed to have information about required 2264 // predecessor locksets when exploring a new block. 2265 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2266 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2267 2268 // Mark entry block as reachable 2269 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2270 2271 // Compute SSA names for local variables 2272 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2273 2274 // Fill in source locations for all CFGBlocks. 2275 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2276 2277 CapExprSet ExclusiveLocksAcquired; 2278 CapExprSet SharedLocksAcquired; 2279 CapExprSet LocksReleased; 2280 2281 // Add locks from exclusive_locks_required and shared_locks_required 2282 // to initial lockset. Also turn off checking for lock and unlock functions. 2283 // FIXME: is there a more intelligent way to check lock/unlock functions? 2284 if (!SortedGraph->empty() && D->hasAttrs()) { 2285 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2286 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2287 2288 CapExprSet ExclusiveLocksToAdd; 2289 CapExprSet SharedLocksToAdd; 2290 2291 SourceLocation Loc = D->getLocation(); 2292 for (const auto *Attr : D->attrs()) { 2293 Loc = Attr->getLocation(); 2294 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2295 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2296 nullptr, D); 2297 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2298 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2299 // We must ignore such methods. 2300 if (A->args_size() == 0) 2301 return; 2302 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2303 nullptr, D); 2304 getMutexIDs(LocksReleased, A, nullptr, D); 2305 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2306 if (A->args_size() == 0) 2307 return; 2308 getMutexIDs(A->isShared() ? SharedLocksAcquired 2309 : ExclusiveLocksAcquired, 2310 A, nullptr, D); 2311 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2312 // Don't try to check trylock functions for now. 2313 return; 2314 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2315 // Don't try to check trylock functions for now. 2316 return; 2317 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2318 // Don't try to check trylock functions for now. 2319 return; 2320 } 2321 } 2322 2323 // FIXME -- Loc can be wrong here. 2324 for (const auto &Mu : ExclusiveLocksToAdd) { 2325 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc, 2326 FactEntry::Declared); 2327 addLock(InitialLockset, std::move(Entry), true); 2328 } 2329 for (const auto &Mu : SharedLocksToAdd) { 2330 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc, 2331 FactEntry::Declared); 2332 addLock(InitialLockset, std::move(Entry), true); 2333 } 2334 } 2335 2336 for (const auto *CurrBlock : *SortedGraph) { 2337 unsigned CurrBlockID = CurrBlock->getBlockID(); 2338 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2339 2340 // Use the default initial lockset in case there are no predecessors. 2341 VisitedBlocks.insert(CurrBlock); 2342 2343 // Iterate through the predecessor blocks and warn if the lockset for all 2344 // predecessors is not the same. We take the entry lockset of the current 2345 // block to be the intersection of all previous locksets. 2346 // FIXME: By keeping the intersection, we may output more errors in future 2347 // for a lock which is not in the intersection, but was in the union. We 2348 // may want to also keep the union in future. As an example, let's say 2349 // the intersection contains Mutex L, and the union contains L and M. 2350 // Later we unlock M. At this point, we would output an error because we 2351 // never locked M; although the real error is probably that we forgot to 2352 // lock M on all code paths. Conversely, let's say that later we lock M. 2353 // In this case, we should compare against the intersection instead of the 2354 // union because the real error is probably that we forgot to unlock M on 2355 // all code paths. 2356 bool LocksetInitialized = false; 2357 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2358 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2359 // if *PI -> CurrBlock is a back edge 2360 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2361 continue; 2362 2363 unsigned PrevBlockID = (*PI)->getBlockID(); 2364 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2365 2366 // Ignore edges from blocks that can't return. 2367 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2368 continue; 2369 2370 // Okay, we can reach this block from the entry. 2371 CurrBlockInfo->Reachable = true; 2372 2373 FactSet PrevLockset; 2374 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2375 2376 if (!LocksetInitialized) { 2377 CurrBlockInfo->EntrySet = PrevLockset; 2378 LocksetInitialized = true; 2379 } else { 2380 // Surprisingly 'continue' doesn't always produce back edges, because 2381 // the CFG has empty "transition" blocks where they meet with the end 2382 // of the regular loop body. We still want to diagnose them as loop. 2383 intersectAndWarn( 2384 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, 2385 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt()) 2386 ? LEK_LockedSomeLoopIterations 2387 : LEK_LockedSomePredecessors); 2388 } 2389 } 2390 2391 // Skip rest of block if it's not reachable. 2392 if (!CurrBlockInfo->Reachable) 2393 continue; 2394 2395 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2396 2397 // Visit all the statements in the basic block. 2398 for (const auto &BI : *CurrBlock) { 2399 switch (BI.getKind()) { 2400 case CFGElement::Statement: { 2401 CFGStmt CS = BI.castAs<CFGStmt>(); 2402 LocksetBuilder.Visit(CS.getStmt()); 2403 break; 2404 } 2405 // Ignore BaseDtor and MemberDtor for now. 2406 case CFGElement::AutomaticObjectDtor: { 2407 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2408 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2409 if (!DD->hasAttrs()) 2410 break; 2411 2412 LocksetBuilder.handleCall(nullptr, DD, 2413 SxBuilder.createVariable(AD.getVarDecl()), 2414 AD.getTriggerStmt()->getEndLoc()); 2415 break; 2416 } 2417 case CFGElement::TemporaryDtor: { 2418 auto TD = BI.castAs<CFGTemporaryDtor>(); 2419 2420 // Clean up constructed object even if there are no attributes to 2421 // keep the number of objects in limbo as small as possible. 2422 if (auto Object = LocksetBuilder.ConstructedObjects.find( 2423 TD.getBindTemporaryExpr()->getSubExpr()); 2424 Object != LocksetBuilder.ConstructedObjects.end()) { 2425 const auto *DD = TD.getDestructorDecl(AC.getASTContext()); 2426 if (DD->hasAttrs()) 2427 // TODO: the location here isn't quite correct. 2428 LocksetBuilder.handleCall(nullptr, DD, Object->second, 2429 TD.getBindTemporaryExpr()->getEndLoc()); 2430 LocksetBuilder.ConstructedObjects.erase(Object); 2431 } 2432 break; 2433 } 2434 default: 2435 break; 2436 } 2437 } 2438 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2439 2440 // For every back edge from CurrBlock (the end of the loop) to another block 2441 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2442 // the one held at the beginning of FirstLoopBlock. We can look up the 2443 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2444 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2445 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2446 // if CurrBlock -> *SI is *not* a back edge 2447 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2448 continue; 2449 2450 CFGBlock *FirstLoopBlock = *SI; 2451 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2452 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2453 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc, 2454 LEK_LockedSomeLoopIterations); 2455 } 2456 } 2457 2458 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2459 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2460 2461 // Skip the final check if the exit block is unreachable. 2462 if (!Final->Reachable) 2463 return; 2464 2465 // By default, we expect all locks held on entry to be held on exit. 2466 FactSet ExpectedExitSet = Initial->EntrySet; 2467 2468 // Adjust the expected exit set by adding or removing locks, as declared 2469 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2470 // issue the appropriate warning. 2471 // FIXME: the location here is not quite right. 2472 for (const auto &Lock : ExclusiveLocksAcquired) 2473 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2474 Lock, LK_Exclusive, D->getLocation())); 2475 for (const auto &Lock : SharedLocksAcquired) 2476 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2477 Lock, LK_Shared, D->getLocation())); 2478 for (const auto &Lock : LocksReleased) 2479 ExpectedExitSet.removeLock(FactMan, Lock); 2480 2481 // FIXME: Should we call this function for all blocks which exit the function? 2482 intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc, 2483 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction); 2484 2485 Handler.leaveFunction(CurrentFunction); 2486 } 2487 2488 /// Check a function's CFG for thread-safety violations. 2489 /// 2490 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2491 /// at the end of each block, and issue warnings for thread safety violations. 2492 /// Each block in the CFG is traversed exactly once. 2493 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2494 ThreadSafetyHandler &Handler, 2495 BeforeSet **BSet) { 2496 if (!*BSet) 2497 *BSet = new BeforeSet; 2498 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2499 Analyzer.runAnalysis(AC); 2500 } 2501 2502 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2503 2504 /// Helper function that returns a LockKind required for the given level 2505 /// of access. 2506 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2507 switch (AK) { 2508 case AK_Read : 2509 return LK_Shared; 2510 case AK_Written : 2511 return LK_Exclusive; 2512 } 2513 llvm_unreachable("Unknown AccessKind"); 2514 } 2515