1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/PointerIntPair.h" 45 #include "llvm/ADT/STLExtras.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/StringRef.h" 48 #include "llvm/Support/Allocator.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <functional> 55 #include <iterator> 56 #include <memory> 57 #include <string> 58 #include <type_traits> 59 #include <utility> 60 #include <vector> 61 62 using namespace clang; 63 using namespace threadSafety; 64 65 // Key method definition 66 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 67 68 /// Issue a warning about an invalid lock expression 69 static void warnInvalidLock(ThreadSafetyHandler &Handler, 70 const Expr *MutexExp, const NamedDecl *D, 71 const Expr *DeclExp, StringRef Kind) { 72 SourceLocation Loc; 73 if (DeclExp) 74 Loc = DeclExp->getExprLoc(); 75 76 // FIXME: add a note about the attribute location in MutexExp or D 77 if (Loc.isValid()) 78 Handler.handleInvalidLockExp(Kind, Loc); 79 } 80 81 namespace { 82 83 /// A set of CapabilityExpr objects, which are compiled from thread safety 84 /// attributes on a function. 85 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 86 public: 87 /// Push M onto list, but discard duplicates. 88 void push_back_nodup(const CapabilityExpr &CapE) { 89 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) { 90 return CapE.equals(CapE2); 91 })) 92 push_back(CapE); 93 } 94 }; 95 96 class FactManager; 97 class FactSet; 98 99 /// This is a helper class that stores a fact that is known at a 100 /// particular point in program execution. Currently, a fact is a capability, 101 /// along with additional information, such as where it was acquired, whether 102 /// it is exclusive or shared, etc. 103 /// 104 /// FIXME: this analysis does not currently support re-entrant locking. 105 class FactEntry : public CapabilityExpr { 106 public: 107 /// Where a fact comes from. 108 enum SourceKind { 109 Acquired, ///< The fact has been directly acquired. 110 Asserted, ///< The fact has been asserted to be held. 111 Declared, ///< The fact is assumed to be held by callers. 112 Managed, ///< The fact has been acquired through a scoped capability. 113 }; 114 115 private: 116 /// Exclusive or shared. 117 LockKind LKind : 8; 118 119 // How it was acquired. 120 SourceKind Source : 8; 121 122 /// Where it was acquired. 123 SourceLocation AcquireLoc; 124 125 public: 126 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 127 SourceKind Src) 128 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {} 129 virtual ~FactEntry() = default; 130 131 LockKind kind() const { return LKind; } 132 SourceLocation loc() const { return AcquireLoc; } 133 134 bool asserted() const { return Source == Asserted; } 135 bool declared() const { return Source == Declared; } 136 bool managed() const { return Source == Managed; } 137 138 virtual void 139 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 140 SourceLocation JoinLoc, LockErrorKind LEK, 141 ThreadSafetyHandler &Handler) const = 0; 142 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 143 const FactEntry &entry, ThreadSafetyHandler &Handler, 144 StringRef DiagKind) const = 0; 145 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 146 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 147 bool FullyRemove, ThreadSafetyHandler &Handler, 148 StringRef DiagKind) const = 0; 149 150 // Return true if LKind >= LK, where exclusive > shared 151 bool isAtLeast(LockKind LK) const { 152 return (LKind == LK_Exclusive) || (LK == LK_Shared); 153 } 154 }; 155 156 using FactID = unsigned short; 157 158 /// FactManager manages the memory for all facts that are created during 159 /// the analysis of a single routine. 160 class FactManager { 161 private: 162 std::vector<std::unique_ptr<const FactEntry>> Facts; 163 164 public: 165 FactID newFact(std::unique_ptr<FactEntry> Entry) { 166 Facts.push_back(std::move(Entry)); 167 return static_cast<unsigned short>(Facts.size() - 1); 168 } 169 170 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 171 }; 172 173 /// A FactSet is the set of facts that are known to be true at a 174 /// particular program point. FactSets must be small, because they are 175 /// frequently copied, and are thus implemented as a set of indices into a 176 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 177 /// locks, so we can get away with doing a linear search for lookup. Note 178 /// that a hashtable or map is inappropriate in this case, because lookups 179 /// may involve partial pattern matches, rather than exact matches. 180 class FactSet { 181 private: 182 using FactVec = SmallVector<FactID, 4>; 183 184 FactVec FactIDs; 185 186 public: 187 using iterator = FactVec::iterator; 188 using const_iterator = FactVec::const_iterator; 189 190 iterator begin() { return FactIDs.begin(); } 191 const_iterator begin() const { return FactIDs.begin(); } 192 193 iterator end() { return FactIDs.end(); } 194 const_iterator end() const { return FactIDs.end(); } 195 196 bool isEmpty() const { return FactIDs.size() == 0; } 197 198 // Return true if the set contains only negative facts 199 bool isEmpty(FactManager &FactMan) const { 200 for (const auto FID : *this) { 201 if (!FactMan[FID].negative()) 202 return false; 203 } 204 return true; 205 } 206 207 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 208 209 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 210 FactID F = FM.newFact(std::move(Entry)); 211 FactIDs.push_back(F); 212 return F; 213 } 214 215 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 216 unsigned n = FactIDs.size(); 217 if (n == 0) 218 return false; 219 220 for (unsigned i = 0; i < n-1; ++i) { 221 if (FM[FactIDs[i]].matches(CapE)) { 222 FactIDs[i] = FactIDs[n-1]; 223 FactIDs.pop_back(); 224 return true; 225 } 226 } 227 if (FM[FactIDs[n-1]].matches(CapE)) { 228 FactIDs.pop_back(); 229 return true; 230 } 231 return false; 232 } 233 234 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 235 return std::find_if(begin(), end(), [&](FactID ID) { 236 return FM[ID].matches(CapE); 237 }); 238 } 239 240 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 241 auto I = std::find_if(begin(), end(), [&](FactID ID) { 242 return FM[ID].matches(CapE); 243 }); 244 return I != end() ? &FM[*I] : nullptr; 245 } 246 247 const FactEntry *findLockUniv(FactManager &FM, 248 const CapabilityExpr &CapE) const { 249 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 250 return FM[ID].matchesUniv(CapE); 251 }); 252 return I != end() ? &FM[*I] : nullptr; 253 } 254 255 const FactEntry *findPartialMatch(FactManager &FM, 256 const CapabilityExpr &CapE) const { 257 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 258 return FM[ID].partiallyMatches(CapE); 259 }); 260 return I != end() ? &FM[*I] : nullptr; 261 } 262 263 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 264 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 265 return FM[ID].valueDecl() == Vd; 266 }); 267 return I != end(); 268 } 269 }; 270 271 class ThreadSafetyAnalyzer; 272 273 } // namespace 274 275 namespace clang { 276 namespace threadSafety { 277 278 class BeforeSet { 279 private: 280 using BeforeVect = SmallVector<const ValueDecl *, 4>; 281 282 struct BeforeInfo { 283 BeforeVect Vect; 284 int Visited = 0; 285 286 BeforeInfo() = default; 287 BeforeInfo(BeforeInfo &&) = default; 288 }; 289 290 using BeforeMap = 291 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 292 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 293 294 public: 295 BeforeSet() = default; 296 297 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 298 ThreadSafetyAnalyzer& Analyzer); 299 300 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 301 ThreadSafetyAnalyzer &Analyzer); 302 303 void checkBeforeAfter(const ValueDecl* Vd, 304 const FactSet& FSet, 305 ThreadSafetyAnalyzer& Analyzer, 306 SourceLocation Loc, StringRef CapKind); 307 308 private: 309 BeforeMap BMap; 310 CycleMap CycMap; 311 }; 312 313 } // namespace threadSafety 314 } // namespace clang 315 316 namespace { 317 318 class LocalVariableMap; 319 320 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 321 322 /// A side (entry or exit) of a CFG node. 323 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 324 325 /// CFGBlockInfo is a struct which contains all the information that is 326 /// maintained for each block in the CFG. See LocalVariableMap for more 327 /// information about the contexts. 328 struct CFGBlockInfo { 329 // Lockset held at entry to block 330 FactSet EntrySet; 331 332 // Lockset held at exit from block 333 FactSet ExitSet; 334 335 // Context held at entry to block 336 LocalVarContext EntryContext; 337 338 // Context held at exit from block 339 LocalVarContext ExitContext; 340 341 // Location of first statement in block 342 SourceLocation EntryLoc; 343 344 // Location of last statement in block. 345 SourceLocation ExitLoc; 346 347 // Used to replay contexts later 348 unsigned EntryIndex; 349 350 // Is this block reachable? 351 bool Reachable = false; 352 353 const FactSet &getSet(CFGBlockSide Side) const { 354 return Side == CBS_Entry ? EntrySet : ExitSet; 355 } 356 357 SourceLocation getLocation(CFGBlockSide Side) const { 358 return Side == CBS_Entry ? EntryLoc : ExitLoc; 359 } 360 361 private: 362 CFGBlockInfo(LocalVarContext EmptyCtx) 363 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 364 365 public: 366 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 367 }; 368 369 // A LocalVariableMap maintains a map from local variables to their currently 370 // valid definitions. It provides SSA-like functionality when traversing the 371 // CFG. Like SSA, each definition or assignment to a variable is assigned a 372 // unique name (an integer), which acts as the SSA name for that definition. 373 // The total set of names is shared among all CFG basic blocks. 374 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 375 // with their SSA-names. Instead, we compute a Context for each point in the 376 // code, which maps local variables to the appropriate SSA-name. This map 377 // changes with each assignment. 378 // 379 // The map is computed in a single pass over the CFG. Subsequent analyses can 380 // then query the map to find the appropriate Context for a statement, and use 381 // that Context to look up the definitions of variables. 382 class LocalVariableMap { 383 public: 384 using Context = LocalVarContext; 385 386 /// A VarDefinition consists of an expression, representing the value of the 387 /// variable, along with the context in which that expression should be 388 /// interpreted. A reference VarDefinition does not itself contain this 389 /// information, but instead contains a pointer to a previous VarDefinition. 390 struct VarDefinition { 391 public: 392 friend class LocalVariableMap; 393 394 // The original declaration for this variable. 395 const NamedDecl *Dec; 396 397 // The expression for this variable, OR 398 const Expr *Exp = nullptr; 399 400 // Reference to another VarDefinition 401 unsigned Ref = 0; 402 403 // The map with which Exp should be interpreted. 404 Context Ctx; 405 406 bool isReference() { return !Exp; } 407 408 private: 409 // Create ordinary variable definition 410 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 411 : Dec(D), Exp(E), Ctx(C) {} 412 413 // Create reference to previous definition 414 VarDefinition(const NamedDecl *D, unsigned R, Context C) 415 : Dec(D), Ref(R), Ctx(C) {} 416 }; 417 418 private: 419 Context::Factory ContextFactory; 420 std::vector<VarDefinition> VarDefinitions; 421 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 422 423 public: 424 LocalVariableMap() { 425 // index 0 is a placeholder for undefined variables (aka phi-nodes). 426 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 427 } 428 429 /// Look up a definition, within the given context. 430 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 431 const unsigned *i = Ctx.lookup(D); 432 if (!i) 433 return nullptr; 434 assert(*i < VarDefinitions.size()); 435 return &VarDefinitions[*i]; 436 } 437 438 /// Look up the definition for D within the given context. Returns 439 /// NULL if the expression is not statically known. If successful, also 440 /// modifies Ctx to hold the context of the return Expr. 441 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 442 const unsigned *P = Ctx.lookup(D); 443 if (!P) 444 return nullptr; 445 446 unsigned i = *P; 447 while (i > 0) { 448 if (VarDefinitions[i].Exp) { 449 Ctx = VarDefinitions[i].Ctx; 450 return VarDefinitions[i].Exp; 451 } 452 i = VarDefinitions[i].Ref; 453 } 454 return nullptr; 455 } 456 457 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 458 459 /// Return the next context after processing S. This function is used by 460 /// clients of the class to get the appropriate context when traversing the 461 /// CFG. It must be called for every assignment or DeclStmt. 462 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 463 if (SavedContexts[CtxIndex+1].first == S) { 464 CtxIndex++; 465 Context Result = SavedContexts[CtxIndex].second; 466 return Result; 467 } 468 return C; 469 } 470 471 void dumpVarDefinitionName(unsigned i) { 472 if (i == 0) { 473 llvm::errs() << "Undefined"; 474 return; 475 } 476 const NamedDecl *Dec = VarDefinitions[i].Dec; 477 if (!Dec) { 478 llvm::errs() << "<<NULL>>"; 479 return; 480 } 481 Dec->printName(llvm::errs()); 482 llvm::errs() << "." << i << " " << ((const void*) Dec); 483 } 484 485 /// Dumps an ASCII representation of the variable map to llvm::errs() 486 void dump() { 487 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 488 const Expr *Exp = VarDefinitions[i].Exp; 489 unsigned Ref = VarDefinitions[i].Ref; 490 491 dumpVarDefinitionName(i); 492 llvm::errs() << " = "; 493 if (Exp) Exp->dump(); 494 else { 495 dumpVarDefinitionName(Ref); 496 llvm::errs() << "\n"; 497 } 498 } 499 } 500 501 /// Dumps an ASCII representation of a Context to llvm::errs() 502 void dumpContext(Context C) { 503 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 504 const NamedDecl *D = I.getKey(); 505 D->printName(llvm::errs()); 506 const unsigned *i = C.lookup(D); 507 llvm::errs() << " -> "; 508 dumpVarDefinitionName(*i); 509 llvm::errs() << "\n"; 510 } 511 } 512 513 /// Builds the variable map. 514 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 515 std::vector<CFGBlockInfo> &BlockInfo); 516 517 protected: 518 friend class VarMapBuilder; 519 520 // Get the current context index 521 unsigned getContextIndex() { return SavedContexts.size()-1; } 522 523 // Save the current context for later replay 524 void saveContext(const Stmt *S, Context C) { 525 SavedContexts.push_back(std::make_pair(S, C)); 526 } 527 528 // Adds a new definition to the given context, and returns a new context. 529 // This method should be called when declaring a new variable. 530 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 531 assert(!Ctx.contains(D)); 532 unsigned newID = VarDefinitions.size(); 533 Context NewCtx = ContextFactory.add(Ctx, D, newID); 534 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 535 return NewCtx; 536 } 537 538 // Add a new reference to an existing definition. 539 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 540 unsigned newID = VarDefinitions.size(); 541 Context NewCtx = ContextFactory.add(Ctx, D, newID); 542 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 543 return NewCtx; 544 } 545 546 // Updates a definition only if that definition is already in the map. 547 // This method should be called when assigning to an existing variable. 548 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 549 if (Ctx.contains(D)) { 550 unsigned newID = VarDefinitions.size(); 551 Context NewCtx = ContextFactory.remove(Ctx, D); 552 NewCtx = ContextFactory.add(NewCtx, D, newID); 553 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 554 return NewCtx; 555 } 556 return Ctx; 557 } 558 559 // Removes a definition from the context, but keeps the variable name 560 // as a valid variable. The index 0 is a placeholder for cleared definitions. 561 Context clearDefinition(const NamedDecl *D, Context Ctx) { 562 Context NewCtx = Ctx; 563 if (NewCtx.contains(D)) { 564 NewCtx = ContextFactory.remove(NewCtx, D); 565 NewCtx = ContextFactory.add(NewCtx, D, 0); 566 } 567 return NewCtx; 568 } 569 570 // Remove a definition entirely frmo the context. 571 Context removeDefinition(const NamedDecl *D, Context Ctx) { 572 Context NewCtx = Ctx; 573 if (NewCtx.contains(D)) { 574 NewCtx = ContextFactory.remove(NewCtx, D); 575 } 576 return NewCtx; 577 } 578 579 Context intersectContexts(Context C1, Context C2); 580 Context createReferenceContext(Context C); 581 void intersectBackEdge(Context C1, Context C2); 582 }; 583 584 } // namespace 585 586 // This has to be defined after LocalVariableMap. 587 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 588 return CFGBlockInfo(M.getEmptyContext()); 589 } 590 591 namespace { 592 593 /// Visitor which builds a LocalVariableMap 594 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 595 public: 596 LocalVariableMap* VMap; 597 LocalVariableMap::Context Ctx; 598 599 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 600 : VMap(VM), Ctx(C) {} 601 602 void VisitDeclStmt(const DeclStmt *S); 603 void VisitBinaryOperator(const BinaryOperator *BO); 604 }; 605 606 } // namespace 607 608 // Add new local variables to the variable map 609 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 610 bool modifiedCtx = false; 611 const DeclGroupRef DGrp = S->getDeclGroup(); 612 for (const auto *D : DGrp) { 613 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 614 const Expr *E = VD->getInit(); 615 616 // Add local variables with trivial type to the variable map 617 QualType T = VD->getType(); 618 if (T.isTrivialType(VD->getASTContext())) { 619 Ctx = VMap->addDefinition(VD, E, Ctx); 620 modifiedCtx = true; 621 } 622 } 623 } 624 if (modifiedCtx) 625 VMap->saveContext(S, Ctx); 626 } 627 628 // Update local variable definitions in variable map 629 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 630 if (!BO->isAssignmentOp()) 631 return; 632 633 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 634 635 // Update the variable map and current context. 636 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 637 const ValueDecl *VDec = DRE->getDecl(); 638 if (Ctx.lookup(VDec)) { 639 if (BO->getOpcode() == BO_Assign) 640 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 641 else 642 // FIXME -- handle compound assignment operators 643 Ctx = VMap->clearDefinition(VDec, Ctx); 644 VMap->saveContext(BO, Ctx); 645 } 646 } 647 } 648 649 // Computes the intersection of two contexts. The intersection is the 650 // set of variables which have the same definition in both contexts; 651 // variables with different definitions are discarded. 652 LocalVariableMap::Context 653 LocalVariableMap::intersectContexts(Context C1, Context C2) { 654 Context Result = C1; 655 for (const auto &P : C1) { 656 const NamedDecl *Dec = P.first; 657 const unsigned *i2 = C2.lookup(Dec); 658 if (!i2) // variable doesn't exist on second path 659 Result = removeDefinition(Dec, Result); 660 else if (*i2 != P.second) // variable exists, but has different definition 661 Result = clearDefinition(Dec, Result); 662 } 663 return Result; 664 } 665 666 // For every variable in C, create a new variable that refers to the 667 // definition in C. Return a new context that contains these new variables. 668 // (We use this for a naive implementation of SSA on loop back-edges.) 669 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 670 Context Result = getEmptyContext(); 671 for (const auto &P : C) 672 Result = addReference(P.first, P.second, Result); 673 return Result; 674 } 675 676 // This routine also takes the intersection of C1 and C2, but it does so by 677 // altering the VarDefinitions. C1 must be the result of an earlier call to 678 // createReferenceContext. 679 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 680 for (const auto &P : C1) { 681 unsigned i1 = P.second; 682 VarDefinition *VDef = &VarDefinitions[i1]; 683 assert(VDef->isReference()); 684 685 const unsigned *i2 = C2.lookup(P.first); 686 if (!i2 || (*i2 != i1)) 687 VDef->Ref = 0; // Mark this variable as undefined 688 } 689 } 690 691 // Traverse the CFG in topological order, so all predecessors of a block 692 // (excluding back-edges) are visited before the block itself. At 693 // each point in the code, we calculate a Context, which holds the set of 694 // variable definitions which are visible at that point in execution. 695 // Visible variables are mapped to their definitions using an array that 696 // contains all definitions. 697 // 698 // At join points in the CFG, the set is computed as the intersection of 699 // the incoming sets along each edge, E.g. 700 // 701 // { Context | VarDefinitions } 702 // int x = 0; { x -> x1 | x1 = 0 } 703 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 704 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 705 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 706 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 707 // 708 // This is essentially a simpler and more naive version of the standard SSA 709 // algorithm. Those definitions that remain in the intersection are from blocks 710 // that strictly dominate the current block. We do not bother to insert proper 711 // phi nodes, because they are not used in our analysis; instead, wherever 712 // a phi node would be required, we simply remove that definition from the 713 // context (E.g. x above). 714 // 715 // The initial traversal does not capture back-edges, so those need to be 716 // handled on a separate pass. Whenever the first pass encounters an 717 // incoming back edge, it duplicates the context, creating new definitions 718 // that refer back to the originals. (These correspond to places where SSA 719 // might have to insert a phi node.) On the second pass, these definitions are 720 // set to NULL if the variable has changed on the back-edge (i.e. a phi 721 // node was actually required.) E.g. 722 // 723 // { Context | VarDefinitions } 724 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 725 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 726 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 727 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 728 void LocalVariableMap::traverseCFG(CFG *CFGraph, 729 const PostOrderCFGView *SortedGraph, 730 std::vector<CFGBlockInfo> &BlockInfo) { 731 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 732 733 for (const auto *CurrBlock : *SortedGraph) { 734 unsigned CurrBlockID = CurrBlock->getBlockID(); 735 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 736 737 VisitedBlocks.insert(CurrBlock); 738 739 // Calculate the entry context for the current block 740 bool HasBackEdges = false; 741 bool CtxInit = true; 742 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 743 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 744 // if *PI -> CurrBlock is a back edge, so skip it 745 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 746 HasBackEdges = true; 747 continue; 748 } 749 750 unsigned PrevBlockID = (*PI)->getBlockID(); 751 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 752 753 if (CtxInit) { 754 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 755 CtxInit = false; 756 } 757 else { 758 CurrBlockInfo->EntryContext = 759 intersectContexts(CurrBlockInfo->EntryContext, 760 PrevBlockInfo->ExitContext); 761 } 762 } 763 764 // Duplicate the context if we have back-edges, so we can call 765 // intersectBackEdges later. 766 if (HasBackEdges) 767 CurrBlockInfo->EntryContext = 768 createReferenceContext(CurrBlockInfo->EntryContext); 769 770 // Create a starting context index for the current block 771 saveContext(nullptr, CurrBlockInfo->EntryContext); 772 CurrBlockInfo->EntryIndex = getContextIndex(); 773 774 // Visit all the statements in the basic block. 775 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 776 for (const auto &BI : *CurrBlock) { 777 switch (BI.getKind()) { 778 case CFGElement::Statement: { 779 CFGStmt CS = BI.castAs<CFGStmt>(); 780 VMapBuilder.Visit(CS.getStmt()); 781 break; 782 } 783 default: 784 break; 785 } 786 } 787 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 788 789 // Mark variables on back edges as "unknown" if they've been changed. 790 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 791 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 792 // if CurrBlock -> *SI is *not* a back edge 793 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 794 continue; 795 796 CFGBlock *FirstLoopBlock = *SI; 797 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 798 Context LoopEnd = CurrBlockInfo->ExitContext; 799 intersectBackEdge(LoopBegin, LoopEnd); 800 } 801 } 802 803 // Put an extra entry at the end of the indexed context array 804 unsigned exitID = CFGraph->getExit().getBlockID(); 805 saveContext(nullptr, BlockInfo[exitID].ExitContext); 806 } 807 808 /// Find the appropriate source locations to use when producing diagnostics for 809 /// each block in the CFG. 810 static void findBlockLocations(CFG *CFGraph, 811 const PostOrderCFGView *SortedGraph, 812 std::vector<CFGBlockInfo> &BlockInfo) { 813 for (const auto *CurrBlock : *SortedGraph) { 814 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 815 816 // Find the source location of the last statement in the block, if the 817 // block is not empty. 818 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 819 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 820 } else { 821 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 822 BE = CurrBlock->rend(); BI != BE; ++BI) { 823 // FIXME: Handle other CFGElement kinds. 824 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 825 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 826 break; 827 } 828 } 829 } 830 831 if (CurrBlockInfo->ExitLoc.isValid()) { 832 // This block contains at least one statement. Find the source location 833 // of the first statement in the block. 834 for (const auto &BI : *CurrBlock) { 835 // FIXME: Handle other CFGElement kinds. 836 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 837 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 838 break; 839 } 840 } 841 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 842 CurrBlock != &CFGraph->getExit()) { 843 // The block is empty, and has a single predecessor. Use its exit 844 // location. 845 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 846 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 847 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { 848 // The block is empty, and has a single successor. Use its entry 849 // location. 850 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 851 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; 852 } 853 } 854 } 855 856 namespace { 857 858 class LockableFactEntry : public FactEntry { 859 public: 860 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 861 SourceKind Src = Acquired) 862 : FactEntry(CE, LK, Loc, Src) {} 863 864 void 865 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 866 SourceLocation JoinLoc, LockErrorKind LEK, 867 ThreadSafetyHandler &Handler) const override { 868 if (!asserted() && !negative() && !isUniversal()) { 869 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 870 LEK); 871 } 872 } 873 874 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 875 ThreadSafetyHandler &Handler, 876 StringRef DiagKind) const override { 877 Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc()); 878 } 879 880 void handleUnlock(FactSet &FSet, FactManager &FactMan, 881 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 882 bool FullyRemove, ThreadSafetyHandler &Handler, 883 StringRef DiagKind) const override { 884 FSet.removeLock(FactMan, Cp); 885 if (!Cp.negative()) { 886 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 887 !Cp, LK_Exclusive, UnlockLoc)); 888 } 889 } 890 }; 891 892 class ScopedLockableFactEntry : public FactEntry { 893 private: 894 enum UnderlyingCapabilityKind { 895 UCK_Acquired, ///< Any kind of acquired capability. 896 UCK_ReleasedShared, ///< Shared capability that was released. 897 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 898 }; 899 900 using UnderlyingCapability = 901 llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>; 902 903 SmallVector<UnderlyingCapability, 4> UnderlyingMutexes; 904 905 public: 906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {} 908 909 void addLock(const CapabilityExpr &M) { 910 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired); 911 } 912 913 void addExclusiveUnlock(const CapabilityExpr &M) { 914 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive); 915 } 916 917 void addSharedUnlock(const CapabilityExpr &M) { 918 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared); 919 } 920 921 void 922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 923 SourceLocation JoinLoc, LockErrorKind LEK, 924 ThreadSafetyHandler &Handler) const override { 925 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 926 const auto *Entry = FSet.findLock( 927 FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false)); 928 if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) || 929 (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) { 930 // If this scoped lock manages another mutex, and if the underlying 931 // mutex is still/not held, then warn about the underlying mutex. 932 Handler.handleMutexHeldEndOfScope( 933 "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc, 934 LEK); 935 } 936 } 937 } 938 939 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 940 ThreadSafetyHandler &Handler, 941 StringRef DiagKind) const override { 942 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 943 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); 944 945 if (UnderlyingMutex.getInt() == UCK_Acquired) 946 lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler, 947 DiagKind); 948 else 949 unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind); 950 } 951 } 952 953 void handleUnlock(FactSet &FSet, FactManager &FactMan, 954 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 955 bool FullyRemove, ThreadSafetyHandler &Handler, 956 StringRef DiagKind) const override { 957 assert(!Cp.negative() && "Managing object cannot be negative."); 958 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 959 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); 960 961 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 962 // on double unlocking/locking if we're not destroying the scoped object. 963 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 964 if (UnderlyingMutex.getInt() == UCK_Acquired) { 965 unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind); 966 } else { 967 LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared 968 ? LK_Shared 969 : LK_Exclusive; 970 lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind); 971 } 972 } 973 if (FullyRemove) 974 FSet.removeLock(FactMan, Cp); 975 } 976 977 private: 978 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 979 LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler, 980 StringRef DiagKind) const { 981 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 982 if (Handler) 983 Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc); 984 } else { 985 FSet.removeLock(FactMan, !Cp); 986 FSet.addLock(FactMan, 987 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed)); 988 } 989 } 990 991 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 992 SourceLocation loc, ThreadSafetyHandler *Handler, 993 StringRef DiagKind) const { 994 if (FSet.findLock(FactMan, Cp)) { 995 FSet.removeLock(FactMan, Cp); 996 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 997 !Cp, LK_Exclusive, loc)); 998 } else if (Handler) { 999 SourceLocation PrevLoc; 1000 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1001 PrevLoc = Neg->loc(); 1002 Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc); 1003 } 1004 } 1005 }; 1006 1007 /// Class which implements the core thread safety analysis routines. 1008 class ThreadSafetyAnalyzer { 1009 friend class BuildLockset; 1010 friend class threadSafety::BeforeSet; 1011 1012 llvm::BumpPtrAllocator Bpa; 1013 threadSafety::til::MemRegionRef Arena; 1014 threadSafety::SExprBuilder SxBuilder; 1015 1016 ThreadSafetyHandler &Handler; 1017 const CXXMethodDecl *CurrentMethod; 1018 LocalVariableMap LocalVarMap; 1019 FactManager FactMan; 1020 std::vector<CFGBlockInfo> BlockInfo; 1021 1022 BeforeSet *GlobalBeforeSet; 1023 1024 public: 1025 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1026 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1027 1028 bool inCurrentScope(const CapabilityExpr &CapE); 1029 1030 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1031 StringRef DiagKind, bool ReqAttr = false); 1032 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1033 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 1034 StringRef DiagKind); 1035 1036 template <typename AttrType> 1037 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1038 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 1039 1040 template <class AttrType> 1041 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1042 const NamedDecl *D, 1043 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1044 Expr *BrE, bool Neg); 1045 1046 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1047 bool &Negate); 1048 1049 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1050 const CFGBlock* PredBlock, 1051 const CFGBlock *CurrBlock); 1052 1053 bool join(const FactEntry &a, const FactEntry &b, bool CanModify); 1054 1055 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1056 SourceLocation JoinLoc, LockErrorKind EntryLEK, 1057 LockErrorKind ExitLEK); 1058 1059 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1060 SourceLocation JoinLoc, LockErrorKind LEK) { 1061 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK); 1062 } 1063 1064 void runAnalysis(AnalysisDeclContext &AC); 1065 }; 1066 1067 } // namespace 1068 1069 /// Process acquired_before and acquired_after attributes on Vd. 1070 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1071 ThreadSafetyAnalyzer& Analyzer) { 1072 // Create a new entry for Vd. 1073 BeforeInfo *Info = nullptr; 1074 { 1075 // Keep InfoPtr in its own scope in case BMap is modified later and the 1076 // reference becomes invalid. 1077 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1078 if (!InfoPtr) 1079 InfoPtr.reset(new BeforeInfo()); 1080 Info = InfoPtr.get(); 1081 } 1082 1083 for (const auto *At : Vd->attrs()) { 1084 switch (At->getKind()) { 1085 case attr::AcquiredBefore: { 1086 const auto *A = cast<AcquiredBeforeAttr>(At); 1087 1088 // Read exprs from the attribute, and add them to BeforeVect. 1089 for (const auto *Arg : A->args()) { 1090 CapabilityExpr Cp = 1091 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1092 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1093 Info->Vect.push_back(Cpvd); 1094 const auto It = BMap.find(Cpvd); 1095 if (It == BMap.end()) 1096 insertAttrExprs(Cpvd, Analyzer); 1097 } 1098 } 1099 break; 1100 } 1101 case attr::AcquiredAfter: { 1102 const auto *A = cast<AcquiredAfterAttr>(At); 1103 1104 // Read exprs from the attribute, and add them to BeforeVect. 1105 for (const auto *Arg : A->args()) { 1106 CapabilityExpr Cp = 1107 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1108 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1109 // Get entry for mutex listed in attribute 1110 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1111 ArgInfo->Vect.push_back(Vd); 1112 } 1113 } 1114 break; 1115 } 1116 default: 1117 break; 1118 } 1119 } 1120 1121 return Info; 1122 } 1123 1124 BeforeSet::BeforeInfo * 1125 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1126 ThreadSafetyAnalyzer &Analyzer) { 1127 auto It = BMap.find(Vd); 1128 BeforeInfo *Info = nullptr; 1129 if (It == BMap.end()) 1130 Info = insertAttrExprs(Vd, Analyzer); 1131 else 1132 Info = It->second.get(); 1133 assert(Info && "BMap contained nullptr?"); 1134 return Info; 1135 } 1136 1137 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1138 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1139 const FactSet& FSet, 1140 ThreadSafetyAnalyzer& Analyzer, 1141 SourceLocation Loc, StringRef CapKind) { 1142 SmallVector<BeforeInfo*, 8> InfoVect; 1143 1144 // Do a depth-first traversal of Vd. 1145 // Return true if there are cycles. 1146 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1147 if (!Vd) 1148 return false; 1149 1150 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1151 1152 if (Info->Visited == 1) 1153 return true; 1154 1155 if (Info->Visited == 2) 1156 return false; 1157 1158 if (Info->Vect.empty()) 1159 return false; 1160 1161 InfoVect.push_back(Info); 1162 Info->Visited = 1; 1163 for (const auto *Vdb : Info->Vect) { 1164 // Exclude mutexes in our immediate before set. 1165 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1166 StringRef L1 = StartVd->getName(); 1167 StringRef L2 = Vdb->getName(); 1168 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1169 } 1170 // Transitively search other before sets, and warn on cycles. 1171 if (traverse(Vdb)) { 1172 if (CycMap.find(Vd) == CycMap.end()) { 1173 CycMap.insert(std::make_pair(Vd, true)); 1174 StringRef L1 = Vd->getName(); 1175 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1176 } 1177 } 1178 } 1179 Info->Visited = 2; 1180 return false; 1181 }; 1182 1183 traverse(StartVd); 1184 1185 for (auto *Info : InfoVect) 1186 Info->Visited = 0; 1187 } 1188 1189 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1190 static const ValueDecl *getValueDecl(const Expr *Exp) { 1191 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1192 return getValueDecl(CE->getSubExpr()); 1193 1194 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1195 return DR->getDecl(); 1196 1197 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1198 return ME->getMemberDecl(); 1199 1200 return nullptr; 1201 } 1202 1203 namespace { 1204 1205 template <typename Ty> 1206 class has_arg_iterator_range { 1207 using yes = char[1]; 1208 using no = char[2]; 1209 1210 template <typename Inner> 1211 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1212 1213 template <typename> 1214 static no& test(...); 1215 1216 public: 1217 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1218 }; 1219 1220 } // namespace 1221 1222 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 1223 return A->getName(); 1224 } 1225 1226 static StringRef ClassifyDiagnostic(QualType VDT) { 1227 // We need to look at the declaration of the type of the value to determine 1228 // which it is. The type should either be a record or a typedef, or a pointer 1229 // or reference thereof. 1230 if (const auto *RT = VDT->getAs<RecordType>()) { 1231 if (const auto *RD = RT->getDecl()) 1232 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 1233 return ClassifyDiagnostic(CA); 1234 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 1235 if (const auto *TD = TT->getDecl()) 1236 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 1237 return ClassifyDiagnostic(CA); 1238 } else if (VDT->isPointerType() || VDT->isReferenceType()) 1239 return ClassifyDiagnostic(VDT->getPointeeType()); 1240 1241 return "mutex"; 1242 } 1243 1244 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 1245 assert(VD && "No ValueDecl passed"); 1246 1247 // The ValueDecl is the declaration of a mutex or role (hopefully). 1248 return ClassifyDiagnostic(VD->getType()); 1249 } 1250 1251 template <typename AttrTy> 1252 static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef> 1253 ClassifyDiagnostic(const AttrTy *A) { 1254 if (const ValueDecl *VD = getValueDecl(A->getArg())) 1255 return ClassifyDiagnostic(VD); 1256 return "mutex"; 1257 } 1258 1259 template <typename AttrTy> 1260 static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef> 1261 ClassifyDiagnostic(const AttrTy *A) { 1262 for (const auto *Arg : A->args()) { 1263 if (const ValueDecl *VD = getValueDecl(Arg)) 1264 return ClassifyDiagnostic(VD); 1265 } 1266 return "mutex"; 1267 } 1268 1269 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1270 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1271 assert(SExp && "Null expressions should be ignored"); 1272 1273 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1274 const ValueDecl *VD = LP->clangDecl(); 1275 // Variables defined in a function are always inaccessible. 1276 if (!VD->isDefinedOutsideFunctionOrMethod()) 1277 return false; 1278 // For now we consider static class members to be inaccessible. 1279 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1280 return false; 1281 // Global variables are always in scope. 1282 return true; 1283 } 1284 1285 // Members are in scope from methods of the same class. 1286 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1287 if (!CurrentMethod) 1288 return false; 1289 const ValueDecl *VD = P->clangDecl(); 1290 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1291 } 1292 1293 return false; 1294 } 1295 1296 /// Add a new lock to the lockset, warning if the lock is already there. 1297 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1298 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1299 std::unique_ptr<FactEntry> Entry, 1300 StringRef DiagKind, bool ReqAttr) { 1301 if (Entry->shouldIgnore()) 1302 return; 1303 1304 if (!ReqAttr && !Entry->negative()) { 1305 // look for the negative capability, and remove it from the fact set. 1306 CapabilityExpr NegC = !*Entry; 1307 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1308 if (Nen) { 1309 FSet.removeLock(FactMan, NegC); 1310 } 1311 else { 1312 if (inCurrentScope(*Entry) && !Entry->asserted()) 1313 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1314 NegC.toString(), Entry->loc()); 1315 } 1316 } 1317 1318 // Check before/after constraints 1319 if (Handler.issueBetaWarnings() && 1320 !Entry->asserted() && !Entry->declared()) { 1321 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1322 Entry->loc(), DiagKind); 1323 } 1324 1325 // FIXME: Don't always warn when we have support for reentrant locks. 1326 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1327 if (!Entry->asserted()) 1328 Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind); 1329 } else { 1330 FSet.addLock(FactMan, std::move(Entry)); 1331 } 1332 } 1333 1334 /// Remove a lock from the lockset, warning if the lock is not there. 1335 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1336 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1337 SourceLocation UnlockLoc, 1338 bool FullyRemove, LockKind ReceivedKind, 1339 StringRef DiagKind) { 1340 if (Cp.shouldIgnore()) 1341 return; 1342 1343 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1344 if (!LDat) { 1345 SourceLocation PrevLoc; 1346 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1347 PrevLoc = Neg->loc(); 1348 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc); 1349 return; 1350 } 1351 1352 // Generic lock removal doesn't care about lock kind mismatches, but 1353 // otherwise diagnose when the lock kinds are mismatched. 1354 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1355 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(), 1356 ReceivedKind, LDat->loc(), UnlockLoc); 1357 } 1358 1359 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1360 DiagKind); 1361 } 1362 1363 /// Extract the list of mutexIDs from the attribute on an expression, 1364 /// and push them onto Mtxs, discarding any duplicates. 1365 template <typename AttrType> 1366 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1367 const Expr *Exp, const NamedDecl *D, 1368 VarDecl *SelfDecl) { 1369 if (Attr->args_size() == 0) { 1370 // The mutex held is the "this" object. 1371 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1372 if (Cp.isInvalid()) { 1373 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1374 return; 1375 } 1376 //else 1377 if (!Cp.shouldIgnore()) 1378 Mtxs.push_back_nodup(Cp); 1379 return; 1380 } 1381 1382 for (const auto *Arg : Attr->args()) { 1383 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1384 if (Cp.isInvalid()) { 1385 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1386 continue; 1387 } 1388 //else 1389 if (!Cp.shouldIgnore()) 1390 Mtxs.push_back_nodup(Cp); 1391 } 1392 } 1393 1394 /// Extract the list of mutexIDs from a trylock attribute. If the 1395 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1396 /// any duplicates. 1397 template <class AttrType> 1398 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1399 const Expr *Exp, const NamedDecl *D, 1400 const CFGBlock *PredBlock, 1401 const CFGBlock *CurrBlock, 1402 Expr *BrE, bool Neg) { 1403 // Find out which branch has the lock 1404 bool branch = false; 1405 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1406 branch = BLE->getValue(); 1407 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1408 branch = ILE->getValue().getBoolValue(); 1409 1410 int branchnum = branch ? 0 : 1; 1411 if (Neg) 1412 branchnum = !branchnum; 1413 1414 // If we've taken the trylock branch, then add the lock 1415 int i = 0; 1416 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1417 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1418 if (*SI == CurrBlock && i == branchnum) 1419 getMutexIDs(Mtxs, Attr, Exp, D); 1420 } 1421 } 1422 1423 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1424 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1425 TCond = false; 1426 return true; 1427 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1428 TCond = BLE->getValue(); 1429 return true; 1430 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1431 TCond = ILE->getValue().getBoolValue(); 1432 return true; 1433 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1434 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1435 return false; 1436 } 1437 1438 // If Cond can be traced back to a function call, return the call expression. 1439 // The negate variable should be called with false, and will be set to true 1440 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1441 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1442 LocalVarContext C, 1443 bool &Negate) { 1444 if (!Cond) 1445 return nullptr; 1446 1447 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1448 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1449 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1450 return CallExp; 1451 } 1452 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1453 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1454 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1455 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1456 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1457 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1458 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1459 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1460 return getTrylockCallExpr(E, C, Negate); 1461 } 1462 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1463 if (UOP->getOpcode() == UO_LNot) { 1464 Negate = !Negate; 1465 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1466 } 1467 return nullptr; 1468 } 1469 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1470 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1471 if (BOP->getOpcode() == BO_NE) 1472 Negate = !Negate; 1473 1474 bool TCond = false; 1475 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1476 if (!TCond) Negate = !Negate; 1477 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1478 } 1479 TCond = false; 1480 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1481 if (!TCond) Negate = !Negate; 1482 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1483 } 1484 return nullptr; 1485 } 1486 if (BOP->getOpcode() == BO_LAnd) { 1487 // LHS must have been evaluated in a different block. 1488 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1489 } 1490 if (BOP->getOpcode() == BO_LOr) 1491 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1492 return nullptr; 1493 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1494 bool TCond, FCond; 1495 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1496 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1497 if (TCond && !FCond) 1498 return getTrylockCallExpr(COP->getCond(), C, Negate); 1499 if (!TCond && FCond) { 1500 Negate = !Negate; 1501 return getTrylockCallExpr(COP->getCond(), C, Negate); 1502 } 1503 } 1504 } 1505 return nullptr; 1506 } 1507 1508 /// Find the lockset that holds on the edge between PredBlock 1509 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1510 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1511 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1512 const FactSet &ExitSet, 1513 const CFGBlock *PredBlock, 1514 const CFGBlock *CurrBlock) { 1515 Result = ExitSet; 1516 1517 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1518 // We don't acquire try-locks on ?: branches, only when its result is used. 1519 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1520 return; 1521 1522 bool Negate = false; 1523 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1524 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1525 StringRef CapDiagKind = "mutex"; 1526 1527 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1528 if (!Exp) 1529 return; 1530 1531 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1532 if(!FunDecl || !FunDecl->hasAttrs()) 1533 return; 1534 1535 CapExprSet ExclusiveLocksToAdd; 1536 CapExprSet SharedLocksToAdd; 1537 1538 // If the condition is a call to a Trylock function, then grab the attributes 1539 for (const auto *Attr : FunDecl->attrs()) { 1540 switch (Attr->getKind()) { 1541 case attr::TryAcquireCapability: { 1542 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1543 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1544 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1545 Negate); 1546 CapDiagKind = ClassifyDiagnostic(A); 1547 break; 1548 }; 1549 case attr::ExclusiveTrylockFunction: { 1550 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1551 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1552 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1553 CapDiagKind = ClassifyDiagnostic(A); 1554 break; 1555 } 1556 case attr::SharedTrylockFunction: { 1557 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1558 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1559 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1560 CapDiagKind = ClassifyDiagnostic(A); 1561 break; 1562 } 1563 default: 1564 break; 1565 } 1566 } 1567 1568 // Add and remove locks. 1569 SourceLocation Loc = Exp->getExprLoc(); 1570 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1571 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1572 LK_Exclusive, Loc), 1573 CapDiagKind); 1574 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1575 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1576 LK_Shared, Loc), 1577 CapDiagKind); 1578 } 1579 1580 namespace { 1581 1582 /// We use this class to visit different types of expressions in 1583 /// CFGBlocks, and build up the lockset. 1584 /// An expression may cause us to add or remove locks from the lockset, or else 1585 /// output error messages related to missing locks. 1586 /// FIXME: In future, we may be able to not inherit from a visitor. 1587 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1588 friend class ThreadSafetyAnalyzer; 1589 1590 ThreadSafetyAnalyzer *Analyzer; 1591 FactSet FSet; 1592 LocalVariableMap::Context LVarCtx; 1593 unsigned CtxIndex; 1594 1595 // helper functions 1596 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1597 Expr *MutexExp, ProtectedOperationKind POK, 1598 StringRef DiagKind, SourceLocation Loc); 1599 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1600 StringRef DiagKind); 1601 1602 void checkAccess(const Expr *Exp, AccessKind AK, 1603 ProtectedOperationKind POK = POK_VarAccess); 1604 void checkPtAccess(const Expr *Exp, AccessKind AK, 1605 ProtectedOperationKind POK = POK_VarAccess); 1606 1607 void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1608 void examineArguments(const FunctionDecl *FD, 1609 CallExpr::const_arg_iterator ArgBegin, 1610 CallExpr::const_arg_iterator ArgEnd, 1611 bool SkipFirstParam = false); 1612 1613 public: 1614 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1615 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1616 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1617 1618 void VisitUnaryOperator(const UnaryOperator *UO); 1619 void VisitBinaryOperator(const BinaryOperator *BO); 1620 void VisitCastExpr(const CastExpr *CE); 1621 void VisitCallExpr(const CallExpr *Exp); 1622 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1623 void VisitDeclStmt(const DeclStmt *S); 1624 }; 1625 1626 } // namespace 1627 1628 /// Warn if the LSet does not contain a lock sufficient to protect access 1629 /// of at least the passed in AccessKind. 1630 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1631 AccessKind AK, Expr *MutexExp, 1632 ProtectedOperationKind POK, 1633 StringRef DiagKind, SourceLocation Loc) { 1634 LockKind LK = getLockKindFromAccessKind(AK); 1635 1636 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1637 if (Cp.isInvalid()) { 1638 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1639 return; 1640 } else if (Cp.shouldIgnore()) { 1641 return; 1642 } 1643 1644 if (Cp.negative()) { 1645 // Negative capabilities act like locks excluded 1646 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1647 if (LDat) { 1648 Analyzer->Handler.handleFunExcludesLock( 1649 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1650 return; 1651 } 1652 1653 // If this does not refer to a negative capability in the same class, 1654 // then stop here. 1655 if (!Analyzer->inCurrentScope(Cp)) 1656 return; 1657 1658 // Otherwise the negative requirement must be propagated to the caller. 1659 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1660 if (!LDat) { 1661 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1662 } 1663 return; 1664 } 1665 1666 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1667 bool NoError = true; 1668 if (!LDat) { 1669 // No exact match found. Look for a partial match. 1670 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1671 if (LDat) { 1672 // Warn that there's no precise match. 1673 std::string PartMatchStr = LDat->toString(); 1674 StringRef PartMatchName(PartMatchStr); 1675 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1676 LK, Loc, &PartMatchName); 1677 } else { 1678 // Warn that there's no match at all. 1679 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1680 LK, Loc); 1681 } 1682 NoError = false; 1683 } 1684 // Make sure the mutex we found is the right kind. 1685 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1686 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1687 LK, Loc); 1688 } 1689 } 1690 1691 /// Warn if the LSet contains the given lock. 1692 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1693 Expr *MutexExp, StringRef DiagKind) { 1694 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1695 if (Cp.isInvalid()) { 1696 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1697 return; 1698 } else if (Cp.shouldIgnore()) { 1699 return; 1700 } 1701 1702 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); 1703 if (LDat) { 1704 Analyzer->Handler.handleFunExcludesLock( 1705 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1706 } 1707 } 1708 1709 /// Checks guarded_by and pt_guarded_by attributes. 1710 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1711 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1712 /// Similarly, we check if the access is to an expression that dereferences 1713 /// a pointer marked with pt_guarded_by. 1714 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1715 ProtectedOperationKind POK) { 1716 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1717 1718 SourceLocation Loc = Exp->getExprLoc(); 1719 1720 // Local variables of reference type cannot be re-assigned; 1721 // map them to their initializer. 1722 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1723 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1724 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1725 if (const auto *E = VD->getInit()) { 1726 // Guard against self-initialization. e.g., int &i = i; 1727 if (E == Exp) 1728 break; 1729 Exp = E; 1730 continue; 1731 } 1732 } 1733 break; 1734 } 1735 1736 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1737 // For dereferences 1738 if (UO->getOpcode() == UO_Deref) 1739 checkPtAccess(UO->getSubExpr(), AK, POK); 1740 return; 1741 } 1742 1743 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1744 checkPtAccess(AE->getLHS(), AK, POK); 1745 return; 1746 } 1747 1748 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1749 if (ME->isArrow()) 1750 checkPtAccess(ME->getBase(), AK, POK); 1751 else 1752 checkAccess(ME->getBase(), AK, POK); 1753 } 1754 1755 const ValueDecl *D = getValueDecl(Exp); 1756 if (!D || !D->hasAttrs()) 1757 return; 1758 1759 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1760 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1761 } 1762 1763 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1764 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1765 ClassifyDiagnostic(I), Loc); 1766 } 1767 1768 /// Checks pt_guarded_by and pt_guarded_var attributes. 1769 /// POK is the same operationKind that was passed to checkAccess. 1770 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1771 ProtectedOperationKind POK) { 1772 while (true) { 1773 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1774 Exp = PE->getSubExpr(); 1775 continue; 1776 } 1777 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1778 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1779 // If it's an actual array, and not a pointer, then it's elements 1780 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1781 checkAccess(CE->getSubExpr(), AK, POK); 1782 return; 1783 } 1784 Exp = CE->getSubExpr(); 1785 continue; 1786 } 1787 break; 1788 } 1789 1790 // Pass by reference warnings are under a different flag. 1791 ProtectedOperationKind PtPOK = POK_VarDereference; 1792 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1793 1794 const ValueDecl *D = getValueDecl(Exp); 1795 if (!D || !D->hasAttrs()) 1796 return; 1797 1798 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1799 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1800 Exp->getExprLoc()); 1801 1802 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1803 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1804 ClassifyDiagnostic(I), Exp->getExprLoc()); 1805 } 1806 1807 /// Process a function call, method call, constructor call, 1808 /// or destructor call. This involves looking at the attributes on the 1809 /// corresponding function/method/constructor/destructor, issuing warnings, 1810 /// and updating the locksets accordingly. 1811 /// 1812 /// FIXME: For classes annotated with one of the guarded annotations, we need 1813 /// to treat const method calls as reads and non-const method calls as writes, 1814 /// and check that the appropriate locks are held. Non-const method calls with 1815 /// the same signature as const method calls can be also treated as reads. 1816 /// 1817 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1818 VarDecl *VD) { 1819 SourceLocation Loc = Exp->getExprLoc(); 1820 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1821 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1822 CapExprSet ScopedReqsAndExcludes; 1823 StringRef CapDiagKind = "mutex"; 1824 1825 // Figure out if we're constructing an object of scoped lockable class 1826 bool isScopedVar = false; 1827 if (VD) { 1828 if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1829 const CXXRecordDecl* PD = CD->getParent(); 1830 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1831 isScopedVar = true; 1832 } 1833 } 1834 1835 for(const Attr *At : D->attrs()) { 1836 switch (At->getKind()) { 1837 // When we encounter a lock function, we need to add the lock to our 1838 // lockset. 1839 case attr::AcquireCapability: { 1840 const auto *A = cast<AcquireCapabilityAttr>(At); 1841 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1842 : ExclusiveLocksToAdd, 1843 A, Exp, D, VD); 1844 1845 CapDiagKind = ClassifyDiagnostic(A); 1846 break; 1847 } 1848 1849 // An assert will add a lock to the lockset, but will not generate 1850 // a warning if it is already there, and will not generate a warning 1851 // if it is not removed. 1852 case attr::AssertExclusiveLock: { 1853 const auto *A = cast<AssertExclusiveLockAttr>(At); 1854 1855 CapExprSet AssertLocks; 1856 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1857 for (const auto &AssertLock : AssertLocks) 1858 Analyzer->addLock( 1859 FSet, 1860 std::make_unique<LockableFactEntry>(AssertLock, LK_Exclusive, Loc, 1861 FactEntry::Asserted), 1862 ClassifyDiagnostic(A)); 1863 break; 1864 } 1865 case attr::AssertSharedLock: { 1866 const auto *A = cast<AssertSharedLockAttr>(At); 1867 1868 CapExprSet AssertLocks; 1869 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1870 for (const auto &AssertLock : AssertLocks) 1871 Analyzer->addLock( 1872 FSet, 1873 std::make_unique<LockableFactEntry>(AssertLock, LK_Shared, Loc, 1874 FactEntry::Asserted), 1875 ClassifyDiagnostic(A)); 1876 break; 1877 } 1878 1879 case attr::AssertCapability: { 1880 const auto *A = cast<AssertCapabilityAttr>(At); 1881 CapExprSet AssertLocks; 1882 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1883 for (const auto &AssertLock : AssertLocks) 1884 Analyzer->addLock(FSet, 1885 std::make_unique<LockableFactEntry>( 1886 AssertLock, 1887 A->isShared() ? LK_Shared : LK_Exclusive, Loc, 1888 FactEntry::Asserted), 1889 ClassifyDiagnostic(A)); 1890 break; 1891 } 1892 1893 // When we encounter an unlock function, we need to remove unlocked 1894 // mutexes from the lockset, and flag a warning if they are not there. 1895 case attr::ReleaseCapability: { 1896 const auto *A = cast<ReleaseCapabilityAttr>(At); 1897 if (A->isGeneric()) 1898 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1899 else if (A->isShared()) 1900 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1901 else 1902 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1903 1904 CapDiagKind = ClassifyDiagnostic(A); 1905 break; 1906 } 1907 1908 case attr::RequiresCapability: { 1909 const auto *A = cast<RequiresCapabilityAttr>(At); 1910 for (auto *Arg : A->args()) { 1911 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1912 POK_FunctionCall, ClassifyDiagnostic(A), 1913 Exp->getExprLoc()); 1914 // use for adopting a lock 1915 if (isScopedVar) 1916 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD); 1917 } 1918 break; 1919 } 1920 1921 case attr::LocksExcluded: { 1922 const auto *A = cast<LocksExcludedAttr>(At); 1923 for (auto *Arg : A->args()) { 1924 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1925 // use for deferring a lock 1926 if (isScopedVar) 1927 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD); 1928 } 1929 break; 1930 } 1931 1932 // Ignore attributes unrelated to thread-safety 1933 default: 1934 break; 1935 } 1936 } 1937 1938 // Remove locks first to allow lock upgrading/downgrading. 1939 // FIXME -- should only fully remove if the attribute refers to 'this'. 1940 bool Dtor = isa<CXXDestructorDecl>(D); 1941 for (const auto &M : ExclusiveLocksToRemove) 1942 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1943 for (const auto &M : SharedLocksToRemove) 1944 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1945 for (const auto &M : GenericLocksToRemove) 1946 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1947 1948 // Add locks. 1949 FactEntry::SourceKind Source = 1950 isScopedVar ? FactEntry::Managed : FactEntry::Acquired; 1951 for (const auto &M : ExclusiveLocksToAdd) 1952 Analyzer->addLock( 1953 FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, Loc, Source), 1954 CapDiagKind); 1955 for (const auto &M : SharedLocksToAdd) 1956 Analyzer->addLock( 1957 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source), 1958 CapDiagKind); 1959 1960 if (isScopedVar) { 1961 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1962 SourceLocation MLoc = VD->getLocation(); 1963 DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue, 1964 VD->getLocation()); 1965 // FIXME: does this store a pointer to DRE? 1966 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1967 1968 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc); 1969 for (const auto &M : ExclusiveLocksToAdd) 1970 ScopedEntry->addLock(M); 1971 for (const auto &M : SharedLocksToAdd) 1972 ScopedEntry->addLock(M); 1973 for (const auto &M : ScopedReqsAndExcludes) 1974 ScopedEntry->addLock(M); 1975 for (const auto &M : ExclusiveLocksToRemove) 1976 ScopedEntry->addExclusiveUnlock(M); 1977 for (const auto &M : SharedLocksToRemove) 1978 ScopedEntry->addSharedUnlock(M); 1979 Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind); 1980 } 1981 } 1982 1983 /// For unary operations which read and write a variable, we need to 1984 /// check whether we hold any required mutexes. Reads are checked in 1985 /// VisitCastExpr. 1986 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1987 switch (UO->getOpcode()) { 1988 case UO_PostDec: 1989 case UO_PostInc: 1990 case UO_PreDec: 1991 case UO_PreInc: 1992 checkAccess(UO->getSubExpr(), AK_Written); 1993 break; 1994 default: 1995 break; 1996 } 1997 } 1998 1999 /// For binary operations which assign to a variable (writes), we need to check 2000 /// whether we hold any required mutexes. 2001 /// FIXME: Deal with non-primitive types. 2002 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 2003 if (!BO->isAssignmentOp()) 2004 return; 2005 2006 // adjust the context 2007 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 2008 2009 checkAccess(BO->getLHS(), AK_Written); 2010 } 2011 2012 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 2013 /// need to ensure we hold any required mutexes. 2014 /// FIXME: Deal with non-primitive types. 2015 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 2016 if (CE->getCastKind() != CK_LValueToRValue) 2017 return; 2018 checkAccess(CE->getSubExpr(), AK_Read); 2019 } 2020 2021 void BuildLockset::examineArguments(const FunctionDecl *FD, 2022 CallExpr::const_arg_iterator ArgBegin, 2023 CallExpr::const_arg_iterator ArgEnd, 2024 bool SkipFirstParam) { 2025 // Currently we can't do anything if we don't know the function declaration. 2026 if (!FD) 2027 return; 2028 2029 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 2030 // only turns off checking within the body of a function, but we also 2031 // use it to turn off checking in arguments to the function. This 2032 // could result in some false negatives, but the alternative is to 2033 // create yet another attribute. 2034 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 2035 return; 2036 2037 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 2038 auto Param = Params.begin(); 2039 if (SkipFirstParam) 2040 ++Param; 2041 2042 // There can be default arguments, so we stop when one iterator is at end(). 2043 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 2044 ++Param, ++Arg) { 2045 QualType Qt = (*Param)->getType(); 2046 if (Qt->isReferenceType()) 2047 checkAccess(*Arg, AK_Read, POK_PassByRef); 2048 } 2049 } 2050 2051 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2052 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2053 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2054 // ME can be null when calling a method pointer 2055 const CXXMethodDecl *MD = CE->getMethodDecl(); 2056 2057 if (ME && MD) { 2058 if (ME->isArrow()) { 2059 // Should perhaps be AK_Written if !MD->isConst(). 2060 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2061 } else { 2062 // Should perhaps be AK_Written if !MD->isConst(). 2063 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2064 } 2065 } 2066 2067 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2068 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2069 auto OEop = OE->getOperator(); 2070 switch (OEop) { 2071 case OO_Equal: { 2072 const Expr *Target = OE->getArg(0); 2073 const Expr *Source = OE->getArg(1); 2074 checkAccess(Target, AK_Written); 2075 checkAccess(Source, AK_Read); 2076 break; 2077 } 2078 case OO_Star: 2079 case OO_Arrow: 2080 case OO_Subscript: 2081 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2082 // Grrr. operator* can be multiplication... 2083 checkPtAccess(OE->getArg(0), AK_Read); 2084 } 2085 LLVM_FALLTHROUGH; 2086 default: { 2087 // TODO: get rid of this, and rely on pass-by-ref instead. 2088 const Expr *Obj = OE->getArg(0); 2089 checkAccess(Obj, AK_Read); 2090 // Check the remaining arguments. For method operators, the first 2091 // argument is the implicit self argument, and doesn't appear in the 2092 // FunctionDecl, but for non-methods it does. 2093 const FunctionDecl *FD = OE->getDirectCallee(); 2094 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2095 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2096 break; 2097 } 2098 } 2099 } else { 2100 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2101 } 2102 2103 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2104 if(!D || !D->hasAttrs()) 2105 return; 2106 handleCall(Exp, D); 2107 } 2108 2109 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2110 const CXXConstructorDecl *D = Exp->getConstructor(); 2111 if (D && D->isCopyConstructor()) { 2112 const Expr* Source = Exp->getArg(0); 2113 checkAccess(Source, AK_Read); 2114 } else { 2115 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2116 } 2117 } 2118 2119 static CXXConstructorDecl * 2120 findConstructorForByValueReturn(const CXXRecordDecl *RD) { 2121 // Prefer a move constructor over a copy constructor. If there's more than 2122 // one copy constructor or more than one move constructor, we arbitrarily 2123 // pick the first declared such constructor rather than trying to guess which 2124 // one is more appropriate. 2125 CXXConstructorDecl *CopyCtor = nullptr; 2126 for (auto *Ctor : RD->ctors()) { 2127 if (Ctor->isDeleted()) 2128 continue; 2129 if (Ctor->isMoveConstructor()) 2130 return Ctor; 2131 if (!CopyCtor && Ctor->isCopyConstructor()) 2132 CopyCtor = Ctor; 2133 } 2134 return CopyCtor; 2135 } 2136 2137 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, 2138 SourceLocation Loc) { 2139 ASTContext &Ctx = CD->getASTContext(); 2140 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, 2141 CD, true, Args, false, false, false, false, 2142 CXXConstructExpr::CK_Complete, 2143 SourceRange(Loc, Loc)); 2144 } 2145 2146 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2147 // adjust the context 2148 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2149 2150 for (auto *D : S->getDeclGroup()) { 2151 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2152 Expr *E = VD->getInit(); 2153 if (!E) 2154 continue; 2155 E = E->IgnoreParens(); 2156 2157 // handle constructors that involve temporaries 2158 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2159 E = EWC->getSubExpr()->IgnoreParens(); 2160 if (auto *CE = dyn_cast<CastExpr>(E)) 2161 if (CE->getCastKind() == CK_NoOp || 2162 CE->getCastKind() == CK_ConstructorConversion || 2163 CE->getCastKind() == CK_UserDefinedConversion) 2164 E = CE->getSubExpr()->IgnoreParens(); 2165 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2166 E = BTE->getSubExpr()->IgnoreParens(); 2167 2168 if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 2169 const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 2170 if (!CtorD || !CtorD->hasAttrs()) 2171 continue; 2172 handleCall(E, CtorD, VD); 2173 } else if (isa<CallExpr>(E) && E->isPRValue()) { 2174 // If the object is initialized by a function call that returns a 2175 // scoped lockable by value, use the attributes on the copy or move 2176 // constructor to figure out what effect that should have on the 2177 // lockset. 2178 // FIXME: Is this really the best way to handle this situation? 2179 auto *RD = E->getType()->getAsCXXRecordDecl(); 2180 if (!RD || !RD->hasAttr<ScopedLockableAttr>()) 2181 continue; 2182 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); 2183 if (!CtorD || !CtorD->hasAttrs()) 2184 continue; 2185 handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD); 2186 } 2187 } 2188 } 2189 } 2190 2191 /// Given two facts merging on a join point, possibly warn and decide whether to 2192 /// keep or replace. 2193 /// 2194 /// \param CanModify Whether we can replace \p A by \p B. 2195 /// \return false if we should keep \p A, true if we should take \p B. 2196 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, 2197 bool CanModify) { 2198 if (A.kind() != B.kind()) { 2199 // For managed capabilities, the destructor should unlock in the right mode 2200 // anyway. For asserted capabilities no unlocking is needed. 2201 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { 2202 // The shared capability subsumes the exclusive capability, if possible. 2203 bool ShouldTakeB = B.kind() == LK_Shared; 2204 if (CanModify || !ShouldTakeB) 2205 return ShouldTakeB; 2206 } 2207 Handler.handleExclusiveAndShared("mutex", B.toString(), B.loc(), A.loc()); 2208 // Take the exclusive capability to reduce further warnings. 2209 return CanModify && B.kind() == LK_Exclusive; 2210 } else { 2211 // The non-asserted capability is the one we want to track. 2212 return CanModify && A.asserted() && !B.asserted(); 2213 } 2214 } 2215 2216 /// Compute the intersection of two locksets and issue warnings for any 2217 /// locks in the symmetric difference. 2218 /// 2219 /// This function is used at a merge point in the CFG when comparing the lockset 2220 /// of each branch being merged. For example, given the following sequence: 2221 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2222 /// are the same. In the event of a difference, we use the intersection of these 2223 /// two locksets at the start of D. 2224 /// 2225 /// \param EntrySet A lockset for entry into a (possibly new) block. 2226 /// \param ExitSet The lockset on exiting a preceding block. 2227 /// \param JoinLoc The location of the join point for error reporting 2228 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. 2229 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. 2230 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, 2231 const FactSet &ExitSet, 2232 SourceLocation JoinLoc, 2233 LockErrorKind EntryLEK, 2234 LockErrorKind ExitLEK) { 2235 FactSet EntrySetOrig = EntrySet; 2236 2237 // Find locks in ExitSet that conflict or are not in EntrySet, and warn. 2238 for (const auto &Fact : ExitSet) { 2239 const FactEntry &ExitFact = FactMan[Fact]; 2240 2241 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact); 2242 if (EntryIt != EntrySet.end()) { 2243 if (join(FactMan[*EntryIt], ExitFact, 2244 EntryLEK != LEK_LockedSomeLoopIterations)) 2245 *EntryIt = Fact; 2246 } else if (!ExitFact.managed()) { 2247 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc, 2248 EntryLEK, Handler); 2249 } 2250 } 2251 2252 // Find locks in EntrySet that are not in ExitSet, and remove them. 2253 for (const auto &Fact : EntrySetOrig) { 2254 const FactEntry *EntryFact = &FactMan[Fact]; 2255 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact); 2256 2257 if (!ExitFact) { 2258 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations) 2259 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc, 2260 ExitLEK, Handler); 2261 if (ExitLEK == LEK_LockedSomePredecessors) 2262 EntrySet.removeLock(FactMan, *EntryFact); 2263 } 2264 } 2265 } 2266 2267 // Return true if block B never continues to its successors. 2268 static bool neverReturns(const CFGBlock *B) { 2269 if (B->hasNoReturnElement()) 2270 return true; 2271 if (B->empty()) 2272 return false; 2273 2274 CFGElement Last = B->back(); 2275 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2276 if (isa<CXXThrowExpr>(S->getStmt())) 2277 return true; 2278 } 2279 return false; 2280 } 2281 2282 /// Check a function's CFG for thread-safety violations. 2283 /// 2284 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2285 /// at the end of each block, and issue warnings for thread safety violations. 2286 /// Each block in the CFG is traversed exactly once. 2287 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2288 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2289 // For now, we just use the walker to set things up. 2290 threadSafety::CFGWalker walker; 2291 if (!walker.init(AC)) 2292 return; 2293 2294 // AC.dumpCFG(true); 2295 // threadSafety::printSCFG(walker); 2296 2297 CFG *CFGraph = walker.getGraph(); 2298 const NamedDecl *D = walker.getDecl(); 2299 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2300 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2301 2302 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2303 return; 2304 2305 // FIXME: Do something a bit more intelligent inside constructor and 2306 // destructor code. Constructors and destructors must assume unique access 2307 // to 'this', so checks on member variable access is disabled, but we should 2308 // still enable checks on other objects. 2309 if (isa<CXXConstructorDecl>(D)) 2310 return; // Don't check inside constructors. 2311 if (isa<CXXDestructorDecl>(D)) 2312 return; // Don't check inside destructors. 2313 2314 Handler.enterFunction(CurrentFunction); 2315 2316 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2317 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2318 2319 // We need to explore the CFG via a "topological" ordering. 2320 // That way, we will be guaranteed to have information about required 2321 // predecessor locksets when exploring a new block. 2322 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2323 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2324 2325 // Mark entry block as reachable 2326 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2327 2328 // Compute SSA names for local variables 2329 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2330 2331 // Fill in source locations for all CFGBlocks. 2332 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2333 2334 CapExprSet ExclusiveLocksAcquired; 2335 CapExprSet SharedLocksAcquired; 2336 CapExprSet LocksReleased; 2337 2338 // Add locks from exclusive_locks_required and shared_locks_required 2339 // to initial lockset. Also turn off checking for lock and unlock functions. 2340 // FIXME: is there a more intelligent way to check lock/unlock functions? 2341 if (!SortedGraph->empty() && D->hasAttrs()) { 2342 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2343 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2344 2345 CapExprSet ExclusiveLocksToAdd; 2346 CapExprSet SharedLocksToAdd; 2347 StringRef CapDiagKind = "mutex"; 2348 2349 SourceLocation Loc = D->getLocation(); 2350 for (const auto *Attr : D->attrs()) { 2351 Loc = Attr->getLocation(); 2352 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2353 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2354 nullptr, D); 2355 CapDiagKind = ClassifyDiagnostic(A); 2356 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2357 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2358 // We must ignore such methods. 2359 if (A->args_size() == 0) 2360 return; 2361 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2362 nullptr, D); 2363 getMutexIDs(LocksReleased, A, nullptr, D); 2364 CapDiagKind = ClassifyDiagnostic(A); 2365 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2366 if (A->args_size() == 0) 2367 return; 2368 getMutexIDs(A->isShared() ? SharedLocksAcquired 2369 : ExclusiveLocksAcquired, 2370 A, nullptr, D); 2371 CapDiagKind = ClassifyDiagnostic(A); 2372 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2373 // Don't try to check trylock functions for now. 2374 return; 2375 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2376 // Don't try to check trylock functions for now. 2377 return; 2378 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2379 // Don't try to check trylock functions for now. 2380 return; 2381 } 2382 } 2383 2384 // FIXME -- Loc can be wrong here. 2385 for (const auto &Mu : ExclusiveLocksToAdd) { 2386 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc, 2387 FactEntry::Declared); 2388 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2389 } 2390 for (const auto &Mu : SharedLocksToAdd) { 2391 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc, 2392 FactEntry::Declared); 2393 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2394 } 2395 } 2396 2397 for (const auto *CurrBlock : *SortedGraph) { 2398 unsigned CurrBlockID = CurrBlock->getBlockID(); 2399 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2400 2401 // Use the default initial lockset in case there are no predecessors. 2402 VisitedBlocks.insert(CurrBlock); 2403 2404 // Iterate through the predecessor blocks and warn if the lockset for all 2405 // predecessors is not the same. We take the entry lockset of the current 2406 // block to be the intersection of all previous locksets. 2407 // FIXME: By keeping the intersection, we may output more errors in future 2408 // for a lock which is not in the intersection, but was in the union. We 2409 // may want to also keep the union in future. As an example, let's say 2410 // the intersection contains Mutex L, and the union contains L and M. 2411 // Later we unlock M. At this point, we would output an error because we 2412 // never locked M; although the real error is probably that we forgot to 2413 // lock M on all code paths. Conversely, let's say that later we lock M. 2414 // In this case, we should compare against the intersection instead of the 2415 // union because the real error is probably that we forgot to unlock M on 2416 // all code paths. 2417 bool LocksetInitialized = false; 2418 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2419 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2420 // if *PI -> CurrBlock is a back edge 2421 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2422 continue; 2423 2424 unsigned PrevBlockID = (*PI)->getBlockID(); 2425 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2426 2427 // Ignore edges from blocks that can't return. 2428 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2429 continue; 2430 2431 // Okay, we can reach this block from the entry. 2432 CurrBlockInfo->Reachable = true; 2433 2434 FactSet PrevLockset; 2435 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2436 2437 if (!LocksetInitialized) { 2438 CurrBlockInfo->EntrySet = PrevLockset; 2439 LocksetInitialized = true; 2440 } else { 2441 // Surprisingly 'continue' doesn't always produce back edges, because 2442 // the CFG has empty "transition" blocks where they meet with the end 2443 // of the regular loop body. We still want to diagnose them as loop. 2444 intersectAndWarn( 2445 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, 2446 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt()) 2447 ? LEK_LockedSomeLoopIterations 2448 : LEK_LockedSomePredecessors); 2449 } 2450 } 2451 2452 // Skip rest of block if it's not reachable. 2453 if (!CurrBlockInfo->Reachable) 2454 continue; 2455 2456 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2457 2458 // Visit all the statements in the basic block. 2459 for (const auto &BI : *CurrBlock) { 2460 switch (BI.getKind()) { 2461 case CFGElement::Statement: { 2462 CFGStmt CS = BI.castAs<CFGStmt>(); 2463 LocksetBuilder.Visit(CS.getStmt()); 2464 break; 2465 } 2466 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2467 case CFGElement::AutomaticObjectDtor: { 2468 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2469 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2470 if (!DD->hasAttrs()) 2471 break; 2472 2473 // Create a dummy expression, 2474 auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); 2475 DeclRefExpr DRE(VD->getASTContext(), VD, false, 2476 VD->getType().getNonReferenceType(), VK_LValue, 2477 AD.getTriggerStmt()->getEndLoc()); 2478 LocksetBuilder.handleCall(&DRE, DD); 2479 break; 2480 } 2481 default: 2482 break; 2483 } 2484 } 2485 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2486 2487 // For every back edge from CurrBlock (the end of the loop) to another block 2488 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2489 // the one held at the beginning of FirstLoopBlock. We can look up the 2490 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2491 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2492 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2493 // if CurrBlock -> *SI is *not* a back edge 2494 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2495 continue; 2496 2497 CFGBlock *FirstLoopBlock = *SI; 2498 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2499 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2500 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc, 2501 LEK_LockedSomeLoopIterations); 2502 } 2503 } 2504 2505 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2506 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2507 2508 // Skip the final check if the exit block is unreachable. 2509 if (!Final->Reachable) 2510 return; 2511 2512 // By default, we expect all locks held on entry to be held on exit. 2513 FactSet ExpectedExitSet = Initial->EntrySet; 2514 2515 // Adjust the expected exit set by adding or removing locks, as declared 2516 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2517 // issue the appropriate warning. 2518 // FIXME: the location here is not quite right. 2519 for (const auto &Lock : ExclusiveLocksAcquired) 2520 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2521 Lock, LK_Exclusive, D->getLocation())); 2522 for (const auto &Lock : SharedLocksAcquired) 2523 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2524 Lock, LK_Shared, D->getLocation())); 2525 for (const auto &Lock : LocksReleased) 2526 ExpectedExitSet.removeLock(FactMan, Lock); 2527 2528 // FIXME: Should we call this function for all blocks which exit the function? 2529 intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc, 2530 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction); 2531 2532 Handler.leaveFunction(CurrentFunction); 2533 } 2534 2535 /// Check a function's CFG for thread-safety violations. 2536 /// 2537 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2538 /// at the end of each block, and issue warnings for thread safety violations. 2539 /// Each block in the CFG is traversed exactly once. 2540 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2541 ThreadSafetyHandler &Handler, 2542 BeforeSet **BSet) { 2543 if (!*BSet) 2544 *BSet = new BeforeSet; 2545 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2546 Analyzer.runAnalysis(AC); 2547 } 2548 2549 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2550 2551 /// Helper function that returns a LockKind required for the given level 2552 /// of access. 2553 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2554 switch (AK) { 2555 case AK_Read : 2556 return LK_Shared; 2557 case AK_Written : 2558 return LK_Exclusive; 2559 } 2560 llvm_unreachable("Unknown AccessKind"); 2561 } 2562