1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/PointerIntPair.h" 45 #include "llvm/ADT/STLExtras.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/StringRef.h" 48 #include "llvm/Support/Allocator.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <functional> 55 #include <iterator> 56 #include <memory> 57 #include <string> 58 #include <type_traits> 59 #include <utility> 60 #include <vector> 61 62 using namespace clang; 63 using namespace threadSafety; 64 65 // Key method definition 66 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 67 68 /// Issue a warning about an invalid lock expression 69 static void warnInvalidLock(ThreadSafetyHandler &Handler, 70 const Expr *MutexExp, const NamedDecl *D, 71 const Expr *DeclExp, StringRef Kind) { 72 SourceLocation Loc; 73 if (DeclExp) 74 Loc = DeclExp->getExprLoc(); 75 76 // FIXME: add a note about the attribute location in MutexExp or D 77 if (Loc.isValid()) 78 Handler.handleInvalidLockExp(Kind, Loc); 79 } 80 81 namespace { 82 83 /// A set of CapabilityExpr objects, which are compiled from thread safety 84 /// attributes on a function. 85 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 86 public: 87 /// Push M onto list, but discard duplicates. 88 void push_back_nodup(const CapabilityExpr &CapE) { 89 iterator It = std::find_if(begin(), end(), 90 [=](const CapabilityExpr &CapE2) { 91 return CapE.equals(CapE2); 92 }); 93 if (It == end()) 94 push_back(CapE); 95 } 96 }; 97 98 class FactManager; 99 class FactSet; 100 101 /// This is a helper class that stores a fact that is known at a 102 /// particular point in program execution. Currently, a fact is a capability, 103 /// along with additional information, such as where it was acquired, whether 104 /// it is exclusive or shared, etc. 105 /// 106 /// FIXME: this analysis does not currently support re-entrant locking. 107 class FactEntry : public CapabilityExpr { 108 private: 109 /// Exclusive or shared. 110 LockKind LKind; 111 112 /// Where it was acquired. 113 SourceLocation AcquireLoc; 114 115 /// True if the lock was asserted. 116 bool Asserted; 117 118 /// True if the lock was declared. 119 bool Declared; 120 121 public: 122 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 123 bool Asrt, bool Declrd = false) 124 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), 125 Declared(Declrd) {} 126 virtual ~FactEntry() = default; 127 128 LockKind kind() const { return LKind; } 129 SourceLocation loc() const { return AcquireLoc; } 130 bool asserted() const { return Asserted; } 131 bool declared() const { return Declared; } 132 133 void setDeclared(bool D) { Declared = D; } 134 135 virtual void 136 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 137 SourceLocation JoinLoc, LockErrorKind LEK, 138 ThreadSafetyHandler &Handler) const = 0; 139 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 140 const FactEntry &entry, ThreadSafetyHandler &Handler, 141 StringRef DiagKind) const = 0; 142 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 143 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 144 bool FullyRemove, ThreadSafetyHandler &Handler, 145 StringRef DiagKind) const = 0; 146 147 // Return true if LKind >= LK, where exclusive > shared 148 bool isAtLeast(LockKind LK) const { 149 return (LKind == LK_Exclusive) || (LK == LK_Shared); 150 } 151 }; 152 153 using FactID = unsigned short; 154 155 /// FactManager manages the memory for all facts that are created during 156 /// the analysis of a single routine. 157 class FactManager { 158 private: 159 std::vector<std::unique_ptr<const FactEntry>> Facts; 160 161 public: 162 FactID newFact(std::unique_ptr<FactEntry> Entry) { 163 Facts.push_back(std::move(Entry)); 164 return static_cast<unsigned short>(Facts.size() - 1); 165 } 166 167 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 168 }; 169 170 /// A FactSet is the set of facts that are known to be true at a 171 /// particular program point. FactSets must be small, because they are 172 /// frequently copied, and are thus implemented as a set of indices into a 173 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 174 /// locks, so we can get away with doing a linear search for lookup. Note 175 /// that a hashtable or map is inappropriate in this case, because lookups 176 /// may involve partial pattern matches, rather than exact matches. 177 class FactSet { 178 private: 179 using FactVec = SmallVector<FactID, 4>; 180 181 FactVec FactIDs; 182 183 public: 184 using iterator = FactVec::iterator; 185 using const_iterator = FactVec::const_iterator; 186 187 iterator begin() { return FactIDs.begin(); } 188 const_iterator begin() const { return FactIDs.begin(); } 189 190 iterator end() { return FactIDs.end(); } 191 const_iterator end() const { return FactIDs.end(); } 192 193 bool isEmpty() const { return FactIDs.size() == 0; } 194 195 // Return true if the set contains only negative facts 196 bool isEmpty(FactManager &FactMan) const { 197 for (const auto FID : *this) { 198 if (!FactMan[FID].negative()) 199 return false; 200 } 201 return true; 202 } 203 204 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 205 206 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 207 FactID F = FM.newFact(std::move(Entry)); 208 FactIDs.push_back(F); 209 return F; 210 } 211 212 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 213 unsigned n = FactIDs.size(); 214 if (n == 0) 215 return false; 216 217 for (unsigned i = 0; i < n-1; ++i) { 218 if (FM[FactIDs[i]].matches(CapE)) { 219 FactIDs[i] = FactIDs[n-1]; 220 FactIDs.pop_back(); 221 return true; 222 } 223 } 224 if (FM[FactIDs[n-1]].matches(CapE)) { 225 FactIDs.pop_back(); 226 return true; 227 } 228 return false; 229 } 230 231 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 232 return std::find_if(begin(), end(), [&](FactID ID) { 233 return FM[ID].matches(CapE); 234 }); 235 } 236 237 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 238 auto I = std::find_if(begin(), end(), [&](FactID ID) { 239 return FM[ID].matches(CapE); 240 }); 241 return I != end() ? &FM[*I] : nullptr; 242 } 243 244 const FactEntry *findLockUniv(FactManager &FM, 245 const CapabilityExpr &CapE) const { 246 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 247 return FM[ID].matchesUniv(CapE); 248 }); 249 return I != end() ? &FM[*I] : nullptr; 250 } 251 252 const FactEntry *findPartialMatch(FactManager &FM, 253 const CapabilityExpr &CapE) const { 254 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 255 return FM[ID].partiallyMatches(CapE); 256 }); 257 return I != end() ? &FM[*I] : nullptr; 258 } 259 260 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 261 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 262 return FM[ID].valueDecl() == Vd; 263 }); 264 return I != end(); 265 } 266 }; 267 268 class ThreadSafetyAnalyzer; 269 270 } // namespace 271 272 namespace clang { 273 namespace threadSafety { 274 275 class BeforeSet { 276 private: 277 using BeforeVect = SmallVector<const ValueDecl *, 4>; 278 279 struct BeforeInfo { 280 BeforeVect Vect; 281 int Visited = 0; 282 283 BeforeInfo() = default; 284 BeforeInfo(BeforeInfo &&) = default; 285 }; 286 287 using BeforeMap = 288 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 289 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 290 291 public: 292 BeforeSet() = default; 293 294 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 295 ThreadSafetyAnalyzer& Analyzer); 296 297 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 298 ThreadSafetyAnalyzer &Analyzer); 299 300 void checkBeforeAfter(const ValueDecl* Vd, 301 const FactSet& FSet, 302 ThreadSafetyAnalyzer& Analyzer, 303 SourceLocation Loc, StringRef CapKind); 304 305 private: 306 BeforeMap BMap; 307 CycleMap CycMap; 308 }; 309 310 } // namespace threadSafety 311 } // namespace clang 312 313 namespace { 314 315 class LocalVariableMap; 316 317 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 318 319 /// A side (entry or exit) of a CFG node. 320 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 321 322 /// CFGBlockInfo is a struct which contains all the information that is 323 /// maintained for each block in the CFG. See LocalVariableMap for more 324 /// information about the contexts. 325 struct CFGBlockInfo { 326 // Lockset held at entry to block 327 FactSet EntrySet; 328 329 // Lockset held at exit from block 330 FactSet ExitSet; 331 332 // Context held at entry to block 333 LocalVarContext EntryContext; 334 335 // Context held at exit from block 336 LocalVarContext ExitContext; 337 338 // Location of first statement in block 339 SourceLocation EntryLoc; 340 341 // Location of last statement in block. 342 SourceLocation ExitLoc; 343 344 // Used to replay contexts later 345 unsigned EntryIndex; 346 347 // Is this block reachable? 348 bool Reachable = false; 349 350 const FactSet &getSet(CFGBlockSide Side) const { 351 return Side == CBS_Entry ? EntrySet : ExitSet; 352 } 353 354 SourceLocation getLocation(CFGBlockSide Side) const { 355 return Side == CBS_Entry ? EntryLoc : ExitLoc; 356 } 357 358 private: 359 CFGBlockInfo(LocalVarContext EmptyCtx) 360 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 361 362 public: 363 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 364 }; 365 366 // A LocalVariableMap maintains a map from local variables to their currently 367 // valid definitions. It provides SSA-like functionality when traversing the 368 // CFG. Like SSA, each definition or assignment to a variable is assigned a 369 // unique name (an integer), which acts as the SSA name for that definition. 370 // The total set of names is shared among all CFG basic blocks. 371 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 372 // with their SSA-names. Instead, we compute a Context for each point in the 373 // code, which maps local variables to the appropriate SSA-name. This map 374 // changes with each assignment. 375 // 376 // The map is computed in a single pass over the CFG. Subsequent analyses can 377 // then query the map to find the appropriate Context for a statement, and use 378 // that Context to look up the definitions of variables. 379 class LocalVariableMap { 380 public: 381 using Context = LocalVarContext; 382 383 /// A VarDefinition consists of an expression, representing the value of the 384 /// variable, along with the context in which that expression should be 385 /// interpreted. A reference VarDefinition does not itself contain this 386 /// information, but instead contains a pointer to a previous VarDefinition. 387 struct VarDefinition { 388 public: 389 friend class LocalVariableMap; 390 391 // The original declaration for this variable. 392 const NamedDecl *Dec; 393 394 // The expression for this variable, OR 395 const Expr *Exp = nullptr; 396 397 // Reference to another VarDefinition 398 unsigned Ref = 0; 399 400 // The map with which Exp should be interpreted. 401 Context Ctx; 402 403 bool isReference() { return !Exp; } 404 405 private: 406 // Create ordinary variable definition 407 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 408 : Dec(D), Exp(E), Ctx(C) {} 409 410 // Create reference to previous definition 411 VarDefinition(const NamedDecl *D, unsigned R, Context C) 412 : Dec(D), Ref(R), Ctx(C) {} 413 }; 414 415 private: 416 Context::Factory ContextFactory; 417 std::vector<VarDefinition> VarDefinitions; 418 std::vector<unsigned> CtxIndices; 419 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 420 421 public: 422 LocalVariableMap() { 423 // index 0 is a placeholder for undefined variables (aka phi-nodes). 424 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 425 } 426 427 /// Look up a definition, within the given context. 428 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 429 const unsigned *i = Ctx.lookup(D); 430 if (!i) 431 return nullptr; 432 assert(*i < VarDefinitions.size()); 433 return &VarDefinitions[*i]; 434 } 435 436 /// Look up the definition for D within the given context. Returns 437 /// NULL if the expression is not statically known. If successful, also 438 /// modifies Ctx to hold the context of the return Expr. 439 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 440 const unsigned *P = Ctx.lookup(D); 441 if (!P) 442 return nullptr; 443 444 unsigned i = *P; 445 while (i > 0) { 446 if (VarDefinitions[i].Exp) { 447 Ctx = VarDefinitions[i].Ctx; 448 return VarDefinitions[i].Exp; 449 } 450 i = VarDefinitions[i].Ref; 451 } 452 return nullptr; 453 } 454 455 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 456 457 /// Return the next context after processing S. This function is used by 458 /// clients of the class to get the appropriate context when traversing the 459 /// CFG. It must be called for every assignment or DeclStmt. 460 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 461 if (SavedContexts[CtxIndex+1].first == S) { 462 CtxIndex++; 463 Context Result = SavedContexts[CtxIndex].second; 464 return Result; 465 } 466 return C; 467 } 468 469 void dumpVarDefinitionName(unsigned i) { 470 if (i == 0) { 471 llvm::errs() << "Undefined"; 472 return; 473 } 474 const NamedDecl *Dec = VarDefinitions[i].Dec; 475 if (!Dec) { 476 llvm::errs() << "<<NULL>>"; 477 return; 478 } 479 Dec->printName(llvm::errs()); 480 llvm::errs() << "." << i << " " << ((const void*) Dec); 481 } 482 483 /// Dumps an ASCII representation of the variable map to llvm::errs() 484 void dump() { 485 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 486 const Expr *Exp = VarDefinitions[i].Exp; 487 unsigned Ref = VarDefinitions[i].Ref; 488 489 dumpVarDefinitionName(i); 490 llvm::errs() << " = "; 491 if (Exp) Exp->dump(); 492 else { 493 dumpVarDefinitionName(Ref); 494 llvm::errs() << "\n"; 495 } 496 } 497 } 498 499 /// Dumps an ASCII representation of a Context to llvm::errs() 500 void dumpContext(Context C) { 501 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 502 const NamedDecl *D = I.getKey(); 503 D->printName(llvm::errs()); 504 const unsigned *i = C.lookup(D); 505 llvm::errs() << " -> "; 506 dumpVarDefinitionName(*i); 507 llvm::errs() << "\n"; 508 } 509 } 510 511 /// Builds the variable map. 512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 513 std::vector<CFGBlockInfo> &BlockInfo); 514 515 protected: 516 friend class VarMapBuilder; 517 518 // Get the current context index 519 unsigned getContextIndex() { return SavedContexts.size()-1; } 520 521 // Save the current context for later replay 522 void saveContext(const Stmt *S, Context C) { 523 SavedContexts.push_back(std::make_pair(S, C)); 524 } 525 526 // Adds a new definition to the given context, and returns a new context. 527 // This method should be called when declaring a new variable. 528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 529 assert(!Ctx.contains(D)); 530 unsigned newID = VarDefinitions.size(); 531 Context NewCtx = ContextFactory.add(Ctx, D, newID); 532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 533 return NewCtx; 534 } 535 536 // Add a new reference to an existing definition. 537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 538 unsigned newID = VarDefinitions.size(); 539 Context NewCtx = ContextFactory.add(Ctx, D, newID); 540 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 541 return NewCtx; 542 } 543 544 // Updates a definition only if that definition is already in the map. 545 // This method should be called when assigning to an existing variable. 546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 547 if (Ctx.contains(D)) { 548 unsigned newID = VarDefinitions.size(); 549 Context NewCtx = ContextFactory.remove(Ctx, D); 550 NewCtx = ContextFactory.add(NewCtx, D, newID); 551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 552 return NewCtx; 553 } 554 return Ctx; 555 } 556 557 // Removes a definition from the context, but keeps the variable name 558 // as a valid variable. The index 0 is a placeholder for cleared definitions. 559 Context clearDefinition(const NamedDecl *D, Context Ctx) { 560 Context NewCtx = Ctx; 561 if (NewCtx.contains(D)) { 562 NewCtx = ContextFactory.remove(NewCtx, D); 563 NewCtx = ContextFactory.add(NewCtx, D, 0); 564 } 565 return NewCtx; 566 } 567 568 // Remove a definition entirely frmo the context. 569 Context removeDefinition(const NamedDecl *D, Context Ctx) { 570 Context NewCtx = Ctx; 571 if (NewCtx.contains(D)) { 572 NewCtx = ContextFactory.remove(NewCtx, D); 573 } 574 return NewCtx; 575 } 576 577 Context intersectContexts(Context C1, Context C2); 578 Context createReferenceContext(Context C); 579 void intersectBackEdge(Context C1, Context C2); 580 }; 581 582 } // namespace 583 584 // This has to be defined after LocalVariableMap. 585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 586 return CFGBlockInfo(M.getEmptyContext()); 587 } 588 589 namespace { 590 591 /// Visitor which builds a LocalVariableMap 592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 593 public: 594 LocalVariableMap* VMap; 595 LocalVariableMap::Context Ctx; 596 597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 598 : VMap(VM), Ctx(C) {} 599 600 void VisitDeclStmt(const DeclStmt *S); 601 void VisitBinaryOperator(const BinaryOperator *BO); 602 }; 603 604 } // namespace 605 606 // Add new local variables to the variable map 607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 608 bool modifiedCtx = false; 609 const DeclGroupRef DGrp = S->getDeclGroup(); 610 for (const auto *D : DGrp) { 611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 612 const Expr *E = VD->getInit(); 613 614 // Add local variables with trivial type to the variable map 615 QualType T = VD->getType(); 616 if (T.isTrivialType(VD->getASTContext())) { 617 Ctx = VMap->addDefinition(VD, E, Ctx); 618 modifiedCtx = true; 619 } 620 } 621 } 622 if (modifiedCtx) 623 VMap->saveContext(S, Ctx); 624 } 625 626 // Update local variable definitions in variable map 627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 628 if (!BO->isAssignmentOp()) 629 return; 630 631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 632 633 // Update the variable map and current context. 634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 635 const ValueDecl *VDec = DRE->getDecl(); 636 if (Ctx.lookup(VDec)) { 637 if (BO->getOpcode() == BO_Assign) 638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 639 else 640 // FIXME -- handle compound assignment operators 641 Ctx = VMap->clearDefinition(VDec, Ctx); 642 VMap->saveContext(BO, Ctx); 643 } 644 } 645 } 646 647 // Computes the intersection of two contexts. The intersection is the 648 // set of variables which have the same definition in both contexts; 649 // variables with different definitions are discarded. 650 LocalVariableMap::Context 651 LocalVariableMap::intersectContexts(Context C1, Context C2) { 652 Context Result = C1; 653 for (const auto &P : C1) { 654 const NamedDecl *Dec = P.first; 655 const unsigned *i2 = C2.lookup(Dec); 656 if (!i2) // variable doesn't exist on second path 657 Result = removeDefinition(Dec, Result); 658 else if (*i2 != P.second) // variable exists, but has different definition 659 Result = clearDefinition(Dec, Result); 660 } 661 return Result; 662 } 663 664 // For every variable in C, create a new variable that refers to the 665 // definition in C. Return a new context that contains these new variables. 666 // (We use this for a naive implementation of SSA on loop back-edges.) 667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 668 Context Result = getEmptyContext(); 669 for (const auto &P : C) 670 Result = addReference(P.first, P.second, Result); 671 return Result; 672 } 673 674 // This routine also takes the intersection of C1 and C2, but it does so by 675 // altering the VarDefinitions. C1 must be the result of an earlier call to 676 // createReferenceContext. 677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 678 for (const auto &P : C1) { 679 unsigned i1 = P.second; 680 VarDefinition *VDef = &VarDefinitions[i1]; 681 assert(VDef->isReference()); 682 683 const unsigned *i2 = C2.lookup(P.first); 684 if (!i2 || (*i2 != i1)) 685 VDef->Ref = 0; // Mark this variable as undefined 686 } 687 } 688 689 // Traverse the CFG in topological order, so all predecessors of a block 690 // (excluding back-edges) are visited before the block itself. At 691 // each point in the code, we calculate a Context, which holds the set of 692 // variable definitions which are visible at that point in execution. 693 // Visible variables are mapped to their definitions using an array that 694 // contains all definitions. 695 // 696 // At join points in the CFG, the set is computed as the intersection of 697 // the incoming sets along each edge, E.g. 698 // 699 // { Context | VarDefinitions } 700 // int x = 0; { x -> x1 | x1 = 0 } 701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 705 // 706 // This is essentially a simpler and more naive version of the standard SSA 707 // algorithm. Those definitions that remain in the intersection are from blocks 708 // that strictly dominate the current block. We do not bother to insert proper 709 // phi nodes, because they are not used in our analysis; instead, wherever 710 // a phi node would be required, we simply remove that definition from the 711 // context (E.g. x above). 712 // 713 // The initial traversal does not capture back-edges, so those need to be 714 // handled on a separate pass. Whenever the first pass encounters an 715 // incoming back edge, it duplicates the context, creating new definitions 716 // that refer back to the originals. (These correspond to places where SSA 717 // might have to insert a phi node.) On the second pass, these definitions are 718 // set to NULL if the variable has changed on the back-edge (i.e. a phi 719 // node was actually required.) E.g. 720 // 721 // { Context | VarDefinitions } 722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 725 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 726 void LocalVariableMap::traverseCFG(CFG *CFGraph, 727 const PostOrderCFGView *SortedGraph, 728 std::vector<CFGBlockInfo> &BlockInfo) { 729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 730 731 CtxIndices.resize(CFGraph->getNumBlockIDs()); 732 733 for (const auto *CurrBlock : *SortedGraph) { 734 unsigned CurrBlockID = CurrBlock->getBlockID(); 735 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 736 737 VisitedBlocks.insert(CurrBlock); 738 739 // Calculate the entry context for the current block 740 bool HasBackEdges = false; 741 bool CtxInit = true; 742 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 743 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 744 // if *PI -> CurrBlock is a back edge, so skip it 745 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 746 HasBackEdges = true; 747 continue; 748 } 749 750 unsigned PrevBlockID = (*PI)->getBlockID(); 751 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 752 753 if (CtxInit) { 754 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 755 CtxInit = false; 756 } 757 else { 758 CurrBlockInfo->EntryContext = 759 intersectContexts(CurrBlockInfo->EntryContext, 760 PrevBlockInfo->ExitContext); 761 } 762 } 763 764 // Duplicate the context if we have back-edges, so we can call 765 // intersectBackEdges later. 766 if (HasBackEdges) 767 CurrBlockInfo->EntryContext = 768 createReferenceContext(CurrBlockInfo->EntryContext); 769 770 // Create a starting context index for the current block 771 saveContext(nullptr, CurrBlockInfo->EntryContext); 772 CurrBlockInfo->EntryIndex = getContextIndex(); 773 774 // Visit all the statements in the basic block. 775 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 776 for (const auto &BI : *CurrBlock) { 777 switch (BI.getKind()) { 778 case CFGElement::Statement: { 779 CFGStmt CS = BI.castAs<CFGStmt>(); 780 VMapBuilder.Visit(CS.getStmt()); 781 break; 782 } 783 default: 784 break; 785 } 786 } 787 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 788 789 // Mark variables on back edges as "unknown" if they've been changed. 790 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 791 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 792 // if CurrBlock -> *SI is *not* a back edge 793 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 794 continue; 795 796 CFGBlock *FirstLoopBlock = *SI; 797 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 798 Context LoopEnd = CurrBlockInfo->ExitContext; 799 intersectBackEdge(LoopBegin, LoopEnd); 800 } 801 } 802 803 // Put an extra entry at the end of the indexed context array 804 unsigned exitID = CFGraph->getExit().getBlockID(); 805 saveContext(nullptr, BlockInfo[exitID].ExitContext); 806 } 807 808 /// Find the appropriate source locations to use when producing diagnostics for 809 /// each block in the CFG. 810 static void findBlockLocations(CFG *CFGraph, 811 const PostOrderCFGView *SortedGraph, 812 std::vector<CFGBlockInfo> &BlockInfo) { 813 for (const auto *CurrBlock : *SortedGraph) { 814 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 815 816 // Find the source location of the last statement in the block, if the 817 // block is not empty. 818 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 819 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 820 } else { 821 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 822 BE = CurrBlock->rend(); BI != BE; ++BI) { 823 // FIXME: Handle other CFGElement kinds. 824 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 825 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 826 break; 827 } 828 } 829 } 830 831 if (CurrBlockInfo->ExitLoc.isValid()) { 832 // This block contains at least one statement. Find the source location 833 // of the first statement in the block. 834 for (const auto &BI : *CurrBlock) { 835 // FIXME: Handle other CFGElement kinds. 836 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 837 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 838 break; 839 } 840 } 841 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 842 CurrBlock != &CFGraph->getExit()) { 843 // The block is empty, and has a single predecessor. Use its exit 844 // location. 845 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 846 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 847 } 848 } 849 } 850 851 namespace { 852 853 class LockableFactEntry : public FactEntry { 854 private: 855 /// managed by ScopedLockable object 856 bool Managed; 857 858 public: 859 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 860 bool Mng = false, bool Asrt = false) 861 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 862 863 void 864 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 865 SourceLocation JoinLoc, LockErrorKind LEK, 866 ThreadSafetyHandler &Handler) const override { 867 if (!Managed && !asserted() && !negative() && !isUniversal()) { 868 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 869 LEK); 870 } 871 } 872 873 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 874 ThreadSafetyHandler &Handler, 875 StringRef DiagKind) const override { 876 Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc()); 877 } 878 879 void handleUnlock(FactSet &FSet, FactManager &FactMan, 880 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 881 bool FullyRemove, ThreadSafetyHandler &Handler, 882 StringRef DiagKind) const override { 883 FSet.removeLock(FactMan, Cp); 884 if (!Cp.negative()) { 885 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 886 !Cp, LK_Exclusive, UnlockLoc)); 887 } 888 } 889 }; 890 891 class ScopedLockableFactEntry : public FactEntry { 892 private: 893 enum UnderlyingCapabilityKind { 894 UCK_Acquired, ///< Any kind of acquired capability. 895 UCK_ReleasedShared, ///< Shared capability that was released. 896 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 897 }; 898 899 using UnderlyingCapability = 900 llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>; 901 902 SmallVector<UnderlyingCapability, 4> UnderlyingMutexes; 903 904 public: 905 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 906 : FactEntry(CE, LK_Exclusive, Loc, false) {} 907 908 void addExclusiveLock(const CapabilityExpr &M) { 909 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired); 910 } 911 912 void addSharedLock(const CapabilityExpr &M) { 913 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired); 914 } 915 916 void addExclusiveUnlock(const CapabilityExpr &M) { 917 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive); 918 } 919 920 void addSharedUnlock(const CapabilityExpr &M) { 921 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared); 922 } 923 924 void 925 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 926 SourceLocation JoinLoc, LockErrorKind LEK, 927 ThreadSafetyHandler &Handler) const override { 928 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 929 const auto *Entry = FSet.findLock( 930 FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false)); 931 if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) || 932 (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) { 933 // If this scoped lock manages another mutex, and if the underlying 934 // mutex is still/not held, then warn about the underlying mutex. 935 Handler.handleMutexHeldEndOfScope( 936 "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc, 937 LEK); 938 } 939 } 940 } 941 942 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 943 ThreadSafetyHandler &Handler, 944 StringRef DiagKind) const override { 945 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 946 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); 947 948 if (UnderlyingMutex.getInt() == UCK_Acquired) 949 lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler, 950 DiagKind); 951 else 952 unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind); 953 } 954 } 955 956 void handleUnlock(FactSet &FSet, FactManager &FactMan, 957 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 958 bool FullyRemove, ThreadSafetyHandler &Handler, 959 StringRef DiagKind) const override { 960 assert(!Cp.negative() && "Managing object cannot be negative."); 961 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 962 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); 963 964 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 965 // on double unlocking/locking if we're not destroying the scoped object. 966 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 967 if (UnderlyingMutex.getInt() == UCK_Acquired) { 968 unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind); 969 } else { 970 LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared 971 ? LK_Shared 972 : LK_Exclusive; 973 lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind); 974 } 975 } 976 if (FullyRemove) 977 FSet.removeLock(FactMan, Cp); 978 } 979 980 private: 981 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 982 LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler, 983 StringRef DiagKind) const { 984 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 985 if (Handler) 986 Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc); 987 } else { 988 FSet.removeLock(FactMan, !Cp); 989 FSet.addLock(FactMan, 990 llvm::make_unique<LockableFactEntry>(Cp, kind, loc)); 991 } 992 } 993 994 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 995 SourceLocation loc, ThreadSafetyHandler *Handler, 996 StringRef DiagKind) const { 997 if (FSet.findLock(FactMan, Cp)) { 998 FSet.removeLock(FactMan, Cp); 999 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 1000 !Cp, LK_Exclusive, loc)); 1001 } else if (Handler) { 1002 Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc); 1003 } 1004 } 1005 }; 1006 1007 /// Class which implements the core thread safety analysis routines. 1008 class ThreadSafetyAnalyzer { 1009 friend class BuildLockset; 1010 friend class threadSafety::BeforeSet; 1011 1012 llvm::BumpPtrAllocator Bpa; 1013 threadSafety::til::MemRegionRef Arena; 1014 threadSafety::SExprBuilder SxBuilder; 1015 1016 ThreadSafetyHandler &Handler; 1017 const CXXMethodDecl *CurrentMethod; 1018 LocalVariableMap LocalVarMap; 1019 FactManager FactMan; 1020 std::vector<CFGBlockInfo> BlockInfo; 1021 1022 BeforeSet *GlobalBeforeSet; 1023 1024 public: 1025 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1026 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1027 1028 bool inCurrentScope(const CapabilityExpr &CapE); 1029 1030 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1031 StringRef DiagKind, bool ReqAttr = false); 1032 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1033 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 1034 StringRef DiagKind); 1035 1036 template <typename AttrType> 1037 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1038 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 1039 1040 template <class AttrType> 1041 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1042 const NamedDecl *D, 1043 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1044 Expr *BrE, bool Neg); 1045 1046 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1047 bool &Negate); 1048 1049 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1050 const CFGBlock* PredBlock, 1051 const CFGBlock *CurrBlock); 1052 1053 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1054 SourceLocation JoinLoc, 1055 LockErrorKind LEK1, LockErrorKind LEK2, 1056 bool Modify=true); 1057 1058 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1059 SourceLocation JoinLoc, LockErrorKind LEK1, 1060 bool Modify=true) { 1061 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 1062 } 1063 1064 void runAnalysis(AnalysisDeclContext &AC); 1065 }; 1066 1067 } // namespace 1068 1069 /// Process acquired_before and acquired_after attributes on Vd. 1070 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1071 ThreadSafetyAnalyzer& Analyzer) { 1072 // Create a new entry for Vd. 1073 BeforeInfo *Info = nullptr; 1074 { 1075 // Keep InfoPtr in its own scope in case BMap is modified later and the 1076 // reference becomes invalid. 1077 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1078 if (!InfoPtr) 1079 InfoPtr.reset(new BeforeInfo()); 1080 Info = InfoPtr.get(); 1081 } 1082 1083 for (const auto *At : Vd->attrs()) { 1084 switch (At->getKind()) { 1085 case attr::AcquiredBefore: { 1086 const auto *A = cast<AcquiredBeforeAttr>(At); 1087 1088 // Read exprs from the attribute, and add them to BeforeVect. 1089 for (const auto *Arg : A->args()) { 1090 CapabilityExpr Cp = 1091 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1092 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1093 Info->Vect.push_back(Cpvd); 1094 const auto It = BMap.find(Cpvd); 1095 if (It == BMap.end()) 1096 insertAttrExprs(Cpvd, Analyzer); 1097 } 1098 } 1099 break; 1100 } 1101 case attr::AcquiredAfter: { 1102 const auto *A = cast<AcquiredAfterAttr>(At); 1103 1104 // Read exprs from the attribute, and add them to BeforeVect. 1105 for (const auto *Arg : A->args()) { 1106 CapabilityExpr Cp = 1107 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1108 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1109 // Get entry for mutex listed in attribute 1110 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1111 ArgInfo->Vect.push_back(Vd); 1112 } 1113 } 1114 break; 1115 } 1116 default: 1117 break; 1118 } 1119 } 1120 1121 return Info; 1122 } 1123 1124 BeforeSet::BeforeInfo * 1125 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1126 ThreadSafetyAnalyzer &Analyzer) { 1127 auto It = BMap.find(Vd); 1128 BeforeInfo *Info = nullptr; 1129 if (It == BMap.end()) 1130 Info = insertAttrExprs(Vd, Analyzer); 1131 else 1132 Info = It->second.get(); 1133 assert(Info && "BMap contained nullptr?"); 1134 return Info; 1135 } 1136 1137 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1138 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1139 const FactSet& FSet, 1140 ThreadSafetyAnalyzer& Analyzer, 1141 SourceLocation Loc, StringRef CapKind) { 1142 SmallVector<BeforeInfo*, 8> InfoVect; 1143 1144 // Do a depth-first traversal of Vd. 1145 // Return true if there are cycles. 1146 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1147 if (!Vd) 1148 return false; 1149 1150 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1151 1152 if (Info->Visited == 1) 1153 return true; 1154 1155 if (Info->Visited == 2) 1156 return false; 1157 1158 if (Info->Vect.empty()) 1159 return false; 1160 1161 InfoVect.push_back(Info); 1162 Info->Visited = 1; 1163 for (const auto *Vdb : Info->Vect) { 1164 // Exclude mutexes in our immediate before set. 1165 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1166 StringRef L1 = StartVd->getName(); 1167 StringRef L2 = Vdb->getName(); 1168 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1169 } 1170 // Transitively search other before sets, and warn on cycles. 1171 if (traverse(Vdb)) { 1172 if (CycMap.find(Vd) == CycMap.end()) { 1173 CycMap.insert(std::make_pair(Vd, true)); 1174 StringRef L1 = Vd->getName(); 1175 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1176 } 1177 } 1178 } 1179 Info->Visited = 2; 1180 return false; 1181 }; 1182 1183 traverse(StartVd); 1184 1185 for (auto *Info : InfoVect) 1186 Info->Visited = 0; 1187 } 1188 1189 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1190 static const ValueDecl *getValueDecl(const Expr *Exp) { 1191 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1192 return getValueDecl(CE->getSubExpr()); 1193 1194 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1195 return DR->getDecl(); 1196 1197 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1198 return ME->getMemberDecl(); 1199 1200 return nullptr; 1201 } 1202 1203 namespace { 1204 1205 template <typename Ty> 1206 class has_arg_iterator_range { 1207 using yes = char[1]; 1208 using no = char[2]; 1209 1210 template <typename Inner> 1211 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1212 1213 template <typename> 1214 static no& test(...); 1215 1216 public: 1217 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1218 }; 1219 1220 } // namespace 1221 1222 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 1223 return A->getName(); 1224 } 1225 1226 static StringRef ClassifyDiagnostic(QualType VDT) { 1227 // We need to look at the declaration of the type of the value to determine 1228 // which it is. The type should either be a record or a typedef, or a pointer 1229 // or reference thereof. 1230 if (const auto *RT = VDT->getAs<RecordType>()) { 1231 if (const auto *RD = RT->getDecl()) 1232 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 1233 return ClassifyDiagnostic(CA); 1234 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 1235 if (const auto *TD = TT->getDecl()) 1236 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 1237 return ClassifyDiagnostic(CA); 1238 } else if (VDT->isPointerType() || VDT->isReferenceType()) 1239 return ClassifyDiagnostic(VDT->getPointeeType()); 1240 1241 return "mutex"; 1242 } 1243 1244 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 1245 assert(VD && "No ValueDecl passed"); 1246 1247 // The ValueDecl is the declaration of a mutex or role (hopefully). 1248 return ClassifyDiagnostic(VD->getType()); 1249 } 1250 1251 template <typename AttrTy> 1252 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 1253 StringRef>::type 1254 ClassifyDiagnostic(const AttrTy *A) { 1255 if (const ValueDecl *VD = getValueDecl(A->getArg())) 1256 return ClassifyDiagnostic(VD); 1257 return "mutex"; 1258 } 1259 1260 template <typename AttrTy> 1261 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 1262 StringRef>::type 1263 ClassifyDiagnostic(const AttrTy *A) { 1264 for (const auto *Arg : A->args()) { 1265 if (const ValueDecl *VD = getValueDecl(Arg)) 1266 return ClassifyDiagnostic(VD); 1267 } 1268 return "mutex"; 1269 } 1270 1271 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1272 if (!CurrentMethod) 1273 return false; 1274 if (const auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 1275 const auto *VD = P->clangDecl(); 1276 if (VD) 1277 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1278 } 1279 return false; 1280 } 1281 1282 /// Add a new lock to the lockset, warning if the lock is already there. 1283 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1284 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1285 std::unique_ptr<FactEntry> Entry, 1286 StringRef DiagKind, bool ReqAttr) { 1287 if (Entry->shouldIgnore()) 1288 return; 1289 1290 if (!ReqAttr && !Entry->negative()) { 1291 // look for the negative capability, and remove it from the fact set. 1292 CapabilityExpr NegC = !*Entry; 1293 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1294 if (Nen) { 1295 FSet.removeLock(FactMan, NegC); 1296 } 1297 else { 1298 if (inCurrentScope(*Entry) && !Entry->asserted()) 1299 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1300 NegC.toString(), Entry->loc()); 1301 } 1302 } 1303 1304 // Check before/after constraints 1305 if (Handler.issueBetaWarnings() && 1306 !Entry->asserted() && !Entry->declared()) { 1307 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1308 Entry->loc(), DiagKind); 1309 } 1310 1311 // FIXME: Don't always warn when we have support for reentrant locks. 1312 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1313 if (!Entry->asserted()) 1314 Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind); 1315 } else { 1316 FSet.addLock(FactMan, std::move(Entry)); 1317 } 1318 } 1319 1320 /// Remove a lock from the lockset, warning if the lock is not there. 1321 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1322 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1323 SourceLocation UnlockLoc, 1324 bool FullyRemove, LockKind ReceivedKind, 1325 StringRef DiagKind) { 1326 if (Cp.shouldIgnore()) 1327 return; 1328 1329 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1330 if (!LDat) { 1331 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 1332 return; 1333 } 1334 1335 // Generic lock removal doesn't care about lock kind mismatches, but 1336 // otherwise diagnose when the lock kinds are mismatched. 1337 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1338 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(), 1339 ReceivedKind, LDat->loc(), UnlockLoc); 1340 } 1341 1342 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1343 DiagKind); 1344 } 1345 1346 /// Extract the list of mutexIDs from the attribute on an expression, 1347 /// and push them onto Mtxs, discarding any duplicates. 1348 template <typename AttrType> 1349 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1350 const Expr *Exp, const NamedDecl *D, 1351 VarDecl *SelfDecl) { 1352 if (Attr->args_size() == 0) { 1353 // The mutex held is the "this" object. 1354 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1355 if (Cp.isInvalid()) { 1356 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1357 return; 1358 } 1359 //else 1360 if (!Cp.shouldIgnore()) 1361 Mtxs.push_back_nodup(Cp); 1362 return; 1363 } 1364 1365 for (const auto *Arg : Attr->args()) { 1366 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1367 if (Cp.isInvalid()) { 1368 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1369 continue; 1370 } 1371 //else 1372 if (!Cp.shouldIgnore()) 1373 Mtxs.push_back_nodup(Cp); 1374 } 1375 } 1376 1377 /// Extract the list of mutexIDs from a trylock attribute. If the 1378 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1379 /// any duplicates. 1380 template <class AttrType> 1381 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1382 const Expr *Exp, const NamedDecl *D, 1383 const CFGBlock *PredBlock, 1384 const CFGBlock *CurrBlock, 1385 Expr *BrE, bool Neg) { 1386 // Find out which branch has the lock 1387 bool branch = false; 1388 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1389 branch = BLE->getValue(); 1390 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1391 branch = ILE->getValue().getBoolValue(); 1392 1393 int branchnum = branch ? 0 : 1; 1394 if (Neg) 1395 branchnum = !branchnum; 1396 1397 // If we've taken the trylock branch, then add the lock 1398 int i = 0; 1399 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1400 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1401 if (*SI == CurrBlock && i == branchnum) 1402 getMutexIDs(Mtxs, Attr, Exp, D); 1403 } 1404 } 1405 1406 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1407 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1408 TCond = false; 1409 return true; 1410 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1411 TCond = BLE->getValue(); 1412 return true; 1413 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1414 TCond = ILE->getValue().getBoolValue(); 1415 return true; 1416 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1417 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1418 return false; 1419 } 1420 1421 // If Cond can be traced back to a function call, return the call expression. 1422 // The negate variable should be called with false, and will be set to true 1423 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1424 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1425 LocalVarContext C, 1426 bool &Negate) { 1427 if (!Cond) 1428 return nullptr; 1429 1430 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1431 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1432 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1433 return CallExp; 1434 } 1435 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1436 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1437 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1438 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1439 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1440 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1441 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1442 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1443 return getTrylockCallExpr(E, C, Negate); 1444 } 1445 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1446 if (UOP->getOpcode() == UO_LNot) { 1447 Negate = !Negate; 1448 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1449 } 1450 return nullptr; 1451 } 1452 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1453 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1454 if (BOP->getOpcode() == BO_NE) 1455 Negate = !Negate; 1456 1457 bool TCond = false; 1458 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1459 if (!TCond) Negate = !Negate; 1460 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1461 } 1462 TCond = false; 1463 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1464 if (!TCond) Negate = !Negate; 1465 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1466 } 1467 return nullptr; 1468 } 1469 if (BOP->getOpcode() == BO_LAnd) { 1470 // LHS must have been evaluated in a different block. 1471 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1472 } 1473 if (BOP->getOpcode() == BO_LOr) 1474 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1475 return nullptr; 1476 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1477 bool TCond, FCond; 1478 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1479 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1480 if (TCond && !FCond) 1481 return getTrylockCallExpr(COP->getCond(), C, Negate); 1482 if (!TCond && FCond) { 1483 Negate = !Negate; 1484 return getTrylockCallExpr(COP->getCond(), C, Negate); 1485 } 1486 } 1487 } 1488 return nullptr; 1489 } 1490 1491 /// Find the lockset that holds on the edge between PredBlock 1492 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1493 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1494 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1495 const FactSet &ExitSet, 1496 const CFGBlock *PredBlock, 1497 const CFGBlock *CurrBlock) { 1498 Result = ExitSet; 1499 1500 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1501 // We don't acquire try-locks on ?: branches, only when its result is used. 1502 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1503 return; 1504 1505 bool Negate = false; 1506 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1507 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1508 StringRef CapDiagKind = "mutex"; 1509 1510 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1511 if (!Exp) 1512 return; 1513 1514 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1515 if(!FunDecl || !FunDecl->hasAttrs()) 1516 return; 1517 1518 CapExprSet ExclusiveLocksToAdd; 1519 CapExprSet SharedLocksToAdd; 1520 1521 // If the condition is a call to a Trylock function, then grab the attributes 1522 for (const auto *Attr : FunDecl->attrs()) { 1523 switch (Attr->getKind()) { 1524 case attr::TryAcquireCapability: { 1525 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1526 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1527 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1528 Negate); 1529 CapDiagKind = ClassifyDiagnostic(A); 1530 break; 1531 }; 1532 case attr::ExclusiveTrylockFunction: { 1533 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1534 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1535 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1536 CapDiagKind = ClassifyDiagnostic(A); 1537 break; 1538 } 1539 case attr::SharedTrylockFunction: { 1540 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1541 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1542 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1543 CapDiagKind = ClassifyDiagnostic(A); 1544 break; 1545 } 1546 default: 1547 break; 1548 } 1549 } 1550 1551 // Add and remove locks. 1552 SourceLocation Loc = Exp->getExprLoc(); 1553 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1554 addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1555 LK_Exclusive, Loc), 1556 CapDiagKind); 1557 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1558 addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, 1559 LK_Shared, Loc), 1560 CapDiagKind); 1561 } 1562 1563 namespace { 1564 1565 /// We use this class to visit different types of expressions in 1566 /// CFGBlocks, and build up the lockset. 1567 /// An expression may cause us to add or remove locks from the lockset, or else 1568 /// output error messages related to missing locks. 1569 /// FIXME: In future, we may be able to not inherit from a visitor. 1570 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1571 friend class ThreadSafetyAnalyzer; 1572 1573 ThreadSafetyAnalyzer *Analyzer; 1574 FactSet FSet; 1575 LocalVariableMap::Context LVarCtx; 1576 unsigned CtxIndex; 1577 1578 // helper functions 1579 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1580 Expr *MutexExp, ProtectedOperationKind POK, 1581 StringRef DiagKind, SourceLocation Loc); 1582 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1583 StringRef DiagKind); 1584 1585 void checkAccess(const Expr *Exp, AccessKind AK, 1586 ProtectedOperationKind POK = POK_VarAccess); 1587 void checkPtAccess(const Expr *Exp, AccessKind AK, 1588 ProtectedOperationKind POK = POK_VarAccess); 1589 1590 void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1591 void examineArguments(const FunctionDecl *FD, 1592 CallExpr::const_arg_iterator ArgBegin, 1593 CallExpr::const_arg_iterator ArgEnd, 1594 bool SkipFirstParam = false); 1595 1596 public: 1597 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1598 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1599 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1600 1601 void VisitUnaryOperator(const UnaryOperator *UO); 1602 void VisitBinaryOperator(const BinaryOperator *BO); 1603 void VisitCastExpr(const CastExpr *CE); 1604 void VisitCallExpr(const CallExpr *Exp); 1605 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1606 void VisitDeclStmt(const DeclStmt *S); 1607 }; 1608 1609 } // namespace 1610 1611 /// Warn if the LSet does not contain a lock sufficient to protect access 1612 /// of at least the passed in AccessKind. 1613 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1614 AccessKind AK, Expr *MutexExp, 1615 ProtectedOperationKind POK, 1616 StringRef DiagKind, SourceLocation Loc) { 1617 LockKind LK = getLockKindFromAccessKind(AK); 1618 1619 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1620 if (Cp.isInvalid()) { 1621 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1622 return; 1623 } else if (Cp.shouldIgnore()) { 1624 return; 1625 } 1626 1627 if (Cp.negative()) { 1628 // Negative capabilities act like locks excluded 1629 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1630 if (LDat) { 1631 Analyzer->Handler.handleFunExcludesLock( 1632 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1633 return; 1634 } 1635 1636 // If this does not refer to a negative capability in the same class, 1637 // then stop here. 1638 if (!Analyzer->inCurrentScope(Cp)) 1639 return; 1640 1641 // Otherwise the negative requirement must be propagated to the caller. 1642 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1643 if (!LDat) { 1644 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 1645 LK_Shared, Loc); 1646 } 1647 return; 1648 } 1649 1650 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1651 bool NoError = true; 1652 if (!LDat) { 1653 // No exact match found. Look for a partial match. 1654 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1655 if (LDat) { 1656 // Warn that there's no precise match. 1657 std::string PartMatchStr = LDat->toString(); 1658 StringRef PartMatchName(PartMatchStr); 1659 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1660 LK, Loc, &PartMatchName); 1661 } else { 1662 // Warn that there's no match at all. 1663 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1664 LK, Loc); 1665 } 1666 NoError = false; 1667 } 1668 // Make sure the mutex we found is the right kind. 1669 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1670 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1671 LK, Loc); 1672 } 1673 } 1674 1675 /// Warn if the LSet contains the given lock. 1676 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1677 Expr *MutexExp, StringRef DiagKind) { 1678 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1679 if (Cp.isInvalid()) { 1680 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1681 return; 1682 } else if (Cp.shouldIgnore()) { 1683 return; 1684 } 1685 1686 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); 1687 if (LDat) { 1688 Analyzer->Handler.handleFunExcludesLock( 1689 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1690 } 1691 } 1692 1693 /// Checks guarded_by and pt_guarded_by attributes. 1694 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1695 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1696 /// Similarly, we check if the access is to an expression that dereferences 1697 /// a pointer marked with pt_guarded_by. 1698 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1699 ProtectedOperationKind POK) { 1700 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1701 1702 SourceLocation Loc = Exp->getExprLoc(); 1703 1704 // Local variables of reference type cannot be re-assigned; 1705 // map them to their initializer. 1706 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1707 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1708 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1709 if (const auto *E = VD->getInit()) { 1710 // Guard against self-initialization. e.g., int &i = i; 1711 if (E == Exp) 1712 break; 1713 Exp = E; 1714 continue; 1715 } 1716 } 1717 break; 1718 } 1719 1720 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1721 // For dereferences 1722 if (UO->getOpcode() == UO_Deref) 1723 checkPtAccess(UO->getSubExpr(), AK, POK); 1724 return; 1725 } 1726 1727 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1728 checkPtAccess(AE->getLHS(), AK, POK); 1729 return; 1730 } 1731 1732 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1733 if (ME->isArrow()) 1734 checkPtAccess(ME->getBase(), AK, POK); 1735 else 1736 checkAccess(ME->getBase(), AK, POK); 1737 } 1738 1739 const ValueDecl *D = getValueDecl(Exp); 1740 if (!D || !D->hasAttrs()) 1741 return; 1742 1743 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1744 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1745 } 1746 1747 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1748 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1749 ClassifyDiagnostic(I), Loc); 1750 } 1751 1752 /// Checks pt_guarded_by and pt_guarded_var attributes. 1753 /// POK is the same operationKind that was passed to checkAccess. 1754 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1755 ProtectedOperationKind POK) { 1756 while (true) { 1757 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1758 Exp = PE->getSubExpr(); 1759 continue; 1760 } 1761 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1762 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1763 // If it's an actual array, and not a pointer, then it's elements 1764 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1765 checkAccess(CE->getSubExpr(), AK, POK); 1766 return; 1767 } 1768 Exp = CE->getSubExpr(); 1769 continue; 1770 } 1771 break; 1772 } 1773 1774 // Pass by reference warnings are under a different flag. 1775 ProtectedOperationKind PtPOK = POK_VarDereference; 1776 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1777 1778 const ValueDecl *D = getValueDecl(Exp); 1779 if (!D || !D->hasAttrs()) 1780 return; 1781 1782 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1783 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1784 Exp->getExprLoc()); 1785 1786 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1787 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1788 ClassifyDiagnostic(I), Exp->getExprLoc()); 1789 } 1790 1791 /// Process a function call, method call, constructor call, 1792 /// or destructor call. This involves looking at the attributes on the 1793 /// corresponding function/method/constructor/destructor, issuing warnings, 1794 /// and updating the locksets accordingly. 1795 /// 1796 /// FIXME: For classes annotated with one of the guarded annotations, we need 1797 /// to treat const method calls as reads and non-const method calls as writes, 1798 /// and check that the appropriate locks are held. Non-const method calls with 1799 /// the same signature as const method calls can be also treated as reads. 1800 /// 1801 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1802 VarDecl *VD) { 1803 SourceLocation Loc = Exp->getExprLoc(); 1804 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1805 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1806 CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; 1807 StringRef CapDiagKind = "mutex"; 1808 1809 // Figure out if we're constructing an object of scoped lockable class 1810 bool isScopedVar = false; 1811 if (VD) { 1812 if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1813 const CXXRecordDecl* PD = CD->getParent(); 1814 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1815 isScopedVar = true; 1816 } 1817 } 1818 1819 for(const Attr *At : D->attrs()) { 1820 switch (At->getKind()) { 1821 // When we encounter a lock function, we need to add the lock to our 1822 // lockset. 1823 case attr::AcquireCapability: { 1824 const auto *A = cast<AcquireCapabilityAttr>(At); 1825 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1826 : ExclusiveLocksToAdd, 1827 A, Exp, D, VD); 1828 1829 CapDiagKind = ClassifyDiagnostic(A); 1830 break; 1831 } 1832 1833 // An assert will add a lock to the lockset, but will not generate 1834 // a warning if it is already there, and will not generate a warning 1835 // if it is not removed. 1836 case attr::AssertExclusiveLock: { 1837 const auto *A = cast<AssertExclusiveLockAttr>(At); 1838 1839 CapExprSet AssertLocks; 1840 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1841 for (const auto &AssertLock : AssertLocks) 1842 Analyzer->addLock(FSet, 1843 llvm::make_unique<LockableFactEntry>( 1844 AssertLock, LK_Exclusive, Loc, false, true), 1845 ClassifyDiagnostic(A)); 1846 break; 1847 } 1848 case attr::AssertSharedLock: { 1849 const auto *A = cast<AssertSharedLockAttr>(At); 1850 1851 CapExprSet AssertLocks; 1852 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1853 for (const auto &AssertLock : AssertLocks) 1854 Analyzer->addLock(FSet, 1855 llvm::make_unique<LockableFactEntry>( 1856 AssertLock, LK_Shared, Loc, false, true), 1857 ClassifyDiagnostic(A)); 1858 break; 1859 } 1860 1861 case attr::AssertCapability: { 1862 const auto *A = cast<AssertCapabilityAttr>(At); 1863 CapExprSet AssertLocks; 1864 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1865 for (const auto &AssertLock : AssertLocks) 1866 Analyzer->addLock(FSet, 1867 llvm::make_unique<LockableFactEntry>( 1868 AssertLock, 1869 A->isShared() ? LK_Shared : LK_Exclusive, Loc, 1870 false, true), 1871 ClassifyDiagnostic(A)); 1872 break; 1873 } 1874 1875 // When we encounter an unlock function, we need to remove unlocked 1876 // mutexes from the lockset, and flag a warning if they are not there. 1877 case attr::ReleaseCapability: { 1878 const auto *A = cast<ReleaseCapabilityAttr>(At); 1879 if (A->isGeneric()) 1880 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1881 else if (A->isShared()) 1882 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1883 else 1884 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1885 1886 CapDiagKind = ClassifyDiagnostic(A); 1887 break; 1888 } 1889 1890 case attr::RequiresCapability: { 1891 const auto *A = cast<RequiresCapabilityAttr>(At); 1892 for (auto *Arg : A->args()) { 1893 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1894 POK_FunctionCall, ClassifyDiagnostic(A), 1895 Exp->getExprLoc()); 1896 // use for adopting a lock 1897 if (isScopedVar) { 1898 Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs 1899 : ScopedExclusiveReqs, 1900 A, Exp, D, VD); 1901 } 1902 } 1903 break; 1904 } 1905 1906 case attr::LocksExcluded: { 1907 const auto *A = cast<LocksExcludedAttr>(At); 1908 for (auto *Arg : A->args()) 1909 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1910 break; 1911 } 1912 1913 // Ignore attributes unrelated to thread-safety 1914 default: 1915 break; 1916 } 1917 } 1918 1919 // Remove locks first to allow lock upgrading/downgrading. 1920 // FIXME -- should only fully remove if the attribute refers to 'this'. 1921 bool Dtor = isa<CXXDestructorDecl>(D); 1922 for (const auto &M : ExclusiveLocksToRemove) 1923 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1924 for (const auto &M : SharedLocksToRemove) 1925 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1926 for (const auto &M : GenericLocksToRemove) 1927 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1928 1929 // Add locks. 1930 for (const auto &M : ExclusiveLocksToAdd) 1931 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1932 M, LK_Exclusive, Loc, isScopedVar), 1933 CapDiagKind); 1934 for (const auto &M : SharedLocksToAdd) 1935 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1936 M, LK_Shared, Loc, isScopedVar), 1937 CapDiagKind); 1938 1939 if (isScopedVar) { 1940 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1941 SourceLocation MLoc = VD->getLocation(); 1942 DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue, 1943 VD->getLocation()); 1944 // FIXME: does this store a pointer to DRE? 1945 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1946 1947 auto ScopedEntry = llvm::make_unique<ScopedLockableFactEntry>(Scp, MLoc); 1948 for (const auto &M : ExclusiveLocksToAdd) 1949 ScopedEntry->addExclusiveLock(M); 1950 for (const auto &M : ScopedExclusiveReqs) 1951 ScopedEntry->addExclusiveLock(M); 1952 for (const auto &M : SharedLocksToAdd) 1953 ScopedEntry->addSharedLock(M); 1954 for (const auto &M : ScopedSharedReqs) 1955 ScopedEntry->addSharedLock(M); 1956 for (const auto &M : ExclusiveLocksToRemove) 1957 ScopedEntry->addExclusiveUnlock(M); 1958 for (const auto &M : SharedLocksToRemove) 1959 ScopedEntry->addSharedUnlock(M); 1960 Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind); 1961 } 1962 } 1963 1964 /// For unary operations which read and write a variable, we need to 1965 /// check whether we hold any required mutexes. Reads are checked in 1966 /// VisitCastExpr. 1967 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1968 switch (UO->getOpcode()) { 1969 case UO_PostDec: 1970 case UO_PostInc: 1971 case UO_PreDec: 1972 case UO_PreInc: 1973 checkAccess(UO->getSubExpr(), AK_Written); 1974 break; 1975 default: 1976 break; 1977 } 1978 } 1979 1980 /// For binary operations which assign to a variable (writes), we need to check 1981 /// whether we hold any required mutexes. 1982 /// FIXME: Deal with non-primitive types. 1983 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1984 if (!BO->isAssignmentOp()) 1985 return; 1986 1987 // adjust the context 1988 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1989 1990 checkAccess(BO->getLHS(), AK_Written); 1991 } 1992 1993 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1994 /// need to ensure we hold any required mutexes. 1995 /// FIXME: Deal with non-primitive types. 1996 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 1997 if (CE->getCastKind() != CK_LValueToRValue) 1998 return; 1999 checkAccess(CE->getSubExpr(), AK_Read); 2000 } 2001 2002 void BuildLockset::examineArguments(const FunctionDecl *FD, 2003 CallExpr::const_arg_iterator ArgBegin, 2004 CallExpr::const_arg_iterator ArgEnd, 2005 bool SkipFirstParam) { 2006 // Currently we can't do anything if we don't know the function declaration. 2007 if (!FD) 2008 return; 2009 2010 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 2011 // only turns off checking within the body of a function, but we also 2012 // use it to turn off checking in arguments to the function. This 2013 // could result in some false negatives, but the alternative is to 2014 // create yet another attribute. 2015 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 2016 return; 2017 2018 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 2019 auto Param = Params.begin(); 2020 if (SkipFirstParam) 2021 ++Param; 2022 2023 // There can be default arguments, so we stop when one iterator is at end(). 2024 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 2025 ++Param, ++Arg) { 2026 QualType Qt = (*Param)->getType(); 2027 if (Qt->isReferenceType()) 2028 checkAccess(*Arg, AK_Read, POK_PassByRef); 2029 } 2030 } 2031 2032 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2033 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2034 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2035 // ME can be null when calling a method pointer 2036 const CXXMethodDecl *MD = CE->getMethodDecl(); 2037 2038 if (ME && MD) { 2039 if (ME->isArrow()) { 2040 if (MD->isConst()) 2041 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2042 else // FIXME -- should be AK_Written 2043 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2044 } else { 2045 if (MD->isConst()) 2046 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2047 else // FIXME -- should be AK_Written 2048 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2049 } 2050 } 2051 2052 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2053 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2054 auto OEop = OE->getOperator(); 2055 switch (OEop) { 2056 case OO_Equal: { 2057 const Expr *Target = OE->getArg(0); 2058 const Expr *Source = OE->getArg(1); 2059 checkAccess(Target, AK_Written); 2060 checkAccess(Source, AK_Read); 2061 break; 2062 } 2063 case OO_Star: 2064 case OO_Arrow: 2065 case OO_Subscript: 2066 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2067 // Grrr. operator* can be multiplication... 2068 checkPtAccess(OE->getArg(0), AK_Read); 2069 } 2070 LLVM_FALLTHROUGH; 2071 default: { 2072 // TODO: get rid of this, and rely on pass-by-ref instead. 2073 const Expr *Obj = OE->getArg(0); 2074 checkAccess(Obj, AK_Read); 2075 // Check the remaining arguments. For method operators, the first 2076 // argument is the implicit self argument, and doesn't appear in the 2077 // FunctionDecl, but for non-methods it does. 2078 const FunctionDecl *FD = OE->getDirectCallee(); 2079 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2080 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2081 break; 2082 } 2083 } 2084 } else { 2085 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2086 } 2087 2088 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2089 if(!D || !D->hasAttrs()) 2090 return; 2091 handleCall(Exp, D); 2092 } 2093 2094 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2095 const CXXConstructorDecl *D = Exp->getConstructor(); 2096 if (D && D->isCopyConstructor()) { 2097 const Expr* Source = Exp->getArg(0); 2098 checkAccess(Source, AK_Read); 2099 } else { 2100 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2101 } 2102 } 2103 2104 static CXXConstructorDecl * 2105 findConstructorForByValueReturn(const CXXRecordDecl *RD) { 2106 // Prefer a move constructor over a copy constructor. If there's more than 2107 // one copy constructor or more than one move constructor, we arbitrarily 2108 // pick the first declared such constructor rather than trying to guess which 2109 // one is more appropriate. 2110 CXXConstructorDecl *CopyCtor = nullptr; 2111 for (auto *Ctor : RD->ctors()) { 2112 if (Ctor->isDeleted()) 2113 continue; 2114 if (Ctor->isMoveConstructor()) 2115 return Ctor; 2116 if (!CopyCtor && Ctor->isCopyConstructor()) 2117 CopyCtor = Ctor; 2118 } 2119 return CopyCtor; 2120 } 2121 2122 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, 2123 SourceLocation Loc) { 2124 ASTContext &Ctx = CD->getASTContext(); 2125 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, 2126 CD, true, Args, false, false, false, false, 2127 CXXConstructExpr::CK_Complete, 2128 SourceRange(Loc, Loc)); 2129 } 2130 2131 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2132 // adjust the context 2133 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2134 2135 for (auto *D : S->getDeclGroup()) { 2136 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2137 Expr *E = VD->getInit(); 2138 if (!E) 2139 continue; 2140 E = E->IgnoreParens(); 2141 2142 // handle constructors that involve temporaries 2143 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2144 E = EWC->getSubExpr(); 2145 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2146 E = BTE->getSubExpr(); 2147 2148 if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 2149 const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 2150 if (!CtorD || !CtorD->hasAttrs()) 2151 continue; 2152 handleCall(E, CtorD, VD); 2153 } else if (isa<CallExpr>(E) && E->isRValue()) { 2154 // If the object is initialized by a function call that returns a 2155 // scoped lockable by value, use the attributes on the copy or move 2156 // constructor to figure out what effect that should have on the 2157 // lockset. 2158 // FIXME: Is this really the best way to handle this situation? 2159 auto *RD = E->getType()->getAsCXXRecordDecl(); 2160 if (!RD || !RD->hasAttr<ScopedLockableAttr>()) 2161 continue; 2162 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); 2163 if (!CtorD || !CtorD->hasAttrs()) 2164 continue; 2165 handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD); 2166 } 2167 } 2168 } 2169 } 2170 2171 /// Compute the intersection of two locksets and issue warnings for any 2172 /// locks in the symmetric difference. 2173 /// 2174 /// This function is used at a merge point in the CFG when comparing the lockset 2175 /// of each branch being merged. For example, given the following sequence: 2176 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2177 /// are the same. In the event of a difference, we use the intersection of these 2178 /// two locksets at the start of D. 2179 /// 2180 /// \param FSet1 The first lockset. 2181 /// \param FSet2 The second lockset. 2182 /// \param JoinLoc The location of the join point for error reporting 2183 /// \param LEK1 The error message to report if a mutex is missing from LSet1 2184 /// \param LEK2 The error message to report if a mutex is missing from Lset2 2185 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 2186 const FactSet &FSet2, 2187 SourceLocation JoinLoc, 2188 LockErrorKind LEK1, 2189 LockErrorKind LEK2, 2190 bool Modify) { 2191 FactSet FSet1Orig = FSet1; 2192 2193 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 2194 for (const auto &Fact : FSet2) { 2195 const FactEntry *LDat1 = nullptr; 2196 const FactEntry *LDat2 = &FactMan[Fact]; 2197 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 2198 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 2199 2200 if (LDat1) { 2201 if (LDat1->kind() != LDat2->kind()) { 2202 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 2203 LDat2->loc(), LDat1->loc()); 2204 if (Modify && LDat1->kind() != LK_Exclusive) { 2205 // Take the exclusive lock, which is the one in FSet2. 2206 *Iter1 = Fact; 2207 } 2208 } 2209 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 2210 // The non-asserted lock in FSet2 is the one we want to track. 2211 *Iter1 = Fact; 2212 } 2213 } else { 2214 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 2215 Handler); 2216 } 2217 } 2218 2219 // Find locks in FSet1 that are not in FSet2, and remove them. 2220 for (const auto &Fact : FSet1Orig) { 2221 const FactEntry *LDat1 = &FactMan[Fact]; 2222 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 2223 2224 if (!LDat2) { 2225 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 2226 Handler); 2227 if (Modify) 2228 FSet1.removeLock(FactMan, *LDat1); 2229 } 2230 } 2231 } 2232 2233 // Return true if block B never continues to its successors. 2234 static bool neverReturns(const CFGBlock *B) { 2235 if (B->hasNoReturnElement()) 2236 return true; 2237 if (B->empty()) 2238 return false; 2239 2240 CFGElement Last = B->back(); 2241 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2242 if (isa<CXXThrowExpr>(S->getStmt())) 2243 return true; 2244 } 2245 return false; 2246 } 2247 2248 /// Check a function's CFG for thread-safety violations. 2249 /// 2250 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2251 /// at the end of each block, and issue warnings for thread safety violations. 2252 /// Each block in the CFG is traversed exactly once. 2253 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2254 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2255 // For now, we just use the walker to set things up. 2256 threadSafety::CFGWalker walker; 2257 if (!walker.init(AC)) 2258 return; 2259 2260 // AC.dumpCFG(true); 2261 // threadSafety::printSCFG(walker); 2262 2263 CFG *CFGraph = walker.getGraph(); 2264 const NamedDecl *D = walker.getDecl(); 2265 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2266 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2267 2268 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2269 return; 2270 2271 // FIXME: Do something a bit more intelligent inside constructor and 2272 // destructor code. Constructors and destructors must assume unique access 2273 // to 'this', so checks on member variable access is disabled, but we should 2274 // still enable checks on other objects. 2275 if (isa<CXXConstructorDecl>(D)) 2276 return; // Don't check inside constructors. 2277 if (isa<CXXDestructorDecl>(D)) 2278 return; // Don't check inside destructors. 2279 2280 Handler.enterFunction(CurrentFunction); 2281 2282 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2283 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2284 2285 // We need to explore the CFG via a "topological" ordering. 2286 // That way, we will be guaranteed to have information about required 2287 // predecessor locksets when exploring a new block. 2288 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2289 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2290 2291 // Mark entry block as reachable 2292 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2293 2294 // Compute SSA names for local variables 2295 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2296 2297 // Fill in source locations for all CFGBlocks. 2298 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2299 2300 CapExprSet ExclusiveLocksAcquired; 2301 CapExprSet SharedLocksAcquired; 2302 CapExprSet LocksReleased; 2303 2304 // Add locks from exclusive_locks_required and shared_locks_required 2305 // to initial lockset. Also turn off checking for lock and unlock functions. 2306 // FIXME: is there a more intelligent way to check lock/unlock functions? 2307 if (!SortedGraph->empty() && D->hasAttrs()) { 2308 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2309 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2310 2311 CapExprSet ExclusiveLocksToAdd; 2312 CapExprSet SharedLocksToAdd; 2313 StringRef CapDiagKind = "mutex"; 2314 2315 SourceLocation Loc = D->getLocation(); 2316 for (const auto *Attr : D->attrs()) { 2317 Loc = Attr->getLocation(); 2318 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2319 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2320 nullptr, D); 2321 CapDiagKind = ClassifyDiagnostic(A); 2322 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2323 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2324 // We must ignore such methods. 2325 if (A->args_size() == 0) 2326 return; 2327 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2328 nullptr, D); 2329 getMutexIDs(LocksReleased, A, nullptr, D); 2330 CapDiagKind = ClassifyDiagnostic(A); 2331 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2332 if (A->args_size() == 0) 2333 return; 2334 getMutexIDs(A->isShared() ? SharedLocksAcquired 2335 : ExclusiveLocksAcquired, 2336 A, nullptr, D); 2337 CapDiagKind = ClassifyDiagnostic(A); 2338 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2339 // Don't try to check trylock functions for now. 2340 return; 2341 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2342 // Don't try to check trylock functions for now. 2343 return; 2344 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2345 // Don't try to check trylock functions for now. 2346 return; 2347 } 2348 } 2349 2350 // FIXME -- Loc can be wrong here. 2351 for (const auto &Mu : ExclusiveLocksToAdd) { 2352 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); 2353 Entry->setDeclared(true); 2354 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2355 } 2356 for (const auto &Mu : SharedLocksToAdd) { 2357 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); 2358 Entry->setDeclared(true); 2359 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2360 } 2361 } 2362 2363 for (const auto *CurrBlock : *SortedGraph) { 2364 unsigned CurrBlockID = CurrBlock->getBlockID(); 2365 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2366 2367 // Use the default initial lockset in case there are no predecessors. 2368 VisitedBlocks.insert(CurrBlock); 2369 2370 // Iterate through the predecessor blocks and warn if the lockset for all 2371 // predecessors is not the same. We take the entry lockset of the current 2372 // block to be the intersection of all previous locksets. 2373 // FIXME: By keeping the intersection, we may output more errors in future 2374 // for a lock which is not in the intersection, but was in the union. We 2375 // may want to also keep the union in future. As an example, let's say 2376 // the intersection contains Mutex L, and the union contains L and M. 2377 // Later we unlock M. At this point, we would output an error because we 2378 // never locked M; although the real error is probably that we forgot to 2379 // lock M on all code paths. Conversely, let's say that later we lock M. 2380 // In this case, we should compare against the intersection instead of the 2381 // union because the real error is probably that we forgot to unlock M on 2382 // all code paths. 2383 bool LocksetInitialized = false; 2384 SmallVector<CFGBlock *, 8> SpecialBlocks; 2385 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2386 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2387 // if *PI -> CurrBlock is a back edge 2388 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2389 continue; 2390 2391 unsigned PrevBlockID = (*PI)->getBlockID(); 2392 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2393 2394 // Ignore edges from blocks that can't return. 2395 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2396 continue; 2397 2398 // Okay, we can reach this block from the entry. 2399 CurrBlockInfo->Reachable = true; 2400 2401 // If the previous block ended in a 'continue' or 'break' statement, then 2402 // a difference in locksets is probably due to a bug in that block, rather 2403 // than in some other predecessor. In that case, keep the other 2404 // predecessor's lockset. 2405 if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) { 2406 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2407 SpecialBlocks.push_back(*PI); 2408 continue; 2409 } 2410 } 2411 2412 FactSet PrevLockset; 2413 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2414 2415 if (!LocksetInitialized) { 2416 CurrBlockInfo->EntrySet = PrevLockset; 2417 LocksetInitialized = true; 2418 } else { 2419 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2420 CurrBlockInfo->EntryLoc, 2421 LEK_LockedSomePredecessors); 2422 } 2423 } 2424 2425 // Skip rest of block if it's not reachable. 2426 if (!CurrBlockInfo->Reachable) 2427 continue; 2428 2429 // Process continue and break blocks. Assume that the lockset for the 2430 // resulting block is unaffected by any discrepancies in them. 2431 for (const auto *PrevBlock : SpecialBlocks) { 2432 unsigned PrevBlockID = PrevBlock->getBlockID(); 2433 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2434 2435 if (!LocksetInitialized) { 2436 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2437 LocksetInitialized = true; 2438 } else { 2439 // Determine whether this edge is a loop terminator for diagnostic 2440 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2441 // it might also be part of a switch. Also, a subsequent destructor 2442 // might add to the lockset, in which case the real issue might be a 2443 // double lock on the other path. 2444 const Stmt *Terminator = PrevBlock->getTerminatorStmt(); 2445 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2446 2447 FactSet PrevLockset; 2448 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2449 PrevBlock, CurrBlock); 2450 2451 // Do not update EntrySet. 2452 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2453 PrevBlockInfo->ExitLoc, 2454 IsLoop ? LEK_LockedSomeLoopIterations 2455 : LEK_LockedSomePredecessors, 2456 false); 2457 } 2458 } 2459 2460 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2461 2462 // Visit all the statements in the basic block. 2463 for (const auto &BI : *CurrBlock) { 2464 switch (BI.getKind()) { 2465 case CFGElement::Statement: { 2466 CFGStmt CS = BI.castAs<CFGStmt>(); 2467 LocksetBuilder.Visit(CS.getStmt()); 2468 break; 2469 } 2470 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2471 case CFGElement::AutomaticObjectDtor: { 2472 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2473 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2474 if (!DD->hasAttrs()) 2475 break; 2476 2477 // Create a dummy expression, 2478 auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); 2479 DeclRefExpr DRE(VD->getASTContext(), VD, false, 2480 VD->getType().getNonReferenceType(), VK_LValue, 2481 AD.getTriggerStmt()->getEndLoc()); 2482 LocksetBuilder.handleCall(&DRE, DD); 2483 break; 2484 } 2485 default: 2486 break; 2487 } 2488 } 2489 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2490 2491 // For every back edge from CurrBlock (the end of the loop) to another block 2492 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2493 // the one held at the beginning of FirstLoopBlock. We can look up the 2494 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2495 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2496 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2497 // if CurrBlock -> *SI is *not* a back edge 2498 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2499 continue; 2500 2501 CFGBlock *FirstLoopBlock = *SI; 2502 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2503 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2504 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2505 PreLoop->EntryLoc, 2506 LEK_LockedSomeLoopIterations, 2507 false); 2508 } 2509 } 2510 2511 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2512 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2513 2514 // Skip the final check if the exit block is unreachable. 2515 if (!Final->Reachable) 2516 return; 2517 2518 // By default, we expect all locks held on entry to be held on exit. 2519 FactSet ExpectedExitSet = Initial->EntrySet; 2520 2521 // Adjust the expected exit set by adding or removing locks, as declared 2522 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2523 // issue the appropriate warning. 2524 // FIXME: the location here is not quite right. 2525 for (const auto &Lock : ExclusiveLocksAcquired) 2526 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2527 Lock, LK_Exclusive, D->getLocation())); 2528 for (const auto &Lock : SharedLocksAcquired) 2529 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2530 Lock, LK_Shared, D->getLocation())); 2531 for (const auto &Lock : LocksReleased) 2532 ExpectedExitSet.removeLock(FactMan, Lock); 2533 2534 // FIXME: Should we call this function for all blocks which exit the function? 2535 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2536 Final->ExitLoc, 2537 LEK_LockedAtEndOfFunction, 2538 LEK_NotLockedAtEndOfFunction, 2539 false); 2540 2541 Handler.leaveFunction(CurrentFunction); 2542 } 2543 2544 /// Check a function's CFG for thread-safety violations. 2545 /// 2546 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2547 /// at the end of each block, and issue warnings for thread safety violations. 2548 /// Each block in the CFG is traversed exactly once. 2549 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2550 ThreadSafetyHandler &Handler, 2551 BeforeSet **BSet) { 2552 if (!*BSet) 2553 *BSet = new BeforeSet; 2554 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2555 Analyzer.runAnalysis(AC); 2556 } 2557 2558 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2559 2560 /// Helper function that returns a LockKind required for the given level 2561 /// of access. 2562 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2563 switch (AK) { 2564 case AK_Read : 2565 return LK_Shared; 2566 case AK_Written : 2567 return LK_Exclusive; 2568 } 2569 llvm_unreachable("Unknown AccessKind"); 2570 } 2571