1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 10 // conditions), based off of an annotation system. 11 // 12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 13 // for more information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/Analysis/Analyses/ThreadSafety.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclGroup.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/OperationKinds.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 33 #include "clang/Analysis/AnalysisDeclContext.h" 34 #include "clang/Analysis/CFG.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/StringRef.h" 46 #include "llvm/Support/Allocator.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <functional> 53 #include <iterator> 54 #include <memory> 55 #include <optional> 56 #include <string> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace clang; 62 using namespace threadSafety; 63 64 // Key method definition 65 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 66 67 /// Issue a warning about an invalid lock expression 68 static void warnInvalidLock(ThreadSafetyHandler &Handler, 69 const Expr *MutexExp, const NamedDecl *D, 70 const Expr *DeclExp, StringRef Kind) { 71 SourceLocation Loc; 72 if (DeclExp) 73 Loc = DeclExp->getExprLoc(); 74 75 // FIXME: add a note about the attribute location in MutexExp or D 76 if (Loc.isValid()) 77 Handler.handleInvalidLockExp(Loc); 78 } 79 80 namespace { 81 82 /// A set of CapabilityExpr objects, which are compiled from thread safety 83 /// attributes on a function. 84 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 85 public: 86 /// Push M onto list, but discard duplicates. 87 void push_back_nodup(const CapabilityExpr &CapE) { 88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) { 89 return CapE.equals(CapE2); 90 })) 91 push_back(CapE); 92 } 93 }; 94 95 class FactManager; 96 class FactSet; 97 98 /// This is a helper class that stores a fact that is known at a 99 /// particular point in program execution. Currently, a fact is a capability, 100 /// along with additional information, such as where it was acquired, whether 101 /// it is exclusive or shared, etc. 102 /// 103 /// FIXME: this analysis does not currently support re-entrant locking. 104 class FactEntry : public CapabilityExpr { 105 public: 106 /// Where a fact comes from. 107 enum SourceKind { 108 Acquired, ///< The fact has been directly acquired. 109 Asserted, ///< The fact has been asserted to be held. 110 Declared, ///< The fact is assumed to be held by callers. 111 Managed, ///< The fact has been acquired through a scoped capability. 112 }; 113 114 private: 115 /// Exclusive or shared. 116 LockKind LKind : 8; 117 118 // How it was acquired. 119 SourceKind Source : 8; 120 121 /// Where it was acquired. 122 SourceLocation AcquireLoc; 123 124 public: 125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 126 SourceKind Src) 127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {} 128 virtual ~FactEntry() = default; 129 130 LockKind kind() const { return LKind; } 131 SourceLocation loc() const { return AcquireLoc; } 132 133 bool asserted() const { return Source == Asserted; } 134 bool declared() const { return Source == Declared; } 135 bool managed() const { return Source == Managed; } 136 137 virtual void 138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 139 SourceLocation JoinLoc, LockErrorKind LEK, 140 ThreadSafetyHandler &Handler) const = 0; 141 virtual void handleLock(FactSet &FSet, FactManager &FactMan, 142 const FactEntry &entry, 143 ThreadSafetyHandler &Handler) const = 0; 144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 145 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 146 bool FullyRemove, 147 ThreadSafetyHandler &Handler) const = 0; 148 149 // Return true if LKind >= LK, where exclusive > shared 150 bool isAtLeast(LockKind LK) const { 151 return (LKind == LK_Exclusive) || (LK == LK_Shared); 152 } 153 }; 154 155 using FactID = unsigned short; 156 157 /// FactManager manages the memory for all facts that are created during 158 /// the analysis of a single routine. 159 class FactManager { 160 private: 161 std::vector<std::unique_ptr<const FactEntry>> Facts; 162 163 public: 164 FactID newFact(std::unique_ptr<FactEntry> Entry) { 165 Facts.push_back(std::move(Entry)); 166 return static_cast<unsigned short>(Facts.size() - 1); 167 } 168 169 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 170 }; 171 172 /// A FactSet is the set of facts that are known to be true at a 173 /// particular program point. FactSets must be small, because they are 174 /// frequently copied, and are thus implemented as a set of indices into a 175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 176 /// locks, so we can get away with doing a linear search for lookup. Note 177 /// that a hashtable or map is inappropriate in this case, because lookups 178 /// may involve partial pattern matches, rather than exact matches. 179 class FactSet { 180 private: 181 using FactVec = SmallVector<FactID, 4>; 182 183 FactVec FactIDs; 184 185 public: 186 using iterator = FactVec::iterator; 187 using const_iterator = FactVec::const_iterator; 188 189 iterator begin() { return FactIDs.begin(); } 190 const_iterator begin() const { return FactIDs.begin(); } 191 192 iterator end() { return FactIDs.end(); } 193 const_iterator end() const { return FactIDs.end(); } 194 195 bool isEmpty() const { return FactIDs.size() == 0; } 196 197 // Return true if the set contains only negative facts 198 bool isEmpty(FactManager &FactMan) const { 199 for (const auto FID : *this) { 200 if (!FactMan[FID].negative()) 201 return false; 202 } 203 return true; 204 } 205 206 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 207 208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 209 FactID F = FM.newFact(std::move(Entry)); 210 FactIDs.push_back(F); 211 return F; 212 } 213 214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 215 unsigned n = FactIDs.size(); 216 if (n == 0) 217 return false; 218 219 for (unsigned i = 0; i < n-1; ++i) { 220 if (FM[FactIDs[i]].matches(CapE)) { 221 FactIDs[i] = FactIDs[n-1]; 222 FactIDs.pop_back(); 223 return true; 224 } 225 } 226 if (FM[FactIDs[n-1]].matches(CapE)) { 227 FactIDs.pop_back(); 228 return true; 229 } 230 return false; 231 } 232 233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 234 return std::find_if(begin(), end(), [&](FactID ID) { 235 return FM[ID].matches(CapE); 236 }); 237 } 238 239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 240 auto I = std::find_if(begin(), end(), [&](FactID ID) { 241 return FM[ID].matches(CapE); 242 }); 243 return I != end() ? &FM[*I] : nullptr; 244 } 245 246 const FactEntry *findLockUniv(FactManager &FM, 247 const CapabilityExpr &CapE) const { 248 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 249 return FM[ID].matchesUniv(CapE); 250 }); 251 return I != end() ? &FM[*I] : nullptr; 252 } 253 254 const FactEntry *findPartialMatch(FactManager &FM, 255 const CapabilityExpr &CapE) const { 256 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 257 return FM[ID].partiallyMatches(CapE); 258 }); 259 return I != end() ? &FM[*I] : nullptr; 260 } 261 262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 263 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 264 return FM[ID].valueDecl() == Vd; 265 }); 266 return I != end(); 267 } 268 }; 269 270 class ThreadSafetyAnalyzer; 271 272 } // namespace 273 274 namespace clang { 275 namespace threadSafety { 276 277 class BeforeSet { 278 private: 279 using BeforeVect = SmallVector<const ValueDecl *, 4>; 280 281 struct BeforeInfo { 282 BeforeVect Vect; 283 int Visited = 0; 284 285 BeforeInfo() = default; 286 BeforeInfo(BeforeInfo &&) = default; 287 }; 288 289 using BeforeMap = 290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 292 293 public: 294 BeforeSet() = default; 295 296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 297 ThreadSafetyAnalyzer& Analyzer); 298 299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 300 ThreadSafetyAnalyzer &Analyzer); 301 302 void checkBeforeAfter(const ValueDecl* Vd, 303 const FactSet& FSet, 304 ThreadSafetyAnalyzer& Analyzer, 305 SourceLocation Loc, StringRef CapKind); 306 307 private: 308 BeforeMap BMap; 309 CycleMap CycMap; 310 }; 311 312 } // namespace threadSafety 313 } // namespace clang 314 315 namespace { 316 317 class LocalVariableMap; 318 319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 320 321 /// A side (entry or exit) of a CFG node. 322 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 323 324 /// CFGBlockInfo is a struct which contains all the information that is 325 /// maintained for each block in the CFG. See LocalVariableMap for more 326 /// information about the contexts. 327 struct CFGBlockInfo { 328 // Lockset held at entry to block 329 FactSet EntrySet; 330 331 // Lockset held at exit from block 332 FactSet ExitSet; 333 334 // Context held at entry to block 335 LocalVarContext EntryContext; 336 337 // Context held at exit from block 338 LocalVarContext ExitContext; 339 340 // Location of first statement in block 341 SourceLocation EntryLoc; 342 343 // Location of last statement in block. 344 SourceLocation ExitLoc; 345 346 // Used to replay contexts later 347 unsigned EntryIndex; 348 349 // Is this block reachable? 350 bool Reachable = false; 351 352 const FactSet &getSet(CFGBlockSide Side) const { 353 return Side == CBS_Entry ? EntrySet : ExitSet; 354 } 355 356 SourceLocation getLocation(CFGBlockSide Side) const { 357 return Side == CBS_Entry ? EntryLoc : ExitLoc; 358 } 359 360 private: 361 CFGBlockInfo(LocalVarContext EmptyCtx) 362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 363 364 public: 365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 366 }; 367 368 // A LocalVariableMap maintains a map from local variables to their currently 369 // valid definitions. It provides SSA-like functionality when traversing the 370 // CFG. Like SSA, each definition or assignment to a variable is assigned a 371 // unique name (an integer), which acts as the SSA name for that definition. 372 // The total set of names is shared among all CFG basic blocks. 373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 374 // with their SSA-names. Instead, we compute a Context for each point in the 375 // code, which maps local variables to the appropriate SSA-name. This map 376 // changes with each assignment. 377 // 378 // The map is computed in a single pass over the CFG. Subsequent analyses can 379 // then query the map to find the appropriate Context for a statement, and use 380 // that Context to look up the definitions of variables. 381 class LocalVariableMap { 382 public: 383 using Context = LocalVarContext; 384 385 /// A VarDefinition consists of an expression, representing the value of the 386 /// variable, along with the context in which that expression should be 387 /// interpreted. A reference VarDefinition does not itself contain this 388 /// information, but instead contains a pointer to a previous VarDefinition. 389 struct VarDefinition { 390 public: 391 friend class LocalVariableMap; 392 393 // The original declaration for this variable. 394 const NamedDecl *Dec; 395 396 // The expression for this variable, OR 397 const Expr *Exp = nullptr; 398 399 // Reference to another VarDefinition 400 unsigned Ref = 0; 401 402 // The map with which Exp should be interpreted. 403 Context Ctx; 404 405 bool isReference() { return !Exp; } 406 407 private: 408 // Create ordinary variable definition 409 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 410 : Dec(D), Exp(E), Ctx(C) {} 411 412 // Create reference to previous definition 413 VarDefinition(const NamedDecl *D, unsigned R, Context C) 414 : Dec(D), Ref(R), Ctx(C) {} 415 }; 416 417 private: 418 Context::Factory ContextFactory; 419 std::vector<VarDefinition> VarDefinitions; 420 std::vector<std::pair<const Stmt *, Context>> SavedContexts; 421 422 public: 423 LocalVariableMap() { 424 // index 0 is a placeholder for undefined variables (aka phi-nodes). 425 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 426 } 427 428 /// Look up a definition, within the given context. 429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 430 const unsigned *i = Ctx.lookup(D); 431 if (!i) 432 return nullptr; 433 assert(*i < VarDefinitions.size()); 434 return &VarDefinitions[*i]; 435 } 436 437 /// Look up the definition for D within the given context. Returns 438 /// NULL if the expression is not statically known. If successful, also 439 /// modifies Ctx to hold the context of the return Expr. 440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 441 const unsigned *P = Ctx.lookup(D); 442 if (!P) 443 return nullptr; 444 445 unsigned i = *P; 446 while (i > 0) { 447 if (VarDefinitions[i].Exp) { 448 Ctx = VarDefinitions[i].Ctx; 449 return VarDefinitions[i].Exp; 450 } 451 i = VarDefinitions[i].Ref; 452 } 453 return nullptr; 454 } 455 456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 457 458 /// Return the next context after processing S. This function is used by 459 /// clients of the class to get the appropriate context when traversing the 460 /// CFG. It must be called for every assignment or DeclStmt. 461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { 462 if (SavedContexts[CtxIndex+1].first == S) { 463 CtxIndex++; 464 Context Result = SavedContexts[CtxIndex].second; 465 return Result; 466 } 467 return C; 468 } 469 470 void dumpVarDefinitionName(unsigned i) { 471 if (i == 0) { 472 llvm::errs() << "Undefined"; 473 return; 474 } 475 const NamedDecl *Dec = VarDefinitions[i].Dec; 476 if (!Dec) { 477 llvm::errs() << "<<NULL>>"; 478 return; 479 } 480 Dec->printName(llvm::errs()); 481 llvm::errs() << "." << i << " " << ((const void*) Dec); 482 } 483 484 /// Dumps an ASCII representation of the variable map to llvm::errs() 485 void dump() { 486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 487 const Expr *Exp = VarDefinitions[i].Exp; 488 unsigned Ref = VarDefinitions[i].Ref; 489 490 dumpVarDefinitionName(i); 491 llvm::errs() << " = "; 492 if (Exp) Exp->dump(); 493 else { 494 dumpVarDefinitionName(Ref); 495 llvm::errs() << "\n"; 496 } 497 } 498 } 499 500 /// Dumps an ASCII representation of a Context to llvm::errs() 501 void dumpContext(Context C) { 502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 503 const NamedDecl *D = I.getKey(); 504 D->printName(llvm::errs()); 505 const unsigned *i = C.lookup(D); 506 llvm::errs() << " -> "; 507 dumpVarDefinitionName(*i); 508 llvm::errs() << "\n"; 509 } 510 } 511 512 /// Builds the variable map. 513 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 514 std::vector<CFGBlockInfo> &BlockInfo); 515 516 protected: 517 friend class VarMapBuilder; 518 519 // Get the current context index 520 unsigned getContextIndex() { return SavedContexts.size()-1; } 521 522 // Save the current context for later replay 523 void saveContext(const Stmt *S, Context C) { 524 SavedContexts.push_back(std::make_pair(S, C)); 525 } 526 527 // Adds a new definition to the given context, and returns a new context. 528 // This method should be called when declaring a new variable. 529 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 530 assert(!Ctx.contains(D)); 531 unsigned newID = VarDefinitions.size(); 532 Context NewCtx = ContextFactory.add(Ctx, D, newID); 533 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 534 return NewCtx; 535 } 536 537 // Add a new reference to an existing definition. 538 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 539 unsigned newID = VarDefinitions.size(); 540 Context NewCtx = ContextFactory.add(Ctx, D, newID); 541 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 542 return NewCtx; 543 } 544 545 // Updates a definition only if that definition is already in the map. 546 // This method should be called when assigning to an existing variable. 547 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 548 if (Ctx.contains(D)) { 549 unsigned newID = VarDefinitions.size(); 550 Context NewCtx = ContextFactory.remove(Ctx, D); 551 NewCtx = ContextFactory.add(NewCtx, D, newID); 552 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 553 return NewCtx; 554 } 555 return Ctx; 556 } 557 558 // Removes a definition from the context, but keeps the variable name 559 // as a valid variable. The index 0 is a placeholder for cleared definitions. 560 Context clearDefinition(const NamedDecl *D, Context Ctx) { 561 Context NewCtx = Ctx; 562 if (NewCtx.contains(D)) { 563 NewCtx = ContextFactory.remove(NewCtx, D); 564 NewCtx = ContextFactory.add(NewCtx, D, 0); 565 } 566 return NewCtx; 567 } 568 569 // Remove a definition entirely frmo the context. 570 Context removeDefinition(const NamedDecl *D, Context Ctx) { 571 Context NewCtx = Ctx; 572 if (NewCtx.contains(D)) { 573 NewCtx = ContextFactory.remove(NewCtx, D); 574 } 575 return NewCtx; 576 } 577 578 Context intersectContexts(Context C1, Context C2); 579 Context createReferenceContext(Context C); 580 void intersectBackEdge(Context C1, Context C2); 581 }; 582 583 } // namespace 584 585 // This has to be defined after LocalVariableMap. 586 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 587 return CFGBlockInfo(M.getEmptyContext()); 588 } 589 590 namespace { 591 592 /// Visitor which builds a LocalVariableMap 593 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { 594 public: 595 LocalVariableMap* VMap; 596 LocalVariableMap::Context Ctx; 597 598 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 599 : VMap(VM), Ctx(C) {} 600 601 void VisitDeclStmt(const DeclStmt *S); 602 void VisitBinaryOperator(const BinaryOperator *BO); 603 }; 604 605 } // namespace 606 607 // Add new local variables to the variable map 608 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { 609 bool modifiedCtx = false; 610 const DeclGroupRef DGrp = S->getDeclGroup(); 611 for (const auto *D : DGrp) { 612 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 613 const Expr *E = VD->getInit(); 614 615 // Add local variables with trivial type to the variable map 616 QualType T = VD->getType(); 617 if (T.isTrivialType(VD->getASTContext())) { 618 Ctx = VMap->addDefinition(VD, E, Ctx); 619 modifiedCtx = true; 620 } 621 } 622 } 623 if (modifiedCtx) 624 VMap->saveContext(S, Ctx); 625 } 626 627 // Update local variable definitions in variable map 628 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { 629 if (!BO->isAssignmentOp()) 630 return; 631 632 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 633 634 // Update the variable map and current context. 635 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 636 const ValueDecl *VDec = DRE->getDecl(); 637 if (Ctx.lookup(VDec)) { 638 if (BO->getOpcode() == BO_Assign) 639 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 640 else 641 // FIXME -- handle compound assignment operators 642 Ctx = VMap->clearDefinition(VDec, Ctx); 643 VMap->saveContext(BO, Ctx); 644 } 645 } 646 } 647 648 // Computes the intersection of two contexts. The intersection is the 649 // set of variables which have the same definition in both contexts; 650 // variables with different definitions are discarded. 651 LocalVariableMap::Context 652 LocalVariableMap::intersectContexts(Context C1, Context C2) { 653 Context Result = C1; 654 for (const auto &P : C1) { 655 const NamedDecl *Dec = P.first; 656 const unsigned *i2 = C2.lookup(Dec); 657 if (!i2) // variable doesn't exist on second path 658 Result = removeDefinition(Dec, Result); 659 else if (*i2 != P.second) // variable exists, but has different definition 660 Result = clearDefinition(Dec, Result); 661 } 662 return Result; 663 } 664 665 // For every variable in C, create a new variable that refers to the 666 // definition in C. Return a new context that contains these new variables. 667 // (We use this for a naive implementation of SSA on loop back-edges.) 668 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 669 Context Result = getEmptyContext(); 670 for (const auto &P : C) 671 Result = addReference(P.first, P.second, Result); 672 return Result; 673 } 674 675 // This routine also takes the intersection of C1 and C2, but it does so by 676 // altering the VarDefinitions. C1 must be the result of an earlier call to 677 // createReferenceContext. 678 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 679 for (const auto &P : C1) { 680 unsigned i1 = P.second; 681 VarDefinition *VDef = &VarDefinitions[i1]; 682 assert(VDef->isReference()); 683 684 const unsigned *i2 = C2.lookup(P.first); 685 if (!i2 || (*i2 != i1)) 686 VDef->Ref = 0; // Mark this variable as undefined 687 } 688 } 689 690 // Traverse the CFG in topological order, so all predecessors of a block 691 // (excluding back-edges) are visited before the block itself. At 692 // each point in the code, we calculate a Context, which holds the set of 693 // variable definitions which are visible at that point in execution. 694 // Visible variables are mapped to their definitions using an array that 695 // contains all definitions. 696 // 697 // At join points in the CFG, the set is computed as the intersection of 698 // the incoming sets along each edge, E.g. 699 // 700 // { Context | VarDefinitions } 701 // int x = 0; { x -> x1 | x1 = 0 } 702 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 703 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 704 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 705 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 706 // 707 // This is essentially a simpler and more naive version of the standard SSA 708 // algorithm. Those definitions that remain in the intersection are from blocks 709 // that strictly dominate the current block. We do not bother to insert proper 710 // phi nodes, because they are not used in our analysis; instead, wherever 711 // a phi node would be required, we simply remove that definition from the 712 // context (E.g. x above). 713 // 714 // The initial traversal does not capture back-edges, so those need to be 715 // handled on a separate pass. Whenever the first pass encounters an 716 // incoming back edge, it duplicates the context, creating new definitions 717 // that refer back to the originals. (These correspond to places where SSA 718 // might have to insert a phi node.) On the second pass, these definitions are 719 // set to NULL if the variable has changed on the back-edge (i.e. a phi 720 // node was actually required.) E.g. 721 // 722 // { Context | VarDefinitions } 723 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 724 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 725 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 726 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 727 void LocalVariableMap::traverseCFG(CFG *CFGraph, 728 const PostOrderCFGView *SortedGraph, 729 std::vector<CFGBlockInfo> &BlockInfo) { 730 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 731 732 for (const auto *CurrBlock : *SortedGraph) { 733 unsigned CurrBlockID = CurrBlock->getBlockID(); 734 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 735 736 VisitedBlocks.insert(CurrBlock); 737 738 // Calculate the entry context for the current block 739 bool HasBackEdges = false; 740 bool CtxInit = true; 741 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 742 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 743 // if *PI -> CurrBlock is a back edge, so skip it 744 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 745 HasBackEdges = true; 746 continue; 747 } 748 749 unsigned PrevBlockID = (*PI)->getBlockID(); 750 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 751 752 if (CtxInit) { 753 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 754 CtxInit = false; 755 } 756 else { 757 CurrBlockInfo->EntryContext = 758 intersectContexts(CurrBlockInfo->EntryContext, 759 PrevBlockInfo->ExitContext); 760 } 761 } 762 763 // Duplicate the context if we have back-edges, so we can call 764 // intersectBackEdges later. 765 if (HasBackEdges) 766 CurrBlockInfo->EntryContext = 767 createReferenceContext(CurrBlockInfo->EntryContext); 768 769 // Create a starting context index for the current block 770 saveContext(nullptr, CurrBlockInfo->EntryContext); 771 CurrBlockInfo->EntryIndex = getContextIndex(); 772 773 // Visit all the statements in the basic block. 774 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 775 for (const auto &BI : *CurrBlock) { 776 switch (BI.getKind()) { 777 case CFGElement::Statement: { 778 CFGStmt CS = BI.castAs<CFGStmt>(); 779 VMapBuilder.Visit(CS.getStmt()); 780 break; 781 } 782 default: 783 break; 784 } 785 } 786 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 787 788 // Mark variables on back edges as "unknown" if they've been changed. 789 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 790 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 791 // if CurrBlock -> *SI is *not* a back edge 792 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 793 continue; 794 795 CFGBlock *FirstLoopBlock = *SI; 796 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 797 Context LoopEnd = CurrBlockInfo->ExitContext; 798 intersectBackEdge(LoopBegin, LoopEnd); 799 } 800 } 801 802 // Put an extra entry at the end of the indexed context array 803 unsigned exitID = CFGraph->getExit().getBlockID(); 804 saveContext(nullptr, BlockInfo[exitID].ExitContext); 805 } 806 807 /// Find the appropriate source locations to use when producing diagnostics for 808 /// each block in the CFG. 809 static void findBlockLocations(CFG *CFGraph, 810 const PostOrderCFGView *SortedGraph, 811 std::vector<CFGBlockInfo> &BlockInfo) { 812 for (const auto *CurrBlock : *SortedGraph) { 813 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 814 815 // Find the source location of the last statement in the block, if the 816 // block is not empty. 817 if (const Stmt *S = CurrBlock->getTerminatorStmt()) { 818 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); 819 } else { 820 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 821 BE = CurrBlock->rend(); BI != BE; ++BI) { 822 // FIXME: Handle other CFGElement kinds. 823 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 824 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); 825 break; 826 } 827 } 828 } 829 830 if (CurrBlockInfo->ExitLoc.isValid()) { 831 // This block contains at least one statement. Find the source location 832 // of the first statement in the block. 833 for (const auto &BI : *CurrBlock) { 834 // FIXME: Handle other CFGElement kinds. 835 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 836 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); 837 break; 838 } 839 } 840 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 841 CurrBlock != &CFGraph->getExit()) { 842 // The block is empty, and has a single predecessor. Use its exit 843 // location. 844 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 845 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 846 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) { 847 // The block is empty, and has a single successor. Use its entry 848 // location. 849 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 850 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc; 851 } 852 } 853 } 854 855 namespace { 856 857 class LockableFactEntry : public FactEntry { 858 public: 859 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 860 SourceKind Src = Acquired) 861 : FactEntry(CE, LK, Loc, Src) {} 862 863 void 864 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 865 SourceLocation JoinLoc, LockErrorKind LEK, 866 ThreadSafetyHandler &Handler) const override { 867 if (!asserted() && !negative() && !isUniversal()) { 868 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc, 869 LEK); 870 } 871 } 872 873 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 874 ThreadSafetyHandler &Handler) const override { 875 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(), 876 entry.loc()); 877 } 878 879 void handleUnlock(FactSet &FSet, FactManager &FactMan, 880 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 881 bool FullyRemove, 882 ThreadSafetyHandler &Handler) const override { 883 FSet.removeLock(FactMan, Cp); 884 if (!Cp.negative()) { 885 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 886 !Cp, LK_Exclusive, UnlockLoc)); 887 } 888 } 889 }; 890 891 class ScopedLockableFactEntry : public FactEntry { 892 private: 893 enum UnderlyingCapabilityKind { 894 UCK_Acquired, ///< Any kind of acquired capability. 895 UCK_ReleasedShared, ///< Shared capability that was released. 896 UCK_ReleasedExclusive, ///< Exclusive capability that was released. 897 }; 898 899 struct UnderlyingCapability { 900 CapabilityExpr Cap; 901 UnderlyingCapabilityKind Kind; 902 }; 903 904 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes; 905 906 public: 907 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) 908 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {} 909 910 void addLock(const CapabilityExpr &M) { 911 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired}); 912 } 913 914 void addExclusiveUnlock(const CapabilityExpr &M) { 915 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive}); 916 } 917 918 void addSharedUnlock(const CapabilityExpr &M) { 919 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared}); 920 } 921 922 void 923 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 924 SourceLocation JoinLoc, LockErrorKind LEK, 925 ThreadSafetyHandler &Handler) const override { 926 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 927 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap); 928 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) || 929 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) { 930 // If this scoped lock manages another mutex, and if the underlying 931 // mutex is still/not held, then warn about the underlying mutex. 932 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(), 933 UnderlyingMutex.Cap.toString(), loc(), 934 JoinLoc, LEK); 935 } 936 } 937 } 938 939 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, 940 ThreadSafetyHandler &Handler) const override { 941 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 942 if (UnderlyingMutex.Kind == UCK_Acquired) 943 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(), 944 &Handler); 945 else 946 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler); 947 } 948 } 949 950 void handleUnlock(FactSet &FSet, FactManager &FactMan, 951 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 952 bool FullyRemove, 953 ThreadSafetyHandler &Handler) const override { 954 assert(!Cp.negative() && "Managing object cannot be negative."); 955 for (const auto &UnderlyingMutex : UnderlyingMutexes) { 956 // Remove/lock the underlying mutex if it exists/is still unlocked; warn 957 // on double unlocking/locking if we're not destroying the scoped object. 958 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; 959 if (UnderlyingMutex.Kind == UCK_Acquired) { 960 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler); 961 } else { 962 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared 963 ? LK_Shared 964 : LK_Exclusive; 965 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler); 966 } 967 } 968 if (FullyRemove) 969 FSet.removeLock(FactMan, Cp); 970 } 971 972 private: 973 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 974 LockKind kind, SourceLocation loc, 975 ThreadSafetyHandler *Handler) const { 976 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { 977 if (Handler) 978 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(), 979 loc); 980 } else { 981 FSet.removeLock(FactMan, !Cp); 982 FSet.addLock(FactMan, 983 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed)); 984 } 985 } 986 987 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, 988 SourceLocation loc, ThreadSafetyHandler *Handler) const { 989 if (FSet.findLock(FactMan, Cp)) { 990 FSet.removeLock(FactMan, Cp); 991 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 992 !Cp, LK_Exclusive, loc)); 993 } else if (Handler) { 994 SourceLocation PrevLoc; 995 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 996 PrevLoc = Neg->loc(); 997 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc); 998 } 999 } 1000 }; 1001 1002 /// Class which implements the core thread safety analysis routines. 1003 class ThreadSafetyAnalyzer { 1004 friend class BuildLockset; 1005 friend class threadSafety::BeforeSet; 1006 1007 llvm::BumpPtrAllocator Bpa; 1008 threadSafety::til::MemRegionRef Arena; 1009 threadSafety::SExprBuilder SxBuilder; 1010 1011 ThreadSafetyHandler &Handler; 1012 const CXXMethodDecl *CurrentMethod; 1013 LocalVariableMap LocalVarMap; 1014 FactManager FactMan; 1015 std::vector<CFGBlockInfo> BlockInfo; 1016 1017 BeforeSet *GlobalBeforeSet; 1018 1019 public: 1020 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 1021 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 1022 1023 bool inCurrentScope(const CapabilityExpr &CapE); 1024 1025 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 1026 bool ReqAttr = false); 1027 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 1028 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind); 1029 1030 template <typename AttrType> 1031 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1032 const NamedDecl *D, til::SExpr *Self = nullptr); 1033 1034 template <class AttrType> 1035 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, 1036 const NamedDecl *D, 1037 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 1038 Expr *BrE, bool Neg); 1039 1040 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 1041 bool &Negate); 1042 1043 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 1044 const CFGBlock* PredBlock, 1045 const CFGBlock *CurrBlock); 1046 1047 bool join(const FactEntry &a, const FactEntry &b, bool CanModify); 1048 1049 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1050 SourceLocation JoinLoc, LockErrorKind EntryLEK, 1051 LockErrorKind ExitLEK); 1052 1053 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet, 1054 SourceLocation JoinLoc, LockErrorKind LEK) { 1055 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK); 1056 } 1057 1058 void runAnalysis(AnalysisDeclContext &AC); 1059 }; 1060 1061 } // namespace 1062 1063 /// Process acquired_before and acquired_after attributes on Vd. 1064 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1065 ThreadSafetyAnalyzer& Analyzer) { 1066 // Create a new entry for Vd. 1067 BeforeInfo *Info = nullptr; 1068 { 1069 // Keep InfoPtr in its own scope in case BMap is modified later and the 1070 // reference becomes invalid. 1071 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1072 if (!InfoPtr) 1073 InfoPtr.reset(new BeforeInfo()); 1074 Info = InfoPtr.get(); 1075 } 1076 1077 for (const auto *At : Vd->attrs()) { 1078 switch (At->getKind()) { 1079 case attr::AcquiredBefore: { 1080 const auto *A = cast<AcquiredBeforeAttr>(At); 1081 1082 // Read exprs from the attribute, and add them to BeforeVect. 1083 for (const auto *Arg : A->args()) { 1084 CapabilityExpr Cp = 1085 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1086 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1087 Info->Vect.push_back(Cpvd); 1088 const auto It = BMap.find(Cpvd); 1089 if (It == BMap.end()) 1090 insertAttrExprs(Cpvd, Analyzer); 1091 } 1092 } 1093 break; 1094 } 1095 case attr::AcquiredAfter: { 1096 const auto *A = cast<AcquiredAfterAttr>(At); 1097 1098 // Read exprs from the attribute, and add them to BeforeVect. 1099 for (const auto *Arg : A->args()) { 1100 CapabilityExpr Cp = 1101 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1102 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1103 // Get entry for mutex listed in attribute 1104 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1105 ArgInfo->Vect.push_back(Vd); 1106 } 1107 } 1108 break; 1109 } 1110 default: 1111 break; 1112 } 1113 } 1114 1115 return Info; 1116 } 1117 1118 BeforeSet::BeforeInfo * 1119 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1120 ThreadSafetyAnalyzer &Analyzer) { 1121 auto It = BMap.find(Vd); 1122 BeforeInfo *Info = nullptr; 1123 if (It == BMap.end()) 1124 Info = insertAttrExprs(Vd, Analyzer); 1125 else 1126 Info = It->second.get(); 1127 assert(Info && "BMap contained nullptr?"); 1128 return Info; 1129 } 1130 1131 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1132 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1133 const FactSet& FSet, 1134 ThreadSafetyAnalyzer& Analyzer, 1135 SourceLocation Loc, StringRef CapKind) { 1136 SmallVector<BeforeInfo*, 8> InfoVect; 1137 1138 // Do a depth-first traversal of Vd. 1139 // Return true if there are cycles. 1140 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1141 if (!Vd) 1142 return false; 1143 1144 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1145 1146 if (Info->Visited == 1) 1147 return true; 1148 1149 if (Info->Visited == 2) 1150 return false; 1151 1152 if (Info->Vect.empty()) 1153 return false; 1154 1155 InfoVect.push_back(Info); 1156 Info->Visited = 1; 1157 for (const auto *Vdb : Info->Vect) { 1158 // Exclude mutexes in our immediate before set. 1159 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1160 StringRef L1 = StartVd->getName(); 1161 StringRef L2 = Vdb->getName(); 1162 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1163 } 1164 // Transitively search other before sets, and warn on cycles. 1165 if (traverse(Vdb)) { 1166 if (CycMap.find(Vd) == CycMap.end()) { 1167 CycMap.insert(std::make_pair(Vd, true)); 1168 StringRef L1 = Vd->getName(); 1169 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1170 } 1171 } 1172 } 1173 Info->Visited = 2; 1174 return false; 1175 }; 1176 1177 traverse(StartVd); 1178 1179 for (auto *Info : InfoVect) 1180 Info->Visited = 0; 1181 } 1182 1183 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1184 static const ValueDecl *getValueDecl(const Expr *Exp) { 1185 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1186 return getValueDecl(CE->getSubExpr()); 1187 1188 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1189 return DR->getDecl(); 1190 1191 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1192 return ME->getMemberDecl(); 1193 1194 return nullptr; 1195 } 1196 1197 namespace { 1198 1199 template <typename Ty> 1200 class has_arg_iterator_range { 1201 using yes = char[1]; 1202 using no = char[2]; 1203 1204 template <typename Inner> 1205 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1206 1207 template <typename> 1208 static no& test(...); 1209 1210 public: 1211 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1212 }; 1213 1214 } // namespace 1215 1216 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1217 const threadSafety::til::SExpr *SExp = CapE.sexpr(); 1218 assert(SExp && "Null expressions should be ignored"); 1219 1220 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { 1221 const ValueDecl *VD = LP->clangDecl(); 1222 // Variables defined in a function are always inaccessible. 1223 if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) 1224 return false; 1225 // For now we consider static class members to be inaccessible. 1226 if (isa<CXXRecordDecl>(VD->getDeclContext())) 1227 return false; 1228 // Global variables are always in scope. 1229 return true; 1230 } 1231 1232 // Members are in scope from methods of the same class. 1233 if (const auto *P = dyn_cast<til::Project>(SExp)) { 1234 if (!CurrentMethod) 1235 return false; 1236 const ValueDecl *VD = P->clangDecl(); 1237 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1238 } 1239 1240 return false; 1241 } 1242 1243 /// Add a new lock to the lockset, warning if the lock is already there. 1244 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1245 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1246 std::unique_ptr<FactEntry> Entry, 1247 bool ReqAttr) { 1248 if (Entry->shouldIgnore()) 1249 return; 1250 1251 if (!ReqAttr && !Entry->negative()) { 1252 // look for the negative capability, and remove it from the fact set. 1253 CapabilityExpr NegC = !*Entry; 1254 const FactEntry *Nen = FSet.findLock(FactMan, NegC); 1255 if (Nen) { 1256 FSet.removeLock(FactMan, NegC); 1257 } 1258 else { 1259 if (inCurrentScope(*Entry) && !Entry->asserted()) 1260 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(), 1261 NegC.toString(), Entry->loc()); 1262 } 1263 } 1264 1265 // Check before/after constraints 1266 if (Handler.issueBetaWarnings() && 1267 !Entry->asserted() && !Entry->declared()) { 1268 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1269 Entry->loc(), Entry->getKind()); 1270 } 1271 1272 // FIXME: Don't always warn when we have support for reentrant locks. 1273 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { 1274 if (!Entry->asserted()) 1275 Cp->handleLock(FSet, FactMan, *Entry, Handler); 1276 } else { 1277 FSet.addLock(FactMan, std::move(Entry)); 1278 } 1279 } 1280 1281 /// Remove a lock from the lockset, warning if the lock is not there. 1282 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1283 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1284 SourceLocation UnlockLoc, 1285 bool FullyRemove, LockKind ReceivedKind) { 1286 if (Cp.shouldIgnore()) 1287 return; 1288 1289 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1290 if (!LDat) { 1291 SourceLocation PrevLoc; 1292 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp)) 1293 PrevLoc = Neg->loc(); 1294 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc, 1295 PrevLoc); 1296 return; 1297 } 1298 1299 // Generic lock removal doesn't care about lock kind mismatches, but 1300 // otherwise diagnose when the lock kinds are mismatched. 1301 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1302 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(), 1303 ReceivedKind, LDat->loc(), UnlockLoc); 1304 } 1305 1306 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler); 1307 } 1308 1309 /// Extract the list of mutexIDs from the attribute on an expression, 1310 /// and push them onto Mtxs, discarding any duplicates. 1311 template <typename AttrType> 1312 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1313 const Expr *Exp, const NamedDecl *D, 1314 til::SExpr *Self) { 1315 if (Attr->args_size() == 0) { 1316 // The mutex held is the "this" object. 1317 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self); 1318 if (Cp.isInvalid()) { 1319 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1320 return; 1321 } 1322 //else 1323 if (!Cp.shouldIgnore()) 1324 Mtxs.push_back_nodup(Cp); 1325 return; 1326 } 1327 1328 for (const auto *Arg : Attr->args()) { 1329 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); 1330 if (Cp.isInvalid()) { 1331 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); 1332 continue; 1333 } 1334 //else 1335 if (!Cp.shouldIgnore()) 1336 Mtxs.push_back_nodup(Cp); 1337 } 1338 } 1339 1340 /// Extract the list of mutexIDs from a trylock attribute. If the 1341 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1342 /// any duplicates. 1343 template <class AttrType> 1344 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1345 const Expr *Exp, const NamedDecl *D, 1346 const CFGBlock *PredBlock, 1347 const CFGBlock *CurrBlock, 1348 Expr *BrE, bool Neg) { 1349 // Find out which branch has the lock 1350 bool branch = false; 1351 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1352 branch = BLE->getValue(); 1353 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1354 branch = ILE->getValue().getBoolValue(); 1355 1356 int branchnum = branch ? 0 : 1; 1357 if (Neg) 1358 branchnum = !branchnum; 1359 1360 // If we've taken the trylock branch, then add the lock 1361 int i = 0; 1362 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1363 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1364 if (*SI == CurrBlock && i == branchnum) 1365 getMutexIDs(Mtxs, Attr, Exp, D); 1366 } 1367 } 1368 1369 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1370 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1371 TCond = false; 1372 return true; 1373 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1374 TCond = BLE->getValue(); 1375 return true; 1376 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1377 TCond = ILE->getValue().getBoolValue(); 1378 return true; 1379 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1380 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1381 return false; 1382 } 1383 1384 // If Cond can be traced back to a function call, return the call expression. 1385 // The negate variable should be called with false, and will be set to true 1386 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1387 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1388 LocalVarContext C, 1389 bool &Negate) { 1390 if (!Cond) 1391 return nullptr; 1392 1393 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { 1394 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) 1395 return getTrylockCallExpr(CallExp->getArg(0), C, Negate); 1396 return CallExp; 1397 } 1398 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1399 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1400 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1401 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1402 else if (const auto *FE = dyn_cast<FullExpr>(Cond)) 1403 return getTrylockCallExpr(FE->getSubExpr(), C, Negate); 1404 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1405 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1406 return getTrylockCallExpr(E, C, Negate); 1407 } 1408 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1409 if (UOP->getOpcode() == UO_LNot) { 1410 Negate = !Negate; 1411 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1412 } 1413 return nullptr; 1414 } 1415 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1416 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1417 if (BOP->getOpcode() == BO_NE) 1418 Negate = !Negate; 1419 1420 bool TCond = false; 1421 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1422 if (!TCond) Negate = !Negate; 1423 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1424 } 1425 TCond = false; 1426 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1427 if (!TCond) Negate = !Negate; 1428 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1429 } 1430 return nullptr; 1431 } 1432 if (BOP->getOpcode() == BO_LAnd) { 1433 // LHS must have been evaluated in a different block. 1434 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1435 } 1436 if (BOP->getOpcode() == BO_LOr) 1437 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1438 return nullptr; 1439 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { 1440 bool TCond, FCond; 1441 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && 1442 getStaticBooleanValue(COP->getFalseExpr(), FCond)) { 1443 if (TCond && !FCond) 1444 return getTrylockCallExpr(COP->getCond(), C, Negate); 1445 if (!TCond && FCond) { 1446 Negate = !Negate; 1447 return getTrylockCallExpr(COP->getCond(), C, Negate); 1448 } 1449 } 1450 } 1451 return nullptr; 1452 } 1453 1454 /// Find the lockset that holds on the edge between PredBlock 1455 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1456 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1457 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1458 const FactSet &ExitSet, 1459 const CFGBlock *PredBlock, 1460 const CFGBlock *CurrBlock) { 1461 Result = ExitSet; 1462 1463 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1464 // We don't acquire try-locks on ?: branches, only when its result is used. 1465 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) 1466 return; 1467 1468 bool Negate = false; 1469 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1470 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1471 1472 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1473 if (!Exp) 1474 return; 1475 1476 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1477 if(!FunDecl || !FunDecl->hasAttrs()) 1478 return; 1479 1480 CapExprSet ExclusiveLocksToAdd; 1481 CapExprSet SharedLocksToAdd; 1482 1483 // If the condition is a call to a Trylock function, then grab the attributes 1484 for (const auto *Attr : FunDecl->attrs()) { 1485 switch (Attr->getKind()) { 1486 case attr::TryAcquireCapability: { 1487 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1488 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1489 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1490 Negate); 1491 break; 1492 }; 1493 case attr::ExclusiveTrylockFunction: { 1494 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1495 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1496 A->getSuccessValue(), Negate); 1497 break; 1498 } 1499 case attr::SharedTrylockFunction: { 1500 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1501 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, 1502 A->getSuccessValue(), Negate); 1503 break; 1504 } 1505 default: 1506 break; 1507 } 1508 } 1509 1510 // Add and remove locks. 1511 SourceLocation Loc = Exp->getExprLoc(); 1512 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1513 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1514 LK_Exclusive, Loc)); 1515 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1516 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, 1517 LK_Shared, Loc)); 1518 } 1519 1520 namespace { 1521 1522 /// We use this class to visit different types of expressions in 1523 /// CFGBlocks, and build up the lockset. 1524 /// An expression may cause us to add or remove locks from the lockset, or else 1525 /// output error messages related to missing locks. 1526 /// FIXME: In future, we may be able to not inherit from a visitor. 1527 class BuildLockset : public ConstStmtVisitor<BuildLockset> { 1528 friend class ThreadSafetyAnalyzer; 1529 1530 ThreadSafetyAnalyzer *Analyzer; 1531 FactSet FSet; 1532 /// Maps constructed objects to `this` placeholder prior to initialization. 1533 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects; 1534 LocalVariableMap::Context LVarCtx; 1535 unsigned CtxIndex; 1536 1537 // helper functions 1538 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1539 Expr *MutexExp, ProtectedOperationKind POK, 1540 til::LiteralPtr *Self, SourceLocation Loc); 1541 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1542 til::LiteralPtr *Self, SourceLocation Loc); 1543 1544 void checkAccess(const Expr *Exp, AccessKind AK, 1545 ProtectedOperationKind POK = POK_VarAccess); 1546 void checkPtAccess(const Expr *Exp, AccessKind AK, 1547 ProtectedOperationKind POK = POK_VarAccess); 1548 1549 void handleCall(const Expr *Exp, const NamedDecl *D, 1550 til::LiteralPtr *Self = nullptr, 1551 SourceLocation Loc = SourceLocation()); 1552 void examineArguments(const FunctionDecl *FD, 1553 CallExpr::const_arg_iterator ArgBegin, 1554 CallExpr::const_arg_iterator ArgEnd, 1555 bool SkipFirstParam = false); 1556 1557 public: 1558 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1559 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1560 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1561 1562 void VisitUnaryOperator(const UnaryOperator *UO); 1563 void VisitBinaryOperator(const BinaryOperator *BO); 1564 void VisitCastExpr(const CastExpr *CE); 1565 void VisitCallExpr(const CallExpr *Exp); 1566 void VisitCXXConstructExpr(const CXXConstructExpr *Exp); 1567 void VisitDeclStmt(const DeclStmt *S); 1568 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); 1569 }; 1570 1571 } // namespace 1572 1573 /// Warn if the LSet does not contain a lock sufficient to protect access 1574 /// of at least the passed in AccessKind. 1575 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1576 AccessKind AK, Expr *MutexExp, 1577 ProtectedOperationKind POK, 1578 til::LiteralPtr *Self, 1579 SourceLocation Loc) { 1580 LockKind LK = getLockKindFromAccessKind(AK); 1581 1582 CapabilityExpr Cp = 1583 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1584 if (Cp.isInvalid()) { 1585 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); 1586 return; 1587 } else if (Cp.shouldIgnore()) { 1588 return; 1589 } 1590 1591 if (Cp.negative()) { 1592 // Negative capabilities act like locks excluded 1593 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1594 if (LDat) { 1595 Analyzer->Handler.handleFunExcludesLock( 1596 Cp.getKind(), D->getNameAsString(), (!Cp).toString(), Loc); 1597 return; 1598 } 1599 1600 // If this does not refer to a negative capability in the same class, 1601 // then stop here. 1602 if (!Analyzer->inCurrentScope(Cp)) 1603 return; 1604 1605 // Otherwise the negative requirement must be propagated to the caller. 1606 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1607 if (!LDat) { 1608 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc); 1609 } 1610 return; 1611 } 1612 1613 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1614 bool NoError = true; 1615 if (!LDat) { 1616 // No exact match found. Look for a partial match. 1617 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1618 if (LDat) { 1619 // Warn that there's no precise match. 1620 std::string PartMatchStr = LDat->toString(); 1621 StringRef PartMatchName(PartMatchStr); 1622 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1623 LK, Loc, &PartMatchName); 1624 } else { 1625 // Warn that there's no match at all. 1626 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1627 LK, Loc); 1628 } 1629 NoError = false; 1630 } 1631 // Make sure the mutex we found is the right kind. 1632 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1633 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), 1634 LK, Loc); 1635 } 1636 } 1637 1638 /// Warn if the LSet contains the given lock. 1639 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1640 Expr *MutexExp, til::LiteralPtr *Self, 1641 SourceLocation Loc) { 1642 CapabilityExpr Cp = 1643 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self); 1644 if (Cp.isInvalid()) { 1645 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); 1646 return; 1647 } else if (Cp.shouldIgnore()) { 1648 return; 1649 } 1650 1651 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); 1652 if (LDat) { 1653 Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), 1654 Cp.toString(), Loc); 1655 } 1656 } 1657 1658 /// Checks guarded_by and pt_guarded_by attributes. 1659 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1660 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1661 /// Similarly, we check if the access is to an expression that dereferences 1662 /// a pointer marked with pt_guarded_by. 1663 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1664 ProtectedOperationKind POK) { 1665 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1666 1667 SourceLocation Loc = Exp->getExprLoc(); 1668 1669 // Local variables of reference type cannot be re-assigned; 1670 // map them to their initializer. 1671 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1672 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1673 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1674 if (const auto *E = VD->getInit()) { 1675 // Guard against self-initialization. e.g., int &i = i; 1676 if (E == Exp) 1677 break; 1678 Exp = E; 1679 continue; 1680 } 1681 } 1682 break; 1683 } 1684 1685 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1686 // For dereferences 1687 if (UO->getOpcode() == UO_Deref) 1688 checkPtAccess(UO->getSubExpr(), AK, POK); 1689 return; 1690 } 1691 1692 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) { 1693 switch (BO->getOpcode()) { 1694 case BO_PtrMemD: // .* 1695 return checkAccess(BO->getLHS(), AK, POK); 1696 case BO_PtrMemI: // ->* 1697 return checkPtAccess(BO->getLHS(), AK, POK); 1698 default: 1699 return; 1700 } 1701 } 1702 1703 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1704 checkPtAccess(AE->getLHS(), AK, POK); 1705 return; 1706 } 1707 1708 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1709 if (ME->isArrow()) 1710 checkPtAccess(ME->getBase(), AK, POK); 1711 else 1712 checkAccess(ME->getBase(), AK, POK); 1713 } 1714 1715 const ValueDecl *D = getValueDecl(Exp); 1716 if (!D || !D->hasAttrs()) 1717 return; 1718 1719 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1720 Analyzer->Handler.handleNoMutexHeld(D, POK, AK, Loc); 1721 } 1722 1723 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1724 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, nullptr, Loc); 1725 } 1726 1727 /// Checks pt_guarded_by and pt_guarded_var attributes. 1728 /// POK is the same operationKind that was passed to checkAccess. 1729 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1730 ProtectedOperationKind POK) { 1731 while (true) { 1732 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1733 Exp = PE->getSubExpr(); 1734 continue; 1735 } 1736 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1737 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1738 // If it's an actual array, and not a pointer, then it's elements 1739 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1740 checkAccess(CE->getSubExpr(), AK, POK); 1741 return; 1742 } 1743 Exp = CE->getSubExpr(); 1744 continue; 1745 } 1746 break; 1747 } 1748 1749 // Pass by reference warnings are under a different flag. 1750 ProtectedOperationKind PtPOK = POK_VarDereference; 1751 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1752 1753 const ValueDecl *D = getValueDecl(Exp); 1754 if (!D || !D->hasAttrs()) 1755 return; 1756 1757 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1758 Analyzer->Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc()); 1759 1760 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1761 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, nullptr, 1762 Exp->getExprLoc()); 1763 } 1764 1765 /// Process a function call, method call, constructor call, 1766 /// or destructor call. This involves looking at the attributes on the 1767 /// corresponding function/method/constructor/destructor, issuing warnings, 1768 /// and updating the locksets accordingly. 1769 /// 1770 /// FIXME: For classes annotated with one of the guarded annotations, we need 1771 /// to treat const method calls as reads and non-const method calls as writes, 1772 /// and check that the appropriate locks are held. Non-const method calls with 1773 /// the same signature as const method calls can be also treated as reads. 1774 /// 1775 /// \param Exp The call expression. 1776 /// \param D The callee declaration. 1777 /// \param Self If \p Exp = nullptr, the implicit this argument. 1778 /// \param Loc If \p Exp = nullptr, the location. 1779 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, 1780 til::LiteralPtr *Self, SourceLocation Loc) { 1781 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1782 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1783 CapExprSet ScopedReqsAndExcludes; 1784 1785 // Figure out if we're constructing an object of scoped lockable class 1786 CapabilityExpr Scp; 1787 if (Exp) { 1788 assert(!Self); 1789 const auto *TagT = Exp->getType()->getAs<TagType>(); 1790 if (TagT && Exp->isPRValue()) { 1791 std::pair<til::LiteralPtr *, StringRef> Placeholder = 1792 Analyzer->SxBuilder.createThisPlaceholder(Exp); 1793 [[maybe_unused]] auto inserted = 1794 ConstructedObjects.insert({Exp, Placeholder.first}); 1795 assert(inserted.second && "Are we visiting the same expression again?"); 1796 if (isa<CXXConstructExpr>(Exp)) 1797 Self = Placeholder.first; 1798 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) 1799 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false); 1800 } 1801 1802 assert(Loc.isInvalid()); 1803 Loc = Exp->getExprLoc(); 1804 } 1805 1806 for(const Attr *At : D->attrs()) { 1807 switch (At->getKind()) { 1808 // When we encounter a lock function, we need to add the lock to our 1809 // lockset. 1810 case attr::AcquireCapability: { 1811 const auto *A = cast<AcquireCapabilityAttr>(At); 1812 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1813 : ExclusiveLocksToAdd, 1814 A, Exp, D, Self); 1815 break; 1816 } 1817 1818 // An assert will add a lock to the lockset, but will not generate 1819 // a warning if it is already there, and will not generate a warning 1820 // if it is not removed. 1821 case attr::AssertExclusiveLock: { 1822 const auto *A = cast<AssertExclusiveLockAttr>(At); 1823 1824 CapExprSet AssertLocks; 1825 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1826 for (const auto &AssertLock : AssertLocks) 1827 Analyzer->addLock( 1828 FSet, std::make_unique<LockableFactEntry>( 1829 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted)); 1830 break; 1831 } 1832 case attr::AssertSharedLock: { 1833 const auto *A = cast<AssertSharedLockAttr>(At); 1834 1835 CapExprSet AssertLocks; 1836 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1837 for (const auto &AssertLock : AssertLocks) 1838 Analyzer->addLock( 1839 FSet, std::make_unique<LockableFactEntry>( 1840 AssertLock, LK_Shared, Loc, FactEntry::Asserted)); 1841 break; 1842 } 1843 1844 case attr::AssertCapability: { 1845 const auto *A = cast<AssertCapabilityAttr>(At); 1846 CapExprSet AssertLocks; 1847 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); 1848 for (const auto &AssertLock : AssertLocks) 1849 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( 1850 AssertLock, 1851 A->isShared() ? LK_Shared : LK_Exclusive, 1852 Loc, FactEntry::Asserted)); 1853 break; 1854 } 1855 1856 // When we encounter an unlock function, we need to remove unlocked 1857 // mutexes from the lockset, and flag a warning if they are not there. 1858 case attr::ReleaseCapability: { 1859 const auto *A = cast<ReleaseCapabilityAttr>(At); 1860 if (A->isGeneric()) 1861 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); 1862 else if (A->isShared()) 1863 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); 1864 else 1865 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); 1866 break; 1867 } 1868 1869 case attr::RequiresCapability: { 1870 const auto *A = cast<RequiresCapabilityAttr>(At); 1871 for (auto *Arg : A->args()) { 1872 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1873 POK_FunctionCall, Self, Loc); 1874 // use for adopting a lock 1875 if (!Scp.shouldIgnore()) 1876 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1877 } 1878 break; 1879 } 1880 1881 case attr::LocksExcluded: { 1882 const auto *A = cast<LocksExcludedAttr>(At); 1883 for (auto *Arg : A->args()) { 1884 warnIfMutexHeld(D, Exp, Arg, Self, Loc); 1885 // use for deferring a lock 1886 if (!Scp.shouldIgnore()) 1887 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); 1888 } 1889 break; 1890 } 1891 1892 // Ignore attributes unrelated to thread-safety 1893 default: 1894 break; 1895 } 1896 } 1897 1898 // Remove locks first to allow lock upgrading/downgrading. 1899 // FIXME -- should only fully remove if the attribute refers to 'this'. 1900 bool Dtor = isa<CXXDestructorDecl>(D); 1901 for (const auto &M : ExclusiveLocksToRemove) 1902 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive); 1903 for (const auto &M : SharedLocksToRemove) 1904 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared); 1905 for (const auto &M : GenericLocksToRemove) 1906 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic); 1907 1908 // Add locks. 1909 FactEntry::SourceKind Source = 1910 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; 1911 for (const auto &M : ExclusiveLocksToAdd) 1912 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, 1913 Loc, Source)); 1914 for (const auto &M : SharedLocksToAdd) 1915 Analyzer->addLock( 1916 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source)); 1917 1918 if (!Scp.shouldIgnore()) { 1919 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1920 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc); 1921 for (const auto &M : ExclusiveLocksToAdd) 1922 ScopedEntry->addLock(M); 1923 for (const auto &M : SharedLocksToAdd) 1924 ScopedEntry->addLock(M); 1925 for (const auto &M : ScopedReqsAndExcludes) 1926 ScopedEntry->addLock(M); 1927 for (const auto &M : ExclusiveLocksToRemove) 1928 ScopedEntry->addExclusiveUnlock(M); 1929 for (const auto &M : SharedLocksToRemove) 1930 ScopedEntry->addSharedUnlock(M); 1931 Analyzer->addLock(FSet, std::move(ScopedEntry)); 1932 } 1933 } 1934 1935 /// For unary operations which read and write a variable, we need to 1936 /// check whether we hold any required mutexes. Reads are checked in 1937 /// VisitCastExpr. 1938 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { 1939 switch (UO->getOpcode()) { 1940 case UO_PostDec: 1941 case UO_PostInc: 1942 case UO_PreDec: 1943 case UO_PreInc: 1944 checkAccess(UO->getSubExpr(), AK_Written); 1945 break; 1946 default: 1947 break; 1948 } 1949 } 1950 1951 /// For binary operations which assign to a variable (writes), we need to check 1952 /// whether we hold any required mutexes. 1953 /// FIXME: Deal with non-primitive types. 1954 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { 1955 if (!BO->isAssignmentOp()) 1956 return; 1957 1958 // adjust the context 1959 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1960 1961 checkAccess(BO->getLHS(), AK_Written); 1962 } 1963 1964 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1965 /// need to ensure we hold any required mutexes. 1966 /// FIXME: Deal with non-primitive types. 1967 void BuildLockset::VisitCastExpr(const CastExpr *CE) { 1968 if (CE->getCastKind() != CK_LValueToRValue) 1969 return; 1970 checkAccess(CE->getSubExpr(), AK_Read); 1971 } 1972 1973 void BuildLockset::examineArguments(const FunctionDecl *FD, 1974 CallExpr::const_arg_iterator ArgBegin, 1975 CallExpr::const_arg_iterator ArgEnd, 1976 bool SkipFirstParam) { 1977 // Currently we can't do anything if we don't know the function declaration. 1978 if (!FD) 1979 return; 1980 1981 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1982 // only turns off checking within the body of a function, but we also 1983 // use it to turn off checking in arguments to the function. This 1984 // could result in some false negatives, but the alternative is to 1985 // create yet another attribute. 1986 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) 1987 return; 1988 1989 const ArrayRef<ParmVarDecl *> Params = FD->parameters(); 1990 auto Param = Params.begin(); 1991 if (SkipFirstParam) 1992 ++Param; 1993 1994 // There can be default arguments, so we stop when one iterator is at end(). 1995 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; 1996 ++Param, ++Arg) { 1997 QualType Qt = (*Param)->getType(); 1998 if (Qt->isReferenceType()) 1999 checkAccess(*Arg, AK_Read, POK_PassByRef); 2000 } 2001 } 2002 2003 void BuildLockset::VisitCallExpr(const CallExpr *Exp) { 2004 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 2005 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 2006 // ME can be null when calling a method pointer 2007 const CXXMethodDecl *MD = CE->getMethodDecl(); 2008 2009 if (ME && MD) { 2010 if (ME->isArrow()) { 2011 // Should perhaps be AK_Written if !MD->isConst(). 2012 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 2013 } else { 2014 // Should perhaps be AK_Written if !MD->isConst(). 2015 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 2016 } 2017 } 2018 2019 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); 2020 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 2021 OverloadedOperatorKind OEop = OE->getOperator(); 2022 switch (OEop) { 2023 case OO_Equal: 2024 case OO_PlusEqual: 2025 case OO_MinusEqual: 2026 case OO_StarEqual: 2027 case OO_SlashEqual: 2028 case OO_PercentEqual: 2029 case OO_CaretEqual: 2030 case OO_AmpEqual: 2031 case OO_PipeEqual: 2032 case OO_LessLessEqual: 2033 case OO_GreaterGreaterEqual: 2034 checkAccess(OE->getArg(1), AK_Read); 2035 [[fallthrough]]; 2036 case OO_PlusPlus: 2037 case OO_MinusMinus: 2038 checkAccess(OE->getArg(0), AK_Written); 2039 break; 2040 case OO_Star: 2041 case OO_ArrowStar: 2042 case OO_Arrow: 2043 case OO_Subscript: 2044 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 2045 // Grrr. operator* can be multiplication... 2046 checkPtAccess(OE->getArg(0), AK_Read); 2047 } 2048 [[fallthrough]]; 2049 default: { 2050 // TODO: get rid of this, and rely on pass-by-ref instead. 2051 const Expr *Obj = OE->getArg(0); 2052 checkAccess(Obj, AK_Read); 2053 // Check the remaining arguments. For method operators, the first 2054 // argument is the implicit self argument, and doesn't appear in the 2055 // FunctionDecl, but for non-methods it does. 2056 const FunctionDecl *FD = OE->getDirectCallee(); 2057 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), 2058 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); 2059 break; 2060 } 2061 } 2062 } else { 2063 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); 2064 } 2065 2066 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2067 if(!D || !D->hasAttrs()) 2068 return; 2069 handleCall(Exp, D); 2070 } 2071 2072 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { 2073 const CXXConstructorDecl *D = Exp->getConstructor(); 2074 if (D && D->isCopyConstructor()) { 2075 const Expr* Source = Exp->getArg(0); 2076 checkAccess(Source, AK_Read); 2077 } else { 2078 examineArguments(D, Exp->arg_begin(), Exp->arg_end()); 2079 } 2080 if (D && D->hasAttrs()) 2081 handleCall(Exp, D); 2082 } 2083 2084 static const Expr *UnpackConstruction(const Expr *E) { 2085 if (auto *CE = dyn_cast<CastExpr>(E)) 2086 if (CE->getCastKind() == CK_NoOp) 2087 E = CE->getSubExpr()->IgnoreParens(); 2088 if (auto *CE = dyn_cast<CastExpr>(E)) 2089 if (CE->getCastKind() == CK_ConstructorConversion || 2090 CE->getCastKind() == CK_UserDefinedConversion) 2091 E = CE->getSubExpr(); 2092 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2093 E = BTE->getSubExpr(); 2094 return E; 2095 } 2096 2097 void BuildLockset::VisitDeclStmt(const DeclStmt *S) { 2098 // adjust the context 2099 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2100 2101 for (auto *D : S->getDeclGroup()) { 2102 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2103 const Expr *E = VD->getInit(); 2104 if (!E) 2105 continue; 2106 E = E->IgnoreParens(); 2107 2108 // handle constructors that involve temporaries 2109 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2110 E = EWC->getSubExpr()->IgnoreParens(); 2111 E = UnpackConstruction(E); 2112 2113 if (auto Object = ConstructedObjects.find(E); 2114 Object != ConstructedObjects.end()) { 2115 Object->second->setClangDecl(VD); 2116 ConstructedObjects.erase(Object); 2117 } 2118 } 2119 } 2120 } 2121 2122 void BuildLockset::VisitMaterializeTemporaryExpr( 2123 const MaterializeTemporaryExpr *Exp) { 2124 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { 2125 if (auto Object = 2126 ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr())); 2127 Object != ConstructedObjects.end()) { 2128 Object->second->setClangDecl(ExtD); 2129 ConstructedObjects.erase(Object); 2130 } 2131 } 2132 } 2133 2134 /// Given two facts merging on a join point, possibly warn and decide whether to 2135 /// keep or replace. 2136 /// 2137 /// \param CanModify Whether we can replace \p A by \p B. 2138 /// \return false if we should keep \p A, true if we should take \p B. 2139 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B, 2140 bool CanModify) { 2141 if (A.kind() != B.kind()) { 2142 // For managed capabilities, the destructor should unlock in the right mode 2143 // anyway. For asserted capabilities no unlocking is needed. 2144 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) { 2145 // The shared capability subsumes the exclusive capability, if possible. 2146 bool ShouldTakeB = B.kind() == LK_Shared; 2147 if (CanModify || !ShouldTakeB) 2148 return ShouldTakeB; 2149 } 2150 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(), 2151 A.loc()); 2152 // Take the exclusive capability to reduce further warnings. 2153 return CanModify && B.kind() == LK_Exclusive; 2154 } else { 2155 // The non-asserted capability is the one we want to track. 2156 return CanModify && A.asserted() && !B.asserted(); 2157 } 2158 } 2159 2160 /// Compute the intersection of two locksets and issue warnings for any 2161 /// locks in the symmetric difference. 2162 /// 2163 /// This function is used at a merge point in the CFG when comparing the lockset 2164 /// of each branch being merged. For example, given the following sequence: 2165 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2166 /// are the same. In the event of a difference, we use the intersection of these 2167 /// two locksets at the start of D. 2168 /// 2169 /// \param EntrySet A lockset for entry into a (possibly new) block. 2170 /// \param ExitSet The lockset on exiting a preceding block. 2171 /// \param JoinLoc The location of the join point for error reporting 2172 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet. 2173 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet. 2174 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet, 2175 const FactSet &ExitSet, 2176 SourceLocation JoinLoc, 2177 LockErrorKind EntryLEK, 2178 LockErrorKind ExitLEK) { 2179 FactSet EntrySetOrig = EntrySet; 2180 2181 // Find locks in ExitSet that conflict or are not in EntrySet, and warn. 2182 for (const auto &Fact : ExitSet) { 2183 const FactEntry &ExitFact = FactMan[Fact]; 2184 2185 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact); 2186 if (EntryIt != EntrySet.end()) { 2187 if (join(FactMan[*EntryIt], ExitFact, 2188 EntryLEK != LEK_LockedSomeLoopIterations)) 2189 *EntryIt = Fact; 2190 } else if (!ExitFact.managed()) { 2191 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc, 2192 EntryLEK, Handler); 2193 } 2194 } 2195 2196 // Find locks in EntrySet that are not in ExitSet, and remove them. 2197 for (const auto &Fact : EntrySetOrig) { 2198 const FactEntry *EntryFact = &FactMan[Fact]; 2199 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact); 2200 2201 if (!ExitFact) { 2202 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations) 2203 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc, 2204 ExitLEK, Handler); 2205 if (ExitLEK == LEK_LockedSomePredecessors) 2206 EntrySet.removeLock(FactMan, *EntryFact); 2207 } 2208 } 2209 } 2210 2211 // Return true if block B never continues to its successors. 2212 static bool neverReturns(const CFGBlock *B) { 2213 if (B->hasNoReturnElement()) 2214 return true; 2215 if (B->empty()) 2216 return false; 2217 2218 CFGElement Last = B->back(); 2219 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2220 if (isa<CXXThrowExpr>(S->getStmt())) 2221 return true; 2222 } 2223 return false; 2224 } 2225 2226 /// Check a function's CFG for thread-safety violations. 2227 /// 2228 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2229 /// at the end of each block, and issue warnings for thread safety violations. 2230 /// Each block in the CFG is traversed exactly once. 2231 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2232 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2233 // For now, we just use the walker to set things up. 2234 threadSafety::CFGWalker walker; 2235 if (!walker.init(AC)) 2236 return; 2237 2238 // AC.dumpCFG(true); 2239 // threadSafety::printSCFG(walker); 2240 2241 CFG *CFGraph = walker.getGraph(); 2242 const NamedDecl *D = walker.getDecl(); 2243 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2244 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2245 2246 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2247 return; 2248 2249 // FIXME: Do something a bit more intelligent inside constructor and 2250 // destructor code. Constructors and destructors must assume unique access 2251 // to 'this', so checks on member variable access is disabled, but we should 2252 // still enable checks on other objects. 2253 if (isa<CXXConstructorDecl>(D)) 2254 return; // Don't check inside constructors. 2255 if (isa<CXXDestructorDecl>(D)) 2256 return; // Don't check inside destructors. 2257 2258 Handler.enterFunction(CurrentFunction); 2259 2260 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2261 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2262 2263 // We need to explore the CFG via a "topological" ordering. 2264 // That way, we will be guaranteed to have information about required 2265 // predecessor locksets when exploring a new block. 2266 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2267 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2268 2269 // Mark entry block as reachable 2270 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2271 2272 // Compute SSA names for local variables 2273 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2274 2275 // Fill in source locations for all CFGBlocks. 2276 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2277 2278 CapExprSet ExclusiveLocksAcquired; 2279 CapExprSet SharedLocksAcquired; 2280 CapExprSet LocksReleased; 2281 2282 // Add locks from exclusive_locks_required and shared_locks_required 2283 // to initial lockset. Also turn off checking for lock and unlock functions. 2284 // FIXME: is there a more intelligent way to check lock/unlock functions? 2285 if (!SortedGraph->empty() && D->hasAttrs()) { 2286 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2287 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2288 2289 CapExprSet ExclusiveLocksToAdd; 2290 CapExprSet SharedLocksToAdd; 2291 2292 SourceLocation Loc = D->getLocation(); 2293 for (const auto *Attr : D->attrs()) { 2294 Loc = Attr->getLocation(); 2295 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2296 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2297 nullptr, D); 2298 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2299 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2300 // We must ignore such methods. 2301 if (A->args_size() == 0) 2302 return; 2303 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2304 nullptr, D); 2305 getMutexIDs(LocksReleased, A, nullptr, D); 2306 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2307 if (A->args_size() == 0) 2308 return; 2309 getMutexIDs(A->isShared() ? SharedLocksAcquired 2310 : ExclusiveLocksAcquired, 2311 A, nullptr, D); 2312 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2313 // Don't try to check trylock functions for now. 2314 return; 2315 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2316 // Don't try to check trylock functions for now. 2317 return; 2318 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2319 // Don't try to check trylock functions for now. 2320 return; 2321 } 2322 } 2323 2324 // FIXME -- Loc can be wrong here. 2325 for (const auto &Mu : ExclusiveLocksToAdd) { 2326 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc, 2327 FactEntry::Declared); 2328 addLock(InitialLockset, std::move(Entry), true); 2329 } 2330 for (const auto &Mu : SharedLocksToAdd) { 2331 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc, 2332 FactEntry::Declared); 2333 addLock(InitialLockset, std::move(Entry), true); 2334 } 2335 } 2336 2337 for (const auto *CurrBlock : *SortedGraph) { 2338 unsigned CurrBlockID = CurrBlock->getBlockID(); 2339 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2340 2341 // Use the default initial lockset in case there are no predecessors. 2342 VisitedBlocks.insert(CurrBlock); 2343 2344 // Iterate through the predecessor blocks and warn if the lockset for all 2345 // predecessors is not the same. We take the entry lockset of the current 2346 // block to be the intersection of all previous locksets. 2347 // FIXME: By keeping the intersection, we may output more errors in future 2348 // for a lock which is not in the intersection, but was in the union. We 2349 // may want to also keep the union in future. As an example, let's say 2350 // the intersection contains Mutex L, and the union contains L and M. 2351 // Later we unlock M. At this point, we would output an error because we 2352 // never locked M; although the real error is probably that we forgot to 2353 // lock M on all code paths. Conversely, let's say that later we lock M. 2354 // In this case, we should compare against the intersection instead of the 2355 // union because the real error is probably that we forgot to unlock M on 2356 // all code paths. 2357 bool LocksetInitialized = false; 2358 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2359 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2360 // if *PI -> CurrBlock is a back edge 2361 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2362 continue; 2363 2364 unsigned PrevBlockID = (*PI)->getBlockID(); 2365 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2366 2367 // Ignore edges from blocks that can't return. 2368 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2369 continue; 2370 2371 // Okay, we can reach this block from the entry. 2372 CurrBlockInfo->Reachable = true; 2373 2374 FactSet PrevLockset; 2375 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2376 2377 if (!LocksetInitialized) { 2378 CurrBlockInfo->EntrySet = PrevLockset; 2379 LocksetInitialized = true; 2380 } else { 2381 // Surprisingly 'continue' doesn't always produce back edges, because 2382 // the CFG has empty "transition" blocks where they meet with the end 2383 // of the regular loop body. We still want to diagnose them as loop. 2384 intersectAndWarn( 2385 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, 2386 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt()) 2387 ? LEK_LockedSomeLoopIterations 2388 : LEK_LockedSomePredecessors); 2389 } 2390 } 2391 2392 // Skip rest of block if it's not reachable. 2393 if (!CurrBlockInfo->Reachable) 2394 continue; 2395 2396 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2397 2398 // Visit all the statements in the basic block. 2399 for (const auto &BI : *CurrBlock) { 2400 switch (BI.getKind()) { 2401 case CFGElement::Statement: { 2402 CFGStmt CS = BI.castAs<CFGStmt>(); 2403 LocksetBuilder.Visit(CS.getStmt()); 2404 break; 2405 } 2406 // Ignore BaseDtor and MemberDtor for now. 2407 case CFGElement::AutomaticObjectDtor: { 2408 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2409 const auto *DD = AD.getDestructorDecl(AC.getASTContext()); 2410 if (!DD->hasAttrs()) 2411 break; 2412 2413 LocksetBuilder.handleCall(nullptr, DD, 2414 SxBuilder.createVariable(AD.getVarDecl()), 2415 AD.getTriggerStmt()->getEndLoc()); 2416 break; 2417 } 2418 case CFGElement::TemporaryDtor: { 2419 auto TD = BI.castAs<CFGTemporaryDtor>(); 2420 2421 // Clean up constructed object even if there are no attributes to 2422 // keep the number of objects in limbo as small as possible. 2423 if (auto Object = LocksetBuilder.ConstructedObjects.find( 2424 TD.getBindTemporaryExpr()->getSubExpr()); 2425 Object != LocksetBuilder.ConstructedObjects.end()) { 2426 const auto *DD = TD.getDestructorDecl(AC.getASTContext()); 2427 if (DD->hasAttrs()) 2428 // TODO: the location here isn't quite correct. 2429 LocksetBuilder.handleCall(nullptr, DD, Object->second, 2430 TD.getBindTemporaryExpr()->getEndLoc()); 2431 LocksetBuilder.ConstructedObjects.erase(Object); 2432 } 2433 break; 2434 } 2435 default: 2436 break; 2437 } 2438 } 2439 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2440 2441 // For every back edge from CurrBlock (the end of the loop) to another block 2442 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2443 // the one held at the beginning of FirstLoopBlock. We can look up the 2444 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2445 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2446 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2447 // if CurrBlock -> *SI is *not* a back edge 2448 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2449 continue; 2450 2451 CFGBlock *FirstLoopBlock = *SI; 2452 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2453 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2454 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc, 2455 LEK_LockedSomeLoopIterations); 2456 } 2457 } 2458 2459 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2460 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2461 2462 // Skip the final check if the exit block is unreachable. 2463 if (!Final->Reachable) 2464 return; 2465 2466 // By default, we expect all locks held on entry to be held on exit. 2467 FactSet ExpectedExitSet = Initial->EntrySet; 2468 2469 // Adjust the expected exit set by adding or removing locks, as declared 2470 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2471 // issue the appropriate warning. 2472 // FIXME: the location here is not quite right. 2473 for (const auto &Lock : ExclusiveLocksAcquired) 2474 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2475 Lock, LK_Exclusive, D->getLocation())); 2476 for (const auto &Lock : SharedLocksAcquired) 2477 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( 2478 Lock, LK_Shared, D->getLocation())); 2479 for (const auto &Lock : LocksReleased) 2480 ExpectedExitSet.removeLock(FactMan, Lock); 2481 2482 // FIXME: Should we call this function for all blocks which exit the function? 2483 intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc, 2484 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction); 2485 2486 Handler.leaveFunction(CurrentFunction); 2487 } 2488 2489 /// Check a function's CFG for thread-safety violations. 2490 /// 2491 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2492 /// at the end of each block, and issue warnings for thread safety violations. 2493 /// Each block in the CFG is traversed exactly once. 2494 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2495 ThreadSafetyHandler &Handler, 2496 BeforeSet **BSet) { 2497 if (!*BSet) 2498 *BSet = new BeforeSet; 2499 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2500 Analyzer.runAnalysis(AC); 2501 } 2502 2503 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2504 2505 /// Helper function that returns a LockKind required for the given level 2506 /// of access. 2507 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2508 switch (AK) { 2509 case AK_Read : 2510 return LK_Shared; 2511 case AK_Written : 2512 return LK_Exclusive; 2513 } 2514 llvm_unreachable("Unknown AccessKind"); 2515 } 2516