xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ThreadSafety.cpp (revision 1fd880742ace94e11fa60ee0b074f0b18e54c54f)
1  //===- ThreadSafety.cpp ---------------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10  // conditions), based off of an annotation system.
11  //
12  // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13  // for more information.
14  //
15  //===----------------------------------------------------------------------===//
16  
17  #include "clang/Analysis/Analyses/ThreadSafety.h"
18  #include "clang/AST/Attr.h"
19  #include "clang/AST/Decl.h"
20  #include "clang/AST/DeclCXX.h"
21  #include "clang/AST/DeclGroup.h"
22  #include "clang/AST/Expr.h"
23  #include "clang/AST/ExprCXX.h"
24  #include "clang/AST/OperationKinds.h"
25  #include "clang/AST/Stmt.h"
26  #include "clang/AST/StmtVisitor.h"
27  #include "clang/AST/Type.h"
28  #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29  #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30  #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31  #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32  #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33  #include "clang/Analysis/AnalysisDeclContext.h"
34  #include "clang/Analysis/CFG.h"
35  #include "clang/Basic/Builtins.h"
36  #include "clang/Basic/LLVM.h"
37  #include "clang/Basic/OperatorKinds.h"
38  #include "clang/Basic/SourceLocation.h"
39  #include "clang/Basic/Specifiers.h"
40  #include "llvm/ADT/ArrayRef.h"
41  #include "llvm/ADT/DenseMap.h"
42  #include "llvm/ADT/ImmutableMap.h"
43  #include "llvm/ADT/STLExtras.h"
44  #include "llvm/ADT/SmallVector.h"
45  #include "llvm/ADT/StringRef.h"
46  #include "llvm/Support/Allocator.h"
47  #include "llvm/Support/Casting.h"
48  #include "llvm/Support/ErrorHandling.h"
49  #include "llvm/Support/raw_ostream.h"
50  #include <algorithm>
51  #include <cassert>
52  #include <functional>
53  #include <iterator>
54  #include <memory>
55  #include <optional>
56  #include <string>
57  #include <type_traits>
58  #include <utility>
59  #include <vector>
60  
61  using namespace clang;
62  using namespace threadSafety;
63  
64  // Key method definition
65  ThreadSafetyHandler::~ThreadSafetyHandler() = default;
66  
67  /// Issue a warning about an invalid lock expression
68  static void warnInvalidLock(ThreadSafetyHandler &Handler,
69                              const Expr *MutexExp, const NamedDecl *D,
70                              const Expr *DeclExp, StringRef Kind) {
71    SourceLocation Loc;
72    if (DeclExp)
73      Loc = DeclExp->getExprLoc();
74  
75    // FIXME: add a note about the attribute location in MutexExp or D
76    if (Loc.isValid())
77      Handler.handleInvalidLockExp(Loc);
78  }
79  
80  namespace {
81  
82  /// A set of CapabilityExpr objects, which are compiled from thread safety
83  /// attributes on a function.
84  class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85  public:
86    /// Push M onto list, but discard duplicates.
87    void push_back_nodup(const CapabilityExpr &CapE) {
88      if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89            return CapE.equals(CapE2);
90          }))
91        push_back(CapE);
92    }
93  };
94  
95  class FactManager;
96  class FactSet;
97  
98  /// This is a helper class that stores a fact that is known at a
99  /// particular point in program execution.  Currently, a fact is a capability,
100  /// along with additional information, such as where it was acquired, whether
101  /// it is exclusive or shared, etc.
102  ///
103  /// FIXME: this analysis does not currently support re-entrant locking.
104  class FactEntry : public CapabilityExpr {
105  public:
106    /// Where a fact comes from.
107    enum SourceKind {
108      Acquired, ///< The fact has been directly acquired.
109      Asserted, ///< The fact has been asserted to be held.
110      Declared, ///< The fact is assumed to be held by callers.
111      Managed,  ///< The fact has been acquired through a scoped capability.
112    };
113  
114  private:
115    /// Exclusive or shared.
116    LockKind LKind : 8;
117  
118    // How it was acquired.
119    SourceKind Source : 8;
120  
121    /// Where it was acquired.
122    SourceLocation AcquireLoc;
123  
124  public:
125    FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126              SourceKind Src)
127        : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128    virtual ~FactEntry() = default;
129  
130    LockKind kind() const { return LKind;      }
131    SourceLocation loc() const { return AcquireLoc; }
132  
133    bool asserted() const { return Source == Asserted; }
134    bool declared() const { return Source == Declared; }
135    bool managed() const { return Source == Managed; }
136  
137    virtual void
138    handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139                                  SourceLocation JoinLoc, LockErrorKind LEK,
140                                  ThreadSafetyHandler &Handler) const = 0;
141    virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142                            const FactEntry &entry,
143                            ThreadSafetyHandler &Handler) const = 0;
144    virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145                              const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146                              bool FullyRemove,
147                              ThreadSafetyHandler &Handler) const = 0;
148  
149    // Return true if LKind >= LK, where exclusive > shared
150    bool isAtLeast(LockKind LK) const {
151      return  (LKind == LK_Exclusive) || (LK == LK_Shared);
152    }
153  };
154  
155  using FactID = unsigned short;
156  
157  /// FactManager manages the memory for all facts that are created during
158  /// the analysis of a single routine.
159  class FactManager {
160  private:
161    std::vector<std::unique_ptr<const FactEntry>> Facts;
162  
163  public:
164    FactID newFact(std::unique_ptr<FactEntry> Entry) {
165      Facts.push_back(std::move(Entry));
166      return static_cast<unsigned short>(Facts.size() - 1);
167    }
168  
169    const FactEntry &operator[](FactID F) const { return *Facts[F]; }
170  };
171  
172  /// A FactSet is the set of facts that are known to be true at a
173  /// particular program point.  FactSets must be small, because they are
174  /// frequently copied, and are thus implemented as a set of indices into a
175  /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
176  /// locks, so we can get away with doing a linear search for lookup.  Note
177  /// that a hashtable or map is inappropriate in this case, because lookups
178  /// may involve partial pattern matches, rather than exact matches.
179  class FactSet {
180  private:
181    using FactVec = SmallVector<FactID, 4>;
182  
183    FactVec FactIDs;
184  
185  public:
186    using iterator = FactVec::iterator;
187    using const_iterator = FactVec::const_iterator;
188  
189    iterator begin() { return FactIDs.begin(); }
190    const_iterator begin() const { return FactIDs.begin(); }
191  
192    iterator end() { return FactIDs.end(); }
193    const_iterator end() const { return FactIDs.end(); }
194  
195    bool isEmpty() const { return FactIDs.size() == 0; }
196  
197    // Return true if the set contains only negative facts
198    bool isEmpty(FactManager &FactMan) const {
199      for (const auto FID : *this) {
200        if (!FactMan[FID].negative())
201          return false;
202      }
203      return true;
204    }
205  
206    void addLockByID(FactID ID) { FactIDs.push_back(ID); }
207  
208    FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209      FactID F = FM.newFact(std::move(Entry));
210      FactIDs.push_back(F);
211      return F;
212    }
213  
214    bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215      unsigned n = FactIDs.size();
216      if (n == 0)
217        return false;
218  
219      for (unsigned i = 0; i < n-1; ++i) {
220        if (FM[FactIDs[i]].matches(CapE)) {
221          FactIDs[i] = FactIDs[n-1];
222          FactIDs.pop_back();
223          return true;
224        }
225      }
226      if (FM[FactIDs[n-1]].matches(CapE)) {
227        FactIDs.pop_back();
228        return true;
229      }
230      return false;
231    }
232  
233    iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234      return std::find_if(begin(), end(), [&](FactID ID) {
235        return FM[ID].matches(CapE);
236      });
237    }
238  
239    const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240      auto I = std::find_if(begin(), end(), [&](FactID ID) {
241        return FM[ID].matches(CapE);
242      });
243      return I != end() ? &FM[*I] : nullptr;
244    }
245  
246    const FactEntry *findLockUniv(FactManager &FM,
247                                  const CapabilityExpr &CapE) const {
248      auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249        return FM[ID].matchesUniv(CapE);
250      });
251      return I != end() ? &FM[*I] : nullptr;
252    }
253  
254    const FactEntry *findPartialMatch(FactManager &FM,
255                                      const CapabilityExpr &CapE) const {
256      auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257        return FM[ID].partiallyMatches(CapE);
258      });
259      return I != end() ? &FM[*I] : nullptr;
260    }
261  
262    bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263      auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264        return FM[ID].valueDecl() == Vd;
265      });
266      return I != end();
267    }
268  };
269  
270  class ThreadSafetyAnalyzer;
271  
272  } // namespace
273  
274  namespace clang {
275  namespace threadSafety {
276  
277  class BeforeSet {
278  private:
279    using BeforeVect = SmallVector<const ValueDecl *, 4>;
280  
281    struct BeforeInfo {
282      BeforeVect Vect;
283      int Visited = 0;
284  
285      BeforeInfo() = default;
286      BeforeInfo(BeforeInfo &&) = default;
287    };
288  
289    using BeforeMap =
290        llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291    using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
292  
293  public:
294    BeforeSet() = default;
295  
296    BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297                                ThreadSafetyAnalyzer& Analyzer);
298  
299    BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300                                     ThreadSafetyAnalyzer &Analyzer);
301  
302    void checkBeforeAfter(const ValueDecl* Vd,
303                          const FactSet& FSet,
304                          ThreadSafetyAnalyzer& Analyzer,
305                          SourceLocation Loc, StringRef CapKind);
306  
307  private:
308    BeforeMap BMap;
309    CycleMap CycMap;
310  };
311  
312  } // namespace threadSafety
313  } // namespace clang
314  
315  namespace {
316  
317  class LocalVariableMap;
318  
319  using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
320  
321  /// A side (entry or exit) of a CFG node.
322  enum CFGBlockSide { CBS_Entry, CBS_Exit };
323  
324  /// CFGBlockInfo is a struct which contains all the information that is
325  /// maintained for each block in the CFG.  See LocalVariableMap for more
326  /// information about the contexts.
327  struct CFGBlockInfo {
328    // Lockset held at entry to block
329    FactSet EntrySet;
330  
331    // Lockset held at exit from block
332    FactSet ExitSet;
333  
334    // Context held at entry to block
335    LocalVarContext EntryContext;
336  
337    // Context held at exit from block
338    LocalVarContext ExitContext;
339  
340    // Location of first statement in block
341    SourceLocation EntryLoc;
342  
343    // Location of last statement in block.
344    SourceLocation ExitLoc;
345  
346    // Used to replay contexts later
347    unsigned EntryIndex;
348  
349    // Is this block reachable?
350    bool Reachable = false;
351  
352    const FactSet &getSet(CFGBlockSide Side) const {
353      return Side == CBS_Entry ? EntrySet : ExitSet;
354    }
355  
356    SourceLocation getLocation(CFGBlockSide Side) const {
357      return Side == CBS_Entry ? EntryLoc : ExitLoc;
358    }
359  
360  private:
361    CFGBlockInfo(LocalVarContext EmptyCtx)
362        : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
363  
364  public:
365    static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
366  };
367  
368  // A LocalVariableMap maintains a map from local variables to their currently
369  // valid definitions.  It provides SSA-like functionality when traversing the
370  // CFG.  Like SSA, each definition or assignment to a variable is assigned a
371  // unique name (an integer), which acts as the SSA name for that definition.
372  // The total set of names is shared among all CFG basic blocks.
373  // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374  // with their SSA-names.  Instead, we compute a Context for each point in the
375  // code, which maps local variables to the appropriate SSA-name.  This map
376  // changes with each assignment.
377  //
378  // The map is computed in a single pass over the CFG.  Subsequent analyses can
379  // then query the map to find the appropriate Context for a statement, and use
380  // that Context to look up the definitions of variables.
381  class LocalVariableMap {
382  public:
383    using Context = LocalVarContext;
384  
385    /// A VarDefinition consists of an expression, representing the value of the
386    /// variable, along with the context in which that expression should be
387    /// interpreted.  A reference VarDefinition does not itself contain this
388    /// information, but instead contains a pointer to a previous VarDefinition.
389    struct VarDefinition {
390    public:
391      friend class LocalVariableMap;
392  
393      // The original declaration for this variable.
394      const NamedDecl *Dec;
395  
396      // The expression for this variable, OR
397      const Expr *Exp = nullptr;
398  
399      // Reference to another VarDefinition
400      unsigned Ref = 0;
401  
402      // The map with which Exp should be interpreted.
403      Context Ctx;
404  
405      bool isReference() const { return !Exp; }
406  
407    private:
408      // Create ordinary variable definition
409      VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410          : Dec(D), Exp(E), Ctx(C) {}
411  
412      // Create reference to previous definition
413      VarDefinition(const NamedDecl *D, unsigned R, Context C)
414          : Dec(D), Ref(R), Ctx(C) {}
415    };
416  
417  private:
418    Context::Factory ContextFactory;
419    std::vector<VarDefinition> VarDefinitions;
420    std::vector<std::pair<const Stmt *, Context>> SavedContexts;
421  
422  public:
423    LocalVariableMap() {
424      // index 0 is a placeholder for undefined variables (aka phi-nodes).
425      VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
426    }
427  
428    /// Look up a definition, within the given context.
429    const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430      const unsigned *i = Ctx.lookup(D);
431      if (!i)
432        return nullptr;
433      assert(*i < VarDefinitions.size());
434      return &VarDefinitions[*i];
435    }
436  
437    /// Look up the definition for D within the given context.  Returns
438    /// NULL if the expression is not statically known.  If successful, also
439    /// modifies Ctx to hold the context of the return Expr.
440    const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441      const unsigned *P = Ctx.lookup(D);
442      if (!P)
443        return nullptr;
444  
445      unsigned i = *P;
446      while (i > 0) {
447        if (VarDefinitions[i].Exp) {
448          Ctx = VarDefinitions[i].Ctx;
449          return VarDefinitions[i].Exp;
450        }
451        i = VarDefinitions[i].Ref;
452      }
453      return nullptr;
454    }
455  
456    Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
457  
458    /// Return the next context after processing S.  This function is used by
459    /// clients of the class to get the appropriate context when traversing the
460    /// CFG.  It must be called for every assignment or DeclStmt.
461    Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462      if (SavedContexts[CtxIndex+1].first == S) {
463        CtxIndex++;
464        Context Result = SavedContexts[CtxIndex].second;
465        return Result;
466      }
467      return C;
468    }
469  
470    void dumpVarDefinitionName(unsigned i) {
471      if (i == 0) {
472        llvm::errs() << "Undefined";
473        return;
474      }
475      const NamedDecl *Dec = VarDefinitions[i].Dec;
476      if (!Dec) {
477        llvm::errs() << "<<NULL>>";
478        return;
479      }
480      Dec->printName(llvm::errs());
481      llvm::errs() << "." << i << " " << ((const void*) Dec);
482    }
483  
484    /// Dumps an ASCII representation of the variable map to llvm::errs()
485    void dump() {
486      for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487        const Expr *Exp = VarDefinitions[i].Exp;
488        unsigned Ref = VarDefinitions[i].Ref;
489  
490        dumpVarDefinitionName(i);
491        llvm::errs() << " = ";
492        if (Exp) Exp->dump();
493        else {
494          dumpVarDefinitionName(Ref);
495          llvm::errs() << "\n";
496        }
497      }
498    }
499  
500    /// Dumps an ASCII representation of a Context to llvm::errs()
501    void dumpContext(Context C) {
502      for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503        const NamedDecl *D = I.getKey();
504        D->printName(llvm::errs());
505        llvm::errs() << " -> ";
506        dumpVarDefinitionName(I.getData());
507        llvm::errs() << "\n";
508      }
509    }
510  
511    /// Builds the variable map.
512    void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513                     std::vector<CFGBlockInfo> &BlockInfo);
514  
515  protected:
516    friend class VarMapBuilder;
517  
518    // Get the current context index
519    unsigned getContextIndex() { return SavedContexts.size()-1; }
520  
521    // Save the current context for later replay
522    void saveContext(const Stmt *S, Context C) {
523      SavedContexts.push_back(std::make_pair(S, C));
524    }
525  
526    // Adds a new definition to the given context, and returns a new context.
527    // This method should be called when declaring a new variable.
528    Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529      assert(!Ctx.contains(D));
530      unsigned newID = VarDefinitions.size();
531      Context NewCtx = ContextFactory.add(Ctx, D, newID);
532      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533      return NewCtx;
534    }
535  
536    // Add a new reference to an existing definition.
537    Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538      unsigned newID = VarDefinitions.size();
539      Context NewCtx = ContextFactory.add(Ctx, D, newID);
540      VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541      return NewCtx;
542    }
543  
544    // Updates a definition only if that definition is already in the map.
545    // This method should be called when assigning to an existing variable.
546    Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547      if (Ctx.contains(D)) {
548        unsigned newID = VarDefinitions.size();
549        Context NewCtx = ContextFactory.remove(Ctx, D);
550        NewCtx = ContextFactory.add(NewCtx, D, newID);
551        VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552        return NewCtx;
553      }
554      return Ctx;
555    }
556  
557    // Removes a definition from the context, but keeps the variable name
558    // as a valid variable.  The index 0 is a placeholder for cleared definitions.
559    Context clearDefinition(const NamedDecl *D, Context Ctx) {
560      Context NewCtx = Ctx;
561      if (NewCtx.contains(D)) {
562        NewCtx = ContextFactory.remove(NewCtx, D);
563        NewCtx = ContextFactory.add(NewCtx, D, 0);
564      }
565      return NewCtx;
566    }
567  
568    // Remove a definition entirely frmo the context.
569    Context removeDefinition(const NamedDecl *D, Context Ctx) {
570      Context NewCtx = Ctx;
571      if (NewCtx.contains(D)) {
572        NewCtx = ContextFactory.remove(NewCtx, D);
573      }
574      return NewCtx;
575    }
576  
577    Context intersectContexts(Context C1, Context C2);
578    Context createReferenceContext(Context C);
579    void intersectBackEdge(Context C1, Context C2);
580  };
581  
582  } // namespace
583  
584  // This has to be defined after LocalVariableMap.
585  CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586    return CFGBlockInfo(M.getEmptyContext());
587  }
588  
589  namespace {
590  
591  /// Visitor which builds a LocalVariableMap
592  class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593  public:
594    LocalVariableMap* VMap;
595    LocalVariableMap::Context Ctx;
596  
597    VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598        : VMap(VM), Ctx(C) {}
599  
600    void VisitDeclStmt(const DeclStmt *S);
601    void VisitBinaryOperator(const BinaryOperator *BO);
602  };
603  
604  } // namespace
605  
606  // Add new local variables to the variable map
607  void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608    bool modifiedCtx = false;
609    const DeclGroupRef DGrp = S->getDeclGroup();
610    for (const auto *D : DGrp) {
611      if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612        const Expr *E = VD->getInit();
613  
614        // Add local variables with trivial type to the variable map
615        QualType T = VD->getType();
616        if (T.isTrivialType(VD->getASTContext())) {
617          Ctx = VMap->addDefinition(VD, E, Ctx);
618          modifiedCtx = true;
619        }
620      }
621    }
622    if (modifiedCtx)
623      VMap->saveContext(S, Ctx);
624  }
625  
626  // Update local variable definitions in variable map
627  void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628    if (!BO->isAssignmentOp())
629      return;
630  
631    Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632  
633    // Update the variable map and current context.
634    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635      const ValueDecl *VDec = DRE->getDecl();
636      if (Ctx.lookup(VDec)) {
637        if (BO->getOpcode() == BO_Assign)
638          Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639        else
640          // FIXME -- handle compound assignment operators
641          Ctx = VMap->clearDefinition(VDec, Ctx);
642        VMap->saveContext(BO, Ctx);
643      }
644    }
645  }
646  
647  // Computes the intersection of two contexts.  The intersection is the
648  // set of variables which have the same definition in both contexts;
649  // variables with different definitions are discarded.
650  LocalVariableMap::Context
651  LocalVariableMap::intersectContexts(Context C1, Context C2) {
652    Context Result = C1;
653    for (const auto &P : C1) {
654      const NamedDecl *Dec = P.first;
655      const unsigned *i2 = C2.lookup(Dec);
656      if (!i2)             // variable doesn't exist on second path
657        Result = removeDefinition(Dec, Result);
658      else if (*i2 != P.second)  // variable exists, but has different definition
659        Result = clearDefinition(Dec, Result);
660    }
661    return Result;
662  }
663  
664  // For every variable in C, create a new variable that refers to the
665  // definition in C.  Return a new context that contains these new variables.
666  // (We use this for a naive implementation of SSA on loop back-edges.)
667  LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668    Context Result = getEmptyContext();
669    for (const auto &P : C)
670      Result = addReference(P.first, P.second, Result);
671    return Result;
672  }
673  
674  // This routine also takes the intersection of C1 and C2, but it does so by
675  // altering the VarDefinitions.  C1 must be the result of an earlier call to
676  // createReferenceContext.
677  void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678    for (const auto &P : C1) {
679      unsigned i1 = P.second;
680      VarDefinition *VDef = &VarDefinitions[i1];
681      assert(VDef->isReference());
682  
683      const unsigned *i2 = C2.lookup(P.first);
684      if (!i2 || (*i2 != i1))
685        VDef->Ref = 0;    // Mark this variable as undefined
686    }
687  }
688  
689  // Traverse the CFG in topological order, so all predecessors of a block
690  // (excluding back-edges) are visited before the block itself.  At
691  // each point in the code, we calculate a Context, which holds the set of
692  // variable definitions which are visible at that point in execution.
693  // Visible variables are mapped to their definitions using an array that
694  // contains all definitions.
695  //
696  // At join points in the CFG, the set is computed as the intersection of
697  // the incoming sets along each edge, E.g.
698  //
699  //                       { Context                 | VarDefinitions }
700  //   int x = 0;          { x -> x1                 | x1 = 0 }
701  //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
702  //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
703  //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
704  //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
705  //
706  // This is essentially a simpler and more naive version of the standard SSA
707  // algorithm.  Those definitions that remain in the intersection are from blocks
708  // that strictly dominate the current block.  We do not bother to insert proper
709  // phi nodes, because they are not used in our analysis; instead, wherever
710  // a phi node would be required, we simply remove that definition from the
711  // context (E.g. x above).
712  //
713  // The initial traversal does not capture back-edges, so those need to be
714  // handled on a separate pass.  Whenever the first pass encounters an
715  // incoming back edge, it duplicates the context, creating new definitions
716  // that refer back to the originals.  (These correspond to places where SSA
717  // might have to insert a phi node.)  On the second pass, these definitions are
718  // set to NULL if the variable has changed on the back-edge (i.e. a phi
719  // node was actually required.)  E.g.
720  //
721  //                       { Context           | VarDefinitions }
722  //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
723  //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
724  //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
725  //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
726  void LocalVariableMap::traverseCFG(CFG *CFGraph,
727                                     const PostOrderCFGView *SortedGraph,
728                                     std::vector<CFGBlockInfo> &BlockInfo) {
729    PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730  
731    for (const auto *CurrBlock : *SortedGraph) {
732      unsigned CurrBlockID = CurrBlock->getBlockID();
733      CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
734  
735      VisitedBlocks.insert(CurrBlock);
736  
737      // Calculate the entry context for the current block
738      bool HasBackEdges = false;
739      bool CtxInit = true;
740      for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741           PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
742        // if *PI -> CurrBlock is a back edge, so skip it
743        if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
744          HasBackEdges = true;
745          continue;
746        }
747  
748        unsigned PrevBlockID = (*PI)->getBlockID();
749        CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
750  
751        if (CtxInit) {
752          CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753          CtxInit = false;
754        }
755        else {
756          CurrBlockInfo->EntryContext =
757            intersectContexts(CurrBlockInfo->EntryContext,
758                              PrevBlockInfo->ExitContext);
759        }
760      }
761  
762      // Duplicate the context if we have back-edges, so we can call
763      // intersectBackEdges later.
764      if (HasBackEdges)
765        CurrBlockInfo->EntryContext =
766          createReferenceContext(CurrBlockInfo->EntryContext);
767  
768      // Create a starting context index for the current block
769      saveContext(nullptr, CurrBlockInfo->EntryContext);
770      CurrBlockInfo->EntryIndex = getContextIndex();
771  
772      // Visit all the statements in the basic block.
773      VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774      for (const auto &BI : *CurrBlock) {
775        switch (BI.getKind()) {
776          case CFGElement::Statement: {
777            CFGStmt CS = BI.castAs<CFGStmt>();
778            VMapBuilder.Visit(CS.getStmt());
779            break;
780          }
781          default:
782            break;
783        }
784      }
785      CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
786  
787      // Mark variables on back edges as "unknown" if they've been changed.
788      for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789           SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
790        // if CurrBlock -> *SI is *not* a back edge
791        if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
792          continue;
793  
794        CFGBlock *FirstLoopBlock = *SI;
795        Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796        Context LoopEnd   = CurrBlockInfo->ExitContext;
797        intersectBackEdge(LoopBegin, LoopEnd);
798      }
799    }
800  
801    // Put an extra entry at the end of the indexed context array
802    unsigned exitID = CFGraph->getExit().getBlockID();
803    saveContext(nullptr, BlockInfo[exitID].ExitContext);
804  }
805  
806  /// Find the appropriate source locations to use when producing diagnostics for
807  /// each block in the CFG.
808  static void findBlockLocations(CFG *CFGraph,
809                                 const PostOrderCFGView *SortedGraph,
810                                 std::vector<CFGBlockInfo> &BlockInfo) {
811    for (const auto *CurrBlock : *SortedGraph) {
812      CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
813  
814      // Find the source location of the last statement in the block, if the
815      // block is not empty.
816      if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817        CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818      } else {
819        for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820             BE = CurrBlock->rend(); BI != BE; ++BI) {
821          // FIXME: Handle other CFGElement kinds.
822          if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823            CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824            break;
825          }
826        }
827      }
828  
829      if (CurrBlockInfo->ExitLoc.isValid()) {
830        // This block contains at least one statement. Find the source location
831        // of the first statement in the block.
832        for (const auto &BI : *CurrBlock) {
833          // FIXME: Handle other CFGElement kinds.
834          if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835            CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836            break;
837          }
838        }
839      } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840                 CurrBlock != &CFGraph->getExit()) {
841        // The block is empty, and has a single predecessor. Use its exit
842        // location.
843        CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844            BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845      } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846        // The block is empty, and has a single successor. Use its entry
847        // location.
848        CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849            BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
850      }
851    }
852  }
853  
854  namespace {
855  
856  class LockableFactEntry : public FactEntry {
857  public:
858    LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859                      SourceKind Src = Acquired)
860        : FactEntry(CE, LK, Loc, Src) {}
861  
862    void
863    handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864                                  SourceLocation JoinLoc, LockErrorKind LEK,
865                                  ThreadSafetyHandler &Handler) const override {
866      if (!asserted() && !negative() && !isUniversal()) {
867        Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
868                                          LEK);
869      }
870    }
871  
872    void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873                    ThreadSafetyHandler &Handler) const override {
874      Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
875                               entry.loc());
876    }
877  
878    void handleUnlock(FactSet &FSet, FactManager &FactMan,
879                      const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880                      bool FullyRemove,
881                      ThreadSafetyHandler &Handler) const override {
882      FSet.removeLock(FactMan, Cp);
883      if (!Cp.negative()) {
884        FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
885                                  !Cp, LK_Exclusive, UnlockLoc));
886      }
887    }
888  };
889  
890  class ScopedLockableFactEntry : public FactEntry {
891  private:
892    enum UnderlyingCapabilityKind {
893      UCK_Acquired,          ///< Any kind of acquired capability.
894      UCK_ReleasedShared,    ///< Shared capability that was released.
895      UCK_ReleasedExclusive, ///< Exclusive capability that was released.
896    };
897  
898    struct UnderlyingCapability {
899      CapabilityExpr Cap;
900      UnderlyingCapabilityKind Kind;
901    };
902  
903    SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
904  
905  public:
906    ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907        : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908  
909    void addLock(const CapabilityExpr &M) {
910      UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
911    }
912  
913    void addExclusiveUnlock(const CapabilityExpr &M) {
914      UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
915    }
916  
917    void addSharedUnlock(const CapabilityExpr &M) {
918      UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
919    }
920  
921    void
922    handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923                                  SourceLocation JoinLoc, LockErrorKind LEK,
924                                  ThreadSafetyHandler &Handler) const override {
925      for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926        const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
927        if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
928            (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
929          // If this scoped lock manages another mutex, and if the underlying
930          // mutex is still/not held, then warn about the underlying mutex.
931          Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
932                                            UnderlyingMutex.Cap.toString(), loc(),
933                                            JoinLoc, LEK);
934        }
935      }
936    }
937  
938    void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939                    ThreadSafetyHandler &Handler) const override {
940      for (const auto &UnderlyingMutex : UnderlyingMutexes) {
941        if (UnderlyingMutex.Kind == UCK_Acquired)
942          lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
943               &Handler);
944        else
945          unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
946      }
947    }
948  
949    void handleUnlock(FactSet &FSet, FactManager &FactMan,
950                      const CapabilityExpr &Cp, SourceLocation UnlockLoc,
951                      bool FullyRemove,
952                      ThreadSafetyHandler &Handler) const override {
953      assert(!Cp.negative() && "Managing object cannot be negative.");
954      for (const auto &UnderlyingMutex : UnderlyingMutexes) {
955        // Remove/lock the underlying mutex if it exists/is still unlocked; warn
956        // on double unlocking/locking if we're not destroying the scoped object.
957        ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
958        if (UnderlyingMutex.Kind == UCK_Acquired) {
959          unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
960        } else {
961          LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
962                              ? LK_Shared
963                              : LK_Exclusive;
964          lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
965        }
966      }
967      if (FullyRemove)
968        FSet.removeLock(FactMan, Cp);
969    }
970  
971  private:
972    void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
973              LockKind kind, SourceLocation loc,
974              ThreadSafetyHandler *Handler) const {
975      if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
976        if (Handler)
977          Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
978                                    loc);
979      } else {
980        FSet.removeLock(FactMan, !Cp);
981        FSet.addLock(FactMan,
982                     std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
983      }
984    }
985  
986    void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
987                SourceLocation loc, ThreadSafetyHandler *Handler) const {
988      if (FSet.findLock(FactMan, Cp)) {
989        FSet.removeLock(FactMan, Cp);
990        FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
991                                  !Cp, LK_Exclusive, loc));
992      } else if (Handler) {
993        SourceLocation PrevLoc;
994        if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
995          PrevLoc = Neg->loc();
996        Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
997      }
998    }
999  };
1000  
1001  /// Class which implements the core thread safety analysis routines.
1002  class ThreadSafetyAnalyzer {
1003    friend class BuildLockset;
1004    friend class threadSafety::BeforeSet;
1005  
1006    llvm::BumpPtrAllocator Bpa;
1007    threadSafety::til::MemRegionRef Arena;
1008    threadSafety::SExprBuilder SxBuilder;
1009  
1010    ThreadSafetyHandler &Handler;
1011    const FunctionDecl *CurrentFunction;
1012    LocalVariableMap LocalVarMap;
1013    // Maps constructed objects to `this` placeholder prior to initialization.
1014    llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1015    FactManager FactMan;
1016    std::vector<CFGBlockInfo> BlockInfo;
1017  
1018    BeforeSet *GlobalBeforeSet;
1019  
1020  public:
1021    ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1022        : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1023  
1024    bool inCurrentScope(const CapabilityExpr &CapE);
1025  
1026    void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1027                 bool ReqAttr = false);
1028    void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1029                    SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1030  
1031    template <typename AttrType>
1032    void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1033                     const NamedDecl *D, til::SExpr *Self = nullptr);
1034  
1035    template <class AttrType>
1036    void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1037                     const NamedDecl *D,
1038                     const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1039                     Expr *BrE, bool Neg);
1040  
1041    const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1042                                       bool &Negate);
1043  
1044    void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1045                        const CFGBlock* PredBlock,
1046                        const CFGBlock *CurrBlock);
1047  
1048    bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1049  
1050    void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1051                          SourceLocation JoinLoc, LockErrorKind EntryLEK,
1052                          LockErrorKind ExitLEK);
1053  
1054    void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1055                          SourceLocation JoinLoc, LockErrorKind LEK) {
1056      intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1057    }
1058  
1059    void runAnalysis(AnalysisDeclContext &AC);
1060  
1061    void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D,
1062                            const Expr *Exp, AccessKind AK, Expr *MutexExp,
1063                            ProtectedOperationKind POK, til::LiteralPtr *Self,
1064                            SourceLocation Loc);
1065    void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp,
1066                         Expr *MutexExp, til::LiteralPtr *Self,
1067                         SourceLocation Loc);
1068  
1069    void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1070                     ProtectedOperationKind POK);
1071    void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1072                       ProtectedOperationKind POK);
1073  };
1074  
1075  } // namespace
1076  
1077  /// Process acquired_before and acquired_after attributes on Vd.
1078  BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1079      ThreadSafetyAnalyzer& Analyzer) {
1080    // Create a new entry for Vd.
1081    BeforeInfo *Info = nullptr;
1082    {
1083      // Keep InfoPtr in its own scope in case BMap is modified later and the
1084      // reference becomes invalid.
1085      std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1086      if (!InfoPtr)
1087        InfoPtr.reset(new BeforeInfo());
1088      Info = InfoPtr.get();
1089    }
1090  
1091    for (const auto *At : Vd->attrs()) {
1092      switch (At->getKind()) {
1093        case attr::AcquiredBefore: {
1094          const auto *A = cast<AcquiredBeforeAttr>(At);
1095  
1096          // Read exprs from the attribute, and add them to BeforeVect.
1097          for (const auto *Arg : A->args()) {
1098            CapabilityExpr Cp =
1099              Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1100            if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1101              Info->Vect.push_back(Cpvd);
1102              const auto It = BMap.find(Cpvd);
1103              if (It == BMap.end())
1104                insertAttrExprs(Cpvd, Analyzer);
1105            }
1106          }
1107          break;
1108        }
1109        case attr::AcquiredAfter: {
1110          const auto *A = cast<AcquiredAfterAttr>(At);
1111  
1112          // Read exprs from the attribute, and add them to BeforeVect.
1113          for (const auto *Arg : A->args()) {
1114            CapabilityExpr Cp =
1115              Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1116            if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1117              // Get entry for mutex listed in attribute
1118              BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1119              ArgInfo->Vect.push_back(Vd);
1120            }
1121          }
1122          break;
1123        }
1124        default:
1125          break;
1126      }
1127    }
1128  
1129    return Info;
1130  }
1131  
1132  BeforeSet::BeforeInfo *
1133  BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1134                                  ThreadSafetyAnalyzer &Analyzer) {
1135    auto It = BMap.find(Vd);
1136    BeforeInfo *Info = nullptr;
1137    if (It == BMap.end())
1138      Info = insertAttrExprs(Vd, Analyzer);
1139    else
1140      Info = It->second.get();
1141    assert(Info && "BMap contained nullptr?");
1142    return Info;
1143  }
1144  
1145  /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1146  void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1147                                   const FactSet& FSet,
1148                                   ThreadSafetyAnalyzer& Analyzer,
1149                                   SourceLocation Loc, StringRef CapKind) {
1150    SmallVector<BeforeInfo*, 8> InfoVect;
1151  
1152    // Do a depth-first traversal of Vd.
1153    // Return true if there are cycles.
1154    std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1155      if (!Vd)
1156        return false;
1157  
1158      BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1159  
1160      if (Info->Visited == 1)
1161        return true;
1162  
1163      if (Info->Visited == 2)
1164        return false;
1165  
1166      if (Info->Vect.empty())
1167        return false;
1168  
1169      InfoVect.push_back(Info);
1170      Info->Visited = 1;
1171      for (const auto *Vdb : Info->Vect) {
1172        // Exclude mutexes in our immediate before set.
1173        if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1174          StringRef L1 = StartVd->getName();
1175          StringRef L2 = Vdb->getName();
1176          Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1177        }
1178        // Transitively search other before sets, and warn on cycles.
1179        if (traverse(Vdb)) {
1180          if (!CycMap.contains(Vd)) {
1181            CycMap.insert(std::make_pair(Vd, true));
1182            StringRef L1 = Vd->getName();
1183            Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1184          }
1185        }
1186      }
1187      Info->Visited = 2;
1188      return false;
1189    };
1190  
1191    traverse(StartVd);
1192  
1193    for (auto *Info : InfoVect)
1194      Info->Visited = 0;
1195  }
1196  
1197  /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1198  static const ValueDecl *getValueDecl(const Expr *Exp) {
1199    if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1200      return getValueDecl(CE->getSubExpr());
1201  
1202    if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1203      return DR->getDecl();
1204  
1205    if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1206      return ME->getMemberDecl();
1207  
1208    return nullptr;
1209  }
1210  
1211  namespace {
1212  
1213  template <typename Ty>
1214  class has_arg_iterator_range {
1215    using yes = char[1];
1216    using no = char[2];
1217  
1218    template <typename Inner>
1219    static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1220  
1221    template <typename>
1222    static no& test(...);
1223  
1224  public:
1225    static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1226  };
1227  
1228  } // namespace
1229  
1230  bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1231    const threadSafety::til::SExpr *SExp = CapE.sexpr();
1232    assert(SExp && "Null expressions should be ignored");
1233  
1234    if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1235      const ValueDecl *VD = LP->clangDecl();
1236      // Variables defined in a function are always inaccessible.
1237      if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1238        return false;
1239      // For now we consider static class members to be inaccessible.
1240      if (isa<CXXRecordDecl>(VD->getDeclContext()))
1241        return false;
1242      // Global variables are always in scope.
1243      return true;
1244    }
1245  
1246    // Members are in scope from methods of the same class.
1247    if (const auto *P = dyn_cast<til::Project>(SExp)) {
1248      if (!isa_and_nonnull<CXXMethodDecl>(CurrentFunction))
1249        return false;
1250      const ValueDecl *VD = P->clangDecl();
1251      return VD->getDeclContext() == CurrentFunction->getDeclContext();
1252    }
1253  
1254    return false;
1255  }
1256  
1257  /// Add a new lock to the lockset, warning if the lock is already there.
1258  /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1259  void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1260                                     std::unique_ptr<FactEntry> Entry,
1261                                     bool ReqAttr) {
1262    if (Entry->shouldIgnore())
1263      return;
1264  
1265    if (!ReqAttr && !Entry->negative()) {
1266      // look for the negative capability, and remove it from the fact set.
1267      CapabilityExpr NegC = !*Entry;
1268      const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1269      if (Nen) {
1270        FSet.removeLock(FactMan, NegC);
1271      }
1272      else {
1273        if (inCurrentScope(*Entry) && !Entry->asserted())
1274          Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1275                                        NegC.toString(), Entry->loc());
1276      }
1277    }
1278  
1279    // Check before/after constraints
1280    if (Handler.issueBetaWarnings() &&
1281        !Entry->asserted() && !Entry->declared()) {
1282      GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1283                                        Entry->loc(), Entry->getKind());
1284    }
1285  
1286    // FIXME: Don't always warn when we have support for reentrant locks.
1287    if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1288      if (!Entry->asserted())
1289        Cp->handleLock(FSet, FactMan, *Entry, Handler);
1290    } else {
1291      FSet.addLock(FactMan, std::move(Entry));
1292    }
1293  }
1294  
1295  /// Remove a lock from the lockset, warning if the lock is not there.
1296  /// \param UnlockLoc The source location of the unlock (only used in error msg)
1297  void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1298                                        SourceLocation UnlockLoc,
1299                                        bool FullyRemove, LockKind ReceivedKind) {
1300    if (Cp.shouldIgnore())
1301      return;
1302  
1303    const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1304    if (!LDat) {
1305      SourceLocation PrevLoc;
1306      if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1307        PrevLoc = Neg->loc();
1308      Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1309                                    PrevLoc);
1310      return;
1311    }
1312  
1313    // Generic lock removal doesn't care about lock kind mismatches, but
1314    // otherwise diagnose when the lock kinds are mismatched.
1315    if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1316      Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1317                                        ReceivedKind, LDat->loc(), UnlockLoc);
1318    }
1319  
1320    LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1321  }
1322  
1323  /// Extract the list of mutexIDs from the attribute on an expression,
1324  /// and push them onto Mtxs, discarding any duplicates.
1325  template <typename AttrType>
1326  void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1327                                         const Expr *Exp, const NamedDecl *D,
1328                                         til::SExpr *Self) {
1329    if (Attr->args_size() == 0) {
1330      // The mutex held is the "this" object.
1331      CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1332      if (Cp.isInvalid()) {
1333        warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1334        return;
1335      }
1336      //else
1337      if (!Cp.shouldIgnore())
1338        Mtxs.push_back_nodup(Cp);
1339      return;
1340    }
1341  
1342    for (const auto *Arg : Attr->args()) {
1343      CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1344      if (Cp.isInvalid()) {
1345        warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1346        continue;
1347      }
1348      //else
1349      if (!Cp.shouldIgnore())
1350        Mtxs.push_back_nodup(Cp);
1351    }
1352  }
1353  
1354  /// Extract the list of mutexIDs from a trylock attribute.  If the
1355  /// trylock applies to the given edge, then push them onto Mtxs, discarding
1356  /// any duplicates.
1357  template <class AttrType>
1358  void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1359                                         const Expr *Exp, const NamedDecl *D,
1360                                         const CFGBlock *PredBlock,
1361                                         const CFGBlock *CurrBlock,
1362                                         Expr *BrE, bool Neg) {
1363    // Find out which branch has the lock
1364    bool branch = false;
1365    if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1366      branch = BLE->getValue();
1367    else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1368      branch = ILE->getValue().getBoolValue();
1369  
1370    int branchnum = branch ? 0 : 1;
1371    if (Neg)
1372      branchnum = !branchnum;
1373  
1374    // If we've taken the trylock branch, then add the lock
1375    int i = 0;
1376    for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1377         SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1378      if (*SI == CurrBlock && i == branchnum)
1379        getMutexIDs(Mtxs, Attr, Exp, D);
1380    }
1381  }
1382  
1383  static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1384    if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1385      TCond = false;
1386      return true;
1387    } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1388      TCond = BLE->getValue();
1389      return true;
1390    } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1391      TCond = ILE->getValue().getBoolValue();
1392      return true;
1393    } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1394      return getStaticBooleanValue(CE->getSubExpr(), TCond);
1395    return false;
1396  }
1397  
1398  // If Cond can be traced back to a function call, return the call expression.
1399  // The negate variable should be called with false, and will be set to true
1400  // if the function call is negated, e.g. if (!mu.tryLock(...))
1401  const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1402                                                           LocalVarContext C,
1403                                                           bool &Negate) {
1404    if (!Cond)
1405      return nullptr;
1406  
1407    if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1408      if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1409        return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1410      return CallExp;
1411    }
1412    else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1413      return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1414    else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1415      return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1416    else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1417      return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1418    else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1419      const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1420      return getTrylockCallExpr(E, C, Negate);
1421    }
1422    else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1423      if (UOP->getOpcode() == UO_LNot) {
1424        Negate = !Negate;
1425        return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1426      }
1427      return nullptr;
1428    }
1429    else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1430      if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1431        if (BOP->getOpcode() == BO_NE)
1432          Negate = !Negate;
1433  
1434        bool TCond = false;
1435        if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1436          if (!TCond) Negate = !Negate;
1437          return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1438        }
1439        TCond = false;
1440        if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1441          if (!TCond) Negate = !Negate;
1442          return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1443        }
1444        return nullptr;
1445      }
1446      if (BOP->getOpcode() == BO_LAnd) {
1447        // LHS must have been evaluated in a different block.
1448        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1449      }
1450      if (BOP->getOpcode() == BO_LOr)
1451        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1452      return nullptr;
1453    } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1454      bool TCond, FCond;
1455      if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1456          getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1457        if (TCond && !FCond)
1458          return getTrylockCallExpr(COP->getCond(), C, Negate);
1459        if (!TCond && FCond) {
1460          Negate = !Negate;
1461          return getTrylockCallExpr(COP->getCond(), C, Negate);
1462        }
1463      }
1464    }
1465    return nullptr;
1466  }
1467  
1468  /// Find the lockset that holds on the edge between PredBlock
1469  /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1470  /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1471  void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1472                                            const FactSet &ExitSet,
1473                                            const CFGBlock *PredBlock,
1474                                            const CFGBlock *CurrBlock) {
1475    Result = ExitSet;
1476  
1477    const Stmt *Cond = PredBlock->getTerminatorCondition();
1478    // We don't acquire try-locks on ?: branches, only when its result is used.
1479    if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1480      return;
1481  
1482    bool Negate = false;
1483    const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1484    const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1485  
1486    const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1487    if (!Exp)
1488      return;
1489  
1490    auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1491    if(!FunDecl || !FunDecl->hasAttrs())
1492      return;
1493  
1494    CapExprSet ExclusiveLocksToAdd;
1495    CapExprSet SharedLocksToAdd;
1496  
1497    // If the condition is a call to a Trylock function, then grab the attributes
1498    for (const auto *Attr : FunDecl->attrs()) {
1499      switch (Attr->getKind()) {
1500        case attr::TryAcquireCapability: {
1501          auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1502          getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1503                      Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1504                      Negate);
1505          break;
1506        };
1507        case attr::ExclusiveTrylockFunction: {
1508          const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1509          getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1510                      A->getSuccessValue(), Negate);
1511          break;
1512        }
1513        case attr::SharedTrylockFunction: {
1514          const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1515          getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1516                      A->getSuccessValue(), Negate);
1517          break;
1518        }
1519        default:
1520          break;
1521      }
1522    }
1523  
1524    // Add and remove locks.
1525    SourceLocation Loc = Exp->getExprLoc();
1526    for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1527      addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1528                                                          LK_Exclusive, Loc));
1529    for (const auto &SharedLockToAdd : SharedLocksToAdd)
1530      addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1531                                                          LK_Shared, Loc));
1532  }
1533  
1534  namespace {
1535  
1536  /// We use this class to visit different types of expressions in
1537  /// CFGBlocks, and build up the lockset.
1538  /// An expression may cause us to add or remove locks from the lockset, or else
1539  /// output error messages related to missing locks.
1540  /// FIXME: In future, we may be able to not inherit from a visitor.
1541  class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1542    friend class ThreadSafetyAnalyzer;
1543  
1544    ThreadSafetyAnalyzer *Analyzer;
1545    FactSet FSet;
1546    // The fact set for the function on exit.
1547    const FactSet &FunctionExitFSet;
1548    LocalVariableMap::Context LVarCtx;
1549    unsigned CtxIndex;
1550  
1551    // helper functions
1552  
1553    void checkAccess(const Expr *Exp, AccessKind AK,
1554                     ProtectedOperationKind POK = POK_VarAccess) {
1555      Analyzer->checkAccess(FSet, Exp, AK, POK);
1556    }
1557    void checkPtAccess(const Expr *Exp, AccessKind AK,
1558                       ProtectedOperationKind POK = POK_VarAccess) {
1559      Analyzer->checkPtAccess(FSet, Exp, AK, POK);
1560    }
1561  
1562    void handleCall(const Expr *Exp, const NamedDecl *D,
1563                    til::LiteralPtr *Self = nullptr,
1564                    SourceLocation Loc = SourceLocation());
1565    void examineArguments(const FunctionDecl *FD,
1566                          CallExpr::const_arg_iterator ArgBegin,
1567                          CallExpr::const_arg_iterator ArgEnd,
1568                          bool SkipFirstParam = false);
1569  
1570  public:
1571    BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info,
1572                 const FactSet &FunctionExitFSet)
1573        : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1574          FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext),
1575          CtxIndex(Info.EntryIndex) {}
1576  
1577    void VisitUnaryOperator(const UnaryOperator *UO);
1578    void VisitBinaryOperator(const BinaryOperator *BO);
1579    void VisitCastExpr(const CastExpr *CE);
1580    void VisitCallExpr(const CallExpr *Exp);
1581    void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1582    void VisitDeclStmt(const DeclStmt *S);
1583    void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1584    void VisitReturnStmt(const ReturnStmt *S);
1585  };
1586  
1587  } // namespace
1588  
1589  /// Warn if the LSet does not contain a lock sufficient to protect access
1590  /// of at least the passed in AccessKind.
1591  void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1592      const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK,
1593      Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self,
1594      SourceLocation Loc) {
1595    LockKind LK = getLockKindFromAccessKind(AK);
1596    CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1597    if (Cp.isInvalid()) {
1598      warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1599      return;
1600    } else if (Cp.shouldIgnore()) {
1601      return;
1602    }
1603  
1604    if (Cp.negative()) {
1605      // Negative capabilities act like locks excluded
1606      const FactEntry *LDat = FSet.findLock(FactMan, !Cp);
1607      if (LDat) {
1608        Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1609                                      (!Cp).toString(), Loc);
1610        return;
1611      }
1612  
1613      // If this does not refer to a negative capability in the same class,
1614      // then stop here.
1615      if (!inCurrentScope(Cp))
1616        return;
1617  
1618      // Otherwise the negative requirement must be propagated to the caller.
1619      LDat = FSet.findLock(FactMan, Cp);
1620      if (!LDat) {
1621        Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1622      }
1623      return;
1624    }
1625  
1626    const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp);
1627    bool NoError = true;
1628    if (!LDat) {
1629      // No exact match found.  Look for a partial match.
1630      LDat = FSet.findPartialMatch(FactMan, Cp);
1631      if (LDat) {
1632        // Warn that there's no precise match.
1633        std::string PartMatchStr = LDat->toString();
1634        StringRef   PartMatchName(PartMatchStr);
1635        Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc,
1636                                   &PartMatchName);
1637      } else {
1638        // Warn that there's no match at all.
1639        Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1640      }
1641      NoError = false;
1642    }
1643    // Make sure the mutex we found is the right kind.
1644    if (NoError && LDat && !LDat->isAtLeast(LK)) {
1645      Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1646    }
1647  }
1648  
1649  /// Warn if the LSet contains the given lock.
1650  void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet,
1651                                             const NamedDecl *D, const Expr *Exp,
1652                                             Expr *MutexExp,
1653                                             til::LiteralPtr *Self,
1654                                             SourceLocation Loc) {
1655    CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1656    if (Cp.isInvalid()) {
1657      warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1658      return;
1659    } else if (Cp.shouldIgnore()) {
1660      return;
1661    }
1662  
1663    const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1664    if (LDat) {
1665      Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1666                                    Cp.toString(), Loc);
1667    }
1668  }
1669  
1670  /// Checks guarded_by and pt_guarded_by attributes.
1671  /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1672  /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1673  /// Similarly, we check if the access is to an expression that dereferences
1674  /// a pointer marked with pt_guarded_by.
1675  void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp,
1676                                         AccessKind AK,
1677                                         ProtectedOperationKind POK) {
1678    Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1679  
1680    SourceLocation Loc = Exp->getExprLoc();
1681  
1682    // Local variables of reference type cannot be re-assigned;
1683    // map them to their initializer.
1684    while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1685      const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1686      if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1687        if (const auto *E = VD->getInit()) {
1688          // Guard against self-initialization. e.g., int &i = i;
1689          if (E == Exp)
1690            break;
1691          Exp = E;
1692          continue;
1693        }
1694      }
1695      break;
1696    }
1697  
1698    if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1699      // For dereferences
1700      if (UO->getOpcode() == UO_Deref)
1701        checkPtAccess(FSet, UO->getSubExpr(), AK, POK);
1702      return;
1703    }
1704  
1705    if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1706      switch (BO->getOpcode()) {
1707      case BO_PtrMemD: // .*
1708        return checkAccess(FSet, BO->getLHS(), AK, POK);
1709      case BO_PtrMemI: // ->*
1710        return checkPtAccess(FSet, BO->getLHS(), AK, POK);
1711      default:
1712        return;
1713      }
1714    }
1715  
1716    if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1717      checkPtAccess(FSet, AE->getLHS(), AK, POK);
1718      return;
1719    }
1720  
1721    if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1722      if (ME->isArrow())
1723        checkPtAccess(FSet, ME->getBase(), AK, POK);
1724      else
1725        checkAccess(FSet, ME->getBase(), AK, POK);
1726    }
1727  
1728    const ValueDecl *D = getValueDecl(Exp);
1729    if (!D || !D->hasAttrs())
1730      return;
1731  
1732    if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) {
1733      Handler.handleNoMutexHeld(D, POK, AK, Loc);
1734    }
1735  
1736    for (const auto *I : D->specific_attrs<GuardedByAttr>())
1737      warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1738  }
1739  
1740  /// Checks pt_guarded_by and pt_guarded_var attributes.
1741  /// POK is the same  operationKind that was passed to checkAccess.
1742  void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp,
1743                                           AccessKind AK,
1744                                           ProtectedOperationKind POK) {
1745    while (true) {
1746      if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1747        Exp = PE->getSubExpr();
1748        continue;
1749      }
1750      if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1751        if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1752          // If it's an actual array, and not a pointer, then it's elements
1753          // are protected by GUARDED_BY, not PT_GUARDED_BY;
1754          checkAccess(FSet, CE->getSubExpr(), AK, POK);
1755          return;
1756        }
1757        Exp = CE->getSubExpr();
1758        continue;
1759      }
1760      break;
1761    }
1762  
1763    // Pass by reference warnings are under a different flag.
1764    ProtectedOperationKind PtPOK = POK_VarDereference;
1765    if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1766    if (POK == POK_ReturnByRef)
1767      PtPOK = POK_PtReturnByRef;
1768  
1769    const ValueDecl *D = getValueDecl(Exp);
1770    if (!D || !D->hasAttrs())
1771      return;
1772  
1773    if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan))
1774      Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1775  
1776    for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1777      warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr,
1778                         Exp->getExprLoc());
1779  }
1780  
1781  /// Process a function call, method call, constructor call,
1782  /// or destructor call.  This involves looking at the attributes on the
1783  /// corresponding function/method/constructor/destructor, issuing warnings,
1784  /// and updating the locksets accordingly.
1785  ///
1786  /// FIXME: For classes annotated with one of the guarded annotations, we need
1787  /// to treat const method calls as reads and non-const method calls as writes,
1788  /// and check that the appropriate locks are held. Non-const method calls with
1789  /// the same signature as const method calls can be also treated as reads.
1790  ///
1791  /// \param Exp   The call expression.
1792  /// \param D     The callee declaration.
1793  /// \param Self  If \p Exp = nullptr, the implicit this argument or the argument
1794  ///              of an implicitly called cleanup function.
1795  /// \param Loc   If \p Exp = nullptr, the location.
1796  void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1797                                til::LiteralPtr *Self, SourceLocation Loc) {
1798    CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1799    CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1800    CapExprSet ScopedReqsAndExcludes;
1801  
1802    // Figure out if we're constructing an object of scoped lockable class
1803    CapabilityExpr Scp;
1804    if (Exp) {
1805      assert(!Self);
1806      const auto *TagT = Exp->getType()->getAs<TagType>();
1807      if (TagT && Exp->isPRValue()) {
1808        std::pair<til::LiteralPtr *, StringRef> Placeholder =
1809            Analyzer->SxBuilder.createThisPlaceholder(Exp);
1810        [[maybe_unused]] auto inserted =
1811            Analyzer->ConstructedObjects.insert({Exp, Placeholder.first});
1812        assert(inserted.second && "Are we visiting the same expression again?");
1813        if (isa<CXXConstructExpr>(Exp))
1814          Self = Placeholder.first;
1815        if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1816          Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1817      }
1818  
1819      assert(Loc.isInvalid());
1820      Loc = Exp->getExprLoc();
1821    }
1822  
1823    for(const Attr *At : D->attrs()) {
1824      switch (At->getKind()) {
1825        // When we encounter a lock function, we need to add the lock to our
1826        // lockset.
1827        case attr::AcquireCapability: {
1828          const auto *A = cast<AcquireCapabilityAttr>(At);
1829          Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1830                                              : ExclusiveLocksToAdd,
1831                                A, Exp, D, Self);
1832          break;
1833        }
1834  
1835        // An assert will add a lock to the lockset, but will not generate
1836        // a warning if it is already there, and will not generate a warning
1837        // if it is not removed.
1838        case attr::AssertExclusiveLock: {
1839          const auto *A = cast<AssertExclusiveLockAttr>(At);
1840  
1841          CapExprSet AssertLocks;
1842          Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1843          for (const auto &AssertLock : AssertLocks)
1844            Analyzer->addLock(
1845                FSet, std::make_unique<LockableFactEntry>(
1846                          AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1847          break;
1848        }
1849        case attr::AssertSharedLock: {
1850          const auto *A = cast<AssertSharedLockAttr>(At);
1851  
1852          CapExprSet AssertLocks;
1853          Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1854          for (const auto &AssertLock : AssertLocks)
1855            Analyzer->addLock(
1856                FSet, std::make_unique<LockableFactEntry>(
1857                          AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1858          break;
1859        }
1860  
1861        case attr::AssertCapability: {
1862          const auto *A = cast<AssertCapabilityAttr>(At);
1863          CapExprSet AssertLocks;
1864          Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1865          for (const auto &AssertLock : AssertLocks)
1866            Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1867                                        AssertLock,
1868                                        A->isShared() ? LK_Shared : LK_Exclusive,
1869                                        Loc, FactEntry::Asserted));
1870          break;
1871        }
1872  
1873        // When we encounter an unlock function, we need to remove unlocked
1874        // mutexes from the lockset, and flag a warning if they are not there.
1875        case attr::ReleaseCapability: {
1876          const auto *A = cast<ReleaseCapabilityAttr>(At);
1877          if (A->isGeneric())
1878            Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1879          else if (A->isShared())
1880            Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1881          else
1882            Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1883          break;
1884        }
1885  
1886        case attr::RequiresCapability: {
1887          const auto *A = cast<RequiresCapabilityAttr>(At);
1888          for (auto *Arg : A->args()) {
1889            Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1890                                         A->isShared() ? AK_Read : AK_Written,
1891                                         Arg, POK_FunctionCall, Self, Loc);
1892            // use for adopting a lock
1893            if (!Scp.shouldIgnore())
1894              Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1895          }
1896          break;
1897        }
1898  
1899        case attr::LocksExcluded: {
1900          const auto *A = cast<LocksExcludedAttr>(At);
1901          for (auto *Arg : A->args()) {
1902            Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc);
1903            // use for deferring a lock
1904            if (!Scp.shouldIgnore())
1905              Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1906          }
1907          break;
1908        }
1909  
1910        // Ignore attributes unrelated to thread-safety
1911        default:
1912          break;
1913      }
1914    }
1915  
1916    // Remove locks first to allow lock upgrading/downgrading.
1917    // FIXME -- should only fully remove if the attribute refers to 'this'.
1918    bool Dtor = isa<CXXDestructorDecl>(D);
1919    for (const auto &M : ExclusiveLocksToRemove)
1920      Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1921    for (const auto &M : SharedLocksToRemove)
1922      Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1923    for (const auto &M : GenericLocksToRemove)
1924      Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1925  
1926    // Add locks.
1927    FactEntry::SourceKind Source =
1928        !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1929    for (const auto &M : ExclusiveLocksToAdd)
1930      Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1931                                                                  Loc, Source));
1932    for (const auto &M : SharedLocksToAdd)
1933      Analyzer->addLock(
1934          FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1935  
1936    if (!Scp.shouldIgnore()) {
1937      // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1938      auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1939      for (const auto &M : ExclusiveLocksToAdd)
1940        ScopedEntry->addLock(M);
1941      for (const auto &M : SharedLocksToAdd)
1942        ScopedEntry->addLock(M);
1943      for (const auto &M : ScopedReqsAndExcludes)
1944        ScopedEntry->addLock(M);
1945      for (const auto &M : ExclusiveLocksToRemove)
1946        ScopedEntry->addExclusiveUnlock(M);
1947      for (const auto &M : SharedLocksToRemove)
1948        ScopedEntry->addSharedUnlock(M);
1949      Analyzer->addLock(FSet, std::move(ScopedEntry));
1950    }
1951  }
1952  
1953  /// For unary operations which read and write a variable, we need to
1954  /// check whether we hold any required mutexes. Reads are checked in
1955  /// VisitCastExpr.
1956  void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1957    switch (UO->getOpcode()) {
1958      case UO_PostDec:
1959      case UO_PostInc:
1960      case UO_PreDec:
1961      case UO_PreInc:
1962        checkAccess(UO->getSubExpr(), AK_Written);
1963        break;
1964      default:
1965        break;
1966    }
1967  }
1968  
1969  /// For binary operations which assign to a variable (writes), we need to check
1970  /// whether we hold any required mutexes.
1971  /// FIXME: Deal with non-primitive types.
1972  void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1973    if (!BO->isAssignmentOp())
1974      return;
1975  
1976    // adjust the context
1977    LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1978  
1979    checkAccess(BO->getLHS(), AK_Written);
1980  }
1981  
1982  /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1983  /// need to ensure we hold any required mutexes.
1984  /// FIXME: Deal with non-primitive types.
1985  void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1986    if (CE->getCastKind() != CK_LValueToRValue)
1987      return;
1988    checkAccess(CE->getSubExpr(), AK_Read);
1989  }
1990  
1991  void BuildLockset::examineArguments(const FunctionDecl *FD,
1992                                      CallExpr::const_arg_iterator ArgBegin,
1993                                      CallExpr::const_arg_iterator ArgEnd,
1994                                      bool SkipFirstParam) {
1995    // Currently we can't do anything if we don't know the function declaration.
1996    if (!FD)
1997      return;
1998  
1999    // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
2000    // only turns off checking within the body of a function, but we also
2001    // use it to turn off checking in arguments to the function.  This
2002    // could result in some false negatives, but the alternative is to
2003    // create yet another attribute.
2004    if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2005      return;
2006  
2007    const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2008    auto Param = Params.begin();
2009    if (SkipFirstParam)
2010      ++Param;
2011  
2012    // There can be default arguments, so we stop when one iterator is at end().
2013    for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2014         ++Param, ++Arg) {
2015      QualType Qt = (*Param)->getType();
2016      if (Qt->isReferenceType())
2017        checkAccess(*Arg, AK_Read, POK_PassByRef);
2018    }
2019  }
2020  
2021  void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2022    if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2023      const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2024      // ME can be null when calling a method pointer
2025      const CXXMethodDecl *MD = CE->getMethodDecl();
2026  
2027      if (ME && MD) {
2028        if (ME->isArrow()) {
2029          // Should perhaps be AK_Written if !MD->isConst().
2030          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2031        } else {
2032          // Should perhaps be AK_Written if !MD->isConst().
2033          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2034        }
2035      }
2036  
2037      examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2038    } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2039      OverloadedOperatorKind OEop = OE->getOperator();
2040      switch (OEop) {
2041        case OO_Equal:
2042        case OO_PlusEqual:
2043        case OO_MinusEqual:
2044        case OO_StarEqual:
2045        case OO_SlashEqual:
2046        case OO_PercentEqual:
2047        case OO_CaretEqual:
2048        case OO_AmpEqual:
2049        case OO_PipeEqual:
2050        case OO_LessLessEqual:
2051        case OO_GreaterGreaterEqual:
2052          checkAccess(OE->getArg(1), AK_Read);
2053          [[fallthrough]];
2054        case OO_PlusPlus:
2055        case OO_MinusMinus:
2056          checkAccess(OE->getArg(0), AK_Written);
2057          break;
2058        case OO_Star:
2059        case OO_ArrowStar:
2060        case OO_Arrow:
2061        case OO_Subscript:
2062          if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2063            // Grrr.  operator* can be multiplication...
2064            checkPtAccess(OE->getArg(0), AK_Read);
2065          }
2066          [[fallthrough]];
2067        default: {
2068          // TODO: get rid of this, and rely on pass-by-ref instead.
2069          const Expr *Obj = OE->getArg(0);
2070          checkAccess(Obj, AK_Read);
2071          // Check the remaining arguments. For method operators, the first
2072          // argument is the implicit self argument, and doesn't appear in the
2073          // FunctionDecl, but for non-methods it does.
2074          const FunctionDecl *FD = OE->getDirectCallee();
2075          examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2076                           /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2077          break;
2078        }
2079      }
2080    } else {
2081      examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2082    }
2083  
2084    auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2085    if(!D || !D->hasAttrs())
2086      return;
2087    handleCall(Exp, D);
2088  }
2089  
2090  void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2091    const CXXConstructorDecl *D = Exp->getConstructor();
2092    if (D && D->isCopyConstructor()) {
2093      const Expr* Source = Exp->getArg(0);
2094      checkAccess(Source, AK_Read);
2095    } else {
2096      examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2097    }
2098    if (D && D->hasAttrs())
2099      handleCall(Exp, D);
2100  }
2101  
2102  static const Expr *UnpackConstruction(const Expr *E) {
2103    if (auto *CE = dyn_cast<CastExpr>(E))
2104      if (CE->getCastKind() == CK_NoOp)
2105        E = CE->getSubExpr()->IgnoreParens();
2106    if (auto *CE = dyn_cast<CastExpr>(E))
2107      if (CE->getCastKind() == CK_ConstructorConversion ||
2108          CE->getCastKind() == CK_UserDefinedConversion)
2109        E = CE->getSubExpr();
2110    if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2111      E = BTE->getSubExpr();
2112    return E;
2113  }
2114  
2115  void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2116    // adjust the context
2117    LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2118  
2119    for (auto *D : S->getDeclGroup()) {
2120      if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2121        const Expr *E = VD->getInit();
2122        if (!E)
2123          continue;
2124        E = E->IgnoreParens();
2125  
2126        // handle constructors that involve temporaries
2127        if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2128          E = EWC->getSubExpr()->IgnoreParens();
2129        E = UnpackConstruction(E);
2130  
2131        if (auto Object = Analyzer->ConstructedObjects.find(E);
2132            Object != Analyzer->ConstructedObjects.end()) {
2133          Object->second->setClangDecl(VD);
2134          Analyzer->ConstructedObjects.erase(Object);
2135        }
2136      }
2137    }
2138  }
2139  
2140  void BuildLockset::VisitMaterializeTemporaryExpr(
2141      const MaterializeTemporaryExpr *Exp) {
2142    if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2143      if (auto Object = Analyzer->ConstructedObjects.find(
2144              UnpackConstruction(Exp->getSubExpr()));
2145          Object != Analyzer->ConstructedObjects.end()) {
2146        Object->second->setClangDecl(ExtD);
2147        Analyzer->ConstructedObjects.erase(Object);
2148      }
2149    }
2150  }
2151  
2152  void BuildLockset::VisitReturnStmt(const ReturnStmt *S) {
2153    if (Analyzer->CurrentFunction == nullptr)
2154      return;
2155    const Expr *RetVal = S->getRetValue();
2156    if (!RetVal)
2157      return;
2158  
2159    // If returning by reference, check that the function requires the appropriate
2160    // capabilities.
2161    const QualType ReturnType =
2162        Analyzer->CurrentFunction->getReturnType().getCanonicalType();
2163    if (ReturnType->isLValueReferenceType()) {
2164      Analyzer->checkAccess(
2165          FunctionExitFSet, RetVal,
2166          ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written,
2167          POK_ReturnByRef);
2168    }
2169  }
2170  
2171  /// Given two facts merging on a join point, possibly warn and decide whether to
2172  /// keep or replace.
2173  ///
2174  /// \param CanModify Whether we can replace \p A by \p B.
2175  /// \return  false if we should keep \p A, true if we should take \p B.
2176  bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2177                                  bool CanModify) {
2178    if (A.kind() != B.kind()) {
2179      // For managed capabilities, the destructor should unlock in the right mode
2180      // anyway. For asserted capabilities no unlocking is needed.
2181      if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2182        // The shared capability subsumes the exclusive capability, if possible.
2183        bool ShouldTakeB = B.kind() == LK_Shared;
2184        if (CanModify || !ShouldTakeB)
2185          return ShouldTakeB;
2186      }
2187      Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2188                                       A.loc());
2189      // Take the exclusive capability to reduce further warnings.
2190      return CanModify && B.kind() == LK_Exclusive;
2191    } else {
2192      // The non-asserted capability is the one we want to track.
2193      return CanModify && A.asserted() && !B.asserted();
2194    }
2195  }
2196  
2197  /// Compute the intersection of two locksets and issue warnings for any
2198  /// locks in the symmetric difference.
2199  ///
2200  /// This function is used at a merge point in the CFG when comparing the lockset
2201  /// of each branch being merged. For example, given the following sequence:
2202  /// A; if () then B; else C; D; we need to check that the lockset after B and C
2203  /// are the same. In the event of a difference, we use the intersection of these
2204  /// two locksets at the start of D.
2205  ///
2206  /// \param EntrySet A lockset for entry into a (possibly new) block.
2207  /// \param ExitSet The lockset on exiting a preceding block.
2208  /// \param JoinLoc The location of the join point for error reporting
2209  /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2210  /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2211  void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2212                                              const FactSet &ExitSet,
2213                                              SourceLocation JoinLoc,
2214                                              LockErrorKind EntryLEK,
2215                                              LockErrorKind ExitLEK) {
2216    FactSet EntrySetOrig = EntrySet;
2217  
2218    // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2219    for (const auto &Fact : ExitSet) {
2220      const FactEntry &ExitFact = FactMan[Fact];
2221  
2222      FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2223      if (EntryIt != EntrySet.end()) {
2224        if (join(FactMan[*EntryIt], ExitFact,
2225                 EntryLEK != LEK_LockedSomeLoopIterations))
2226          *EntryIt = Fact;
2227      } else if (!ExitFact.managed()) {
2228        ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2229                                               EntryLEK, Handler);
2230      }
2231    }
2232  
2233    // Find locks in EntrySet that are not in ExitSet, and remove them.
2234    for (const auto &Fact : EntrySetOrig) {
2235      const FactEntry *EntryFact = &FactMan[Fact];
2236      const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2237  
2238      if (!ExitFact) {
2239        if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2240          EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2241                                                   ExitLEK, Handler);
2242        if (ExitLEK == LEK_LockedSomePredecessors)
2243          EntrySet.removeLock(FactMan, *EntryFact);
2244      }
2245    }
2246  }
2247  
2248  // Return true if block B never continues to its successors.
2249  static bool neverReturns(const CFGBlock *B) {
2250    if (B->hasNoReturnElement())
2251      return true;
2252    if (B->empty())
2253      return false;
2254  
2255    CFGElement Last = B->back();
2256    if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2257      if (isa<CXXThrowExpr>(S->getStmt()))
2258        return true;
2259    }
2260    return false;
2261  }
2262  
2263  /// Check a function's CFG for thread-safety violations.
2264  ///
2265  /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2266  /// at the end of each block, and issue warnings for thread safety violations.
2267  /// Each block in the CFG is traversed exactly once.
2268  void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2269    // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2270    // For now, we just use the walker to set things up.
2271    threadSafety::CFGWalker walker;
2272    if (!walker.init(AC))
2273      return;
2274  
2275    // AC.dumpCFG(true);
2276    // threadSafety::printSCFG(walker);
2277  
2278    CFG *CFGraph = walker.getGraph();
2279    const NamedDecl *D = walker.getDecl();
2280    CurrentFunction = dyn_cast<FunctionDecl>(D);
2281  
2282    if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2283      return;
2284  
2285    // FIXME: Do something a bit more intelligent inside constructor and
2286    // destructor code.  Constructors and destructors must assume unique access
2287    // to 'this', so checks on member variable access is disabled, but we should
2288    // still enable checks on other objects.
2289    if (isa<CXXConstructorDecl>(D))
2290      return;  // Don't check inside constructors.
2291    if (isa<CXXDestructorDecl>(D))
2292      return;  // Don't check inside destructors.
2293  
2294    Handler.enterFunction(CurrentFunction);
2295  
2296    BlockInfo.resize(CFGraph->getNumBlockIDs(),
2297      CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2298  
2299    // We need to explore the CFG via a "topological" ordering.
2300    // That way, we will be guaranteed to have information about required
2301    // predecessor locksets when exploring a new block.
2302    const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2303    PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2304  
2305    CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
2306    CFGBlockInfo &Final   = BlockInfo[CFGraph->getExit().getBlockID()];
2307  
2308    // Mark entry block as reachable
2309    Initial.Reachable = true;
2310  
2311    // Compute SSA names for local variables
2312    LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2313  
2314    // Fill in source locations for all CFGBlocks.
2315    findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2316  
2317    CapExprSet ExclusiveLocksAcquired;
2318    CapExprSet SharedLocksAcquired;
2319    CapExprSet LocksReleased;
2320  
2321    // Add locks from exclusive_locks_required and shared_locks_required
2322    // to initial lockset. Also turn off checking for lock and unlock functions.
2323    // FIXME: is there a more intelligent way to check lock/unlock functions?
2324    if (!SortedGraph->empty() && D->hasAttrs()) {
2325      assert(*SortedGraph->begin() == &CFGraph->getEntry());
2326      FactSet &InitialLockset = Initial.EntrySet;
2327  
2328      CapExprSet ExclusiveLocksToAdd;
2329      CapExprSet SharedLocksToAdd;
2330  
2331      SourceLocation Loc = D->getLocation();
2332      for (const auto *Attr : D->attrs()) {
2333        Loc = Attr->getLocation();
2334        if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2335          getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2336                      nullptr, D);
2337        } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2338          // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2339          // We must ignore such methods.
2340          if (A->args_size() == 0)
2341            return;
2342          getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2343                      nullptr, D);
2344          getMutexIDs(LocksReleased, A, nullptr, D);
2345        } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2346          if (A->args_size() == 0)
2347            return;
2348          getMutexIDs(A->isShared() ? SharedLocksAcquired
2349                                    : ExclusiveLocksAcquired,
2350                      A, nullptr, D);
2351        } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2352          // Don't try to check trylock functions for now.
2353          return;
2354        } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2355          // Don't try to check trylock functions for now.
2356          return;
2357        } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2358          // Don't try to check trylock functions for now.
2359          return;
2360        }
2361      }
2362  
2363      // FIXME -- Loc can be wrong here.
2364      for (const auto &Mu : ExclusiveLocksToAdd) {
2365        auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2366                                                         FactEntry::Declared);
2367        addLock(InitialLockset, std::move(Entry), true);
2368      }
2369      for (const auto &Mu : SharedLocksToAdd) {
2370        auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2371                                                         FactEntry::Declared);
2372        addLock(InitialLockset, std::move(Entry), true);
2373      }
2374    }
2375  
2376    // Compute the expected exit set.
2377    // By default, we expect all locks held on entry to be held on exit.
2378    FactSet ExpectedFunctionExitSet = Initial.EntrySet;
2379  
2380    // Adjust the expected exit set by adding or removing locks, as declared
2381    // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2382    // issue the appropriate warning.
2383    // FIXME: the location here is not quite right.
2384    for (const auto &Lock : ExclusiveLocksAcquired)
2385      ExpectedFunctionExitSet.addLock(
2386          FactMan, std::make_unique<LockableFactEntry>(Lock, LK_Exclusive,
2387                                                       D->getLocation()));
2388    for (const auto &Lock : SharedLocksAcquired)
2389      ExpectedFunctionExitSet.addLock(
2390          FactMan,
2391          std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation()));
2392    for (const auto &Lock : LocksReleased)
2393      ExpectedFunctionExitSet.removeLock(FactMan, Lock);
2394  
2395    for (const auto *CurrBlock : *SortedGraph) {
2396      unsigned CurrBlockID = CurrBlock->getBlockID();
2397      CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2398  
2399      // Use the default initial lockset in case there are no predecessors.
2400      VisitedBlocks.insert(CurrBlock);
2401  
2402      // Iterate through the predecessor blocks and warn if the lockset for all
2403      // predecessors is not the same. We take the entry lockset of the current
2404      // block to be the intersection of all previous locksets.
2405      // FIXME: By keeping the intersection, we may output more errors in future
2406      // for a lock which is not in the intersection, but was in the union. We
2407      // may want to also keep the union in future. As an example, let's say
2408      // the intersection contains Mutex L, and the union contains L and M.
2409      // Later we unlock M. At this point, we would output an error because we
2410      // never locked M; although the real error is probably that we forgot to
2411      // lock M on all code paths. Conversely, let's say that later we lock M.
2412      // In this case, we should compare against the intersection instead of the
2413      // union because the real error is probably that we forgot to unlock M on
2414      // all code paths.
2415      bool LocksetInitialized = false;
2416      for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2417           PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2418        // if *PI -> CurrBlock is a back edge
2419        if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2420          continue;
2421  
2422        unsigned PrevBlockID = (*PI)->getBlockID();
2423        CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2424  
2425        // Ignore edges from blocks that can't return.
2426        if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2427          continue;
2428  
2429        // Okay, we can reach this block from the entry.
2430        CurrBlockInfo->Reachable = true;
2431  
2432        FactSet PrevLockset;
2433        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2434  
2435        if (!LocksetInitialized) {
2436          CurrBlockInfo->EntrySet = PrevLockset;
2437          LocksetInitialized = true;
2438        } else {
2439          // Surprisingly 'continue' doesn't always produce back edges, because
2440          // the CFG has empty "transition" blocks where they meet with the end
2441          // of the regular loop body. We still want to diagnose them as loop.
2442          intersectAndWarn(
2443              CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2444              isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2445                  ? LEK_LockedSomeLoopIterations
2446                  : LEK_LockedSomePredecessors);
2447        }
2448      }
2449  
2450      // Skip rest of block if it's not reachable.
2451      if (!CurrBlockInfo->Reachable)
2452        continue;
2453  
2454      BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet);
2455  
2456      // Visit all the statements in the basic block.
2457      for (const auto &BI : *CurrBlock) {
2458        switch (BI.getKind()) {
2459          case CFGElement::Statement: {
2460            CFGStmt CS = BI.castAs<CFGStmt>();
2461            LocksetBuilder.Visit(CS.getStmt());
2462            break;
2463          }
2464          // Ignore BaseDtor and MemberDtor for now.
2465          case CFGElement::AutomaticObjectDtor: {
2466            CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2467            const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2468            if (!DD->hasAttrs())
2469              break;
2470  
2471            LocksetBuilder.handleCall(nullptr, DD,
2472                                      SxBuilder.createVariable(AD.getVarDecl()),
2473                                      AD.getTriggerStmt()->getEndLoc());
2474            break;
2475          }
2476  
2477          case CFGElement::CleanupFunction: {
2478            const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>();
2479            LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(),
2480                                      SxBuilder.createVariable(CF.getVarDecl()),
2481                                      CF.getVarDecl()->getLocation());
2482            break;
2483          }
2484  
2485          case CFGElement::TemporaryDtor: {
2486            auto TD = BI.castAs<CFGTemporaryDtor>();
2487  
2488            // Clean up constructed object even if there are no attributes to
2489            // keep the number of objects in limbo as small as possible.
2490            if (auto Object = ConstructedObjects.find(
2491                    TD.getBindTemporaryExpr()->getSubExpr());
2492                Object != ConstructedObjects.end()) {
2493              const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2494              if (DD->hasAttrs())
2495                // TODO: the location here isn't quite correct.
2496                LocksetBuilder.handleCall(nullptr, DD, Object->second,
2497                                          TD.getBindTemporaryExpr()->getEndLoc());
2498              ConstructedObjects.erase(Object);
2499            }
2500            break;
2501          }
2502          default:
2503            break;
2504        }
2505      }
2506      CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2507  
2508      // For every back edge from CurrBlock (the end of the loop) to another block
2509      // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2510      // the one held at the beginning of FirstLoopBlock. We can look up the
2511      // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2512      for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2513           SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2514        // if CurrBlock -> *SI is *not* a back edge
2515        if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2516          continue;
2517  
2518        CFGBlock *FirstLoopBlock = *SI;
2519        CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2520        CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2521        intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2522                         LEK_LockedSomeLoopIterations);
2523      }
2524    }
2525  
2526    // Skip the final check if the exit block is unreachable.
2527    if (!Final.Reachable)
2528      return;
2529  
2530    // FIXME: Should we call this function for all blocks which exit the function?
2531    intersectAndWarn(ExpectedFunctionExitSet, Final.ExitSet, Final.ExitLoc,
2532                     LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2533  
2534    Handler.leaveFunction(CurrentFunction);
2535  }
2536  
2537  /// Check a function's CFG for thread-safety violations.
2538  ///
2539  /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2540  /// at the end of each block, and issue warnings for thread safety violations.
2541  /// Each block in the CFG is traversed exactly once.
2542  void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2543                                             ThreadSafetyHandler &Handler,
2544                                             BeforeSet **BSet) {
2545    if (!*BSet)
2546      *BSet = new BeforeSet;
2547    ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2548    Analyzer.runAnalysis(AC);
2549  }
2550  
2551  void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2552  
2553  /// Helper function that returns a LockKind required for the given level
2554  /// of access.
2555  LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2556    switch (AK) {
2557      case AK_Read :
2558        return LK_Shared;
2559      case AK_Written :
2560        return LK_Exclusive;
2561    }
2562    llvm_unreachable("Unknown AccessKind");
2563  }
2564