xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ReachableCode.cpp (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/AnalysisDeclContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include <optional>
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Core Reachability Analysis routines.
33 //===----------------------------------------------------------------------===//
34 
35 static bool isEnumConstant(const Expr *Ex) {
36   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
37   if (!DR)
38     return false;
39   return isa<EnumConstantDecl>(DR->getDecl());
40 }
41 
42 static bool isTrivialExpression(const Expr *Ex) {
43   Ex = Ex->IgnoreParenCasts();
44   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
45          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
46          isa<CharacterLiteral>(Ex) ||
47          isEnumConstant(Ex);
48 }
49 
50 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
51   // Check if the block ends with a do...while() and see if 'S' is the
52   // condition.
53   if (const Stmt *Term = B->getTerminatorStmt()) {
54     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
55       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
56       return Cond == S && isTrivialExpression(Cond);
57     }
58   }
59   return false;
60 }
61 
62 static bool isBuiltinUnreachable(const Stmt *S) {
63   if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
64     if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
65       return FDecl->getIdentifier() &&
66              FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
67   return false;
68 }
69 
70 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
71                                  ASTContext &C) {
72   if (B->empty())  {
73     // Happens if S is B's terminator and B contains nothing else
74     // (e.g. a CFGBlock containing only a goto).
75     return false;
76   }
77   if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
78     if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
79       return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
80     }
81   }
82   return false;
83 }
84 
85 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
86   // Look to see if the current control flow ends with a 'return', and see if
87   // 'S' is a substatement. The 'return' may not be the last element in the
88   // block, or may be in a subsequent block because of destructors.
89   const CFGBlock *Current = B;
90   while (true) {
91     for (const CFGElement &CE : llvm::reverse(*Current)) {
92       if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
93         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
94           if (RS == S)
95             return true;
96           if (const Expr *RE = RS->getRetValue()) {
97             RE = RE->IgnoreParenCasts();
98             if (RE == S)
99               return true;
100             ParentMap PM(const_cast<Expr *>(RE));
101             // If 'S' is in the ParentMap, it is a subexpression of
102             // the return statement.
103             return PM.getParent(S);
104           }
105         }
106         break;
107       }
108     }
109     // Note also that we are restricting the search for the return statement
110     // to stop at control-flow; only part of a return statement may be dead,
111     // without the whole return statement being dead.
112     if (Current->getTerminator().isTemporaryDtorsBranch()) {
113       // Temporary destructors have a predictable control flow, thus we want to
114       // look into the next block for the return statement.
115       // We look into the false branch, as we know the true branch only contains
116       // the call to the destructor.
117       assert(Current->succ_size() == 2);
118       Current = *(Current->succ_begin() + 1);
119     } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
120       // If there is only one successor, we're not dealing with outgoing control
121       // flow. Thus, look into the next block.
122       Current = *Current->succ_begin();
123       if (Current->pred_size() > 1) {
124         // If there is more than one predecessor, we're dealing with incoming
125         // control flow - if the return statement is in that block, it might
126         // well be reachable via a different control flow, thus it's not dead.
127         return false;
128       }
129     } else {
130       // We hit control flow or a dead end. Stop searching.
131       return false;
132     }
133   }
134   llvm_unreachable("Broke out of infinite loop.");
135 }
136 
137 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
138   assert(Loc.isMacroID());
139   SourceLocation Last;
140   do {
141     Last = Loc;
142     Loc = SM.getImmediateMacroCallerLoc(Loc);
143   } while (Loc.isMacroID());
144   return Last;
145 }
146 
147 /// Returns true if the statement is expanded from a configuration macro.
148 static bool isExpandedFromConfigurationMacro(const Stmt *S,
149                                              Preprocessor &PP,
150                                              bool IgnoreYES_NO = false) {
151   // FIXME: This is not very precise.  Here we just check to see if the
152   // value comes from a macro, but we can do much better.  This is likely
153   // to be over conservative.  This logic is factored into a separate function
154   // so that we can refine it later.
155   SourceLocation L = S->getBeginLoc();
156   if (L.isMacroID()) {
157     SourceManager &SM = PP.getSourceManager();
158     if (IgnoreYES_NO) {
159       // The Objective-C constant 'YES' and 'NO'
160       // are defined as macros.  Do not treat them
161       // as configuration values.
162       SourceLocation TopL = getTopMostMacro(L, SM);
163       StringRef MacroName = PP.getImmediateMacroName(TopL);
164       if (MacroName == "YES" || MacroName == "NO")
165         return false;
166     } else if (!PP.getLangOpts().CPlusPlus) {
167       // Do not treat C 'false' and 'true' macros as configuration values.
168       SourceLocation TopL = getTopMostMacro(L, SM);
169       StringRef MacroName = PP.getImmediateMacroName(TopL);
170       if (MacroName == "false" || MacroName == "true")
171         return false;
172     }
173     return true;
174   }
175   return false;
176 }
177 
178 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
179 
180 /// Returns true if the statement represents a configuration value.
181 ///
182 /// A configuration value is something usually determined at compile-time
183 /// to conditionally always execute some branch.  Such guards are for
184 /// "sometimes unreachable" code.  Such code is usually not interesting
185 /// to report as unreachable, and may mask truly unreachable code within
186 /// those blocks.
187 static bool isConfigurationValue(const Stmt *S,
188                                  Preprocessor &PP,
189                                  SourceRange *SilenceableCondVal = nullptr,
190                                  bool IncludeIntegers = true,
191                                  bool WrappedInParens = false) {
192   if (!S)
193     return false;
194 
195   if (const auto *Ex = dyn_cast<Expr>(S))
196     S = Ex->IgnoreImplicit();
197 
198   if (const auto *Ex = dyn_cast<Expr>(S))
199     S = Ex->IgnoreCasts();
200 
201   // Special case looking for the sigil '()' around an integer literal.
202   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
203     if (!PE->getBeginLoc().isMacroID())
204       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
205                                   IncludeIntegers, true);
206 
207   if (const Expr *Ex = dyn_cast<Expr>(S))
208     S = Ex->IgnoreCasts();
209 
210   bool IgnoreYES_NO = false;
211 
212   switch (S->getStmtClass()) {
213     case Stmt::CallExprClass: {
214       const FunctionDecl *Callee =
215         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
216       return Callee ? Callee->isConstexpr() : false;
217     }
218     case Stmt::DeclRefExprClass:
219       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
220     case Stmt::ObjCBoolLiteralExprClass:
221       IgnoreYES_NO = true;
222       [[fallthrough]];
223     case Stmt::CXXBoolLiteralExprClass:
224     case Stmt::IntegerLiteralClass: {
225       const Expr *E = cast<Expr>(S);
226       if (IncludeIntegers) {
227         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
228           *SilenceableCondVal = E->getSourceRange();
229         return WrappedInParens ||
230                isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
231       }
232       return false;
233     }
234     case Stmt::MemberExprClass:
235       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
236     case Stmt::UnaryExprOrTypeTraitExprClass:
237       return true;
238     case Stmt::BinaryOperatorClass: {
239       const BinaryOperator *B = cast<BinaryOperator>(S);
240       // Only include raw integers (not enums) as configuration
241       // values if they are used in a logical or comparison operator
242       // (not arithmetic).
243       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
244       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
245                                   IncludeIntegers) ||
246              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
247                                   IncludeIntegers);
248     }
249     case Stmt::UnaryOperatorClass: {
250       const UnaryOperator *UO = cast<UnaryOperator>(S);
251       if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
252         return false;
253       bool SilenceableCondValNotSet =
254           SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
255       bool IsSubExprConfigValue =
256           isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
257                                IncludeIntegers, WrappedInParens);
258       // Update the silenceable condition value source range only if the range
259       // was set directly by the child expression.
260       if (SilenceableCondValNotSet &&
261           SilenceableCondVal->getBegin().isValid() &&
262           *SilenceableCondVal ==
263               UO->getSubExpr()->IgnoreCasts()->getSourceRange())
264         *SilenceableCondVal = UO->getSourceRange();
265       return IsSubExprConfigValue;
266     }
267     default:
268       return false;
269   }
270 }
271 
272 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
273   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
274     return isConfigurationValue(ED->getInitExpr(), PP);
275   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
276     // As a heuristic, treat globals as configuration values.  Note
277     // that we only will get here if Sema evaluated this
278     // condition to a constant expression, which means the global
279     // had to be declared in a way to be a truly constant value.
280     // We could generalize this to local variables, but it isn't
281     // clear if those truly represent configuration values that
282     // gate unreachable code.
283     if (!VD->hasLocalStorage())
284       return true;
285 
286     // As a heuristic, locals that have been marked 'const' explicitly
287     // can be treated as configuration values as well.
288     return VD->getType().isLocalConstQualified();
289   }
290   return false;
291 }
292 
293 /// Returns true if we should always explore all successors of a block.
294 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
295                                              Preprocessor &PP) {
296   if (const Stmt *Term = B->getTerminatorStmt()) {
297     if (isa<SwitchStmt>(Term))
298       return true;
299     // Specially handle '||' and '&&'.
300     if (isa<BinaryOperator>(Term)) {
301       return isConfigurationValue(Term, PP);
302     }
303     // Do not treat constexpr if statement successors as unreachable in warnings
304     // since the point of these statements is to determine branches at compile
305     // time.
306     if (const auto *IS = dyn_cast<IfStmt>(Term);
307         IS != nullptr && IS->isConstexpr())
308       return true;
309   }
310 
311   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
312   return isConfigurationValue(Cond, PP);
313 }
314 
315 static unsigned scanFromBlock(const CFGBlock *Start,
316                               llvm::BitVector &Reachable,
317                               Preprocessor *PP,
318                               bool IncludeSometimesUnreachableEdges) {
319   unsigned count = 0;
320 
321   // Prep work queue
322   SmallVector<const CFGBlock*, 32> WL;
323 
324   // The entry block may have already been marked reachable
325   // by the caller.
326   if (!Reachable[Start->getBlockID()]) {
327     ++count;
328     Reachable[Start->getBlockID()] = true;
329   }
330 
331   WL.push_back(Start);
332 
333   // Find the reachable blocks from 'Start'.
334   while (!WL.empty()) {
335     const CFGBlock *item = WL.pop_back_val();
336 
337     // There are cases where we want to treat all successors as reachable.
338     // The idea is that some "sometimes unreachable" code is not interesting,
339     // and that we should forge ahead and explore those branches anyway.
340     // This allows us to potentially uncover some "always unreachable" code
341     // within the "sometimes unreachable" code.
342     // Look at the successors and mark then reachable.
343     std::optional<bool> TreatAllSuccessorsAsReachable;
344     if (!IncludeSometimesUnreachableEdges)
345       TreatAllSuccessorsAsReachable = false;
346 
347     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
348          E = item->succ_end(); I != E; ++I) {
349       const CFGBlock *B = *I;
350       if (!B) do {
351         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
352         if (!UB)
353           break;
354 
355         if (!TreatAllSuccessorsAsReachable) {
356           assert(PP);
357           TreatAllSuccessorsAsReachable =
358             shouldTreatSuccessorsAsReachable(item, *PP);
359         }
360 
361         if (*TreatAllSuccessorsAsReachable) {
362           B = UB;
363           break;
364         }
365       }
366       while (false);
367 
368       if (B) {
369         unsigned blockID = B->getBlockID();
370         if (!Reachable[blockID]) {
371           Reachable.set(blockID);
372           WL.push_back(B);
373           ++count;
374         }
375       }
376     }
377   }
378   return count;
379 }
380 
381 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
382                                             Preprocessor &PP,
383                                             llvm::BitVector &Reachable) {
384   return scanFromBlock(Start, Reachable, &PP, true);
385 }
386 
387 //===----------------------------------------------------------------------===//
388 // Dead Code Scanner.
389 //===----------------------------------------------------------------------===//
390 
391 namespace {
392   class DeadCodeScan {
393     llvm::BitVector Visited;
394     llvm::BitVector &Reachable;
395     SmallVector<const CFGBlock *, 10> WorkList;
396     Preprocessor &PP;
397     ASTContext &C;
398 
399     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
400     DeferredLocsTy;
401 
402     DeferredLocsTy DeferredLocs;
403 
404   public:
405     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
406     : Visited(reachable.size()),
407       Reachable(reachable),
408       PP(PP), C(C) {}
409 
410     void enqueue(const CFGBlock *block);
411     unsigned scanBackwards(const CFGBlock *Start,
412     clang::reachable_code::Callback &CB);
413 
414     bool isDeadCodeRoot(const CFGBlock *Block);
415 
416     const Stmt *findDeadCode(const CFGBlock *Block);
417 
418     void reportDeadCode(const CFGBlock *B,
419                         const Stmt *S,
420                         clang::reachable_code::Callback &CB);
421   };
422 }
423 
424 void DeadCodeScan::enqueue(const CFGBlock *block) {
425   unsigned blockID = block->getBlockID();
426   if (Reachable[blockID] || Visited[blockID])
427     return;
428   Visited[blockID] = true;
429   WorkList.push_back(block);
430 }
431 
432 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
433   bool isDeadRoot = true;
434 
435   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
436        E = Block->pred_end(); I != E; ++I) {
437     if (const CFGBlock *PredBlock = *I) {
438       unsigned blockID = PredBlock->getBlockID();
439       if (Visited[blockID]) {
440         isDeadRoot = false;
441         continue;
442       }
443       if (!Reachable[blockID]) {
444         isDeadRoot = false;
445         Visited[blockID] = true;
446         WorkList.push_back(PredBlock);
447         continue;
448       }
449     }
450   }
451 
452   return isDeadRoot;
453 }
454 
455 static bool isValidDeadStmt(const Stmt *S) {
456   if (S->getBeginLoc().isInvalid())
457     return false;
458   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
459     return BO->getOpcode() != BO_Comma;
460   return true;
461 }
462 
463 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
464   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
465     if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
466       const Stmt *S = CS->getStmt();
467       if (isValidDeadStmt(S))
468         return S;
469     }
470 
471   CFGTerminator T = Block->getTerminator();
472   if (T.isStmtBranch()) {
473     const Stmt *S = T.getStmt();
474     if (S && isValidDeadStmt(S))
475       return S;
476   }
477 
478   return nullptr;
479 }
480 
481 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
482                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
483   if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
484     return -1;
485   if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
486     return 1;
487   return 0;
488 }
489 
490 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
491                                      clang::reachable_code::Callback &CB) {
492 
493   unsigned count = 0;
494   enqueue(Start);
495 
496   while (!WorkList.empty()) {
497     const CFGBlock *Block = WorkList.pop_back_val();
498 
499     // It is possible that this block has been marked reachable after
500     // it was enqueued.
501     if (Reachable[Block->getBlockID()])
502       continue;
503 
504     // Look for any dead code within the block.
505     const Stmt *S = findDeadCode(Block);
506 
507     if (!S) {
508       // No dead code.  Possibly an empty block.  Look at dead predecessors.
509       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
510            E = Block->pred_end(); I != E; ++I) {
511         if (const CFGBlock *predBlock = *I)
512           enqueue(predBlock);
513       }
514       continue;
515     }
516 
517     // Specially handle macro-expanded code.
518     if (S->getBeginLoc().isMacroID()) {
519       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
520       continue;
521     }
522 
523     if (isDeadCodeRoot(Block)) {
524       reportDeadCode(Block, S, CB);
525       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
526     }
527     else {
528       // Record this statement as the possibly best location in a
529       // strongly-connected component of dead code for emitting a
530       // warning.
531       DeferredLocs.push_back(std::make_pair(Block, S));
532     }
533   }
534 
535   // If we didn't find a dead root, then report the dead code with the
536   // earliest location.
537   if (!DeferredLocs.empty()) {
538     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
539     for (const auto &I : DeferredLocs) {
540       const CFGBlock *Block = I.first;
541       if (Reachable[Block->getBlockID()])
542         continue;
543       reportDeadCode(Block, I.second, CB);
544       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
545     }
546   }
547 
548   return count;
549 }
550 
551 static SourceLocation GetUnreachableLoc(const Stmt *S,
552                                         SourceRange &R1,
553                                         SourceRange &R2) {
554   R1 = R2 = SourceRange();
555 
556   if (const Expr *Ex = dyn_cast<Expr>(S))
557     S = Ex->IgnoreParenImpCasts();
558 
559   switch (S->getStmtClass()) {
560     case Expr::BinaryOperatorClass: {
561       const BinaryOperator *BO = cast<BinaryOperator>(S);
562       return BO->getOperatorLoc();
563     }
564     case Expr::UnaryOperatorClass: {
565       const UnaryOperator *UO = cast<UnaryOperator>(S);
566       R1 = UO->getSubExpr()->getSourceRange();
567       return UO->getOperatorLoc();
568     }
569     case Expr::CompoundAssignOperatorClass: {
570       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
571       R1 = CAO->getLHS()->getSourceRange();
572       R2 = CAO->getRHS()->getSourceRange();
573       return CAO->getOperatorLoc();
574     }
575     case Expr::BinaryConditionalOperatorClass:
576     case Expr::ConditionalOperatorClass: {
577       const AbstractConditionalOperator *CO =
578       cast<AbstractConditionalOperator>(S);
579       return CO->getQuestionLoc();
580     }
581     case Expr::MemberExprClass: {
582       const MemberExpr *ME = cast<MemberExpr>(S);
583       R1 = ME->getSourceRange();
584       return ME->getMemberLoc();
585     }
586     case Expr::ArraySubscriptExprClass: {
587       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
588       R1 = ASE->getLHS()->getSourceRange();
589       R2 = ASE->getRHS()->getSourceRange();
590       return ASE->getRBracketLoc();
591     }
592     case Expr::CStyleCastExprClass: {
593       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
594       R1 = CSC->getSubExpr()->getSourceRange();
595       return CSC->getLParenLoc();
596     }
597     case Expr::CXXFunctionalCastExprClass: {
598       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
599       R1 = CE->getSubExpr()->getSourceRange();
600       return CE->getBeginLoc();
601     }
602     case Stmt::CXXTryStmtClass: {
603       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
604     }
605     case Expr::ObjCBridgedCastExprClass: {
606       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
607       R1 = CSC->getSubExpr()->getSourceRange();
608       return CSC->getLParenLoc();
609     }
610     default: ;
611   }
612   R1 = S->getSourceRange();
613   return S->getBeginLoc();
614 }
615 
616 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
617                                   const Stmt *S,
618                                   clang::reachable_code::Callback &CB) {
619   // Classify the unreachable code found, or suppress it in some cases.
620   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
621 
622   if (isa<BreakStmt>(S)) {
623     UK = reachable_code::UK_Break;
624   } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
625              isBuiltinAssumeFalse(B, S, C)) {
626     return;
627   }
628   else if (isDeadReturn(B, S)) {
629     UK = reachable_code::UK_Return;
630   }
631 
632   SourceRange SilenceableCondVal;
633 
634   if (UK == reachable_code::UK_Other) {
635     // Check if the dead code is part of the "loop target" of
636     // a for/for-range loop.  This is the block that contains
637     // the increment code.
638     if (const Stmt *LoopTarget = B->getLoopTarget()) {
639       SourceLocation Loc = LoopTarget->getBeginLoc();
640       SourceRange R1(Loc, Loc), R2;
641 
642       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
643         const Expr *Inc = FS->getInc();
644         Loc = Inc->getBeginLoc();
645         R2 = Inc->getSourceRange();
646       }
647 
648       CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
649                            Loc, SourceRange(), SourceRange(Loc, Loc), R2);
650       return;
651     }
652 
653     // Check if the dead block has a predecessor whose branch has
654     // a configuration value that *could* be modified to
655     // silence the warning.
656     CFGBlock::const_pred_iterator PI = B->pred_begin();
657     if (PI != B->pred_end()) {
658       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
659         const Stmt *TermCond =
660             PredBlock->getTerminatorCondition(/* strip parens */ false);
661         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
662       }
663     }
664   }
665 
666   SourceRange R1, R2;
667   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
668   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // Reachability APIs.
673 //===----------------------------------------------------------------------===//
674 
675 namespace clang { namespace reachable_code {
676 
677 void Callback::anchor() { }
678 
679 unsigned ScanReachableFromBlock(const CFGBlock *Start,
680                                 llvm::BitVector &Reachable) {
681   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
682 }
683 
684 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
685                          Callback &CB) {
686 
687   CFG *cfg = AC.getCFG();
688   if (!cfg)
689     return;
690 
691   // Scan for reachable blocks from the entrance of the CFG.
692   // If there are no unreachable blocks, we're done.
693   llvm::BitVector reachable(cfg->getNumBlockIDs());
694   unsigned numReachable =
695     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
696   if (numReachable == cfg->getNumBlockIDs())
697     return;
698 
699   // If there aren't explicit EH edges, we should include the 'try' dispatch
700   // blocks as roots.
701   if (!AC.getCFGBuildOptions().AddEHEdges) {
702     for (const CFGBlock *B : cfg->try_blocks())
703       numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
704     if (numReachable == cfg->getNumBlockIDs())
705       return;
706   }
707 
708   // There are some unreachable blocks.  We need to find the root blocks that
709   // contain code that should be considered unreachable.
710   for (const CFGBlock *block : *cfg) {
711     // A block may have been marked reachable during this loop.
712     if (reachable[block->getBlockID()])
713       continue;
714 
715     DeadCodeScan DS(reachable, PP, AC.getASTContext());
716     numReachable += DS.scanBackwards(block, CB);
717 
718     if (numReachable == cfg->getNumBlockIDs())
719       return;
720   }
721 }
722 
723 }} // end namespace clang::reachable_code
724