xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ReachableCode.cpp (revision be092bcde96bdcfde9013d60e442cca023bfbd1b)
1  //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements a flow-sensitive, path-insensitive analysis of
10  // determining reachable blocks within a CFG.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "clang/Analysis/Analyses/ReachableCode.h"
15  #include "clang/AST/Expr.h"
16  #include "clang/AST/ExprCXX.h"
17  #include "clang/AST/ExprObjC.h"
18  #include "clang/AST/ParentMap.h"
19  #include "clang/AST/StmtCXX.h"
20  #include "clang/Analysis/AnalysisDeclContext.h"
21  #include "clang/Analysis/CFG.h"
22  #include "clang/Basic/Builtins.h"
23  #include "clang/Basic/SourceManager.h"
24  #include "clang/Lex/Preprocessor.h"
25  #include "llvm/ADT/BitVector.h"
26  #include "llvm/ADT/SmallVector.h"
27  #include <optional>
28  
29  using namespace clang;
30  
31  //===----------------------------------------------------------------------===//
32  // Core Reachability Analysis routines.
33  //===----------------------------------------------------------------------===//
34  
35  static bool isEnumConstant(const Expr *Ex) {
36    const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
37    if (!DR)
38      return false;
39    return isa<EnumConstantDecl>(DR->getDecl());
40  }
41  
42  static bool isTrivialExpression(const Expr *Ex) {
43    Ex = Ex->IgnoreParenCasts();
44    return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
45           isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
46           isa<CharacterLiteral>(Ex) ||
47           isEnumConstant(Ex);
48  }
49  
50  static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
51    // Check if the block ends with a do...while() and see if 'S' is the
52    // condition.
53    if (const Stmt *Term = B->getTerminatorStmt()) {
54      if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
55        const Expr *Cond = DS->getCond()->IgnoreParenCasts();
56        return Cond == S && isTrivialExpression(Cond);
57      }
58    }
59    return false;
60  }
61  
62  static bool isBuiltinUnreachable(const Stmt *S) {
63    if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
64      if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
65        return FDecl->getIdentifier() &&
66               FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
67    return false;
68  }
69  
70  static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
71                                   ASTContext &C) {
72    if (B->empty())  {
73      // Happens if S is B's terminator and B contains nothing else
74      // (e.g. a CFGBlock containing only a goto).
75      return false;
76    }
77    if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
78      if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
79        return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
80      }
81    }
82    return false;
83  }
84  
85  static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
86    // Look to see if the current control flow ends with a 'return', and see if
87    // 'S' is a substatement. The 'return' may not be the last element in the
88    // block, or may be in a subsequent block because of destructors.
89    const CFGBlock *Current = B;
90    while (true) {
91      for (const CFGElement &CE : llvm::reverse(*Current)) {
92        if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
93          if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
94            if (RS == S)
95              return true;
96            if (const Expr *RE = RS->getRetValue()) {
97              RE = RE->IgnoreParenCasts();
98              if (RE == S)
99                return true;
100              ParentMap PM(const_cast<Expr *>(RE));
101              // If 'S' is in the ParentMap, it is a subexpression of
102              // the return statement.
103              return PM.getParent(S);
104            }
105          }
106          break;
107        }
108      }
109      // Note also that we are restricting the search for the return statement
110      // to stop at control-flow; only part of a return statement may be dead,
111      // without the whole return statement being dead.
112      if (Current->getTerminator().isTemporaryDtorsBranch()) {
113        // Temporary destructors have a predictable control flow, thus we want to
114        // look into the next block for the return statement.
115        // We look into the false branch, as we know the true branch only contains
116        // the call to the destructor.
117        assert(Current->succ_size() == 2);
118        Current = *(Current->succ_begin() + 1);
119      } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
120        // If there is only one successor, we're not dealing with outgoing control
121        // flow. Thus, look into the next block.
122        Current = *Current->succ_begin();
123        if (Current->pred_size() > 1) {
124          // If there is more than one predecessor, we're dealing with incoming
125          // control flow - if the return statement is in that block, it might
126          // well be reachable via a different control flow, thus it's not dead.
127          return false;
128        }
129      } else {
130        // We hit control flow or a dead end. Stop searching.
131        return false;
132      }
133    }
134    llvm_unreachable("Broke out of infinite loop.");
135  }
136  
137  static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
138    assert(Loc.isMacroID());
139    SourceLocation Last;
140    do {
141      Last = Loc;
142      Loc = SM.getImmediateMacroCallerLoc(Loc);
143    } while (Loc.isMacroID());
144    return Last;
145  }
146  
147  /// Returns true if the statement is expanded from a configuration macro.
148  static bool isExpandedFromConfigurationMacro(const Stmt *S,
149                                               Preprocessor &PP,
150                                               bool IgnoreYES_NO = false) {
151    // FIXME: This is not very precise.  Here we just check to see if the
152    // value comes from a macro, but we can do much better.  This is likely
153    // to be over conservative.  This logic is factored into a separate function
154    // so that we can refine it later.
155    SourceLocation L = S->getBeginLoc();
156    if (L.isMacroID()) {
157      SourceManager &SM = PP.getSourceManager();
158      if (IgnoreYES_NO) {
159        // The Objective-C constant 'YES' and 'NO'
160        // are defined as macros.  Do not treat them
161        // as configuration values.
162        SourceLocation TopL = getTopMostMacro(L, SM);
163        StringRef MacroName = PP.getImmediateMacroName(TopL);
164        if (MacroName == "YES" || MacroName == "NO")
165          return false;
166      } else if (!PP.getLangOpts().CPlusPlus) {
167        // Do not treat C 'false' and 'true' macros as configuration values.
168        SourceLocation TopL = getTopMostMacro(L, SM);
169        StringRef MacroName = PP.getImmediateMacroName(TopL);
170        if (MacroName == "false" || MacroName == "true")
171          return false;
172      }
173      return true;
174    }
175    return false;
176  }
177  
178  static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
179  
180  /// Returns true if the statement represents a configuration value.
181  ///
182  /// A configuration value is something usually determined at compile-time
183  /// to conditionally always execute some branch.  Such guards are for
184  /// "sometimes unreachable" code.  Such code is usually not interesting
185  /// to report as unreachable, and may mask truly unreachable code within
186  /// those blocks.
187  static bool isConfigurationValue(const Stmt *S,
188                                   Preprocessor &PP,
189                                   SourceRange *SilenceableCondVal = nullptr,
190                                   bool IncludeIntegers = true,
191                                   bool WrappedInParens = false) {
192    if (!S)
193      return false;
194  
195    if (const auto *Ex = dyn_cast<Expr>(S))
196      S = Ex->IgnoreImplicit();
197  
198    if (const auto *Ex = dyn_cast<Expr>(S))
199      S = Ex->IgnoreCasts();
200  
201    // Special case looking for the sigil '()' around an integer literal.
202    if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
203      if (!PE->getBeginLoc().isMacroID())
204        return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
205                                    IncludeIntegers, true);
206  
207    if (const Expr *Ex = dyn_cast<Expr>(S))
208      S = Ex->IgnoreCasts();
209  
210    bool IgnoreYES_NO = false;
211  
212    switch (S->getStmtClass()) {
213      case Stmt::CallExprClass: {
214        const FunctionDecl *Callee =
215          dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
216        return Callee ? Callee->isConstexpr() : false;
217      }
218      case Stmt::DeclRefExprClass:
219        return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
220      case Stmt::ObjCBoolLiteralExprClass:
221        IgnoreYES_NO = true;
222        [[fallthrough]];
223      case Stmt::CXXBoolLiteralExprClass:
224      case Stmt::IntegerLiteralClass: {
225        const Expr *E = cast<Expr>(S);
226        if (IncludeIntegers) {
227          if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
228            *SilenceableCondVal = E->getSourceRange();
229          return WrappedInParens ||
230                 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
231        }
232        return false;
233      }
234      case Stmt::MemberExprClass:
235        return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
236      case Stmt::UnaryExprOrTypeTraitExprClass:
237        return true;
238      case Stmt::BinaryOperatorClass: {
239        const BinaryOperator *B = cast<BinaryOperator>(S);
240        // Only include raw integers (not enums) as configuration
241        // values if they are used in a logical or comparison operator
242        // (not arithmetic).
243        IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
244        return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
245                                    IncludeIntegers) ||
246               isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
247                                    IncludeIntegers);
248      }
249      case Stmt::UnaryOperatorClass: {
250        const UnaryOperator *UO = cast<UnaryOperator>(S);
251        if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
252          return false;
253        bool SilenceableCondValNotSet =
254            SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
255        bool IsSubExprConfigValue =
256            isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
257                                 IncludeIntegers, WrappedInParens);
258        // Update the silenceable condition value source range only if the range
259        // was set directly by the child expression.
260        if (SilenceableCondValNotSet &&
261            SilenceableCondVal->getBegin().isValid() &&
262            *SilenceableCondVal ==
263                UO->getSubExpr()->IgnoreCasts()->getSourceRange())
264          *SilenceableCondVal = UO->getSourceRange();
265        return IsSubExprConfigValue;
266      }
267      default:
268        return false;
269    }
270  }
271  
272  static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
273    if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
274      return isConfigurationValue(ED->getInitExpr(), PP);
275    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
276      // As a heuristic, treat globals as configuration values.  Note
277      // that we only will get here if Sema evaluated this
278      // condition to a constant expression, which means the global
279      // had to be declared in a way to be a truly constant value.
280      // We could generalize this to local variables, but it isn't
281      // clear if those truly represent configuration values that
282      // gate unreachable code.
283      if (!VD->hasLocalStorage())
284        return true;
285  
286      // As a heuristic, locals that have been marked 'const' explicitly
287      // can be treated as configuration values as well.
288      return VD->getType().isLocalConstQualified();
289    }
290    return false;
291  }
292  
293  /// Returns true if we should always explore all successors of a block.
294  static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
295                                               Preprocessor &PP) {
296    if (const Stmt *Term = B->getTerminatorStmt()) {
297      if (isa<SwitchStmt>(Term))
298        return true;
299      // Specially handle '||' and '&&'.
300      if (isa<BinaryOperator>(Term)) {
301        return isConfigurationValue(Term, PP);
302      }
303      // Do not treat constexpr if statement successors as unreachable in warnings
304      // since the point of these statements is to determine branches at compile
305      // time.
306      if (const auto *IS = dyn_cast<IfStmt>(Term);
307          IS != nullptr && IS->isConstexpr())
308        return true;
309    }
310  
311    const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
312    return isConfigurationValue(Cond, PP);
313  }
314  
315  static unsigned scanFromBlock(const CFGBlock *Start,
316                                llvm::BitVector &Reachable,
317                                Preprocessor *PP,
318                                bool IncludeSometimesUnreachableEdges) {
319    unsigned count = 0;
320  
321    // Prep work queue
322    SmallVector<const CFGBlock*, 32> WL;
323  
324    // The entry block may have already been marked reachable
325    // by the caller.
326    if (!Reachable[Start->getBlockID()]) {
327      ++count;
328      Reachable[Start->getBlockID()] = true;
329    }
330  
331    WL.push_back(Start);
332  
333    // Find the reachable blocks from 'Start'.
334    while (!WL.empty()) {
335      const CFGBlock *item = WL.pop_back_val();
336  
337      // There are cases where we want to treat all successors as reachable.
338      // The idea is that some "sometimes unreachable" code is not interesting,
339      // and that we should forge ahead and explore those branches anyway.
340      // This allows us to potentially uncover some "always unreachable" code
341      // within the "sometimes unreachable" code.
342      // Look at the successors and mark then reachable.
343      std::optional<bool> TreatAllSuccessorsAsReachable;
344      if (!IncludeSometimesUnreachableEdges)
345        TreatAllSuccessorsAsReachable = false;
346  
347      for (CFGBlock::const_succ_iterator I = item->succ_begin(),
348           E = item->succ_end(); I != E; ++I) {
349        const CFGBlock *B = *I;
350        if (!B) do {
351          const CFGBlock *UB = I->getPossiblyUnreachableBlock();
352          if (!UB)
353            break;
354  
355          if (!TreatAllSuccessorsAsReachable) {
356            assert(PP);
357            TreatAllSuccessorsAsReachable =
358              shouldTreatSuccessorsAsReachable(item, *PP);
359          }
360  
361          if (*TreatAllSuccessorsAsReachable) {
362            B = UB;
363            break;
364          }
365        }
366        while (false);
367  
368        if (B) {
369          unsigned blockID = B->getBlockID();
370          if (!Reachable[blockID]) {
371            Reachable.set(blockID);
372            WL.push_back(B);
373            ++count;
374          }
375        }
376      }
377    }
378    return count;
379  }
380  
381  static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
382                                              Preprocessor &PP,
383                                              llvm::BitVector &Reachable) {
384    return scanFromBlock(Start, Reachable, &PP, true);
385  }
386  
387  //===----------------------------------------------------------------------===//
388  // Dead Code Scanner.
389  //===----------------------------------------------------------------------===//
390  
391  namespace {
392    class DeadCodeScan {
393      llvm::BitVector Visited;
394      llvm::BitVector &Reachable;
395      SmallVector<const CFGBlock *, 10> WorkList;
396      Preprocessor &PP;
397      ASTContext &C;
398  
399      typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
400      DeferredLocsTy;
401  
402      DeferredLocsTy DeferredLocs;
403  
404    public:
405      DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
406      : Visited(reachable.size()),
407        Reachable(reachable),
408        PP(PP), C(C) {}
409  
410      void enqueue(const CFGBlock *block);
411      unsigned scanBackwards(const CFGBlock *Start,
412      clang::reachable_code::Callback &CB);
413  
414      bool isDeadCodeRoot(const CFGBlock *Block);
415  
416      const Stmt *findDeadCode(const CFGBlock *Block);
417  
418      void reportDeadCode(const CFGBlock *B,
419                          const Stmt *S,
420                          clang::reachable_code::Callback &CB);
421    };
422  }
423  
424  void DeadCodeScan::enqueue(const CFGBlock *block) {
425    unsigned blockID = block->getBlockID();
426    if (Reachable[blockID] || Visited[blockID])
427      return;
428    Visited[blockID] = true;
429    WorkList.push_back(block);
430  }
431  
432  bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
433    bool isDeadRoot = true;
434  
435    for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
436         E = Block->pred_end(); I != E; ++I) {
437      if (const CFGBlock *PredBlock = *I) {
438        unsigned blockID = PredBlock->getBlockID();
439        if (Visited[blockID]) {
440          isDeadRoot = false;
441          continue;
442        }
443        if (!Reachable[blockID]) {
444          isDeadRoot = false;
445          Visited[blockID] = true;
446          WorkList.push_back(PredBlock);
447          continue;
448        }
449      }
450    }
451  
452    return isDeadRoot;
453  }
454  
455  static bool isValidDeadStmt(const Stmt *S) {
456    if (S->getBeginLoc().isInvalid())
457      return false;
458    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
459      return BO->getOpcode() != BO_Comma;
460    return true;
461  }
462  
463  const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
464    for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
465      if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
466        const Stmt *S = CS->getStmt();
467        if (isValidDeadStmt(S))
468          return S;
469      }
470  
471    CFGTerminator T = Block->getTerminator();
472    if (T.isStmtBranch()) {
473      const Stmt *S = T.getStmt();
474      if (S && isValidDeadStmt(S))
475        return S;
476    }
477  
478    return nullptr;
479  }
480  
481  static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
482                    const std::pair<const CFGBlock *, const Stmt *> *p2) {
483    if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
484      return -1;
485    if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
486      return 1;
487    return 0;
488  }
489  
490  unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
491                                       clang::reachable_code::Callback &CB) {
492  
493    unsigned count = 0;
494    enqueue(Start);
495  
496    while (!WorkList.empty()) {
497      const CFGBlock *Block = WorkList.pop_back_val();
498  
499      // It is possible that this block has been marked reachable after
500      // it was enqueued.
501      if (Reachable[Block->getBlockID()])
502        continue;
503  
504      // Look for any dead code within the block.
505      const Stmt *S = findDeadCode(Block);
506  
507      if (!S) {
508        // No dead code.  Possibly an empty block.  Look at dead predecessors.
509        for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
510             E = Block->pred_end(); I != E; ++I) {
511          if (const CFGBlock *predBlock = *I)
512            enqueue(predBlock);
513        }
514        continue;
515      }
516  
517      // Specially handle macro-expanded code.
518      if (S->getBeginLoc().isMacroID()) {
519        count += scanMaybeReachableFromBlock(Block, PP, Reachable);
520        continue;
521      }
522  
523      if (isDeadCodeRoot(Block)) {
524        reportDeadCode(Block, S, CB);
525        count += scanMaybeReachableFromBlock(Block, PP, Reachable);
526      }
527      else {
528        // Record this statement as the possibly best location in a
529        // strongly-connected component of dead code for emitting a
530        // warning.
531        DeferredLocs.push_back(std::make_pair(Block, S));
532      }
533    }
534  
535    // If we didn't find a dead root, then report the dead code with the
536    // earliest location.
537    if (!DeferredLocs.empty()) {
538      llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
539      for (const auto &I : DeferredLocs) {
540        const CFGBlock *Block = I.first;
541        if (Reachable[Block->getBlockID()])
542          continue;
543        reportDeadCode(Block, I.second, CB);
544        count += scanMaybeReachableFromBlock(Block, PP, Reachable);
545      }
546    }
547  
548    return count;
549  }
550  
551  static SourceLocation GetUnreachableLoc(const Stmt *S,
552                                          SourceRange &R1,
553                                          SourceRange &R2) {
554    R1 = R2 = SourceRange();
555  
556    if (const Expr *Ex = dyn_cast<Expr>(S))
557      S = Ex->IgnoreParenImpCasts();
558  
559    switch (S->getStmtClass()) {
560      case Expr::BinaryOperatorClass: {
561        const BinaryOperator *BO = cast<BinaryOperator>(S);
562        return BO->getOperatorLoc();
563      }
564      case Expr::UnaryOperatorClass: {
565        const UnaryOperator *UO = cast<UnaryOperator>(S);
566        R1 = UO->getSubExpr()->getSourceRange();
567        return UO->getOperatorLoc();
568      }
569      case Expr::CompoundAssignOperatorClass: {
570        const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
571        R1 = CAO->getLHS()->getSourceRange();
572        R2 = CAO->getRHS()->getSourceRange();
573        return CAO->getOperatorLoc();
574      }
575      case Expr::BinaryConditionalOperatorClass:
576      case Expr::ConditionalOperatorClass: {
577        const AbstractConditionalOperator *CO =
578        cast<AbstractConditionalOperator>(S);
579        return CO->getQuestionLoc();
580      }
581      case Expr::MemberExprClass: {
582        const MemberExpr *ME = cast<MemberExpr>(S);
583        R1 = ME->getSourceRange();
584        return ME->getMemberLoc();
585      }
586      case Expr::ArraySubscriptExprClass: {
587        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
588        R1 = ASE->getLHS()->getSourceRange();
589        R2 = ASE->getRHS()->getSourceRange();
590        return ASE->getRBracketLoc();
591      }
592      case Expr::CStyleCastExprClass: {
593        const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
594        R1 = CSC->getSubExpr()->getSourceRange();
595        return CSC->getLParenLoc();
596      }
597      case Expr::CXXFunctionalCastExprClass: {
598        const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
599        R1 = CE->getSubExpr()->getSourceRange();
600        return CE->getBeginLoc();
601      }
602      case Stmt::CXXTryStmtClass: {
603        return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
604      }
605      case Expr::ObjCBridgedCastExprClass: {
606        const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
607        R1 = CSC->getSubExpr()->getSourceRange();
608        return CSC->getLParenLoc();
609      }
610      default: ;
611    }
612    R1 = S->getSourceRange();
613    return S->getBeginLoc();
614  }
615  
616  void DeadCodeScan::reportDeadCode(const CFGBlock *B,
617                                    const Stmt *S,
618                                    clang::reachable_code::Callback &CB) {
619    // Classify the unreachable code found, or suppress it in some cases.
620    reachable_code::UnreachableKind UK = reachable_code::UK_Other;
621  
622    if (isa<BreakStmt>(S)) {
623      UK = reachable_code::UK_Break;
624    } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
625               isBuiltinAssumeFalse(B, S, C)) {
626      return;
627    }
628    else if (isDeadReturn(B, S)) {
629      UK = reachable_code::UK_Return;
630    }
631  
632    SourceRange SilenceableCondVal;
633  
634    if (UK == reachable_code::UK_Other) {
635      // Check if the dead code is part of the "loop target" of
636      // a for/for-range loop.  This is the block that contains
637      // the increment code.
638      if (const Stmt *LoopTarget = B->getLoopTarget()) {
639        SourceLocation Loc = LoopTarget->getBeginLoc();
640        SourceRange R1(Loc, Loc), R2;
641  
642        if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
643          const Expr *Inc = FS->getInc();
644          Loc = Inc->getBeginLoc();
645          R2 = Inc->getSourceRange();
646        }
647  
648        CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
649                             Loc, SourceRange(), SourceRange(Loc, Loc), R2);
650        return;
651      }
652  
653      // Check if the dead block has a predecessor whose branch has
654      // a configuration value that *could* be modified to
655      // silence the warning.
656      CFGBlock::const_pred_iterator PI = B->pred_begin();
657      if (PI != B->pred_end()) {
658        if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
659          const Stmt *TermCond =
660              PredBlock->getTerminatorCondition(/* strip parens */ false);
661          isConfigurationValue(TermCond, PP, &SilenceableCondVal);
662        }
663      }
664    }
665  
666    SourceRange R1, R2;
667    SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
668    CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
669  }
670  
671  //===----------------------------------------------------------------------===//
672  // Reachability APIs.
673  //===----------------------------------------------------------------------===//
674  
675  namespace clang { namespace reachable_code {
676  
677  void Callback::anchor() { }
678  
679  unsigned ScanReachableFromBlock(const CFGBlock *Start,
680                                  llvm::BitVector &Reachable) {
681    return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
682  }
683  
684  void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
685                           Callback &CB) {
686  
687    CFG *cfg = AC.getCFG();
688    if (!cfg)
689      return;
690  
691    // Scan for reachable blocks from the entrance of the CFG.
692    // If there are no unreachable blocks, we're done.
693    llvm::BitVector reachable(cfg->getNumBlockIDs());
694    unsigned numReachable =
695      scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
696    if (numReachable == cfg->getNumBlockIDs())
697      return;
698  
699    // If there aren't explicit EH edges, we should include the 'try' dispatch
700    // blocks as roots.
701    if (!AC.getCFGBuildOptions().AddEHEdges) {
702      for (const CFGBlock *B : cfg->try_blocks())
703        numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
704      if (numReachable == cfg->getNumBlockIDs())
705        return;
706    }
707  
708    // There are some unreachable blocks.  We need to find the root blocks that
709    // contain code that should be considered unreachable.
710    for (const CFGBlock *block : *cfg) {
711      // A block may have been marked reachable during this loop.
712      if (reachable[block->getBlockID()])
713        continue;
714  
715      DeadCodeScan DS(reachable, PP, AC.getASTContext());
716      numReachable += DS.scanBackwards(block, CB);
717  
718      if (numReachable == cfg->getNumBlockIDs())
719        return;
720    }
721  }
722  
723  }} // end namespace clang::reachable_code
724