1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a flow-sensitive, path-insensitive analysis of 10 // determining reachable blocks within a CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ReachableCode.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/AnalysisDeclContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include <optional> 28 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Core Reachability Analysis routines. 33 //===----------------------------------------------------------------------===// 34 35 static bool isEnumConstant(const Expr *Ex) { 36 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 37 if (!DR) 38 return false; 39 return isa<EnumConstantDecl>(DR->getDecl()); 40 } 41 42 static bool isTrivialExpression(const Expr *Ex) { 43 Ex = Ex->IgnoreParenCasts(); 44 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 45 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 46 isa<CharacterLiteral>(Ex) || 47 isEnumConstant(Ex); 48 } 49 50 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 51 // Check if the block ends with a do...while() and see if 'S' is the 52 // condition. 53 if (const Stmt *Term = B->getTerminatorStmt()) { 54 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 55 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 56 return Cond == S && isTrivialExpression(Cond); 57 } 58 } 59 return false; 60 } 61 62 static bool isBuiltinUnreachable(const Stmt *S) { 63 if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) 64 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) 65 return FDecl->getIdentifier() && 66 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; 67 return false; 68 } 69 70 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, 71 ASTContext &C) { 72 if (B->empty()) { 73 // Happens if S is B's terminator and B contains nothing else 74 // (e.g. a CFGBlock containing only a goto). 75 return false; 76 } 77 if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { 78 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { 79 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); 80 } 81 } 82 return false; 83 } 84 85 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 86 // Look to see if the current control flow ends with a 'return', and see if 87 // 'S' is a substatement. The 'return' may not be the last element in the 88 // block, or may be in a subsequent block because of destructors. 89 const CFGBlock *Current = B; 90 while (true) { 91 for (const CFGElement &CE : llvm::reverse(*Current)) { 92 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 93 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 94 if (RS == S) 95 return true; 96 if (const Expr *RE = RS->getRetValue()) { 97 RE = RE->IgnoreParenCasts(); 98 if (RE == S) 99 return true; 100 ParentMap PM(const_cast<Expr *>(RE)); 101 // If 'S' is in the ParentMap, it is a subexpression of 102 // the return statement. 103 return PM.getParent(S); 104 } 105 } 106 break; 107 } 108 } 109 // Note also that we are restricting the search for the return statement 110 // to stop at control-flow; only part of a return statement may be dead, 111 // without the whole return statement being dead. 112 if (Current->getTerminator().isTemporaryDtorsBranch()) { 113 // Temporary destructors have a predictable control flow, thus we want to 114 // look into the next block for the return statement. 115 // We look into the false branch, as we know the true branch only contains 116 // the call to the destructor. 117 assert(Current->succ_size() == 2); 118 Current = *(Current->succ_begin() + 1); 119 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { 120 // If there is only one successor, we're not dealing with outgoing control 121 // flow. Thus, look into the next block. 122 Current = *Current->succ_begin(); 123 if (Current->pred_size() > 1) { 124 // If there is more than one predecessor, we're dealing with incoming 125 // control flow - if the return statement is in that block, it might 126 // well be reachable via a different control flow, thus it's not dead. 127 return false; 128 } 129 } else { 130 // We hit control flow or a dead end. Stop searching. 131 return false; 132 } 133 } 134 llvm_unreachable("Broke out of infinite loop."); 135 } 136 137 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 138 assert(Loc.isMacroID()); 139 SourceLocation Last; 140 do { 141 Last = Loc; 142 Loc = SM.getImmediateMacroCallerLoc(Loc); 143 } while (Loc.isMacroID()); 144 return Last; 145 } 146 147 /// Returns true if the statement is expanded from a configuration macro. 148 static bool isExpandedFromConfigurationMacro(const Stmt *S, 149 Preprocessor &PP, 150 bool IgnoreYES_NO = false) { 151 // FIXME: This is not very precise. Here we just check to see if the 152 // value comes from a macro, but we can do much better. This is likely 153 // to be over conservative. This logic is factored into a separate function 154 // so that we can refine it later. 155 SourceLocation L = S->getBeginLoc(); 156 if (L.isMacroID()) { 157 SourceManager &SM = PP.getSourceManager(); 158 if (IgnoreYES_NO) { 159 // The Objective-C constant 'YES' and 'NO' 160 // are defined as macros. Do not treat them 161 // as configuration values. 162 SourceLocation TopL = getTopMostMacro(L, SM); 163 StringRef MacroName = PP.getImmediateMacroName(TopL); 164 if (MacroName == "YES" || MacroName == "NO") 165 return false; 166 } else if (!PP.getLangOpts().CPlusPlus) { 167 // Do not treat C 'false' and 'true' macros as configuration values. 168 SourceLocation TopL = getTopMostMacro(L, SM); 169 StringRef MacroName = PP.getImmediateMacroName(TopL); 170 if (MacroName == "false" || MacroName == "true") 171 return false; 172 } 173 return true; 174 } 175 return false; 176 } 177 178 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 179 180 /// Returns true if the statement represents a configuration value. 181 /// 182 /// A configuration value is something usually determined at compile-time 183 /// to conditionally always execute some branch. Such guards are for 184 /// "sometimes unreachable" code. Such code is usually not interesting 185 /// to report as unreachable, and may mask truly unreachable code within 186 /// those blocks. 187 static bool isConfigurationValue(const Stmt *S, 188 Preprocessor &PP, 189 SourceRange *SilenceableCondVal = nullptr, 190 bool IncludeIntegers = true, 191 bool WrappedInParens = false) { 192 if (!S) 193 return false; 194 195 if (const auto *Ex = dyn_cast<Expr>(S)) 196 S = Ex->IgnoreImplicit(); 197 198 if (const auto *Ex = dyn_cast<Expr>(S)) 199 S = Ex->IgnoreCasts(); 200 201 // Special case looking for the sigil '()' around an integer literal. 202 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 203 if (!PE->getBeginLoc().isMacroID()) 204 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 205 IncludeIntegers, true); 206 207 if (const Expr *Ex = dyn_cast<Expr>(S)) 208 S = Ex->IgnoreCasts(); 209 210 bool IgnoreYES_NO = false; 211 212 switch (S->getStmtClass()) { 213 case Stmt::CallExprClass: { 214 const FunctionDecl *Callee = 215 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 216 return Callee ? Callee->isConstexpr() : false; 217 } 218 case Stmt::DeclRefExprClass: 219 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 220 case Stmt::ObjCBoolLiteralExprClass: 221 IgnoreYES_NO = true; 222 [[fallthrough]]; 223 case Stmt::CXXBoolLiteralExprClass: 224 case Stmt::IntegerLiteralClass: { 225 const Expr *E = cast<Expr>(S); 226 if (IncludeIntegers) { 227 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 228 *SilenceableCondVal = E->getSourceRange(); 229 return WrappedInParens || 230 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 231 } 232 return false; 233 } 234 case Stmt::MemberExprClass: 235 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 236 case Stmt::UnaryExprOrTypeTraitExprClass: 237 return true; 238 case Stmt::BinaryOperatorClass: { 239 const BinaryOperator *B = cast<BinaryOperator>(S); 240 // Only include raw integers (not enums) as configuration 241 // values if they are used in a logical or comparison operator 242 // (not arithmetic). 243 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 244 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 245 IncludeIntegers) || 246 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 247 IncludeIntegers); 248 } 249 case Stmt::UnaryOperatorClass: { 250 const UnaryOperator *UO = cast<UnaryOperator>(S); 251 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus) 252 return false; 253 bool SilenceableCondValNotSet = 254 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); 255 bool IsSubExprConfigValue = 256 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 257 IncludeIntegers, WrappedInParens); 258 // Update the silenceable condition value source range only if the range 259 // was set directly by the child expression. 260 if (SilenceableCondValNotSet && 261 SilenceableCondVal->getBegin().isValid() && 262 *SilenceableCondVal == 263 UO->getSubExpr()->IgnoreCasts()->getSourceRange()) 264 *SilenceableCondVal = UO->getSourceRange(); 265 return IsSubExprConfigValue; 266 } 267 default: 268 return false; 269 } 270 } 271 272 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 273 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 274 return isConfigurationValue(ED->getInitExpr(), PP); 275 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 276 // As a heuristic, treat globals as configuration values. Note 277 // that we only will get here if Sema evaluated this 278 // condition to a constant expression, which means the global 279 // had to be declared in a way to be a truly constant value. 280 // We could generalize this to local variables, but it isn't 281 // clear if those truly represent configuration values that 282 // gate unreachable code. 283 if (!VD->hasLocalStorage()) 284 return true; 285 286 // As a heuristic, locals that have been marked 'const' explicitly 287 // can be treated as configuration values as well. 288 return VD->getType().isLocalConstQualified(); 289 } 290 return false; 291 } 292 293 /// Returns true if we should always explore all successors of a block. 294 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 295 Preprocessor &PP) { 296 if (const Stmt *Term = B->getTerminatorStmt()) { 297 if (isa<SwitchStmt>(Term)) 298 return true; 299 // Specially handle '||' and '&&'. 300 if (isa<BinaryOperator>(Term)) { 301 return isConfigurationValue(Term, PP); 302 } 303 // Do not treat constexpr if statement successors as unreachable in warnings 304 // since the point of these statements is to determine branches at compile 305 // time. 306 if (const auto *IS = dyn_cast<IfStmt>(Term); 307 IS != nullptr && IS->isConstexpr()) 308 return true; 309 } 310 311 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 312 return isConfigurationValue(Cond, PP); 313 } 314 315 static unsigned scanFromBlock(const CFGBlock *Start, 316 llvm::BitVector &Reachable, 317 Preprocessor *PP, 318 bool IncludeSometimesUnreachableEdges) { 319 unsigned count = 0; 320 321 // Prep work queue 322 SmallVector<const CFGBlock*, 32> WL; 323 324 // The entry block may have already been marked reachable 325 // by the caller. 326 if (!Reachable[Start->getBlockID()]) { 327 ++count; 328 Reachable[Start->getBlockID()] = true; 329 } 330 331 WL.push_back(Start); 332 333 // Find the reachable blocks from 'Start'. 334 while (!WL.empty()) { 335 const CFGBlock *item = WL.pop_back_val(); 336 337 // There are cases where we want to treat all successors as reachable. 338 // The idea is that some "sometimes unreachable" code is not interesting, 339 // and that we should forge ahead and explore those branches anyway. 340 // This allows us to potentially uncover some "always unreachable" code 341 // within the "sometimes unreachable" code. 342 // Look at the successors and mark then reachable. 343 std::optional<bool> TreatAllSuccessorsAsReachable; 344 if (!IncludeSometimesUnreachableEdges) 345 TreatAllSuccessorsAsReachable = false; 346 347 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 348 E = item->succ_end(); I != E; ++I) { 349 const CFGBlock *B = *I; 350 if (!B) do { 351 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 352 if (!UB) 353 break; 354 355 if (!TreatAllSuccessorsAsReachable) { 356 assert(PP); 357 TreatAllSuccessorsAsReachable = 358 shouldTreatSuccessorsAsReachable(item, *PP); 359 } 360 361 if (*TreatAllSuccessorsAsReachable) { 362 B = UB; 363 break; 364 } 365 } 366 while (false); 367 368 if (B) { 369 unsigned blockID = B->getBlockID(); 370 if (!Reachable[blockID]) { 371 Reachable.set(blockID); 372 WL.push_back(B); 373 ++count; 374 } 375 } 376 } 377 } 378 return count; 379 } 380 381 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 382 Preprocessor &PP, 383 llvm::BitVector &Reachable) { 384 return scanFromBlock(Start, Reachable, &PP, true); 385 } 386 387 //===----------------------------------------------------------------------===// 388 // Dead Code Scanner. 389 //===----------------------------------------------------------------------===// 390 391 namespace { 392 class DeadCodeScan { 393 llvm::BitVector Visited; 394 llvm::BitVector &Reachable; 395 SmallVector<const CFGBlock *, 10> WorkList; 396 Preprocessor &PP; 397 ASTContext &C; 398 399 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 400 DeferredLocsTy; 401 402 DeferredLocsTy DeferredLocs; 403 404 public: 405 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) 406 : Visited(reachable.size()), 407 Reachable(reachable), 408 PP(PP), C(C) {} 409 410 void enqueue(const CFGBlock *block); 411 unsigned scanBackwards(const CFGBlock *Start, 412 clang::reachable_code::Callback &CB); 413 414 bool isDeadCodeRoot(const CFGBlock *Block); 415 416 const Stmt *findDeadCode(const CFGBlock *Block); 417 418 void reportDeadCode(const CFGBlock *B, 419 const Stmt *S, 420 clang::reachable_code::Callback &CB); 421 }; 422 } 423 424 void DeadCodeScan::enqueue(const CFGBlock *block) { 425 unsigned blockID = block->getBlockID(); 426 if (Reachable[blockID] || Visited[blockID]) 427 return; 428 Visited[blockID] = true; 429 WorkList.push_back(block); 430 } 431 432 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 433 bool isDeadRoot = true; 434 435 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 436 E = Block->pred_end(); I != E; ++I) { 437 if (const CFGBlock *PredBlock = *I) { 438 unsigned blockID = PredBlock->getBlockID(); 439 if (Visited[blockID]) { 440 isDeadRoot = false; 441 continue; 442 } 443 if (!Reachable[blockID]) { 444 isDeadRoot = false; 445 Visited[blockID] = true; 446 WorkList.push_back(PredBlock); 447 continue; 448 } 449 } 450 } 451 452 return isDeadRoot; 453 } 454 455 static bool isValidDeadStmt(const Stmt *S) { 456 if (S->getBeginLoc().isInvalid()) 457 return false; 458 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 459 return BO->getOpcode() != BO_Comma; 460 return true; 461 } 462 463 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 464 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 465 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 466 const Stmt *S = CS->getStmt(); 467 if (isValidDeadStmt(S)) 468 return S; 469 } 470 471 CFGTerminator T = Block->getTerminator(); 472 if (T.isStmtBranch()) { 473 const Stmt *S = T.getStmt(); 474 if (S && isValidDeadStmt(S)) 475 return S; 476 } 477 478 return nullptr; 479 } 480 481 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 482 const std::pair<const CFGBlock *, const Stmt *> *p2) { 483 if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) 484 return -1; 485 if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) 486 return 1; 487 return 0; 488 } 489 490 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 491 clang::reachable_code::Callback &CB) { 492 493 unsigned count = 0; 494 enqueue(Start); 495 496 while (!WorkList.empty()) { 497 const CFGBlock *Block = WorkList.pop_back_val(); 498 499 // It is possible that this block has been marked reachable after 500 // it was enqueued. 501 if (Reachable[Block->getBlockID()]) 502 continue; 503 504 // Look for any dead code within the block. 505 const Stmt *S = findDeadCode(Block); 506 507 if (!S) { 508 // No dead code. Possibly an empty block. Look at dead predecessors. 509 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 510 E = Block->pred_end(); I != E; ++I) { 511 if (const CFGBlock *predBlock = *I) 512 enqueue(predBlock); 513 } 514 continue; 515 } 516 517 // Specially handle macro-expanded code. 518 if (S->getBeginLoc().isMacroID()) { 519 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 520 continue; 521 } 522 523 if (isDeadCodeRoot(Block)) { 524 reportDeadCode(Block, S, CB); 525 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 526 } 527 else { 528 // Record this statement as the possibly best location in a 529 // strongly-connected component of dead code for emitting a 530 // warning. 531 DeferredLocs.push_back(std::make_pair(Block, S)); 532 } 533 } 534 535 // If we didn't find a dead root, then report the dead code with the 536 // earliest location. 537 if (!DeferredLocs.empty()) { 538 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 539 for (const auto &I : DeferredLocs) { 540 const CFGBlock *Block = I.first; 541 if (Reachable[Block->getBlockID()]) 542 continue; 543 reportDeadCode(Block, I.second, CB); 544 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 545 } 546 } 547 548 return count; 549 } 550 551 static SourceLocation GetUnreachableLoc(const Stmt *S, 552 SourceRange &R1, 553 SourceRange &R2) { 554 R1 = R2 = SourceRange(); 555 556 if (const Expr *Ex = dyn_cast<Expr>(S)) 557 S = Ex->IgnoreParenImpCasts(); 558 559 switch (S->getStmtClass()) { 560 case Expr::BinaryOperatorClass: { 561 const BinaryOperator *BO = cast<BinaryOperator>(S); 562 return BO->getOperatorLoc(); 563 } 564 case Expr::UnaryOperatorClass: { 565 const UnaryOperator *UO = cast<UnaryOperator>(S); 566 R1 = UO->getSubExpr()->getSourceRange(); 567 return UO->getOperatorLoc(); 568 } 569 case Expr::CompoundAssignOperatorClass: { 570 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 571 R1 = CAO->getLHS()->getSourceRange(); 572 R2 = CAO->getRHS()->getSourceRange(); 573 return CAO->getOperatorLoc(); 574 } 575 case Expr::BinaryConditionalOperatorClass: 576 case Expr::ConditionalOperatorClass: { 577 const AbstractConditionalOperator *CO = 578 cast<AbstractConditionalOperator>(S); 579 return CO->getQuestionLoc(); 580 } 581 case Expr::MemberExprClass: { 582 const MemberExpr *ME = cast<MemberExpr>(S); 583 R1 = ME->getSourceRange(); 584 return ME->getMemberLoc(); 585 } 586 case Expr::ArraySubscriptExprClass: { 587 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 588 R1 = ASE->getLHS()->getSourceRange(); 589 R2 = ASE->getRHS()->getSourceRange(); 590 return ASE->getRBracketLoc(); 591 } 592 case Expr::CStyleCastExprClass: { 593 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 594 R1 = CSC->getSubExpr()->getSourceRange(); 595 return CSC->getLParenLoc(); 596 } 597 case Expr::CXXFunctionalCastExprClass: { 598 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 599 R1 = CE->getSubExpr()->getSourceRange(); 600 return CE->getBeginLoc(); 601 } 602 case Stmt::CXXTryStmtClass: { 603 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 604 } 605 case Expr::ObjCBridgedCastExprClass: { 606 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 607 R1 = CSC->getSubExpr()->getSourceRange(); 608 return CSC->getLParenLoc(); 609 } 610 default: ; 611 } 612 R1 = S->getSourceRange(); 613 return S->getBeginLoc(); 614 } 615 616 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 617 const Stmt *S, 618 clang::reachable_code::Callback &CB) { 619 // Classify the unreachable code found, or suppress it in some cases. 620 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 621 622 if (isa<BreakStmt>(S)) { 623 UK = reachable_code::UK_Break; 624 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || 625 isBuiltinAssumeFalse(B, S, C)) { 626 return; 627 } 628 else if (isDeadReturn(B, S)) { 629 UK = reachable_code::UK_Return; 630 } 631 632 SourceRange SilenceableCondVal; 633 634 if (UK == reachable_code::UK_Other) { 635 // Check if the dead code is part of the "loop target" of 636 // a for/for-range loop. This is the block that contains 637 // the increment code. 638 if (const Stmt *LoopTarget = B->getLoopTarget()) { 639 SourceLocation Loc = LoopTarget->getBeginLoc(); 640 SourceRange R1(Loc, Loc), R2; 641 642 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 643 const Expr *Inc = FS->getInc(); 644 Loc = Inc->getBeginLoc(); 645 R2 = Inc->getSourceRange(); 646 } 647 648 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 649 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 650 return; 651 } 652 653 // Check if the dead block has a predecessor whose branch has 654 // a configuration value that *could* be modified to 655 // silence the warning. 656 CFGBlock::const_pred_iterator PI = B->pred_begin(); 657 if (PI != B->pred_end()) { 658 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 659 const Stmt *TermCond = 660 PredBlock->getTerminatorCondition(/* strip parens */ false); 661 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 662 } 663 } 664 } 665 666 SourceRange R1, R2; 667 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 668 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 669 } 670 671 //===----------------------------------------------------------------------===// 672 // Reachability APIs. 673 //===----------------------------------------------------------------------===// 674 675 namespace clang { namespace reachable_code { 676 677 void Callback::anchor() { } 678 679 unsigned ScanReachableFromBlock(const CFGBlock *Start, 680 llvm::BitVector &Reachable) { 681 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 682 } 683 684 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 685 Callback &CB) { 686 687 CFG *cfg = AC.getCFG(); 688 if (!cfg) 689 return; 690 691 // Scan for reachable blocks from the entrance of the CFG. 692 // If there are no unreachable blocks, we're done. 693 llvm::BitVector reachable(cfg->getNumBlockIDs()); 694 unsigned numReachable = 695 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 696 if (numReachable == cfg->getNumBlockIDs()) 697 return; 698 699 // If there aren't explicit EH edges, we should include the 'try' dispatch 700 // blocks as roots. 701 if (!AC.getCFGBuildOptions().AddEHEdges) { 702 for (const CFGBlock *B : cfg->try_blocks()) 703 numReachable += scanMaybeReachableFromBlock(B, PP, reachable); 704 if (numReachable == cfg->getNumBlockIDs()) 705 return; 706 } 707 708 // There are some unreachable blocks. We need to find the root blocks that 709 // contain code that should be considered unreachable. 710 for (const CFGBlock *block : *cfg) { 711 // A block may have been marked reachable during this loop. 712 if (reachable[block->getBlockID()]) 713 continue; 714 715 DeadCodeScan DS(reachable, PP, AC.getASTContext()); 716 numReachable += DS.scanBackwards(block, CB); 717 718 if (numReachable == cfg->getNumBlockIDs()) 719 return; 720 } 721 } 722 723 }} // end namespace clang::reachable_code 724