xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ReachableCode.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/AnalysisDeclContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27 
28 using namespace clang;
29 
30 //===----------------------------------------------------------------------===//
31 // Core Reachability Analysis routines.
32 //===----------------------------------------------------------------------===//
33 
34 static bool isEnumConstant(const Expr *Ex) {
35   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
36   if (!DR)
37     return false;
38   return isa<EnumConstantDecl>(DR->getDecl());
39 }
40 
41 static bool isTrivialExpression(const Expr *Ex) {
42   Ex = Ex->IgnoreParenCasts();
43   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
44          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
45          isa<CharacterLiteral>(Ex) ||
46          isEnumConstant(Ex);
47 }
48 
49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
50   // Check if the block ends with a do...while() and see if 'S' is the
51   // condition.
52   if (const Stmt *Term = B->getTerminatorStmt()) {
53     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
54       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
55       return Cond == S && isTrivialExpression(Cond);
56     }
57   }
58   return false;
59 }
60 
61 static bool isBuiltinUnreachable(const Stmt *S) {
62   if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
63     if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
64       return FDecl->getIdentifier() &&
65              FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
66   return false;
67 }
68 
69 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
70                                  ASTContext &C) {
71   if (B->empty())  {
72     // Happens if S is B's terminator and B contains nothing else
73     // (e.g. a CFGBlock containing only a goto).
74     return false;
75   }
76   if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
77     if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
78       return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
79     }
80   }
81   return false;
82 }
83 
84 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
85   // Look to see if the current control flow ends with a 'return', and see if
86   // 'S' is a substatement. The 'return' may not be the last element in the
87   // block, or may be in a subsequent block because of destructors.
88   const CFGBlock *Current = B;
89   while (true) {
90     for (const CFGElement &CE : llvm::reverse(*Current)) {
91       if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
92         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
93           if (RS == S)
94             return true;
95           if (const Expr *RE = RS->getRetValue()) {
96             RE = RE->IgnoreParenCasts();
97             if (RE == S)
98               return true;
99             ParentMap PM(const_cast<Expr *>(RE));
100             // If 'S' is in the ParentMap, it is a subexpression of
101             // the return statement.
102             return PM.getParent(S);
103           }
104         }
105         break;
106       }
107     }
108     // Note also that we are restricting the search for the return statement
109     // to stop at control-flow; only part of a return statement may be dead,
110     // without the whole return statement being dead.
111     if (Current->getTerminator().isTemporaryDtorsBranch()) {
112       // Temporary destructors have a predictable control flow, thus we want to
113       // look into the next block for the return statement.
114       // We look into the false branch, as we know the true branch only contains
115       // the call to the destructor.
116       assert(Current->succ_size() == 2);
117       Current = *(Current->succ_begin() + 1);
118     } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
119       // If there is only one successor, we're not dealing with outgoing control
120       // flow. Thus, look into the next block.
121       Current = *Current->succ_begin();
122       if (Current->pred_size() > 1) {
123         // If there is more than one predecessor, we're dealing with incoming
124         // control flow - if the return statement is in that block, it might
125         // well be reachable via a different control flow, thus it's not dead.
126         return false;
127       }
128     } else {
129       // We hit control flow or a dead end. Stop searching.
130       return false;
131     }
132   }
133   llvm_unreachable("Broke out of infinite loop.");
134 }
135 
136 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
137   assert(Loc.isMacroID());
138   SourceLocation Last;
139   do {
140     Last = Loc;
141     Loc = SM.getImmediateMacroCallerLoc(Loc);
142   } while (Loc.isMacroID());
143   return Last;
144 }
145 
146 /// Returns true if the statement is expanded from a configuration macro.
147 static bool isExpandedFromConfigurationMacro(const Stmt *S,
148                                              Preprocessor &PP,
149                                              bool IgnoreYES_NO = false) {
150   // FIXME: This is not very precise.  Here we just check to see if the
151   // value comes from a macro, but we can do much better.  This is likely
152   // to be over conservative.  This logic is factored into a separate function
153   // so that we can refine it later.
154   SourceLocation L = S->getBeginLoc();
155   if (L.isMacroID()) {
156     SourceManager &SM = PP.getSourceManager();
157     if (IgnoreYES_NO) {
158       // The Objective-C constant 'YES' and 'NO'
159       // are defined as macros.  Do not treat them
160       // as configuration values.
161       SourceLocation TopL = getTopMostMacro(L, SM);
162       StringRef MacroName = PP.getImmediateMacroName(TopL);
163       if (MacroName == "YES" || MacroName == "NO")
164         return false;
165     } else if (!PP.getLangOpts().CPlusPlus) {
166       // Do not treat C 'false' and 'true' macros as configuration values.
167       SourceLocation TopL = getTopMostMacro(L, SM);
168       StringRef MacroName = PP.getImmediateMacroName(TopL);
169       if (MacroName == "false" || MacroName == "true")
170         return false;
171     }
172     return true;
173   }
174   return false;
175 }
176 
177 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
178 
179 /// Returns true if the statement represents a configuration value.
180 ///
181 /// A configuration value is something usually determined at compile-time
182 /// to conditionally always execute some branch.  Such guards are for
183 /// "sometimes unreachable" code.  Such code is usually not interesting
184 /// to report as unreachable, and may mask truly unreachable code within
185 /// those blocks.
186 static bool isConfigurationValue(const Stmt *S,
187                                  Preprocessor &PP,
188                                  SourceRange *SilenceableCondVal = nullptr,
189                                  bool IncludeIntegers = true,
190                                  bool WrappedInParens = false) {
191   if (!S)
192     return false;
193 
194   if (const auto *Ex = dyn_cast<Expr>(S))
195     S = Ex->IgnoreImplicit();
196 
197   if (const auto *Ex = dyn_cast<Expr>(S))
198     S = Ex->IgnoreCasts();
199 
200   // Special case looking for the sigil '()' around an integer literal.
201   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
202     if (!PE->getBeginLoc().isMacroID())
203       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
204                                   IncludeIntegers, true);
205 
206   if (const Expr *Ex = dyn_cast<Expr>(S))
207     S = Ex->IgnoreCasts();
208 
209   bool IgnoreYES_NO = false;
210 
211   switch (S->getStmtClass()) {
212     case Stmt::CallExprClass: {
213       const FunctionDecl *Callee =
214         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
215       return Callee ? Callee->isConstexpr() : false;
216     }
217     case Stmt::DeclRefExprClass:
218       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
219     case Stmt::ObjCBoolLiteralExprClass:
220       IgnoreYES_NO = true;
221       LLVM_FALLTHROUGH;
222     case Stmt::CXXBoolLiteralExprClass:
223     case Stmt::IntegerLiteralClass: {
224       const Expr *E = cast<Expr>(S);
225       if (IncludeIntegers) {
226         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
227           *SilenceableCondVal = E->getSourceRange();
228         return WrappedInParens ||
229                isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
230       }
231       return false;
232     }
233     case Stmt::MemberExprClass:
234       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
235     case Stmt::UnaryExprOrTypeTraitExprClass:
236       return true;
237     case Stmt::BinaryOperatorClass: {
238       const BinaryOperator *B = cast<BinaryOperator>(S);
239       // Only include raw integers (not enums) as configuration
240       // values if they are used in a logical or comparison operator
241       // (not arithmetic).
242       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
243       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
244                                   IncludeIntegers) ||
245              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
246                                   IncludeIntegers);
247     }
248     case Stmt::UnaryOperatorClass: {
249       const UnaryOperator *UO = cast<UnaryOperator>(S);
250       if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
251         return false;
252       bool SilenceableCondValNotSet =
253           SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
254       bool IsSubExprConfigValue =
255           isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
256                                IncludeIntegers, WrappedInParens);
257       // Update the silenceable condition value source range only if the range
258       // was set directly by the child expression.
259       if (SilenceableCondValNotSet &&
260           SilenceableCondVal->getBegin().isValid() &&
261           *SilenceableCondVal ==
262               UO->getSubExpr()->IgnoreCasts()->getSourceRange())
263         *SilenceableCondVal = UO->getSourceRange();
264       return IsSubExprConfigValue;
265     }
266     default:
267       return false;
268   }
269 }
270 
271 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
272   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
273     return isConfigurationValue(ED->getInitExpr(), PP);
274   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
275     // As a heuristic, treat globals as configuration values.  Note
276     // that we only will get here if Sema evaluated this
277     // condition to a constant expression, which means the global
278     // had to be declared in a way to be a truly constant value.
279     // We could generalize this to local variables, but it isn't
280     // clear if those truly represent configuration values that
281     // gate unreachable code.
282     if (!VD->hasLocalStorage())
283       return true;
284 
285     // As a heuristic, locals that have been marked 'const' explicitly
286     // can be treated as configuration values as well.
287     return VD->getType().isLocalConstQualified();
288   }
289   return false;
290 }
291 
292 /// Returns true if we should always explore all successors of a block.
293 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
294                                              Preprocessor &PP) {
295   if (const Stmt *Term = B->getTerminatorStmt()) {
296     if (isa<SwitchStmt>(Term))
297       return true;
298     // Specially handle '||' and '&&'.
299     if (isa<BinaryOperator>(Term)) {
300       return isConfigurationValue(Term, PP);
301     }
302   }
303 
304   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
305   return isConfigurationValue(Cond, PP);
306 }
307 
308 static unsigned scanFromBlock(const CFGBlock *Start,
309                               llvm::BitVector &Reachable,
310                               Preprocessor *PP,
311                               bool IncludeSometimesUnreachableEdges) {
312   unsigned count = 0;
313 
314   // Prep work queue
315   SmallVector<const CFGBlock*, 32> WL;
316 
317   // The entry block may have already been marked reachable
318   // by the caller.
319   if (!Reachable[Start->getBlockID()]) {
320     ++count;
321     Reachable[Start->getBlockID()] = true;
322   }
323 
324   WL.push_back(Start);
325 
326   // Find the reachable blocks from 'Start'.
327   while (!WL.empty()) {
328     const CFGBlock *item = WL.pop_back_val();
329 
330     // There are cases where we want to treat all successors as reachable.
331     // The idea is that some "sometimes unreachable" code is not interesting,
332     // and that we should forge ahead and explore those branches anyway.
333     // This allows us to potentially uncover some "always unreachable" code
334     // within the "sometimes unreachable" code.
335     // Look at the successors and mark then reachable.
336     Optional<bool> TreatAllSuccessorsAsReachable;
337     if (!IncludeSometimesUnreachableEdges)
338       TreatAllSuccessorsAsReachable = false;
339 
340     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
341          E = item->succ_end(); I != E; ++I) {
342       const CFGBlock *B = *I;
343       if (!B) do {
344         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
345         if (!UB)
346           break;
347 
348         if (!TreatAllSuccessorsAsReachable.hasValue()) {
349           assert(PP);
350           TreatAllSuccessorsAsReachable =
351             shouldTreatSuccessorsAsReachable(item, *PP);
352         }
353 
354         if (TreatAllSuccessorsAsReachable.getValue()) {
355           B = UB;
356           break;
357         }
358       }
359       while (false);
360 
361       if (B) {
362         unsigned blockID = B->getBlockID();
363         if (!Reachable[blockID]) {
364           Reachable.set(blockID);
365           WL.push_back(B);
366           ++count;
367         }
368       }
369     }
370   }
371   return count;
372 }
373 
374 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
375                                             Preprocessor &PP,
376                                             llvm::BitVector &Reachable) {
377   return scanFromBlock(Start, Reachable, &PP, true);
378 }
379 
380 //===----------------------------------------------------------------------===//
381 // Dead Code Scanner.
382 //===----------------------------------------------------------------------===//
383 
384 namespace {
385   class DeadCodeScan {
386     llvm::BitVector Visited;
387     llvm::BitVector &Reachable;
388     SmallVector<const CFGBlock *, 10> WorkList;
389     Preprocessor &PP;
390     ASTContext &C;
391 
392     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
393     DeferredLocsTy;
394 
395     DeferredLocsTy DeferredLocs;
396 
397   public:
398     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
399     : Visited(reachable.size()),
400       Reachable(reachable),
401       PP(PP), C(C) {}
402 
403     void enqueue(const CFGBlock *block);
404     unsigned scanBackwards(const CFGBlock *Start,
405     clang::reachable_code::Callback &CB);
406 
407     bool isDeadCodeRoot(const CFGBlock *Block);
408 
409     const Stmt *findDeadCode(const CFGBlock *Block);
410 
411     void reportDeadCode(const CFGBlock *B,
412                         const Stmt *S,
413                         clang::reachable_code::Callback &CB);
414   };
415 }
416 
417 void DeadCodeScan::enqueue(const CFGBlock *block) {
418   unsigned blockID = block->getBlockID();
419   if (Reachable[blockID] || Visited[blockID])
420     return;
421   Visited[blockID] = true;
422   WorkList.push_back(block);
423 }
424 
425 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
426   bool isDeadRoot = true;
427 
428   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
429        E = Block->pred_end(); I != E; ++I) {
430     if (const CFGBlock *PredBlock = *I) {
431       unsigned blockID = PredBlock->getBlockID();
432       if (Visited[blockID]) {
433         isDeadRoot = false;
434         continue;
435       }
436       if (!Reachable[blockID]) {
437         isDeadRoot = false;
438         Visited[blockID] = true;
439         WorkList.push_back(PredBlock);
440         continue;
441       }
442     }
443   }
444 
445   return isDeadRoot;
446 }
447 
448 static bool isValidDeadStmt(const Stmt *S) {
449   if (S->getBeginLoc().isInvalid())
450     return false;
451   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
452     return BO->getOpcode() != BO_Comma;
453   return true;
454 }
455 
456 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
457   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
458     if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
459       const Stmt *S = CS->getStmt();
460       if (isValidDeadStmt(S))
461         return S;
462     }
463 
464   CFGTerminator T = Block->getTerminator();
465   if (T.isStmtBranch()) {
466     const Stmt *S = T.getStmt();
467     if (S && isValidDeadStmt(S))
468       return S;
469   }
470 
471   return nullptr;
472 }
473 
474 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
475                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
476   if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
477     return -1;
478   if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
479     return 1;
480   return 0;
481 }
482 
483 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
484                                      clang::reachable_code::Callback &CB) {
485 
486   unsigned count = 0;
487   enqueue(Start);
488 
489   while (!WorkList.empty()) {
490     const CFGBlock *Block = WorkList.pop_back_val();
491 
492     // It is possible that this block has been marked reachable after
493     // it was enqueued.
494     if (Reachable[Block->getBlockID()])
495       continue;
496 
497     // Look for any dead code within the block.
498     const Stmt *S = findDeadCode(Block);
499 
500     if (!S) {
501       // No dead code.  Possibly an empty block.  Look at dead predecessors.
502       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
503            E = Block->pred_end(); I != E; ++I) {
504         if (const CFGBlock *predBlock = *I)
505           enqueue(predBlock);
506       }
507       continue;
508     }
509 
510     // Specially handle macro-expanded code.
511     if (S->getBeginLoc().isMacroID()) {
512       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
513       continue;
514     }
515 
516     if (isDeadCodeRoot(Block)) {
517       reportDeadCode(Block, S, CB);
518       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
519     }
520     else {
521       // Record this statement as the possibly best location in a
522       // strongly-connected component of dead code for emitting a
523       // warning.
524       DeferredLocs.push_back(std::make_pair(Block, S));
525     }
526   }
527 
528   // If we didn't find a dead root, then report the dead code with the
529   // earliest location.
530   if (!DeferredLocs.empty()) {
531     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
532     for (const auto &I : DeferredLocs) {
533       const CFGBlock *Block = I.first;
534       if (Reachable[Block->getBlockID()])
535         continue;
536       reportDeadCode(Block, I.second, CB);
537       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
538     }
539   }
540 
541   return count;
542 }
543 
544 static SourceLocation GetUnreachableLoc(const Stmt *S,
545                                         SourceRange &R1,
546                                         SourceRange &R2) {
547   R1 = R2 = SourceRange();
548 
549   if (const Expr *Ex = dyn_cast<Expr>(S))
550     S = Ex->IgnoreParenImpCasts();
551 
552   switch (S->getStmtClass()) {
553     case Expr::BinaryOperatorClass: {
554       const BinaryOperator *BO = cast<BinaryOperator>(S);
555       return BO->getOperatorLoc();
556     }
557     case Expr::UnaryOperatorClass: {
558       const UnaryOperator *UO = cast<UnaryOperator>(S);
559       R1 = UO->getSubExpr()->getSourceRange();
560       return UO->getOperatorLoc();
561     }
562     case Expr::CompoundAssignOperatorClass: {
563       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
564       R1 = CAO->getLHS()->getSourceRange();
565       R2 = CAO->getRHS()->getSourceRange();
566       return CAO->getOperatorLoc();
567     }
568     case Expr::BinaryConditionalOperatorClass:
569     case Expr::ConditionalOperatorClass: {
570       const AbstractConditionalOperator *CO =
571       cast<AbstractConditionalOperator>(S);
572       return CO->getQuestionLoc();
573     }
574     case Expr::MemberExprClass: {
575       const MemberExpr *ME = cast<MemberExpr>(S);
576       R1 = ME->getSourceRange();
577       return ME->getMemberLoc();
578     }
579     case Expr::ArraySubscriptExprClass: {
580       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
581       R1 = ASE->getLHS()->getSourceRange();
582       R2 = ASE->getRHS()->getSourceRange();
583       return ASE->getRBracketLoc();
584     }
585     case Expr::CStyleCastExprClass: {
586       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
587       R1 = CSC->getSubExpr()->getSourceRange();
588       return CSC->getLParenLoc();
589     }
590     case Expr::CXXFunctionalCastExprClass: {
591       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
592       R1 = CE->getSubExpr()->getSourceRange();
593       return CE->getBeginLoc();
594     }
595     case Stmt::CXXTryStmtClass: {
596       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
597     }
598     case Expr::ObjCBridgedCastExprClass: {
599       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
600       R1 = CSC->getSubExpr()->getSourceRange();
601       return CSC->getLParenLoc();
602     }
603     default: ;
604   }
605   R1 = S->getSourceRange();
606   return S->getBeginLoc();
607 }
608 
609 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
610                                   const Stmt *S,
611                                   clang::reachable_code::Callback &CB) {
612   // Classify the unreachable code found, or suppress it in some cases.
613   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
614 
615   if (isa<BreakStmt>(S)) {
616     UK = reachable_code::UK_Break;
617   } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
618              isBuiltinAssumeFalse(B, S, C)) {
619     return;
620   }
621   else if (isDeadReturn(B, S)) {
622     UK = reachable_code::UK_Return;
623   }
624 
625   SourceRange SilenceableCondVal;
626 
627   if (UK == reachable_code::UK_Other) {
628     // Check if the dead code is part of the "loop target" of
629     // a for/for-range loop.  This is the block that contains
630     // the increment code.
631     if (const Stmt *LoopTarget = B->getLoopTarget()) {
632       SourceLocation Loc = LoopTarget->getBeginLoc();
633       SourceRange R1(Loc, Loc), R2;
634 
635       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
636         const Expr *Inc = FS->getInc();
637         Loc = Inc->getBeginLoc();
638         R2 = Inc->getSourceRange();
639       }
640 
641       CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
642                            Loc, SourceRange(), SourceRange(Loc, Loc), R2);
643       return;
644     }
645 
646     // Check if the dead block has a predecessor whose branch has
647     // a configuration value that *could* be modified to
648     // silence the warning.
649     CFGBlock::const_pred_iterator PI = B->pred_begin();
650     if (PI != B->pred_end()) {
651       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
652         const Stmt *TermCond =
653             PredBlock->getTerminatorCondition(/* strip parens */ false);
654         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
655       }
656     }
657   }
658 
659   SourceRange R1, R2;
660   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
661   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
662 }
663 
664 //===----------------------------------------------------------------------===//
665 // Reachability APIs.
666 //===----------------------------------------------------------------------===//
667 
668 namespace clang { namespace reachable_code {
669 
670 void Callback::anchor() { }
671 
672 unsigned ScanReachableFromBlock(const CFGBlock *Start,
673                                 llvm::BitVector &Reachable) {
674   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
675 }
676 
677 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
678                          Callback &CB) {
679 
680   CFG *cfg = AC.getCFG();
681   if (!cfg)
682     return;
683 
684   // Scan for reachable blocks from the entrance of the CFG.
685   // If there are no unreachable blocks, we're done.
686   llvm::BitVector reachable(cfg->getNumBlockIDs());
687   unsigned numReachable =
688     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
689   if (numReachable == cfg->getNumBlockIDs())
690     return;
691 
692   // If there aren't explicit EH edges, we should include the 'try' dispatch
693   // blocks as roots.
694   if (!AC.getCFGBuildOptions().AddEHEdges) {
695     for (const CFGBlock *B : cfg->try_blocks())
696       numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
697     if (numReachable == cfg->getNumBlockIDs())
698       return;
699   }
700 
701   // There are some unreachable blocks.  We need to find the root blocks that
702   // contain code that should be considered unreachable.
703   for (const CFGBlock *block : *cfg) {
704     // A block may have been marked reachable during this loop.
705     if (reachable[block->getBlockID()])
706       continue;
707 
708     DeadCodeScan DS(reachable, PP, AC.getASTContext());
709     numReachable += DS.scanBackwards(block, CB);
710 
711     if (numReachable == cfg->getNumBlockIDs())
712       return;
713   }
714 }
715 
716 }} // end namespace clang::reachable_code
717