1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a flow-sensitive, path-insensitive analysis of 10 // determining reachable blocks within a CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ReachableCode.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/AST/StmtCXX.h" 20 #include "clang/Analysis/AnalysisDeclContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/SmallVector.h" 26 27 using namespace clang; 28 29 //===----------------------------------------------------------------------===// 30 // Core Reachability Analysis routines. 31 //===----------------------------------------------------------------------===// 32 33 static bool isEnumConstant(const Expr *Ex) { 34 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 35 if (!DR) 36 return false; 37 return isa<EnumConstantDecl>(DR->getDecl()); 38 } 39 40 static bool isTrivialExpression(const Expr *Ex) { 41 Ex = Ex->IgnoreParenCasts(); 42 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 43 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 44 isa<CharacterLiteral>(Ex) || 45 isEnumConstant(Ex); 46 } 47 48 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 49 // Check if the block ends with a do...while() and see if 'S' is the 50 // condition. 51 if (const Stmt *Term = B->getTerminatorStmt()) { 52 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 53 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 54 return Cond == S && isTrivialExpression(Cond); 55 } 56 } 57 return false; 58 } 59 60 static bool isBuiltinUnreachable(const Stmt *S) { 61 if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) 62 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) 63 return FDecl->getIdentifier() && 64 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; 65 return false; 66 } 67 68 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, 69 ASTContext &C) { 70 if (B->empty()) { 71 // Happens if S is B's terminator and B contains nothing else 72 // (e.g. a CFGBlock containing only a goto). 73 return false; 74 } 75 if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { 76 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { 77 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); 78 } 79 } 80 return false; 81 } 82 83 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 84 // Look to see if the current control flow ends with a 'return', and see if 85 // 'S' is a substatement. The 'return' may not be the last element in the 86 // block, or may be in a subsequent block because of destructors. 87 const CFGBlock *Current = B; 88 while (true) { 89 for (CFGBlock::const_reverse_iterator I = Current->rbegin(), 90 E = Current->rend(); 91 I != E; ++I) { 92 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 93 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 94 if (RS == S) 95 return true; 96 if (const Expr *RE = RS->getRetValue()) { 97 RE = RE->IgnoreParenCasts(); 98 if (RE == S) 99 return true; 100 ParentMap PM(const_cast<Expr *>(RE)); 101 // If 'S' is in the ParentMap, it is a subexpression of 102 // the return statement. 103 return PM.getParent(S); 104 } 105 } 106 break; 107 } 108 } 109 // Note also that we are restricting the search for the return statement 110 // to stop at control-flow; only part of a return statement may be dead, 111 // without the whole return statement being dead. 112 if (Current->getTerminator().isTemporaryDtorsBranch()) { 113 // Temporary destructors have a predictable control flow, thus we want to 114 // look into the next block for the return statement. 115 // We look into the false branch, as we know the true branch only contains 116 // the call to the destructor. 117 assert(Current->succ_size() == 2); 118 Current = *(Current->succ_begin() + 1); 119 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { 120 // If there is only one successor, we're not dealing with outgoing control 121 // flow. Thus, look into the next block. 122 Current = *Current->succ_begin(); 123 if (Current->pred_size() > 1) { 124 // If there is more than one predecessor, we're dealing with incoming 125 // control flow - if the return statement is in that block, it might 126 // well be reachable via a different control flow, thus it's not dead. 127 return false; 128 } 129 } else { 130 // We hit control flow or a dead end. Stop searching. 131 return false; 132 } 133 } 134 llvm_unreachable("Broke out of infinite loop."); 135 } 136 137 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 138 assert(Loc.isMacroID()); 139 SourceLocation Last; 140 while (Loc.isMacroID()) { 141 Last = Loc; 142 Loc = SM.getImmediateMacroCallerLoc(Loc); 143 } 144 return Last; 145 } 146 147 /// Returns true if the statement is expanded from a configuration macro. 148 static bool isExpandedFromConfigurationMacro(const Stmt *S, 149 Preprocessor &PP, 150 bool IgnoreYES_NO = false) { 151 // FIXME: This is not very precise. Here we just check to see if the 152 // value comes from a macro, but we can do much better. This is likely 153 // to be over conservative. This logic is factored into a separate function 154 // so that we can refine it later. 155 SourceLocation L = S->getBeginLoc(); 156 if (L.isMacroID()) { 157 SourceManager &SM = PP.getSourceManager(); 158 if (IgnoreYES_NO) { 159 // The Objective-C constant 'YES' and 'NO' 160 // are defined as macros. Do not treat them 161 // as configuration values. 162 SourceLocation TopL = getTopMostMacro(L, SM); 163 StringRef MacroName = PP.getImmediateMacroName(TopL); 164 if (MacroName == "YES" || MacroName == "NO") 165 return false; 166 } else if (!PP.getLangOpts().CPlusPlus) { 167 // Do not treat C 'false' and 'true' macros as configuration values. 168 SourceLocation TopL = getTopMostMacro(L, SM); 169 StringRef MacroName = PP.getImmediateMacroName(TopL); 170 if (MacroName == "false" || MacroName == "true") 171 return false; 172 } 173 return true; 174 } 175 return false; 176 } 177 178 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 179 180 /// Returns true if the statement represents a configuration value. 181 /// 182 /// A configuration value is something usually determined at compile-time 183 /// to conditionally always execute some branch. Such guards are for 184 /// "sometimes unreachable" code. Such code is usually not interesting 185 /// to report as unreachable, and may mask truly unreachable code within 186 /// those blocks. 187 static bool isConfigurationValue(const Stmt *S, 188 Preprocessor &PP, 189 SourceRange *SilenceableCondVal = nullptr, 190 bool IncludeIntegers = true, 191 bool WrappedInParens = false) { 192 if (!S) 193 return false; 194 195 if (const auto *Ex = dyn_cast<Expr>(S)) 196 S = Ex->IgnoreImplicit(); 197 198 if (const auto *Ex = dyn_cast<Expr>(S)) 199 S = Ex->IgnoreCasts(); 200 201 // Special case looking for the sigil '()' around an integer literal. 202 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 203 if (!PE->getBeginLoc().isMacroID()) 204 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 205 IncludeIntegers, true); 206 207 if (const Expr *Ex = dyn_cast<Expr>(S)) 208 S = Ex->IgnoreCasts(); 209 210 bool IgnoreYES_NO = false; 211 212 switch (S->getStmtClass()) { 213 case Stmt::CallExprClass: { 214 const FunctionDecl *Callee = 215 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 216 return Callee ? Callee->isConstexpr() : false; 217 } 218 case Stmt::DeclRefExprClass: 219 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 220 case Stmt::ObjCBoolLiteralExprClass: 221 IgnoreYES_NO = true; 222 LLVM_FALLTHROUGH; 223 case Stmt::CXXBoolLiteralExprClass: 224 case Stmt::IntegerLiteralClass: { 225 const Expr *E = cast<Expr>(S); 226 if (IncludeIntegers) { 227 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 228 *SilenceableCondVal = E->getSourceRange(); 229 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 230 } 231 return false; 232 } 233 case Stmt::MemberExprClass: 234 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 235 case Stmt::UnaryExprOrTypeTraitExprClass: 236 return true; 237 case Stmt::BinaryOperatorClass: { 238 const BinaryOperator *B = cast<BinaryOperator>(S); 239 // Only include raw integers (not enums) as configuration 240 // values if they are used in a logical or comparison operator 241 // (not arithmetic). 242 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 243 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 244 IncludeIntegers) || 245 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 246 IncludeIntegers); 247 } 248 case Stmt::UnaryOperatorClass: { 249 const UnaryOperator *UO = cast<UnaryOperator>(S); 250 if (UO->getOpcode() != UO_LNot) 251 return false; 252 bool SilenceableCondValNotSet = 253 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); 254 bool IsSubExprConfigValue = 255 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 256 IncludeIntegers, WrappedInParens); 257 // Update the silenceable condition value source range only if the range 258 // was set directly by the child expression. 259 if (SilenceableCondValNotSet && 260 SilenceableCondVal->getBegin().isValid() && 261 *SilenceableCondVal == 262 UO->getSubExpr()->IgnoreCasts()->getSourceRange()) 263 *SilenceableCondVal = UO->getSourceRange(); 264 return IsSubExprConfigValue; 265 } 266 default: 267 return false; 268 } 269 } 270 271 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 272 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 273 return isConfigurationValue(ED->getInitExpr(), PP); 274 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 275 // As a heuristic, treat globals as configuration values. Note 276 // that we only will get here if Sema evaluated this 277 // condition to a constant expression, which means the global 278 // had to be declared in a way to be a truly constant value. 279 // We could generalize this to local variables, but it isn't 280 // clear if those truly represent configuration values that 281 // gate unreachable code. 282 if (!VD->hasLocalStorage()) 283 return true; 284 285 // As a heuristic, locals that have been marked 'const' explicitly 286 // can be treated as configuration values as well. 287 return VD->getType().isLocalConstQualified(); 288 } 289 return false; 290 } 291 292 /// Returns true if we should always explore all successors of a block. 293 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 294 Preprocessor &PP) { 295 if (const Stmt *Term = B->getTerminatorStmt()) { 296 if (isa<SwitchStmt>(Term)) 297 return true; 298 // Specially handle '||' and '&&'. 299 if (isa<BinaryOperator>(Term)) { 300 return isConfigurationValue(Term, PP); 301 } 302 } 303 304 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 305 return isConfigurationValue(Cond, PP); 306 } 307 308 static unsigned scanFromBlock(const CFGBlock *Start, 309 llvm::BitVector &Reachable, 310 Preprocessor *PP, 311 bool IncludeSometimesUnreachableEdges) { 312 unsigned count = 0; 313 314 // Prep work queue 315 SmallVector<const CFGBlock*, 32> WL; 316 317 // The entry block may have already been marked reachable 318 // by the caller. 319 if (!Reachable[Start->getBlockID()]) { 320 ++count; 321 Reachable[Start->getBlockID()] = true; 322 } 323 324 WL.push_back(Start); 325 326 // Find the reachable blocks from 'Start'. 327 while (!WL.empty()) { 328 const CFGBlock *item = WL.pop_back_val(); 329 330 // There are cases where we want to treat all successors as reachable. 331 // The idea is that some "sometimes unreachable" code is not interesting, 332 // and that we should forge ahead and explore those branches anyway. 333 // This allows us to potentially uncover some "always unreachable" code 334 // within the "sometimes unreachable" code. 335 // Look at the successors and mark then reachable. 336 Optional<bool> TreatAllSuccessorsAsReachable; 337 if (!IncludeSometimesUnreachableEdges) 338 TreatAllSuccessorsAsReachable = false; 339 340 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 341 E = item->succ_end(); I != E; ++I) { 342 const CFGBlock *B = *I; 343 if (!B) do { 344 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 345 if (!UB) 346 break; 347 348 if (!TreatAllSuccessorsAsReachable.hasValue()) { 349 assert(PP); 350 TreatAllSuccessorsAsReachable = 351 shouldTreatSuccessorsAsReachable(item, *PP); 352 } 353 354 if (TreatAllSuccessorsAsReachable.getValue()) { 355 B = UB; 356 break; 357 } 358 } 359 while (false); 360 361 if (B) { 362 unsigned blockID = B->getBlockID(); 363 if (!Reachable[blockID]) { 364 Reachable.set(blockID); 365 WL.push_back(B); 366 ++count; 367 } 368 } 369 } 370 } 371 return count; 372 } 373 374 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 375 Preprocessor &PP, 376 llvm::BitVector &Reachable) { 377 return scanFromBlock(Start, Reachable, &PP, true); 378 } 379 380 //===----------------------------------------------------------------------===// 381 // Dead Code Scanner. 382 //===----------------------------------------------------------------------===// 383 384 namespace { 385 class DeadCodeScan { 386 llvm::BitVector Visited; 387 llvm::BitVector &Reachable; 388 SmallVector<const CFGBlock *, 10> WorkList; 389 Preprocessor &PP; 390 ASTContext &C; 391 392 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 393 DeferredLocsTy; 394 395 DeferredLocsTy DeferredLocs; 396 397 public: 398 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) 399 : Visited(reachable.size()), 400 Reachable(reachable), 401 PP(PP), C(C) {} 402 403 void enqueue(const CFGBlock *block); 404 unsigned scanBackwards(const CFGBlock *Start, 405 clang::reachable_code::Callback &CB); 406 407 bool isDeadCodeRoot(const CFGBlock *Block); 408 409 const Stmt *findDeadCode(const CFGBlock *Block); 410 411 void reportDeadCode(const CFGBlock *B, 412 const Stmt *S, 413 clang::reachable_code::Callback &CB); 414 }; 415 } 416 417 void DeadCodeScan::enqueue(const CFGBlock *block) { 418 unsigned blockID = block->getBlockID(); 419 if (Reachable[blockID] || Visited[blockID]) 420 return; 421 Visited[blockID] = true; 422 WorkList.push_back(block); 423 } 424 425 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 426 bool isDeadRoot = true; 427 428 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 429 E = Block->pred_end(); I != E; ++I) { 430 if (const CFGBlock *PredBlock = *I) { 431 unsigned blockID = PredBlock->getBlockID(); 432 if (Visited[blockID]) { 433 isDeadRoot = false; 434 continue; 435 } 436 if (!Reachable[blockID]) { 437 isDeadRoot = false; 438 Visited[blockID] = true; 439 WorkList.push_back(PredBlock); 440 continue; 441 } 442 } 443 } 444 445 return isDeadRoot; 446 } 447 448 static bool isValidDeadStmt(const Stmt *S) { 449 if (S->getBeginLoc().isInvalid()) 450 return false; 451 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 452 return BO->getOpcode() != BO_Comma; 453 return true; 454 } 455 456 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 457 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 458 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 459 const Stmt *S = CS->getStmt(); 460 if (isValidDeadStmt(S)) 461 return S; 462 } 463 464 CFGTerminator T = Block->getTerminator(); 465 if (T.isStmtBranch()) { 466 const Stmt *S = T.getStmt(); 467 if (S && isValidDeadStmt(S)) 468 return S; 469 } 470 471 return nullptr; 472 } 473 474 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 475 const std::pair<const CFGBlock *, const Stmt *> *p2) { 476 if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) 477 return -1; 478 if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) 479 return 1; 480 return 0; 481 } 482 483 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 484 clang::reachable_code::Callback &CB) { 485 486 unsigned count = 0; 487 enqueue(Start); 488 489 while (!WorkList.empty()) { 490 const CFGBlock *Block = WorkList.pop_back_val(); 491 492 // It is possible that this block has been marked reachable after 493 // it was enqueued. 494 if (Reachable[Block->getBlockID()]) 495 continue; 496 497 // Look for any dead code within the block. 498 const Stmt *S = findDeadCode(Block); 499 500 if (!S) { 501 // No dead code. Possibly an empty block. Look at dead predecessors. 502 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 503 E = Block->pred_end(); I != E; ++I) { 504 if (const CFGBlock *predBlock = *I) 505 enqueue(predBlock); 506 } 507 continue; 508 } 509 510 // Specially handle macro-expanded code. 511 if (S->getBeginLoc().isMacroID()) { 512 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 513 continue; 514 } 515 516 if (isDeadCodeRoot(Block)) { 517 reportDeadCode(Block, S, CB); 518 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 519 } 520 else { 521 // Record this statement as the possibly best location in a 522 // strongly-connected component of dead code for emitting a 523 // warning. 524 DeferredLocs.push_back(std::make_pair(Block, S)); 525 } 526 } 527 528 // If we didn't find a dead root, then report the dead code with the 529 // earliest location. 530 if (!DeferredLocs.empty()) { 531 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 532 for (DeferredLocsTy::iterator I = DeferredLocs.begin(), 533 E = DeferredLocs.end(); I != E; ++I) { 534 const CFGBlock *Block = I->first; 535 if (Reachable[Block->getBlockID()]) 536 continue; 537 reportDeadCode(Block, I->second, CB); 538 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 539 } 540 } 541 542 return count; 543 } 544 545 static SourceLocation GetUnreachableLoc(const Stmt *S, 546 SourceRange &R1, 547 SourceRange &R2) { 548 R1 = R2 = SourceRange(); 549 550 if (const Expr *Ex = dyn_cast<Expr>(S)) 551 S = Ex->IgnoreParenImpCasts(); 552 553 switch (S->getStmtClass()) { 554 case Expr::BinaryOperatorClass: { 555 const BinaryOperator *BO = cast<BinaryOperator>(S); 556 return BO->getOperatorLoc(); 557 } 558 case Expr::UnaryOperatorClass: { 559 const UnaryOperator *UO = cast<UnaryOperator>(S); 560 R1 = UO->getSubExpr()->getSourceRange(); 561 return UO->getOperatorLoc(); 562 } 563 case Expr::CompoundAssignOperatorClass: { 564 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 565 R1 = CAO->getLHS()->getSourceRange(); 566 R2 = CAO->getRHS()->getSourceRange(); 567 return CAO->getOperatorLoc(); 568 } 569 case Expr::BinaryConditionalOperatorClass: 570 case Expr::ConditionalOperatorClass: { 571 const AbstractConditionalOperator *CO = 572 cast<AbstractConditionalOperator>(S); 573 return CO->getQuestionLoc(); 574 } 575 case Expr::MemberExprClass: { 576 const MemberExpr *ME = cast<MemberExpr>(S); 577 R1 = ME->getSourceRange(); 578 return ME->getMemberLoc(); 579 } 580 case Expr::ArraySubscriptExprClass: { 581 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 582 R1 = ASE->getLHS()->getSourceRange(); 583 R2 = ASE->getRHS()->getSourceRange(); 584 return ASE->getRBracketLoc(); 585 } 586 case Expr::CStyleCastExprClass: { 587 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 588 R1 = CSC->getSubExpr()->getSourceRange(); 589 return CSC->getLParenLoc(); 590 } 591 case Expr::CXXFunctionalCastExprClass: { 592 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 593 R1 = CE->getSubExpr()->getSourceRange(); 594 return CE->getBeginLoc(); 595 } 596 case Stmt::CXXTryStmtClass: { 597 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 598 } 599 case Expr::ObjCBridgedCastExprClass: { 600 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 601 R1 = CSC->getSubExpr()->getSourceRange(); 602 return CSC->getLParenLoc(); 603 } 604 default: ; 605 } 606 R1 = S->getSourceRange(); 607 return S->getBeginLoc(); 608 } 609 610 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 611 const Stmt *S, 612 clang::reachable_code::Callback &CB) { 613 // Classify the unreachable code found, or suppress it in some cases. 614 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 615 616 if (isa<BreakStmt>(S)) { 617 UK = reachable_code::UK_Break; 618 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || 619 isBuiltinAssumeFalse(B, S, C)) { 620 return; 621 } 622 else if (isDeadReturn(B, S)) { 623 UK = reachable_code::UK_Return; 624 } 625 626 SourceRange SilenceableCondVal; 627 628 if (UK == reachable_code::UK_Other) { 629 // Check if the dead code is part of the "loop target" of 630 // a for/for-range loop. This is the block that contains 631 // the increment code. 632 if (const Stmt *LoopTarget = B->getLoopTarget()) { 633 SourceLocation Loc = LoopTarget->getBeginLoc(); 634 SourceRange R1(Loc, Loc), R2; 635 636 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 637 const Expr *Inc = FS->getInc(); 638 Loc = Inc->getBeginLoc(); 639 R2 = Inc->getSourceRange(); 640 } 641 642 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 643 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 644 return; 645 } 646 647 // Check if the dead block has a predecessor whose branch has 648 // a configuration value that *could* be modified to 649 // silence the warning. 650 CFGBlock::const_pred_iterator PI = B->pred_begin(); 651 if (PI != B->pred_end()) { 652 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 653 const Stmt *TermCond = 654 PredBlock->getTerminatorCondition(/* strip parens */ false); 655 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 656 } 657 } 658 } 659 660 SourceRange R1, R2; 661 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 662 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 663 } 664 665 //===----------------------------------------------------------------------===// 666 // Reachability APIs. 667 //===----------------------------------------------------------------------===// 668 669 namespace clang { namespace reachable_code { 670 671 void Callback::anchor() { } 672 673 unsigned ScanReachableFromBlock(const CFGBlock *Start, 674 llvm::BitVector &Reachable) { 675 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 676 } 677 678 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 679 Callback &CB) { 680 681 CFG *cfg = AC.getCFG(); 682 if (!cfg) 683 return; 684 685 // Scan for reachable blocks from the entrance of the CFG. 686 // If there are no unreachable blocks, we're done. 687 llvm::BitVector reachable(cfg->getNumBlockIDs()); 688 unsigned numReachable = 689 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 690 if (numReachable == cfg->getNumBlockIDs()) 691 return; 692 693 // If there aren't explicit EH edges, we should include the 'try' dispatch 694 // blocks as roots. 695 if (!AC.getCFGBuildOptions().AddEHEdges) { 696 for (CFG::try_block_iterator I = cfg->try_blocks_begin(), 697 E = cfg->try_blocks_end() ; I != E; ++I) { 698 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); 699 } 700 if (numReachable == cfg->getNumBlockIDs()) 701 return; 702 } 703 704 // There are some unreachable blocks. We need to find the root blocks that 705 // contain code that should be considered unreachable. 706 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { 707 const CFGBlock *block = *I; 708 // A block may have been marked reachable during this loop. 709 if (reachable[block->getBlockID()]) 710 continue; 711 712 DeadCodeScan DS(reachable, PP, AC.getASTContext()); 713 numReachable += DS.scanBackwards(block, CB); 714 715 if (numReachable == cfg->getNumBlockIDs()) 716 return; 717 } 718 } 719 720 }} // end namespace clang::reachable_code 721