1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a flow-sensitive, path-insensitive analysis of 10 // determining reachable blocks within a CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ReachableCode.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/ParentMap.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Analysis/AnalysisDeclContext.h" 22 #include "clang/Analysis/CFG.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Lex/Preprocessor.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include <optional> 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Core Reachability Analysis routines. 34 //===----------------------------------------------------------------------===// 35 36 static bool isEnumConstant(const Expr *Ex) { 37 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 38 if (!DR) 39 return false; 40 return isa<EnumConstantDecl>(DR->getDecl()); 41 } 42 43 static bool isTrivialExpression(const Expr *Ex) { 44 Ex = Ex->IgnoreParenCasts(); 45 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 46 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 47 isa<CharacterLiteral>(Ex) || 48 isEnumConstant(Ex); 49 } 50 51 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 52 // Check if the block ends with a do...while() and see if 'S' is the 53 // condition. 54 if (const Stmt *Term = B->getTerminatorStmt()) { 55 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 56 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 57 return Cond == S && isTrivialExpression(Cond); 58 } 59 } 60 return false; 61 } 62 63 static bool isBuiltinUnreachable(const Stmt *S) { 64 if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) 65 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) 66 return FDecl->getIdentifier() && 67 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; 68 return false; 69 } 70 71 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, 72 ASTContext &C) { 73 if (B->empty()) { 74 // Happens if S is B's terminator and B contains nothing else 75 // (e.g. a CFGBlock containing only a goto). 76 return false; 77 } 78 if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { 79 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { 80 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); 81 } 82 } 83 return false; 84 } 85 86 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 87 // Look to see if the current control flow ends with a 'return', and see if 88 // 'S' is a substatement. The 'return' may not be the last element in the 89 // block, or may be in a subsequent block because of destructors. 90 const CFGBlock *Current = B; 91 while (true) { 92 for (const CFGElement &CE : llvm::reverse(*Current)) { 93 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 94 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 95 if (RS == S) 96 return true; 97 if (const Expr *RE = RS->getRetValue()) { 98 RE = RE->IgnoreParenCasts(); 99 if (RE == S) 100 return true; 101 ParentMap PM(const_cast<Expr *>(RE)); 102 // If 'S' is in the ParentMap, it is a subexpression of 103 // the return statement. 104 return PM.getParent(S); 105 } 106 } 107 break; 108 } 109 } 110 // Note also that we are restricting the search for the return statement 111 // to stop at control-flow; only part of a return statement may be dead, 112 // without the whole return statement being dead. 113 if (Current->getTerminator().isTemporaryDtorsBranch()) { 114 // Temporary destructors have a predictable control flow, thus we want to 115 // look into the next block for the return statement. 116 // We look into the false branch, as we know the true branch only contains 117 // the call to the destructor. 118 assert(Current->succ_size() == 2); 119 Current = *(Current->succ_begin() + 1); 120 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { 121 // If there is only one successor, we're not dealing with outgoing control 122 // flow. Thus, look into the next block. 123 Current = *Current->succ_begin(); 124 if (Current->pred_size() > 1) { 125 // If there is more than one predecessor, we're dealing with incoming 126 // control flow - if the return statement is in that block, it might 127 // well be reachable via a different control flow, thus it's not dead. 128 return false; 129 } 130 } else { 131 // We hit control flow or a dead end. Stop searching. 132 return false; 133 } 134 } 135 llvm_unreachable("Broke out of infinite loop."); 136 } 137 138 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 139 assert(Loc.isMacroID()); 140 SourceLocation Last; 141 do { 142 Last = Loc; 143 Loc = SM.getImmediateMacroCallerLoc(Loc); 144 } while (Loc.isMacroID()); 145 return Last; 146 } 147 148 /// Returns true if the statement is expanded from a configuration macro. 149 static bool isExpandedFromConfigurationMacro(const Stmt *S, 150 Preprocessor &PP, 151 bool IgnoreYES_NO = false) { 152 // FIXME: This is not very precise. Here we just check to see if the 153 // value comes from a macro, but we can do much better. This is likely 154 // to be over conservative. This logic is factored into a separate function 155 // so that we can refine it later. 156 SourceLocation L = S->getBeginLoc(); 157 if (L.isMacroID()) { 158 SourceManager &SM = PP.getSourceManager(); 159 if (IgnoreYES_NO) { 160 // The Objective-C constant 'YES' and 'NO' 161 // are defined as macros. Do not treat them 162 // as configuration values. 163 SourceLocation TopL = getTopMostMacro(L, SM); 164 StringRef MacroName = PP.getImmediateMacroName(TopL); 165 if (MacroName == "YES" || MacroName == "NO") 166 return false; 167 } else if (!PP.getLangOpts().CPlusPlus) { 168 // Do not treat C 'false' and 'true' macros as configuration values. 169 SourceLocation TopL = getTopMostMacro(L, SM); 170 StringRef MacroName = PP.getImmediateMacroName(TopL); 171 if (MacroName == "false" || MacroName == "true") 172 return false; 173 } 174 return true; 175 } 176 return false; 177 } 178 179 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 180 181 /// Returns true if the statement represents a configuration value. 182 /// 183 /// A configuration value is something usually determined at compile-time 184 /// to conditionally always execute some branch. Such guards are for 185 /// "sometimes unreachable" code. Such code is usually not interesting 186 /// to report as unreachable, and may mask truly unreachable code within 187 /// those blocks. 188 static bool isConfigurationValue(const Stmt *S, 189 Preprocessor &PP, 190 SourceRange *SilenceableCondVal = nullptr, 191 bool IncludeIntegers = true, 192 bool WrappedInParens = false) { 193 if (!S) 194 return false; 195 196 if (const auto *Ex = dyn_cast<Expr>(S)) 197 S = Ex->IgnoreImplicit(); 198 199 if (const auto *Ex = dyn_cast<Expr>(S)) 200 S = Ex->IgnoreCasts(); 201 202 // Special case looking for the sigil '()' around an integer literal. 203 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 204 if (!PE->getBeginLoc().isMacroID()) 205 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 206 IncludeIntegers, true); 207 208 if (const Expr *Ex = dyn_cast<Expr>(S)) 209 S = Ex->IgnoreCasts(); 210 211 bool IgnoreYES_NO = false; 212 213 switch (S->getStmtClass()) { 214 case Stmt::CallExprClass: { 215 const FunctionDecl *Callee = 216 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 217 return Callee ? Callee->isConstexpr() : false; 218 } 219 case Stmt::DeclRefExprClass: 220 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 221 case Stmt::ObjCBoolLiteralExprClass: 222 IgnoreYES_NO = true; 223 [[fallthrough]]; 224 case Stmt::CXXBoolLiteralExprClass: 225 case Stmt::IntegerLiteralClass: { 226 const Expr *E = cast<Expr>(S); 227 if (IncludeIntegers) { 228 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 229 *SilenceableCondVal = E->getSourceRange(); 230 return WrappedInParens || 231 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 232 } 233 return false; 234 } 235 case Stmt::MemberExprClass: 236 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 237 case Stmt::UnaryExprOrTypeTraitExprClass: 238 return true; 239 case Stmt::BinaryOperatorClass: { 240 const BinaryOperator *B = cast<BinaryOperator>(S); 241 // Only include raw integers (not enums) as configuration 242 // values if they are used in a logical or comparison operator 243 // (not arithmetic). 244 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 245 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 246 IncludeIntegers) || 247 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 248 IncludeIntegers); 249 } 250 case Stmt::UnaryOperatorClass: { 251 const UnaryOperator *UO = cast<UnaryOperator>(S); 252 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus) 253 return false; 254 bool SilenceableCondValNotSet = 255 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); 256 bool IsSubExprConfigValue = 257 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 258 IncludeIntegers, WrappedInParens); 259 // Update the silenceable condition value source range only if the range 260 // was set directly by the child expression. 261 if (SilenceableCondValNotSet && 262 SilenceableCondVal->getBegin().isValid() && 263 *SilenceableCondVal == 264 UO->getSubExpr()->IgnoreCasts()->getSourceRange()) 265 *SilenceableCondVal = UO->getSourceRange(); 266 return IsSubExprConfigValue; 267 } 268 default: 269 return false; 270 } 271 } 272 273 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 274 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 275 return isConfigurationValue(ED->getInitExpr(), PP); 276 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 277 // As a heuristic, treat globals as configuration values. Note 278 // that we only will get here if Sema evaluated this 279 // condition to a constant expression, which means the global 280 // had to be declared in a way to be a truly constant value. 281 // We could generalize this to local variables, but it isn't 282 // clear if those truly represent configuration values that 283 // gate unreachable code. 284 if (!VD->hasLocalStorage()) 285 return true; 286 287 // As a heuristic, locals that have been marked 'const' explicitly 288 // can be treated as configuration values as well. 289 return VD->getType().isLocalConstQualified(); 290 } 291 return false; 292 } 293 294 /// Returns true if we should always explore all successors of a block. 295 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 296 Preprocessor &PP) { 297 if (const Stmt *Term = B->getTerminatorStmt()) { 298 if (isa<SwitchStmt>(Term)) 299 return true; 300 // Specially handle '||' and '&&'. 301 if (isa<BinaryOperator>(Term)) { 302 return isConfigurationValue(Term, PP); 303 } 304 // Do not treat constexpr if statement successors as unreachable in warnings 305 // since the point of these statements is to determine branches at compile 306 // time. 307 if (const auto *IS = dyn_cast<IfStmt>(Term); 308 IS != nullptr && IS->isConstexpr()) 309 return true; 310 } 311 312 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 313 return isConfigurationValue(Cond, PP); 314 } 315 316 static unsigned scanFromBlock(const CFGBlock *Start, 317 llvm::BitVector &Reachable, 318 Preprocessor *PP, 319 bool IncludeSometimesUnreachableEdges) { 320 unsigned count = 0; 321 322 // Prep work queue 323 SmallVector<const CFGBlock*, 32> WL; 324 325 // The entry block may have already been marked reachable 326 // by the caller. 327 if (!Reachable[Start->getBlockID()]) { 328 ++count; 329 Reachable[Start->getBlockID()] = true; 330 } 331 332 WL.push_back(Start); 333 334 // Find the reachable blocks from 'Start'. 335 while (!WL.empty()) { 336 const CFGBlock *item = WL.pop_back_val(); 337 338 // There are cases where we want to treat all successors as reachable. 339 // The idea is that some "sometimes unreachable" code is not interesting, 340 // and that we should forge ahead and explore those branches anyway. 341 // This allows us to potentially uncover some "always unreachable" code 342 // within the "sometimes unreachable" code. 343 // Look at the successors and mark then reachable. 344 std::optional<bool> TreatAllSuccessorsAsReachable; 345 if (!IncludeSometimesUnreachableEdges) 346 TreatAllSuccessorsAsReachable = false; 347 348 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 349 E = item->succ_end(); I != E; ++I) { 350 const CFGBlock *B = *I; 351 if (!B) do { 352 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 353 if (!UB) 354 break; 355 356 if (!TreatAllSuccessorsAsReachable) { 357 assert(PP); 358 TreatAllSuccessorsAsReachable = 359 shouldTreatSuccessorsAsReachable(item, *PP); 360 } 361 362 if (*TreatAllSuccessorsAsReachable) { 363 B = UB; 364 break; 365 } 366 } 367 while (false); 368 369 if (B) { 370 unsigned blockID = B->getBlockID(); 371 if (!Reachable[blockID]) { 372 Reachable.set(blockID); 373 WL.push_back(B); 374 ++count; 375 } 376 } 377 } 378 } 379 return count; 380 } 381 382 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 383 Preprocessor &PP, 384 llvm::BitVector &Reachable) { 385 return scanFromBlock(Start, Reachable, &PP, true); 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Dead Code Scanner. 390 //===----------------------------------------------------------------------===// 391 392 namespace { 393 class DeadCodeScan { 394 llvm::BitVector Visited; 395 llvm::BitVector &Reachable; 396 SmallVector<const CFGBlock *, 10> WorkList; 397 Preprocessor &PP; 398 ASTContext &C; 399 400 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 401 DeferredLocsTy; 402 403 DeferredLocsTy DeferredLocs; 404 405 public: 406 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) 407 : Visited(reachable.size()), 408 Reachable(reachable), 409 PP(PP), C(C) {} 410 411 void enqueue(const CFGBlock *block); 412 unsigned scanBackwards(const CFGBlock *Start, 413 clang::reachable_code::Callback &CB); 414 415 bool isDeadCodeRoot(const CFGBlock *Block); 416 417 const Stmt *findDeadCode(const CFGBlock *Block); 418 419 void reportDeadCode(const CFGBlock *B, 420 const Stmt *S, 421 clang::reachable_code::Callback &CB); 422 }; 423 } 424 425 void DeadCodeScan::enqueue(const CFGBlock *block) { 426 unsigned blockID = block->getBlockID(); 427 if (Reachable[blockID] || Visited[blockID]) 428 return; 429 Visited[blockID] = true; 430 WorkList.push_back(block); 431 } 432 433 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 434 bool isDeadRoot = true; 435 436 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 437 E = Block->pred_end(); I != E; ++I) { 438 if (const CFGBlock *PredBlock = *I) { 439 unsigned blockID = PredBlock->getBlockID(); 440 if (Visited[blockID]) { 441 isDeadRoot = false; 442 continue; 443 } 444 if (!Reachable[blockID]) { 445 isDeadRoot = false; 446 Visited[blockID] = true; 447 WorkList.push_back(PredBlock); 448 continue; 449 } 450 } 451 } 452 453 return isDeadRoot; 454 } 455 456 static bool isValidDeadStmt(const Stmt *S) { 457 if (S->getBeginLoc().isInvalid()) 458 return false; 459 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 460 return BO->getOpcode() != BO_Comma; 461 return true; 462 } 463 464 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 465 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 466 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 467 const Stmt *S = CS->getStmt(); 468 if (isValidDeadStmt(S)) 469 return S; 470 } 471 472 CFGTerminator T = Block->getTerminator(); 473 if (T.isStmtBranch()) { 474 const Stmt *S = T.getStmt(); 475 if (S && isValidDeadStmt(S)) 476 return S; 477 } 478 479 return nullptr; 480 } 481 482 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 483 const std::pair<const CFGBlock *, const Stmt *> *p2) { 484 if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) 485 return -1; 486 if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) 487 return 1; 488 return 0; 489 } 490 491 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 492 clang::reachable_code::Callback &CB) { 493 494 unsigned count = 0; 495 enqueue(Start); 496 497 while (!WorkList.empty()) { 498 const CFGBlock *Block = WorkList.pop_back_val(); 499 500 // It is possible that this block has been marked reachable after 501 // it was enqueued. 502 if (Reachable[Block->getBlockID()]) 503 continue; 504 505 // Look for any dead code within the block. 506 const Stmt *S = findDeadCode(Block); 507 508 if (!S) { 509 // No dead code. Possibly an empty block. Look at dead predecessors. 510 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 511 E = Block->pred_end(); I != E; ++I) { 512 if (const CFGBlock *predBlock = *I) 513 enqueue(predBlock); 514 } 515 continue; 516 } 517 518 // Specially handle macro-expanded code. 519 if (S->getBeginLoc().isMacroID()) { 520 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 521 continue; 522 } 523 524 if (isDeadCodeRoot(Block)) { 525 reportDeadCode(Block, S, CB); 526 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 527 } 528 else { 529 // Record this statement as the possibly best location in a 530 // strongly-connected component of dead code for emitting a 531 // warning. 532 DeferredLocs.push_back(std::make_pair(Block, S)); 533 } 534 } 535 536 // If we didn't find a dead root, then report the dead code with the 537 // earliest location. 538 if (!DeferredLocs.empty()) { 539 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 540 for (const auto &I : DeferredLocs) { 541 const CFGBlock *Block = I.first; 542 if (Reachable[Block->getBlockID()]) 543 continue; 544 reportDeadCode(Block, I.second, CB); 545 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 546 } 547 } 548 549 return count; 550 } 551 552 static SourceLocation GetUnreachableLoc(const Stmt *S, 553 SourceRange &R1, 554 SourceRange &R2) { 555 R1 = R2 = SourceRange(); 556 557 if (const Expr *Ex = dyn_cast<Expr>(S)) 558 S = Ex->IgnoreParenImpCasts(); 559 560 switch (S->getStmtClass()) { 561 case Expr::BinaryOperatorClass: { 562 const BinaryOperator *BO = cast<BinaryOperator>(S); 563 return BO->getOperatorLoc(); 564 } 565 case Expr::UnaryOperatorClass: { 566 const UnaryOperator *UO = cast<UnaryOperator>(S); 567 R1 = UO->getSubExpr()->getSourceRange(); 568 return UO->getOperatorLoc(); 569 } 570 case Expr::CompoundAssignOperatorClass: { 571 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 572 R1 = CAO->getLHS()->getSourceRange(); 573 R2 = CAO->getRHS()->getSourceRange(); 574 return CAO->getOperatorLoc(); 575 } 576 case Expr::BinaryConditionalOperatorClass: 577 case Expr::ConditionalOperatorClass: { 578 const AbstractConditionalOperator *CO = 579 cast<AbstractConditionalOperator>(S); 580 return CO->getQuestionLoc(); 581 } 582 case Expr::MemberExprClass: { 583 const MemberExpr *ME = cast<MemberExpr>(S); 584 R1 = ME->getSourceRange(); 585 return ME->getMemberLoc(); 586 } 587 case Expr::ArraySubscriptExprClass: { 588 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 589 R1 = ASE->getLHS()->getSourceRange(); 590 R2 = ASE->getRHS()->getSourceRange(); 591 return ASE->getRBracketLoc(); 592 } 593 case Expr::CStyleCastExprClass: { 594 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 595 R1 = CSC->getSubExpr()->getSourceRange(); 596 return CSC->getLParenLoc(); 597 } 598 case Expr::CXXFunctionalCastExprClass: { 599 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 600 R1 = CE->getSubExpr()->getSourceRange(); 601 return CE->getBeginLoc(); 602 } 603 case Stmt::CXXTryStmtClass: { 604 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 605 } 606 case Expr::ObjCBridgedCastExprClass: { 607 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 608 R1 = CSC->getSubExpr()->getSourceRange(); 609 return CSC->getLParenLoc(); 610 } 611 default: ; 612 } 613 R1 = S->getSourceRange(); 614 return S->getBeginLoc(); 615 } 616 617 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 618 const Stmt *S, 619 clang::reachable_code::Callback &CB) { 620 // Classify the unreachable code found, or suppress it in some cases. 621 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 622 623 if (isa<BreakStmt>(S)) { 624 UK = reachable_code::UK_Break; 625 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || 626 isBuiltinAssumeFalse(B, S, C)) { 627 return; 628 } 629 else if (isDeadReturn(B, S)) { 630 UK = reachable_code::UK_Return; 631 } 632 633 const auto *AS = dyn_cast<AttributedStmt>(S); 634 bool HasFallThroughAttr = 635 AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs()); 636 637 SourceRange SilenceableCondVal; 638 639 if (UK == reachable_code::UK_Other) { 640 // Check if the dead code is part of the "loop target" of 641 // a for/for-range loop. This is the block that contains 642 // the increment code. 643 if (const Stmt *LoopTarget = B->getLoopTarget()) { 644 SourceLocation Loc = LoopTarget->getBeginLoc(); 645 SourceRange R1(Loc, Loc), R2; 646 647 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 648 const Expr *Inc = FS->getInc(); 649 Loc = Inc->getBeginLoc(); 650 R2 = Inc->getSourceRange(); 651 } 652 653 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, Loc, 654 SourceRange(), SourceRange(Loc, Loc), R2, 655 HasFallThroughAttr); 656 return; 657 } 658 659 // Check if the dead block has a predecessor whose branch has 660 // a configuration value that *could* be modified to 661 // silence the warning. 662 CFGBlock::const_pred_iterator PI = B->pred_begin(); 663 if (PI != B->pred_end()) { 664 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 665 const Stmt *TermCond = 666 PredBlock->getTerminatorCondition(/* strip parens */ false); 667 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 668 } 669 } 670 } 671 672 SourceRange R1, R2; 673 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 674 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2, HasFallThroughAttr); 675 } 676 677 //===----------------------------------------------------------------------===// 678 // Reachability APIs. 679 //===----------------------------------------------------------------------===// 680 681 namespace clang { namespace reachable_code { 682 683 void Callback::anchor() { } 684 685 unsigned ScanReachableFromBlock(const CFGBlock *Start, 686 llvm::BitVector &Reachable) { 687 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 688 } 689 690 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 691 Callback &CB) { 692 693 CFG *cfg = AC.getCFG(); 694 if (!cfg) 695 return; 696 697 // Scan for reachable blocks from the entrance of the CFG. 698 // If there are no unreachable blocks, we're done. 699 llvm::BitVector reachable(cfg->getNumBlockIDs()); 700 unsigned numReachable = 701 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 702 if (numReachable == cfg->getNumBlockIDs()) 703 return; 704 705 // If there aren't explicit EH edges, we should include the 'try' dispatch 706 // blocks as roots. 707 if (!AC.getCFGBuildOptions().AddEHEdges) { 708 for (const CFGBlock *B : cfg->try_blocks()) 709 numReachable += scanMaybeReachableFromBlock(B, PP, reachable); 710 if (numReachable == cfg->getNumBlockIDs()) 711 return; 712 } 713 714 // There are some unreachable blocks. We need to find the root blocks that 715 // contain code that should be considered unreachable. 716 for (const CFGBlock *block : *cfg) { 717 // A block may have been marked reachable during this loop. 718 if (reachable[block->getBlockID()]) 719 continue; 720 721 DeadCodeScan DS(reachable, PP, AC.getASTContext()); 722 numReachable += DS.scanBackwards(block, CB); 723 724 if (numReachable == cfg->getNumBlockIDs()) 725 return; 726 } 727 } 728 729 }} // end namespace clang::reachable_code 730