xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a SAT solver implementation that can be used by dataflow
10 //  analyses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include <cassert>
15 #include <cstdint>
16 #include <iterator>
17 #include <queue>
18 #include <vector>
19 
20 #include "clang/Analysis/FlowSensitive/Solver.h"
21 #include "clang/Analysis/FlowSensitive/Value.h"
22 #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/STLExtras.h"
26 
27 namespace clang {
28 namespace dataflow {
29 
30 // `WatchedLiteralsSolver` is an implementation of Algorithm D from Knuth's
31 // The Art of Computer Programming Volume 4: Satisfiability, Fascicle 6. It is
32 // based on the backtracking DPLL algorithm [1], keeps references to a single
33 // "watched" literal per clause, and uses a set of "active" variables to perform
34 // unit propagation.
35 //
36 // The solver expects that its input is a boolean formula in conjunctive normal
37 // form that consists of clauses of at least one literal. A literal is either a
38 // boolean variable or its negation. Below we define types, data structures, and
39 // utilities that are used to represent boolean formulas in conjunctive normal
40 // form.
41 //
42 // [1] https://en.wikipedia.org/wiki/DPLL_algorithm
43 
44 /// Boolean variables are represented as positive integers.
45 using Variable = uint32_t;
46 
47 /// A null boolean variable is used as a placeholder in various data structures
48 /// and algorithms.
49 static constexpr Variable NullVar = 0;
50 
51 /// Literals are represented as positive integers. Specifically, for a boolean
52 /// variable `V` that is represented as the positive integer `I`, the positive
53 /// literal `V` is represented as the integer `2*I` and the negative literal
54 /// `!V` is represented as the integer `2*I+1`.
55 using Literal = uint32_t;
56 
57 /// A null literal is used as a placeholder in various data structures and
58 /// algorithms.
59 static constexpr Literal NullLit = 0;
60 
61 /// Returns the positive literal `V`.
62 static constexpr Literal posLit(Variable V) { return 2 * V; }
63 
64 /// Returns the negative literal `!V`.
65 static constexpr Literal negLit(Variable V) { return 2 * V + 1; }
66 
67 /// Returns the negated literal `!L`.
68 static constexpr Literal notLit(Literal L) { return L ^ 1; }
69 
70 /// Returns the variable of `L`.
71 static constexpr Variable var(Literal L) { return L >> 1; }
72 
73 /// Clause identifiers are represented as positive integers.
74 using ClauseID = uint32_t;
75 
76 /// A null clause identifier is used as a placeholder in various data structures
77 /// and algorithms.
78 static constexpr ClauseID NullClause = 0;
79 
80 /// A boolean formula in conjunctive normal form.
81 struct BooleanFormula {
82   /// `LargestVar` is equal to the largest positive integer that represents a
83   /// variable in the formula.
84   const Variable LargestVar;
85 
86   /// Literals of all clauses in the formula.
87   ///
88   /// The element at index 0 stands for the literal in the null clause. It is
89   /// set to 0 and isn't used. Literals of clauses in the formula start from the
90   /// element at index 1.
91   ///
92   /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of
93   /// `Clauses` will be `[0, L1, L2, L2, L3, L4]`.
94   std::vector<Literal> Clauses;
95 
96   /// Start indices of clauses of the formula in `Clauses`.
97   ///
98   /// The element at index 0 stands for the start index of the null clause. It
99   /// is set to 0 and isn't used. Start indices of clauses in the formula start
100   /// from the element at index 1.
101   ///
102   /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of
103   /// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first
104   /// clause always start at index 1. The start index for the literals of the
105   /// second clause depends on the size of the first clause and so on.
106   std::vector<size_t> ClauseStarts;
107 
108   /// Maps literals (indices of the vector) to clause identifiers (elements of
109   /// the vector) that watch the respective literals.
110   ///
111   /// For a given clause, its watched literal is always its first literal in
112   /// `Clauses`. This invariant is maintained when watched literals change.
113   std::vector<ClauseID> WatchedHead;
114 
115   /// Maps clause identifiers (elements of the vector) to identifiers of other
116   /// clauses that watch the same literals, forming a set of linked lists.
117   ///
118   /// The element at index 0 stands for the identifier of the clause that
119   /// follows the null clause. It is set to 0 and isn't used. Identifiers of
120   /// clauses in the formula start from the element at index 1.
121   std::vector<ClauseID> NextWatched;
122 
123   /// Stores the variable identifier and value location for atomic booleans in
124   /// the formula.
125   llvm::DenseMap<Variable, AtomicBoolValue *> Atomics;
126 
127   explicit BooleanFormula(Variable LargestVar,
128                           llvm::DenseMap<Variable, AtomicBoolValue *> Atomics)
129       : LargestVar(LargestVar), Atomics(std::move(Atomics)) {
130     Clauses.push_back(0);
131     ClauseStarts.push_back(0);
132     NextWatched.push_back(0);
133     const size_t NumLiterals = 2 * LargestVar + 1;
134     WatchedHead.resize(NumLiterals + 1, 0);
135   }
136 
137   /// Adds the `L1 v L2 v L3` clause to the formula. If `L2` or `L3` are
138   /// `NullLit` they are respectively omitted from the clause.
139   ///
140   /// Requirements:
141   ///
142   ///  `L1` must not be `NullLit`.
143   ///
144   ///  All literals in the input that are not `NullLit` must be distinct.
145   void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) {
146     // The literals are guaranteed to be distinct from properties of BoolValue
147     // and the construction in `buildBooleanFormula`.
148     assert(L1 != NullLit && L1 != L2 && L1 != L3 &&
149            (L2 != L3 || L2 == NullLit));
150 
151     const ClauseID C = ClauseStarts.size();
152     const size_t S = Clauses.size();
153     ClauseStarts.push_back(S);
154 
155     Clauses.push_back(L1);
156     if (L2 != NullLit)
157       Clauses.push_back(L2);
158     if (L3 != NullLit)
159       Clauses.push_back(L3);
160 
161     // Designate the first literal as the "watched" literal of the clause.
162     NextWatched.push_back(WatchedHead[L1]);
163     WatchedHead[L1] = C;
164   }
165 
166   /// Returns the number of literals in clause `C`.
167   size_t clauseSize(ClauseID C) const {
168     return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C]
169                                         : ClauseStarts[C + 1] - ClauseStarts[C];
170   }
171 
172   /// Returns the literals of clause `C`.
173   llvm::ArrayRef<Literal> clauseLiterals(ClauseID C) const {
174     return llvm::ArrayRef<Literal>(&Clauses[ClauseStarts[C]], clauseSize(C));
175   }
176 };
177 
178 /// Converts the conjunction of `Vals` into a formula in conjunctive normal
179 /// form where each clause has at least one and at most three literals.
180 BooleanFormula buildBooleanFormula(const llvm::DenseSet<BoolValue *> &Vals) {
181   // The general strategy of the algorithm implemented below is to map each
182   // of the sub-values in `Vals` to a unique variable and use these variables in
183   // the resulting CNF expression to avoid exponential blow up. The number of
184   // literals in the resulting formula is guaranteed to be linear in the number
185   // of sub-values in `Vals`.
186 
187   // Map each sub-value in `Vals` to a unique variable.
188   llvm::DenseMap<BoolValue *, Variable> SubValsToVar;
189   // Store variable identifiers and value location of atomic booleans.
190   llvm::DenseMap<Variable, AtomicBoolValue *> Atomics;
191   Variable NextVar = 1;
192   {
193     std::queue<BoolValue *> UnprocessedSubVals;
194     for (BoolValue *Val : Vals)
195       UnprocessedSubVals.push(Val);
196     while (!UnprocessedSubVals.empty()) {
197       Variable Var = NextVar;
198       BoolValue *Val = UnprocessedSubVals.front();
199       UnprocessedSubVals.pop();
200 
201       if (!SubValsToVar.try_emplace(Val, Var).second)
202         continue;
203       ++NextVar;
204 
205       // Visit the sub-values of `Val`.
206       switch (Val->getKind()) {
207       case Value::Kind::Conjunction: {
208         auto *C = cast<ConjunctionValue>(Val);
209         UnprocessedSubVals.push(&C->getLeftSubValue());
210         UnprocessedSubVals.push(&C->getRightSubValue());
211         break;
212       }
213       case Value::Kind::Disjunction: {
214         auto *D = cast<DisjunctionValue>(Val);
215         UnprocessedSubVals.push(&D->getLeftSubValue());
216         UnprocessedSubVals.push(&D->getRightSubValue());
217         break;
218       }
219       case Value::Kind::Negation: {
220         auto *N = cast<NegationValue>(Val);
221         UnprocessedSubVals.push(&N->getSubVal());
222         break;
223       }
224       case Value::Kind::Implication: {
225         auto *I = cast<ImplicationValue>(Val);
226         UnprocessedSubVals.push(&I->getLeftSubValue());
227         UnprocessedSubVals.push(&I->getRightSubValue());
228         break;
229       }
230       case Value::Kind::Biconditional: {
231         auto *B = cast<BiconditionalValue>(Val);
232         UnprocessedSubVals.push(&B->getLeftSubValue());
233         UnprocessedSubVals.push(&B->getRightSubValue());
234         break;
235       }
236       case Value::Kind::AtomicBool: {
237         Atomics[Var] = cast<AtomicBoolValue>(Val);
238         break;
239       }
240       default:
241         llvm_unreachable("buildBooleanFormula: unhandled value kind");
242       }
243     }
244   }
245 
246   auto GetVar = [&SubValsToVar](const BoolValue *Val) {
247     auto ValIt = SubValsToVar.find(Val);
248     assert(ValIt != SubValsToVar.end());
249     return ValIt->second;
250   };
251 
252   BooleanFormula Formula(NextVar - 1, std::move(Atomics));
253   std::vector<bool> ProcessedSubVals(NextVar, false);
254 
255   // Add a conjunct for each variable that represents a top-level conjunction
256   // value in `Vals`.
257   for (BoolValue *Val : Vals)
258     Formula.addClause(posLit(GetVar(Val)));
259 
260   // Add conjuncts that represent the mapping between newly-created variables
261   // and their corresponding sub-values.
262   std::queue<BoolValue *> UnprocessedSubVals;
263   for (BoolValue *Val : Vals)
264     UnprocessedSubVals.push(Val);
265   while (!UnprocessedSubVals.empty()) {
266     const BoolValue *Val = UnprocessedSubVals.front();
267     UnprocessedSubVals.pop();
268     const Variable Var = GetVar(Val);
269 
270     if (ProcessedSubVals[Var])
271       continue;
272     ProcessedSubVals[Var] = true;
273 
274     if (auto *C = dyn_cast<ConjunctionValue>(Val)) {
275       const Variable LeftSubVar = GetVar(&C->getLeftSubValue());
276       const Variable RightSubVar = GetVar(&C->getRightSubValue());
277 
278       if (LeftSubVar == RightSubVar) {
279         // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
280         // already in conjunctive normal form. Below we add each of the
281         // conjuncts of the latter expression to the result.
282         Formula.addClause(negLit(Var), posLit(LeftSubVar));
283         Formula.addClause(posLit(Var), negLit(LeftSubVar));
284 
285         // Visit a sub-value of `Val` (pick any, they are identical).
286         UnprocessedSubVals.push(&C->getLeftSubValue());
287       } else {
288         // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)`
289         // which is already in conjunctive normal form. Below we add each of the
290         // conjuncts of the latter expression to the result.
291         Formula.addClause(negLit(Var), posLit(LeftSubVar));
292         Formula.addClause(negLit(Var), posLit(RightSubVar));
293         Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar));
294 
295         // Visit the sub-values of `Val`.
296         UnprocessedSubVals.push(&C->getLeftSubValue());
297         UnprocessedSubVals.push(&C->getRightSubValue());
298       }
299     } else if (auto *D = dyn_cast<DisjunctionValue>(Val)) {
300       const Variable LeftSubVar = GetVar(&D->getLeftSubValue());
301       const Variable RightSubVar = GetVar(&D->getRightSubValue());
302 
303       if (LeftSubVar == RightSubVar) {
304         // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
305         // already in conjunctive normal form. Below we add each of the
306         // conjuncts of the latter expression to the result.
307         Formula.addClause(negLit(Var), posLit(LeftSubVar));
308         Formula.addClause(posLit(Var), negLit(LeftSubVar));
309 
310         // Visit a sub-value of `Val` (pick any, they are identical).
311         UnprocessedSubVals.push(&D->getLeftSubValue());
312       } else {
313         // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)`
314         // which is already in conjunctive normal form. Below we add each of the
315         // conjuncts of the latter expression to the result.
316         Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar));
317         Formula.addClause(posLit(Var), negLit(LeftSubVar));
318         Formula.addClause(posLit(Var), negLit(RightSubVar));
319 
320         // Visit the sub-values of `Val`.
321         UnprocessedSubVals.push(&D->getLeftSubValue());
322         UnprocessedSubVals.push(&D->getRightSubValue());
323       }
324     } else if (auto *N = dyn_cast<NegationValue>(Val)) {
325       const Variable SubVar = GetVar(&N->getSubVal());
326 
327       // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in
328       // conjunctive normal form. Below we add each of the conjuncts of the
329       // latter expression to the result.
330       Formula.addClause(negLit(Var), negLit(SubVar));
331       Formula.addClause(posLit(Var), posLit(SubVar));
332 
333       // Visit the sub-values of `Val`.
334       UnprocessedSubVals.push(&N->getSubVal());
335     } else if (auto *I = dyn_cast<ImplicationValue>(Val)) {
336       const Variable LeftSubVar = GetVar(&I->getLeftSubValue());
337       const Variable RightSubVar = GetVar(&I->getRightSubValue());
338 
339       // `X <=> (A => B)` is equivalent to
340       // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
341       // conjunctive normal form. Below we add each of the conjuncts of the
342       // latter expression to the result.
343       Formula.addClause(posLit(Var), posLit(LeftSubVar));
344       Formula.addClause(posLit(Var), negLit(RightSubVar));
345       Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar));
346 
347       // Visit the sub-values of `Val`.
348       UnprocessedSubVals.push(&I->getLeftSubValue());
349       UnprocessedSubVals.push(&I->getRightSubValue());
350     } else if (auto *B = dyn_cast<BiconditionalValue>(Val)) {
351       const Variable LeftSubVar = GetVar(&B->getLeftSubValue());
352       const Variable RightSubVar = GetVar(&B->getRightSubValue());
353 
354       if (LeftSubVar == RightSubVar) {
355         // `X <=> (A <=> A)` is equvalent to `X` which is already in
356         // conjunctive normal form. Below we add each of the conjuncts of the
357         // latter expression to the result.
358         Formula.addClause(posLit(Var));
359 
360         // No need to visit the sub-values of `Val`.
361       } else {
362         // `X <=> (A <=> B)` is equivalent to
363         // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which is
364         // already in conjunctive normal form. Below we add each of the conjuncts
365         // of the latter expression to the result.
366         Formula.addClause(posLit(Var), posLit(LeftSubVar), posLit(RightSubVar));
367         Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar));
368         Formula.addClause(negLit(Var), posLit(LeftSubVar), negLit(RightSubVar));
369         Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar));
370 
371         // Visit the sub-values of `Val`.
372         UnprocessedSubVals.push(&B->getLeftSubValue());
373         UnprocessedSubVals.push(&B->getRightSubValue());
374       }
375     }
376   }
377 
378   return Formula;
379 }
380 
381 class WatchedLiteralsSolverImpl {
382   /// A boolean formula in conjunctive normal form that the solver will attempt
383   /// to prove satisfiable. The formula will be modified in the process.
384   BooleanFormula Formula;
385 
386   /// The search for a satisfying assignment of the variables in `Formula` will
387   /// proceed in levels, starting from 1 and going up to `Formula.LargestVar`
388   /// (inclusive). The current level is stored in `Level`. At each level the
389   /// solver will assign a value to an unassigned variable. If this leads to a
390   /// consistent partial assignment, `Level` will be incremented. Otherwise, if
391   /// it results in a conflict, the solver will backtrack by decrementing
392   /// `Level` until it reaches the most recent level where a decision was made.
393   size_t Level = 0;
394 
395   /// Maps levels (indices of the vector) to variables (elements of the vector)
396   /// that are assigned values at the respective levels.
397   ///
398   /// The element at index 0 isn't used. Variables start from the element at
399   /// index 1.
400   std::vector<Variable> LevelVars;
401 
402   /// State of the solver at a particular level.
403   enum class State : uint8_t {
404     /// Indicates that the solver made a decision.
405     Decision = 0,
406 
407     /// Indicates that the solver made a forced move.
408     Forced = 1,
409   };
410 
411   /// State of the solver at a particular level. It keeps track of previous
412   /// decisions that the solver can refer to when backtracking.
413   ///
414   /// The element at index 0 isn't used. States start from the element at index
415   /// 1.
416   std::vector<State> LevelStates;
417 
418   enum class Assignment : int8_t {
419     Unassigned = -1,
420     AssignedFalse = 0,
421     AssignedTrue = 1
422   };
423 
424   /// Maps variables (indices of the vector) to their assignments (elements of
425   /// the vector).
426   ///
427   /// The element at index 0 isn't used. Variable assignments start from the
428   /// element at index 1.
429   std::vector<Assignment> VarAssignments;
430 
431   /// A set of unassigned variables that appear in watched literals in
432   /// `Formula`. The vector is guaranteed to contain unique elements.
433   std::vector<Variable> ActiveVars;
434 
435 public:
436   explicit WatchedLiteralsSolverImpl(const llvm::DenseSet<BoolValue *> &Vals)
437       : Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1),
438         LevelStates(Formula.LargestVar + 1) {
439     assert(!Vals.empty());
440 
441     // Initialize the state at the root level to a decision so that in
442     // `reverseForcedMoves` we don't have to check that `Level >= 0` on each
443     // iteration.
444     LevelStates[0] = State::Decision;
445 
446     // Initialize all variables as unassigned.
447     VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned);
448 
449     // Initialize the active variables.
450     for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) {
451       if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
452         ActiveVars.push_back(Var);
453     }
454   }
455 
456   Solver::Result solve() && {
457     size_t I = 0;
458     while (I < ActiveVars.size()) {
459       // Assert that the following invariants hold:
460       // 1. All active variables are unassigned.
461       // 2. All active variables form watched literals.
462       // 3. Unassigned variables that form watched literals are active.
463       // FIXME: Consider replacing these with test cases that fail if the any
464       // of the invariants is broken. That might not be easy due to the
465       // transformations performed by `buildBooleanFormula`.
466       assert(activeVarsAreUnassigned());
467       assert(activeVarsFormWatchedLiterals());
468       assert(unassignedVarsFormingWatchedLiteralsAreActive());
469 
470       const Variable ActiveVar = ActiveVars[I];
471 
472       // Look for unit clauses that contain the active variable.
473       const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar));
474       const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar));
475       if (unitPosLit && unitNegLit) {
476         // We found a conflict!
477 
478         // Backtrack and rewind the `Level` until the most recent non-forced
479         // assignment.
480         reverseForcedMoves();
481 
482         // If the root level is reached, then all possible assignments lead to
483         // a conflict.
484         if (Level == 0)
485           return Solver::Result::Unsatisfiable();
486 
487         // Otherwise, take the other branch at the most recent level where a
488         // decision was made.
489         LevelStates[Level] = State::Forced;
490         const Variable Var = LevelVars[Level];
491         VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue
492                                   ? Assignment::AssignedFalse
493                                   : Assignment::AssignedTrue;
494 
495         updateWatchedLiterals();
496       } else if (unitPosLit || unitNegLit) {
497         // We found a unit clause! The value of its unassigned variable is
498         // forced.
499         ++Level;
500 
501         LevelVars[Level] = ActiveVar;
502         LevelStates[Level] = State::Forced;
503         VarAssignments[ActiveVar] =
504             unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse;
505 
506         // Remove the variable that was just assigned from the set of active
507         // variables.
508         if (I + 1 < ActiveVars.size()) {
509           // Replace the variable that was just assigned with the last active
510           // variable for efficient removal.
511           ActiveVars[I] = ActiveVars.back();
512         } else {
513           // This was the last active variable. Repeat the process from the
514           // beginning.
515           I = 0;
516         }
517         ActiveVars.pop_back();
518 
519         updateWatchedLiterals();
520       } else if (I + 1 == ActiveVars.size()) {
521         // There are no remaining unit clauses in the formula! Make a decision
522         // for one of the active variables at the current level.
523         ++Level;
524 
525         LevelVars[Level] = ActiveVar;
526         LevelStates[Level] = State::Decision;
527         VarAssignments[ActiveVar] = decideAssignment(ActiveVar);
528 
529         // Remove the variable that was just assigned from the set of active
530         // variables.
531         ActiveVars.pop_back();
532 
533         updateWatchedLiterals();
534 
535         // This was the last active variable. Repeat the process from the
536         // beginning.
537         I = 0;
538       } else {
539         ++I;
540       }
541     }
542     return Solver::Result::Satisfiable(buildSolution());
543   }
544 
545 private:
546   /// Returns a satisfying truth assignment to the atomic values in the boolean
547   /// formula.
548   llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment>
549   buildSolution() {
550     llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> Solution;
551     for (auto &Atomic : Formula.Atomics) {
552       // A variable may have a definite true/false assignment, or it may be
553       // unassigned indicating its truth value does not affect the result of
554       // the formula. Unassigned variables are assigned to true as a default.
555       Solution[Atomic.second] =
556           VarAssignments[Atomic.first] == Assignment::AssignedFalse
557               ? Solver::Result::Assignment::AssignedFalse
558               : Solver::Result::Assignment::AssignedTrue;
559     }
560     return Solution;
561   }
562 
563   /// Reverses forced moves until the most recent level where a decision was
564   /// made on the assignment of a variable.
565   void reverseForcedMoves() {
566     for (; LevelStates[Level] == State::Forced; --Level) {
567       const Variable Var = LevelVars[Level];
568 
569       VarAssignments[Var] = Assignment::Unassigned;
570 
571       // If the variable that we pass through is watched then we add it to the
572       // active variables.
573       if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
574         ActiveVars.push_back(Var);
575     }
576   }
577 
578   /// Updates watched literals that are affected by a variable assignment.
579   void updateWatchedLiterals() {
580     const Variable Var = LevelVars[Level];
581 
582     // Update the watched literals of clauses that currently watch the literal
583     // that falsifies `Var`.
584     const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue
585                                  ? negLit(Var)
586                                  : posLit(Var);
587     ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit];
588     Formula.WatchedHead[FalseLit] = NullClause;
589     while (FalseLitWatcher != NullClause) {
590       const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher];
591 
592       // Pick the first non-false literal as the new watched literal.
593       const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher];
594       size_t NewWatchedLitIdx = FalseLitWatcherStart + 1;
595       while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx]))
596         ++NewWatchedLitIdx;
597       const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx];
598       const Variable NewWatchedLitVar = var(NewWatchedLit);
599 
600       // Swap the old watched literal for the new one in `FalseLitWatcher` to
601       // maintain the invariant that the watched literal is at the beginning of
602       // the clause.
603       Formula.Clauses[NewWatchedLitIdx] = FalseLit;
604       Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit;
605 
606       // If the new watched literal isn't watched by any other clause and its
607       // variable isn't assigned we need to add it to the active variables.
608       if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) &&
609           VarAssignments[NewWatchedLitVar] == Assignment::Unassigned)
610         ActiveVars.push_back(NewWatchedLitVar);
611 
612       Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit];
613       Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher;
614 
615       // Go to the next clause that watches `FalseLit`.
616       FalseLitWatcher = NextFalseLitWatcher;
617     }
618   }
619 
620   /// Returns true if and only if one of the clauses that watch `Lit` is a unit
621   /// clause.
622   bool watchedByUnitClause(Literal Lit) const {
623     for (ClauseID LitWatcher = Formula.WatchedHead[Lit];
624          LitWatcher != NullClause;
625          LitWatcher = Formula.NextWatched[LitWatcher]) {
626       llvm::ArrayRef<Literal> Clause = Formula.clauseLiterals(LitWatcher);
627 
628       // Assert the invariant that the watched literal is always the first one
629       // in the clause.
630       // FIXME: Consider replacing this with a test case that fails if the
631       // invariant is broken by `updateWatchedLiterals`. That might not be easy
632       // due to the transformations performed by `buildBooleanFormula`.
633       assert(Clause.front() == Lit);
634 
635       if (isUnit(Clause))
636         return true;
637     }
638     return false;
639   }
640 
641   /// Returns true if and only if `Clause` is a unit clause.
642   bool isUnit(llvm::ArrayRef<Literal> Clause) const {
643     return llvm::all_of(Clause.drop_front(),
644                         [this](Literal L) { return isCurrentlyFalse(L); });
645   }
646 
647   /// Returns true if and only if `Lit` evaluates to `false` in the current
648   /// partial assignment.
649   bool isCurrentlyFalse(Literal Lit) const {
650     return static_cast<int8_t>(VarAssignments[var(Lit)]) ==
651            static_cast<int8_t>(Lit & 1);
652   }
653 
654   /// Returns true if and only if `Lit` is watched by a clause in `Formula`.
655   bool isWatched(Literal Lit) const {
656     return Formula.WatchedHead[Lit] != NullClause;
657   }
658 
659   /// Returns an assignment for an unassigned variable.
660   Assignment decideAssignment(Variable Var) const {
661     return !isWatched(posLit(Var)) || isWatched(negLit(Var))
662                ? Assignment::AssignedFalse
663                : Assignment::AssignedTrue;
664   }
665 
666   /// Returns a set of all watched literals.
667   llvm::DenseSet<Literal> watchedLiterals() const {
668     llvm::DenseSet<Literal> WatchedLiterals;
669     for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) {
670       if (Formula.WatchedHead[Lit] == NullClause)
671         continue;
672       WatchedLiterals.insert(Lit);
673     }
674     return WatchedLiterals;
675   }
676 
677   /// Returns true if and only if all active variables are unassigned.
678   bool activeVarsAreUnassigned() const {
679     return llvm::all_of(ActiveVars, [this](Variable Var) {
680       return VarAssignments[Var] == Assignment::Unassigned;
681     });
682   }
683 
684   /// Returns true if and only if all active variables form watched literals.
685   bool activeVarsFormWatchedLiterals() const {
686     const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals();
687     return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) {
688       return WatchedLiterals.contains(posLit(Var)) ||
689              WatchedLiterals.contains(negLit(Var));
690     });
691   }
692 
693   /// Returns true if and only if all unassigned variables that are forming
694   /// watched literals are active.
695   bool unassignedVarsFormingWatchedLiteralsAreActive() const {
696     const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(),
697                                                  ActiveVars.end());
698     for (Literal Lit : watchedLiterals()) {
699       const Variable Var = var(Lit);
700       if (VarAssignments[Var] != Assignment::Unassigned)
701         continue;
702       if (ActiveVarsSet.contains(Var))
703         continue;
704       return false;
705     }
706     return true;
707   }
708 };
709 
710 Solver::Result WatchedLiteralsSolver::solve(llvm::DenseSet<BoolValue *> Vals) {
711   return Vals.empty() ? Solver::Result::Satisfiable({{}})
712                       : WatchedLiteralsSolverImpl(Vals).solve();
713 }
714 
715 } // namespace dataflow
716 } // namespace clang
717