1 //===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a SAT solver implementation that can be used by dataflow 10 // analyses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include <cassert> 15 #include <cstdint> 16 #include <iterator> 17 #include <queue> 18 #include <vector> 19 20 #include "clang/Analysis/FlowSensitive/Solver.h" 21 #include "clang/Analysis/FlowSensitive/Value.h" 22 #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/STLExtras.h" 26 27 namespace clang { 28 namespace dataflow { 29 30 // `WatchedLiteralsSolver` is an implementation of Algorithm D from Knuth's 31 // The Art of Computer Programming Volume 4: Satisfiability, Fascicle 6. It is 32 // based on the backtracking DPLL algorithm [1], keeps references to a single 33 // "watched" literal per clause, and uses a set of "active" variables to perform 34 // unit propagation. 35 // 36 // The solver expects that its input is a boolean formula in conjunctive normal 37 // form that consists of clauses of at least one literal. A literal is either a 38 // boolean variable or its negation. Below we define types, data structures, and 39 // utilities that are used to represent boolean formulas in conjunctive normal 40 // form. 41 // 42 // [1] https://en.wikipedia.org/wiki/DPLL_algorithm 43 44 /// Boolean variables are represented as positive integers. 45 using Variable = uint32_t; 46 47 /// A null boolean variable is used as a placeholder in various data structures 48 /// and algorithms. 49 static constexpr Variable NullVar = 0; 50 51 /// Literals are represented as positive integers. Specifically, for a boolean 52 /// variable `V` that is represented as the positive integer `I`, the positive 53 /// literal `V` is represented as the integer `2*I` and the negative literal 54 /// `!V` is represented as the integer `2*I+1`. 55 using Literal = uint32_t; 56 57 /// A null literal is used as a placeholder in various data structures and 58 /// algorithms. 59 static constexpr Literal NullLit = 0; 60 61 /// Returns the positive literal `V`. 62 static constexpr Literal posLit(Variable V) { return 2 * V; } 63 64 /// Returns the negative literal `!V`. 65 static constexpr Literal negLit(Variable V) { return 2 * V + 1; } 66 67 /// Returns the negated literal `!L`. 68 static constexpr Literal notLit(Literal L) { return L ^ 1; } 69 70 /// Returns the variable of `L`. 71 static constexpr Variable var(Literal L) { return L >> 1; } 72 73 /// Clause identifiers are represented as positive integers. 74 using ClauseID = uint32_t; 75 76 /// A null clause identifier is used as a placeholder in various data structures 77 /// and algorithms. 78 static constexpr ClauseID NullClause = 0; 79 80 /// A boolean formula in conjunctive normal form. 81 struct BooleanFormula { 82 /// `LargestVar` is equal to the largest positive integer that represents a 83 /// variable in the formula. 84 const Variable LargestVar; 85 86 /// Literals of all clauses in the formula. 87 /// 88 /// The element at index 0 stands for the literal in the null clause. It is 89 /// set to 0 and isn't used. Literals of clauses in the formula start from the 90 /// element at index 1. 91 /// 92 /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of 93 /// `Clauses` will be `[0, L1, L2, L2, L3, L4]`. 94 std::vector<Literal> Clauses; 95 96 /// Start indices of clauses of the formula in `Clauses`. 97 /// 98 /// The element at index 0 stands for the start index of the null clause. It 99 /// is set to 0 and isn't used. Start indices of clauses in the formula start 100 /// from the element at index 1. 101 /// 102 /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of 103 /// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first 104 /// clause always start at index 1. The start index for the literals of the 105 /// second clause depends on the size of the first clause and so on. 106 std::vector<size_t> ClauseStarts; 107 108 /// Maps literals (indices of the vector) to clause identifiers (elements of 109 /// the vector) that watch the respective literals. 110 /// 111 /// For a given clause, its watched literal is always its first literal in 112 /// `Clauses`. This invariant is maintained when watched literals change. 113 std::vector<ClauseID> WatchedHead; 114 115 /// Maps clause identifiers (elements of the vector) to identifiers of other 116 /// clauses that watch the same literals, forming a set of linked lists. 117 /// 118 /// The element at index 0 stands for the identifier of the clause that 119 /// follows the null clause. It is set to 0 and isn't used. Identifiers of 120 /// clauses in the formula start from the element at index 1. 121 std::vector<ClauseID> NextWatched; 122 123 /// Stores the variable identifier and value location for atomic booleans in 124 /// the formula. 125 llvm::DenseMap<Variable, AtomicBoolValue *> Atomics; 126 127 explicit BooleanFormula(Variable LargestVar, 128 llvm::DenseMap<Variable, AtomicBoolValue *> Atomics) 129 : LargestVar(LargestVar), Atomics(std::move(Atomics)) { 130 Clauses.push_back(0); 131 ClauseStarts.push_back(0); 132 NextWatched.push_back(0); 133 const size_t NumLiterals = 2 * LargestVar + 1; 134 WatchedHead.resize(NumLiterals + 1, 0); 135 } 136 137 /// Adds the `L1 v L2 v L3` clause to the formula. If `L2` or `L3` are 138 /// `NullLit` they are respectively omitted from the clause. 139 /// 140 /// Requirements: 141 /// 142 /// `L1` must not be `NullLit`. 143 /// 144 /// All literals in the input that are not `NullLit` must be distinct. 145 void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) { 146 // The literals are guaranteed to be distinct from properties of BoolValue 147 // and the construction in `buildBooleanFormula`. 148 assert(L1 != NullLit && L1 != L2 && L1 != L3 && 149 (L2 != L3 || L2 == NullLit)); 150 151 const ClauseID C = ClauseStarts.size(); 152 const size_t S = Clauses.size(); 153 ClauseStarts.push_back(S); 154 155 Clauses.push_back(L1); 156 if (L2 != NullLit) 157 Clauses.push_back(L2); 158 if (L3 != NullLit) 159 Clauses.push_back(L3); 160 161 // Designate the first literal as the "watched" literal of the clause. 162 NextWatched.push_back(WatchedHead[L1]); 163 WatchedHead[L1] = C; 164 } 165 166 /// Returns the number of literals in clause `C`. 167 size_t clauseSize(ClauseID C) const { 168 return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C] 169 : ClauseStarts[C + 1] - ClauseStarts[C]; 170 } 171 172 /// Returns the literals of clause `C`. 173 llvm::ArrayRef<Literal> clauseLiterals(ClauseID C) const { 174 return llvm::ArrayRef<Literal>(&Clauses[ClauseStarts[C]], clauseSize(C)); 175 } 176 }; 177 178 /// Converts the conjunction of `Vals` into a formula in conjunctive normal 179 /// form where each clause has at least one and at most three literals. 180 BooleanFormula buildBooleanFormula(const llvm::DenseSet<BoolValue *> &Vals) { 181 // The general strategy of the algorithm implemented below is to map each 182 // of the sub-values in `Vals` to a unique variable and use these variables in 183 // the resulting CNF expression to avoid exponential blow up. The number of 184 // literals in the resulting formula is guaranteed to be linear in the number 185 // of sub-values in `Vals`. 186 187 // Map each sub-value in `Vals` to a unique variable. 188 llvm::DenseMap<BoolValue *, Variable> SubValsToVar; 189 // Store variable identifiers and value location of atomic booleans. 190 llvm::DenseMap<Variable, AtomicBoolValue *> Atomics; 191 Variable NextVar = 1; 192 { 193 std::queue<BoolValue *> UnprocessedSubVals; 194 for (BoolValue *Val : Vals) 195 UnprocessedSubVals.push(Val); 196 while (!UnprocessedSubVals.empty()) { 197 Variable Var = NextVar; 198 BoolValue *Val = UnprocessedSubVals.front(); 199 UnprocessedSubVals.pop(); 200 201 if (!SubValsToVar.try_emplace(Val, Var).second) 202 continue; 203 ++NextVar; 204 205 // Visit the sub-values of `Val`. 206 switch (Val->getKind()) { 207 case Value::Kind::Conjunction: { 208 auto *C = cast<ConjunctionValue>(Val); 209 UnprocessedSubVals.push(&C->getLeftSubValue()); 210 UnprocessedSubVals.push(&C->getRightSubValue()); 211 break; 212 } 213 case Value::Kind::Disjunction: { 214 auto *D = cast<DisjunctionValue>(Val); 215 UnprocessedSubVals.push(&D->getLeftSubValue()); 216 UnprocessedSubVals.push(&D->getRightSubValue()); 217 break; 218 } 219 case Value::Kind::Negation: { 220 auto *N = cast<NegationValue>(Val); 221 UnprocessedSubVals.push(&N->getSubVal()); 222 break; 223 } 224 case Value::Kind::Implication: { 225 auto *I = cast<ImplicationValue>(Val); 226 UnprocessedSubVals.push(&I->getLeftSubValue()); 227 UnprocessedSubVals.push(&I->getRightSubValue()); 228 break; 229 } 230 case Value::Kind::Biconditional: { 231 auto *B = cast<BiconditionalValue>(Val); 232 UnprocessedSubVals.push(&B->getLeftSubValue()); 233 UnprocessedSubVals.push(&B->getRightSubValue()); 234 break; 235 } 236 case Value::Kind::AtomicBool: { 237 Atomics[Var] = cast<AtomicBoolValue>(Val); 238 break; 239 } 240 default: 241 llvm_unreachable("buildBooleanFormula: unhandled value kind"); 242 } 243 } 244 } 245 246 auto GetVar = [&SubValsToVar](const BoolValue *Val) { 247 auto ValIt = SubValsToVar.find(Val); 248 assert(ValIt != SubValsToVar.end()); 249 return ValIt->second; 250 }; 251 252 BooleanFormula Formula(NextVar - 1, std::move(Atomics)); 253 std::vector<bool> ProcessedSubVals(NextVar, false); 254 255 // Add a conjunct for each variable that represents a top-level conjunction 256 // value in `Vals`. 257 for (BoolValue *Val : Vals) 258 Formula.addClause(posLit(GetVar(Val))); 259 260 // Add conjuncts that represent the mapping between newly-created variables 261 // and their corresponding sub-values. 262 std::queue<BoolValue *> UnprocessedSubVals; 263 for (BoolValue *Val : Vals) 264 UnprocessedSubVals.push(Val); 265 while (!UnprocessedSubVals.empty()) { 266 const BoolValue *Val = UnprocessedSubVals.front(); 267 UnprocessedSubVals.pop(); 268 const Variable Var = GetVar(Val); 269 270 if (ProcessedSubVals[Var]) 271 continue; 272 ProcessedSubVals[Var] = true; 273 274 if (auto *C = dyn_cast<ConjunctionValue>(Val)) { 275 const Variable LeftSubVar = GetVar(&C->getLeftSubValue()); 276 const Variable RightSubVar = GetVar(&C->getRightSubValue()); 277 278 if (LeftSubVar == RightSubVar) { 279 // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is 280 // already in conjunctive normal form. Below we add each of the 281 // conjuncts of the latter expression to the result. 282 Formula.addClause(negLit(Var), posLit(LeftSubVar)); 283 Formula.addClause(posLit(Var), negLit(LeftSubVar)); 284 285 // Visit a sub-value of `Val` (pick any, they are identical). 286 UnprocessedSubVals.push(&C->getLeftSubValue()); 287 } else { 288 // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)` 289 // which is already in conjunctive normal form. Below we add each of the 290 // conjuncts of the latter expression to the result. 291 Formula.addClause(negLit(Var), posLit(LeftSubVar)); 292 Formula.addClause(negLit(Var), posLit(RightSubVar)); 293 Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); 294 295 // Visit the sub-values of `Val`. 296 UnprocessedSubVals.push(&C->getLeftSubValue()); 297 UnprocessedSubVals.push(&C->getRightSubValue()); 298 } 299 } else if (auto *D = dyn_cast<DisjunctionValue>(Val)) { 300 const Variable LeftSubVar = GetVar(&D->getLeftSubValue()); 301 const Variable RightSubVar = GetVar(&D->getRightSubValue()); 302 303 if (LeftSubVar == RightSubVar) { 304 // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is 305 // already in conjunctive normal form. Below we add each of the 306 // conjuncts of the latter expression to the result. 307 Formula.addClause(negLit(Var), posLit(LeftSubVar)); 308 Formula.addClause(posLit(Var), negLit(LeftSubVar)); 309 310 // Visit a sub-value of `Val` (pick any, they are identical). 311 UnprocessedSubVals.push(&D->getLeftSubValue()); 312 } else { 313 // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)` 314 // which is already in conjunctive normal form. Below we add each of the 315 // conjuncts of the latter expression to the result. 316 Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); 317 Formula.addClause(posLit(Var), negLit(LeftSubVar)); 318 Formula.addClause(posLit(Var), negLit(RightSubVar)); 319 320 // Visit the sub-values of `Val`. 321 UnprocessedSubVals.push(&D->getLeftSubValue()); 322 UnprocessedSubVals.push(&D->getRightSubValue()); 323 } 324 } else if (auto *N = dyn_cast<NegationValue>(Val)) { 325 const Variable SubVar = GetVar(&N->getSubVal()); 326 327 // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in 328 // conjunctive normal form. Below we add each of the conjuncts of the 329 // latter expression to the result. 330 Formula.addClause(negLit(Var), negLit(SubVar)); 331 Formula.addClause(posLit(Var), posLit(SubVar)); 332 333 // Visit the sub-values of `Val`. 334 UnprocessedSubVals.push(&N->getSubVal()); 335 } else if (auto *I = dyn_cast<ImplicationValue>(Val)) { 336 const Variable LeftSubVar = GetVar(&I->getLeftSubValue()); 337 const Variable RightSubVar = GetVar(&I->getRightSubValue()); 338 339 // `X <=> (A => B)` is equivalent to 340 // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in 341 // conjunctive normal form. Below we add each of the conjuncts of the 342 // latter expression to the result. 343 Formula.addClause(posLit(Var), posLit(LeftSubVar)); 344 Formula.addClause(posLit(Var), negLit(RightSubVar)); 345 Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar)); 346 347 // Visit the sub-values of `Val`. 348 UnprocessedSubVals.push(&I->getLeftSubValue()); 349 UnprocessedSubVals.push(&I->getRightSubValue()); 350 } else if (auto *B = dyn_cast<BiconditionalValue>(Val)) { 351 const Variable LeftSubVar = GetVar(&B->getLeftSubValue()); 352 const Variable RightSubVar = GetVar(&B->getRightSubValue()); 353 354 if (LeftSubVar == RightSubVar) { 355 // `X <=> (A <=> A)` is equvalent to `X` which is already in 356 // conjunctive normal form. Below we add each of the conjuncts of the 357 // latter expression to the result. 358 Formula.addClause(posLit(Var)); 359 360 // No need to visit the sub-values of `Val`. 361 } else { 362 // `X <=> (A <=> B)` is equivalent to 363 // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which is 364 // already in conjunctive normal form. Below we add each of the conjuncts 365 // of the latter expression to the result. 366 Formula.addClause(posLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); 367 Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); 368 Formula.addClause(negLit(Var), posLit(LeftSubVar), negLit(RightSubVar)); 369 Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar)); 370 371 // Visit the sub-values of `Val`. 372 UnprocessedSubVals.push(&B->getLeftSubValue()); 373 UnprocessedSubVals.push(&B->getRightSubValue()); 374 } 375 } 376 } 377 378 return Formula; 379 } 380 381 class WatchedLiteralsSolverImpl { 382 /// A boolean formula in conjunctive normal form that the solver will attempt 383 /// to prove satisfiable. The formula will be modified in the process. 384 BooleanFormula Formula; 385 386 /// The search for a satisfying assignment of the variables in `Formula` will 387 /// proceed in levels, starting from 1 and going up to `Formula.LargestVar` 388 /// (inclusive). The current level is stored in `Level`. At each level the 389 /// solver will assign a value to an unassigned variable. If this leads to a 390 /// consistent partial assignment, `Level` will be incremented. Otherwise, if 391 /// it results in a conflict, the solver will backtrack by decrementing 392 /// `Level` until it reaches the most recent level where a decision was made. 393 size_t Level = 0; 394 395 /// Maps levels (indices of the vector) to variables (elements of the vector) 396 /// that are assigned values at the respective levels. 397 /// 398 /// The element at index 0 isn't used. Variables start from the element at 399 /// index 1. 400 std::vector<Variable> LevelVars; 401 402 /// State of the solver at a particular level. 403 enum class State : uint8_t { 404 /// Indicates that the solver made a decision. 405 Decision = 0, 406 407 /// Indicates that the solver made a forced move. 408 Forced = 1, 409 }; 410 411 /// State of the solver at a particular level. It keeps track of previous 412 /// decisions that the solver can refer to when backtracking. 413 /// 414 /// The element at index 0 isn't used. States start from the element at index 415 /// 1. 416 std::vector<State> LevelStates; 417 418 enum class Assignment : int8_t { 419 Unassigned = -1, 420 AssignedFalse = 0, 421 AssignedTrue = 1 422 }; 423 424 /// Maps variables (indices of the vector) to their assignments (elements of 425 /// the vector). 426 /// 427 /// The element at index 0 isn't used. Variable assignments start from the 428 /// element at index 1. 429 std::vector<Assignment> VarAssignments; 430 431 /// A set of unassigned variables that appear in watched literals in 432 /// `Formula`. The vector is guaranteed to contain unique elements. 433 std::vector<Variable> ActiveVars; 434 435 public: 436 explicit WatchedLiteralsSolverImpl(const llvm::DenseSet<BoolValue *> &Vals) 437 : Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1), 438 LevelStates(Formula.LargestVar + 1) { 439 assert(!Vals.empty()); 440 441 // Initialize the state at the root level to a decision so that in 442 // `reverseForcedMoves` we don't have to check that `Level >= 0` on each 443 // iteration. 444 LevelStates[0] = State::Decision; 445 446 // Initialize all variables as unassigned. 447 VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned); 448 449 // Initialize the active variables. 450 for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) { 451 if (isWatched(posLit(Var)) || isWatched(negLit(Var))) 452 ActiveVars.push_back(Var); 453 } 454 } 455 456 Solver::Result solve() && { 457 size_t I = 0; 458 while (I < ActiveVars.size()) { 459 // Assert that the following invariants hold: 460 // 1. All active variables are unassigned. 461 // 2. All active variables form watched literals. 462 // 3. Unassigned variables that form watched literals are active. 463 // FIXME: Consider replacing these with test cases that fail if the any 464 // of the invariants is broken. That might not be easy due to the 465 // transformations performed by `buildBooleanFormula`. 466 assert(activeVarsAreUnassigned()); 467 assert(activeVarsFormWatchedLiterals()); 468 assert(unassignedVarsFormingWatchedLiteralsAreActive()); 469 470 const Variable ActiveVar = ActiveVars[I]; 471 472 // Look for unit clauses that contain the active variable. 473 const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar)); 474 const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar)); 475 if (unitPosLit && unitNegLit) { 476 // We found a conflict! 477 478 // Backtrack and rewind the `Level` until the most recent non-forced 479 // assignment. 480 reverseForcedMoves(); 481 482 // If the root level is reached, then all possible assignments lead to 483 // a conflict. 484 if (Level == 0) 485 return Solver::Result::Unsatisfiable(); 486 487 // Otherwise, take the other branch at the most recent level where a 488 // decision was made. 489 LevelStates[Level] = State::Forced; 490 const Variable Var = LevelVars[Level]; 491 VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue 492 ? Assignment::AssignedFalse 493 : Assignment::AssignedTrue; 494 495 updateWatchedLiterals(); 496 } else if (unitPosLit || unitNegLit) { 497 // We found a unit clause! The value of its unassigned variable is 498 // forced. 499 ++Level; 500 501 LevelVars[Level] = ActiveVar; 502 LevelStates[Level] = State::Forced; 503 VarAssignments[ActiveVar] = 504 unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse; 505 506 // Remove the variable that was just assigned from the set of active 507 // variables. 508 if (I + 1 < ActiveVars.size()) { 509 // Replace the variable that was just assigned with the last active 510 // variable for efficient removal. 511 ActiveVars[I] = ActiveVars.back(); 512 } else { 513 // This was the last active variable. Repeat the process from the 514 // beginning. 515 I = 0; 516 } 517 ActiveVars.pop_back(); 518 519 updateWatchedLiterals(); 520 } else if (I + 1 == ActiveVars.size()) { 521 // There are no remaining unit clauses in the formula! Make a decision 522 // for one of the active variables at the current level. 523 ++Level; 524 525 LevelVars[Level] = ActiveVar; 526 LevelStates[Level] = State::Decision; 527 VarAssignments[ActiveVar] = decideAssignment(ActiveVar); 528 529 // Remove the variable that was just assigned from the set of active 530 // variables. 531 ActiveVars.pop_back(); 532 533 updateWatchedLiterals(); 534 535 // This was the last active variable. Repeat the process from the 536 // beginning. 537 I = 0; 538 } else { 539 ++I; 540 } 541 } 542 return Solver::Result::Satisfiable(buildSolution()); 543 } 544 545 private: 546 /// Returns a satisfying truth assignment to the atomic values in the boolean 547 /// formula. 548 llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> 549 buildSolution() { 550 llvm::DenseMap<AtomicBoolValue *, Solver::Result::Assignment> Solution; 551 for (auto &Atomic : Formula.Atomics) { 552 // A variable may have a definite true/false assignment, or it may be 553 // unassigned indicating its truth value does not affect the result of 554 // the formula. Unassigned variables are assigned to true as a default. 555 Solution[Atomic.second] = 556 VarAssignments[Atomic.first] == Assignment::AssignedFalse 557 ? Solver::Result::Assignment::AssignedFalse 558 : Solver::Result::Assignment::AssignedTrue; 559 } 560 return Solution; 561 } 562 563 /// Reverses forced moves until the most recent level where a decision was 564 /// made on the assignment of a variable. 565 void reverseForcedMoves() { 566 for (; LevelStates[Level] == State::Forced; --Level) { 567 const Variable Var = LevelVars[Level]; 568 569 VarAssignments[Var] = Assignment::Unassigned; 570 571 // If the variable that we pass through is watched then we add it to the 572 // active variables. 573 if (isWatched(posLit(Var)) || isWatched(negLit(Var))) 574 ActiveVars.push_back(Var); 575 } 576 } 577 578 /// Updates watched literals that are affected by a variable assignment. 579 void updateWatchedLiterals() { 580 const Variable Var = LevelVars[Level]; 581 582 // Update the watched literals of clauses that currently watch the literal 583 // that falsifies `Var`. 584 const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue 585 ? negLit(Var) 586 : posLit(Var); 587 ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit]; 588 Formula.WatchedHead[FalseLit] = NullClause; 589 while (FalseLitWatcher != NullClause) { 590 const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher]; 591 592 // Pick the first non-false literal as the new watched literal. 593 const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher]; 594 size_t NewWatchedLitIdx = FalseLitWatcherStart + 1; 595 while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx])) 596 ++NewWatchedLitIdx; 597 const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx]; 598 const Variable NewWatchedLitVar = var(NewWatchedLit); 599 600 // Swap the old watched literal for the new one in `FalseLitWatcher` to 601 // maintain the invariant that the watched literal is at the beginning of 602 // the clause. 603 Formula.Clauses[NewWatchedLitIdx] = FalseLit; 604 Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit; 605 606 // If the new watched literal isn't watched by any other clause and its 607 // variable isn't assigned we need to add it to the active variables. 608 if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) && 609 VarAssignments[NewWatchedLitVar] == Assignment::Unassigned) 610 ActiveVars.push_back(NewWatchedLitVar); 611 612 Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit]; 613 Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher; 614 615 // Go to the next clause that watches `FalseLit`. 616 FalseLitWatcher = NextFalseLitWatcher; 617 } 618 } 619 620 /// Returns true if and only if one of the clauses that watch `Lit` is a unit 621 /// clause. 622 bool watchedByUnitClause(Literal Lit) const { 623 for (ClauseID LitWatcher = Formula.WatchedHead[Lit]; 624 LitWatcher != NullClause; 625 LitWatcher = Formula.NextWatched[LitWatcher]) { 626 llvm::ArrayRef<Literal> Clause = Formula.clauseLiterals(LitWatcher); 627 628 // Assert the invariant that the watched literal is always the first one 629 // in the clause. 630 // FIXME: Consider replacing this with a test case that fails if the 631 // invariant is broken by `updateWatchedLiterals`. That might not be easy 632 // due to the transformations performed by `buildBooleanFormula`. 633 assert(Clause.front() == Lit); 634 635 if (isUnit(Clause)) 636 return true; 637 } 638 return false; 639 } 640 641 /// Returns true if and only if `Clause` is a unit clause. 642 bool isUnit(llvm::ArrayRef<Literal> Clause) const { 643 return llvm::all_of(Clause.drop_front(), 644 [this](Literal L) { return isCurrentlyFalse(L); }); 645 } 646 647 /// Returns true if and only if `Lit` evaluates to `false` in the current 648 /// partial assignment. 649 bool isCurrentlyFalse(Literal Lit) const { 650 return static_cast<int8_t>(VarAssignments[var(Lit)]) == 651 static_cast<int8_t>(Lit & 1); 652 } 653 654 /// Returns true if and only if `Lit` is watched by a clause in `Formula`. 655 bool isWatched(Literal Lit) const { 656 return Formula.WatchedHead[Lit] != NullClause; 657 } 658 659 /// Returns an assignment for an unassigned variable. 660 Assignment decideAssignment(Variable Var) const { 661 return !isWatched(posLit(Var)) || isWatched(negLit(Var)) 662 ? Assignment::AssignedFalse 663 : Assignment::AssignedTrue; 664 } 665 666 /// Returns a set of all watched literals. 667 llvm::DenseSet<Literal> watchedLiterals() const { 668 llvm::DenseSet<Literal> WatchedLiterals; 669 for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) { 670 if (Formula.WatchedHead[Lit] == NullClause) 671 continue; 672 WatchedLiterals.insert(Lit); 673 } 674 return WatchedLiterals; 675 } 676 677 /// Returns true if and only if all active variables are unassigned. 678 bool activeVarsAreUnassigned() const { 679 return llvm::all_of(ActiveVars, [this](Variable Var) { 680 return VarAssignments[Var] == Assignment::Unassigned; 681 }); 682 } 683 684 /// Returns true if and only if all active variables form watched literals. 685 bool activeVarsFormWatchedLiterals() const { 686 const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals(); 687 return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) { 688 return WatchedLiterals.contains(posLit(Var)) || 689 WatchedLiterals.contains(negLit(Var)); 690 }); 691 } 692 693 /// Returns true if and only if all unassigned variables that are forming 694 /// watched literals are active. 695 bool unassignedVarsFormingWatchedLiteralsAreActive() const { 696 const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(), 697 ActiveVars.end()); 698 for (Literal Lit : watchedLiterals()) { 699 const Variable Var = var(Lit); 700 if (VarAssignments[Var] != Assignment::Unassigned) 701 continue; 702 if (ActiveVarsSet.contains(Var)) 703 continue; 704 return false; 705 } 706 return true; 707 } 708 }; 709 710 Solver::Result WatchedLiteralsSolver::solve(llvm::DenseSet<BoolValue *> Vals) { 711 return Vals.empty() ? Solver::Result::Satisfiable({{}}) 712 : WatchedLiteralsSolverImpl(Vals).solve(); 713 } 714 715 } // namespace dataflow 716 } // namespace clang 717