xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp (revision a4e5e0106ac7145f56eb39a691e302cabb4635be)
1 //===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a DataflowAnalysisContext class that owns objects that
10 //  encompass the state of a program and stores context that is used during
11 //  dataflow analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Analysis/FlowSensitive/DebugSupport.h"
18 #include "clang/Analysis/FlowSensitive/Formula.h"
19 #include "clang/Analysis/FlowSensitive/Logger.h"
20 #include "clang/Analysis/FlowSensitive/Value.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/FileSystem.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <cassert>
29 #include <memory>
30 #include <string>
31 #include <utility>
32 #include <vector>
33 
34 static llvm::cl::opt<std::string> DataflowLog(
35     "dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional,
36     llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual "
37                    "log to stderr. With an arg, writes HTML logs under the "
38                    "specified directory (one per analyzed function)."));
39 
40 namespace clang {
41 namespace dataflow {
42 
43 FieldSet DataflowAnalysisContext::getModeledFields(QualType Type) {
44   // During context-sensitive analysis, a struct may be allocated in one
45   // function, but its field accessed in a function lower in the stack than
46   // the allocation. Since we only collect fields used in the function where
47   // the allocation occurs, we can't apply that filter when performing
48   // context-sensitive analysis. But, this only applies to storage locations,
49   // since field access it not allowed to fail. In contrast, field *values*
50   // don't need this allowance, since the API allows for uninitialized fields.
51   if (Opts.ContextSensitiveOpts)
52     return getObjectFields(Type);
53 
54   return llvm::set_intersection(getObjectFields(Type), ModeledFields);
55 }
56 
57 void DataflowAnalysisContext::addModeledFields(const FieldSet &Fields) {
58   ModeledFields.set_union(Fields);
59 }
60 
61 StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
62   if (!Type.isNull() && Type->isRecordType()) {
63     llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
64     for (const FieldDecl *Field : getModeledFields(Type))
65       if (Field->getType()->isReferenceType())
66         FieldLocs.insert({Field, nullptr});
67       else
68         FieldLocs.insert({Field, &createStorageLocation(
69                                      Field->getType().getNonReferenceType())});
70     return arena().create<AggregateStorageLocation>(Type, std::move(FieldLocs));
71   }
72   return arena().create<ScalarStorageLocation>(Type);
73 }
74 
75 StorageLocation &
76 DataflowAnalysisContext::getStableStorageLocation(const VarDecl &D) {
77   if (auto *Loc = getStorageLocation(D))
78     return *Loc;
79   auto &Loc = createStorageLocation(D.getType().getNonReferenceType());
80   setStorageLocation(D, Loc);
81   return Loc;
82 }
83 
84 StorageLocation &
85 DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
86   if (auto *Loc = getStorageLocation(E))
87     return *Loc;
88   auto &Loc = createStorageLocation(E.getType());
89   setStorageLocation(E, Loc);
90   return Loc;
91 }
92 
93 PointerValue &
94 DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
95   auto CanonicalPointeeType =
96       PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
97   auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
98   if (Res.second) {
99     auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
100     Res.first->second = &arena().create<PointerValue>(PointeeLoc);
101   }
102   return *Res.first->second;
103 }
104 
105 void DataflowAnalysisContext::addFlowConditionConstraint(
106     Atom Token, const Formula &Constraint) {
107   auto Res = FlowConditionConstraints.try_emplace(Token, &Constraint);
108   if (!Res.second) {
109     Res.first->second =
110         &arena().makeAnd(*Res.first->second, Constraint);
111   }
112 }
113 
114 Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) {
115   Atom ForkToken = arena().makeFlowConditionToken();
116   FlowConditionDeps[ForkToken].insert(Token);
117   addFlowConditionConstraint(ForkToken, arena().makeAtomRef(Token));
118   return ForkToken;
119 }
120 
121 Atom
122 DataflowAnalysisContext::joinFlowConditions(Atom FirstToken,
123                                             Atom SecondToken) {
124   Atom Token = arena().makeFlowConditionToken();
125   FlowConditionDeps[Token].insert(FirstToken);
126   FlowConditionDeps[Token].insert(SecondToken);
127   addFlowConditionConstraint(Token,
128                              arena().makeOr(arena().makeAtomRef(FirstToken),
129                                             arena().makeAtomRef(SecondToken)));
130   return Token;
131 }
132 
133 Solver::Result DataflowAnalysisContext::querySolver(
134     llvm::SetVector<const Formula *> Constraints) {
135   Constraints.insert(&arena().makeLiteral(true));
136   Constraints.insert(&arena().makeNot(arena().makeLiteral(false)));
137   return S->solve(Constraints.getArrayRef());
138 }
139 
140 bool DataflowAnalysisContext::flowConditionImplies(Atom Token,
141                                                    const Formula &Val) {
142   // Returns true if and only if truth assignment of the flow condition implies
143   // that `Val` is also true. We prove whether or not this property holds by
144   // reducing the problem to satisfiability checking. In other words, we attempt
145   // to show that assuming `Val` is false makes the constraints induced by the
146   // flow condition unsatisfiable.
147   llvm::SetVector<const Formula *> Constraints;
148   Constraints.insert(&arena().makeAtomRef(Token));
149   Constraints.insert(&arena().makeNot(Val));
150   llvm::DenseSet<Atom> VisitedTokens;
151   addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
152   return isUnsatisfiable(std::move(Constraints));
153 }
154 
155 bool DataflowAnalysisContext::flowConditionIsTautology(Atom Token) {
156   // Returns true if and only if we cannot prove that the flow condition can
157   // ever be false.
158   llvm::SetVector<const Formula *> Constraints;
159   Constraints.insert(&arena().makeNot(arena().makeAtomRef(Token)));
160   llvm::DenseSet<Atom> VisitedTokens;
161   addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
162   return isUnsatisfiable(std::move(Constraints));
163 }
164 
165 bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1,
166                                                  const Formula &Val2) {
167   llvm::SetVector<const Formula *> Constraints;
168   Constraints.insert(&arena().makeNot(arena().makeEquals(Val1, Val2)));
169   return isUnsatisfiable(std::move(Constraints));
170 }
171 
172 void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
173     Atom Token, llvm::SetVector<const Formula *> &Constraints,
174     llvm::DenseSet<Atom> &VisitedTokens) {
175   auto Res = VisitedTokens.insert(Token);
176   if (!Res.second)
177     return;
178 
179   auto ConstraintsIt = FlowConditionConstraints.find(Token);
180   if (ConstraintsIt == FlowConditionConstraints.end()) {
181     Constraints.insert(&arena().makeAtomRef(Token));
182   } else {
183     // Bind flow condition token via `iff` to its set of constraints:
184     // FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
185     Constraints.insert(&arena().makeEquals(arena().makeAtomRef(Token),
186                                            *ConstraintsIt->second));
187   }
188 
189   auto DepsIt = FlowConditionDeps.find(Token);
190   if (DepsIt != FlowConditionDeps.end()) {
191     for (Atom DepToken : DepsIt->second) {
192       addTransitiveFlowConditionConstraints(DepToken, Constraints,
193                                             VisitedTokens);
194     }
195   }
196 }
197 
198 void DataflowAnalysisContext::dumpFlowCondition(Atom Token,
199                                                 llvm::raw_ostream &OS) {
200   llvm::SetVector<const Formula *> Constraints;
201   Constraints.insert(&arena().makeAtomRef(Token));
202   llvm::DenseSet<Atom> VisitedTokens;
203   addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
204 
205   // TODO: have formulas know about true/false directly instead
206   Atom True = arena().makeLiteral(true).getAtom();
207   Atom False = arena().makeLiteral(false).getAtom();
208   Formula::AtomNames Names = {{False, "false"}, {True, "true"}};
209 
210   for (const auto *Constraint : Constraints) {
211     Constraint->print(OS, &Names);
212     OS << "\n";
213   }
214 }
215 
216 const ControlFlowContext *
217 DataflowAnalysisContext::getControlFlowContext(const FunctionDecl *F) {
218   // Canonicalize the key:
219   F = F->getDefinition();
220   if (F == nullptr)
221     return nullptr;
222   auto It = FunctionContexts.find(F);
223   if (It != FunctionContexts.end())
224     return &It->second;
225 
226   if (F->hasBody()) {
227     auto CFCtx = ControlFlowContext::build(*F);
228     // FIXME: Handle errors.
229     assert(CFCtx);
230     auto Result = FunctionContexts.insert({F, std::move(*CFCtx)});
231     return &Result.first->second;
232   }
233 
234   return nullptr;
235 }
236 
237 static std::unique_ptr<Logger> makeLoggerFromCommandLine() {
238   if (DataflowLog.empty())
239     return Logger::textual(llvm::errs());
240 
241   llvm::StringRef Dir = DataflowLog;
242   if (auto EC = llvm::sys::fs::create_directories(Dir))
243     llvm::errs() << "Failed to create log dir: " << EC.message() << "\n";
244   // All analysis runs within a process will log to the same directory.
245   // Share a counter so they don't all overwrite each other's 0.html.
246   // (Don't share a logger, it's not threadsafe).
247   static std::atomic<unsigned> Counter = {0};
248   auto StreamFactory =
249       [Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> {
250     llvm::SmallString<256> File(Dir);
251     llvm::sys::path::append(File,
252                             std::to_string(Counter.fetch_add(1)) + ".html");
253     std::error_code EC;
254     auto OS = std::make_unique<llvm::raw_fd_ostream>(File, EC);
255     if (EC) {
256       llvm::errs() << "Failed to create log " << File << ": " << EC.message()
257                    << "\n";
258       return std::make_unique<llvm::raw_null_ostream>();
259     }
260     return OS;
261   };
262   return Logger::html(std::move(StreamFactory));
263 }
264 
265 DataflowAnalysisContext::DataflowAnalysisContext(std::unique_ptr<Solver> S,
266                                                  Options Opts)
267     : S(std::move(S)), A(std::make_unique<Arena>()), Opts(Opts) {
268   assert(this->S != nullptr);
269   // If the -dataflow-log command-line flag was set, synthesize a logger.
270   // This is ugly but provides a uniform method for ad-hoc debugging dataflow-
271   // based tools.
272   if (Opts.Log == nullptr) {
273     if (DataflowLog.getNumOccurrences() > 0) {
274       LogOwner = makeLoggerFromCommandLine();
275       this->Opts.Log = LogOwner.get();
276       // FIXME: if the flag is given a value, write an HTML log to a file.
277     } else {
278       this->Opts.Log = &Logger::null();
279     }
280   }
281 }
282 
283 DataflowAnalysisContext::~DataflowAnalysisContext() = default;
284 
285 } // namespace dataflow
286 } // namespace clang
287 
288 using namespace clang;
289 
290 const Expr &clang::dataflow::ignoreCFGOmittedNodes(const Expr &E) {
291   const Expr *Current = &E;
292   if (auto *EWC = dyn_cast<ExprWithCleanups>(Current)) {
293     Current = EWC->getSubExpr();
294     assert(Current != nullptr);
295   }
296   Current = Current->IgnoreParens();
297   assert(Current != nullptr);
298   return *Current;
299 }
300 
301 const Stmt &clang::dataflow::ignoreCFGOmittedNodes(const Stmt &S) {
302   if (auto *E = dyn_cast<Expr>(&S))
303     return ignoreCFGOmittedNodes(*E);
304   return S;
305 }
306 
307 // FIXME: Does not precisely handle non-virtual diamond inheritance. A single
308 // field decl will be modeled for all instances of the inherited field.
309 static void getFieldsFromClassHierarchy(QualType Type,
310                                         clang::dataflow::FieldSet &Fields) {
311   if (Type->isIncompleteType() || Type->isDependentType() ||
312       !Type->isRecordType())
313     return;
314 
315   for (const FieldDecl *Field : Type->getAsRecordDecl()->fields())
316     Fields.insert(Field);
317   if (auto *CXXRecord = Type->getAsCXXRecordDecl())
318     for (const CXXBaseSpecifier &Base : CXXRecord->bases())
319       getFieldsFromClassHierarchy(Base.getType(), Fields);
320 }
321 
322 /// Gets the set of all fields in the type.
323 clang::dataflow::FieldSet clang::dataflow::getObjectFields(QualType Type) {
324   FieldSet Fields;
325   getFieldsFromClassHierarchy(Type, Fields);
326   return Fields;
327 }
328