xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/CNFFormula.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- CNFFormula.cpp -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  A representation of a boolean formula in 3-CNF.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/FlowSensitive/CNFFormula.h"
14 #include "llvm/ADT/DenseSet.h"
15 
16 #include <queue>
17 
18 namespace clang {
19 namespace dataflow {
20 
21 namespace {
22 
23 /// Applies simplifications while building up a BooleanFormula.
24 /// We keep track of unit clauses, which tell us variables that must be
25 /// true/false in any model that satisfies the overall formula.
26 /// Such variables can be dropped from subsequently-added clauses, which
27 /// may in turn yield more unit clauses or even a contradiction.
28 /// The total added complexity of this preprocessing is O(N) where we
29 /// for every clause, we do a lookup for each unit clauses.
30 /// The lookup is O(1) on average. This method won't catch all
31 /// contradictory formulas, more passes can in principle catch
32 /// more cases but we leave all these and the general case to the
33 /// proper SAT solver.
34 struct CNFFormulaBuilder {
35   // Formula should outlive CNFFormulaBuilder.
36   explicit CNFFormulaBuilder(CNFFormula &CNF) : Formula(CNF) {}
37 
38   /// Adds the `L1 v ... v Ln` clause to the formula. Applies
39   /// simplifications, based on single-literal clauses.
40   ///
41   /// Requirements:
42   ///
43   ///  `Li` must not be `NullLit`.
44   ///
45   ///  All literals must be distinct.
46   void addClause(ArrayRef<Literal> Literals) {
47     // We generate clauses with up to 3 literals in this file.
48     assert(!Literals.empty() && Literals.size() <= 3);
49     // Contains literals of the simplified clause.
50     llvm::SmallVector<Literal> Simplified;
51     for (auto L : Literals) {
52       assert(L != NullLit &&
53              llvm::all_of(Simplified, [L](Literal S) { return S != L; }));
54       auto X = var(L);
55       if (trueVars.contains(X)) { // X must be true
56         if (isPosLit(L))
57           return; // Omit clause `(... v X v ...)`, it is `true`.
58         else
59           continue; // Omit `!X` from `(... v !X v ...)`.
60       }
61       if (falseVars.contains(X)) { // X must be false
62         if (isNegLit(L))
63           return; // Omit clause `(... v !X v ...)`, it is `true`.
64         else
65           continue; // Omit `X` from `(... v X v ...)`.
66       }
67       Simplified.push_back(L);
68     }
69     if (Simplified.empty()) {
70       // Simplification made the clause empty, which is equivalent to `false`.
71       // We already know that this formula is unsatisfiable.
72       Formula.addClause(Simplified);
73       return;
74     }
75     if (Simplified.size() == 1) {
76       // We have new unit clause.
77       const Literal lit = Simplified.front();
78       const Variable v = var(lit);
79       if (isPosLit(lit))
80         trueVars.insert(v);
81       else
82         falseVars.insert(v);
83     }
84     Formula.addClause(Simplified);
85   }
86 
87   /// Returns true if we observed a contradiction while adding clauses.
88   /// In this case then the formula is already known to be unsatisfiable.
89   bool isKnownContradictory() { return Formula.knownContradictory(); }
90 
91 private:
92   CNFFormula &Formula;
93   llvm::DenseSet<Variable> trueVars;
94   llvm::DenseSet<Variable> falseVars;
95 };
96 
97 } // namespace
98 
99 CNFFormula::CNFFormula(Variable LargestVar)
100     : LargestVar(LargestVar), KnownContradictory(false) {
101   Clauses.push_back(0);
102   ClauseStarts.push_back(0);
103 }
104 
105 void CNFFormula::addClause(ArrayRef<Literal> lits) {
106   assert(llvm::all_of(lits, [](Literal L) { return L != NullLit; }));
107 
108   if (lits.empty())
109     KnownContradictory = true;
110 
111   const size_t S = Clauses.size();
112   ClauseStarts.push_back(S);
113   Clauses.insert(Clauses.end(), lits.begin(), lits.end());
114 }
115 
116 CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Formulas,
117                     llvm::DenseMap<Variable, Atom> &Atomics) {
118   // The general strategy of the algorithm implemented below is to map each
119   // of the sub-values in `Vals` to a unique variable and use these variables in
120   // the resulting CNF expression to avoid exponential blow up. The number of
121   // literals in the resulting formula is guaranteed to be linear in the number
122   // of sub-formulas in `Vals`.
123 
124   // Map each sub-formula in `Vals` to a unique variable.
125   llvm::DenseMap<const Formula *, Variable> FormulaToVar;
126   // Store variable identifiers and Atom of atomic booleans.
127   Variable NextVar = 1;
128   {
129     std::queue<const Formula *> UnprocessedFormulas;
130     for (const Formula *F : Formulas)
131       UnprocessedFormulas.push(F);
132     while (!UnprocessedFormulas.empty()) {
133       Variable Var = NextVar;
134       const Formula *F = UnprocessedFormulas.front();
135       UnprocessedFormulas.pop();
136 
137       if (!FormulaToVar.try_emplace(F, Var).second)
138         continue;
139       ++NextVar;
140 
141       for (const Formula *Op : F->operands())
142         UnprocessedFormulas.push(Op);
143       if (F->kind() == Formula::AtomRef)
144         Atomics[Var] = F->getAtom();
145     }
146   }
147 
148   auto GetVar = [&FormulaToVar](const Formula *F) {
149     auto ValIt = FormulaToVar.find(F);
150     assert(ValIt != FormulaToVar.end());
151     return ValIt->second;
152   };
153 
154   CNFFormula CNF(NextVar - 1);
155   std::vector<bool> ProcessedSubVals(NextVar, false);
156   CNFFormulaBuilder builder(CNF);
157 
158   // Add a conjunct for each variable that represents a top-level conjunction
159   // value in `Vals`.
160   for (const Formula *F : Formulas)
161     builder.addClause(posLit(GetVar(F)));
162 
163   // Add conjuncts that represent the mapping between newly-created variables
164   // and their corresponding sub-formulas.
165   std::queue<const Formula *> UnprocessedFormulas;
166   for (const Formula *F : Formulas)
167     UnprocessedFormulas.push(F);
168   while (!UnprocessedFormulas.empty()) {
169     const Formula *F = UnprocessedFormulas.front();
170     UnprocessedFormulas.pop();
171     const Variable Var = GetVar(F);
172 
173     if (ProcessedSubVals[Var])
174       continue;
175     ProcessedSubVals[Var] = true;
176 
177     switch (F->kind()) {
178     case Formula::AtomRef:
179       break;
180     case Formula::Literal:
181       CNF.addClause(F->literal() ? posLit(Var) : negLit(Var));
182       break;
183     case Formula::And: {
184       const Variable LHS = GetVar(F->operands()[0]);
185       const Variable RHS = GetVar(F->operands()[1]);
186 
187       if (LHS == RHS) {
188         // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
189         // already in conjunctive normal form. Below we add each of the
190         // conjuncts of the latter expression to the result.
191         builder.addClause({negLit(Var), posLit(LHS)});
192         builder.addClause({posLit(Var), negLit(LHS)});
193       } else {
194         // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v
195         // !B)` which is already in conjunctive normal form. Below we add each
196         // of the conjuncts of the latter expression to the result.
197         builder.addClause({negLit(Var), posLit(LHS)});
198         builder.addClause({negLit(Var), posLit(RHS)});
199         builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
200       }
201       break;
202     }
203     case Formula::Or: {
204       const Variable LHS = GetVar(F->operands()[0]);
205       const Variable RHS = GetVar(F->operands()[1]);
206 
207       if (LHS == RHS) {
208         // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
209         // already in conjunctive normal form. Below we add each of the
210         // conjuncts of the latter expression to the result.
211         builder.addClause({negLit(Var), posLit(LHS)});
212         builder.addClause({posLit(Var), negLit(LHS)});
213       } else {
214         // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v
215         // !B)` which is already in conjunctive normal form. Below we add each
216         // of the conjuncts of the latter expression to the result.
217         builder.addClause({negLit(Var), posLit(LHS), posLit(RHS)});
218         builder.addClause({posLit(Var), negLit(LHS)});
219         builder.addClause({posLit(Var), negLit(RHS)});
220       }
221       break;
222     }
223     case Formula::Not: {
224       const Variable Operand = GetVar(F->operands()[0]);
225 
226       // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is
227       // already in conjunctive normal form. Below we add each of the
228       // conjuncts of the latter expression to the result.
229       builder.addClause({negLit(Var), negLit(Operand)});
230       builder.addClause({posLit(Var), posLit(Operand)});
231       break;
232     }
233     case Formula::Implies: {
234       const Variable LHS = GetVar(F->operands()[0]);
235       const Variable RHS = GetVar(F->operands()[1]);
236 
237       // `X <=> (A => B)` is equivalent to
238       // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
239       // conjunctive normal form. Below we add each of the conjuncts of
240       // the latter expression to the result.
241       builder.addClause({posLit(Var), posLit(LHS)});
242       builder.addClause({posLit(Var), negLit(RHS)});
243       builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
244       break;
245     }
246     case Formula::Equal: {
247       const Variable LHS = GetVar(F->operands()[0]);
248       const Variable RHS = GetVar(F->operands()[1]);
249 
250       if (LHS == RHS) {
251         // `X <=> (A <=> A)` is equivalent to `X` which is already in
252         // conjunctive normal form. Below we add each of the conjuncts of the
253         // latter expression to the result.
254         builder.addClause(posLit(Var));
255 
256         // No need to visit the sub-values of `Val`.
257         continue;
258       }
259       // `X <=> (A <=> B)` is equivalent to
260       // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which
261       // is already in conjunctive normal form. Below we add each of the
262       // conjuncts of the latter expression to the result.
263       builder.addClause({posLit(Var), posLit(LHS), posLit(RHS)});
264       builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
265       builder.addClause({negLit(Var), posLit(LHS), negLit(RHS)});
266       builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
267       break;
268     }
269     }
270     if (builder.isKnownContradictory()) {
271       return CNF;
272     }
273     for (const Formula *Child : F->operands())
274       UnprocessedFormulas.push(Child);
275   }
276 
277   // Unit clauses that were added later were not
278   // considered for the simplification of earlier clauses. Do a final
279   // pass to find more opportunities for simplification.
280   CNFFormula FinalCNF(NextVar - 1);
281   CNFFormulaBuilder FinalBuilder(FinalCNF);
282 
283   // Collect unit clauses.
284   for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
285     if (CNF.clauseSize(C) == 1) {
286       FinalBuilder.addClause(CNF.clauseLiterals(C)[0]);
287     }
288   }
289 
290   // Add all clauses that were added previously, preserving the order.
291   for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
292     FinalBuilder.addClause(CNF.clauseLiterals(C));
293     if (FinalBuilder.isKnownContradictory()) {
294       break;
295     }
296   }
297   // It is possible there were new unit clauses again, but
298   // we stop here and leave the rest to the solver algorithm.
299   return FinalCNF;
300 }
301 
302 } // namespace dataflow
303 } // namespace clang
304