1*0fca6ea1SDimitry Andric //===- CNFFormula.cpp -------------------------------------------*- C++ -*-===//
2*0fca6ea1SDimitry Andric //
3*0fca6ea1SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0fca6ea1SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0fca6ea1SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0fca6ea1SDimitry Andric //
7*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
8*0fca6ea1SDimitry Andric //
9*0fca6ea1SDimitry Andric // A representation of a boolean formula in 3-CNF.
10*0fca6ea1SDimitry Andric //
11*0fca6ea1SDimitry Andric //===----------------------------------------------------------------------===//
12*0fca6ea1SDimitry Andric
13*0fca6ea1SDimitry Andric #include "clang/Analysis/FlowSensitive/CNFFormula.h"
14*0fca6ea1SDimitry Andric #include "llvm/ADT/DenseSet.h"
15*0fca6ea1SDimitry Andric
16*0fca6ea1SDimitry Andric #include <queue>
17*0fca6ea1SDimitry Andric
18*0fca6ea1SDimitry Andric namespace clang {
19*0fca6ea1SDimitry Andric namespace dataflow {
20*0fca6ea1SDimitry Andric
21*0fca6ea1SDimitry Andric namespace {
22*0fca6ea1SDimitry Andric
23*0fca6ea1SDimitry Andric /// Applies simplifications while building up a BooleanFormula.
24*0fca6ea1SDimitry Andric /// We keep track of unit clauses, which tell us variables that must be
25*0fca6ea1SDimitry Andric /// true/false in any model that satisfies the overall formula.
26*0fca6ea1SDimitry Andric /// Such variables can be dropped from subsequently-added clauses, which
27*0fca6ea1SDimitry Andric /// may in turn yield more unit clauses or even a contradiction.
28*0fca6ea1SDimitry Andric /// The total added complexity of this preprocessing is O(N) where we
29*0fca6ea1SDimitry Andric /// for every clause, we do a lookup for each unit clauses.
30*0fca6ea1SDimitry Andric /// The lookup is O(1) on average. This method won't catch all
31*0fca6ea1SDimitry Andric /// contradictory formulas, more passes can in principle catch
32*0fca6ea1SDimitry Andric /// more cases but we leave all these and the general case to the
33*0fca6ea1SDimitry Andric /// proper SAT solver.
34*0fca6ea1SDimitry Andric struct CNFFormulaBuilder {
35*0fca6ea1SDimitry Andric // Formula should outlive CNFFormulaBuilder.
CNFFormulaBuilderclang::dataflow::__anon4e8d9d9b0111::CNFFormulaBuilder36*0fca6ea1SDimitry Andric explicit CNFFormulaBuilder(CNFFormula &CNF) : Formula(CNF) {}
37*0fca6ea1SDimitry Andric
38*0fca6ea1SDimitry Andric /// Adds the `L1 v ... v Ln` clause to the formula. Applies
39*0fca6ea1SDimitry Andric /// simplifications, based on single-literal clauses.
40*0fca6ea1SDimitry Andric ///
41*0fca6ea1SDimitry Andric /// Requirements:
42*0fca6ea1SDimitry Andric ///
43*0fca6ea1SDimitry Andric /// `Li` must not be `NullLit`.
44*0fca6ea1SDimitry Andric ///
45*0fca6ea1SDimitry Andric /// All literals must be distinct.
addClauseclang::dataflow::__anon4e8d9d9b0111::CNFFormulaBuilder46*0fca6ea1SDimitry Andric void addClause(ArrayRef<Literal> Literals) {
47*0fca6ea1SDimitry Andric // We generate clauses with up to 3 literals in this file.
48*0fca6ea1SDimitry Andric assert(!Literals.empty() && Literals.size() <= 3);
49*0fca6ea1SDimitry Andric // Contains literals of the simplified clause.
50*0fca6ea1SDimitry Andric llvm::SmallVector<Literal> Simplified;
51*0fca6ea1SDimitry Andric for (auto L : Literals) {
52*0fca6ea1SDimitry Andric assert(L != NullLit &&
53*0fca6ea1SDimitry Andric llvm::all_of(Simplified, [L](Literal S) { return S != L; }));
54*0fca6ea1SDimitry Andric auto X = var(L);
55*0fca6ea1SDimitry Andric if (trueVars.contains(X)) { // X must be true
56*0fca6ea1SDimitry Andric if (isPosLit(L))
57*0fca6ea1SDimitry Andric return; // Omit clause `(... v X v ...)`, it is `true`.
58*0fca6ea1SDimitry Andric else
59*0fca6ea1SDimitry Andric continue; // Omit `!X` from `(... v !X v ...)`.
60*0fca6ea1SDimitry Andric }
61*0fca6ea1SDimitry Andric if (falseVars.contains(X)) { // X must be false
62*0fca6ea1SDimitry Andric if (isNegLit(L))
63*0fca6ea1SDimitry Andric return; // Omit clause `(... v !X v ...)`, it is `true`.
64*0fca6ea1SDimitry Andric else
65*0fca6ea1SDimitry Andric continue; // Omit `X` from `(... v X v ...)`.
66*0fca6ea1SDimitry Andric }
67*0fca6ea1SDimitry Andric Simplified.push_back(L);
68*0fca6ea1SDimitry Andric }
69*0fca6ea1SDimitry Andric if (Simplified.empty()) {
70*0fca6ea1SDimitry Andric // Simplification made the clause empty, which is equivalent to `false`.
71*0fca6ea1SDimitry Andric // We already know that this formula is unsatisfiable.
72*0fca6ea1SDimitry Andric Formula.addClause(Simplified);
73*0fca6ea1SDimitry Andric return;
74*0fca6ea1SDimitry Andric }
75*0fca6ea1SDimitry Andric if (Simplified.size() == 1) {
76*0fca6ea1SDimitry Andric // We have new unit clause.
77*0fca6ea1SDimitry Andric const Literal lit = Simplified.front();
78*0fca6ea1SDimitry Andric const Variable v = var(lit);
79*0fca6ea1SDimitry Andric if (isPosLit(lit))
80*0fca6ea1SDimitry Andric trueVars.insert(v);
81*0fca6ea1SDimitry Andric else
82*0fca6ea1SDimitry Andric falseVars.insert(v);
83*0fca6ea1SDimitry Andric }
84*0fca6ea1SDimitry Andric Formula.addClause(Simplified);
85*0fca6ea1SDimitry Andric }
86*0fca6ea1SDimitry Andric
87*0fca6ea1SDimitry Andric /// Returns true if we observed a contradiction while adding clauses.
88*0fca6ea1SDimitry Andric /// In this case then the formula is already known to be unsatisfiable.
isKnownContradictoryclang::dataflow::__anon4e8d9d9b0111::CNFFormulaBuilder89*0fca6ea1SDimitry Andric bool isKnownContradictory() { return Formula.knownContradictory(); }
90*0fca6ea1SDimitry Andric
91*0fca6ea1SDimitry Andric private:
92*0fca6ea1SDimitry Andric CNFFormula &Formula;
93*0fca6ea1SDimitry Andric llvm::DenseSet<Variable> trueVars;
94*0fca6ea1SDimitry Andric llvm::DenseSet<Variable> falseVars;
95*0fca6ea1SDimitry Andric };
96*0fca6ea1SDimitry Andric
97*0fca6ea1SDimitry Andric } // namespace
98*0fca6ea1SDimitry Andric
CNFFormula(Variable LargestVar)99*0fca6ea1SDimitry Andric CNFFormula::CNFFormula(Variable LargestVar)
100*0fca6ea1SDimitry Andric : LargestVar(LargestVar), KnownContradictory(false) {
101*0fca6ea1SDimitry Andric Clauses.push_back(0);
102*0fca6ea1SDimitry Andric ClauseStarts.push_back(0);
103*0fca6ea1SDimitry Andric }
104*0fca6ea1SDimitry Andric
addClause(ArrayRef<Literal> lits)105*0fca6ea1SDimitry Andric void CNFFormula::addClause(ArrayRef<Literal> lits) {
106*0fca6ea1SDimitry Andric assert(llvm::all_of(lits, [](Literal L) { return L != NullLit; }));
107*0fca6ea1SDimitry Andric
108*0fca6ea1SDimitry Andric if (lits.empty())
109*0fca6ea1SDimitry Andric KnownContradictory = true;
110*0fca6ea1SDimitry Andric
111*0fca6ea1SDimitry Andric const size_t S = Clauses.size();
112*0fca6ea1SDimitry Andric ClauseStarts.push_back(S);
113*0fca6ea1SDimitry Andric Clauses.insert(Clauses.end(), lits.begin(), lits.end());
114*0fca6ea1SDimitry Andric }
115*0fca6ea1SDimitry Andric
buildCNF(const llvm::ArrayRef<const Formula * > & Formulas,llvm::DenseMap<Variable,Atom> & Atomics)116*0fca6ea1SDimitry Andric CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Formulas,
117*0fca6ea1SDimitry Andric llvm::DenseMap<Variable, Atom> &Atomics) {
118*0fca6ea1SDimitry Andric // The general strategy of the algorithm implemented below is to map each
119*0fca6ea1SDimitry Andric // of the sub-values in `Vals` to a unique variable and use these variables in
120*0fca6ea1SDimitry Andric // the resulting CNF expression to avoid exponential blow up. The number of
121*0fca6ea1SDimitry Andric // literals in the resulting formula is guaranteed to be linear in the number
122*0fca6ea1SDimitry Andric // of sub-formulas in `Vals`.
123*0fca6ea1SDimitry Andric
124*0fca6ea1SDimitry Andric // Map each sub-formula in `Vals` to a unique variable.
125*0fca6ea1SDimitry Andric llvm::DenseMap<const Formula *, Variable> FormulaToVar;
126*0fca6ea1SDimitry Andric // Store variable identifiers and Atom of atomic booleans.
127*0fca6ea1SDimitry Andric Variable NextVar = 1;
128*0fca6ea1SDimitry Andric {
129*0fca6ea1SDimitry Andric std::queue<const Formula *> UnprocessedFormulas;
130*0fca6ea1SDimitry Andric for (const Formula *F : Formulas)
131*0fca6ea1SDimitry Andric UnprocessedFormulas.push(F);
132*0fca6ea1SDimitry Andric while (!UnprocessedFormulas.empty()) {
133*0fca6ea1SDimitry Andric Variable Var = NextVar;
134*0fca6ea1SDimitry Andric const Formula *F = UnprocessedFormulas.front();
135*0fca6ea1SDimitry Andric UnprocessedFormulas.pop();
136*0fca6ea1SDimitry Andric
137*0fca6ea1SDimitry Andric if (!FormulaToVar.try_emplace(F, Var).second)
138*0fca6ea1SDimitry Andric continue;
139*0fca6ea1SDimitry Andric ++NextVar;
140*0fca6ea1SDimitry Andric
141*0fca6ea1SDimitry Andric for (const Formula *Op : F->operands())
142*0fca6ea1SDimitry Andric UnprocessedFormulas.push(Op);
143*0fca6ea1SDimitry Andric if (F->kind() == Formula::AtomRef)
144*0fca6ea1SDimitry Andric Atomics[Var] = F->getAtom();
145*0fca6ea1SDimitry Andric }
146*0fca6ea1SDimitry Andric }
147*0fca6ea1SDimitry Andric
148*0fca6ea1SDimitry Andric auto GetVar = [&FormulaToVar](const Formula *F) {
149*0fca6ea1SDimitry Andric auto ValIt = FormulaToVar.find(F);
150*0fca6ea1SDimitry Andric assert(ValIt != FormulaToVar.end());
151*0fca6ea1SDimitry Andric return ValIt->second;
152*0fca6ea1SDimitry Andric };
153*0fca6ea1SDimitry Andric
154*0fca6ea1SDimitry Andric CNFFormula CNF(NextVar - 1);
155*0fca6ea1SDimitry Andric std::vector<bool> ProcessedSubVals(NextVar, false);
156*0fca6ea1SDimitry Andric CNFFormulaBuilder builder(CNF);
157*0fca6ea1SDimitry Andric
158*0fca6ea1SDimitry Andric // Add a conjunct for each variable that represents a top-level conjunction
159*0fca6ea1SDimitry Andric // value in `Vals`.
160*0fca6ea1SDimitry Andric for (const Formula *F : Formulas)
161*0fca6ea1SDimitry Andric builder.addClause(posLit(GetVar(F)));
162*0fca6ea1SDimitry Andric
163*0fca6ea1SDimitry Andric // Add conjuncts that represent the mapping between newly-created variables
164*0fca6ea1SDimitry Andric // and their corresponding sub-formulas.
165*0fca6ea1SDimitry Andric std::queue<const Formula *> UnprocessedFormulas;
166*0fca6ea1SDimitry Andric for (const Formula *F : Formulas)
167*0fca6ea1SDimitry Andric UnprocessedFormulas.push(F);
168*0fca6ea1SDimitry Andric while (!UnprocessedFormulas.empty()) {
169*0fca6ea1SDimitry Andric const Formula *F = UnprocessedFormulas.front();
170*0fca6ea1SDimitry Andric UnprocessedFormulas.pop();
171*0fca6ea1SDimitry Andric const Variable Var = GetVar(F);
172*0fca6ea1SDimitry Andric
173*0fca6ea1SDimitry Andric if (ProcessedSubVals[Var])
174*0fca6ea1SDimitry Andric continue;
175*0fca6ea1SDimitry Andric ProcessedSubVals[Var] = true;
176*0fca6ea1SDimitry Andric
177*0fca6ea1SDimitry Andric switch (F->kind()) {
178*0fca6ea1SDimitry Andric case Formula::AtomRef:
179*0fca6ea1SDimitry Andric break;
180*0fca6ea1SDimitry Andric case Formula::Literal:
181*0fca6ea1SDimitry Andric CNF.addClause(F->literal() ? posLit(Var) : negLit(Var));
182*0fca6ea1SDimitry Andric break;
183*0fca6ea1SDimitry Andric case Formula::And: {
184*0fca6ea1SDimitry Andric const Variable LHS = GetVar(F->operands()[0]);
185*0fca6ea1SDimitry Andric const Variable RHS = GetVar(F->operands()[1]);
186*0fca6ea1SDimitry Andric
187*0fca6ea1SDimitry Andric if (LHS == RHS) {
188*0fca6ea1SDimitry Andric // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
189*0fca6ea1SDimitry Andric // already in conjunctive normal form. Below we add each of the
190*0fca6ea1SDimitry Andric // conjuncts of the latter expression to the result.
191*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), posLit(LHS)});
192*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(LHS)});
193*0fca6ea1SDimitry Andric } else {
194*0fca6ea1SDimitry Andric // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v
195*0fca6ea1SDimitry Andric // !B)` which is already in conjunctive normal form. Below we add each
196*0fca6ea1SDimitry Andric // of the conjuncts of the latter expression to the result.
197*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), posLit(LHS)});
198*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), posLit(RHS)});
199*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
200*0fca6ea1SDimitry Andric }
201*0fca6ea1SDimitry Andric break;
202*0fca6ea1SDimitry Andric }
203*0fca6ea1SDimitry Andric case Formula::Or: {
204*0fca6ea1SDimitry Andric const Variable LHS = GetVar(F->operands()[0]);
205*0fca6ea1SDimitry Andric const Variable RHS = GetVar(F->operands()[1]);
206*0fca6ea1SDimitry Andric
207*0fca6ea1SDimitry Andric if (LHS == RHS) {
208*0fca6ea1SDimitry Andric // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
209*0fca6ea1SDimitry Andric // already in conjunctive normal form. Below we add each of the
210*0fca6ea1SDimitry Andric // conjuncts of the latter expression to the result.
211*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), posLit(LHS)});
212*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(LHS)});
213*0fca6ea1SDimitry Andric } else {
214*0fca6ea1SDimitry Andric // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v
215*0fca6ea1SDimitry Andric // !B)` which is already in conjunctive normal form. Below we add each
216*0fca6ea1SDimitry Andric // of the conjuncts of the latter expression to the result.
217*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), posLit(LHS), posLit(RHS)});
218*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(LHS)});
219*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(RHS)});
220*0fca6ea1SDimitry Andric }
221*0fca6ea1SDimitry Andric break;
222*0fca6ea1SDimitry Andric }
223*0fca6ea1SDimitry Andric case Formula::Not: {
224*0fca6ea1SDimitry Andric const Variable Operand = GetVar(F->operands()[0]);
225*0fca6ea1SDimitry Andric
226*0fca6ea1SDimitry Andric // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is
227*0fca6ea1SDimitry Andric // already in conjunctive normal form. Below we add each of the
228*0fca6ea1SDimitry Andric // conjuncts of the latter expression to the result.
229*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), negLit(Operand)});
230*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), posLit(Operand)});
231*0fca6ea1SDimitry Andric break;
232*0fca6ea1SDimitry Andric }
233*0fca6ea1SDimitry Andric case Formula::Implies: {
234*0fca6ea1SDimitry Andric const Variable LHS = GetVar(F->operands()[0]);
235*0fca6ea1SDimitry Andric const Variable RHS = GetVar(F->operands()[1]);
236*0fca6ea1SDimitry Andric
237*0fca6ea1SDimitry Andric // `X <=> (A => B)` is equivalent to
238*0fca6ea1SDimitry Andric // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
239*0fca6ea1SDimitry Andric // conjunctive normal form. Below we add each of the conjuncts of
240*0fca6ea1SDimitry Andric // the latter expression to the result.
241*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), posLit(LHS)});
242*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(RHS)});
243*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
244*0fca6ea1SDimitry Andric break;
245*0fca6ea1SDimitry Andric }
246*0fca6ea1SDimitry Andric case Formula::Equal: {
247*0fca6ea1SDimitry Andric const Variable LHS = GetVar(F->operands()[0]);
248*0fca6ea1SDimitry Andric const Variable RHS = GetVar(F->operands()[1]);
249*0fca6ea1SDimitry Andric
250*0fca6ea1SDimitry Andric if (LHS == RHS) {
251*0fca6ea1SDimitry Andric // `X <=> (A <=> A)` is equivalent to `X` which is already in
252*0fca6ea1SDimitry Andric // conjunctive normal form. Below we add each of the conjuncts of the
253*0fca6ea1SDimitry Andric // latter expression to the result.
254*0fca6ea1SDimitry Andric builder.addClause(posLit(Var));
255*0fca6ea1SDimitry Andric
256*0fca6ea1SDimitry Andric // No need to visit the sub-values of `Val`.
257*0fca6ea1SDimitry Andric continue;
258*0fca6ea1SDimitry Andric }
259*0fca6ea1SDimitry Andric // `X <=> (A <=> B)` is equivalent to
260*0fca6ea1SDimitry Andric // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which
261*0fca6ea1SDimitry Andric // is already in conjunctive normal form. Below we add each of the
262*0fca6ea1SDimitry Andric // conjuncts of the latter expression to the result.
263*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), posLit(LHS), posLit(RHS)});
264*0fca6ea1SDimitry Andric builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
265*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), posLit(LHS), negLit(RHS)});
266*0fca6ea1SDimitry Andric builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
267*0fca6ea1SDimitry Andric break;
268*0fca6ea1SDimitry Andric }
269*0fca6ea1SDimitry Andric }
270*0fca6ea1SDimitry Andric if (builder.isKnownContradictory()) {
271*0fca6ea1SDimitry Andric return CNF;
272*0fca6ea1SDimitry Andric }
273*0fca6ea1SDimitry Andric for (const Formula *Child : F->operands())
274*0fca6ea1SDimitry Andric UnprocessedFormulas.push(Child);
275*0fca6ea1SDimitry Andric }
276*0fca6ea1SDimitry Andric
277*0fca6ea1SDimitry Andric // Unit clauses that were added later were not
278*0fca6ea1SDimitry Andric // considered for the simplification of earlier clauses. Do a final
279*0fca6ea1SDimitry Andric // pass to find more opportunities for simplification.
280*0fca6ea1SDimitry Andric CNFFormula FinalCNF(NextVar - 1);
281*0fca6ea1SDimitry Andric CNFFormulaBuilder FinalBuilder(FinalCNF);
282*0fca6ea1SDimitry Andric
283*0fca6ea1SDimitry Andric // Collect unit clauses.
284*0fca6ea1SDimitry Andric for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
285*0fca6ea1SDimitry Andric if (CNF.clauseSize(C) == 1) {
286*0fca6ea1SDimitry Andric FinalBuilder.addClause(CNF.clauseLiterals(C)[0]);
287*0fca6ea1SDimitry Andric }
288*0fca6ea1SDimitry Andric }
289*0fca6ea1SDimitry Andric
290*0fca6ea1SDimitry Andric // Add all clauses that were added previously, preserving the order.
291*0fca6ea1SDimitry Andric for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
292*0fca6ea1SDimitry Andric FinalBuilder.addClause(CNF.clauseLiterals(C));
293*0fca6ea1SDimitry Andric if (FinalBuilder.isKnownContradictory()) {
294*0fca6ea1SDimitry Andric break;
295*0fca6ea1SDimitry Andric }
296*0fca6ea1SDimitry Andric }
297*0fca6ea1SDimitry Andric // It is possible there were new unit clauses again, but
298*0fca6ea1SDimitry Andric // we stop here and leave the rest to the solver algorithm.
299*0fca6ea1SDimitry Andric return FinalCNF;
300*0fca6ea1SDimitry Andric }
301*0fca6ea1SDimitry Andric
302*0fca6ea1SDimitry Andric } // namespace dataflow
303*0fca6ea1SDimitry Andric } // namespace clang
304