xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/ExprMutationAnalyzer.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===---------- ExprMutationAnalyzer.cpp ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Analysis/Analyses/ExprMutationAnalyzer.h"
9 #include "clang/AST/Expr.h"
10 #include "clang/AST/OperationKinds.h"
11 #include "clang/ASTMatchers/ASTMatchFinder.h"
12 #include "clang/ASTMatchers/ASTMatchers.h"
13 #include "llvm/ADT/STLExtras.h"
14 
15 namespace clang {
16 using namespace ast_matchers;
17 
18 // Check if result of Source expression could be a Target expression.
19 // Checks:
20 //  - Implicit Casts
21 //  - Binary Operators
22 //  - ConditionalOperator
23 //  - BinaryConditionalOperator
24 static bool canExprResolveTo(const Expr *Source, const Expr *Target) {
25 
26   const auto IgnoreDerivedToBase = [](const Expr *E, auto Matcher) {
27     if (Matcher(E))
28       return true;
29     if (const auto *Cast = dyn_cast<ImplicitCastExpr>(E)) {
30       if ((Cast->getCastKind() == CK_DerivedToBase ||
31            Cast->getCastKind() == CK_UncheckedDerivedToBase) &&
32           Matcher(Cast->getSubExpr()))
33         return true;
34     }
35     return false;
36   };
37 
38   const auto EvalCommaExpr = [](const Expr *E, auto Matcher) {
39     const Expr *Result = E;
40     while (const auto *BOComma =
41                dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) {
42       if (!BOComma->isCommaOp())
43         break;
44       Result = BOComma->getRHS();
45     }
46 
47     return Result != E && Matcher(Result);
48   };
49 
50   // The 'ConditionalOperatorM' matches on `<anything> ? <expr> : <expr>`.
51   // This matching must be recursive because `<expr>` can be anything resolving
52   // to the `InnerMatcher`, for example another conditional operator.
53   // The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;`
54   // is handled, too. The implicit cast happens outside of the conditional.
55   // This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))`
56   // below.
57   const auto ConditionalOperatorM = [Target](const Expr *E) {
58     if (const auto *OP = dyn_cast<ConditionalOperator>(E)) {
59       if (const auto *TE = OP->getTrueExpr()->IgnoreParens())
60         if (canExprResolveTo(TE, Target))
61           return true;
62       if (const auto *FE = OP->getFalseExpr()->IgnoreParens())
63         if (canExprResolveTo(FE, Target))
64           return true;
65     }
66     return false;
67   };
68 
69   const auto ElvisOperator = [Target](const Expr *E) {
70     if (const auto *OP = dyn_cast<BinaryConditionalOperator>(E)) {
71       if (const auto *TE = OP->getTrueExpr()->IgnoreParens())
72         if (canExprResolveTo(TE, Target))
73           return true;
74       if (const auto *FE = OP->getFalseExpr()->IgnoreParens())
75         if (canExprResolveTo(FE, Target))
76           return true;
77     }
78     return false;
79   };
80 
81   const Expr *SourceExprP = Source->IgnoreParens();
82   return IgnoreDerivedToBase(SourceExprP,
83                              [&](const Expr *E) {
84                                return E == Target || ConditionalOperatorM(E) ||
85                                       ElvisOperator(E);
86                              }) ||
87          EvalCommaExpr(SourceExprP, [&](const Expr *E) {
88            return IgnoreDerivedToBase(
89                E->IgnoreParens(), [&](const Expr *EE) { return EE == Target; });
90          });
91 }
92 
93 namespace {
94 
95 AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) {
96   return llvm::is_contained(Node.capture_inits(), E);
97 }
98 
99 AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt,
100               ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) {
101   const DeclStmt *const Range = Node.getRangeStmt();
102   return InnerMatcher.matches(*Range, Finder, Builder);
103 }
104 
105 AST_MATCHER_P(Stmt, canResolveToExpr, const Stmt *, Inner) {
106   auto *Exp = dyn_cast<Expr>(&Node);
107   if (!Exp)
108     return true;
109   auto *Target = dyn_cast<Expr>(Inner);
110   if (!Target)
111     return false;
112   return canExprResolveTo(Exp, Target);
113 }
114 
115 // Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does
116 // not have the 'arguments()' method.
117 AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>,
118               InnerMatcher) {
119   for (const Expr *Arg : Node.inits()) {
120     ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
121     if (InnerMatcher.matches(*Arg, Finder, &Result)) {
122       *Builder = std::move(Result);
123       return true;
124     }
125   }
126   return false;
127 }
128 
129 const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr>
130     cxxTypeidExpr;
131 
132 AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) {
133   return Node.isPotentiallyEvaluated();
134 }
135 
136 AST_MATCHER(CXXMemberCallExpr, isConstCallee) {
137   const Decl *CalleeDecl = Node.getCalleeDecl();
138   const auto *VD = dyn_cast_or_null<ValueDecl>(CalleeDecl);
139   if (!VD)
140     return false;
141   const QualType T = VD->getType().getCanonicalType();
142   const auto *MPT = dyn_cast<MemberPointerType>(T);
143   const auto *FPT = MPT ? cast<FunctionProtoType>(MPT->getPointeeType())
144                         : dyn_cast<FunctionProtoType>(T);
145   if (!FPT)
146     return false;
147   return FPT->isConst();
148 }
149 
150 AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr,
151               ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
152   if (Node.isTypePredicate())
153     return false;
154   return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder);
155 }
156 
157 template <typename T>
158 ast_matchers::internal::Matcher<T>
159 findFirst(const ast_matchers::internal::Matcher<T> &Matcher) {
160   return anyOf(Matcher, hasDescendant(Matcher));
161 }
162 
163 const auto nonConstReferenceType = [] {
164   return hasUnqualifiedDesugaredType(
165       referenceType(pointee(unless(isConstQualified()))));
166 };
167 
168 const auto nonConstPointerType = [] {
169   return hasUnqualifiedDesugaredType(
170       pointerType(pointee(unless(isConstQualified()))));
171 };
172 
173 const auto isMoveOnly = [] {
174   return cxxRecordDecl(
175       hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))),
176       hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))),
177       unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(),
178                                                 unless(isDeleted()))),
179                    hasMethod(cxxMethodDecl(isCopyAssignmentOperator(),
180                                            unless(isDeleted()))))));
181 };
182 
183 template <class T> struct NodeID;
184 template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; };
185 template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; };
186 constexpr StringRef NodeID<Expr>::value;
187 constexpr StringRef NodeID<Decl>::value;
188 
189 template <class T,
190           class F = const Stmt *(ExprMutationAnalyzer::Analyzer::*)(const T *)>
191 const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches,
192                          ExprMutationAnalyzer::Analyzer *Analyzer, F Finder) {
193   const StringRef ID = NodeID<T>::value;
194   for (const auto &Nodes : Matches) {
195     if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID)))
196       return S;
197   }
198   return nullptr;
199 }
200 
201 } // namespace
202 
203 const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Expr *Exp) {
204   return findMutationMemoized(
205       Exp,
206       {&ExprMutationAnalyzer::Analyzer::findDirectMutation,
207        &ExprMutationAnalyzer::Analyzer::findMemberMutation,
208        &ExprMutationAnalyzer::Analyzer::findArrayElementMutation,
209        &ExprMutationAnalyzer::Analyzer::findCastMutation,
210        &ExprMutationAnalyzer::Analyzer::findRangeLoopMutation,
211        &ExprMutationAnalyzer::Analyzer::findReferenceMutation,
212        &ExprMutationAnalyzer::Analyzer::findFunctionArgMutation},
213       Memorized.Results);
214 }
215 
216 const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Decl *Dec) {
217   return tryEachDeclRef(Dec, &ExprMutationAnalyzer::Analyzer::findMutation);
218 }
219 
220 const Stmt *
221 ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Expr *Exp) {
222   return findMutationMemoized(Exp, {/*TODO*/}, Memorized.PointeeResults);
223 }
224 
225 const Stmt *
226 ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Decl *Dec) {
227   return tryEachDeclRef(Dec,
228                         &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
229 }
230 
231 const Stmt *ExprMutationAnalyzer::Analyzer::findMutationMemoized(
232     const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders,
233     Memoized::ResultMap &MemoizedResults) {
234   const auto Memoized = MemoizedResults.find(Exp);
235   if (Memoized != MemoizedResults.end())
236     return Memoized->second;
237 
238   // Assume Exp is not mutated before analyzing Exp.
239   MemoizedResults[Exp] = nullptr;
240   if (isUnevaluated(Exp))
241     return nullptr;
242 
243   for (const auto &Finder : Finders) {
244     if (const Stmt *S = (this->*Finder)(Exp))
245       return MemoizedResults[Exp] = S;
246   }
247 
248   return nullptr;
249 }
250 
251 const Stmt *
252 ExprMutationAnalyzer::Analyzer::tryEachDeclRef(const Decl *Dec,
253                                                MutationFinder Finder) {
254   const auto Refs = match(
255       findAll(
256           declRefExpr(to(
257                           // `Dec` or a binding if `Dec` is a decomposition.
258                           anyOf(equalsNode(Dec),
259                                 bindingDecl(forDecomposition(equalsNode(Dec))))
260                           //
261                           ))
262               .bind(NodeID<Expr>::value)),
263       Stm, Context);
264   for (const auto &RefNodes : Refs) {
265     const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value);
266     if ((this->*Finder)(E))
267       return E;
268   }
269   return nullptr;
270 }
271 
272 bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Stmt *Exp,
273                                                    const Stmt &Stm,
274                                                    ASTContext &Context) {
275   return selectFirst<Stmt>(
276              NodeID<Expr>::value,
277              match(
278                  findFirst(
279                      stmt(canResolveToExpr(Exp),
280                           anyOf(
281                               // `Exp` is part of the underlying expression of
282                               // decltype/typeof if it has an ancestor of
283                               // typeLoc.
284                               hasAncestor(typeLoc(unless(
285                                   hasAncestor(unaryExprOrTypeTraitExpr())))),
286                               hasAncestor(expr(anyOf(
287                                   // `UnaryExprOrTypeTraitExpr` is unevaluated
288                                   // unless it's sizeof on VLA.
289                                   unaryExprOrTypeTraitExpr(unless(sizeOfExpr(
290                                       hasArgumentOfType(variableArrayType())))),
291                                   // `CXXTypeidExpr` is unevaluated unless it's
292                                   // applied to an expression of glvalue of
293                                   // polymorphic class type.
294                                   cxxTypeidExpr(
295                                       unless(isPotentiallyEvaluated())),
296                                   // The controlling expression of
297                                   // `GenericSelectionExpr` is unevaluated.
298                                   genericSelectionExpr(hasControllingExpr(
299                                       hasDescendant(equalsNode(Exp)))),
300                                   cxxNoexceptExpr())))))
301                          .bind(NodeID<Expr>::value)),
302                  Stm, Context)) != nullptr;
303 }
304 
305 bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Expr *Exp) {
306   return isUnevaluated(Exp, Stm, Context);
307 }
308 
309 const Stmt *
310 ExprMutationAnalyzer::Analyzer::findExprMutation(ArrayRef<BoundNodes> Matches) {
311   return tryEachMatch<Expr>(Matches, this,
312                             &ExprMutationAnalyzer::Analyzer::findMutation);
313 }
314 
315 const Stmt *
316 ExprMutationAnalyzer::Analyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) {
317   return tryEachMatch<Decl>(Matches, this,
318                             &ExprMutationAnalyzer::Analyzer::findMutation);
319 }
320 
321 const Stmt *ExprMutationAnalyzer::Analyzer::findExprPointeeMutation(
322     ArrayRef<ast_matchers::BoundNodes> Matches) {
323   return tryEachMatch<Expr>(
324       Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
325 }
326 
327 const Stmt *ExprMutationAnalyzer::Analyzer::findDeclPointeeMutation(
328     ArrayRef<ast_matchers::BoundNodes> Matches) {
329   return tryEachMatch<Decl>(
330       Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
331 }
332 
333 const Stmt *
334 ExprMutationAnalyzer::Analyzer::findDirectMutation(const Expr *Exp) {
335   // LHS of any assignment operators.
336   const auto AsAssignmentLhs =
337       binaryOperator(isAssignmentOperator(), hasLHS(canResolveToExpr(Exp)));
338 
339   // Operand of increment/decrement operators.
340   const auto AsIncDecOperand =
341       unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")),
342                     hasUnaryOperand(canResolveToExpr(Exp)));
343 
344   // Invoking non-const member function.
345   // A member function is assumed to be non-const when it is unresolved.
346   const auto NonConstMethod = cxxMethodDecl(unless(isConst()));
347 
348   const auto AsNonConstThis = expr(anyOf(
349       cxxMemberCallExpr(on(canResolveToExpr(Exp)), unless(isConstCallee())),
350       cxxOperatorCallExpr(callee(NonConstMethod),
351                           hasArgument(0, canResolveToExpr(Exp))),
352       // In case of a templated type, calling overloaded operators is not
353       // resolved and modelled as `binaryOperator` on a dependent type.
354       // Such instances are considered a modification, because they can modify
355       // in different instantiations of the template.
356       binaryOperator(isTypeDependent(),
357                      hasEitherOperand(ignoringImpCasts(canResolveToExpr(Exp)))),
358       // A fold expression may contain `Exp` as it's initializer.
359       // We don't know if the operator modifies `Exp` because the
360       // operator is type dependent due to the parameter pack.
361       cxxFoldExpr(hasFoldInit(ignoringImpCasts(canResolveToExpr(Exp)))),
362       // Within class templates and member functions the member expression might
363       // not be resolved. In that case, the `callExpr` is considered to be a
364       // modification.
365       callExpr(callee(expr(anyOf(
366           unresolvedMemberExpr(hasObjectExpression(canResolveToExpr(Exp))),
367           cxxDependentScopeMemberExpr(
368               hasObjectExpression(canResolveToExpr(Exp))))))),
369       // Match on a call to a known method, but the call itself is type
370       // dependent (e.g. `vector<T> v; v.push(T{});` in a templated function).
371       callExpr(allOf(
372           isTypeDependent(),
373           callee(memberExpr(hasDeclaration(NonConstMethod),
374                             hasObjectExpression(canResolveToExpr(Exp))))))));
375 
376   // Taking address of 'Exp'.
377   // We're assuming 'Exp' is mutated as soon as its address is taken, though in
378   // theory we can follow the pointer and see whether it escaped `Stm` or is
379   // dereferenced and then mutated. This is left for future improvements.
380   const auto AsAmpersandOperand =
381       unaryOperator(hasOperatorName("&"),
382                     // A NoOp implicit cast is adding const.
383                     unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))),
384                     hasUnaryOperand(canResolveToExpr(Exp)));
385   const auto AsPointerFromArrayDecay = castExpr(
386       hasCastKind(CK_ArrayToPointerDecay),
387       unless(hasParent(arraySubscriptExpr())), has(canResolveToExpr(Exp)));
388   // Treat calling `operator->()` of move-only classes as taking address.
389   // These are typically smart pointers with unique ownership so we treat
390   // mutation of pointee as mutation of the smart pointer itself.
391   const auto AsOperatorArrowThis = cxxOperatorCallExpr(
392       hasOverloadedOperatorName("->"),
393       callee(
394           cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))),
395       argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)));
396 
397   // Used as non-const-ref argument when calling a function.
398   // An argument is assumed to be non-const-ref when the function is unresolved.
399   // Instantiated template functions are not handled here but in
400   // findFunctionArgMutation which has additional smarts for handling forwarding
401   // references.
402   const auto NonConstRefParam = forEachArgumentWithParamType(
403       anyOf(canResolveToExpr(Exp),
404             memberExpr(hasObjectExpression(canResolveToExpr(Exp)))),
405       nonConstReferenceType());
406   const auto NotInstantiated = unless(hasDeclaration(isInstantiated()));
407 
408   const auto AsNonConstRefArg =
409       anyOf(callExpr(NonConstRefParam, NotInstantiated),
410             cxxConstructExpr(NonConstRefParam, NotInstantiated),
411             // If the call is type-dependent, we can't properly process any
412             // argument because required type conversions and implicit casts
413             // will be inserted only after specialization.
414             callExpr(isTypeDependent(), hasAnyArgument(canResolveToExpr(Exp))),
415             cxxUnresolvedConstructExpr(hasAnyArgument(canResolveToExpr(Exp))),
416             // Previous False Positive in the following Code:
417             // `template <typename T> void f() { int i = 42; new Type<T>(i); }`
418             // Where the constructor of `Type` takes its argument as reference.
419             // The AST does not resolve in a `cxxConstructExpr` because it is
420             // type-dependent.
421             parenListExpr(hasDescendant(expr(canResolveToExpr(Exp)))),
422             // If the initializer is for a reference type, there is no cast for
423             // the variable. Values are cast to RValue first.
424             initListExpr(hasAnyInit(expr(canResolveToExpr(Exp)))));
425 
426   // Captured by a lambda by reference.
427   // If we're initializing a capture with 'Exp' directly then we're initializing
428   // a reference capture.
429   // For value captures there will be an ImplicitCastExpr <LValueToRValue>.
430   const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp));
431 
432   // Returned as non-const-ref.
433   // If we're returning 'Exp' directly then it's returned as non-const-ref.
434   // For returning by value there will be an ImplicitCastExpr <LValueToRValue>.
435   // For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for
436   // adding const.)
437   const auto AsNonConstRefReturn =
438       returnStmt(hasReturnValue(canResolveToExpr(Exp)));
439 
440   // It is used as a non-const-reference for initializing a range-for loop.
441   const auto AsNonConstRefRangeInit = cxxForRangeStmt(hasRangeInit(declRefExpr(
442       allOf(canResolveToExpr(Exp), hasType(nonConstReferenceType())))));
443 
444   const auto Matches = match(
445       traverse(
446           TK_AsIs,
447           findFirst(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand, AsNonConstThis,
448                                AsAmpersandOperand, AsPointerFromArrayDecay,
449                                AsOperatorArrowThis, AsNonConstRefArg,
450                                AsLambdaRefCaptureInit, AsNonConstRefReturn,
451                                AsNonConstRefRangeInit))
452                         .bind("stmt"))),
453       Stm, Context);
454   return selectFirst<Stmt>("stmt", Matches);
455 }
456 
457 const Stmt *
458 ExprMutationAnalyzer::Analyzer::findMemberMutation(const Expr *Exp) {
459   // Check whether any member of 'Exp' is mutated.
460   const auto MemberExprs = match(
461       findAll(expr(anyOf(memberExpr(hasObjectExpression(canResolveToExpr(Exp))),
462                          cxxDependentScopeMemberExpr(
463                              hasObjectExpression(canResolveToExpr(Exp))),
464                          binaryOperator(hasOperatorName(".*"),
465                                         hasLHS(equalsNode(Exp)))))
466                   .bind(NodeID<Expr>::value)),
467       Stm, Context);
468   return findExprMutation(MemberExprs);
469 }
470 
471 const Stmt *
472 ExprMutationAnalyzer::Analyzer::findArrayElementMutation(const Expr *Exp) {
473   // Check whether any element of an array is mutated.
474   const auto SubscriptExprs = match(
475       findAll(arraySubscriptExpr(
476                   anyOf(hasBase(canResolveToExpr(Exp)),
477                         hasBase(implicitCastExpr(allOf(
478                             hasCastKind(CK_ArrayToPointerDecay),
479                             hasSourceExpression(canResolveToExpr(Exp)))))))
480                   .bind(NodeID<Expr>::value)),
481       Stm, Context);
482   return findExprMutation(SubscriptExprs);
483 }
484 
485 const Stmt *ExprMutationAnalyzer::Analyzer::findCastMutation(const Expr *Exp) {
486   // If the 'Exp' is explicitly casted to a non-const reference type the
487   // 'Exp' is considered to be modified.
488   const auto ExplicitCast =
489       match(findFirst(stmt(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
490                                     explicitCastExpr(hasDestinationType(
491                                         nonConstReferenceType()))))
492                           .bind("stmt")),
493             Stm, Context);
494 
495   if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast))
496     return CastStmt;
497 
498   // If 'Exp' is casted to any non-const reference type, check the castExpr.
499   const auto Casts = match(
500       findAll(expr(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
501                             anyOf(explicitCastExpr(hasDestinationType(
502                                       nonConstReferenceType())),
503                                   implicitCastExpr(hasImplicitDestinationType(
504                                       nonConstReferenceType())))))
505                   .bind(NodeID<Expr>::value)),
506       Stm, Context);
507 
508   if (const Stmt *S = findExprMutation(Casts))
509     return S;
510   // Treat std::{move,forward} as cast.
511   const auto Calls =
512       match(findAll(callExpr(callee(namedDecl(
513                                  hasAnyName("::std::move", "::std::forward"))),
514                              hasArgument(0, canResolveToExpr(Exp)))
515                         .bind("expr")),
516             Stm, Context);
517   return findExprMutation(Calls);
518 }
519 
520 const Stmt *
521 ExprMutationAnalyzer::Analyzer::findRangeLoopMutation(const Expr *Exp) {
522   // Keep the ordering for the specific initialization matches to happen first,
523   // because it is cheaper to match all potential modifications of the loop
524   // variable.
525 
526   // The range variable is a reference to a builtin array. In that case the
527   // array is considered modified if the loop-variable is a non-const reference.
528   const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType(
529       hasUnqualifiedDesugaredType(referenceType(pointee(arrayType())))))));
530   const auto RefToArrayRefToElements = match(
531       findFirst(stmt(cxxForRangeStmt(
532                          hasLoopVariable(
533                              varDecl(anyOf(hasType(nonConstReferenceType()),
534                                            hasType(nonConstPointerType())))
535                                  .bind(NodeID<Decl>::value)),
536                          hasRangeStmt(DeclStmtToNonRefToArray),
537                          hasRangeInit(canResolveToExpr(Exp))))
538                     .bind("stmt")),
539       Stm, Context);
540 
541   if (const auto *BadRangeInitFromArray =
542           selectFirst<Stmt>("stmt", RefToArrayRefToElements))
543     return BadRangeInitFromArray;
544 
545   // Small helper to match special cases in range-for loops.
546   //
547   // It is possible that containers do not provide a const-overload for their
548   // iterator accessors. If this is the case, the variable is used non-const
549   // no matter what happens in the loop. This requires special detection as it
550   // is then faster to find all mutations of the loop variable.
551   // It aims at a different modification as well.
552   const auto HasAnyNonConstIterator =
553       anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))),
554                   unless(hasMethod(allOf(hasName("begin"), isConst())))),
555             allOf(hasMethod(allOf(hasName("end"), unless(isConst()))),
556                   unless(hasMethod(allOf(hasName("end"), isConst())))));
557 
558   const auto DeclStmtToNonConstIteratorContainer = declStmt(
559       hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType(
560           pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator)))))))));
561 
562   const auto RefToContainerBadIterators = match(
563       findFirst(stmt(cxxForRangeStmt(allOf(
564                          hasRangeStmt(DeclStmtToNonConstIteratorContainer),
565                          hasRangeInit(canResolveToExpr(Exp)))))
566                     .bind("stmt")),
567       Stm, Context);
568 
569   if (const auto *BadIteratorsContainer =
570           selectFirst<Stmt>("stmt", RefToContainerBadIterators))
571     return BadIteratorsContainer;
572 
573   // If range for looping over 'Exp' with a non-const reference loop variable,
574   // check all declRefExpr of the loop variable.
575   const auto LoopVars =
576       match(findAll(cxxForRangeStmt(
577                 hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
578                                     .bind(NodeID<Decl>::value)),
579                 hasRangeInit(canResolveToExpr(Exp)))),
580             Stm, Context);
581   return findDeclMutation(LoopVars);
582 }
583 
584 const Stmt *
585 ExprMutationAnalyzer::Analyzer::findReferenceMutation(const Expr *Exp) {
586   // Follow non-const reference returned by `operator*()` of move-only classes.
587   // These are typically smart pointers with unique ownership so we treat
588   // mutation of pointee as mutation of the smart pointer itself.
589   const auto Ref = match(
590       findAll(cxxOperatorCallExpr(
591                   hasOverloadedOperatorName("*"),
592                   callee(cxxMethodDecl(ofClass(isMoveOnly()),
593                                        returns(nonConstReferenceType()))),
594                   argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)))
595                   .bind(NodeID<Expr>::value)),
596       Stm, Context);
597   if (const Stmt *S = findExprMutation(Ref))
598     return S;
599 
600   // If 'Exp' is bound to a non-const reference, check all declRefExpr to that.
601   const auto Refs = match(
602       stmt(forEachDescendant(
603           varDecl(hasType(nonConstReferenceType()),
604                   hasInitializer(anyOf(
605                       canResolveToExpr(Exp),
606                       memberExpr(hasObjectExpression(canResolveToExpr(Exp))))),
607                   hasParent(declStmt().bind("stmt")),
608                   // Don't follow the reference in range statement, we've
609                   // handled that separately.
610                   unless(hasParent(declStmt(hasParent(cxxForRangeStmt(
611                       hasRangeStmt(equalsBoundNode("stmt"))))))))
612               .bind(NodeID<Decl>::value))),
613       Stm, Context);
614   return findDeclMutation(Refs);
615 }
616 
617 const Stmt *
618 ExprMutationAnalyzer::Analyzer::findFunctionArgMutation(const Expr *Exp) {
619   const auto NonConstRefParam = forEachArgumentWithParam(
620       canResolveToExpr(Exp),
621       parmVarDecl(hasType(nonConstReferenceType())).bind("parm"));
622   const auto IsInstantiated = hasDeclaration(isInstantiated());
623   const auto FuncDecl = hasDeclaration(functionDecl().bind("func"));
624   const auto Matches = match(
625       traverse(
626           TK_AsIs,
627           findAll(
628               expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl,
629                                   unless(callee(namedDecl(hasAnyName(
630                                       "::std::move", "::std::forward"))))),
631                          cxxConstructExpr(NonConstRefParam, IsInstantiated,
632                                           FuncDecl)))
633                   .bind(NodeID<Expr>::value))),
634       Stm, Context);
635   for (const auto &Nodes : Matches) {
636     const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value);
637     const auto *Func = Nodes.getNodeAs<FunctionDecl>("func");
638     if (!Func->getBody() || !Func->getPrimaryTemplate())
639       return Exp;
640 
641     const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm");
642     const ArrayRef<ParmVarDecl *> AllParams =
643         Func->getPrimaryTemplate()->getTemplatedDecl()->parameters();
644     QualType ParmType =
645         AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(),
646                                    AllParams.size() - 1)]
647             ->getType();
648     if (const auto *T = ParmType->getAs<PackExpansionType>())
649       ParmType = T->getPattern();
650 
651     // If param type is forwarding reference, follow into the function
652     // definition and see whether the param is mutated inside.
653     if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) {
654       if (!RefType->getPointeeType().getQualifiers() &&
655           RefType->getPointeeType()->getAs<TemplateTypeParmType>()) {
656         FunctionParmMutationAnalyzer *Analyzer =
657             FunctionParmMutationAnalyzer::getFunctionParmMutationAnalyzer(
658                 *Func, Context, Memorized);
659         if (Analyzer->findMutation(Parm))
660           return Exp;
661         continue;
662       }
663     }
664     // Not forwarding reference.
665     return Exp;
666   }
667   return nullptr;
668 }
669 
670 FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer(
671     const FunctionDecl &Func, ASTContext &Context,
672     ExprMutationAnalyzer::Memoized &Memorized)
673     : BodyAnalyzer(*Func.getBody(), Context, Memorized) {
674   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) {
675     // CXXCtorInitializer might also mutate Param but they're not part of
676     // function body, check them eagerly here since they're typically trivial.
677     for (const CXXCtorInitializer *Init : Ctor->inits()) {
678       ExprMutationAnalyzer::Analyzer InitAnalyzer(*Init->getInit(), Context,
679                                                   Memorized);
680       for (const ParmVarDecl *Parm : Ctor->parameters()) {
681         if (Results.contains(Parm))
682           continue;
683         if (const Stmt *S = InitAnalyzer.findMutation(Parm))
684           Results[Parm] = S;
685       }
686     }
687   }
688 }
689 
690 const Stmt *
691 FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) {
692   const auto Memoized = Results.find(Parm);
693   if (Memoized != Results.end())
694     return Memoized->second;
695   // To handle call A -> call B -> call A. Assume parameters of A is not mutated
696   // before analyzing parameters of A. Then when analyzing the second "call A",
697   // FunctionParmMutationAnalyzer can use this memoized value to avoid infinite
698   // recursion.
699   Results[Parm] = nullptr;
700   if (const Stmt *S = BodyAnalyzer.findMutation(Parm))
701     return Results[Parm] = S;
702   return Results[Parm];
703 }
704 
705 } // namespace clang
706