xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/CloneDetection.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements classes for searching and analyzing source code clones.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/CloneDetection.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/DataCollection.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/Basic/SourceManager.h"
18 #include "llvm/Support/MD5.h"
19 #include "llvm/Support/Path.h"
20 
21 using namespace clang;
22 
23 StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24                            unsigned StartIndex, unsigned EndIndex)
25     : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26   assert(Stmt && "Stmt must not be a nullptr");
27   assert(StartIndex < EndIndex && "Given array should not be empty");
28   assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
29 }
30 
31 StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32     : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
33 
34 StmtSequence::StmtSequence()
35     : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
36 
37 bool StmtSequence::contains(const StmtSequence &Other) const {
38   // If both sequences reside in different declarations, they can never contain
39   // each other.
40   if (D != Other.D)
41     return false;
42 
43   const SourceManager &SM = getASTContext().getSourceManager();
44 
45   // Otherwise check if the start and end locations of the current sequence
46   // surround the other sequence.
47   bool StartIsInBounds =
48       SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49       getBeginLoc() == Other.getBeginLoc();
50   if (!StartIsInBounds)
51     return false;
52 
53   bool EndIsInBounds =
54       SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55       Other.getEndLoc() == getEndLoc();
56   return EndIsInBounds;
57 }
58 
59 StmtSequence::iterator StmtSequence::begin() const {
60   if (!holdsSequence()) {
61     return &S;
62   }
63   auto CS = cast<CompoundStmt>(S);
64   return CS->body_begin() + StartIndex;
65 }
66 
67 StmtSequence::iterator StmtSequence::end() const {
68   if (!holdsSequence()) {
69     return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
70   }
71   auto CS = cast<CompoundStmt>(S);
72   return CS->body_begin() + EndIndex;
73 }
74 
75 ASTContext &StmtSequence::getASTContext() const {
76   assert(D);
77   return D->getASTContext();
78 }
79 
80 SourceLocation StmtSequence::getBeginLoc() const {
81   return front()->getBeginLoc();
82 }
83 
84 SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
85 
86 SourceRange StmtSequence::getSourceRange() const {
87   return SourceRange(getBeginLoc(), getEndLoc());
88 }
89 
90 void CloneDetector::analyzeCodeBody(const Decl *D) {
91   assert(D);
92   assert(D->hasBody());
93 
94   Sequences.push_back(StmtSequence(D->getBody(), D));
95 }
96 
97 /// Returns true if and only if \p Stmt contains at least one other
98 /// sequence in the \p Group.
99 static bool containsAnyInGroup(StmtSequence &Seq,
100                                CloneDetector::CloneGroup &Group) {
101   for (StmtSequence &GroupSeq : Group) {
102     if (Seq.contains(GroupSeq))
103       return true;
104   }
105   return false;
106 }
107 
108 /// Returns true if and only if all sequences in \p OtherGroup are
109 /// contained by a sequence in \p Group.
110 static bool containsGroup(CloneDetector::CloneGroup &Group,
111                           CloneDetector::CloneGroup &OtherGroup) {
112   // We have less sequences in the current group than we have in the other,
113   // so we will never fulfill the requirement for returning true. This is only
114   // possible because we know that a sequence in Group can contain at most
115   // one sequence in OtherGroup.
116   if (Group.size() < OtherGroup.size())
117     return false;
118 
119   for (StmtSequence &Stmt : Group) {
120     if (!containsAnyInGroup(Stmt, OtherGroup))
121       return false;
122   }
123   return true;
124 }
125 
126 void OnlyLargestCloneConstraint::constrain(
127     std::vector<CloneDetector::CloneGroup> &Result) {
128   std::vector<unsigned> IndexesToRemove;
129 
130   // Compare every group in the result with the rest. If one groups contains
131   // another group, we only need to return the bigger group.
132   // Note: This doesn't scale well, so if possible avoid calling any heavy
133   // function from this loop to minimize the performance impact.
134   for (unsigned i = 0; i < Result.size(); ++i) {
135     for (unsigned j = 0; j < Result.size(); ++j) {
136       // Don't compare a group with itself.
137       if (i == j)
138         continue;
139 
140       if (containsGroup(Result[j], Result[i])) {
141         IndexesToRemove.push_back(i);
142         break;
143       }
144     }
145   }
146 
147   // Erasing a list of indexes from the vector should be done with decreasing
148   // indexes. As IndexesToRemove is constructed with increasing values, we just
149   // reverse iterate over it to get the desired order.
150   for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
151     Result.erase(Result.begin() + *I);
152   }
153 }
154 
155 bool FilenamePatternConstraint::isAutoGenerated(
156     const CloneDetector::CloneGroup &Group) {
157   if (IgnoredFilesPattern.empty() || Group.empty() ||
158       !IgnoredFilesRegex->isValid())
159     return false;
160 
161   for (const StmtSequence &S : Group) {
162     const SourceManager &SM = S.getASTContext().getSourceManager();
163     StringRef Filename = llvm::sys::path::filename(
164         SM.getFilename(S.getContainingDecl()->getLocation()));
165     if (IgnoredFilesRegex->match(Filename))
166       return true;
167   }
168 
169   return false;
170 }
171 
172 /// This class defines what a type II code clone is: If it collects for two
173 /// statements the same data, then those two statements are considered to be
174 /// clones of each other.
175 ///
176 /// All collected data is forwarded to the given data consumer of the type T.
177 /// The data consumer class needs to provide a member method with the signature:
178 ///   update(StringRef Str)
179 namespace {
180 template <class T>
181 class CloneTypeIIStmtDataCollector
182     : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
183   ASTContext &Context;
184   /// The data sink to which all data is forwarded.
185   T &DataConsumer;
186 
187   template <class Ty> void addData(const Ty &Data) {
188     data_collection::addDataToConsumer(DataConsumer, Data);
189   }
190 
191 public:
192   CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
193                                T &DataConsumer)
194       : Context(Context), DataConsumer(DataConsumer) {
195     this->Visit(S);
196   }
197 
198 // Define a visit method for each class to collect data and subsequently visit
199 // all parent classes. This uses a template so that custom visit methods by us
200 // take precedence.
201 #define DEF_ADD_DATA(CLASS, CODE)                                              \
202   template <class = void> void Visit##CLASS(const CLASS *S) {                  \
203     CODE;                                                                      \
204     ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
205   }
206 
207 #include "clang/AST/StmtDataCollectors.inc"
208 
209 // Type II clones ignore variable names and literals, so let's skip them.
210 #define SKIP(CLASS)                                                            \
211   void Visit##CLASS(const CLASS *S) {                                          \
212     ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
213   }
214   SKIP(DeclRefExpr)
215   SKIP(MemberExpr)
216   SKIP(IntegerLiteral)
217   SKIP(FloatingLiteral)
218   SKIP(StringLiteral)
219   SKIP(CXXBoolLiteralExpr)
220   SKIP(CharacterLiteral)
221 #undef SKIP
222 };
223 } // end anonymous namespace
224 
225 static size_t createHash(llvm::MD5 &Hash) {
226   size_t HashCode;
227 
228   // Create the final hash code for the current Stmt.
229   llvm::MD5::MD5Result HashResult;
230   Hash.final(HashResult);
231 
232   // Copy as much as possible of the generated hash code to the Stmt's hash
233   // code.
234   std::memcpy(&HashCode, &HashResult,
235               std::min(sizeof(HashCode), sizeof(HashResult)));
236 
237   return HashCode;
238 }
239 
240 /// Generates and saves a hash code for the given Stmt.
241 /// \param S The given Stmt.
242 /// \param D The Decl containing S.
243 /// \param StmtsByHash Output parameter that will contain the hash codes for
244 ///                    each StmtSequence in the given Stmt.
245 /// \return The hash code of the given Stmt.
246 ///
247 /// If the given Stmt is a CompoundStmt, this method will also generate
248 /// hashes for all possible StmtSequences in the children of this Stmt.
249 static size_t
250 saveHash(const Stmt *S, const Decl *D,
251          std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
252   llvm::MD5 Hash;
253   ASTContext &Context = D->getASTContext();
254 
255   CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
256 
257   auto CS = dyn_cast<CompoundStmt>(S);
258   SmallVector<size_t, 8> ChildHashes;
259 
260   for (const Stmt *Child : S->children()) {
261     if (Child == nullptr) {
262       ChildHashes.push_back(0);
263       continue;
264     }
265     size_t ChildHash = saveHash(Child, D, StmtsByHash);
266     Hash.update(
267         StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
268     ChildHashes.push_back(ChildHash);
269   }
270 
271   if (CS) {
272     // If we're in a CompoundStmt, we hash all possible combinations of child
273     // statements to find clones in those subsequences.
274     // We first go through every possible starting position of a subsequence.
275     for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
276       // Then we try all possible lengths this subsequence could have and
277       // reuse the same hash object to make sure we only hash every child
278       // hash exactly once.
279       llvm::MD5 Hash;
280       for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
281         // Grab the current child hash and put it into our hash. We do
282         // -1 on the index because we start counting the length at 1.
283         size_t ChildHash = ChildHashes[Pos + Length - 1];
284         Hash.update(
285             StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
286         // If we have at least two elements in our subsequence, we can start
287         // saving it.
288         if (Length > 1) {
289           llvm::MD5 SubHash = Hash;
290           StmtsByHash.push_back(std::make_pair(
291               createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
292         }
293       }
294     }
295   }
296 
297   size_t HashCode = createHash(Hash);
298   StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
299   return HashCode;
300 }
301 
302 namespace {
303 /// Wrapper around FoldingSetNodeID that it can be used as the template
304 /// argument of the StmtDataCollector.
305 class FoldingSetNodeIDWrapper {
306 
307   llvm::FoldingSetNodeID &FS;
308 
309 public:
310   FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
311 
312   void update(StringRef Str) { FS.AddString(Str); }
313 };
314 } // end anonymous namespace
315 
316 /// Writes the relevant data from all statements and child statements
317 /// in the given StmtSequence into the given FoldingSetNodeID.
318 static void CollectStmtSequenceData(const StmtSequence &Sequence,
319                                     FoldingSetNodeIDWrapper &OutputData) {
320   for (const Stmt *S : Sequence) {
321     CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
322         S, Sequence.getASTContext(), OutputData);
323 
324     for (const Stmt *Child : S->children()) {
325       if (!Child)
326         continue;
327 
328       CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
329                               OutputData);
330     }
331   }
332 }
333 
334 /// Returns true if both sequences are clones of each other.
335 static bool areSequencesClones(const StmtSequence &LHS,
336                                const StmtSequence &RHS) {
337   // We collect the data from all statements in the sequence as we did before
338   // when generating a hash value for each sequence. But this time we don't
339   // hash the collected data and compare the whole data set instead. This
340   // prevents any false-positives due to hash code collisions.
341   llvm::FoldingSetNodeID DataLHS, DataRHS;
342   FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
343   FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
344 
345   CollectStmtSequenceData(LHS, LHSWrapper);
346   CollectStmtSequenceData(RHS, RHSWrapper);
347 
348   return DataLHS == DataRHS;
349 }
350 
351 void RecursiveCloneTypeIIHashConstraint::constrain(
352     std::vector<CloneDetector::CloneGroup> &Sequences) {
353   // FIXME: Maybe we can do this in-place and don't need this additional vector.
354   std::vector<CloneDetector::CloneGroup> Result;
355 
356   for (CloneDetector::CloneGroup &Group : Sequences) {
357     // We assume in the following code that the Group is non-empty, so we
358     // skip all empty groups.
359     if (Group.empty())
360       continue;
361 
362     std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
363 
364     // Generate hash codes for all children of S and save them in StmtsByHash.
365     for (const StmtSequence &S : Group) {
366       saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
367     }
368 
369     // Sort hash_codes in StmtsByHash.
370     llvm::stable_sort(StmtsByHash, llvm::less_first());
371 
372     // Check for each StmtSequence if its successor has the same hash value.
373     // We don't check the last StmtSequence as it has no successor.
374     // Note: The 'size - 1 ' in the condition is safe because we check for an
375     // empty Group vector at the beginning of this function.
376     for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
377       const auto Current = StmtsByHash[i];
378 
379       // It's likely that we just found a sequence of StmtSequences that
380       // represent a CloneGroup, so we create a new group and start checking and
381       // adding the StmtSequences in this sequence.
382       CloneDetector::CloneGroup NewGroup;
383 
384       size_t PrototypeHash = Current.first;
385 
386       for (; i < StmtsByHash.size(); ++i) {
387         // A different hash value means we have reached the end of the sequence.
388         if (PrototypeHash != StmtsByHash[i].first) {
389           // The current sequence could be the start of a new CloneGroup. So we
390           // decrement i so that we visit it again in the outer loop.
391           // Note: i can never be 0 at this point because we are just comparing
392           // the hash of the Current StmtSequence with itself in the 'if' above.
393           assert(i != 0);
394           --i;
395           break;
396         }
397         // Same hash value means we should add the StmtSequence to the current
398         // group.
399         NewGroup.push_back(StmtsByHash[i].second);
400       }
401 
402       // We created a new clone group with matching hash codes and move it to
403       // the result vector.
404       Result.push_back(NewGroup);
405     }
406   }
407   // Sequences is the output parameter, so we copy our result into it.
408   Sequences = Result;
409 }
410 
411 void RecursiveCloneTypeIIVerifyConstraint::constrain(
412     std::vector<CloneDetector::CloneGroup> &Sequences) {
413   CloneConstraint::splitCloneGroups(
414       Sequences, [](const StmtSequence &A, const StmtSequence &B) {
415         return areSequencesClones(A, B);
416       });
417 }
418 
419 size_t MinComplexityConstraint::calculateStmtComplexity(
420     const StmtSequence &Seq, std::size_t Limit,
421     const std::string &ParentMacroStack) {
422   if (Seq.empty())
423     return 0;
424 
425   size_t Complexity = 1;
426 
427   ASTContext &Context = Seq.getASTContext();
428 
429   // Look up what macros expanded into the current statement.
430   std::string MacroStack =
431       data_collection::getMacroStack(Seq.getBeginLoc(), Context);
432 
433   // First, check if ParentMacroStack is not empty which means we are currently
434   // dealing with a parent statement which was expanded from a macro.
435   // If this parent statement was expanded from the same macros as this
436   // statement, we reduce the initial complexity of this statement to zero.
437   // This causes that a group of statements that were generated by a single
438   // macro expansion will only increase the total complexity by one.
439   // Note: This is not the final complexity of this statement as we still
440   // add the complexity of the child statements to the complexity value.
441   if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
442     Complexity = 0;
443   }
444 
445   // Iterate over the Stmts in the StmtSequence and add their complexity values
446   // to the current complexity value.
447   if (Seq.holdsSequence()) {
448     for (const Stmt *S : Seq) {
449       Complexity += calculateStmtComplexity(
450           StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
451       if (Complexity >= Limit)
452         return Limit;
453     }
454   } else {
455     for (const Stmt *S : Seq.front()->children()) {
456       Complexity += calculateStmtComplexity(
457           StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
458       if (Complexity >= Limit)
459         return Limit;
460     }
461   }
462   return Complexity;
463 }
464 
465 void MatchingVariablePatternConstraint::constrain(
466     std::vector<CloneDetector::CloneGroup> &CloneGroups) {
467   CloneConstraint::splitCloneGroups(
468       CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
469         VariablePattern PatternA(A);
470         VariablePattern PatternB(B);
471         return PatternA.countPatternDifferences(PatternB) == 0;
472       });
473 }
474 
475 void CloneConstraint::splitCloneGroups(
476     std::vector<CloneDetector::CloneGroup> &CloneGroups,
477     llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
478         Compare) {
479   std::vector<CloneDetector::CloneGroup> Result;
480   for (auto &HashGroup : CloneGroups) {
481     // Contains all indexes in HashGroup that were already added to a
482     // CloneGroup.
483     std::vector<char> Indexes;
484     Indexes.resize(HashGroup.size());
485 
486     for (unsigned i = 0; i < HashGroup.size(); ++i) {
487       // Skip indexes that are already part of a CloneGroup.
488       if (Indexes[i])
489         continue;
490 
491       // Pick the first unhandled StmtSequence and consider it as the
492       // beginning
493       // of a new CloneGroup for now.
494       // We don't add i to Indexes because we never iterate back.
495       StmtSequence Prototype = HashGroup[i];
496       CloneDetector::CloneGroup PotentialGroup = {Prototype};
497       ++Indexes[i];
498 
499       // Check all following StmtSequences for clones.
500       for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
501         // Skip indexes that are already part of a CloneGroup.
502         if (Indexes[j])
503           continue;
504 
505         // If a following StmtSequence belongs to our CloneGroup, we add it.
506         const StmtSequence &Candidate = HashGroup[j];
507 
508         if (!Compare(Prototype, Candidate))
509           continue;
510 
511         PotentialGroup.push_back(Candidate);
512         // Make sure we never visit this StmtSequence again.
513         ++Indexes[j];
514       }
515 
516       // Otherwise, add it to the result and continue searching for more
517       // groups.
518       Result.push_back(PotentialGroup);
519     }
520 
521     assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
522   }
523   CloneGroups = Result;
524 }
525 
526 void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
527                                            const Stmt *Mention) {
528   // First check if we already reference this variable
529   for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
530     if (Variables[KindIndex] == VarDecl) {
531       // If yes, add a new occurrence that points to the existing entry in
532       // the Variables vector.
533       Occurences.emplace_back(KindIndex, Mention);
534       return;
535     }
536   }
537   // If this variable wasn't already referenced, add it to the list of
538   // referenced variables and add a occurrence that points to this new entry.
539   Occurences.emplace_back(Variables.size(), Mention);
540   Variables.push_back(VarDecl);
541 }
542 
543 void VariablePattern::addVariables(const Stmt *S) {
544   // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
545   // children). We skip such statements as they don't reference any
546   // variables.
547   if (!S)
548     return;
549 
550   // Check if S is a reference to a variable. If yes, add it to the pattern.
551   if (auto D = dyn_cast<DeclRefExpr>(S)) {
552     if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
553       addVariableOccurence(VD, D);
554   }
555 
556   // Recursively check all children of the given statement.
557   for (const Stmt *Child : S->children()) {
558     addVariables(Child);
559   }
560 }
561 
562 unsigned VariablePattern::countPatternDifferences(
563     const VariablePattern &Other,
564     VariablePattern::SuspiciousClonePair *FirstMismatch) {
565   unsigned NumberOfDifferences = 0;
566 
567   assert(Other.Occurences.size() == Occurences.size());
568   for (unsigned i = 0; i < Occurences.size(); ++i) {
569     auto ThisOccurence = Occurences[i];
570     auto OtherOccurence = Other.Occurences[i];
571     if (ThisOccurence.KindID == OtherOccurence.KindID)
572       continue;
573 
574     ++NumberOfDifferences;
575 
576     // If FirstMismatch is not a nullptr, we need to store information about
577     // the first difference between the two patterns.
578     if (FirstMismatch == nullptr)
579       continue;
580 
581     // Only proceed if we just found the first difference as we only store
582     // information about the first difference.
583     if (NumberOfDifferences != 1)
584       continue;
585 
586     const VarDecl *FirstSuggestion = nullptr;
587     // If there is a variable available in the list of referenced variables
588     // which wouldn't break the pattern if it is used in place of the
589     // current variable, we provide this variable as the suggested fix.
590     if (OtherOccurence.KindID < Variables.size())
591       FirstSuggestion = Variables[OtherOccurence.KindID];
592 
593     // Store information about the first clone.
594     FirstMismatch->FirstCloneInfo =
595         VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
596             Variables[ThisOccurence.KindID], ThisOccurence.Mention,
597             FirstSuggestion);
598 
599     // Same as above but with the other clone. We do this for both clones as
600     // we don't know which clone is the one containing the unintended
601     // pattern error.
602     const VarDecl *SecondSuggestion = nullptr;
603     if (ThisOccurence.KindID < Other.Variables.size())
604       SecondSuggestion = Other.Variables[ThisOccurence.KindID];
605 
606     // Store information about the second clone.
607     FirstMismatch->SecondCloneInfo =
608         VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
609             Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
610             SecondSuggestion);
611 
612     // SuspiciousClonePair guarantees that the first clone always has a
613     // suggested variable associated with it. As we know that one of the two
614     // clones in the pair always has suggestion, we swap the two clones
615     // in case the first clone has no suggested variable which means that
616     // the second clone has a suggested variable and should be first.
617     if (!FirstMismatch->FirstCloneInfo.Suggestion)
618       std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
619 
620     // This ensures that we always have at least one suggestion in a pair.
621     assert(FirstMismatch->FirstCloneInfo.Suggestion);
622   }
623 
624   return NumberOfDifferences;
625 }
626