xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/CloneDetection.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements classes for searching and analyzing source code clones.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/CloneDetection.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/DataCollection.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/Basic/SourceManager.h"
18 #include "llvm/Support/MD5.h"
19 #include "llvm/Support/Path.h"
20 
21 using namespace clang;
22 
23 StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24                            unsigned StartIndex, unsigned EndIndex)
25     : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26   assert(Stmt && "Stmt must not be a nullptr");
27   assert(StartIndex < EndIndex && "Given array should not be empty");
28   assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
29 }
30 
31 StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32     : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
33 
34 StmtSequence::StmtSequence()
35     : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
36 
37 bool StmtSequence::contains(const StmtSequence &Other) const {
38   // If both sequences reside in different declarations, they can never contain
39   // each other.
40   if (D != Other.D)
41     return false;
42 
43   const SourceManager &SM = getASTContext().getSourceManager();
44 
45   // Otherwise check if the start and end locations of the current sequence
46   // surround the other sequence.
47   bool StartIsInBounds =
48       SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49       getBeginLoc() == Other.getBeginLoc();
50   if (!StartIsInBounds)
51     return false;
52 
53   bool EndIsInBounds =
54       SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55       Other.getEndLoc() == getEndLoc();
56   return EndIsInBounds;
57 }
58 
59 StmtSequence::iterator StmtSequence::begin() const {
60   if (!holdsSequence()) {
61     return &S;
62   }
63   auto CS = cast<CompoundStmt>(S);
64   return CS->body_begin() + StartIndex;
65 }
66 
67 StmtSequence::iterator StmtSequence::end() const {
68   if (!holdsSequence()) {
69     return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
70   }
71   auto CS = cast<CompoundStmt>(S);
72   return CS->body_begin() + EndIndex;
73 }
74 
75 ASTContext &StmtSequence::getASTContext() const {
76   assert(D);
77   return D->getASTContext();
78 }
79 
80 SourceLocation StmtSequence::getBeginLoc() const {
81   return front()->getBeginLoc();
82 }
83 
84 SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
85 
86 SourceRange StmtSequence::getSourceRange() const {
87   return SourceRange(getBeginLoc(), getEndLoc());
88 }
89 
90 void CloneDetector::analyzeCodeBody(const Decl *D) {
91   assert(D);
92   assert(D->hasBody());
93 
94   Sequences.push_back(StmtSequence(D->getBody(), D));
95 }
96 
97 /// Returns true if and only if \p Stmt contains at least one other
98 /// sequence in the \p Group.
99 static bool containsAnyInGroup(StmtSequence &Seq,
100                                CloneDetector::CloneGroup &Group) {
101   for (StmtSequence &GroupSeq : Group) {
102     if (Seq.contains(GroupSeq))
103       return true;
104   }
105   return false;
106 }
107 
108 /// Returns true if and only if all sequences in \p OtherGroup are
109 /// contained by a sequence in \p Group.
110 static bool containsGroup(CloneDetector::CloneGroup &Group,
111                           CloneDetector::CloneGroup &OtherGroup) {
112   // We have less sequences in the current group than we have in the other,
113   // so we will never fulfill the requirement for returning true. This is only
114   // possible because we know that a sequence in Group can contain at most
115   // one sequence in OtherGroup.
116   if (Group.size() < OtherGroup.size())
117     return false;
118 
119   for (StmtSequence &Stmt : Group) {
120     if (!containsAnyInGroup(Stmt, OtherGroup))
121       return false;
122   }
123   return true;
124 }
125 
126 void OnlyLargestCloneConstraint::constrain(
127     std::vector<CloneDetector::CloneGroup> &Result) {
128   std::vector<unsigned> IndexesToRemove;
129 
130   // Compare every group in the result with the rest. If one groups contains
131   // another group, we only need to return the bigger group.
132   // Note: This doesn't scale well, so if possible avoid calling any heavy
133   // function from this loop to minimize the performance impact.
134   for (unsigned i = 0; i < Result.size(); ++i) {
135     for (unsigned j = 0; j < Result.size(); ++j) {
136       // Don't compare a group with itself.
137       if (i == j)
138         continue;
139 
140       if (containsGroup(Result[j], Result[i])) {
141         IndexesToRemove.push_back(i);
142         break;
143       }
144     }
145   }
146 
147   // Erasing a list of indexes from the vector should be done with decreasing
148   // indexes. As IndexesToRemove is constructed with increasing values, we just
149   // reverse iterate over it to get the desired order.
150   for (unsigned I : llvm::reverse(IndexesToRemove))
151     Result.erase(Result.begin() + I);
152 }
153 
154 bool FilenamePatternConstraint::isAutoGenerated(
155     const CloneDetector::CloneGroup &Group) {
156   if (IgnoredFilesPattern.empty() || Group.empty() ||
157       !IgnoredFilesRegex->isValid())
158     return false;
159 
160   for (const StmtSequence &S : Group) {
161     const SourceManager &SM = S.getASTContext().getSourceManager();
162     StringRef Filename = llvm::sys::path::filename(
163         SM.getFilename(S.getContainingDecl()->getLocation()));
164     if (IgnoredFilesRegex->match(Filename))
165       return true;
166   }
167 
168   return false;
169 }
170 
171 /// This class defines what a type II code clone is: If it collects for two
172 /// statements the same data, then those two statements are considered to be
173 /// clones of each other.
174 ///
175 /// All collected data is forwarded to the given data consumer of the type T.
176 /// The data consumer class needs to provide a member method with the signature:
177 ///   update(StringRef Str)
178 namespace {
179 template <class T>
180 class CloneTypeIIStmtDataCollector
181     : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
182   ASTContext &Context;
183   /// The data sink to which all data is forwarded.
184   T &DataConsumer;
185 
186   template <class Ty> void addData(const Ty &Data) {
187     data_collection::addDataToConsumer(DataConsumer, Data);
188   }
189 
190 public:
191   CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
192                                T &DataConsumer)
193       : Context(Context), DataConsumer(DataConsumer) {
194     this->Visit(S);
195   }
196 
197 // Define a visit method for each class to collect data and subsequently visit
198 // all parent classes. This uses a template so that custom visit methods by us
199 // take precedence.
200 #define DEF_ADD_DATA(CLASS, CODE)                                              \
201   template <class = void> void Visit##CLASS(const CLASS *S) {                  \
202     CODE;                                                                      \
203     ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
204   }
205 
206 #include "clang/AST/StmtDataCollectors.inc"
207 
208 // Type II clones ignore variable names and literals, so let's skip them.
209 #define SKIP(CLASS)                                                            \
210   void Visit##CLASS(const CLASS *S) {                                          \
211     ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
212   }
213   SKIP(DeclRefExpr)
214   SKIP(MemberExpr)
215   SKIP(IntegerLiteral)
216   SKIP(FloatingLiteral)
217   SKIP(StringLiteral)
218   SKIP(CXXBoolLiteralExpr)
219   SKIP(CharacterLiteral)
220 #undef SKIP
221 };
222 } // end anonymous namespace
223 
224 static size_t createHash(llvm::MD5 &Hash) {
225   size_t HashCode;
226 
227   // Create the final hash code for the current Stmt.
228   llvm::MD5::MD5Result HashResult;
229   Hash.final(HashResult);
230 
231   // Copy as much as possible of the generated hash code to the Stmt's hash
232   // code.
233   std::memcpy(&HashCode, &HashResult,
234               std::min(sizeof(HashCode), sizeof(HashResult)));
235 
236   return HashCode;
237 }
238 
239 /// Generates and saves a hash code for the given Stmt.
240 /// \param S The given Stmt.
241 /// \param D The Decl containing S.
242 /// \param StmtsByHash Output parameter that will contain the hash codes for
243 ///                    each StmtSequence in the given Stmt.
244 /// \return The hash code of the given Stmt.
245 ///
246 /// If the given Stmt is a CompoundStmt, this method will also generate
247 /// hashes for all possible StmtSequences in the children of this Stmt.
248 static size_t
249 saveHash(const Stmt *S, const Decl *D,
250          std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
251   llvm::MD5 Hash;
252   ASTContext &Context = D->getASTContext();
253 
254   CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
255 
256   auto CS = dyn_cast<CompoundStmt>(S);
257   SmallVector<size_t, 8> ChildHashes;
258 
259   for (const Stmt *Child : S->children()) {
260     if (Child == nullptr) {
261       ChildHashes.push_back(0);
262       continue;
263     }
264     size_t ChildHash = saveHash(Child, D, StmtsByHash);
265     Hash.update(
266         StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
267     ChildHashes.push_back(ChildHash);
268   }
269 
270   if (CS) {
271     // If we're in a CompoundStmt, we hash all possible combinations of child
272     // statements to find clones in those subsequences.
273     // We first go through every possible starting position of a subsequence.
274     for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
275       // Then we try all possible lengths this subsequence could have and
276       // reuse the same hash object to make sure we only hash every child
277       // hash exactly once.
278       llvm::MD5 Hash;
279       for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
280         // Grab the current child hash and put it into our hash. We do
281         // -1 on the index because we start counting the length at 1.
282         size_t ChildHash = ChildHashes[Pos + Length - 1];
283         Hash.update(
284             StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
285         // If we have at least two elements in our subsequence, we can start
286         // saving it.
287         if (Length > 1) {
288           llvm::MD5 SubHash = Hash;
289           StmtsByHash.push_back(std::make_pair(
290               createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
291         }
292       }
293     }
294   }
295 
296   size_t HashCode = createHash(Hash);
297   StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
298   return HashCode;
299 }
300 
301 namespace {
302 /// Wrapper around FoldingSetNodeID that it can be used as the template
303 /// argument of the StmtDataCollector.
304 class FoldingSetNodeIDWrapper {
305 
306   llvm::FoldingSetNodeID &FS;
307 
308 public:
309   FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
310 
311   void update(StringRef Str) { FS.AddString(Str); }
312 };
313 } // end anonymous namespace
314 
315 /// Writes the relevant data from all statements and child statements
316 /// in the given StmtSequence into the given FoldingSetNodeID.
317 static void CollectStmtSequenceData(const StmtSequence &Sequence,
318                                     FoldingSetNodeIDWrapper &OutputData) {
319   for (const Stmt *S : Sequence) {
320     CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
321         S, Sequence.getASTContext(), OutputData);
322 
323     for (const Stmt *Child : S->children()) {
324       if (!Child)
325         continue;
326 
327       CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
328                               OutputData);
329     }
330   }
331 }
332 
333 /// Returns true if both sequences are clones of each other.
334 static bool areSequencesClones(const StmtSequence &LHS,
335                                const StmtSequence &RHS) {
336   // We collect the data from all statements in the sequence as we did before
337   // when generating a hash value for each sequence. But this time we don't
338   // hash the collected data and compare the whole data set instead. This
339   // prevents any false-positives due to hash code collisions.
340   llvm::FoldingSetNodeID DataLHS, DataRHS;
341   FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
342   FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
343 
344   CollectStmtSequenceData(LHS, LHSWrapper);
345   CollectStmtSequenceData(RHS, RHSWrapper);
346 
347   return DataLHS == DataRHS;
348 }
349 
350 void RecursiveCloneTypeIIHashConstraint::constrain(
351     std::vector<CloneDetector::CloneGroup> &Sequences) {
352   // FIXME: Maybe we can do this in-place and don't need this additional vector.
353   std::vector<CloneDetector::CloneGroup> Result;
354 
355   for (CloneDetector::CloneGroup &Group : Sequences) {
356     // We assume in the following code that the Group is non-empty, so we
357     // skip all empty groups.
358     if (Group.empty())
359       continue;
360 
361     std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
362 
363     // Generate hash codes for all children of S and save them in StmtsByHash.
364     for (const StmtSequence &S : Group) {
365       saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
366     }
367 
368     // Sort hash_codes in StmtsByHash.
369     llvm::stable_sort(StmtsByHash, llvm::less_first());
370 
371     // Check for each StmtSequence if its successor has the same hash value.
372     // We don't check the last StmtSequence as it has no successor.
373     // Note: The 'size - 1 ' in the condition is safe because we check for an
374     // empty Group vector at the beginning of this function.
375     for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
376       const auto Current = StmtsByHash[i];
377 
378       // It's likely that we just found a sequence of StmtSequences that
379       // represent a CloneGroup, so we create a new group and start checking and
380       // adding the StmtSequences in this sequence.
381       CloneDetector::CloneGroup NewGroup;
382 
383       size_t PrototypeHash = Current.first;
384 
385       for (; i < StmtsByHash.size(); ++i) {
386         // A different hash value means we have reached the end of the sequence.
387         if (PrototypeHash != StmtsByHash[i].first) {
388           // The current sequence could be the start of a new CloneGroup. So we
389           // decrement i so that we visit it again in the outer loop.
390           // Note: i can never be 0 at this point because we are just comparing
391           // the hash of the Current StmtSequence with itself in the 'if' above.
392           assert(i != 0);
393           --i;
394           break;
395         }
396         // Same hash value means we should add the StmtSequence to the current
397         // group.
398         NewGroup.push_back(StmtsByHash[i].second);
399       }
400 
401       // We created a new clone group with matching hash codes and move it to
402       // the result vector.
403       Result.push_back(NewGroup);
404     }
405   }
406   // Sequences is the output parameter, so we copy our result into it.
407   Sequences = Result;
408 }
409 
410 void RecursiveCloneTypeIIVerifyConstraint::constrain(
411     std::vector<CloneDetector::CloneGroup> &Sequences) {
412   CloneConstraint::splitCloneGroups(
413       Sequences, [](const StmtSequence &A, const StmtSequence &B) {
414         return areSequencesClones(A, B);
415       });
416 }
417 
418 size_t MinComplexityConstraint::calculateStmtComplexity(
419     const StmtSequence &Seq, std::size_t Limit,
420     const std::string &ParentMacroStack) {
421   if (Seq.empty())
422     return 0;
423 
424   size_t Complexity = 1;
425 
426   ASTContext &Context = Seq.getASTContext();
427 
428   // Look up what macros expanded into the current statement.
429   std::string MacroStack =
430       data_collection::getMacroStack(Seq.getBeginLoc(), Context);
431 
432   // First, check if ParentMacroStack is not empty which means we are currently
433   // dealing with a parent statement which was expanded from a macro.
434   // If this parent statement was expanded from the same macros as this
435   // statement, we reduce the initial complexity of this statement to zero.
436   // This causes that a group of statements that were generated by a single
437   // macro expansion will only increase the total complexity by one.
438   // Note: This is not the final complexity of this statement as we still
439   // add the complexity of the child statements to the complexity value.
440   if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
441     Complexity = 0;
442   }
443 
444   // Iterate over the Stmts in the StmtSequence and add their complexity values
445   // to the current complexity value.
446   if (Seq.holdsSequence()) {
447     for (const Stmt *S : Seq) {
448       Complexity += calculateStmtComplexity(
449           StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
450       if (Complexity >= Limit)
451         return Limit;
452     }
453   } else {
454     for (const Stmt *S : Seq.front()->children()) {
455       Complexity += calculateStmtComplexity(
456           StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
457       if (Complexity >= Limit)
458         return Limit;
459     }
460   }
461   return Complexity;
462 }
463 
464 void MatchingVariablePatternConstraint::constrain(
465     std::vector<CloneDetector::CloneGroup> &CloneGroups) {
466   CloneConstraint::splitCloneGroups(
467       CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
468         VariablePattern PatternA(A);
469         VariablePattern PatternB(B);
470         return PatternA.countPatternDifferences(PatternB) == 0;
471       });
472 }
473 
474 void CloneConstraint::splitCloneGroups(
475     std::vector<CloneDetector::CloneGroup> &CloneGroups,
476     llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
477         Compare) {
478   std::vector<CloneDetector::CloneGroup> Result;
479   for (auto &HashGroup : CloneGroups) {
480     // Contains all indexes in HashGroup that were already added to a
481     // CloneGroup.
482     std::vector<char> Indexes;
483     Indexes.resize(HashGroup.size());
484 
485     for (unsigned i = 0; i < HashGroup.size(); ++i) {
486       // Skip indexes that are already part of a CloneGroup.
487       if (Indexes[i])
488         continue;
489 
490       // Pick the first unhandled StmtSequence and consider it as the
491       // beginning
492       // of a new CloneGroup for now.
493       // We don't add i to Indexes because we never iterate back.
494       StmtSequence Prototype = HashGroup[i];
495       CloneDetector::CloneGroup PotentialGroup = {Prototype};
496       ++Indexes[i];
497 
498       // Check all following StmtSequences for clones.
499       for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
500         // Skip indexes that are already part of a CloneGroup.
501         if (Indexes[j])
502           continue;
503 
504         // If a following StmtSequence belongs to our CloneGroup, we add it.
505         const StmtSequence &Candidate = HashGroup[j];
506 
507         if (!Compare(Prototype, Candidate))
508           continue;
509 
510         PotentialGroup.push_back(Candidate);
511         // Make sure we never visit this StmtSequence again.
512         ++Indexes[j];
513       }
514 
515       // Otherwise, add it to the result and continue searching for more
516       // groups.
517       Result.push_back(PotentialGroup);
518     }
519 
520     assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
521   }
522   CloneGroups = Result;
523 }
524 
525 void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
526                                            const Stmt *Mention) {
527   // First check if we already reference this variable
528   for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
529     if (Variables[KindIndex] == VarDecl) {
530       // If yes, add a new occurrence that points to the existing entry in
531       // the Variables vector.
532       Occurences.emplace_back(KindIndex, Mention);
533       return;
534     }
535   }
536   // If this variable wasn't already referenced, add it to the list of
537   // referenced variables and add a occurrence that points to this new entry.
538   Occurences.emplace_back(Variables.size(), Mention);
539   Variables.push_back(VarDecl);
540 }
541 
542 void VariablePattern::addVariables(const Stmt *S) {
543   // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
544   // children). We skip such statements as they don't reference any
545   // variables.
546   if (!S)
547     return;
548 
549   // Check if S is a reference to a variable. If yes, add it to the pattern.
550   if (auto D = dyn_cast<DeclRefExpr>(S)) {
551     if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
552       addVariableOccurence(VD, D);
553   }
554 
555   // Recursively check all children of the given statement.
556   for (const Stmt *Child : S->children()) {
557     addVariables(Child);
558   }
559 }
560 
561 unsigned VariablePattern::countPatternDifferences(
562     const VariablePattern &Other,
563     VariablePattern::SuspiciousClonePair *FirstMismatch) {
564   unsigned NumberOfDifferences = 0;
565 
566   assert(Other.Occurences.size() == Occurences.size());
567   for (unsigned i = 0; i < Occurences.size(); ++i) {
568     auto ThisOccurence = Occurences[i];
569     auto OtherOccurence = Other.Occurences[i];
570     if (ThisOccurence.KindID == OtherOccurence.KindID)
571       continue;
572 
573     ++NumberOfDifferences;
574 
575     // If FirstMismatch is not a nullptr, we need to store information about
576     // the first difference between the two patterns.
577     if (FirstMismatch == nullptr)
578       continue;
579 
580     // Only proceed if we just found the first difference as we only store
581     // information about the first difference.
582     if (NumberOfDifferences != 1)
583       continue;
584 
585     const VarDecl *FirstSuggestion = nullptr;
586     // If there is a variable available in the list of referenced variables
587     // which wouldn't break the pattern if it is used in place of the
588     // current variable, we provide this variable as the suggested fix.
589     if (OtherOccurence.KindID < Variables.size())
590       FirstSuggestion = Variables[OtherOccurence.KindID];
591 
592     // Store information about the first clone.
593     FirstMismatch->FirstCloneInfo =
594         VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
595             Variables[ThisOccurence.KindID], ThisOccurence.Mention,
596             FirstSuggestion);
597 
598     // Same as above but with the other clone. We do this for both clones as
599     // we don't know which clone is the one containing the unintended
600     // pattern error.
601     const VarDecl *SecondSuggestion = nullptr;
602     if (ThisOccurence.KindID < Other.Variables.size())
603       SecondSuggestion = Other.Variables[ThisOccurence.KindID];
604 
605     // Store information about the second clone.
606     FirstMismatch->SecondCloneInfo =
607         VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
608             Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
609             SecondSuggestion);
610 
611     // SuspiciousClonePair guarantees that the first clone always has a
612     // suggested variable associated with it. As we know that one of the two
613     // clones in the pair always has suggestion, we swap the two clones
614     // in case the first clone has no suggested variable which means that
615     // the second clone has a suggested variable and should be first.
616     if (!FirstMismatch->FirstCloneInfo.Suggestion)
617       std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
618 
619     // This ensures that we always have at least one suggestion in a pair.
620     assert(FirstMismatch->FirstCloneInfo.Suggestion);
621   }
622 
623   return NumberOfDifferences;
624 }
625