xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/CFG.cpp (revision ec4deee4e4f2aef1b97d9424f25d04e91fd7dc10)
1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the CFG and CFGBuilder classes for representing and
10 //  building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/DOTGraphTraits.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/SaveAndRestore.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <memory>
59 #include <string>
60 #include <tuple>
61 #include <utility>
62 #include <vector>
63 
64 using namespace clang;
65 
66 static SourceLocation GetEndLoc(Decl *D) {
67   if (VarDecl *VD = dyn_cast<VarDecl>(D))
68     if (Expr *Ex = VD->getInit())
69       return Ex->getSourceRange().getEnd();
70   return D->getLocation();
71 }
72 
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 static bool IsIntegerLiteralConstantExpr(const Expr *E) {
76   // Allow parentheses
77   E = E->IgnoreParens();
78 
79   // Allow conversions to different integer kind.
80   if (const auto *CE = dyn_cast<CastExpr>(E)) {
81     if (CE->getCastKind() != CK_IntegralCast)
82       return false;
83     E = CE->getSubExpr();
84   }
85 
86   // Allow negative numbers.
87   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
88     if (UO->getOpcode() != UO_Minus)
89       return false;
90     E = UO->getSubExpr();
91   }
92 
93   return isa<IntegerLiteral>(E);
94 }
95 
96 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
97 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
98 /// returns nullptr.
99 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
100   E = E->IgnoreParens();
101   if (IsIntegerLiteralConstantExpr(E))
102     return E;
103   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
104     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
105   return nullptr;
106 }
107 
108 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
109 /// NumExpr is an integer literal or an enum constant.
110 ///
111 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
112 /// null.
113 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
114 tryNormalizeBinaryOperator(const BinaryOperator *B) {
115   BinaryOperatorKind Op = B->getOpcode();
116 
117   const Expr *MaybeDecl = B->getLHS();
118   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
119   // Expr looked like `0 == Foo` instead of `Foo == 0`
120   if (Constant == nullptr) {
121     // Flip the operator
122     if (Op == BO_GT)
123       Op = BO_LT;
124     else if (Op == BO_GE)
125       Op = BO_LE;
126     else if (Op == BO_LT)
127       Op = BO_GT;
128     else if (Op == BO_LE)
129       Op = BO_GE;
130 
131     MaybeDecl = B->getRHS();
132     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
133   }
134 
135   return std::make_tuple(MaybeDecl, Op, Constant);
136 }
137 
138 /// For an expression `x == Foo && x == Bar`, this determines whether the
139 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
140 /// literals.
141 ///
142 /// It's an error to pass this arguments that are not either IntegerLiterals
143 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
144 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
145   // User intent isn't clear if they're mixing int literals with enum
146   // constants.
147   if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
148     return false;
149 
150   // Integer literal comparisons, regardless of literal type, are acceptable.
151   if (!isa<DeclRefExpr>(E1))
152     return true;
153 
154   // IntegerLiterals are handled above and only EnumConstantDecls are expected
155   // beyond this point
156   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
157   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
158   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
159 
160   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
161   const DeclContext *DC1 = Decl1->getDeclContext();
162   const DeclContext *DC2 = Decl2->getDeclContext();
163 
164   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
165   return DC1 == DC2;
166 }
167 
168 namespace {
169 
170 class CFGBuilder;
171 
172 /// The CFG builder uses a recursive algorithm to build the CFG.  When
173 ///  we process an expression, sometimes we know that we must add the
174 ///  subexpressions as block-level expressions.  For example:
175 ///
176 ///    exp1 || exp2
177 ///
178 ///  When processing the '||' expression, we know that exp1 and exp2
179 ///  need to be added as block-level expressions, even though they
180 ///  might not normally need to be.  AddStmtChoice records this
181 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
182 ///  the builder has an option not to add a subexpression as a
183 ///  block-level expression.
184 class AddStmtChoice {
185 public:
186   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
187 
188   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
189 
190   bool alwaysAdd(CFGBuilder &builder,
191                  const Stmt *stmt) const;
192 
193   /// Return a copy of this object, except with the 'always-add' bit
194   ///  set as specified.
195   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
196     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
197   }
198 
199 private:
200   Kind kind;
201 };
202 
203 /// LocalScope - Node in tree of local scopes created for C++ implicit
204 /// destructor calls generation. It contains list of automatic variables
205 /// declared in the scope and link to position in previous scope this scope
206 /// began in.
207 ///
208 /// The process of creating local scopes is as follows:
209 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
210 /// - Before processing statements in scope (e.g. CompoundStmt) create
211 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
212 ///   and set CFGBuilder::ScopePos to the end of new scope,
213 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
214 ///   at this VarDecl,
215 /// - For every normal (without jump) end of scope add to CFGBlock destructors
216 ///   for objects in the current scope,
217 /// - For every jump add to CFGBlock destructors for objects
218 ///   between CFGBuilder::ScopePos and local scope position saved for jump
219 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
220 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
221 ///   (adding any variable that doesn't need constructor to be called to
222 ///   LocalScope can break this assumption),
223 ///
224 class LocalScope {
225 public:
226   friend class const_iterator;
227 
228   using AutomaticVarsTy = BumpVector<VarDecl *>;
229 
230   /// const_iterator - Iterates local scope backwards and jumps to previous
231   /// scope on reaching the beginning of currently iterated scope.
232   class const_iterator {
233     const LocalScope* Scope = nullptr;
234 
235     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
236     /// Invalid iterator (with null Scope) has VarIter equal to 0.
237     unsigned VarIter = 0;
238 
239   public:
240     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
241     /// Incrementing invalid iterator is allowed and will result in invalid
242     /// iterator.
243     const_iterator() = default;
244 
245     /// Create valid iterator. In case when S.Prev is an invalid iterator and
246     /// I is equal to 0, this will create invalid iterator.
247     const_iterator(const LocalScope& S, unsigned I)
248         : Scope(&S), VarIter(I) {
249       // Iterator to "end" of scope is not allowed. Handle it by going up
250       // in scopes tree possibly up to invalid iterator in the root.
251       if (VarIter == 0 && Scope)
252         *this = Scope->Prev;
253     }
254 
255     VarDecl *const* operator->() const {
256       assert(Scope && "Dereferencing invalid iterator is not allowed");
257       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
258       return &Scope->Vars[VarIter - 1];
259     }
260 
261     const VarDecl *getFirstVarInScope() const {
262       assert(Scope && "Dereferencing invalid iterator is not allowed");
263       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
264       return Scope->Vars[0];
265     }
266 
267     VarDecl *operator*() const {
268       return *this->operator->();
269     }
270 
271     const_iterator &operator++() {
272       if (!Scope)
273         return *this;
274 
275       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
276       --VarIter;
277       if (VarIter == 0)
278         *this = Scope->Prev;
279       return *this;
280     }
281     const_iterator operator++(int) {
282       const_iterator P = *this;
283       ++*this;
284       return P;
285     }
286 
287     bool operator==(const const_iterator &rhs) const {
288       return Scope == rhs.Scope && VarIter == rhs.VarIter;
289     }
290     bool operator!=(const const_iterator &rhs) const {
291       return !(*this == rhs);
292     }
293 
294     explicit operator bool() const {
295       return *this != const_iterator();
296     }
297 
298     int distance(const_iterator L);
299     const_iterator shared_parent(const_iterator L);
300     bool pointsToFirstDeclaredVar() { return VarIter == 1; }
301   };
302 
303 private:
304   BumpVectorContext ctx;
305 
306   /// Automatic variables in order of declaration.
307   AutomaticVarsTy Vars;
308 
309   /// Iterator to variable in previous scope that was declared just before
310   /// begin of this scope.
311   const_iterator Prev;
312 
313 public:
314   /// Constructs empty scope linked to previous scope in specified place.
315   LocalScope(BumpVectorContext ctx, const_iterator P)
316       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
317 
318   /// Begin of scope in direction of CFG building (backwards).
319   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
320 
321   void addVar(VarDecl *VD) {
322     Vars.push_back(VD, ctx);
323   }
324 };
325 
326 } // namespace
327 
328 /// distance - Calculates distance from this to L. L must be reachable from this
329 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
330 /// number of scopes between this and L.
331 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
332   int D = 0;
333   const_iterator F = *this;
334   while (F.Scope != L.Scope) {
335     assert(F != const_iterator() &&
336            "L iterator is not reachable from F iterator.");
337     D += F.VarIter;
338     F = F.Scope->Prev;
339   }
340   D += F.VarIter - L.VarIter;
341   return D;
342 }
343 
344 /// Calculates the closest parent of this iterator
345 /// that is in a scope reachable through the parents of L.
346 /// I.e. when using 'goto' from this to L, the lifetime of all variables
347 /// between this and shared_parent(L) end.
348 LocalScope::const_iterator
349 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
350   llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
351   while (true) {
352     ScopesOfL.insert(L.Scope);
353     if (L == const_iterator())
354       break;
355     L = L.Scope->Prev;
356   }
357 
358   const_iterator F = *this;
359   while (true) {
360     if (ScopesOfL.count(F.Scope))
361       return F;
362     assert(F != const_iterator() &&
363            "L iterator is not reachable from F iterator.");
364     F = F.Scope->Prev;
365   }
366 }
367 
368 namespace {
369 
370 /// Structure for specifying position in CFG during its build process. It
371 /// consists of CFGBlock that specifies position in CFG and
372 /// LocalScope::const_iterator that specifies position in LocalScope graph.
373 struct BlockScopePosPair {
374   CFGBlock *block = nullptr;
375   LocalScope::const_iterator scopePosition;
376 
377   BlockScopePosPair() = default;
378   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
379       : block(b), scopePosition(scopePos) {}
380 };
381 
382 /// TryResult - a class representing a variant over the values
383 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
384 ///  and is used by the CFGBuilder to decide if a branch condition
385 ///  can be decided up front during CFG construction.
386 class TryResult {
387   int X = -1;
388 
389 public:
390   TryResult() = default;
391   TryResult(bool b) : X(b ? 1 : 0) {}
392 
393   bool isTrue() const { return X == 1; }
394   bool isFalse() const { return X == 0; }
395   bool isKnown() const { return X >= 0; }
396 
397   void negate() {
398     assert(isKnown());
399     X ^= 0x1;
400   }
401 };
402 
403 } // namespace
404 
405 static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
406   if (!R1.isKnown() || !R2.isKnown())
407     return TryResult();
408   return TryResult(R1.isTrue() && R2.isTrue());
409 }
410 
411 namespace {
412 
413 class reverse_children {
414   llvm::SmallVector<Stmt *, 12> childrenBuf;
415   ArrayRef<Stmt *> children;
416 
417 public:
418   reverse_children(Stmt *S);
419 
420   using iterator = ArrayRef<Stmt *>::reverse_iterator;
421 
422   iterator begin() const { return children.rbegin(); }
423   iterator end() const { return children.rend(); }
424 };
425 
426 } // namespace
427 
428 reverse_children::reverse_children(Stmt *S) {
429   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
430     children = CE->getRawSubExprs();
431     return;
432   }
433   switch (S->getStmtClass()) {
434     // Note: Fill in this switch with more cases we want to optimize.
435     case Stmt::InitListExprClass: {
436       InitListExpr *IE = cast<InitListExpr>(S);
437       children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
438                                     IE->getNumInits());
439       return;
440     }
441     default:
442       break;
443   }
444 
445   // Default case for all other statements.
446   for (Stmt *SubStmt : S->children())
447     childrenBuf.push_back(SubStmt);
448 
449   // This needs to be done *after* childrenBuf has been populated.
450   children = childrenBuf;
451 }
452 
453 namespace {
454 
455 /// CFGBuilder - This class implements CFG construction from an AST.
456 ///   The builder is stateful: an instance of the builder should be used to only
457 ///   construct a single CFG.
458 ///
459 ///   Example usage:
460 ///
461 ///     CFGBuilder builder;
462 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
463 ///
464 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
465 ///  the AST in reverse order so that the successor of a basic block is
466 ///  constructed prior to its predecessor.  This allows us to nicely capture
467 ///  implicit fall-throughs without extra basic blocks.
468 class CFGBuilder {
469   using JumpTarget = BlockScopePosPair;
470   using JumpSource = BlockScopePosPair;
471 
472   ASTContext *Context;
473   std::unique_ptr<CFG> cfg;
474 
475   // Current block.
476   CFGBlock *Block = nullptr;
477 
478   // Block after the current block.
479   CFGBlock *Succ = nullptr;
480 
481   JumpTarget ContinueJumpTarget;
482   JumpTarget BreakJumpTarget;
483   JumpTarget SEHLeaveJumpTarget;
484   CFGBlock *SwitchTerminatedBlock = nullptr;
485   CFGBlock *DefaultCaseBlock = nullptr;
486 
487   // This can point either to a try or a __try block. The frontend forbids
488   // mixing both kinds in one function, so having one for both is enough.
489   CFGBlock *TryTerminatedBlock = nullptr;
490 
491   // Current position in local scope.
492   LocalScope::const_iterator ScopePos;
493 
494   // LabelMap records the mapping from Label expressions to their jump targets.
495   using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
496   LabelMapTy LabelMap;
497 
498   // A list of blocks that end with a "goto" that must be backpatched to their
499   // resolved targets upon completion of CFG construction.
500   using BackpatchBlocksTy = std::vector<JumpSource>;
501   BackpatchBlocksTy BackpatchBlocks;
502 
503   // A list of labels whose address has been taken (for indirect gotos).
504   using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
505   LabelSetTy AddressTakenLabels;
506 
507   // Information about the currently visited C++ object construction site.
508   // This is set in the construction trigger and read when the constructor
509   // or a function that returns an object by value is being visited.
510   llvm::DenseMap<Expr *, const ConstructionContextLayer *>
511       ConstructionContextMap;
512 
513   using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
514   DeclsWithEndedScopeSetTy DeclsWithEndedScope;
515 
516   bool badCFG = false;
517   const CFG::BuildOptions &BuildOpts;
518 
519   // State to track for building switch statements.
520   bool switchExclusivelyCovered = false;
521   Expr::EvalResult *switchCond = nullptr;
522 
523   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
524   const Stmt *lastLookup = nullptr;
525 
526   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
527   // during construction of branches for chained logical operators.
528   using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
529   CachedBoolEvalsTy CachedBoolEvals;
530 
531 public:
532   explicit CFGBuilder(ASTContext *astContext,
533                       const CFG::BuildOptions &buildOpts)
534       : Context(astContext), cfg(new CFG()), // crew a new CFG
535         ConstructionContextMap(), BuildOpts(buildOpts) {}
536 
537 
538   // buildCFG - Used by external clients to construct the CFG.
539   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
540 
541   bool alwaysAdd(const Stmt *stmt);
542 
543 private:
544   // Visitors to walk an AST and construct the CFG.
545   CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
546   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
547   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
548   CFGBlock *VisitBreakStmt(BreakStmt *B);
549   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
550   CFGBlock *VisitCaseStmt(CaseStmt *C);
551   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
552   CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
553   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
554                                      AddStmtChoice asc);
555   CFGBlock *VisitContinueStmt(ContinueStmt *C);
556   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
557                                       AddStmtChoice asc);
558   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
559   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
560   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
561   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
562   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
563   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
564                                        AddStmtChoice asc);
565   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
566                                         AddStmtChoice asc);
567   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
568   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
569   CFGBlock *VisitDeclStmt(DeclStmt *DS);
570   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
571   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
572   CFGBlock *VisitDoStmt(DoStmt *D);
573   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
574                                   AddStmtChoice asc, bool ExternallyDestructed);
575   CFGBlock *VisitForStmt(ForStmt *F);
576   CFGBlock *VisitGotoStmt(GotoStmt *G);
577   CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
578   CFGBlock *VisitIfStmt(IfStmt *I);
579   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
580   CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
581   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
582   CFGBlock *VisitLabelStmt(LabelStmt *L);
583   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
584   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
585   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
586   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
587                                                          Stmt *Term,
588                                                          CFGBlock *TrueBlock,
589                                                          CFGBlock *FalseBlock);
590   CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
591                                           AddStmtChoice asc);
592   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
593   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
594   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
595   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
596   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
597   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
598   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
599   CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
600   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
601   CFGBlock *VisitReturnStmt(Stmt *S);
602   CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
603   CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
604   CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
605   CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
606   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
607   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
608   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
609                                           AddStmtChoice asc);
610   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
611   CFGBlock *VisitWhileStmt(WhileStmt *W);
612 
613   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
614                   bool ExternallyDestructed = false);
615   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
616   CFGBlock *VisitChildren(Stmt *S);
617   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
618   CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
619                                         AddStmtChoice asc);
620 
621   void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
622                                     const Stmt *S) {
623     if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
624       appendScopeBegin(B, VD, S);
625   }
626 
627   /// When creating the CFG for temporary destructors, we want to mirror the
628   /// branch structure of the corresponding constructor calls.
629   /// Thus, while visiting a statement for temporary destructors, we keep a
630   /// context to keep track of the following information:
631   /// - whether a subexpression is executed unconditionally
632   /// - if a subexpression is executed conditionally, the first
633   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
634   ///   corresponds to the last temporary destructor we have to call for this
635   ///   subexpression) and the CFG block at that point (which will become the
636   ///   successor block when inserting the decision point).
637   ///
638   /// That way, we can build the branch structure for temporary destructors as
639   /// follows:
640   /// 1. If a subexpression is executed unconditionally, we add the temporary
641   ///    destructor calls to the current block.
642   /// 2. If a subexpression is executed conditionally, when we encounter a
643   ///    CXXBindTemporaryExpr:
644   ///    a) If it is the first temporary destructor call in the subexpression,
645   ///       we remember the CXXBindTemporaryExpr and the current block in the
646   ///       TempDtorContext; we start a new block, and insert the temporary
647   ///       destructor call.
648   ///    b) Otherwise, add the temporary destructor call to the current block.
649   ///  3. When we finished visiting a conditionally executed subexpression,
650   ///     and we found at least one temporary constructor during the visitation
651   ///     (2.a has executed), we insert a decision block that uses the
652   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
653   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
654   ///     branches to the stored successor.
655   struct TempDtorContext {
656     TempDtorContext() = default;
657     TempDtorContext(TryResult KnownExecuted)
658         : IsConditional(true), KnownExecuted(KnownExecuted) {}
659 
660     /// Returns whether we need to start a new branch for a temporary destructor
661     /// call. This is the case when the temporary destructor is
662     /// conditionally executed, and it is the first one we encounter while
663     /// visiting a subexpression - other temporary destructors at the same level
664     /// will be added to the same block and are executed under the same
665     /// condition.
666     bool needsTempDtorBranch() const {
667       return IsConditional && !TerminatorExpr;
668     }
669 
670     /// Remember the successor S of a temporary destructor decision branch for
671     /// the corresponding CXXBindTemporaryExpr E.
672     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
673       Succ = S;
674       TerminatorExpr = E;
675     }
676 
677     const bool IsConditional = false;
678     const TryResult KnownExecuted = true;
679     CFGBlock *Succ = nullptr;
680     CXXBindTemporaryExpr *TerminatorExpr = nullptr;
681   };
682 
683   // Visitors to walk an AST and generate destructors of temporaries in
684   // full expression.
685   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
686                                    TempDtorContext &Context);
687   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E,  bool ExternallyDestructed,
688                                            TempDtorContext &Context);
689   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
690                                                  bool ExternallyDestructed,
691                                                  TempDtorContext &Context);
692   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
693       CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
694   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
695       AbstractConditionalOperator *E, bool ExternallyDestructed,
696       TempDtorContext &Context);
697   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
698                                    CFGBlock *FalseSucc = nullptr);
699 
700   // NYS == Not Yet Supported
701   CFGBlock *NYS() {
702     badCFG = true;
703     return Block;
704   }
705 
706   // Remember to apply the construction context based on the current \p Layer
707   // when constructing the CFG element for \p CE.
708   void consumeConstructionContext(const ConstructionContextLayer *Layer,
709                                   Expr *E);
710 
711   // Scan \p Child statement to find constructors in it, while keeping in mind
712   // that its parent statement is providing a partial construction context
713   // described by \p Layer. If a constructor is found, it would be assigned
714   // the context based on the layer. If an additional construction context layer
715   // is found, the function recurses into that.
716   void findConstructionContexts(const ConstructionContextLayer *Layer,
717                                 Stmt *Child);
718 
719   // Scan all arguments of a call expression for a construction context.
720   // These sorts of call expressions don't have a common superclass,
721   // hence strict duck-typing.
722   template <typename CallLikeExpr,
723             typename = typename std::enable_if<
724                 std::is_same<CallLikeExpr, CallExpr>::value ||
725                 std::is_same<CallLikeExpr, CXXConstructExpr>::value ||
726                 std::is_same<CallLikeExpr, ObjCMessageExpr>::value>>
727   void findConstructionContextsForArguments(CallLikeExpr *E) {
728     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
729       Expr *Arg = E->getArg(i);
730       if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
731         findConstructionContexts(
732             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
733                                              ConstructionContextItem(E, i)),
734             Arg);
735     }
736   }
737 
738   // Unset the construction context after consuming it. This is done immediately
739   // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
740   // there's no need to do this manually in every Visit... function.
741   void cleanupConstructionContext(Expr *E);
742 
743   void autoCreateBlock() { if (!Block) Block = createBlock(); }
744   CFGBlock *createBlock(bool add_successor = true);
745   CFGBlock *createNoReturnBlock();
746 
747   CFGBlock *addStmt(Stmt *S) {
748     return Visit(S, AddStmtChoice::AlwaysAdd);
749   }
750 
751   CFGBlock *addInitializer(CXXCtorInitializer *I);
752   void addLoopExit(const Stmt *LoopStmt);
753   void addAutomaticObjDtors(LocalScope::const_iterator B,
754                             LocalScope::const_iterator E, Stmt *S);
755   void addLifetimeEnds(LocalScope::const_iterator B,
756                        LocalScope::const_iterator E, Stmt *S);
757   void addAutomaticObjHandling(LocalScope::const_iterator B,
758                                LocalScope::const_iterator E, Stmt *S);
759   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
760   void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
761                     Stmt *S);
762 
763   void getDeclsWithEndedScope(LocalScope::const_iterator B,
764                               LocalScope::const_iterator E, Stmt *S);
765 
766   // Local scopes creation.
767   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
768 
769   void addLocalScopeForStmt(Stmt *S);
770   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
771                                        LocalScope* Scope = nullptr);
772   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
773 
774   void addLocalScopeAndDtors(Stmt *S);
775 
776   const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
777     if (!BuildOpts.AddRichCXXConstructors)
778       return nullptr;
779 
780     const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
781     if (!Layer)
782       return nullptr;
783 
784     cleanupConstructionContext(E);
785     return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
786                                                  Layer);
787   }
788 
789   // Interface to CFGBlock - adding CFGElements.
790 
791   void appendStmt(CFGBlock *B, const Stmt *S) {
792     if (alwaysAdd(S) && cachedEntry)
793       cachedEntry->second = B;
794 
795     // All block-level expressions should have already been IgnoreParens()ed.
796     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
797     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
798   }
799 
800   void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
801     if (const ConstructionContext *CC =
802             retrieveAndCleanupConstructionContext(CE)) {
803       B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
804       return;
805     }
806 
807     // No valid construction context found. Fall back to statement.
808     B->appendStmt(CE, cfg->getBumpVectorContext());
809   }
810 
811   void appendCall(CFGBlock *B, CallExpr *CE) {
812     if (alwaysAdd(CE) && cachedEntry)
813       cachedEntry->second = B;
814 
815     if (const ConstructionContext *CC =
816             retrieveAndCleanupConstructionContext(CE)) {
817       B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
818       return;
819     }
820 
821     // No valid construction context found. Fall back to statement.
822     B->appendStmt(CE, cfg->getBumpVectorContext());
823   }
824 
825   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
826     B->appendInitializer(I, cfg->getBumpVectorContext());
827   }
828 
829   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
830     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
831   }
832 
833   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
834     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
835   }
836 
837   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
838     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
839   }
840 
841   void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
842     if (alwaysAdd(ME) && cachedEntry)
843       cachedEntry->second = B;
844 
845     if (const ConstructionContext *CC =
846             retrieveAndCleanupConstructionContext(ME)) {
847       B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
848       return;
849     }
850 
851     B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
852                   cfg->getBumpVectorContext());
853   }
854 
855   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
856     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
857   }
858 
859   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
860     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
861   }
862 
863   void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
864     B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
865   }
866 
867   void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
868     B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
869   }
870 
871   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
872     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
873   }
874 
875   void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
876       LocalScope::const_iterator B, LocalScope::const_iterator E);
877 
878   void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
879                                                  LocalScope::const_iterator B,
880                                                  LocalScope::const_iterator E);
881 
882   const VarDecl *
883   prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
884                                             LocalScope::const_iterator B,
885                                             LocalScope::const_iterator E);
886 
887   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
888     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
889                     cfg->getBumpVectorContext());
890   }
891 
892   /// Add a reachable successor to a block, with the alternate variant that is
893   /// unreachable.
894   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
895     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
896                     cfg->getBumpVectorContext());
897   }
898 
899   void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
900     if (BuildOpts.AddScopes)
901       B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
902   }
903 
904   void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
905     if (BuildOpts.AddScopes)
906       B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
907   }
908 
909   void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
910     if (BuildOpts.AddScopes)
911       B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
912   }
913 
914   void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
915     if (BuildOpts.AddScopes)
916       B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
917   }
918 
919   /// Find a relational comparison with an expression evaluating to a
920   /// boolean and a constant other than 0 and 1.
921   /// e.g. if ((x < y) == 10)
922   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
923     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
924     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
925 
926     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
927     const Expr *BoolExpr = RHSExpr;
928     bool IntFirst = true;
929     if (!IntLiteral) {
930       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
931       BoolExpr = LHSExpr;
932       IntFirst = false;
933     }
934 
935     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
936       return TryResult();
937 
938     llvm::APInt IntValue = IntLiteral->getValue();
939     if ((IntValue == 1) || (IntValue == 0))
940       return TryResult();
941 
942     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
943                      !IntValue.isNegative();
944 
945     BinaryOperatorKind Bok = B->getOpcode();
946     if (Bok == BO_GT || Bok == BO_GE) {
947       // Always true for 10 > bool and bool > -1
948       // Always false for -1 > bool and bool > 10
949       return TryResult(IntFirst == IntLarger);
950     } else {
951       // Always true for -1 < bool and bool < 10
952       // Always false for 10 < bool and bool < -1
953       return TryResult(IntFirst != IntLarger);
954     }
955   }
956 
957   /// Find an incorrect equality comparison. Either with an expression
958   /// evaluating to a boolean and a constant other than 0 and 1.
959   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
960   /// true/false e.q. (x & 8) == 4.
961   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
962     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
963     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
964 
965     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
966     const Expr *BoolExpr = RHSExpr;
967 
968     if (!IntLiteral) {
969       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
970       BoolExpr = LHSExpr;
971     }
972 
973     if (!IntLiteral)
974       return TryResult();
975 
976     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
977     if (BitOp && (BitOp->getOpcode() == BO_And ||
978                   BitOp->getOpcode() == BO_Or)) {
979       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
980       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
981 
982       const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
983 
984       if (!IntLiteral2)
985         IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
986 
987       if (!IntLiteral2)
988         return TryResult();
989 
990       llvm::APInt L1 = IntLiteral->getValue();
991       llvm::APInt L2 = IntLiteral2->getValue();
992       if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
993           (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
994         if (BuildOpts.Observer)
995           BuildOpts.Observer->compareBitwiseEquality(B,
996                                                      B->getOpcode() != BO_EQ);
997         TryResult(B->getOpcode() != BO_EQ);
998       }
999     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
1000       llvm::APInt IntValue = IntLiteral->getValue();
1001       if ((IntValue == 1) || (IntValue == 0)) {
1002         return TryResult();
1003       }
1004       return TryResult(B->getOpcode() != BO_EQ);
1005     }
1006 
1007     return TryResult();
1008   }
1009 
1010   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1011                                           const llvm::APSInt &Value1,
1012                                           const llvm::APSInt &Value2) {
1013     assert(Value1.isSigned() == Value2.isSigned());
1014     switch (Relation) {
1015       default:
1016         return TryResult();
1017       case BO_EQ:
1018         return TryResult(Value1 == Value2);
1019       case BO_NE:
1020         return TryResult(Value1 != Value2);
1021       case BO_LT:
1022         return TryResult(Value1 <  Value2);
1023       case BO_LE:
1024         return TryResult(Value1 <= Value2);
1025       case BO_GT:
1026         return TryResult(Value1 >  Value2);
1027       case BO_GE:
1028         return TryResult(Value1 >= Value2);
1029     }
1030   }
1031 
1032   /// Find a pair of comparison expressions with or without parentheses
1033   /// with a shared variable and constants and a logical operator between them
1034   /// that always evaluates to either true or false.
1035   /// e.g. if (x != 3 || x != 4)
1036   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1037     assert(B->isLogicalOp());
1038     const BinaryOperator *LHS =
1039         dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
1040     const BinaryOperator *RHS =
1041         dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
1042     if (!LHS || !RHS)
1043       return {};
1044 
1045     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1046       return {};
1047 
1048     const Expr *DeclExpr1;
1049     const Expr *NumExpr1;
1050     BinaryOperatorKind BO1;
1051     std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1052 
1053     if (!DeclExpr1 || !NumExpr1)
1054       return {};
1055 
1056     const Expr *DeclExpr2;
1057     const Expr *NumExpr2;
1058     BinaryOperatorKind BO2;
1059     std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1060 
1061     if (!DeclExpr2 || !NumExpr2)
1062       return {};
1063 
1064     // Check that it is the same variable on both sides.
1065     if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1066       return {};
1067 
1068     // Make sure the user's intent is clear (e.g. they're comparing against two
1069     // int literals, or two things from the same enum)
1070     if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1071       return {};
1072 
1073     Expr::EvalResult L1Result, L2Result;
1074     if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1075         !NumExpr2->EvaluateAsInt(L2Result, *Context))
1076       return {};
1077 
1078     llvm::APSInt L1 = L1Result.Val.getInt();
1079     llvm::APSInt L2 = L2Result.Val.getInt();
1080 
1081     // Can't compare signed with unsigned or with different bit width.
1082     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1083       return {};
1084 
1085     // Values that will be used to determine if result of logical
1086     // operator is always true/false
1087     const llvm::APSInt Values[] = {
1088       // Value less than both Value1 and Value2
1089       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1090       // L1
1091       L1,
1092       // Value between Value1 and Value2
1093       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1094                               L1.isUnsigned()),
1095       // L2
1096       L2,
1097       // Value greater than both Value1 and Value2
1098       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1099     };
1100 
1101     // Check whether expression is always true/false by evaluating the following
1102     // * variable x is less than the smallest literal.
1103     // * variable x is equal to the smallest literal.
1104     // * Variable x is between smallest and largest literal.
1105     // * Variable x is equal to the largest literal.
1106     // * Variable x is greater than largest literal.
1107     bool AlwaysTrue = true, AlwaysFalse = true;
1108     // Track value of both subexpressions.  If either side is always
1109     // true/false, another warning should have already been emitted.
1110     bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1111     bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1112     for (const llvm::APSInt &Value : Values) {
1113       TryResult Res1, Res2;
1114       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1115       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1116 
1117       if (!Res1.isKnown() || !Res2.isKnown())
1118         return {};
1119 
1120       if (B->getOpcode() == BO_LAnd) {
1121         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1122         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1123       } else {
1124         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1125         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1126       }
1127 
1128       LHSAlwaysTrue &= Res1.isTrue();
1129       LHSAlwaysFalse &= Res1.isFalse();
1130       RHSAlwaysTrue &= Res2.isTrue();
1131       RHSAlwaysFalse &= Res2.isFalse();
1132     }
1133 
1134     if (AlwaysTrue || AlwaysFalse) {
1135       if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1136           !RHSAlwaysFalse && BuildOpts.Observer)
1137         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1138       return TryResult(AlwaysTrue);
1139     }
1140     return {};
1141   }
1142 
1143   /// A bitwise-or with a non-zero constant always evaluates to true.
1144   TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1145     const Expr *LHSConstant =
1146         tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1147     const Expr *RHSConstant =
1148         tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1149 
1150     if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1151       return {};
1152 
1153     const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1154 
1155     Expr::EvalResult Result;
1156     if (!Constant->EvaluateAsInt(Result, *Context))
1157       return {};
1158 
1159     if (Result.Val.getInt() == 0)
1160       return {};
1161 
1162     if (BuildOpts.Observer)
1163       BuildOpts.Observer->compareBitwiseOr(B);
1164 
1165     return TryResult(true);
1166   }
1167 
1168   /// Try and evaluate an expression to an integer constant.
1169   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1170     if (!BuildOpts.PruneTriviallyFalseEdges)
1171       return false;
1172     return !S->isTypeDependent() &&
1173            !S->isValueDependent() &&
1174            S->EvaluateAsRValue(outResult, *Context);
1175   }
1176 
1177   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1178   /// if we can evaluate to a known value, otherwise return -1.
1179   TryResult tryEvaluateBool(Expr *S) {
1180     if (!BuildOpts.PruneTriviallyFalseEdges ||
1181         S->isTypeDependent() || S->isValueDependent())
1182       return {};
1183 
1184     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1185       if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1186         // Check the cache first.
1187         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1188         if (I != CachedBoolEvals.end())
1189           return I->second; // already in map;
1190 
1191         // Retrieve result at first, or the map might be updated.
1192         TryResult Result = evaluateAsBooleanConditionNoCache(S);
1193         CachedBoolEvals[S] = Result; // update or insert
1194         return Result;
1195       }
1196       else {
1197         switch (Bop->getOpcode()) {
1198           default: break;
1199           // For 'x & 0' and 'x * 0', we can determine that
1200           // the value is always false.
1201           case BO_Mul:
1202           case BO_And: {
1203             // If either operand is zero, we know the value
1204             // must be false.
1205             Expr::EvalResult LHSResult;
1206             if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1207               llvm::APSInt IntVal = LHSResult.Val.getInt();
1208               if (!IntVal.getBoolValue()) {
1209                 return TryResult(false);
1210               }
1211             }
1212             Expr::EvalResult RHSResult;
1213             if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1214               llvm::APSInt IntVal = RHSResult.Val.getInt();
1215               if (!IntVal.getBoolValue()) {
1216                 return TryResult(false);
1217               }
1218             }
1219           }
1220           break;
1221         }
1222       }
1223     }
1224 
1225     return evaluateAsBooleanConditionNoCache(S);
1226   }
1227 
1228   /// Evaluate as boolean \param E without using the cache.
1229   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1230     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1231       if (Bop->isLogicalOp()) {
1232         TryResult LHS = tryEvaluateBool(Bop->getLHS());
1233         if (LHS.isKnown()) {
1234           // We were able to evaluate the LHS, see if we can get away with not
1235           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1236           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1237             return LHS.isTrue();
1238 
1239           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1240           if (RHS.isKnown()) {
1241             if (Bop->getOpcode() == BO_LOr)
1242               return LHS.isTrue() || RHS.isTrue();
1243             else
1244               return LHS.isTrue() && RHS.isTrue();
1245           }
1246         } else {
1247           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1248           if (RHS.isKnown()) {
1249             // We can't evaluate the LHS; however, sometimes the result
1250             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1251             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1252               return RHS.isTrue();
1253           } else {
1254             TryResult BopRes = checkIncorrectLogicOperator(Bop);
1255             if (BopRes.isKnown())
1256               return BopRes.isTrue();
1257           }
1258         }
1259 
1260         return {};
1261       } else if (Bop->isEqualityOp()) {
1262           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1263           if (BopRes.isKnown())
1264             return BopRes.isTrue();
1265       } else if (Bop->isRelationalOp()) {
1266         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1267         if (BopRes.isKnown())
1268           return BopRes.isTrue();
1269       } else if (Bop->getOpcode() == BO_Or) {
1270         TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1271         if (BopRes.isKnown())
1272           return BopRes.isTrue();
1273       }
1274     }
1275 
1276     bool Result;
1277     if (E->EvaluateAsBooleanCondition(Result, *Context))
1278       return Result;
1279 
1280     return {};
1281   }
1282 
1283   bool hasTrivialDestructor(VarDecl *VD);
1284 };
1285 
1286 } // namespace
1287 
1288 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1289                                      const Stmt *stmt) const {
1290   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1291 }
1292 
1293 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1294   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1295 
1296   if (!BuildOpts.forcedBlkExprs)
1297     return shouldAdd;
1298 
1299   if (lastLookup == stmt) {
1300     if (cachedEntry) {
1301       assert(cachedEntry->first == stmt);
1302       return true;
1303     }
1304     return shouldAdd;
1305   }
1306 
1307   lastLookup = stmt;
1308 
1309   // Perform the lookup!
1310   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1311 
1312   if (!fb) {
1313     // No need to update 'cachedEntry', since it will always be null.
1314     assert(!cachedEntry);
1315     return shouldAdd;
1316   }
1317 
1318   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1319   if (itr == fb->end()) {
1320     cachedEntry = nullptr;
1321     return shouldAdd;
1322   }
1323 
1324   cachedEntry = &*itr;
1325   return true;
1326 }
1327 
1328 // FIXME: Add support for dependent-sized array types in C++?
1329 // Does it even make sense to build a CFG for an uninstantiated template?
1330 static const VariableArrayType *FindVA(const Type *t) {
1331   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1332     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1333       if (vat->getSizeExpr())
1334         return vat;
1335 
1336     t = vt->getElementType().getTypePtr();
1337   }
1338 
1339   return nullptr;
1340 }
1341 
1342 void CFGBuilder::consumeConstructionContext(
1343     const ConstructionContextLayer *Layer, Expr *E) {
1344   assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1345           isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1346   if (const ConstructionContextLayer *PreviouslyStoredLayer =
1347           ConstructionContextMap.lookup(E)) {
1348     (void)PreviouslyStoredLayer;
1349     // We might have visited this child when we were finding construction
1350     // contexts within its parents.
1351     assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1352            "Already within a different construction context!");
1353   } else {
1354     ConstructionContextMap[E] = Layer;
1355   }
1356 }
1357 
1358 void CFGBuilder::findConstructionContexts(
1359     const ConstructionContextLayer *Layer, Stmt *Child) {
1360   if (!BuildOpts.AddRichCXXConstructors)
1361     return;
1362 
1363   if (!Child)
1364     return;
1365 
1366   auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1367     return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1368                                             Layer);
1369   };
1370 
1371   switch(Child->getStmtClass()) {
1372   case Stmt::CXXConstructExprClass:
1373   case Stmt::CXXTemporaryObjectExprClass: {
1374     // Support pre-C++17 copy elision AST.
1375     auto *CE = cast<CXXConstructExpr>(Child);
1376     if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1377       findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1378     }
1379 
1380     consumeConstructionContext(Layer, CE);
1381     break;
1382   }
1383   // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1384   // FIXME: An isa<> would look much better but this whole switch is a
1385   // workaround for an internal compiler error in MSVC 2015 (see r326021).
1386   case Stmt::CallExprClass:
1387   case Stmt::CXXMemberCallExprClass:
1388   case Stmt::CXXOperatorCallExprClass:
1389   case Stmt::UserDefinedLiteralClass:
1390   case Stmt::ObjCMessageExprClass: {
1391     auto *E = cast<Expr>(Child);
1392     if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1393       consumeConstructionContext(Layer, E);
1394     break;
1395   }
1396   case Stmt::ExprWithCleanupsClass: {
1397     auto *Cleanups = cast<ExprWithCleanups>(Child);
1398     findConstructionContexts(Layer, Cleanups->getSubExpr());
1399     break;
1400   }
1401   case Stmt::CXXFunctionalCastExprClass: {
1402     auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1403     findConstructionContexts(Layer, Cast->getSubExpr());
1404     break;
1405   }
1406   case Stmt::ImplicitCastExprClass: {
1407     auto *Cast = cast<ImplicitCastExpr>(Child);
1408     // Should we support other implicit cast kinds?
1409     switch (Cast->getCastKind()) {
1410     case CK_NoOp:
1411     case CK_ConstructorConversion:
1412       findConstructionContexts(Layer, Cast->getSubExpr());
1413       break;
1414     default:
1415       break;
1416     }
1417     break;
1418   }
1419   case Stmt::CXXBindTemporaryExprClass: {
1420     auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1421     findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1422     break;
1423   }
1424   case Stmt::MaterializeTemporaryExprClass: {
1425     // Normally we don't want to search in MaterializeTemporaryExpr because
1426     // it indicates the beginning of a temporary object construction context,
1427     // so it shouldn't be found in the middle. However, if it is the beginning
1428     // of an elidable copy or move construction context, we need to include it.
1429     if (Layer->getItem().getKind() ==
1430         ConstructionContextItem::ElidableConstructorKind) {
1431       auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1432       findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1433     }
1434     break;
1435   }
1436   case Stmt::ConditionalOperatorClass: {
1437     auto *CO = cast<ConditionalOperator>(Child);
1438     if (Layer->getItem().getKind() !=
1439         ConstructionContextItem::MaterializationKind) {
1440       // If the object returned by the conditional operator is not going to be a
1441       // temporary object that needs to be immediately materialized, then
1442       // it must be C++17 with its mandatory copy elision. Do not yet promise
1443       // to support this case.
1444       assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1445              Context->getLangOpts().CPlusPlus17);
1446       break;
1447     }
1448     findConstructionContexts(Layer, CO->getLHS());
1449     findConstructionContexts(Layer, CO->getRHS());
1450     break;
1451   }
1452   case Stmt::InitListExprClass: {
1453     auto *ILE = cast<InitListExpr>(Child);
1454     if (ILE->isTransparent()) {
1455       findConstructionContexts(Layer, ILE->getInit(0));
1456       break;
1457     }
1458     // TODO: Handle other cases. For now, fail to find construction contexts.
1459     break;
1460   }
1461   default:
1462     break;
1463   }
1464 }
1465 
1466 void CFGBuilder::cleanupConstructionContext(Expr *E) {
1467   assert(BuildOpts.AddRichCXXConstructors &&
1468          "We should not be managing construction contexts!");
1469   assert(ConstructionContextMap.count(E) &&
1470          "Cannot exit construction context without the context!");
1471   ConstructionContextMap.erase(E);
1472 }
1473 
1474 
1475 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
1476 ///  arbitrary statement.  Examples include a single expression or a function
1477 ///  body (compound statement).  The ownership of the returned CFG is
1478 ///  transferred to the caller.  If CFG construction fails, this method returns
1479 ///  NULL.
1480 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1481   assert(cfg.get());
1482   if (!Statement)
1483     return nullptr;
1484 
1485   // Create an empty block that will serve as the exit block for the CFG.  Since
1486   // this is the first block added to the CFG, it will be implicitly registered
1487   // as the exit block.
1488   Succ = createBlock();
1489   assert(Succ == &cfg->getExit());
1490   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
1491 
1492   assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
1493          "AddImplicitDtors and AddLifetime cannot be used at the same time");
1494 
1495   if (BuildOpts.AddImplicitDtors)
1496     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1497       addImplicitDtorsForDestructor(DD);
1498 
1499   // Visit the statements and create the CFG.
1500   CFGBlock *B = addStmt(Statement);
1501 
1502   if (badCFG)
1503     return nullptr;
1504 
1505   // For C++ constructor add initializers to CFG. Constructors of virtual bases
1506   // are ignored unless the object is of the most derived class.
1507   //   class VBase { VBase() = default; VBase(int) {} };
1508   //   class A : virtual public VBase { A() : VBase(0) {} };
1509   //   class B : public A {};
1510   //   B b; // Constructor calls in order: VBase(), A(), B().
1511   //        // VBase(0) is ignored because A isn't the most derived class.
1512   // This may result in the virtual base(s) being already initialized at this
1513   // point, in which case we should jump right onto non-virtual bases and
1514   // fields. To handle this, make a CFG branch. We only need to add one such
1515   // branch per constructor, since the Standard states that all virtual bases
1516   // shall be initialized before non-virtual bases and direct data members.
1517   if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1518     CFGBlock *VBaseSucc = nullptr;
1519     for (auto *I : llvm::reverse(CD->inits())) {
1520       if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1521           I->isBaseInitializer() && I->isBaseVirtual()) {
1522         // We've reached the first virtual base init while iterating in reverse
1523         // order. Make a new block for virtual base initializers so that we
1524         // could skip them.
1525         VBaseSucc = Succ = B ? B : &cfg->getExit();
1526         Block = createBlock();
1527       }
1528       B = addInitializer(I);
1529       if (badCFG)
1530         return nullptr;
1531     }
1532     if (VBaseSucc) {
1533       // Make a branch block for potentially skipping virtual base initializers.
1534       Succ = VBaseSucc;
1535       B = createBlock();
1536       B->setTerminator(
1537           CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1538       addSuccessor(B, Block, true);
1539     }
1540   }
1541 
1542   if (B)
1543     Succ = B;
1544 
1545   // Backpatch the gotos whose label -> block mappings we didn't know when we
1546   // encountered them.
1547   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1548                                    E = BackpatchBlocks.end(); I != E; ++I ) {
1549 
1550     CFGBlock *B = I->block;
1551     if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1552       LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1553       // If there is no target for the goto, then we are looking at an
1554       // incomplete AST.  Handle this by not registering a successor.
1555       if (LI == LabelMap.end())
1556         continue;
1557       JumpTarget JT = LI->second;
1558       prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
1559                                                 JT.scopePosition);
1560       prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1561                                              JT.scopePosition);
1562       const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
1563           B, I->scopePosition, JT.scopePosition);
1564       appendScopeBegin(JT.block, VD, G);
1565       addSuccessor(B, JT.block);
1566     };
1567     if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1568       CFGBlock *Successor  = (I+1)->block;
1569       for (auto *L : G->labels()) {
1570         LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1571         // If there is no target for the goto, then we are looking at an
1572         // incomplete AST.  Handle this by not registering a successor.
1573         if (LI == LabelMap.end())
1574           continue;
1575         JumpTarget JT = LI->second;
1576         // Successor has been added, so skip it.
1577         if (JT.block == Successor)
1578           continue;
1579         addSuccessor(B, JT.block);
1580       }
1581       I++;
1582     }
1583   }
1584 
1585   // Add successors to the Indirect Goto Dispatch block (if we have one).
1586   if (CFGBlock *B = cfg->getIndirectGotoBlock())
1587     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1588                               E = AddressTakenLabels.end(); I != E; ++I ) {
1589       // Lookup the target block.
1590       LabelMapTy::iterator LI = LabelMap.find(*I);
1591 
1592       // If there is no target block that contains label, then we are looking
1593       // at an incomplete AST.  Handle this by not registering a successor.
1594       if (LI == LabelMap.end()) continue;
1595 
1596       addSuccessor(B, LI->second.block);
1597     }
1598 
1599   // Create an empty entry block that has no predecessors.
1600   cfg->setEntry(createBlock());
1601 
1602   if (BuildOpts.AddRichCXXConstructors)
1603     assert(ConstructionContextMap.empty() &&
1604            "Not all construction contexts were cleaned up!");
1605 
1606   return std::move(cfg);
1607 }
1608 
1609 /// createBlock - Used to lazily create blocks that are connected
1610 ///  to the current (global) succcessor.
1611 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1612   CFGBlock *B = cfg->createBlock();
1613   if (add_successor && Succ)
1614     addSuccessor(B, Succ);
1615   return B;
1616 }
1617 
1618 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1619 /// CFG. It is *not* connected to the current (global) successor, and instead
1620 /// directly tied to the exit block in order to be reachable.
1621 CFGBlock *CFGBuilder::createNoReturnBlock() {
1622   CFGBlock *B = createBlock(false);
1623   B->setHasNoReturnElement();
1624   addSuccessor(B, &cfg->getExit(), Succ);
1625   return B;
1626 }
1627 
1628 /// addInitializer - Add C++ base or member initializer element to CFG.
1629 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1630   if (!BuildOpts.AddInitializers)
1631     return Block;
1632 
1633   bool HasTemporaries = false;
1634 
1635   // Destructors of temporaries in initialization expression should be called
1636   // after initialization finishes.
1637   Expr *Init = I->getInit();
1638   if (Init) {
1639     HasTemporaries = isa<ExprWithCleanups>(Init);
1640 
1641     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1642       // Generate destructors for temporaries in initialization expression.
1643       TempDtorContext Context;
1644       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1645                              /*ExternallyDestructed=*/false, Context);
1646     }
1647   }
1648 
1649   autoCreateBlock();
1650   appendInitializer(Block, I);
1651 
1652   if (Init) {
1653     findConstructionContexts(
1654         ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1655         Init);
1656 
1657     if (HasTemporaries) {
1658       // For expression with temporaries go directly to subexpression to omit
1659       // generating destructors for the second time.
1660       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1661     }
1662     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1663       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1664         // In general, appending the expression wrapped by a CXXDefaultInitExpr
1665         // may cause the same Expr to appear more than once in the CFG. Doing it
1666         // here is safe because there's only one initializer per field.
1667         autoCreateBlock();
1668         appendStmt(Block, Default);
1669         if (Stmt *Child = Default->getExpr())
1670           if (CFGBlock *R = Visit(Child))
1671             Block = R;
1672         return Block;
1673       }
1674     }
1675     return Visit(Init);
1676   }
1677 
1678   return Block;
1679 }
1680 
1681 /// Retrieve the type of the temporary object whose lifetime was
1682 /// extended by a local reference with the given initializer.
1683 static QualType getReferenceInitTemporaryType(const Expr *Init,
1684                                               bool *FoundMTE = nullptr) {
1685   while (true) {
1686     // Skip parentheses.
1687     Init = Init->IgnoreParens();
1688 
1689     // Skip through cleanups.
1690     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1691       Init = EWC->getSubExpr();
1692       continue;
1693     }
1694 
1695     // Skip through the temporary-materialization expression.
1696     if (const MaterializeTemporaryExpr *MTE
1697           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1698       Init = MTE->getSubExpr();
1699       if (FoundMTE)
1700         *FoundMTE = true;
1701       continue;
1702     }
1703 
1704     // Skip sub-object accesses into rvalues.
1705     SmallVector<const Expr *, 2> CommaLHSs;
1706     SmallVector<SubobjectAdjustment, 2> Adjustments;
1707     const Expr *SkippedInit =
1708         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1709     if (SkippedInit != Init) {
1710       Init = SkippedInit;
1711       continue;
1712     }
1713 
1714     break;
1715   }
1716 
1717   return Init->getType();
1718 }
1719 
1720 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1721 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1722 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1723   if(!BuildOpts.AddLoopExit)
1724     return;
1725   autoCreateBlock();
1726   appendLoopExit(Block, LoopStmt);
1727 }
1728 
1729 void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
1730                                         LocalScope::const_iterator E, Stmt *S) {
1731   if (!BuildOpts.AddScopes)
1732     return;
1733 
1734   if (B == E)
1735     return;
1736 
1737   // To go from B to E, one first goes up the scopes from B to P
1738   // then sideways in one scope from P to P' and then down
1739   // the scopes from P' to E.
1740   // The lifetime of all objects between B and P end.
1741   LocalScope::const_iterator P = B.shared_parent(E);
1742   int Dist = B.distance(P);
1743   if (Dist <= 0)
1744     return;
1745 
1746   for (LocalScope::const_iterator I = B; I != P; ++I)
1747     if (I.pointsToFirstDeclaredVar())
1748       DeclsWithEndedScope.insert(*I);
1749 }
1750 
1751 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1752                                          LocalScope::const_iterator E,
1753                                          Stmt *S) {
1754   getDeclsWithEndedScope(B, E, S);
1755   if (BuildOpts.AddScopes)
1756     addScopesEnd(B, E, S);
1757   if (BuildOpts.AddImplicitDtors)
1758     addAutomaticObjDtors(B, E, S);
1759   if (BuildOpts.AddLifetime)
1760     addLifetimeEnds(B, E, S);
1761 }
1762 
1763 /// Add to current block automatic objects that leave the scope.
1764 void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
1765                                  LocalScope::const_iterator E, Stmt *S) {
1766   if (!BuildOpts.AddLifetime)
1767     return;
1768 
1769   if (B == E)
1770     return;
1771 
1772   // To go from B to E, one first goes up the scopes from B to P
1773   // then sideways in one scope from P to P' and then down
1774   // the scopes from P' to E.
1775   // The lifetime of all objects between B and P end.
1776   LocalScope::const_iterator P = B.shared_parent(E);
1777   int dist = B.distance(P);
1778   if (dist <= 0)
1779     return;
1780 
1781   // We need to perform the scope leaving in reverse order
1782   SmallVector<VarDecl *, 10> DeclsTrivial;
1783   SmallVector<VarDecl *, 10> DeclsNonTrivial;
1784   DeclsTrivial.reserve(dist);
1785   DeclsNonTrivial.reserve(dist);
1786 
1787   for (LocalScope::const_iterator I = B; I != P; ++I)
1788     if (hasTrivialDestructor(*I))
1789       DeclsTrivial.push_back(*I);
1790     else
1791       DeclsNonTrivial.push_back(*I);
1792 
1793   autoCreateBlock();
1794   // object with trivial destructor end their lifetime last (when storage
1795   // duration ends)
1796   for (SmallVectorImpl<VarDecl *>::reverse_iterator I = DeclsTrivial.rbegin(),
1797                                                     E = DeclsTrivial.rend();
1798        I != E; ++I)
1799     appendLifetimeEnds(Block, *I, S);
1800 
1801   for (SmallVectorImpl<VarDecl *>::reverse_iterator
1802            I = DeclsNonTrivial.rbegin(),
1803            E = DeclsNonTrivial.rend();
1804        I != E; ++I)
1805     appendLifetimeEnds(Block, *I, S);
1806 }
1807 
1808 /// Add to current block markers for ending scopes.
1809 void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
1810                               LocalScope::const_iterator E, Stmt *S) {
1811   // If implicit destructors are enabled, we'll add scope ends in
1812   // addAutomaticObjDtors.
1813   if (BuildOpts.AddImplicitDtors)
1814     return;
1815 
1816   autoCreateBlock();
1817 
1818   for (auto I = DeclsWithEndedScope.rbegin(), E = DeclsWithEndedScope.rend();
1819        I != E; ++I)
1820     appendScopeEnd(Block, *I, S);
1821 
1822   return;
1823 }
1824 
1825 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1826 /// for objects in range of local scope positions. Use S as trigger statement
1827 /// for destructors.
1828 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1829                                       LocalScope::const_iterator E, Stmt *S) {
1830   if (!BuildOpts.AddImplicitDtors)
1831     return;
1832 
1833   if (B == E)
1834     return;
1835 
1836   // We need to append the destructors in reverse order, but any one of them
1837   // may be a no-return destructor which changes the CFG. As a result, buffer
1838   // this sequence up and replay them in reverse order when appending onto the
1839   // CFGBlock(s).
1840   SmallVector<VarDecl*, 10> Decls;
1841   Decls.reserve(B.distance(E));
1842   for (LocalScope::const_iterator I = B; I != E; ++I)
1843     Decls.push_back(*I);
1844 
1845   for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
1846                                                    E = Decls.rend();
1847        I != E; ++I) {
1848     if (hasTrivialDestructor(*I)) {
1849       // If AddScopes is enabled and *I is a first variable in a scope, add a
1850       // ScopeEnd marker in a Block.
1851       if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I)) {
1852         autoCreateBlock();
1853         appendScopeEnd(Block, *I, S);
1854       }
1855       continue;
1856     }
1857     // If this destructor is marked as a no-return destructor, we need to
1858     // create a new block for the destructor which does not have as a successor
1859     // anything built thus far: control won't flow out of this block.
1860     QualType Ty = (*I)->getType();
1861     if (Ty->isReferenceType()) {
1862       Ty = getReferenceInitTemporaryType((*I)->getInit());
1863     }
1864     Ty = Context->getBaseElementType(Ty);
1865 
1866     if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1867       Block = createNoReturnBlock();
1868     else
1869       autoCreateBlock();
1870 
1871     // Add ScopeEnd just after automatic obj destructor.
1872     if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I))
1873       appendScopeEnd(Block, *I, S);
1874     appendAutomaticObjDtor(Block, *I, S);
1875   }
1876 }
1877 
1878 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1879 /// base and member objects in destructor.
1880 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1881   assert(BuildOpts.AddImplicitDtors &&
1882          "Can be called only when dtors should be added");
1883   const CXXRecordDecl *RD = DD->getParent();
1884 
1885   // At the end destroy virtual base objects.
1886   for (const auto &VI : RD->vbases()) {
1887     // TODO: Add a VirtualBaseBranch to see if the most derived class
1888     // (which is different from the current class) is responsible for
1889     // destroying them.
1890     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1891     if (!CD->hasTrivialDestructor()) {
1892       autoCreateBlock();
1893       appendBaseDtor(Block, &VI);
1894     }
1895   }
1896 
1897   // Before virtual bases destroy direct base objects.
1898   for (const auto &BI : RD->bases()) {
1899     if (!BI.isVirtual()) {
1900       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1901       if (!CD->hasTrivialDestructor()) {
1902         autoCreateBlock();
1903         appendBaseDtor(Block, &BI);
1904       }
1905     }
1906   }
1907 
1908   // First destroy member objects.
1909   for (auto *FI : RD->fields()) {
1910     // Check for constant size array. Set type to array element type.
1911     QualType QT = FI->getType();
1912     if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1913       if (AT->getSize() == 0)
1914         continue;
1915       QT = AT->getElementType();
1916     }
1917 
1918     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1919       if (!CD->hasTrivialDestructor()) {
1920         autoCreateBlock();
1921         appendMemberDtor(Block, FI);
1922       }
1923   }
1924 }
1925 
1926 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1927 /// way return valid LocalScope object.
1928 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1929   if (Scope)
1930     return Scope;
1931   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1932   return new (alloc.Allocate<LocalScope>())
1933       LocalScope(BumpVectorContext(alloc), ScopePos);
1934 }
1935 
1936 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1937 /// that should create implicit scope (e.g. if/else substatements).
1938 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1939   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1940       !BuildOpts.AddScopes)
1941     return;
1942 
1943   LocalScope *Scope = nullptr;
1944 
1945   // For compound statement we will be creating explicit scope.
1946   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1947     for (auto *BI : CS->body()) {
1948       Stmt *SI = BI->stripLabelLikeStatements();
1949       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1950         Scope = addLocalScopeForDeclStmt(DS, Scope);
1951     }
1952     return;
1953   }
1954 
1955   // For any other statement scope will be implicit and as such will be
1956   // interesting only for DeclStmt.
1957   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1958     addLocalScopeForDeclStmt(DS);
1959 }
1960 
1961 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1962 /// reuse Scope if not NULL.
1963 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1964                                                  LocalScope* Scope) {
1965   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1966       !BuildOpts.AddScopes)
1967     return Scope;
1968 
1969   for (auto *DI : DS->decls())
1970     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1971       Scope = addLocalScopeForVarDecl(VD, Scope);
1972   return Scope;
1973 }
1974 
1975 bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
1976   // Check for const references bound to temporary. Set type to pointee.
1977   QualType QT = VD->getType();
1978   if (QT->isReferenceType()) {
1979     // Attempt to determine whether this declaration lifetime-extends a
1980     // temporary.
1981     //
1982     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1983     // temporaries, and a single declaration can extend multiple temporaries.
1984     // We should look at the storage duration on each nested
1985     // MaterializeTemporaryExpr instead.
1986 
1987     const Expr *Init = VD->getInit();
1988     if (!Init) {
1989       // Probably an exception catch-by-reference variable.
1990       // FIXME: It doesn't really mean that the object has a trivial destructor.
1991       // Also are there other cases?
1992       return true;
1993     }
1994 
1995     // Lifetime-extending a temporary?
1996     bool FoundMTE = false;
1997     QT = getReferenceInitTemporaryType(Init, &FoundMTE);
1998     if (!FoundMTE)
1999       return true;
2000   }
2001 
2002   // Check for constant size array. Set type to array element type.
2003   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2004     if (AT->getSize() == 0)
2005       return true;
2006     QT = AT->getElementType();
2007   }
2008 
2009   // Check if type is a C++ class with non-trivial destructor.
2010   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2011     return !CD->hasDefinition() || CD->hasTrivialDestructor();
2012   return true;
2013 }
2014 
2015 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2016 /// create add scope for automatic objects and temporary objects bound to
2017 /// const reference. Will reuse Scope if not NULL.
2018 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2019                                                 LocalScope* Scope) {
2020   assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
2021          "AddImplicitDtors and AddLifetime cannot be used at the same time");
2022   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2023       !BuildOpts.AddScopes)
2024     return Scope;
2025 
2026   // Check if variable is local.
2027   switch (VD->getStorageClass()) {
2028   case SC_None:
2029   case SC_Auto:
2030   case SC_Register:
2031     break;
2032   default: return Scope;
2033   }
2034 
2035   if (BuildOpts.AddImplicitDtors) {
2036     if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
2037       // Add the variable to scope
2038       Scope = createOrReuseLocalScope(Scope);
2039       Scope->addVar(VD);
2040       ScopePos = Scope->begin();
2041     }
2042     return Scope;
2043   }
2044 
2045   assert(BuildOpts.AddLifetime);
2046   // Add the variable to scope
2047   Scope = createOrReuseLocalScope(Scope);
2048   Scope->addVar(VD);
2049   ScopePos = Scope->begin();
2050   return Scope;
2051 }
2052 
2053 /// addLocalScopeAndDtors - For given statement add local scope for it and
2054 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2055 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2056   LocalScope::const_iterator scopeBeginPos = ScopePos;
2057   addLocalScopeForStmt(S);
2058   addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2059 }
2060 
2061 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
2062 /// variables with automatic storage duration to CFGBlock's elements vector.
2063 /// Elements will be prepended to physical beginning of the vector which
2064 /// happens to be logical end. Use blocks terminator as statement that specifies
2065 /// destructors call site.
2066 /// FIXME: This mechanism for adding automatic destructors doesn't handle
2067 /// no-return destructors properly.
2068 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
2069     LocalScope::const_iterator B, LocalScope::const_iterator E) {
2070   if (!BuildOpts.AddImplicitDtors)
2071     return;
2072   BumpVectorContext &C = cfg->getBumpVectorContext();
2073   CFGBlock::iterator InsertPos
2074     = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
2075   for (LocalScope::const_iterator I = B; I != E; ++I)
2076     InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
2077                                             Blk->getTerminatorStmt());
2078 }
2079 
2080 /// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
2081 /// variables with automatic storage duration to CFGBlock's elements vector.
2082 /// Elements will be prepended to physical beginning of the vector which
2083 /// happens to be logical end. Use blocks terminator as statement that specifies
2084 /// where lifetime ends.
2085 void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
2086     CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2087   if (!BuildOpts.AddLifetime)
2088     return;
2089   BumpVectorContext &C = cfg->getBumpVectorContext();
2090   CFGBlock::iterator InsertPos =
2091       Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
2092   for (LocalScope::const_iterator I = B; I != E; ++I) {
2093     InsertPos =
2094         Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
2095   }
2096 }
2097 
2098 /// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
2099 /// variables with automatic storage duration to CFGBlock's elements vector.
2100 /// Elements will be prepended to physical beginning of the vector which
2101 /// happens to be logical end. Use blocks terminator as statement that specifies
2102 /// where scope ends.
2103 const VarDecl *
2104 CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
2105     CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2106   if (!BuildOpts.AddScopes)
2107     return nullptr;
2108   BumpVectorContext &C = cfg->getBumpVectorContext();
2109   CFGBlock::iterator InsertPos =
2110       Blk->beginScopeEndInsert(Blk->end(), 1, C);
2111   LocalScope::const_iterator PlaceToInsert = B;
2112   for (LocalScope::const_iterator I = B; I != E; ++I)
2113     PlaceToInsert = I;
2114   Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
2115   return *PlaceToInsert;
2116 }
2117 
2118 /// Visit - Walk the subtree of a statement and add extra
2119 ///   blocks for ternary operators, &&, and ||.  We also process "," and
2120 ///   DeclStmts (which may contain nested control-flow).
2121 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2122                             bool ExternallyDestructed) {
2123   if (!S) {
2124     badCFG = true;
2125     return nullptr;
2126   }
2127 
2128   if (Expr *E = dyn_cast<Expr>(S))
2129     S = E->IgnoreParens();
2130 
2131   if (Context->getLangOpts().OpenMP)
2132     if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2133       return VisitOMPExecutableDirective(D, asc);
2134 
2135   switch (S->getStmtClass()) {
2136     default:
2137       return VisitStmt(S, asc);
2138 
2139     case Stmt::ImplicitValueInitExprClass:
2140       if (BuildOpts.OmitImplicitValueInitializers)
2141         return Block;
2142       return VisitStmt(S, asc);
2143 
2144     case Stmt::InitListExprClass:
2145       return VisitInitListExpr(cast<InitListExpr>(S), asc);
2146 
2147     case Stmt::AddrLabelExprClass:
2148       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2149 
2150     case Stmt::BinaryConditionalOperatorClass:
2151       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2152 
2153     case Stmt::BinaryOperatorClass:
2154       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2155 
2156     case Stmt::BlockExprClass:
2157       return VisitBlockExpr(cast<BlockExpr>(S), asc);
2158 
2159     case Stmt::BreakStmtClass:
2160       return VisitBreakStmt(cast<BreakStmt>(S));
2161 
2162     case Stmt::CallExprClass:
2163     case Stmt::CXXOperatorCallExprClass:
2164     case Stmt::CXXMemberCallExprClass:
2165     case Stmt::UserDefinedLiteralClass:
2166       return VisitCallExpr(cast<CallExpr>(S), asc);
2167 
2168     case Stmt::CaseStmtClass:
2169       return VisitCaseStmt(cast<CaseStmt>(S));
2170 
2171     case Stmt::ChooseExprClass:
2172       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2173 
2174     case Stmt::CompoundStmtClass:
2175       return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2176 
2177     case Stmt::ConditionalOperatorClass:
2178       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2179 
2180     case Stmt::ContinueStmtClass:
2181       return VisitContinueStmt(cast<ContinueStmt>(S));
2182 
2183     case Stmt::CXXCatchStmtClass:
2184       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2185 
2186     case Stmt::ExprWithCleanupsClass:
2187       return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2188                                    asc, ExternallyDestructed);
2189 
2190     case Stmt::CXXDefaultArgExprClass:
2191     case Stmt::CXXDefaultInitExprClass:
2192       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2193       // called function's declaration, not by the caller. If we simply add
2194       // this expression to the CFG, we could end up with the same Expr
2195       // appearing multiple times.
2196       // PR13385 / <rdar://problem/12156507>
2197       //
2198       // It's likewise possible for multiple CXXDefaultInitExprs for the same
2199       // expression to be used in the same function (through aggregate
2200       // initialization).
2201       return VisitStmt(S, asc);
2202 
2203     case Stmt::CXXBindTemporaryExprClass:
2204       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2205 
2206     case Stmt::CXXConstructExprClass:
2207       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2208 
2209     case Stmt::CXXNewExprClass:
2210       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2211 
2212     case Stmt::CXXDeleteExprClass:
2213       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2214 
2215     case Stmt::CXXFunctionalCastExprClass:
2216       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2217 
2218     case Stmt::CXXTemporaryObjectExprClass:
2219       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2220 
2221     case Stmt::CXXThrowExprClass:
2222       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2223 
2224     case Stmt::CXXTryStmtClass:
2225       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2226 
2227     case Stmt::CXXForRangeStmtClass:
2228       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2229 
2230     case Stmt::DeclStmtClass:
2231       return VisitDeclStmt(cast<DeclStmt>(S));
2232 
2233     case Stmt::DefaultStmtClass:
2234       return VisitDefaultStmt(cast<DefaultStmt>(S));
2235 
2236     case Stmt::DoStmtClass:
2237       return VisitDoStmt(cast<DoStmt>(S));
2238 
2239     case Stmt::ForStmtClass:
2240       return VisitForStmt(cast<ForStmt>(S));
2241 
2242     case Stmt::GotoStmtClass:
2243       return VisitGotoStmt(cast<GotoStmt>(S));
2244 
2245     case Stmt::GCCAsmStmtClass:
2246       return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2247 
2248     case Stmt::IfStmtClass:
2249       return VisitIfStmt(cast<IfStmt>(S));
2250 
2251     case Stmt::ImplicitCastExprClass:
2252       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2253 
2254     case Stmt::ConstantExprClass:
2255       return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2256 
2257     case Stmt::IndirectGotoStmtClass:
2258       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2259 
2260     case Stmt::LabelStmtClass:
2261       return VisitLabelStmt(cast<LabelStmt>(S));
2262 
2263     case Stmt::LambdaExprClass:
2264       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2265 
2266     case Stmt::MaterializeTemporaryExprClass:
2267       return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2268                                            asc);
2269 
2270     case Stmt::MemberExprClass:
2271       return VisitMemberExpr(cast<MemberExpr>(S), asc);
2272 
2273     case Stmt::NullStmtClass:
2274       return Block;
2275 
2276     case Stmt::ObjCAtCatchStmtClass:
2277       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2278 
2279     case Stmt::ObjCAutoreleasePoolStmtClass:
2280     return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2281 
2282     case Stmt::ObjCAtSynchronizedStmtClass:
2283       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2284 
2285     case Stmt::ObjCAtThrowStmtClass:
2286       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2287 
2288     case Stmt::ObjCAtTryStmtClass:
2289       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2290 
2291     case Stmt::ObjCForCollectionStmtClass:
2292       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2293 
2294     case Stmt::ObjCMessageExprClass:
2295       return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2296 
2297     case Stmt::OpaqueValueExprClass:
2298       return Block;
2299 
2300     case Stmt::PseudoObjectExprClass:
2301       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2302 
2303     case Stmt::ReturnStmtClass:
2304     case Stmt::CoreturnStmtClass:
2305       return VisitReturnStmt(S);
2306 
2307     case Stmt::SEHExceptStmtClass:
2308       return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2309 
2310     case Stmt::SEHFinallyStmtClass:
2311       return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2312 
2313     case Stmt::SEHLeaveStmtClass:
2314       return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2315 
2316     case Stmt::SEHTryStmtClass:
2317       return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2318 
2319     case Stmt::UnaryExprOrTypeTraitExprClass:
2320       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2321                                            asc);
2322 
2323     case Stmt::StmtExprClass:
2324       return VisitStmtExpr(cast<StmtExpr>(S), asc);
2325 
2326     case Stmt::SwitchStmtClass:
2327       return VisitSwitchStmt(cast<SwitchStmt>(S));
2328 
2329     case Stmt::UnaryOperatorClass:
2330       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2331 
2332     case Stmt::WhileStmtClass:
2333       return VisitWhileStmt(cast<WhileStmt>(S));
2334   }
2335 }
2336 
2337 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2338   if (asc.alwaysAdd(*this, S)) {
2339     autoCreateBlock();
2340     appendStmt(Block, S);
2341   }
2342 
2343   return VisitChildren(S);
2344 }
2345 
2346 /// VisitChildren - Visit the children of a Stmt.
2347 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2348   CFGBlock *B = Block;
2349 
2350   // Visit the children in their reverse order so that they appear in
2351   // left-to-right (natural) order in the CFG.
2352   reverse_children RChildren(S);
2353   for (Stmt *Child : RChildren) {
2354     if (Child)
2355       if (CFGBlock *R = Visit(Child))
2356         B = R;
2357   }
2358   return B;
2359 }
2360 
2361 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2362   if (asc.alwaysAdd(*this, ILE)) {
2363     autoCreateBlock();
2364     appendStmt(Block, ILE);
2365   }
2366   CFGBlock *B = Block;
2367 
2368   reverse_children RChildren(ILE);
2369   for (Stmt *Child : RChildren) {
2370     if (!Child)
2371       continue;
2372     if (CFGBlock *R = Visit(Child))
2373       B = R;
2374     if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2375       if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2376         if (Stmt *Child = DIE->getExpr())
2377           if (CFGBlock *R = Visit(Child))
2378             B = R;
2379     }
2380   }
2381   return B;
2382 }
2383 
2384 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2385                                          AddStmtChoice asc) {
2386   AddressTakenLabels.insert(A->getLabel());
2387 
2388   if (asc.alwaysAdd(*this, A)) {
2389     autoCreateBlock();
2390     appendStmt(Block, A);
2391   }
2392 
2393   return Block;
2394 }
2395 
2396 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
2397            AddStmtChoice asc) {
2398   if (asc.alwaysAdd(*this, U)) {
2399     autoCreateBlock();
2400     appendStmt(Block, U);
2401   }
2402 
2403   if (U->getOpcode() == UO_LNot)
2404     tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2405 
2406   return Visit(U->getSubExpr(), AddStmtChoice());
2407 }
2408 
2409 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2410   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2411   appendStmt(ConfluenceBlock, B);
2412 
2413   if (badCFG)
2414     return nullptr;
2415 
2416   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2417                               ConfluenceBlock).first;
2418 }
2419 
2420 std::pair<CFGBlock*, CFGBlock*>
2421 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2422                                  Stmt *Term,
2423                                  CFGBlock *TrueBlock,
2424                                  CFGBlock *FalseBlock) {
2425   // Introspect the RHS.  If it is a nested logical operation, we recursively
2426   // build the CFG using this function.  Otherwise, resort to default
2427   // CFG construction behavior.
2428   Expr *RHS = B->getRHS()->IgnoreParens();
2429   CFGBlock *RHSBlock, *ExitBlock;
2430 
2431   do {
2432     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2433       if (B_RHS->isLogicalOp()) {
2434         std::tie(RHSBlock, ExitBlock) =
2435           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2436         break;
2437       }
2438 
2439     // The RHS is not a nested logical operation.  Don't push the terminator
2440     // down further, but instead visit RHS and construct the respective
2441     // pieces of the CFG, and link up the RHSBlock with the terminator
2442     // we have been provided.
2443     ExitBlock = RHSBlock = createBlock(false);
2444 
2445     // Even though KnownVal is only used in the else branch of the next
2446     // conditional, tryEvaluateBool performs additional checking on the
2447     // Expr, so it should be called unconditionally.
2448     TryResult KnownVal = tryEvaluateBool(RHS);
2449     if (!KnownVal.isKnown())
2450       KnownVal = tryEvaluateBool(B);
2451 
2452     if (!Term) {
2453       assert(TrueBlock == FalseBlock);
2454       addSuccessor(RHSBlock, TrueBlock);
2455     }
2456     else {
2457       RHSBlock->setTerminator(Term);
2458       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2459       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2460     }
2461 
2462     Block = RHSBlock;
2463     RHSBlock = addStmt(RHS);
2464   }
2465   while (false);
2466 
2467   if (badCFG)
2468     return std::make_pair(nullptr, nullptr);
2469 
2470   // Generate the blocks for evaluating the LHS.
2471   Expr *LHS = B->getLHS()->IgnoreParens();
2472 
2473   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2474     if (B_LHS->isLogicalOp()) {
2475       if (B->getOpcode() == BO_LOr)
2476         FalseBlock = RHSBlock;
2477       else
2478         TrueBlock = RHSBlock;
2479 
2480       // For the LHS, treat 'B' as the terminator that we want to sink
2481       // into the nested branch.  The RHS always gets the top-most
2482       // terminator.
2483       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2484     }
2485 
2486   // Create the block evaluating the LHS.
2487   // This contains the '&&' or '||' as the terminator.
2488   CFGBlock *LHSBlock = createBlock(false);
2489   LHSBlock->setTerminator(B);
2490 
2491   Block = LHSBlock;
2492   CFGBlock *EntryLHSBlock = addStmt(LHS);
2493 
2494   if (badCFG)
2495     return std::make_pair(nullptr, nullptr);
2496 
2497   // See if this is a known constant.
2498   TryResult KnownVal = tryEvaluateBool(LHS);
2499 
2500   // Now link the LHSBlock with RHSBlock.
2501   if (B->getOpcode() == BO_LOr) {
2502     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2503     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2504   } else {
2505     assert(B->getOpcode() == BO_LAnd);
2506     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2507     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2508   }
2509 
2510   return std::make_pair(EntryLHSBlock, ExitBlock);
2511 }
2512 
2513 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2514                                           AddStmtChoice asc) {
2515    // && or ||
2516   if (B->isLogicalOp())
2517     return VisitLogicalOperator(B);
2518 
2519   if (B->getOpcode() == BO_Comma) { // ,
2520     autoCreateBlock();
2521     appendStmt(Block, B);
2522     addStmt(B->getRHS());
2523     return addStmt(B->getLHS());
2524   }
2525 
2526   if (B->isAssignmentOp()) {
2527     if (asc.alwaysAdd(*this, B)) {
2528       autoCreateBlock();
2529       appendStmt(Block, B);
2530     }
2531     Visit(B->getLHS());
2532     return Visit(B->getRHS());
2533   }
2534 
2535   if (asc.alwaysAdd(*this, B)) {
2536     autoCreateBlock();
2537     appendStmt(Block, B);
2538   }
2539 
2540   if (B->isEqualityOp() || B->isRelationalOp())
2541     tryEvaluateBool(B);
2542 
2543   CFGBlock *RBlock = Visit(B->getRHS());
2544   CFGBlock *LBlock = Visit(B->getLHS());
2545   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2546   // containing a DoStmt, and the LHS doesn't create a new block, then we should
2547   // return RBlock.  Otherwise we'll incorrectly return NULL.
2548   return (LBlock ? LBlock : RBlock);
2549 }
2550 
2551 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2552   if (asc.alwaysAdd(*this, E)) {
2553     autoCreateBlock();
2554     appendStmt(Block, E);
2555   }
2556   return Block;
2557 }
2558 
2559 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2560   // "break" is a control-flow statement.  Thus we stop processing the current
2561   // block.
2562   if (badCFG)
2563     return nullptr;
2564 
2565   // Now create a new block that ends with the break statement.
2566   Block = createBlock(false);
2567   Block->setTerminator(B);
2568 
2569   // If there is no target for the break, then we are looking at an incomplete
2570   // AST.  This means that the CFG cannot be constructed.
2571   if (BreakJumpTarget.block) {
2572     addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2573     addSuccessor(Block, BreakJumpTarget.block);
2574   } else
2575     badCFG = true;
2576 
2577   return Block;
2578 }
2579 
2580 static bool CanThrow(Expr *E, ASTContext &Ctx) {
2581   QualType Ty = E->getType();
2582   if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2583     Ty = Ty->getPointeeType();
2584 
2585   const FunctionType *FT = Ty->getAs<FunctionType>();
2586   if (FT) {
2587     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2588       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2589           Proto->isNothrow())
2590         return false;
2591   }
2592   return true;
2593 }
2594 
2595 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2596   // Compute the callee type.
2597   QualType calleeType = C->getCallee()->getType();
2598   if (calleeType == Context->BoundMemberTy) {
2599     QualType boundType = Expr::findBoundMemberType(C->getCallee());
2600 
2601     // We should only get a null bound type if processing a dependent
2602     // CFG.  Recover by assuming nothing.
2603     if (!boundType.isNull()) calleeType = boundType;
2604   }
2605 
2606   // If this is a call to a no-return function, this stops the block here.
2607   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2608 
2609   bool AddEHEdge = false;
2610 
2611   // Languages without exceptions are assumed to not throw.
2612   if (Context->getLangOpts().Exceptions) {
2613     if (BuildOpts.AddEHEdges)
2614       AddEHEdge = true;
2615   }
2616 
2617   // If this is a call to a builtin function, it might not actually evaluate
2618   // its arguments. Don't add them to the CFG if this is the case.
2619   bool OmitArguments = false;
2620 
2621   if (FunctionDecl *FD = C->getDirectCallee()) {
2622     // TODO: Support construction contexts for variadic function arguments.
2623     // These are a bit problematic and not very useful because passing
2624     // C++ objects as C-style variadic arguments doesn't work in general
2625     // (see [expr.call]).
2626     if (!FD->isVariadic())
2627       findConstructionContextsForArguments(C);
2628 
2629     if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2630       NoReturn = true;
2631     if (FD->hasAttr<NoThrowAttr>())
2632       AddEHEdge = false;
2633     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2634         FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2635       OmitArguments = true;
2636   }
2637 
2638   if (!CanThrow(C->getCallee(), *Context))
2639     AddEHEdge = false;
2640 
2641   if (OmitArguments) {
2642     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2643     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2644     autoCreateBlock();
2645     appendStmt(Block, C);
2646     return Visit(C->getCallee());
2647   }
2648 
2649   if (!NoReturn && !AddEHEdge) {
2650     autoCreateBlock();
2651     appendCall(Block, C);
2652 
2653     return VisitChildren(C);
2654   }
2655 
2656   if (Block) {
2657     Succ = Block;
2658     if (badCFG)
2659       return nullptr;
2660   }
2661 
2662   if (NoReturn)
2663     Block = createNoReturnBlock();
2664   else
2665     Block = createBlock();
2666 
2667   appendCall(Block, C);
2668 
2669   if (AddEHEdge) {
2670     // Add exceptional edges.
2671     if (TryTerminatedBlock)
2672       addSuccessor(Block, TryTerminatedBlock);
2673     else
2674       addSuccessor(Block, &cfg->getExit());
2675   }
2676 
2677   return VisitChildren(C);
2678 }
2679 
2680 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2681                                       AddStmtChoice asc) {
2682   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2683   appendStmt(ConfluenceBlock, C);
2684   if (badCFG)
2685     return nullptr;
2686 
2687   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2688   Succ = ConfluenceBlock;
2689   Block = nullptr;
2690   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2691   if (badCFG)
2692     return nullptr;
2693 
2694   Succ = ConfluenceBlock;
2695   Block = nullptr;
2696   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2697   if (badCFG)
2698     return nullptr;
2699 
2700   Block = createBlock(false);
2701   // See if this is a known constant.
2702   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2703   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2704   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2705   Block->setTerminator(C);
2706   return addStmt(C->getCond());
2707 }
2708 
2709 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed) {
2710   LocalScope::const_iterator scopeBeginPos = ScopePos;
2711   addLocalScopeForStmt(C);
2712 
2713   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2714     // If the body ends with a ReturnStmt, the dtors will be added in
2715     // VisitReturnStmt.
2716     addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2717   }
2718 
2719   CFGBlock *LastBlock = Block;
2720 
2721   for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
2722        I != E; ++I ) {
2723     // If we hit a segment of code just containing ';' (NullStmts), we can
2724     // get a null block back.  In such cases, just use the LastBlock
2725     CFGBlock *newBlock = Visit(*I, AddStmtChoice::AlwaysAdd,
2726                                ExternallyDestructed);
2727 
2728     if (newBlock)
2729       LastBlock = newBlock;
2730 
2731     if (badCFG)
2732       return nullptr;
2733 
2734     ExternallyDestructed = false;
2735   }
2736 
2737   return LastBlock;
2738 }
2739 
2740 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2741                                                AddStmtChoice asc) {
2742   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2743   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2744 
2745   // Create the confluence block that will "merge" the results of the ternary
2746   // expression.
2747   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2748   appendStmt(ConfluenceBlock, C);
2749   if (badCFG)
2750     return nullptr;
2751 
2752   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2753 
2754   // Create a block for the LHS expression if there is an LHS expression.  A
2755   // GCC extension allows LHS to be NULL, causing the condition to be the
2756   // value that is returned instead.
2757   //  e.g: x ?: y is shorthand for: x ? x : y;
2758   Succ = ConfluenceBlock;
2759   Block = nullptr;
2760   CFGBlock *LHSBlock = nullptr;
2761   const Expr *trueExpr = C->getTrueExpr();
2762   if (trueExpr != opaqueValue) {
2763     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2764     if (badCFG)
2765       return nullptr;
2766     Block = nullptr;
2767   }
2768   else
2769     LHSBlock = ConfluenceBlock;
2770 
2771   // Create the block for the RHS expression.
2772   Succ = ConfluenceBlock;
2773   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2774   if (badCFG)
2775     return nullptr;
2776 
2777   // If the condition is a logical '&&' or '||', build a more accurate CFG.
2778   if (BinaryOperator *Cond =
2779         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2780     if (Cond->isLogicalOp())
2781       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2782 
2783   // Create the block that will contain the condition.
2784   Block = createBlock(false);
2785 
2786   // See if this is a known constant.
2787   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2788   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2789   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2790   Block->setTerminator(C);
2791   Expr *condExpr = C->getCond();
2792 
2793   if (opaqueValue) {
2794     // Run the condition expression if it's not trivially expressed in
2795     // terms of the opaque value (or if there is no opaque value).
2796     if (condExpr != opaqueValue)
2797       addStmt(condExpr);
2798 
2799     // Before that, run the common subexpression if there was one.
2800     // At least one of this or the above will be run.
2801     return addStmt(BCO->getCommon());
2802   }
2803 
2804   return addStmt(condExpr);
2805 }
2806 
2807 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2808   // Check if the Decl is for an __label__.  If so, elide it from the
2809   // CFG entirely.
2810   if (isa<LabelDecl>(*DS->decl_begin()))
2811     return Block;
2812 
2813   // This case also handles static_asserts.
2814   if (DS->isSingleDecl())
2815     return VisitDeclSubExpr(DS);
2816 
2817   CFGBlock *B = nullptr;
2818 
2819   // Build an individual DeclStmt for each decl.
2820   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2821                                        E = DS->decl_rend();
2822        I != E; ++I) {
2823 
2824     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
2825     // automatically freed with the CFG.
2826     DeclGroupRef DG(*I);
2827     Decl *D = *I;
2828     DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2829     cfg->addSyntheticDeclStmt(DSNew, DS);
2830 
2831     // Append the fake DeclStmt to block.
2832     B = VisitDeclSubExpr(DSNew);
2833   }
2834 
2835   return B;
2836 }
2837 
2838 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2839 /// DeclStmts and initializers in them.
2840 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2841   assert(DS->isSingleDecl() && "Can handle single declarations only.");
2842   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2843 
2844   if (!VD) {
2845     // Of everything that can be declared in a DeclStmt, only VarDecls impact
2846     // runtime semantics.
2847     return Block;
2848   }
2849 
2850   bool HasTemporaries = false;
2851 
2852   // Guard static initializers under a branch.
2853   CFGBlock *blockAfterStaticInit = nullptr;
2854 
2855   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2856     // For static variables, we need to create a branch to track
2857     // whether or not they are initialized.
2858     if (Block) {
2859       Succ = Block;
2860       Block = nullptr;
2861       if (badCFG)
2862         return nullptr;
2863     }
2864     blockAfterStaticInit = Succ;
2865   }
2866 
2867   // Destructors of temporaries in initialization expression should be called
2868   // after initialization finishes.
2869   Expr *Init = VD->getInit();
2870   if (Init) {
2871     HasTemporaries = isa<ExprWithCleanups>(Init);
2872 
2873     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2874       // Generate destructors for temporaries in initialization expression.
2875       TempDtorContext Context;
2876       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2877                              /*ExternallyDestructed=*/true, Context);
2878     }
2879   }
2880 
2881   autoCreateBlock();
2882   appendStmt(Block, DS);
2883 
2884   findConstructionContexts(
2885       ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
2886       Init);
2887 
2888   // Keep track of the last non-null block, as 'Block' can be nulled out
2889   // if the initializer expression is something like a 'while' in a
2890   // statement-expression.
2891   CFGBlock *LastBlock = Block;
2892 
2893   if (Init) {
2894     if (HasTemporaries) {
2895       // For expression with temporaries go directly to subexpression to omit
2896       // generating destructors for the second time.
2897       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
2898       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
2899         LastBlock = newBlock;
2900     }
2901     else {
2902       if (CFGBlock *newBlock = Visit(Init))
2903         LastBlock = newBlock;
2904     }
2905   }
2906 
2907   // If the type of VD is a VLA, then we must process its size expressions.
2908   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2909        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2910     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2911       LastBlock = newBlock;
2912   }
2913 
2914   maybeAddScopeBeginForVarDecl(Block, VD, DS);
2915 
2916   // Remove variable from local scope.
2917   if (ScopePos && VD == *ScopePos)
2918     ++ScopePos;
2919 
2920   CFGBlock *B = LastBlock;
2921   if (blockAfterStaticInit) {
2922     Succ = B;
2923     Block = createBlock(false);
2924     Block->setTerminator(DS);
2925     addSuccessor(Block, blockAfterStaticInit);
2926     addSuccessor(Block, B);
2927     B = Block;
2928   }
2929 
2930   return B;
2931 }
2932 
2933 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2934   // We may see an if statement in the middle of a basic block, or it may be the
2935   // first statement we are processing.  In either case, we create a new basic
2936   // block.  First, we create the blocks for the then...else statements, and
2937   // then we create the block containing the if statement.  If we were in the
2938   // middle of a block, we stop processing that block.  That block is then the
2939   // implicit successor for the "then" and "else" clauses.
2940 
2941   // Save local scope position because in case of condition variable ScopePos
2942   // won't be restored when traversing AST.
2943   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2944 
2945   // Create local scope for C++17 if init-stmt if one exists.
2946   if (Stmt *Init = I->getInit())
2947     addLocalScopeForStmt(Init);
2948 
2949   // Create local scope for possible condition variable.
2950   // Store scope position. Add implicit destructor.
2951   if (VarDecl *VD = I->getConditionVariable())
2952     addLocalScopeForVarDecl(VD);
2953 
2954   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
2955 
2956   // The block we were processing is now finished.  Make it the successor
2957   // block.
2958   if (Block) {
2959     Succ = Block;
2960     if (badCFG)
2961       return nullptr;
2962   }
2963 
2964   // Process the false branch.
2965   CFGBlock *ElseBlock = Succ;
2966 
2967   if (Stmt *Else = I->getElse()) {
2968     SaveAndRestore<CFGBlock*> sv(Succ);
2969 
2970     // NULL out Block so that the recursive call to Visit will
2971     // create a new basic block.
2972     Block = nullptr;
2973 
2974     // If branch is not a compound statement create implicit scope
2975     // and add destructors.
2976     if (!isa<CompoundStmt>(Else))
2977       addLocalScopeAndDtors(Else);
2978 
2979     ElseBlock = addStmt(Else);
2980 
2981     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
2982       ElseBlock = sv.get();
2983     else if (Block) {
2984       if (badCFG)
2985         return nullptr;
2986     }
2987   }
2988 
2989   // Process the true branch.
2990   CFGBlock *ThenBlock;
2991   {
2992     Stmt *Then = I->getThen();
2993     assert(Then);
2994     SaveAndRestore<CFGBlock*> sv(Succ);
2995     Block = nullptr;
2996 
2997     // If branch is not a compound statement create implicit scope
2998     // and add destructors.
2999     if (!isa<CompoundStmt>(Then))
3000       addLocalScopeAndDtors(Then);
3001 
3002     ThenBlock = addStmt(Then);
3003 
3004     if (!ThenBlock) {
3005       // We can reach here if the "then" body has all NullStmts.
3006       // Create an empty block so we can distinguish between true and false
3007       // branches in path-sensitive analyses.
3008       ThenBlock = createBlock(false);
3009       addSuccessor(ThenBlock, sv.get());
3010     } else if (Block) {
3011       if (badCFG)
3012         return nullptr;
3013     }
3014   }
3015 
3016   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3017   // having these handle the actual control-flow jump.  Note that
3018   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3019   // we resort to the old control-flow behavior.  This special handling
3020   // removes infeasible paths from the control-flow graph by having the
3021   // control-flow transfer of '&&' or '||' go directly into the then/else
3022   // blocks directly.
3023   BinaryOperator *Cond =
3024       I->getConditionVariable()
3025           ? nullptr
3026           : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3027   CFGBlock *LastBlock;
3028   if (Cond && Cond->isLogicalOp())
3029     LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3030   else {
3031     // Now create a new block containing the if statement.
3032     Block = createBlock(false);
3033 
3034     // Set the terminator of the new block to the If statement.
3035     Block->setTerminator(I);
3036 
3037     // See if this is a known constant.
3038     const TryResult &KnownVal = tryEvaluateBool(I->getCond());
3039 
3040     // Add the successors.  If we know that specific branches are
3041     // unreachable, inform addSuccessor() of that knowledge.
3042     addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3043     addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3044 
3045     // Add the condition as the last statement in the new block.  This may
3046     // create new blocks as the condition may contain control-flow.  Any newly
3047     // created blocks will be pointed to be "Block".
3048     LastBlock = addStmt(I->getCond());
3049 
3050     // If the IfStmt contains a condition variable, add it and its
3051     // initializer to the CFG.
3052     if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3053       autoCreateBlock();
3054       LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3055     }
3056   }
3057 
3058   // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3059   if (Stmt *Init = I->getInit()) {
3060     autoCreateBlock();
3061     LastBlock = addStmt(Init);
3062   }
3063 
3064   return LastBlock;
3065 }
3066 
3067 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3068   // If we were in the middle of a block we stop processing that block.
3069   //
3070   // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3071   //       means that the code afterwards is DEAD (unreachable).  We still keep
3072   //       a basic block for that code; a simple "mark-and-sweep" from the entry
3073   //       block will be able to report such dead blocks.
3074   assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3075 
3076   // Create the new block.
3077   Block = createBlock(false);
3078 
3079   addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3080 
3081   if (auto *R = dyn_cast<ReturnStmt>(S))
3082     findConstructionContexts(
3083         ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3084         R->getRetValue());
3085 
3086   // If the one of the destructors does not return, we already have the Exit
3087   // block as a successor.
3088   if (!Block->hasNoReturnElement())
3089     addSuccessor(Block, &cfg->getExit());
3090 
3091   // Add the return statement to the block.
3092   appendStmt(Block, S);
3093 
3094   // Visit children
3095   if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3096     if (Expr *O = RS->getRetValue())
3097       return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3098     return Block;
3099   } else { // co_return
3100     return VisitChildren(S);
3101   }
3102 }
3103 
3104 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3105   // SEHExceptStmt are treated like labels, so they are the first statement in a
3106   // block.
3107 
3108   // Save local scope position because in case of exception variable ScopePos
3109   // won't be restored when traversing AST.
3110   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3111 
3112   addStmt(ES->getBlock());
3113   CFGBlock *SEHExceptBlock = Block;
3114   if (!SEHExceptBlock)
3115     SEHExceptBlock = createBlock();
3116 
3117   appendStmt(SEHExceptBlock, ES);
3118 
3119   // Also add the SEHExceptBlock as a label, like with regular labels.
3120   SEHExceptBlock->setLabel(ES);
3121 
3122   // Bail out if the CFG is bad.
3123   if (badCFG)
3124     return nullptr;
3125 
3126   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3127   Block = nullptr;
3128 
3129   return SEHExceptBlock;
3130 }
3131 
3132 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3133   return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3134 }
3135 
3136 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3137   // "__leave" is a control-flow statement.  Thus we stop processing the current
3138   // block.
3139   if (badCFG)
3140     return nullptr;
3141 
3142   // Now create a new block that ends with the __leave statement.
3143   Block = createBlock(false);
3144   Block->setTerminator(LS);
3145 
3146   // If there is no target for the __leave, then we are looking at an incomplete
3147   // AST.  This means that the CFG cannot be constructed.
3148   if (SEHLeaveJumpTarget.block) {
3149     addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3150     addSuccessor(Block, SEHLeaveJumpTarget.block);
3151   } else
3152     badCFG = true;
3153 
3154   return Block;
3155 }
3156 
3157 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3158   // "__try"/"__except"/"__finally" is a control-flow statement.  Thus we stop
3159   // processing the current block.
3160   CFGBlock *SEHTrySuccessor = nullptr;
3161 
3162   if (Block) {
3163     if (badCFG)
3164       return nullptr;
3165     SEHTrySuccessor = Block;
3166   } else SEHTrySuccessor = Succ;
3167 
3168   // FIXME: Implement __finally support.
3169   if (Terminator->getFinallyHandler())
3170     return NYS();
3171 
3172   CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3173 
3174   // Create a new block that will contain the __try statement.
3175   CFGBlock *NewTryTerminatedBlock = createBlock(false);
3176 
3177   // Add the terminator in the __try block.
3178   NewTryTerminatedBlock->setTerminator(Terminator);
3179 
3180   if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3181     // The code after the try is the implicit successor if there's an __except.
3182     Succ = SEHTrySuccessor;
3183     Block = nullptr;
3184     CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3185     if (!ExceptBlock)
3186       return nullptr;
3187     // Add this block to the list of successors for the block with the try
3188     // statement.
3189     addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3190   }
3191   if (PrevSEHTryTerminatedBlock)
3192     addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3193   else
3194     addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3195 
3196   // The code after the try is the implicit successor.
3197   Succ = SEHTrySuccessor;
3198 
3199   // Save the current "__try" context.
3200   SaveAndRestore<CFGBlock *> save_try(TryTerminatedBlock,
3201                                       NewTryTerminatedBlock);
3202   cfg->addTryDispatchBlock(TryTerminatedBlock);
3203 
3204   // Save the current value for the __leave target.
3205   // All __leaves should go to the code following the __try
3206   // (FIXME: or if the __try has a __finally, to the __finally.)
3207   SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
3208   SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3209 
3210   assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3211   Block = nullptr;
3212   return addStmt(Terminator->getTryBlock());
3213 }
3214 
3215 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3216   // Get the block of the labeled statement.  Add it to our map.
3217   addStmt(L->getSubStmt());
3218   CFGBlock *LabelBlock = Block;
3219 
3220   if (!LabelBlock)              // This can happen when the body is empty, i.e.
3221     LabelBlock = createBlock(); // scopes that only contains NullStmts.
3222 
3223   assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
3224          "label already in map");
3225   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3226 
3227   // Labels partition blocks, so this is the end of the basic block we were
3228   // processing (L is the block's label).  Because this is label (and we have
3229   // already processed the substatement) there is no extra control-flow to worry
3230   // about.
3231   LabelBlock->setLabel(L);
3232   if (badCFG)
3233     return nullptr;
3234 
3235   // We set Block to NULL to allow lazy creation of a new block (if necessary);
3236   Block = nullptr;
3237 
3238   // This block is now the implicit successor of other blocks.
3239   Succ = LabelBlock;
3240 
3241   return LabelBlock;
3242 }
3243 
3244 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3245   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3246   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3247     if (Expr *CopyExpr = CI.getCopyExpr()) {
3248       CFGBlock *Tmp = Visit(CopyExpr);
3249       if (Tmp)
3250         LastBlock = Tmp;
3251     }
3252   }
3253   return LastBlock;
3254 }
3255 
3256 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3257   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3258   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3259        et = E->capture_init_end(); it != et; ++it) {
3260     if (Expr *Init = *it) {
3261       CFGBlock *Tmp = Visit(Init);
3262       if (Tmp)
3263         LastBlock = Tmp;
3264     }
3265   }
3266   return LastBlock;
3267 }
3268 
3269 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3270   // Goto is a control-flow statement.  Thus we stop processing the current
3271   // block and create a new one.
3272 
3273   Block = createBlock(false);
3274   Block->setTerminator(G);
3275 
3276   // If we already know the mapping to the label block add the successor now.
3277   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3278 
3279   if (I == LabelMap.end())
3280     // We will need to backpatch this block later.
3281     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3282   else {
3283     JumpTarget JT = I->second;
3284     addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
3285     addSuccessor(Block, JT.block);
3286   }
3287 
3288   return Block;
3289 }
3290 
3291 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3292   // Goto is a control-flow statement.  Thus we stop processing the current
3293   // block and create a new one.
3294 
3295   if (!G->isAsmGoto())
3296     return VisitStmt(G, asc);
3297 
3298   if (Block) {
3299     Succ = Block;
3300     if (badCFG)
3301       return nullptr;
3302   }
3303   Block = createBlock();
3304   Block->setTerminator(G);
3305   // We will backpatch this block later for all the labels.
3306   BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3307   // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3308   // used to avoid adding "Succ" again.
3309   BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3310   return Block;
3311 }
3312 
3313 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3314   CFGBlock *LoopSuccessor = nullptr;
3315 
3316   // Save local scope position because in case of condition variable ScopePos
3317   // won't be restored when traversing AST.
3318   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3319 
3320   // Create local scope for init statement and possible condition variable.
3321   // Add destructor for init statement and condition variable.
3322   // Store scope position for continue statement.
3323   if (Stmt *Init = F->getInit())
3324     addLocalScopeForStmt(Init);
3325   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3326 
3327   if (VarDecl *VD = F->getConditionVariable())
3328     addLocalScopeForVarDecl(VD);
3329   LocalScope::const_iterator ContinueScopePos = ScopePos;
3330 
3331   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3332 
3333   addLoopExit(F);
3334 
3335   // "for" is a control-flow statement.  Thus we stop processing the current
3336   // block.
3337   if (Block) {
3338     if (badCFG)
3339       return nullptr;
3340     LoopSuccessor = Block;
3341   } else
3342     LoopSuccessor = Succ;
3343 
3344   // Save the current value for the break targets.
3345   // All breaks should go to the code following the loop.
3346   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3347   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3348 
3349   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3350 
3351   // Now create the loop body.
3352   {
3353     assert(F->getBody());
3354 
3355     // Save the current values for Block, Succ, continue and break targets.
3356     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3357     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3358 
3359     // Create an empty block to represent the transition block for looping back
3360     // to the head of the loop.  If we have increment code, it will
3361     // go in this block as well.
3362     Block = Succ = TransitionBlock = createBlock(false);
3363     TransitionBlock->setLoopTarget(F);
3364 
3365     if (Stmt *I = F->getInc()) {
3366       // Generate increment code in its own basic block.  This is the target of
3367       // continue statements.
3368       Succ = addStmt(I);
3369     }
3370 
3371     // Finish up the increment (or empty) block if it hasn't been already.
3372     if (Block) {
3373       assert(Block == Succ);
3374       if (badCFG)
3375         return nullptr;
3376       Block = nullptr;
3377     }
3378 
3379    // The starting block for the loop increment is the block that should
3380    // represent the 'loop target' for looping back to the start of the loop.
3381    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3382    ContinueJumpTarget.block->setLoopTarget(F);
3383 
3384     // Loop body should end with destructor of Condition variable (if any).
3385    addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3386 
3387     // If body is not a compound statement create implicit scope
3388     // and add destructors.
3389     if (!isa<CompoundStmt>(F->getBody()))
3390       addLocalScopeAndDtors(F->getBody());
3391 
3392     // Now populate the body block, and in the process create new blocks as we
3393     // walk the body of the loop.
3394     BodyBlock = addStmt(F->getBody());
3395 
3396     if (!BodyBlock) {
3397       // In the case of "for (...;...;...);" we can have a null BodyBlock.
3398       // Use the continue jump target as the proxy for the body.
3399       BodyBlock = ContinueJumpTarget.block;
3400     }
3401     else if (badCFG)
3402       return nullptr;
3403   }
3404 
3405   // Because of short-circuit evaluation, the condition of the loop can span
3406   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3407   // evaluate the condition.
3408   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3409 
3410   do {
3411     Expr *C = F->getCond();
3412     SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3413 
3414     // Specially handle logical operators, which have a slightly
3415     // more optimal CFG representation.
3416     if (BinaryOperator *Cond =
3417             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3418       if (Cond->isLogicalOp()) {
3419         std::tie(EntryConditionBlock, ExitConditionBlock) =
3420           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3421         break;
3422       }
3423 
3424     // The default case when not handling logical operators.
3425     EntryConditionBlock = ExitConditionBlock = createBlock(false);
3426     ExitConditionBlock->setTerminator(F);
3427 
3428     // See if this is a known constant.
3429     TryResult KnownVal(true);
3430 
3431     if (C) {
3432       // Now add the actual condition to the condition block.
3433       // Because the condition itself may contain control-flow, new blocks may
3434       // be created.  Thus we update "Succ" after adding the condition.
3435       Block = ExitConditionBlock;
3436       EntryConditionBlock = addStmt(C);
3437 
3438       // If this block contains a condition variable, add both the condition
3439       // variable and initializer to the CFG.
3440       if (VarDecl *VD = F->getConditionVariable()) {
3441         if (Expr *Init = VD->getInit()) {
3442           autoCreateBlock();
3443           const DeclStmt *DS = F->getConditionVariableDeclStmt();
3444           assert(DS->isSingleDecl());
3445           findConstructionContexts(
3446               ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3447               Init);
3448           appendStmt(Block, DS);
3449           EntryConditionBlock = addStmt(Init);
3450           assert(Block == EntryConditionBlock);
3451           maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3452         }
3453       }
3454 
3455       if (Block && badCFG)
3456         return nullptr;
3457 
3458       KnownVal = tryEvaluateBool(C);
3459     }
3460 
3461     // Add the loop body entry as a successor to the condition.
3462     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3463     // Link up the condition block with the code that follows the loop.  (the
3464     // false branch).
3465     addSuccessor(ExitConditionBlock,
3466                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3467   } while (false);
3468 
3469   // Link up the loop-back block to the entry condition block.
3470   addSuccessor(TransitionBlock, EntryConditionBlock);
3471 
3472   // The condition block is the implicit successor for any code above the loop.
3473   Succ = EntryConditionBlock;
3474 
3475   // If the loop contains initialization, create a new block for those
3476   // statements.  This block can also contain statements that precede the loop.
3477   if (Stmt *I = F->getInit()) {
3478     SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3479     ScopePos = LoopBeginScopePos;
3480     Block = createBlock();
3481     return addStmt(I);
3482   }
3483 
3484   // There is no loop initialization.  We are thus basically a while loop.
3485   // NULL out Block to force lazy block construction.
3486   Block = nullptr;
3487   Succ = EntryConditionBlock;
3488   return EntryConditionBlock;
3489 }
3490 
3491 CFGBlock *
3492 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3493                                           AddStmtChoice asc) {
3494   findConstructionContexts(
3495       ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3496       MTE->getSubExpr());
3497 
3498   return VisitStmt(MTE, asc);
3499 }
3500 
3501 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3502   if (asc.alwaysAdd(*this, M)) {
3503     autoCreateBlock();
3504     appendStmt(Block, M);
3505   }
3506   return Visit(M->getBase());
3507 }
3508 
3509 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3510   // Objective-C fast enumeration 'for' statements:
3511   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3512   //
3513   //  for ( Type newVariable in collection_expression ) { statements }
3514   //
3515   //  becomes:
3516   //
3517   //   prologue:
3518   //     1. collection_expression
3519   //     T. jump to loop_entry
3520   //   loop_entry:
3521   //     1. side-effects of element expression
3522   //     1. ObjCForCollectionStmt [performs binding to newVariable]
3523   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
3524   //   TB:
3525   //     statements
3526   //     T. jump to loop_entry
3527   //   FB:
3528   //     what comes after
3529   //
3530   //  and
3531   //
3532   //  Type existingItem;
3533   //  for ( existingItem in expression ) { statements }
3534   //
3535   //  becomes:
3536   //
3537   //   the same with newVariable replaced with existingItem; the binding works
3538   //   the same except that for one ObjCForCollectionStmt::getElement() returns
3539   //   a DeclStmt and the other returns a DeclRefExpr.
3540 
3541   CFGBlock *LoopSuccessor = nullptr;
3542 
3543   if (Block) {
3544     if (badCFG)
3545       return nullptr;
3546     LoopSuccessor = Block;
3547     Block = nullptr;
3548   } else
3549     LoopSuccessor = Succ;
3550 
3551   // Build the condition blocks.
3552   CFGBlock *ExitConditionBlock = createBlock(false);
3553 
3554   // Set the terminator for the "exit" condition block.
3555   ExitConditionBlock->setTerminator(S);
3556 
3557   // The last statement in the block should be the ObjCForCollectionStmt, which
3558   // performs the actual binding to 'element' and determines if there are any
3559   // more items in the collection.
3560   appendStmt(ExitConditionBlock, S);
3561   Block = ExitConditionBlock;
3562 
3563   // Walk the 'element' expression to see if there are any side-effects.  We
3564   // generate new blocks as necessary.  We DON'T add the statement by default to
3565   // the CFG unless it contains control-flow.
3566   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3567                                         AddStmtChoice::NotAlwaysAdd);
3568   if (Block) {
3569     if (badCFG)
3570       return nullptr;
3571     Block = nullptr;
3572   }
3573 
3574   // The condition block is the implicit successor for the loop body as well as
3575   // any code above the loop.
3576   Succ = EntryConditionBlock;
3577 
3578   // Now create the true branch.
3579   {
3580     // Save the current values for Succ, continue and break targets.
3581     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3582     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3583                                save_break(BreakJumpTarget);
3584 
3585     // Add an intermediate block between the BodyBlock and the
3586     // EntryConditionBlock to represent the "loop back" transition, for looping
3587     // back to the head of the loop.
3588     CFGBlock *LoopBackBlock = nullptr;
3589     Succ = LoopBackBlock = createBlock();
3590     LoopBackBlock->setLoopTarget(S);
3591 
3592     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3593     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3594 
3595     CFGBlock *BodyBlock = addStmt(S->getBody());
3596 
3597     if (!BodyBlock)
3598       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3599     else if (Block) {
3600       if (badCFG)
3601         return nullptr;
3602     }
3603 
3604     // This new body block is a successor to our "exit" condition block.
3605     addSuccessor(ExitConditionBlock, BodyBlock);
3606   }
3607 
3608   // Link up the condition block with the code that follows the loop.
3609   // (the false branch).
3610   addSuccessor(ExitConditionBlock, LoopSuccessor);
3611 
3612   // Now create a prologue block to contain the collection expression.
3613   Block = createBlock();
3614   return addStmt(S->getCollection());
3615 }
3616 
3617 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3618   // Inline the body.
3619   return addStmt(S->getSubStmt());
3620   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3621 }
3622 
3623 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3624   // FIXME: Add locking 'primitives' to CFG for @synchronized.
3625 
3626   // Inline the body.
3627   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3628 
3629   // The sync body starts its own basic block.  This makes it a little easier
3630   // for diagnostic clients.
3631   if (SyncBlock) {
3632     if (badCFG)
3633       return nullptr;
3634 
3635     Block = nullptr;
3636     Succ = SyncBlock;
3637   }
3638 
3639   // Add the @synchronized to the CFG.
3640   autoCreateBlock();
3641   appendStmt(Block, S);
3642 
3643   // Inline the sync expression.
3644   return addStmt(S->getSynchExpr());
3645 }
3646 
3647 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
3648   // FIXME
3649   return NYS();
3650 }
3651 
3652 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3653   autoCreateBlock();
3654 
3655   // Add the PseudoObject as the last thing.
3656   appendStmt(Block, E);
3657 
3658   CFGBlock *lastBlock = Block;
3659 
3660   // Before that, evaluate all of the semantics in order.  In
3661   // CFG-land, that means appending them in reverse order.
3662   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3663     Expr *Semantic = E->getSemanticExpr(--i);
3664 
3665     // If the semantic is an opaque value, we're being asked to bind
3666     // it to its source expression.
3667     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3668       Semantic = OVE->getSourceExpr();
3669 
3670     if (CFGBlock *B = Visit(Semantic))
3671       lastBlock = B;
3672   }
3673 
3674   return lastBlock;
3675 }
3676 
3677 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3678   CFGBlock *LoopSuccessor = nullptr;
3679 
3680   // Save local scope position because in case of condition variable ScopePos
3681   // won't be restored when traversing AST.
3682   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3683 
3684   // Create local scope for possible condition variable.
3685   // Store scope position for continue statement.
3686   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3687   if (VarDecl *VD = W->getConditionVariable()) {
3688     addLocalScopeForVarDecl(VD);
3689     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3690   }
3691   addLoopExit(W);
3692 
3693   // "while" is a control-flow statement.  Thus we stop processing the current
3694   // block.
3695   if (Block) {
3696     if (badCFG)
3697       return nullptr;
3698     LoopSuccessor = Block;
3699     Block = nullptr;
3700   } else {
3701     LoopSuccessor = Succ;
3702   }
3703 
3704   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3705 
3706   // Process the loop body.
3707   {
3708     assert(W->getBody());
3709 
3710     // Save the current values for Block, Succ, continue and break targets.
3711     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3712     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3713                                save_break(BreakJumpTarget);
3714 
3715     // Create an empty block to represent the transition block for looping back
3716     // to the head of the loop.
3717     Succ = TransitionBlock = createBlock(false);
3718     TransitionBlock->setLoopTarget(W);
3719     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3720 
3721     // All breaks should go to the code following the loop.
3722     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3723 
3724     // Loop body should end with destructor of Condition variable (if any).
3725     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3726 
3727     // If body is not a compound statement create implicit scope
3728     // and add destructors.
3729     if (!isa<CompoundStmt>(W->getBody()))
3730       addLocalScopeAndDtors(W->getBody());
3731 
3732     // Create the body.  The returned block is the entry to the loop body.
3733     BodyBlock = addStmt(W->getBody());
3734 
3735     if (!BodyBlock)
3736       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3737     else if (Block && badCFG)
3738       return nullptr;
3739   }
3740 
3741   // Because of short-circuit evaluation, the condition of the loop can span
3742   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3743   // evaluate the condition.
3744   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3745 
3746   do {
3747     Expr *C = W->getCond();
3748 
3749     // Specially handle logical operators, which have a slightly
3750     // more optimal CFG representation.
3751     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3752       if (Cond->isLogicalOp()) {
3753         std::tie(EntryConditionBlock, ExitConditionBlock) =
3754             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3755         break;
3756       }
3757 
3758     // The default case when not handling logical operators.
3759     ExitConditionBlock = createBlock(false);
3760     ExitConditionBlock->setTerminator(W);
3761 
3762     // Now add the actual condition to the condition block.
3763     // Because the condition itself may contain control-flow, new blocks may
3764     // be created.  Thus we update "Succ" after adding the condition.
3765     Block = ExitConditionBlock;
3766     Block = EntryConditionBlock = addStmt(C);
3767 
3768     // If this block contains a condition variable, add both the condition
3769     // variable and initializer to the CFG.
3770     if (VarDecl *VD = W->getConditionVariable()) {
3771       if (Expr *Init = VD->getInit()) {
3772         autoCreateBlock();
3773         const DeclStmt *DS = W->getConditionVariableDeclStmt();
3774         assert(DS->isSingleDecl());
3775         findConstructionContexts(
3776             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3777                                              const_cast<DeclStmt *>(DS)),
3778             Init);
3779         appendStmt(Block, DS);
3780         EntryConditionBlock = addStmt(Init);
3781         assert(Block == EntryConditionBlock);
3782         maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3783       }
3784     }
3785 
3786     if (Block && badCFG)
3787       return nullptr;
3788 
3789     // See if this is a known constant.
3790     const TryResult& KnownVal = tryEvaluateBool(C);
3791 
3792     // Add the loop body entry as a successor to the condition.
3793     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3794     // Link up the condition block with the code that follows the loop.  (the
3795     // false branch).
3796     addSuccessor(ExitConditionBlock,
3797                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3798   } while(false);
3799 
3800   // Link up the loop-back block to the entry condition block.
3801   addSuccessor(TransitionBlock, EntryConditionBlock);
3802 
3803   // There can be no more statements in the condition block since we loop back
3804   // to this block.  NULL out Block to force lazy creation of another block.
3805   Block = nullptr;
3806 
3807   // Return the condition block, which is the dominating block for the loop.
3808   Succ = EntryConditionBlock;
3809   return EntryConditionBlock;
3810 }
3811 
3812 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
3813   // FIXME: For now we pretend that @catch and the code it contains does not
3814   //  exit.
3815   return Block;
3816 }
3817 
3818 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
3819   // FIXME: This isn't complete.  We basically treat @throw like a return
3820   //  statement.
3821 
3822   // If we were in the middle of a block we stop processing that block.
3823   if (badCFG)
3824     return nullptr;
3825 
3826   // Create the new block.
3827   Block = createBlock(false);
3828 
3829   // The Exit block is the only successor.
3830   addSuccessor(Block, &cfg->getExit());
3831 
3832   // Add the statement to the block.  This may create new blocks if S contains
3833   // control-flow (short-circuit operations).
3834   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
3835 }
3836 
3837 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
3838                                            AddStmtChoice asc) {
3839   findConstructionContextsForArguments(ME);
3840 
3841   autoCreateBlock();
3842   appendObjCMessage(Block, ME);
3843 
3844   return VisitChildren(ME);
3845 }
3846 
3847 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
3848   // If we were in the middle of a block we stop processing that block.
3849   if (badCFG)
3850     return nullptr;
3851 
3852   // Create the new block.
3853   Block = createBlock(false);
3854 
3855   if (TryTerminatedBlock)
3856     // The current try statement is the only successor.
3857     addSuccessor(Block, TryTerminatedBlock);
3858   else
3859     // otherwise the Exit block is the only successor.
3860     addSuccessor(Block, &cfg->getExit());
3861 
3862   // Add the statement to the block.  This may create new blocks if S contains
3863   // control-flow (short-circuit operations).
3864   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
3865 }
3866 
3867 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
3868   CFGBlock *LoopSuccessor = nullptr;
3869 
3870   addLoopExit(D);
3871 
3872   // "do...while" is a control-flow statement.  Thus we stop processing the
3873   // current block.
3874   if (Block) {
3875     if (badCFG)
3876       return nullptr;
3877     LoopSuccessor = Block;
3878   } else
3879     LoopSuccessor = Succ;
3880 
3881   // Because of short-circuit evaluation, the condition of the loop can span
3882   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3883   // evaluate the condition.
3884   CFGBlock *ExitConditionBlock = createBlock(false);
3885   CFGBlock *EntryConditionBlock = ExitConditionBlock;
3886 
3887   // Set the terminator for the "exit" condition block.
3888   ExitConditionBlock->setTerminator(D);
3889 
3890   // Now add the actual condition to the condition block.  Because the condition
3891   // itself may contain control-flow, new blocks may be created.
3892   if (Stmt *C = D->getCond()) {
3893     Block = ExitConditionBlock;
3894     EntryConditionBlock = addStmt(C);
3895     if (Block) {
3896       if (badCFG)
3897         return nullptr;
3898     }
3899   }
3900 
3901   // The condition block is the implicit successor for the loop body.
3902   Succ = EntryConditionBlock;
3903 
3904   // See if this is a known constant.
3905   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
3906 
3907   // Process the loop body.
3908   CFGBlock *BodyBlock = nullptr;
3909   {
3910     assert(D->getBody());
3911 
3912     // Save the current values for Block, Succ, and continue and break targets
3913     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3914     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3915         save_break(BreakJumpTarget);
3916 
3917     // All continues within this loop should go to the condition block
3918     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
3919 
3920     // All breaks should go to the code following the loop.
3921     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3922 
3923     // NULL out Block to force lazy instantiation of blocks for the body.
3924     Block = nullptr;
3925 
3926     // If body is not a compound statement create implicit scope
3927     // and add destructors.
3928     if (!isa<CompoundStmt>(D->getBody()))
3929       addLocalScopeAndDtors(D->getBody());
3930 
3931     // Create the body.  The returned block is the entry to the loop body.
3932     BodyBlock = addStmt(D->getBody());
3933 
3934     if (!BodyBlock)
3935       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
3936     else if (Block) {
3937       if (badCFG)
3938         return nullptr;
3939     }
3940 
3941     // Add an intermediate block between the BodyBlock and the
3942     // ExitConditionBlock to represent the "loop back" transition.  Create an
3943     // empty block to represent the transition block for looping back to the
3944     // head of the loop.
3945     // FIXME: Can we do this more efficiently without adding another block?
3946     Block = nullptr;
3947     Succ = BodyBlock;
3948     CFGBlock *LoopBackBlock = createBlock();
3949     LoopBackBlock->setLoopTarget(D);
3950 
3951     if (!KnownVal.isFalse())
3952       // Add the loop body entry as a successor to the condition.
3953       addSuccessor(ExitConditionBlock, LoopBackBlock);
3954     else
3955       addSuccessor(ExitConditionBlock, nullptr);
3956   }
3957 
3958   // Link up the condition block with the code that follows the loop.
3959   // (the false branch).
3960   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
3961 
3962   // There can be no more statements in the body block(s) since we loop back to
3963   // the body.  NULL out Block to force lazy creation of another block.
3964   Block = nullptr;
3965 
3966   // Return the loop body, which is the dominating block for the loop.
3967   Succ = BodyBlock;
3968   return BodyBlock;
3969 }
3970 
3971 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
3972   // "continue" is a control-flow statement.  Thus we stop processing the
3973   // current block.
3974   if (badCFG)
3975     return nullptr;
3976 
3977   // Now create a new block that ends with the continue statement.
3978   Block = createBlock(false);
3979   Block->setTerminator(C);
3980 
3981   // If there is no target for the continue, then we are looking at an
3982   // incomplete AST.  This means the CFG cannot be constructed.
3983   if (ContinueJumpTarget.block) {
3984     addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
3985     addSuccessor(Block, ContinueJumpTarget.block);
3986   } else
3987     badCFG = true;
3988 
3989   return Block;
3990 }
3991 
3992 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
3993                                                     AddStmtChoice asc) {
3994   if (asc.alwaysAdd(*this, E)) {
3995     autoCreateBlock();
3996     appendStmt(Block, E);
3997   }
3998 
3999   // VLA types have expressions that must be evaluated.
4000   CFGBlock *lastBlock = Block;
4001 
4002   if (E->isArgumentType()) {
4003     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4004          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4005       lastBlock = addStmt(VA->getSizeExpr());
4006   }
4007   return lastBlock;
4008 }
4009 
4010 /// VisitStmtExpr - Utility method to handle (nested) statement
4011 ///  expressions (a GCC extension).
4012 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4013   if (asc.alwaysAdd(*this, SE)) {
4014     autoCreateBlock();
4015     appendStmt(Block, SE);
4016   }
4017   return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4018 }
4019 
4020 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4021   // "switch" is a control-flow statement.  Thus we stop processing the current
4022   // block.
4023   CFGBlock *SwitchSuccessor = nullptr;
4024 
4025   // Save local scope position because in case of condition variable ScopePos
4026   // won't be restored when traversing AST.
4027   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4028 
4029   // Create local scope for C++17 switch init-stmt if one exists.
4030   if (Stmt *Init = Terminator->getInit())
4031     addLocalScopeForStmt(Init);
4032 
4033   // Create local scope for possible condition variable.
4034   // Store scope position. Add implicit destructor.
4035   if (VarDecl *VD = Terminator->getConditionVariable())
4036     addLocalScopeForVarDecl(VD);
4037 
4038   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4039 
4040   if (Block) {
4041     if (badCFG)
4042       return nullptr;
4043     SwitchSuccessor = Block;
4044   } else SwitchSuccessor = Succ;
4045 
4046   // Save the current "switch" context.
4047   SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
4048                             save_default(DefaultCaseBlock);
4049   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4050 
4051   // Set the "default" case to be the block after the switch statement.  If the
4052   // switch statement contains a "default:", this value will be overwritten with
4053   // the block for that code.
4054   DefaultCaseBlock = SwitchSuccessor;
4055 
4056   // Create a new block that will contain the switch statement.
4057   SwitchTerminatedBlock = createBlock(false);
4058 
4059   // Now process the switch body.  The code after the switch is the implicit
4060   // successor.
4061   Succ = SwitchSuccessor;
4062   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4063 
4064   // When visiting the body, the case statements should automatically get linked
4065   // up to the switch.  We also don't keep a pointer to the body, since all
4066   // control-flow from the switch goes to case/default statements.
4067   assert(Terminator->getBody() && "switch must contain a non-NULL body");
4068   Block = nullptr;
4069 
4070   // For pruning unreachable case statements, save the current state
4071   // for tracking the condition value.
4072   SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
4073                                                      false);
4074 
4075   // Determine if the switch condition can be explicitly evaluated.
4076   assert(Terminator->getCond() && "switch condition must be non-NULL");
4077   Expr::EvalResult result;
4078   bool b = tryEvaluate(Terminator->getCond(), result);
4079   SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
4080                                                     b ? &result : nullptr);
4081 
4082   // If body is not a compound statement create implicit scope
4083   // and add destructors.
4084   if (!isa<CompoundStmt>(Terminator->getBody()))
4085     addLocalScopeAndDtors(Terminator->getBody());
4086 
4087   addStmt(Terminator->getBody());
4088   if (Block) {
4089     if (badCFG)
4090       return nullptr;
4091   }
4092 
4093   // If we have no "default:" case, the default transition is to the code
4094   // following the switch body.  Moreover, take into account if all the
4095   // cases of a switch are covered (e.g., switching on an enum value).
4096   //
4097   // Note: We add a successor to a switch that is considered covered yet has no
4098   //       case statements if the enumeration has no enumerators.
4099   bool SwitchAlwaysHasSuccessor = false;
4100   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4101   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4102                               Terminator->getSwitchCaseList();
4103   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4104                !SwitchAlwaysHasSuccessor);
4105 
4106   // Add the terminator and condition in the switch block.
4107   SwitchTerminatedBlock->setTerminator(Terminator);
4108   Block = SwitchTerminatedBlock;
4109   CFGBlock *LastBlock = addStmt(Terminator->getCond());
4110 
4111   // If the SwitchStmt contains a condition variable, add both the
4112   // SwitchStmt and the condition variable initialization to the CFG.
4113   if (VarDecl *VD = Terminator->getConditionVariable()) {
4114     if (Expr *Init = VD->getInit()) {
4115       autoCreateBlock();
4116       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4117       LastBlock = addStmt(Init);
4118       maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4119     }
4120   }
4121 
4122   // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4123   if (Stmt *Init = Terminator->getInit()) {
4124     autoCreateBlock();
4125     LastBlock = addStmt(Init);
4126   }
4127 
4128   return LastBlock;
4129 }
4130 
4131 static bool shouldAddCase(bool &switchExclusivelyCovered,
4132                           const Expr::EvalResult *switchCond,
4133                           const CaseStmt *CS,
4134                           ASTContext &Ctx) {
4135   if (!switchCond)
4136     return true;
4137 
4138   bool addCase = false;
4139 
4140   if (!switchExclusivelyCovered) {
4141     if (switchCond->Val.isInt()) {
4142       // Evaluate the LHS of the case value.
4143       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4144       const llvm::APSInt &condInt = switchCond->Val.getInt();
4145 
4146       if (condInt == lhsInt) {
4147         addCase = true;
4148         switchExclusivelyCovered = true;
4149       }
4150       else if (condInt > lhsInt) {
4151         if (const Expr *RHS = CS->getRHS()) {
4152           // Evaluate the RHS of the case value.
4153           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4154           if (V2 >= condInt) {
4155             addCase = true;
4156             switchExclusivelyCovered = true;
4157           }
4158         }
4159       }
4160     }
4161     else
4162       addCase = true;
4163   }
4164   return addCase;
4165 }
4166 
4167 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4168   // CaseStmts are essentially labels, so they are the first statement in a
4169   // block.
4170   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4171 
4172   if (Stmt *Sub = CS->getSubStmt()) {
4173     // For deeply nested chains of CaseStmts, instead of doing a recursion
4174     // (which can blow out the stack), manually unroll and create blocks
4175     // along the way.
4176     while (isa<CaseStmt>(Sub)) {
4177       CFGBlock *currentBlock = createBlock(false);
4178       currentBlock->setLabel(CS);
4179 
4180       if (TopBlock)
4181         addSuccessor(LastBlock, currentBlock);
4182       else
4183         TopBlock = currentBlock;
4184 
4185       addSuccessor(SwitchTerminatedBlock,
4186                    shouldAddCase(switchExclusivelyCovered, switchCond,
4187                                  CS, *Context)
4188                    ? currentBlock : nullptr);
4189 
4190       LastBlock = currentBlock;
4191       CS = cast<CaseStmt>(Sub);
4192       Sub = CS->getSubStmt();
4193     }
4194 
4195     addStmt(Sub);
4196   }
4197 
4198   CFGBlock *CaseBlock = Block;
4199   if (!CaseBlock)
4200     CaseBlock = createBlock();
4201 
4202   // Cases statements partition blocks, so this is the top of the basic block we
4203   // were processing (the "case XXX:" is the label).
4204   CaseBlock->setLabel(CS);
4205 
4206   if (badCFG)
4207     return nullptr;
4208 
4209   // Add this block to the list of successors for the block with the switch
4210   // statement.
4211   assert(SwitchTerminatedBlock);
4212   addSuccessor(SwitchTerminatedBlock, CaseBlock,
4213                shouldAddCase(switchExclusivelyCovered, switchCond,
4214                              CS, *Context));
4215 
4216   // We set Block to NULL to allow lazy creation of a new block (if necessary)
4217   Block = nullptr;
4218 
4219   if (TopBlock) {
4220     addSuccessor(LastBlock, CaseBlock);
4221     Succ = TopBlock;
4222   } else {
4223     // This block is now the implicit successor of other blocks.
4224     Succ = CaseBlock;
4225   }
4226 
4227   return Succ;
4228 }
4229 
4230 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4231   if (Terminator->getSubStmt())
4232     addStmt(Terminator->getSubStmt());
4233 
4234   DefaultCaseBlock = Block;
4235 
4236   if (!DefaultCaseBlock)
4237     DefaultCaseBlock = createBlock();
4238 
4239   // Default statements partition blocks, so this is the top of the basic block
4240   // we were processing (the "default:" is the label).
4241   DefaultCaseBlock->setLabel(Terminator);
4242 
4243   if (badCFG)
4244     return nullptr;
4245 
4246   // Unlike case statements, we don't add the default block to the successors
4247   // for the switch statement immediately.  This is done when we finish
4248   // processing the switch statement.  This allows for the default case
4249   // (including a fall-through to the code after the switch statement) to always
4250   // be the last successor of a switch-terminated block.
4251 
4252   // We set Block to NULL to allow lazy creation of a new block (if necessary)
4253   Block = nullptr;
4254 
4255   // This block is now the implicit successor of other blocks.
4256   Succ = DefaultCaseBlock;
4257 
4258   return DefaultCaseBlock;
4259 }
4260 
4261 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4262   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
4263   // current block.
4264   CFGBlock *TrySuccessor = nullptr;
4265 
4266   if (Block) {
4267     if (badCFG)
4268       return nullptr;
4269     TrySuccessor = Block;
4270   } else TrySuccessor = Succ;
4271 
4272   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4273 
4274   // Create a new block that will contain the try statement.
4275   CFGBlock *NewTryTerminatedBlock = createBlock(false);
4276   // Add the terminator in the try block.
4277   NewTryTerminatedBlock->setTerminator(Terminator);
4278 
4279   bool HasCatchAll = false;
4280   for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
4281     // The code after the try is the implicit successor.
4282     Succ = TrySuccessor;
4283     CXXCatchStmt *CS = Terminator->getHandler(h);
4284     if (CS->getExceptionDecl() == nullptr) {
4285       HasCatchAll = true;
4286     }
4287     Block = nullptr;
4288     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4289     if (!CatchBlock)
4290       return nullptr;
4291     // Add this block to the list of successors for the block with the try
4292     // statement.
4293     addSuccessor(NewTryTerminatedBlock, CatchBlock);
4294   }
4295   if (!HasCatchAll) {
4296     if (PrevTryTerminatedBlock)
4297       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4298     else
4299       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4300   }
4301 
4302   // The code after the try is the implicit successor.
4303   Succ = TrySuccessor;
4304 
4305   // Save the current "try" context.
4306   SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
4307   cfg->addTryDispatchBlock(TryTerminatedBlock);
4308 
4309   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4310   Block = nullptr;
4311   return addStmt(Terminator->getTryBlock());
4312 }
4313 
4314 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4315   // CXXCatchStmt are treated like labels, so they are the first statement in a
4316   // block.
4317 
4318   // Save local scope position because in case of exception variable ScopePos
4319   // won't be restored when traversing AST.
4320   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4321 
4322   // Create local scope for possible exception variable.
4323   // Store scope position. Add implicit destructor.
4324   if (VarDecl *VD = CS->getExceptionDecl()) {
4325     LocalScope::const_iterator BeginScopePos = ScopePos;
4326     addLocalScopeForVarDecl(VD);
4327     addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4328   }
4329 
4330   if (CS->getHandlerBlock())
4331     addStmt(CS->getHandlerBlock());
4332 
4333   CFGBlock *CatchBlock = Block;
4334   if (!CatchBlock)
4335     CatchBlock = createBlock();
4336 
4337   // CXXCatchStmt is more than just a label.  They have semantic meaning
4338   // as well, as they implicitly "initialize" the catch variable.  Add
4339   // it to the CFG as a CFGElement so that the control-flow of these
4340   // semantics gets captured.
4341   appendStmt(CatchBlock, CS);
4342 
4343   // Also add the CXXCatchStmt as a label, to mirror handling of regular
4344   // labels.
4345   CatchBlock->setLabel(CS);
4346 
4347   // Bail out if the CFG is bad.
4348   if (badCFG)
4349     return nullptr;
4350 
4351   // We set Block to NULL to allow lazy creation of a new block (if necessary)
4352   Block = nullptr;
4353 
4354   return CatchBlock;
4355 }
4356 
4357 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4358   // C++0x for-range statements are specified as [stmt.ranged]:
4359   //
4360   // {
4361   //   auto && __range = range-init;
4362   //   for ( auto __begin = begin-expr,
4363   //         __end = end-expr;
4364   //         __begin != __end;
4365   //         ++__begin ) {
4366   //     for-range-declaration = *__begin;
4367   //     statement
4368   //   }
4369   // }
4370 
4371   // Save local scope position before the addition of the implicit variables.
4372   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4373 
4374   // Create local scopes and destructors for range, begin and end variables.
4375   if (Stmt *Range = S->getRangeStmt())
4376     addLocalScopeForStmt(Range);
4377   if (Stmt *Begin = S->getBeginStmt())
4378     addLocalScopeForStmt(Begin);
4379   if (Stmt *End = S->getEndStmt())
4380     addLocalScopeForStmt(End);
4381   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4382 
4383   LocalScope::const_iterator ContinueScopePos = ScopePos;
4384 
4385   // "for" is a control-flow statement.  Thus we stop processing the current
4386   // block.
4387   CFGBlock *LoopSuccessor = nullptr;
4388   if (Block) {
4389     if (badCFG)
4390       return nullptr;
4391     LoopSuccessor = Block;
4392   } else
4393     LoopSuccessor = Succ;
4394 
4395   // Save the current value for the break targets.
4396   // All breaks should go to the code following the loop.
4397   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4398   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4399 
4400   // The block for the __begin != __end expression.
4401   CFGBlock *ConditionBlock = createBlock(false);
4402   ConditionBlock->setTerminator(S);
4403 
4404   // Now add the actual condition to the condition block.
4405   if (Expr *C = S->getCond()) {
4406     Block = ConditionBlock;
4407     CFGBlock *BeginConditionBlock = addStmt(C);
4408     if (badCFG)
4409       return nullptr;
4410     assert(BeginConditionBlock == ConditionBlock &&
4411            "condition block in for-range was unexpectedly complex");
4412     (void)BeginConditionBlock;
4413   }
4414 
4415   // The condition block is the implicit successor for the loop body as well as
4416   // any code above the loop.
4417   Succ = ConditionBlock;
4418 
4419   // See if this is a known constant.
4420   TryResult KnownVal(true);
4421 
4422   if (S->getCond())
4423     KnownVal = tryEvaluateBool(S->getCond());
4424 
4425   // Now create the loop body.
4426   {
4427     assert(S->getBody());
4428 
4429     // Save the current values for Block, Succ, and continue targets.
4430     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
4431     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
4432 
4433     // Generate increment code in its own basic block.  This is the target of
4434     // continue statements.
4435     Block = nullptr;
4436     Succ = addStmt(S->getInc());
4437     if (badCFG)
4438       return nullptr;
4439     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4440 
4441     // The starting block for the loop increment is the block that should
4442     // represent the 'loop target' for looping back to the start of the loop.
4443     ContinueJumpTarget.block->setLoopTarget(S);
4444 
4445     // Finish up the increment block and prepare to start the loop body.
4446     assert(Block);
4447     if (badCFG)
4448       return nullptr;
4449     Block = nullptr;
4450 
4451     // Add implicit scope and dtors for loop variable.
4452     addLocalScopeAndDtors(S->getLoopVarStmt());
4453 
4454     // Populate a new block to contain the loop body and loop variable.
4455     addStmt(S->getBody());
4456     if (badCFG)
4457       return nullptr;
4458     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4459     if (badCFG)
4460       return nullptr;
4461 
4462     // This new body block is a successor to our condition block.
4463     addSuccessor(ConditionBlock,
4464                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4465   }
4466 
4467   // Link up the condition block with the code that follows the loop (the
4468   // false branch).
4469   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4470 
4471   // Add the initialization statements.
4472   Block = createBlock();
4473   addStmt(S->getBeginStmt());
4474   addStmt(S->getEndStmt());
4475   CFGBlock *Head = addStmt(S->getRangeStmt());
4476   if (S->getInit())
4477     Head = addStmt(S->getInit());
4478   return Head;
4479 }
4480 
4481 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4482     AddStmtChoice asc, bool ExternallyDestructed) {
4483   if (BuildOpts.AddTemporaryDtors) {
4484     // If adding implicit destructors visit the full expression for adding
4485     // destructors of temporaries.
4486     TempDtorContext Context;
4487     VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4488 
4489     // Full expression has to be added as CFGStmt so it will be sequenced
4490     // before destructors of it's temporaries.
4491     asc = asc.withAlwaysAdd(true);
4492   }
4493   return Visit(E->getSubExpr(), asc);
4494 }
4495 
4496 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4497                                                 AddStmtChoice asc) {
4498   if (asc.alwaysAdd(*this, E)) {
4499     autoCreateBlock();
4500     appendStmt(Block, E);
4501 
4502     findConstructionContexts(
4503         ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4504         E->getSubExpr());
4505 
4506     // We do not want to propagate the AlwaysAdd property.
4507     asc = asc.withAlwaysAdd(false);
4508   }
4509   return Visit(E->getSubExpr(), asc);
4510 }
4511 
4512 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4513                                             AddStmtChoice asc) {
4514   // If the constructor takes objects as arguments by value, we need to properly
4515   // construct these objects. Construction contexts we find here aren't for the
4516   // constructor C, they're for its arguments only.
4517   findConstructionContextsForArguments(C);
4518 
4519   autoCreateBlock();
4520   appendConstructor(Block, C);
4521 
4522   return VisitChildren(C);
4523 }
4524 
4525 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4526                                       AddStmtChoice asc) {
4527   autoCreateBlock();
4528   appendStmt(Block, NE);
4529 
4530   findConstructionContexts(
4531       ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4532       const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4533 
4534   if (NE->getInitializer())
4535     Block = Visit(NE->getInitializer());
4536 
4537   if (BuildOpts.AddCXXNewAllocator)
4538     appendNewAllocator(Block, NE);
4539 
4540   if (NE->isArray() && *NE->getArraySize())
4541     Block = Visit(*NE->getArraySize());
4542 
4543   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4544        E = NE->placement_arg_end(); I != E; ++I)
4545     Block = Visit(*I);
4546 
4547   return Block;
4548 }
4549 
4550 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4551                                          AddStmtChoice asc) {
4552   autoCreateBlock();
4553   appendStmt(Block, DE);
4554   QualType DTy = DE->getDestroyedType();
4555   if (!DTy.isNull()) {
4556     DTy = DTy.getNonReferenceType();
4557     CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4558     if (RD) {
4559       if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4560         appendDeleteDtor(Block, RD, DE);
4561     }
4562   }
4563 
4564   return VisitChildren(DE);
4565 }
4566 
4567 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4568                                                  AddStmtChoice asc) {
4569   if (asc.alwaysAdd(*this, E)) {
4570     autoCreateBlock();
4571     appendStmt(Block, E);
4572     // We do not want to propagate the AlwaysAdd property.
4573     asc = asc.withAlwaysAdd(false);
4574   }
4575   return Visit(E->getSubExpr(), asc);
4576 }
4577 
4578 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4579                                                   AddStmtChoice asc) {
4580   // If the constructor takes objects as arguments by value, we need to properly
4581   // construct these objects. Construction contexts we find here aren't for the
4582   // constructor C, they're for its arguments only.
4583   findConstructionContextsForArguments(C);
4584 
4585   autoCreateBlock();
4586   appendConstructor(Block, C);
4587   return VisitChildren(C);
4588 }
4589 
4590 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4591                                             AddStmtChoice asc) {
4592   if (asc.alwaysAdd(*this, E)) {
4593     autoCreateBlock();
4594     appendStmt(Block, E);
4595   }
4596 
4597   if (E->getCastKind() == CK_IntegralToBoolean)
4598     tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4599 
4600   return Visit(E->getSubExpr(), AddStmtChoice());
4601 }
4602 
4603 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4604   return Visit(E->getSubExpr(), AddStmtChoice());
4605 }
4606 
4607 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4608   // Lazily create the indirect-goto dispatch block if there isn't one already.
4609   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4610 
4611   if (!IBlock) {
4612     IBlock = createBlock(false);
4613     cfg->setIndirectGotoBlock(IBlock);
4614   }
4615 
4616   // IndirectGoto is a control-flow statement.  Thus we stop processing the
4617   // current block and create a new one.
4618   if (badCFG)
4619     return nullptr;
4620 
4621   Block = createBlock(false);
4622   Block->setTerminator(I);
4623   addSuccessor(Block, IBlock);
4624   return addStmt(I->getTarget());
4625 }
4626 
4627 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4628                                              TempDtorContext &Context) {
4629   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4630 
4631 tryAgain:
4632   if (!E) {
4633     badCFG = true;
4634     return nullptr;
4635   }
4636   switch (E->getStmtClass()) {
4637     default:
4638       return VisitChildrenForTemporaryDtors(E, false, Context);
4639 
4640     case Stmt::InitListExprClass:
4641       return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4642 
4643     case Stmt::BinaryOperatorClass:
4644       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4645                                                   ExternallyDestructed,
4646                                                   Context);
4647 
4648     case Stmt::CXXBindTemporaryExprClass:
4649       return VisitCXXBindTemporaryExprForTemporaryDtors(
4650           cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4651 
4652     case Stmt::BinaryConditionalOperatorClass:
4653     case Stmt::ConditionalOperatorClass:
4654       return VisitConditionalOperatorForTemporaryDtors(
4655           cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4656 
4657     case Stmt::ImplicitCastExprClass:
4658       // For implicit cast we want ExternallyDestructed to be passed further.
4659       E = cast<CastExpr>(E)->getSubExpr();
4660       goto tryAgain;
4661 
4662     case Stmt::CXXFunctionalCastExprClass:
4663       // For functional cast we want ExternallyDestructed to be passed further.
4664       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4665       goto tryAgain;
4666 
4667     case Stmt::ConstantExprClass:
4668       E = cast<ConstantExpr>(E)->getSubExpr();
4669       goto tryAgain;
4670 
4671     case Stmt::ParenExprClass:
4672       E = cast<ParenExpr>(E)->getSubExpr();
4673       goto tryAgain;
4674 
4675     case Stmt::MaterializeTemporaryExprClass: {
4676       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4677       ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4678       SmallVector<const Expr *, 2> CommaLHSs;
4679       SmallVector<SubobjectAdjustment, 2> Adjustments;
4680       // Find the expression whose lifetime needs to be extended.
4681       E = const_cast<Expr *>(
4682           cast<MaterializeTemporaryExpr>(E)
4683               ->getSubExpr()
4684               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
4685       // Visit the skipped comma operator left-hand sides for other temporaries.
4686       for (const Expr *CommaLHS : CommaLHSs) {
4687         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
4688                                /*ExternallyDestructed=*/false, Context);
4689       }
4690       goto tryAgain;
4691     }
4692 
4693     case Stmt::BlockExprClass:
4694       // Don't recurse into blocks; their subexpressions don't get evaluated
4695       // here.
4696       return Block;
4697 
4698     case Stmt::LambdaExprClass: {
4699       // For lambda expressions, only recurse into the capture initializers,
4700       // and not the body.
4701       auto *LE = cast<LambdaExpr>(E);
4702       CFGBlock *B = Block;
4703       for (Expr *Init : LE->capture_inits()) {
4704         if (Init) {
4705           if (CFGBlock *R = VisitForTemporaryDtors(
4706                   Init, /*ExternallyDestructed=*/true, Context))
4707             B = R;
4708         }
4709       }
4710       return B;
4711     }
4712 
4713     case Stmt::StmtExprClass:
4714       // Don't recurse into statement expressions; any cleanups inside them
4715       // will be wrapped in their own ExprWithCleanups.
4716       return Block;
4717 
4718     case Stmt::CXXDefaultArgExprClass:
4719       E = cast<CXXDefaultArgExpr>(E)->getExpr();
4720       goto tryAgain;
4721 
4722     case Stmt::CXXDefaultInitExprClass:
4723       E = cast<CXXDefaultInitExpr>(E)->getExpr();
4724       goto tryAgain;
4725   }
4726 }
4727 
4728 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
4729                                                      bool ExternallyDestructed,
4730                                                      TempDtorContext &Context) {
4731   if (isa<LambdaExpr>(E)) {
4732     // Do not visit the children of lambdas; they have their own CFGs.
4733     return Block;
4734   }
4735 
4736   // When visiting children for destructors we want to visit them in reverse
4737   // order that they will appear in the CFG.  Because the CFG is built
4738   // bottom-up, this means we visit them in their natural order, which
4739   // reverses them in the CFG.
4740   CFGBlock *B = Block;
4741   for (Stmt *Child : E->children())
4742     if (Child)
4743       if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
4744         B = R;
4745 
4746   return B;
4747 }
4748 
4749 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
4750     BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
4751   if (E->isCommaOp()) {
4752     // For comma operator LHS expression is visited
4753     // before RHS expression. For destructors visit them in reverse order.
4754     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
4755     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4756     return LHSBlock ? LHSBlock : RHSBlock;
4757   }
4758 
4759   if (E->isLogicalOp()) {
4760     VisitForTemporaryDtors(E->getLHS(), false, Context);
4761     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
4762     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
4763       RHSExecuted.negate();
4764 
4765     // We do not know at CFG-construction time whether the right-hand-side was
4766     // executed, thus we add a branch node that depends on the temporary
4767     // constructor call.
4768     TempDtorContext RHSContext(
4769         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
4770     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
4771     InsertTempDtorDecisionBlock(RHSContext);
4772 
4773     return Block;
4774   }
4775 
4776   if (E->isAssignmentOp()) {
4777     // For assignment operator (=) LHS expression is visited
4778     // before RHS expression. For destructors visit them in reverse order.
4779     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
4780     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4781     return LHSBlock ? LHSBlock : RHSBlock;
4782   }
4783 
4784   // For any other binary operator RHS expression is visited before
4785   // LHS expression (order of children). For destructors visit them in reverse
4786   // order.
4787   CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4788   CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
4789   return RHSBlock ? RHSBlock : LHSBlock;
4790 }
4791 
4792 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
4793     CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
4794   // First add destructors for temporaries in subexpression.
4795   // Because VisitCXXBindTemporaryExpr calls setDestructed:
4796   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
4797   if (!ExternallyDestructed) {
4798     // If lifetime of temporary is not prolonged (by assigning to constant
4799     // reference) add destructor for it.
4800 
4801     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
4802 
4803     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
4804       // If the destructor is marked as a no-return destructor, we need to
4805       // create a new block for the destructor which does not have as a
4806       // successor anything built thus far. Control won't flow out of this
4807       // block.
4808       if (B) Succ = B;
4809       Block = createNoReturnBlock();
4810     } else if (Context.needsTempDtorBranch()) {
4811       // If we need to introduce a branch, we add a new block that we will hook
4812       // up to a decision block later.
4813       if (B) Succ = B;
4814       Block = createBlock();
4815     } else {
4816       autoCreateBlock();
4817     }
4818     if (Context.needsTempDtorBranch()) {
4819       Context.setDecisionPoint(Succ, E);
4820     }
4821     appendTemporaryDtor(Block, E);
4822 
4823     B = Block;
4824   }
4825   return B;
4826 }
4827 
4828 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
4829                                              CFGBlock *FalseSucc) {
4830   if (!Context.TerminatorExpr) {
4831     // If no temporary was found, we do not need to insert a decision point.
4832     return;
4833   }
4834   assert(Context.TerminatorExpr);
4835   CFGBlock *Decision = createBlock(false);
4836   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
4837                                         CFGTerminator::TemporaryDtorsBranch));
4838   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
4839   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
4840                !Context.KnownExecuted.isTrue());
4841   Block = Decision;
4842 }
4843 
4844 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
4845     AbstractConditionalOperator *E, bool ExternallyDestructed,
4846     TempDtorContext &Context) {
4847   VisitForTemporaryDtors(E->getCond(), false, Context);
4848   CFGBlock *ConditionBlock = Block;
4849   CFGBlock *ConditionSucc = Succ;
4850   TryResult ConditionVal = tryEvaluateBool(E->getCond());
4851   TryResult NegatedVal = ConditionVal;
4852   if (NegatedVal.isKnown()) NegatedVal.negate();
4853 
4854   TempDtorContext TrueContext(
4855       bothKnownTrue(Context.KnownExecuted, ConditionVal));
4856   VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
4857   CFGBlock *TrueBlock = Block;
4858 
4859   Block = ConditionBlock;
4860   Succ = ConditionSucc;
4861   TempDtorContext FalseContext(
4862       bothKnownTrue(Context.KnownExecuted, NegatedVal));
4863   VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
4864 
4865   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
4866     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
4867   } else if (TrueContext.TerminatorExpr) {
4868     Block = TrueBlock;
4869     InsertTempDtorDecisionBlock(TrueContext);
4870   } else {
4871     InsertTempDtorDecisionBlock(FalseContext);
4872   }
4873   return Block;
4874 }
4875 
4876 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
4877                                                   AddStmtChoice asc) {
4878   if (asc.alwaysAdd(*this, D)) {
4879     autoCreateBlock();
4880     appendStmt(Block, D);
4881   }
4882 
4883   // Iterate over all used expression in clauses.
4884   CFGBlock *B = Block;
4885 
4886   // Reverse the elements to process them in natural order. Iterators are not
4887   // bidirectional, so we need to create temp vector.
4888   SmallVector<Stmt *, 8> Used(
4889       OMPExecutableDirective::used_clauses_children(D->clauses()));
4890   for (Stmt *S : llvm::reverse(Used)) {
4891     assert(S && "Expected non-null used-in-clause child.");
4892     if (CFGBlock *R = Visit(S))
4893       B = R;
4894   }
4895   // Visit associated structured block if any.
4896   if (!D->isStandaloneDirective())
4897     if (CapturedStmt *CS = D->getInnermostCapturedStmt()) {
4898       Stmt *S = CS->getCapturedStmt();
4899       if (!isa<CompoundStmt>(S))
4900         addLocalScopeAndDtors(S);
4901       if (CFGBlock *R = addStmt(S))
4902         B = R;
4903     }
4904 
4905   return B;
4906 }
4907 
4908 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
4909 ///  no successors or predecessors.  If this is the first block created in the
4910 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
4911 CFGBlock *CFG::createBlock() {
4912   bool first_block = begin() == end();
4913 
4914   // Create the block.
4915   CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
4916   new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
4917   Blocks.push_back(Mem, BlkBVC);
4918 
4919   // If this is the first block, set it as the Entry and Exit.
4920   if (first_block)
4921     Entry = Exit = &back();
4922 
4923   // Return the block.
4924   return &back();
4925 }
4926 
4927 /// buildCFG - Constructs a CFG from an AST.
4928 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
4929                                    ASTContext *C, const BuildOptions &BO) {
4930   CFGBuilder Builder(C, BO);
4931   return Builder.buildCFG(D, Statement);
4932 }
4933 
4934 bool CFG::isLinear() const {
4935   // Quick path: if we only have the ENTRY block, the EXIT block, and some code
4936   // in between, then we have no room for control flow.
4937   if (size() <= 3)
4938     return true;
4939 
4940   // Traverse the CFG until we find a branch.
4941   // TODO: While this should still be very fast,
4942   // maybe we should cache the answer.
4943   llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
4944   const CFGBlock *B = Entry;
4945   while (B != Exit) {
4946     auto IteratorAndFlag = Visited.insert(B);
4947     if (!IteratorAndFlag.second) {
4948       // We looped back to a block that we've already visited. Not linear.
4949       return false;
4950     }
4951 
4952     // Iterate over reachable successors.
4953     const CFGBlock *FirstReachableB = nullptr;
4954     for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
4955       if (!AB.isReachable())
4956         continue;
4957 
4958       if (FirstReachableB == nullptr) {
4959         FirstReachableB = &*AB;
4960       } else {
4961         // We've encountered a branch. It's not a linear CFG.
4962         return false;
4963       }
4964     }
4965 
4966     if (!FirstReachableB) {
4967       // We reached a dead end. EXIT is unreachable. This is linear enough.
4968       return true;
4969     }
4970 
4971     // There's only one way to move forward. Proceed.
4972     B = FirstReachableB;
4973   }
4974 
4975   // We reached EXIT and found no branches.
4976   return true;
4977 }
4978 
4979 const CXXDestructorDecl *
4980 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
4981   switch (getKind()) {
4982     case CFGElement::Initializer:
4983     case CFGElement::NewAllocator:
4984     case CFGElement::LoopExit:
4985     case CFGElement::LifetimeEnds:
4986     case CFGElement::Statement:
4987     case CFGElement::Constructor:
4988     case CFGElement::CXXRecordTypedCall:
4989     case CFGElement::ScopeBegin:
4990     case CFGElement::ScopeEnd:
4991       llvm_unreachable("getDestructorDecl should only be used with "
4992                        "ImplicitDtors");
4993     case CFGElement::AutomaticObjectDtor: {
4994       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
4995       QualType ty = var->getType();
4996 
4997       // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
4998       //
4999       // Lifetime-extending constructs are handled here. This works for a single
5000       // temporary in an initializer expression.
5001       if (ty->isReferenceType()) {
5002         if (const Expr *Init = var->getInit()) {
5003           ty = getReferenceInitTemporaryType(Init);
5004         }
5005       }
5006 
5007       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5008         ty = arrayType->getElementType();
5009       }
5010 
5011       // The situation when the type of the lifetime-extending reference
5012       // does not correspond to the type of the object is supposed
5013       // to be handled by now. In particular, 'ty' is now the unwrapped
5014       // record type.
5015       const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5016       assert(classDecl);
5017       return classDecl->getDestructor();
5018     }
5019     case CFGElement::DeleteDtor: {
5020       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5021       QualType DTy = DE->getDestroyedType();
5022       DTy = DTy.getNonReferenceType();
5023       const CXXRecordDecl *classDecl =
5024           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5025       return classDecl->getDestructor();
5026     }
5027     case CFGElement::TemporaryDtor: {
5028       const CXXBindTemporaryExpr *bindExpr =
5029         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5030       const CXXTemporary *temp = bindExpr->getTemporary();
5031       return temp->getDestructor();
5032     }
5033     case CFGElement::BaseDtor:
5034     case CFGElement::MemberDtor:
5035       // Not yet supported.
5036       return nullptr;
5037   }
5038   llvm_unreachable("getKind() returned bogus value");
5039 }
5040 
5041 //===----------------------------------------------------------------------===//
5042 // CFGBlock operations.
5043 //===----------------------------------------------------------------------===//
5044 
5045 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5046     : ReachableBlock(IsReachable ? B : nullptr),
5047       UnreachableBlock(!IsReachable ? B : nullptr,
5048                        B && IsReachable ? AB_Normal : AB_Unreachable) {}
5049 
5050 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5051     : ReachableBlock(B),
5052       UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5053                        B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5054 
5055 void CFGBlock::addSuccessor(AdjacentBlock Succ,
5056                             BumpVectorContext &C) {
5057   if (CFGBlock *B = Succ.getReachableBlock())
5058     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5059 
5060   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5061     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5062 
5063   Succs.push_back(Succ, C);
5064 }
5065 
5066 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5067         const CFGBlock *From, const CFGBlock *To) {
5068   if (F.IgnoreNullPredecessors && !From)
5069     return true;
5070 
5071   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5072     // If the 'To' has no label or is labeled but the label isn't a
5073     // CaseStmt then filter this edge.
5074     if (const SwitchStmt *S =
5075         dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5076       if (S->isAllEnumCasesCovered()) {
5077         const Stmt *L = To->getLabel();
5078         if (!L || !isa<CaseStmt>(L))
5079           return true;
5080       }
5081     }
5082   }
5083 
5084   return false;
5085 }
5086 
5087 //===----------------------------------------------------------------------===//
5088 // CFG pretty printing
5089 //===----------------------------------------------------------------------===//
5090 
5091 namespace {
5092 
5093 class StmtPrinterHelper : public PrinterHelper  {
5094   using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5095   using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5096 
5097   StmtMapTy StmtMap;
5098   DeclMapTy DeclMap;
5099   signed currentBlock = 0;
5100   unsigned currStmt = 0;
5101   const LangOptions &LangOpts;
5102 
5103 public:
5104   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5105       : LangOpts(LO) {
5106     if (!cfg)
5107       return;
5108     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5109       unsigned j = 1;
5110       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5111            BI != BEnd; ++BI, ++j ) {
5112         if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5113           const Stmt *stmt= SE->getStmt();
5114           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5115           StmtMap[stmt] = P;
5116 
5117           switch (stmt->getStmtClass()) {
5118             case Stmt::DeclStmtClass:
5119               DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5120               break;
5121             case Stmt::IfStmtClass: {
5122               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5123               if (var)
5124                 DeclMap[var] = P;
5125               break;
5126             }
5127             case Stmt::ForStmtClass: {
5128               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5129               if (var)
5130                 DeclMap[var] = P;
5131               break;
5132             }
5133             case Stmt::WhileStmtClass: {
5134               const VarDecl *var =
5135                 cast<WhileStmt>(stmt)->getConditionVariable();
5136               if (var)
5137                 DeclMap[var] = P;
5138               break;
5139             }
5140             case Stmt::SwitchStmtClass: {
5141               const VarDecl *var =
5142                 cast<SwitchStmt>(stmt)->getConditionVariable();
5143               if (var)
5144                 DeclMap[var] = P;
5145               break;
5146             }
5147             case Stmt::CXXCatchStmtClass: {
5148               const VarDecl *var =
5149                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5150               if (var)
5151                 DeclMap[var] = P;
5152               break;
5153             }
5154             default:
5155               break;
5156           }
5157         }
5158       }
5159     }
5160   }
5161 
5162   ~StmtPrinterHelper() override = default;
5163 
5164   const LangOptions &getLangOpts() const { return LangOpts; }
5165   void setBlockID(signed i) { currentBlock = i; }
5166   void setStmtID(unsigned i) { currStmt = i; }
5167 
5168   bool handledStmt(Stmt *S, raw_ostream &OS) override {
5169     StmtMapTy::iterator I = StmtMap.find(S);
5170 
5171     if (I == StmtMap.end())
5172       return false;
5173 
5174     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5175                           && I->second.second == currStmt) {
5176       return false;
5177     }
5178 
5179     OS << "[B" << I->second.first << "." << I->second.second << "]";
5180     return true;
5181   }
5182 
5183   bool handleDecl(const Decl *D, raw_ostream &OS) {
5184     DeclMapTy::iterator I = DeclMap.find(D);
5185 
5186     if (I == DeclMap.end())
5187       return false;
5188 
5189     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5190                           && I->second.second == currStmt) {
5191       return false;
5192     }
5193 
5194     OS << "[B" << I->second.first << "." << I->second.second << "]";
5195     return true;
5196   }
5197 };
5198 
5199 class CFGBlockTerminatorPrint
5200     : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5201   raw_ostream &OS;
5202   StmtPrinterHelper* Helper;
5203   PrintingPolicy Policy;
5204 
5205 public:
5206   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5207                           const PrintingPolicy &Policy)
5208       : OS(os), Helper(helper), Policy(Policy) {
5209     this->Policy.IncludeNewlines = false;
5210   }
5211 
5212   void VisitIfStmt(IfStmt *I) {
5213     OS << "if ";
5214     if (Stmt *C = I->getCond())
5215       C->printPretty(OS, Helper, Policy);
5216   }
5217 
5218   // Default case.
5219   void VisitStmt(Stmt *Terminator) {
5220     Terminator->printPretty(OS, Helper, Policy);
5221   }
5222 
5223   void VisitDeclStmt(DeclStmt *DS) {
5224     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5225     OS << "static init " << VD->getName();
5226   }
5227 
5228   void VisitForStmt(ForStmt *F) {
5229     OS << "for (" ;
5230     if (F->getInit())
5231       OS << "...";
5232     OS << "; ";
5233     if (Stmt *C = F->getCond())
5234       C->printPretty(OS, Helper, Policy);
5235     OS << "; ";
5236     if (F->getInc())
5237       OS << "...";
5238     OS << ")";
5239   }
5240 
5241   void VisitWhileStmt(WhileStmt *W) {
5242     OS << "while " ;
5243     if (Stmt *C = W->getCond())
5244       C->printPretty(OS, Helper, Policy);
5245   }
5246 
5247   void VisitDoStmt(DoStmt *D) {
5248     OS << "do ... while ";
5249     if (Stmt *C = D->getCond())
5250       C->printPretty(OS, Helper, Policy);
5251   }
5252 
5253   void VisitSwitchStmt(SwitchStmt *Terminator) {
5254     OS << "switch ";
5255     Terminator->getCond()->printPretty(OS, Helper, Policy);
5256   }
5257 
5258   void VisitCXXTryStmt(CXXTryStmt *CS) {
5259     OS << "try ...";
5260   }
5261 
5262   void VisitSEHTryStmt(SEHTryStmt *CS) {
5263     OS << "__try ...";
5264   }
5265 
5266   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5267     if (Stmt *Cond = C->getCond())
5268       Cond->printPretty(OS, Helper, Policy);
5269     OS << " ? ... : ...";
5270   }
5271 
5272   void VisitChooseExpr(ChooseExpr *C) {
5273     OS << "__builtin_choose_expr( ";
5274     if (Stmt *Cond = C->getCond())
5275       Cond->printPretty(OS, Helper, Policy);
5276     OS << " )";
5277   }
5278 
5279   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5280     OS << "goto *";
5281     if (Stmt *T = I->getTarget())
5282       T->printPretty(OS, Helper, Policy);
5283   }
5284 
5285   void VisitBinaryOperator(BinaryOperator* B) {
5286     if (!B->isLogicalOp()) {
5287       VisitExpr(B);
5288       return;
5289     }
5290 
5291     if (B->getLHS())
5292       B->getLHS()->printPretty(OS, Helper, Policy);
5293 
5294     switch (B->getOpcode()) {
5295       case BO_LOr:
5296         OS << " || ...";
5297         return;
5298       case BO_LAnd:
5299         OS << " && ...";
5300         return;
5301       default:
5302         llvm_unreachable("Invalid logical operator.");
5303     }
5304   }
5305 
5306   void VisitExpr(Expr *E) {
5307     E->printPretty(OS, Helper, Policy);
5308   }
5309 
5310 public:
5311   void print(CFGTerminator T) {
5312     switch (T.getKind()) {
5313     case CFGTerminator::StmtBranch:
5314       Visit(T.getStmt());
5315       break;
5316     case CFGTerminator::TemporaryDtorsBranch:
5317       OS << "(Temp Dtor) ";
5318       Visit(T.getStmt());
5319       break;
5320     case CFGTerminator::VirtualBaseBranch:
5321       OS << "(See if most derived ctor has already initialized vbases)";
5322       break;
5323     }
5324   }
5325 };
5326 
5327 } // namespace
5328 
5329 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5330                               const CXXCtorInitializer *I) {
5331   if (I->isBaseInitializer())
5332     OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5333   else if (I->isDelegatingInitializer())
5334     OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5335   else
5336     OS << I->getAnyMember()->getName();
5337   OS << "(";
5338   if (Expr *IE = I->getInit())
5339     IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5340   OS << ")";
5341 
5342   if (I->isBaseInitializer())
5343     OS << " (Base initializer)";
5344   else if (I->isDelegatingInitializer())
5345     OS << " (Delegating initializer)";
5346   else
5347     OS << " (Member initializer)";
5348 }
5349 
5350 static void print_construction_context(raw_ostream &OS,
5351                                        StmtPrinterHelper &Helper,
5352                                        const ConstructionContext *CC) {
5353   SmallVector<const Stmt *, 3> Stmts;
5354   switch (CC->getKind()) {
5355   case ConstructionContext::SimpleConstructorInitializerKind: {
5356     OS << ", ";
5357     const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5358     print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5359     return;
5360   }
5361   case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5362     OS << ", ";
5363     const auto *CICC =
5364         cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5365     print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5366     Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5367     break;
5368   }
5369   case ConstructionContext::SimpleVariableKind: {
5370     const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5371     Stmts.push_back(SDSCC->getDeclStmt());
5372     break;
5373   }
5374   case ConstructionContext::CXX17ElidedCopyVariableKind: {
5375     const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5376     Stmts.push_back(CDSCC->getDeclStmt());
5377     Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5378     break;
5379   }
5380   case ConstructionContext::NewAllocatedObjectKind: {
5381     const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5382     Stmts.push_back(NECC->getCXXNewExpr());
5383     break;
5384   }
5385   case ConstructionContext::SimpleReturnedValueKind: {
5386     const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5387     Stmts.push_back(RSCC->getReturnStmt());
5388     break;
5389   }
5390   case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5391     const auto *RSCC =
5392         cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5393     Stmts.push_back(RSCC->getReturnStmt());
5394     Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5395     break;
5396   }
5397   case ConstructionContext::SimpleTemporaryObjectKind: {
5398     const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5399     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5400     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5401     break;
5402   }
5403   case ConstructionContext::ElidedTemporaryObjectKind: {
5404     const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5405     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5406     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5407     Stmts.push_back(TOCC->getConstructorAfterElision());
5408     break;
5409   }
5410   case ConstructionContext::ArgumentKind: {
5411     const auto *ACC = cast<ArgumentConstructionContext>(CC);
5412     if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5413       OS << ", ";
5414       Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5415     }
5416     OS << ", ";
5417     Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5418     OS << "+" << ACC->getIndex();
5419     return;
5420   }
5421   }
5422   for (auto I: Stmts)
5423     if (I) {
5424       OS << ", ";
5425       Helper.handledStmt(const_cast<Stmt *>(I), OS);
5426     }
5427 }
5428 
5429 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5430                        const CFGElement &E);
5431 
5432 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5433   StmtPrinterHelper Helper(nullptr, {});
5434   print_elem(OS, Helper, *this);
5435 }
5436 
5437 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5438                        const CFGElement &E) {
5439   switch (E.getKind()) {
5440   case CFGElement::Kind::Statement:
5441   case CFGElement::Kind::CXXRecordTypedCall:
5442   case CFGElement::Kind::Constructor: {
5443     CFGStmt CS = E.castAs<CFGStmt>();
5444     const Stmt *S = CS.getStmt();
5445     assert(S != nullptr && "Expecting non-null Stmt");
5446 
5447     // special printing for statement-expressions.
5448     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5449       const CompoundStmt *Sub = SE->getSubStmt();
5450 
5451       auto Children = Sub->children();
5452       if (Children.begin() != Children.end()) {
5453         OS << "({ ... ; ";
5454         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5455         OS << " })\n";
5456         return;
5457       }
5458     }
5459     // special printing for comma expressions.
5460     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5461       if (B->getOpcode() == BO_Comma) {
5462         OS << "... , ";
5463         Helper.handledStmt(B->getRHS(),OS);
5464         OS << '\n';
5465         return;
5466       }
5467     }
5468     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5469 
5470     if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5471       if (isa<CXXOperatorCallExpr>(S))
5472         OS << " (OperatorCall)";
5473       OS << " (CXXRecordTypedCall";
5474       print_construction_context(OS, Helper, VTC->getConstructionContext());
5475       OS << ")";
5476     } else if (isa<CXXOperatorCallExpr>(S)) {
5477       OS << " (OperatorCall)";
5478     } else if (isa<CXXBindTemporaryExpr>(S)) {
5479       OS << " (BindTemporary)";
5480     } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5481       OS << " (CXXConstructExpr";
5482       if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5483         print_construction_context(OS, Helper, CE->getConstructionContext());
5484       }
5485       OS << ", " << CCE->getType().getAsString() << ")";
5486     } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5487       OS << " (" << CE->getStmtClassName() << ", "
5488          << CE->getCastKindName()
5489          << ", " << CE->getType().getAsString()
5490          << ")";
5491     }
5492 
5493     // Expressions need a newline.
5494     if (isa<Expr>(S))
5495       OS << '\n';
5496 
5497     break;
5498   }
5499 
5500   case CFGElement::Kind::Initializer:
5501     print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5502     OS << '\n';
5503     break;
5504 
5505   case CFGElement::Kind::AutomaticObjectDtor: {
5506     CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5507     const VarDecl *VD = DE.getVarDecl();
5508     Helper.handleDecl(VD, OS);
5509 
5510     QualType T = VD->getType();
5511     if (T->isReferenceType())
5512       T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5513 
5514     OS << ".~";
5515     T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5516     OS << "() (Implicit destructor)\n";
5517     break;
5518   }
5519 
5520   case CFGElement::Kind::LifetimeEnds:
5521     Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5522     OS << " (Lifetime ends)\n";
5523     break;
5524 
5525   case CFGElement::Kind::LoopExit:
5526     OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5527     break;
5528 
5529   case CFGElement::Kind::ScopeBegin:
5530     OS << "CFGScopeBegin(";
5531     if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5532       OS << VD->getQualifiedNameAsString();
5533     OS << ")\n";
5534     break;
5535 
5536   case CFGElement::Kind::ScopeEnd:
5537     OS << "CFGScopeEnd(";
5538     if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5539       OS << VD->getQualifiedNameAsString();
5540     OS << ")\n";
5541     break;
5542 
5543   case CFGElement::Kind::NewAllocator:
5544     OS << "CFGNewAllocator(";
5545     if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5546       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5547     OS << ")\n";
5548     break;
5549 
5550   case CFGElement::Kind::DeleteDtor: {
5551     CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5552     const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5553     if (!RD)
5554       return;
5555     CXXDeleteExpr *DelExpr =
5556         const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5557     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5558     OS << "->~" << RD->getName().str() << "()";
5559     OS << " (Implicit destructor)\n";
5560     break;
5561   }
5562 
5563   case CFGElement::Kind::BaseDtor: {
5564     const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5565     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5566     OS << " (Base object destructor)\n";
5567     break;
5568   }
5569 
5570   case CFGElement::Kind::MemberDtor: {
5571     const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5572     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5573     OS << "this->" << FD->getName();
5574     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5575     OS << " (Member object destructor)\n";
5576     break;
5577   }
5578 
5579   case CFGElement::Kind::TemporaryDtor: {
5580     const CXXBindTemporaryExpr *BT = E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5581     OS << "~";
5582     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5583     OS << "() (Temporary object destructor)\n";
5584     break;
5585   }
5586   }
5587 }
5588 
5589 static void print_block(raw_ostream &OS, const CFG* cfg,
5590                         const CFGBlock &B,
5591                         StmtPrinterHelper &Helper, bool print_edges,
5592                         bool ShowColors) {
5593   Helper.setBlockID(B.getBlockID());
5594 
5595   // Print the header.
5596   if (ShowColors)
5597     OS.changeColor(raw_ostream::YELLOW, true);
5598 
5599   OS << "\n [B" << B.getBlockID();
5600 
5601   if (&B == &cfg->getEntry())
5602     OS << " (ENTRY)]\n";
5603   else if (&B == &cfg->getExit())
5604     OS << " (EXIT)]\n";
5605   else if (&B == cfg->getIndirectGotoBlock())
5606     OS << " (INDIRECT GOTO DISPATCH)]\n";
5607   else if (B.hasNoReturnElement())
5608     OS << " (NORETURN)]\n";
5609   else
5610     OS << "]\n";
5611 
5612   if (ShowColors)
5613     OS.resetColor();
5614 
5615   // Print the label of this block.
5616   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5617     if (print_edges)
5618       OS << "  ";
5619 
5620     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5621       OS << L->getName();
5622     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5623       OS << "case ";
5624       if (C->getLHS())
5625         C->getLHS()->printPretty(OS, &Helper,
5626                                  PrintingPolicy(Helper.getLangOpts()));
5627       if (C->getRHS()) {
5628         OS << " ... ";
5629         C->getRHS()->printPretty(OS, &Helper,
5630                                  PrintingPolicy(Helper.getLangOpts()));
5631       }
5632     } else if (isa<DefaultStmt>(Label))
5633       OS << "default";
5634     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5635       OS << "catch (";
5636       if (CS->getExceptionDecl())
5637         CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
5638                                       0);
5639       else
5640         OS << "...";
5641       OS << ")";
5642     } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5643       OS << "__except (";
5644       ES->getFilterExpr()->printPretty(OS, &Helper,
5645                                        PrintingPolicy(Helper.getLangOpts()), 0);
5646       OS << ")";
5647     } else
5648       llvm_unreachable("Invalid label statement in CFGBlock.");
5649 
5650     OS << ":\n";
5651   }
5652 
5653   // Iterate through the statements in the block and print them.
5654   unsigned j = 1;
5655 
5656   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5657        I != E ; ++I, ++j ) {
5658     // Print the statement # in the basic block and the statement itself.
5659     if (print_edges)
5660       OS << " ";
5661 
5662     OS << llvm::format("%3d", j) << ": ";
5663 
5664     Helper.setStmtID(j);
5665 
5666     print_elem(OS, Helper, *I);
5667   }
5668 
5669   // Print the terminator of this block.
5670   if (B.getTerminator().isValid()) {
5671     if (ShowColors)
5672       OS.changeColor(raw_ostream::GREEN);
5673 
5674     OS << "   T: ";
5675 
5676     Helper.setBlockID(-1);
5677 
5678     PrintingPolicy PP(Helper.getLangOpts());
5679     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
5680     TPrinter.print(B.getTerminator());
5681     OS << '\n';
5682 
5683     if (ShowColors)
5684       OS.resetColor();
5685   }
5686 
5687   if (print_edges) {
5688     // Print the predecessors of this block.
5689     if (!B.pred_empty()) {
5690       const raw_ostream::Colors Color = raw_ostream::BLUE;
5691       if (ShowColors)
5692         OS.changeColor(Color);
5693       OS << "   Preds " ;
5694       if (ShowColors)
5695         OS.resetColor();
5696       OS << '(' << B.pred_size() << "):";
5697       unsigned i = 0;
5698 
5699       if (ShowColors)
5700         OS.changeColor(Color);
5701 
5702       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
5703            I != E; ++I, ++i) {
5704         if (i % 10 == 8)
5705           OS << "\n     ";
5706 
5707         CFGBlock *B = *I;
5708         bool Reachable = true;
5709         if (!B) {
5710           Reachable = false;
5711           B = I->getPossiblyUnreachableBlock();
5712         }
5713 
5714         OS << " B" << B->getBlockID();
5715         if (!Reachable)
5716           OS << "(Unreachable)";
5717       }
5718 
5719       if (ShowColors)
5720         OS.resetColor();
5721 
5722       OS << '\n';
5723     }
5724 
5725     // Print the successors of this block.
5726     if (!B.succ_empty()) {
5727       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
5728       if (ShowColors)
5729         OS.changeColor(Color);
5730       OS << "   Succs ";
5731       if (ShowColors)
5732         OS.resetColor();
5733       OS << '(' << B.succ_size() << "):";
5734       unsigned i = 0;
5735 
5736       if (ShowColors)
5737         OS.changeColor(Color);
5738 
5739       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
5740            I != E; ++I, ++i) {
5741         if (i % 10 == 8)
5742           OS << "\n    ";
5743 
5744         CFGBlock *B = *I;
5745 
5746         bool Reachable = true;
5747         if (!B) {
5748           Reachable = false;
5749           B = I->getPossiblyUnreachableBlock();
5750         }
5751 
5752         if (B) {
5753           OS << " B" << B->getBlockID();
5754           if (!Reachable)
5755             OS << "(Unreachable)";
5756         }
5757         else {
5758           OS << " NULL";
5759         }
5760       }
5761 
5762       if (ShowColors)
5763         OS.resetColor();
5764       OS << '\n';
5765     }
5766   }
5767 }
5768 
5769 /// dump - A simple pretty printer of a CFG that outputs to stderr.
5770 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
5771   print(llvm::errs(), LO, ShowColors);
5772 }
5773 
5774 /// print - A simple pretty printer of a CFG that outputs to an ostream.
5775 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
5776   StmtPrinterHelper Helper(this, LO);
5777 
5778   // Print the entry block.
5779   print_block(OS, this, getEntry(), Helper, true, ShowColors);
5780 
5781   // Iterate through the CFGBlocks and print them one by one.
5782   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
5783     // Skip the entry block, because we already printed it.
5784     if (&(**I) == &getEntry() || &(**I) == &getExit())
5785       continue;
5786 
5787     print_block(OS, this, **I, Helper, true, ShowColors);
5788   }
5789 
5790   // Print the exit block.
5791   print_block(OS, this, getExit(), Helper, true, ShowColors);
5792   OS << '\n';
5793   OS.flush();
5794 }
5795 
5796 size_t CFGBlock::getIndexInCFG() const {
5797   return llvm::find(*getParent(), this) - getParent()->begin();
5798 }
5799 
5800 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
5801 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
5802                     bool ShowColors) const {
5803   print(llvm::errs(), cfg, LO, ShowColors);
5804 }
5805 
5806 LLVM_DUMP_METHOD void CFGBlock::dump() const {
5807   dump(getParent(), LangOptions(), false);
5808 }
5809 
5810 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
5811 ///   Generally this will only be called from CFG::print.
5812 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
5813                      const LangOptions &LO, bool ShowColors) const {
5814   StmtPrinterHelper Helper(cfg, LO);
5815   print_block(OS, cfg, *this, Helper, true, ShowColors);
5816   OS << '\n';
5817 }
5818 
5819 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
5820 void CFGBlock::printTerminator(raw_ostream &OS,
5821                                const LangOptions &LO) const {
5822   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
5823   TPrinter.print(getTerminator());
5824 }
5825 
5826 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
5827 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
5828                                    bool AddQuotes) const {
5829   std::string Buf;
5830   llvm::raw_string_ostream TempOut(Buf);
5831 
5832   printTerminator(TempOut, LO);
5833 
5834   Out << JsonFormat(TempOut.str(), AddQuotes);
5835 }
5836 
5837 // Returns true if by simply looking at the block, we can be sure that it
5838 // results in a sink during analysis. This is useful to know when the analysis
5839 // was interrupted, and we try to figure out if it would sink eventually.
5840 // There may be many more reasons why a sink would appear during analysis
5841 // (eg. checkers may generate sinks arbitrarily), but here we only consider
5842 // sinks that would be obvious by looking at the CFG.
5843 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
5844   if (Blk->hasNoReturnElement())
5845     return true;
5846 
5847   // FIXME: Throw-expressions are currently generating sinks during analysis:
5848   // they're not supported yet, and also often used for actually terminating
5849   // the program. So we should treat them as sinks in this analysis as well,
5850   // at least for now, but once we have better support for exceptions,
5851   // we'd need to carefully handle the case when the throw is being
5852   // immediately caught.
5853   if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) {
5854         if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
5855           if (isa<CXXThrowExpr>(StmtElm->getStmt()))
5856             return true;
5857         return false;
5858       }))
5859     return true;
5860 
5861   return false;
5862 }
5863 
5864 bool CFGBlock::isInevitablySinking() const {
5865   const CFG &Cfg = *getParent();
5866 
5867   const CFGBlock *StartBlk = this;
5868   if (isImmediateSinkBlock(StartBlk))
5869     return true;
5870 
5871   llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
5872   llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
5873 
5874   DFSWorkList.push_back(StartBlk);
5875   while (!DFSWorkList.empty()) {
5876     const CFGBlock *Blk = DFSWorkList.back();
5877     DFSWorkList.pop_back();
5878     Visited.insert(Blk);
5879 
5880     // If at least one path reaches the CFG exit, it means that control is
5881     // returned to the caller. For now, say that we are not sure what
5882     // happens next. If necessary, this can be improved to analyze
5883     // the parent StackFrameContext's call site in a similar manner.
5884     if (Blk == &Cfg.getExit())
5885       return false;
5886 
5887     for (const auto &Succ : Blk->succs()) {
5888       if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
5889         if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
5890           // If the block has reachable child blocks that aren't no-return,
5891           // add them to the worklist.
5892           DFSWorkList.push_back(SuccBlk);
5893         }
5894       }
5895     }
5896   }
5897 
5898   // Nothing reached the exit. It can only mean one thing: there's no return.
5899   return true;
5900 }
5901 
5902 const Expr *CFGBlock::getLastCondition() const {
5903   // If the terminator is a temporary dtor or a virtual base, etc, we can't
5904   // retrieve a meaningful condition, bail out.
5905   if (Terminator.getKind() != CFGTerminator::StmtBranch)
5906     return nullptr;
5907 
5908   // Also, if this method was called on a block that doesn't have 2 successors,
5909   // this block doesn't have retrievable condition.
5910   if (succ_size() < 2)
5911     return nullptr;
5912 
5913   // FIXME: Is there a better condition expression we can return in this case?
5914   if (size() == 0)
5915     return nullptr;
5916 
5917   auto StmtElem = rbegin()->getAs<CFGStmt>();
5918   if (!StmtElem)
5919     return nullptr;
5920 
5921   const Stmt *Cond = StmtElem->getStmt();
5922   if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
5923     return nullptr;
5924 
5925   // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
5926   // the cast<>.
5927   return cast<Expr>(Cond)->IgnoreParens();
5928 }
5929 
5930 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
5931   Stmt *Terminator = getTerminatorStmt();
5932   if (!Terminator)
5933     return nullptr;
5934 
5935   Expr *E = nullptr;
5936 
5937   switch (Terminator->getStmtClass()) {
5938     default:
5939       break;
5940 
5941     case Stmt::CXXForRangeStmtClass:
5942       E = cast<CXXForRangeStmt>(Terminator)->getCond();
5943       break;
5944 
5945     case Stmt::ForStmtClass:
5946       E = cast<ForStmt>(Terminator)->getCond();
5947       break;
5948 
5949     case Stmt::WhileStmtClass:
5950       E = cast<WhileStmt>(Terminator)->getCond();
5951       break;
5952 
5953     case Stmt::DoStmtClass:
5954       E = cast<DoStmt>(Terminator)->getCond();
5955       break;
5956 
5957     case Stmt::IfStmtClass:
5958       E = cast<IfStmt>(Terminator)->getCond();
5959       break;
5960 
5961     case Stmt::ChooseExprClass:
5962       E = cast<ChooseExpr>(Terminator)->getCond();
5963       break;
5964 
5965     case Stmt::IndirectGotoStmtClass:
5966       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
5967       break;
5968 
5969     case Stmt::SwitchStmtClass:
5970       E = cast<SwitchStmt>(Terminator)->getCond();
5971       break;
5972 
5973     case Stmt::BinaryConditionalOperatorClass:
5974       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
5975       break;
5976 
5977     case Stmt::ConditionalOperatorClass:
5978       E = cast<ConditionalOperator>(Terminator)->getCond();
5979       break;
5980 
5981     case Stmt::BinaryOperatorClass: // '&&' and '||'
5982       E = cast<BinaryOperator>(Terminator)->getLHS();
5983       break;
5984 
5985     case Stmt::ObjCForCollectionStmtClass:
5986       return Terminator;
5987   }
5988 
5989   if (!StripParens)
5990     return E;
5991 
5992   return E ? E->IgnoreParens() : nullptr;
5993 }
5994 
5995 //===----------------------------------------------------------------------===//
5996 // CFG Graphviz Visualization
5997 //===----------------------------------------------------------------------===//
5998 
5999 #ifndef NDEBUG
6000 static StmtPrinterHelper* GraphHelper;
6001 #endif
6002 
6003 void CFG::viewCFG(const LangOptions &LO) const {
6004 #ifndef NDEBUG
6005   StmtPrinterHelper H(this, LO);
6006   GraphHelper = &H;
6007   llvm::ViewGraph(this,"CFG");
6008   GraphHelper = nullptr;
6009 #endif
6010 }
6011 
6012 namespace llvm {
6013 
6014 template<>
6015 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
6016   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6017 
6018   static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
6019 #ifndef NDEBUG
6020     std::string OutSStr;
6021     llvm::raw_string_ostream Out(OutSStr);
6022     print_block(Out,Graph, *Node, *GraphHelper, false, false);
6023     std::string& OutStr = Out.str();
6024 
6025     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6026 
6027     // Process string output to make it nicer...
6028     for (unsigned i = 0; i != OutStr.length(); ++i)
6029       if (OutStr[i] == '\n') {                            // Left justify
6030         OutStr[i] = '\\';
6031         OutStr.insert(OutStr.begin()+i+1, 'l');
6032       }
6033 
6034     return OutStr;
6035 #else
6036     return {};
6037 #endif
6038   }
6039 };
6040 
6041 } // namespace llvm
6042