1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the CFG and CFGBuilder classes for representing and 10 // building Control-Flow Graphs (CFGs) from ASTs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/CFG.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclGroup.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/OperationKinds.h" 24 #include "clang/AST/PrettyPrinter.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/StmtObjC.h" 28 #include "clang/AST/StmtVisitor.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Analysis/ConstructionContext.h" 31 #include "clang/Analysis/Support/BumpVector.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/ExceptionSpecificationType.h" 34 #include "clang/Basic/JsonSupport.h" 35 #include "clang/Basic/LLVM.h" 36 #include "clang/Basic/LangOptions.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/APSInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/STLExtras.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/Support/Allocator.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/DOTGraphTraits.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/Format.h" 53 #include "llvm/Support/GraphWriter.h" 54 #include "llvm/Support/SaveAndRestore.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <memory> 58 #include <optional> 59 #include <string> 60 #include <tuple> 61 #include <utility> 62 #include <vector> 63 64 using namespace clang; 65 66 static SourceLocation GetEndLoc(Decl *D) { 67 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 68 if (Expr *Ex = VD->getInit()) 69 return Ex->getSourceRange().getEnd(); 70 return D->getLocation(); 71 } 72 73 /// Returns true on constant values based around a single IntegerLiteral. 74 /// Allow for use of parentheses, integer casts, and negative signs. 75 /// FIXME: it would be good to unify this function with 76 /// getIntegerLiteralSubexpressionValue at some point given the similarity 77 /// between the functions. 78 79 static bool IsIntegerLiteralConstantExpr(const Expr *E) { 80 // Allow parentheses 81 E = E->IgnoreParens(); 82 83 // Allow conversions to different integer kind. 84 if (const auto *CE = dyn_cast<CastExpr>(E)) { 85 if (CE->getCastKind() != CK_IntegralCast) 86 return false; 87 E = CE->getSubExpr(); 88 } 89 90 // Allow negative numbers. 91 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 92 if (UO->getOpcode() != UO_Minus) 93 return false; 94 E = UO->getSubExpr(); 95 } 96 97 return isa<IntegerLiteral>(E); 98 } 99 100 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral 101 /// constant expression or EnumConstantDecl from the given Expr. If it fails, 102 /// returns nullptr. 103 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) { 104 E = E->IgnoreParens(); 105 if (IsIntegerLiteralConstantExpr(E)) 106 return E; 107 if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 108 return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr; 109 return nullptr; 110 } 111 112 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if 113 /// NumExpr is an integer literal or an enum constant. 114 /// 115 /// If this fails, at least one of the returned DeclRefExpr or Expr will be 116 /// null. 117 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *> 118 tryNormalizeBinaryOperator(const BinaryOperator *B) { 119 BinaryOperatorKind Op = B->getOpcode(); 120 121 const Expr *MaybeDecl = B->getLHS(); 122 const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS()); 123 // Expr looked like `0 == Foo` instead of `Foo == 0` 124 if (Constant == nullptr) { 125 // Flip the operator 126 if (Op == BO_GT) 127 Op = BO_LT; 128 else if (Op == BO_GE) 129 Op = BO_LE; 130 else if (Op == BO_LT) 131 Op = BO_GT; 132 else if (Op == BO_LE) 133 Op = BO_GE; 134 135 MaybeDecl = B->getRHS(); 136 Constant = tryTransformToIntOrEnumConstant(B->getLHS()); 137 } 138 139 return std::make_tuple(MaybeDecl, Op, Constant); 140 } 141 142 /// For an expression `x == Foo && x == Bar`, this determines whether the 143 /// `Foo` and `Bar` are either of the same enumeration type, or both integer 144 /// literals. 145 /// 146 /// It's an error to pass this arguments that are not either IntegerLiterals 147 /// or DeclRefExprs (that have decls of type EnumConstantDecl) 148 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) { 149 // User intent isn't clear if they're mixing int literals with enum 150 // constants. 151 if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2)) 152 return false; 153 154 // Integer literal comparisons, regardless of literal type, are acceptable. 155 if (!isa<DeclRefExpr>(E1)) 156 return true; 157 158 // IntegerLiterals are handled above and only EnumConstantDecls are expected 159 // beyond this point 160 assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2)); 161 auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl(); 162 auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl(); 163 164 assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2)); 165 const DeclContext *DC1 = Decl1->getDeclContext(); 166 const DeclContext *DC2 = Decl2->getDeclContext(); 167 168 assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2)); 169 return DC1 == DC2; 170 } 171 172 namespace { 173 174 class CFGBuilder; 175 176 /// The CFG builder uses a recursive algorithm to build the CFG. When 177 /// we process an expression, sometimes we know that we must add the 178 /// subexpressions as block-level expressions. For example: 179 /// 180 /// exp1 || exp2 181 /// 182 /// When processing the '||' expression, we know that exp1 and exp2 183 /// need to be added as block-level expressions, even though they 184 /// might not normally need to be. AddStmtChoice records this 185 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then 186 /// the builder has an option not to add a subexpression as a 187 /// block-level expression. 188 class AddStmtChoice { 189 public: 190 enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 }; 191 192 AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {} 193 194 bool alwaysAdd(CFGBuilder &builder, 195 const Stmt *stmt) const; 196 197 /// Return a copy of this object, except with the 'always-add' bit 198 /// set as specified. 199 AddStmtChoice withAlwaysAdd(bool alwaysAdd) const { 200 return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd); 201 } 202 203 private: 204 Kind kind; 205 }; 206 207 /// LocalScope - Node in tree of local scopes created for C++ implicit 208 /// destructor calls generation. It contains list of automatic variables 209 /// declared in the scope and link to position in previous scope this scope 210 /// began in. 211 /// 212 /// The process of creating local scopes is as follows: 213 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null), 214 /// - Before processing statements in scope (e.g. CompoundStmt) create 215 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope 216 /// and set CFGBuilder::ScopePos to the end of new scope, 217 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points 218 /// at this VarDecl, 219 /// - For every normal (without jump) end of scope add to CFGBlock destructors 220 /// for objects in the current scope, 221 /// - For every jump add to CFGBlock destructors for objects 222 /// between CFGBuilder::ScopePos and local scope position saved for jump 223 /// target. Thanks to C++ restrictions on goto jumps we can be sure that 224 /// jump target position will be on the path to root from CFGBuilder::ScopePos 225 /// (adding any variable that doesn't need constructor to be called to 226 /// LocalScope can break this assumption), 227 /// 228 class LocalScope { 229 public: 230 using AutomaticVarsTy = BumpVector<VarDecl *>; 231 232 /// const_iterator - Iterates local scope backwards and jumps to previous 233 /// scope on reaching the beginning of currently iterated scope. 234 class const_iterator { 235 const LocalScope* Scope = nullptr; 236 237 /// VarIter is guaranteed to be greater then 0 for every valid iterator. 238 /// Invalid iterator (with null Scope) has VarIter equal to 0. 239 unsigned VarIter = 0; 240 241 public: 242 /// Create invalid iterator. Dereferencing invalid iterator is not allowed. 243 /// Incrementing invalid iterator is allowed and will result in invalid 244 /// iterator. 245 const_iterator() = default; 246 247 /// Create valid iterator. In case when S.Prev is an invalid iterator and 248 /// I is equal to 0, this will create invalid iterator. 249 const_iterator(const LocalScope& S, unsigned I) 250 : Scope(&S), VarIter(I) { 251 // Iterator to "end" of scope is not allowed. Handle it by going up 252 // in scopes tree possibly up to invalid iterator in the root. 253 if (VarIter == 0 && Scope) 254 *this = Scope->Prev; 255 } 256 257 VarDecl *const* operator->() const { 258 assert(Scope && "Dereferencing invalid iterator is not allowed"); 259 assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); 260 return &Scope->Vars[VarIter - 1]; 261 } 262 263 const VarDecl *getFirstVarInScope() const { 264 assert(Scope && "Dereferencing invalid iterator is not allowed"); 265 assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); 266 return Scope->Vars[0]; 267 } 268 269 VarDecl *operator*() const { 270 return *this->operator->(); 271 } 272 273 const_iterator &operator++() { 274 if (!Scope) 275 return *this; 276 277 assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); 278 --VarIter; 279 if (VarIter == 0) 280 *this = Scope->Prev; 281 return *this; 282 } 283 const_iterator operator++(int) { 284 const_iterator P = *this; 285 ++*this; 286 return P; 287 } 288 289 bool operator==(const const_iterator &rhs) const { 290 return Scope == rhs.Scope && VarIter == rhs.VarIter; 291 } 292 bool operator!=(const const_iterator &rhs) const { 293 return !(*this == rhs); 294 } 295 296 explicit operator bool() const { 297 return *this != const_iterator(); 298 } 299 300 int distance(const_iterator L); 301 const_iterator shared_parent(const_iterator L); 302 bool pointsToFirstDeclaredVar() { return VarIter == 1; } 303 bool inSameLocalScope(const_iterator rhs) { return Scope == rhs.Scope; } 304 }; 305 306 private: 307 BumpVectorContext ctx; 308 309 /// Automatic variables in order of declaration. 310 AutomaticVarsTy Vars; 311 312 /// Iterator to variable in previous scope that was declared just before 313 /// begin of this scope. 314 const_iterator Prev; 315 316 public: 317 /// Constructs empty scope linked to previous scope in specified place. 318 LocalScope(BumpVectorContext ctx, const_iterator P) 319 : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {} 320 321 /// Begin of scope in direction of CFG building (backwards). 322 const_iterator begin() const { return const_iterator(*this, Vars.size()); } 323 324 void addVar(VarDecl *VD) { 325 Vars.push_back(VD, ctx); 326 } 327 }; 328 329 } // namespace 330 331 /// distance - Calculates distance from this to L. L must be reachable from this 332 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t. 333 /// number of scopes between this and L. 334 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) { 335 int D = 0; 336 const_iterator F = *this; 337 while (F.Scope != L.Scope) { 338 assert(F != const_iterator() && 339 "L iterator is not reachable from F iterator."); 340 D += F.VarIter; 341 F = F.Scope->Prev; 342 } 343 D += F.VarIter - L.VarIter; 344 return D; 345 } 346 347 /// Calculates the closest parent of this iterator 348 /// that is in a scope reachable through the parents of L. 349 /// I.e. when using 'goto' from this to L, the lifetime of all variables 350 /// between this and shared_parent(L) end. 351 LocalScope::const_iterator 352 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) { 353 // one of iterators is not valid (we are not in scope), so common 354 // parent is const_iterator() (i.e. sentinel). 355 if ((*this == const_iterator()) || (L == const_iterator())) { 356 return const_iterator(); 357 } 358 359 const_iterator F = *this; 360 if (F.inSameLocalScope(L)) { 361 // Iterators are in the same scope, get common subset of variables. 362 F.VarIter = std::min(F.VarIter, L.VarIter); 363 return F; 364 } 365 366 llvm::SmallDenseMap<const LocalScope *, unsigned, 4> ScopesOfL; 367 while (true) { 368 ScopesOfL.try_emplace(L.Scope, L.VarIter); 369 if (L == const_iterator()) 370 break; 371 L = L.Scope->Prev; 372 } 373 374 while (true) { 375 if (auto LIt = ScopesOfL.find(F.Scope); LIt != ScopesOfL.end()) { 376 // Get common subset of variables in given scope 377 F.VarIter = std::min(F.VarIter, LIt->getSecond()); 378 return F; 379 } 380 assert(F != const_iterator() && 381 "L iterator is not reachable from F iterator."); 382 F = F.Scope->Prev; 383 } 384 } 385 386 namespace { 387 388 /// Structure for specifying position in CFG during its build process. It 389 /// consists of CFGBlock that specifies position in CFG and 390 /// LocalScope::const_iterator that specifies position in LocalScope graph. 391 struct BlockScopePosPair { 392 CFGBlock *block = nullptr; 393 LocalScope::const_iterator scopePosition; 394 395 BlockScopePosPair() = default; 396 BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos) 397 : block(b), scopePosition(scopePos) {} 398 }; 399 400 /// TryResult - a class representing a variant over the values 401 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool, 402 /// and is used by the CFGBuilder to decide if a branch condition 403 /// can be decided up front during CFG construction. 404 class TryResult { 405 int X = -1; 406 407 public: 408 TryResult() = default; 409 TryResult(bool b) : X(b ? 1 : 0) {} 410 411 bool isTrue() const { return X == 1; } 412 bool isFalse() const { return X == 0; } 413 bool isKnown() const { return X >= 0; } 414 415 void negate() { 416 assert(isKnown()); 417 X ^= 0x1; 418 } 419 }; 420 421 } // namespace 422 423 static TryResult bothKnownTrue(TryResult R1, TryResult R2) { 424 if (!R1.isKnown() || !R2.isKnown()) 425 return TryResult(); 426 return TryResult(R1.isTrue() && R2.isTrue()); 427 } 428 429 namespace { 430 431 class reverse_children { 432 llvm::SmallVector<Stmt *, 12> childrenBuf; 433 ArrayRef<Stmt *> children; 434 435 public: 436 reverse_children(Stmt *S); 437 438 using iterator = ArrayRef<Stmt *>::reverse_iterator; 439 440 iterator begin() const { return children.rbegin(); } 441 iterator end() const { return children.rend(); } 442 }; 443 444 } // namespace 445 446 reverse_children::reverse_children(Stmt *S) { 447 if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 448 children = CE->getRawSubExprs(); 449 return; 450 } 451 switch (S->getStmtClass()) { 452 // Note: Fill in this switch with more cases we want to optimize. 453 case Stmt::InitListExprClass: { 454 InitListExpr *IE = cast<InitListExpr>(S); 455 children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()), 456 IE->getNumInits()); 457 return; 458 } 459 default: 460 break; 461 } 462 463 // Default case for all other statements. 464 llvm::append_range(childrenBuf, S->children()); 465 466 // This needs to be done *after* childrenBuf has been populated. 467 children = childrenBuf; 468 } 469 470 namespace { 471 472 /// CFGBuilder - This class implements CFG construction from an AST. 473 /// The builder is stateful: an instance of the builder should be used to only 474 /// construct a single CFG. 475 /// 476 /// Example usage: 477 /// 478 /// CFGBuilder builder; 479 /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1); 480 /// 481 /// CFG construction is done via a recursive walk of an AST. We actually parse 482 /// the AST in reverse order so that the successor of a basic block is 483 /// constructed prior to its predecessor. This allows us to nicely capture 484 /// implicit fall-throughs without extra basic blocks. 485 class CFGBuilder { 486 using JumpTarget = BlockScopePosPair; 487 using JumpSource = BlockScopePosPair; 488 489 ASTContext *Context; 490 std::unique_ptr<CFG> cfg; 491 492 // Current block. 493 CFGBlock *Block = nullptr; 494 495 // Block after the current block. 496 CFGBlock *Succ = nullptr; 497 498 JumpTarget ContinueJumpTarget; 499 JumpTarget BreakJumpTarget; 500 JumpTarget SEHLeaveJumpTarget; 501 CFGBlock *SwitchTerminatedBlock = nullptr; 502 CFGBlock *DefaultCaseBlock = nullptr; 503 504 // This can point to either a C++ try, an Objective-C @try, or an SEH __try. 505 // try and @try can be mixed and generally work the same. 506 // The frontend forbids mixing SEH __try with either try or @try. 507 // So having one for all three is enough. 508 CFGBlock *TryTerminatedBlock = nullptr; 509 510 // Current position in local scope. 511 LocalScope::const_iterator ScopePos; 512 513 // LabelMap records the mapping from Label expressions to their jump targets. 514 using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>; 515 LabelMapTy LabelMap; 516 517 // A list of blocks that end with a "goto" that must be backpatched to their 518 // resolved targets upon completion of CFG construction. 519 using BackpatchBlocksTy = std::vector<JumpSource>; 520 BackpatchBlocksTy BackpatchBlocks; 521 522 // A list of labels whose address has been taken (for indirect gotos). 523 using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>; 524 LabelSetTy AddressTakenLabels; 525 526 // Information about the currently visited C++ object construction site. 527 // This is set in the construction trigger and read when the constructor 528 // or a function that returns an object by value is being visited. 529 llvm::DenseMap<Expr *, const ConstructionContextLayer *> 530 ConstructionContextMap; 531 532 bool badCFG = false; 533 const CFG::BuildOptions &BuildOpts; 534 535 // State to track for building switch statements. 536 bool switchExclusivelyCovered = false; 537 Expr::EvalResult *switchCond = nullptr; 538 539 CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr; 540 const Stmt *lastLookup = nullptr; 541 542 // Caches boolean evaluations of expressions to avoid multiple re-evaluations 543 // during construction of branches for chained logical operators. 544 using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>; 545 CachedBoolEvalsTy CachedBoolEvals; 546 547 public: 548 explicit CFGBuilder(ASTContext *astContext, 549 const CFG::BuildOptions &buildOpts) 550 : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {} 551 552 // buildCFG - Used by external clients to construct the CFG. 553 std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement); 554 555 bool alwaysAdd(const Stmt *stmt); 556 557 private: 558 // Visitors to walk an AST and construct the CFG. 559 CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc); 560 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc); 561 CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc); 562 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc); 563 CFGBlock *VisitBreakStmt(BreakStmt *B); 564 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc); 565 CFGBlock *VisitCaseStmt(CaseStmt *C); 566 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc); 567 CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed); 568 CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C, 569 AddStmtChoice asc); 570 CFGBlock *VisitContinueStmt(ContinueStmt *C); 571 CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, 572 AddStmtChoice asc); 573 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S); 574 CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc); 575 CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc); 576 CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc); 577 CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S); 578 CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, 579 AddStmtChoice asc); 580 CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, 581 AddStmtChoice asc); 582 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); 583 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S); 584 CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc); 585 CFGBlock *VisitDeclStmt(DeclStmt *DS); 586 CFGBlock *VisitDeclSubExpr(DeclStmt *DS); 587 CFGBlock *VisitDefaultStmt(DefaultStmt *D); 588 CFGBlock *VisitDoStmt(DoStmt *D); 589 CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, 590 AddStmtChoice asc, bool ExternallyDestructed); 591 CFGBlock *VisitForStmt(ForStmt *F); 592 CFGBlock *VisitGotoStmt(GotoStmt *G); 593 CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc); 594 CFGBlock *VisitIfStmt(IfStmt *I); 595 CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc); 596 CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc); 597 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); 598 CFGBlock *VisitLabelStmt(LabelStmt *L); 599 CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc); 600 CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc); 601 CFGBlock *VisitLogicalOperator(BinaryOperator *B); 602 std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B, 603 Stmt *Term, 604 CFGBlock *TrueBlock, 605 CFGBlock *FalseBlock); 606 CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, 607 AddStmtChoice asc); 608 CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc); 609 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); 610 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); 611 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); 612 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); 613 CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); 614 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); 615 CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc); 616 CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E); 617 CFGBlock *VisitReturnStmt(Stmt *S); 618 CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S, 619 AddStmtChoice asc); 620 CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S); 621 CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S); 622 CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S); 623 CFGBlock *VisitSEHTryStmt(SEHTryStmt *S); 624 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc); 625 CFGBlock *VisitSwitchStmt(SwitchStmt *S); 626 CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, 627 AddStmtChoice asc); 628 CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc); 629 CFGBlock *VisitWhileStmt(WhileStmt *W); 630 CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc); 631 632 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd, 633 bool ExternallyDestructed = false); 634 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc); 635 CFGBlock *VisitChildren(Stmt *S); 636 CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc); 637 CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D, 638 AddStmtChoice asc); 639 640 void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD, 641 const Stmt *S) { 642 if (ScopePos && (VD == ScopePos.getFirstVarInScope())) 643 appendScopeBegin(B, VD, S); 644 } 645 646 /// When creating the CFG for temporary destructors, we want to mirror the 647 /// branch structure of the corresponding constructor calls. 648 /// Thus, while visiting a statement for temporary destructors, we keep a 649 /// context to keep track of the following information: 650 /// - whether a subexpression is executed unconditionally 651 /// - if a subexpression is executed conditionally, the first 652 /// CXXBindTemporaryExpr we encounter in that subexpression (which 653 /// corresponds to the last temporary destructor we have to call for this 654 /// subexpression) and the CFG block at that point (which will become the 655 /// successor block when inserting the decision point). 656 /// 657 /// That way, we can build the branch structure for temporary destructors as 658 /// follows: 659 /// 1. If a subexpression is executed unconditionally, we add the temporary 660 /// destructor calls to the current block. 661 /// 2. If a subexpression is executed conditionally, when we encounter a 662 /// CXXBindTemporaryExpr: 663 /// a) If it is the first temporary destructor call in the subexpression, 664 /// we remember the CXXBindTemporaryExpr and the current block in the 665 /// TempDtorContext; we start a new block, and insert the temporary 666 /// destructor call. 667 /// b) Otherwise, add the temporary destructor call to the current block. 668 /// 3. When we finished visiting a conditionally executed subexpression, 669 /// and we found at least one temporary constructor during the visitation 670 /// (2.a has executed), we insert a decision block that uses the 671 /// CXXBindTemporaryExpr as terminator, and branches to the current block 672 /// if the CXXBindTemporaryExpr was marked executed, and otherwise 673 /// branches to the stored successor. 674 struct TempDtorContext { 675 TempDtorContext() = default; 676 TempDtorContext(TryResult KnownExecuted) 677 : IsConditional(true), KnownExecuted(KnownExecuted) {} 678 679 /// Returns whether we need to start a new branch for a temporary destructor 680 /// call. This is the case when the temporary destructor is 681 /// conditionally executed, and it is the first one we encounter while 682 /// visiting a subexpression - other temporary destructors at the same level 683 /// will be added to the same block and are executed under the same 684 /// condition. 685 bool needsTempDtorBranch() const { 686 return IsConditional && !TerminatorExpr; 687 } 688 689 /// Remember the successor S of a temporary destructor decision branch for 690 /// the corresponding CXXBindTemporaryExpr E. 691 void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) { 692 Succ = S; 693 TerminatorExpr = E; 694 } 695 696 const bool IsConditional = false; 697 const TryResult KnownExecuted = true; 698 CFGBlock *Succ = nullptr; 699 CXXBindTemporaryExpr *TerminatorExpr = nullptr; 700 }; 701 702 // Visitors to walk an AST and generate destructors of temporaries in 703 // full expression. 704 CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, 705 TempDtorContext &Context); 706 CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed, 707 TempDtorContext &Context); 708 CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E, 709 bool ExternallyDestructed, 710 TempDtorContext &Context); 711 CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors( 712 CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context); 713 CFGBlock *VisitConditionalOperatorForTemporaryDtors( 714 AbstractConditionalOperator *E, bool ExternallyDestructed, 715 TempDtorContext &Context); 716 void InsertTempDtorDecisionBlock(const TempDtorContext &Context, 717 CFGBlock *FalseSucc = nullptr); 718 719 // NYS == Not Yet Supported 720 CFGBlock *NYS() { 721 badCFG = true; 722 return Block; 723 } 724 725 // Remember to apply the construction context based on the current \p Layer 726 // when constructing the CFG element for \p CE. 727 void consumeConstructionContext(const ConstructionContextLayer *Layer, 728 Expr *E); 729 730 // Scan \p Child statement to find constructors in it, while keeping in mind 731 // that its parent statement is providing a partial construction context 732 // described by \p Layer. If a constructor is found, it would be assigned 733 // the context based on the layer. If an additional construction context layer 734 // is found, the function recurses into that. 735 void findConstructionContexts(const ConstructionContextLayer *Layer, 736 Stmt *Child); 737 738 // Scan all arguments of a call expression for a construction context. 739 // These sorts of call expressions don't have a common superclass, 740 // hence strict duck-typing. 741 template <typename CallLikeExpr, 742 typename = std::enable_if_t< 743 std::is_base_of_v<CallExpr, CallLikeExpr> || 744 std::is_base_of_v<CXXConstructExpr, CallLikeExpr> || 745 std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>> 746 void findConstructionContextsForArguments(CallLikeExpr *E) { 747 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 748 Expr *Arg = E->getArg(i); 749 if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue()) 750 findConstructionContexts( 751 ConstructionContextLayer::create(cfg->getBumpVectorContext(), 752 ConstructionContextItem(E, i)), 753 Arg); 754 } 755 } 756 757 // Unset the construction context after consuming it. This is done immediately 758 // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so 759 // there's no need to do this manually in every Visit... function. 760 void cleanupConstructionContext(Expr *E); 761 762 void autoCreateBlock() { if (!Block) Block = createBlock(); } 763 CFGBlock *createBlock(bool add_successor = true); 764 CFGBlock *createNoReturnBlock(); 765 766 CFGBlock *addStmt(Stmt *S) { 767 return Visit(S, AddStmtChoice::AlwaysAdd); 768 } 769 770 CFGBlock *addInitializer(CXXCtorInitializer *I); 771 void addLoopExit(const Stmt *LoopStmt); 772 void addAutomaticObjHandling(LocalScope::const_iterator B, 773 LocalScope::const_iterator E, Stmt *S); 774 void addAutomaticObjDestruction(LocalScope::const_iterator B, 775 LocalScope::const_iterator E, Stmt *S); 776 void addScopeExitHandling(LocalScope::const_iterator B, 777 LocalScope::const_iterator E, Stmt *S); 778 void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD); 779 void addScopeChangesHandling(LocalScope::const_iterator SrcPos, 780 LocalScope::const_iterator DstPos, 781 Stmt *S); 782 CFGBlock *createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos, 783 CFGBlock *SrcBlk, 784 LocalScope::const_iterator DstPost, 785 CFGBlock *DstBlk); 786 787 // Local scopes creation. 788 LocalScope* createOrReuseLocalScope(LocalScope* Scope); 789 790 void addLocalScopeForStmt(Stmt *S); 791 LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, 792 LocalScope* Scope = nullptr); 793 LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr); 794 795 void addLocalScopeAndDtors(Stmt *S); 796 797 const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) { 798 if (!BuildOpts.AddRichCXXConstructors) 799 return nullptr; 800 801 const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E); 802 if (!Layer) 803 return nullptr; 804 805 cleanupConstructionContext(E); 806 return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(), 807 Layer); 808 } 809 810 // Interface to CFGBlock - adding CFGElements. 811 812 void appendStmt(CFGBlock *B, const Stmt *S) { 813 if (alwaysAdd(S) && cachedEntry) 814 cachedEntry->second = B; 815 816 // All block-level expressions should have already been IgnoreParens()ed. 817 assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S); 818 B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext()); 819 } 820 821 void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) { 822 if (const ConstructionContext *CC = 823 retrieveAndCleanupConstructionContext(CE)) { 824 B->appendConstructor(CE, CC, cfg->getBumpVectorContext()); 825 return; 826 } 827 828 // No valid construction context found. Fall back to statement. 829 B->appendStmt(CE, cfg->getBumpVectorContext()); 830 } 831 832 void appendCall(CFGBlock *B, CallExpr *CE) { 833 if (alwaysAdd(CE) && cachedEntry) 834 cachedEntry->second = B; 835 836 if (const ConstructionContext *CC = 837 retrieveAndCleanupConstructionContext(CE)) { 838 B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext()); 839 return; 840 } 841 842 // No valid construction context found. Fall back to statement. 843 B->appendStmt(CE, cfg->getBumpVectorContext()); 844 } 845 846 void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) { 847 B->appendInitializer(I, cfg->getBumpVectorContext()); 848 } 849 850 void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) { 851 B->appendNewAllocator(NE, cfg->getBumpVectorContext()); 852 } 853 854 void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) { 855 B->appendBaseDtor(BS, cfg->getBumpVectorContext()); 856 } 857 858 void appendMemberDtor(CFGBlock *B, FieldDecl *FD) { 859 B->appendMemberDtor(FD, cfg->getBumpVectorContext()); 860 } 861 862 void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) { 863 if (alwaysAdd(ME) && cachedEntry) 864 cachedEntry->second = B; 865 866 if (const ConstructionContext *CC = 867 retrieveAndCleanupConstructionContext(ME)) { 868 B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext()); 869 return; 870 } 871 872 B->appendStmt(const_cast<ObjCMessageExpr *>(ME), 873 cfg->getBumpVectorContext()); 874 } 875 876 void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) { 877 B->appendTemporaryDtor(E, cfg->getBumpVectorContext()); 878 } 879 880 void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) { 881 B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext()); 882 } 883 884 void appendCleanupFunction(CFGBlock *B, VarDecl *VD) { 885 B->appendCleanupFunction(VD, cfg->getBumpVectorContext()); 886 } 887 888 void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) { 889 B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext()); 890 } 891 892 void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) { 893 B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext()); 894 } 895 896 void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) { 897 B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext()); 898 } 899 900 void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) { 901 B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable), 902 cfg->getBumpVectorContext()); 903 } 904 905 /// Add a reachable successor to a block, with the alternate variant that is 906 /// unreachable. 907 void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) { 908 B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock), 909 cfg->getBumpVectorContext()); 910 } 911 912 void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) { 913 if (BuildOpts.AddScopes) 914 B->appendScopeBegin(VD, S, cfg->getBumpVectorContext()); 915 } 916 917 void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) { 918 if (BuildOpts.AddScopes) 919 B->appendScopeEnd(VD, S, cfg->getBumpVectorContext()); 920 } 921 922 /// Find a relational comparison with an expression evaluating to a 923 /// boolean and a constant other than 0 and 1. 924 /// e.g. if ((x < y) == 10) 925 TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) { 926 const Expr *LHSExpr = B->getLHS()->IgnoreParens(); 927 const Expr *RHSExpr = B->getRHS()->IgnoreParens(); 928 929 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr); 930 const Expr *BoolExpr = RHSExpr; 931 bool IntFirst = true; 932 if (!IntLiteral) { 933 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr); 934 BoolExpr = LHSExpr; 935 IntFirst = false; 936 } 937 938 if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue()) 939 return TryResult(); 940 941 llvm::APInt IntValue = IntLiteral->getValue(); 942 if ((IntValue == 1) || (IntValue == 0)) 943 return TryResult(); 944 945 bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() || 946 !IntValue.isNegative(); 947 948 BinaryOperatorKind Bok = B->getOpcode(); 949 if (Bok == BO_GT || Bok == BO_GE) { 950 // Always true for 10 > bool and bool > -1 951 // Always false for -1 > bool and bool > 10 952 return TryResult(IntFirst == IntLarger); 953 } else { 954 // Always true for -1 < bool and bool < 10 955 // Always false for 10 < bool and bool < -1 956 return TryResult(IntFirst != IntLarger); 957 } 958 } 959 960 /// Find an incorrect equality comparison. Either with an expression 961 /// evaluating to a boolean and a constant other than 0 and 1. 962 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to 963 /// true/false e.q. (x & 8) == 4. 964 TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) { 965 const Expr *LHSExpr = B->getLHS()->IgnoreParens(); 966 const Expr *RHSExpr = B->getRHS()->IgnoreParens(); 967 968 std::optional<llvm::APInt> IntLiteral1 = 969 getIntegerLiteralSubexpressionValue(LHSExpr); 970 const Expr *BoolExpr = RHSExpr; 971 972 if (!IntLiteral1) { 973 IntLiteral1 = getIntegerLiteralSubexpressionValue(RHSExpr); 974 BoolExpr = LHSExpr; 975 } 976 977 if (!IntLiteral1) 978 return TryResult(); 979 980 const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr); 981 if (BitOp && (BitOp->getOpcode() == BO_And || 982 BitOp->getOpcode() == BO_Or)) { 983 const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens(); 984 const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens(); 985 986 std::optional<llvm::APInt> IntLiteral2 = 987 getIntegerLiteralSubexpressionValue(LHSExpr2); 988 989 if (!IntLiteral2) 990 IntLiteral2 = getIntegerLiteralSubexpressionValue(RHSExpr2); 991 992 if (!IntLiteral2) 993 return TryResult(); 994 995 if ((BitOp->getOpcode() == BO_And && 996 (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) || 997 (BitOp->getOpcode() == BO_Or && 998 (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) { 999 if (BuildOpts.Observer) 1000 BuildOpts.Observer->compareBitwiseEquality(B, 1001 B->getOpcode() != BO_EQ); 1002 return TryResult(B->getOpcode() != BO_EQ); 1003 } 1004 } else if (BoolExpr->isKnownToHaveBooleanValue()) { 1005 if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) { 1006 return TryResult(); 1007 } 1008 return TryResult(B->getOpcode() != BO_EQ); 1009 } 1010 1011 return TryResult(); 1012 } 1013 1014 // Helper function to get an APInt from an expression. Supports expressions 1015 // which are an IntegerLiteral or a UnaryOperator and returns the value with 1016 // all operations performed on it. 1017 // FIXME: it would be good to unify this function with 1018 // IsIntegerLiteralConstantExpr at some point given the similarity between the 1019 // functions. 1020 std::optional<llvm::APInt> 1021 getIntegerLiteralSubexpressionValue(const Expr *E) { 1022 1023 // If unary. 1024 if (const auto *UnOp = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1025 // Get the sub expression of the unary expression and get the Integer 1026 // Literal. 1027 const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens(); 1028 1029 if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(SubExpr)) { 1030 1031 llvm::APInt Value = IntLiteral->getValue(); 1032 1033 // Perform the operation manually. 1034 switch (UnOp->getOpcode()) { 1035 case UO_Plus: 1036 return Value; 1037 case UO_Minus: 1038 return -Value; 1039 case UO_Not: 1040 return ~Value; 1041 case UO_LNot: 1042 return llvm::APInt(Context->getTypeSize(Context->IntTy), !Value); 1043 default: 1044 assert(false && "Unexpected unary operator!"); 1045 return std::nullopt; 1046 } 1047 } 1048 } else if (const auto *IntLiteral = 1049 dyn_cast<IntegerLiteral>(E->IgnoreParens())) 1050 return IntLiteral->getValue(); 1051 1052 return std::nullopt; 1053 } 1054 1055 TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation, 1056 const llvm::APSInt &Value1, 1057 const llvm::APSInt &Value2) { 1058 assert(Value1.isSigned() == Value2.isSigned()); 1059 switch (Relation) { 1060 default: 1061 return TryResult(); 1062 case BO_EQ: 1063 return TryResult(Value1 == Value2); 1064 case BO_NE: 1065 return TryResult(Value1 != Value2); 1066 case BO_LT: 1067 return TryResult(Value1 < Value2); 1068 case BO_LE: 1069 return TryResult(Value1 <= Value2); 1070 case BO_GT: 1071 return TryResult(Value1 > Value2); 1072 case BO_GE: 1073 return TryResult(Value1 >= Value2); 1074 } 1075 } 1076 1077 /// There are two checks handled by this function: 1078 /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression 1079 /// e.g. if (x || !x), if (x && !x) 1080 /// 2. Find a pair of comparison expressions with or without parentheses 1081 /// with a shared variable and constants and a logical operator between them 1082 /// that always evaluates to either true or false. 1083 /// e.g. if (x != 3 || x != 4) 1084 TryResult checkIncorrectLogicOperator(const BinaryOperator *B) { 1085 assert(B->isLogicalOp()); 1086 const Expr *LHSExpr = B->getLHS()->IgnoreParens(); 1087 const Expr *RHSExpr = B->getRHS()->IgnoreParens(); 1088 1089 auto CheckLogicalOpWithNegatedVariable = [this, B](const Expr *E1, 1090 const Expr *E2) { 1091 if (const auto *Negate = dyn_cast<UnaryOperator>(E1)) { 1092 if (Negate->getOpcode() == UO_LNot && 1093 Expr::isSameComparisonOperand(Negate->getSubExpr(), E2)) { 1094 bool AlwaysTrue = B->getOpcode() == BO_LOr; 1095 if (BuildOpts.Observer) 1096 BuildOpts.Observer->logicAlwaysTrue(B, AlwaysTrue); 1097 return TryResult(AlwaysTrue); 1098 } 1099 } 1100 return TryResult(); 1101 }; 1102 1103 TryResult Result = CheckLogicalOpWithNegatedVariable(LHSExpr, RHSExpr); 1104 if (Result.isKnown()) 1105 return Result; 1106 Result = CheckLogicalOpWithNegatedVariable(RHSExpr, LHSExpr); 1107 if (Result.isKnown()) 1108 return Result; 1109 1110 const auto *LHS = dyn_cast<BinaryOperator>(LHSExpr); 1111 const auto *RHS = dyn_cast<BinaryOperator>(RHSExpr); 1112 if (!LHS || !RHS) 1113 return {}; 1114 1115 if (!LHS->isComparisonOp() || !RHS->isComparisonOp()) 1116 return {}; 1117 1118 const Expr *DeclExpr1; 1119 const Expr *NumExpr1; 1120 BinaryOperatorKind BO1; 1121 std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS); 1122 1123 if (!DeclExpr1 || !NumExpr1) 1124 return {}; 1125 1126 const Expr *DeclExpr2; 1127 const Expr *NumExpr2; 1128 BinaryOperatorKind BO2; 1129 std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS); 1130 1131 if (!DeclExpr2 || !NumExpr2) 1132 return {}; 1133 1134 // Check that it is the same variable on both sides. 1135 if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2)) 1136 return {}; 1137 1138 // Make sure the user's intent is clear (e.g. they're comparing against two 1139 // int literals, or two things from the same enum) 1140 if (!areExprTypesCompatible(NumExpr1, NumExpr2)) 1141 return {}; 1142 1143 Expr::EvalResult L1Result, L2Result; 1144 if (!NumExpr1->EvaluateAsInt(L1Result, *Context) || 1145 !NumExpr2->EvaluateAsInt(L2Result, *Context)) 1146 return {}; 1147 1148 llvm::APSInt L1 = L1Result.Val.getInt(); 1149 llvm::APSInt L2 = L2Result.Val.getInt(); 1150 1151 // Can't compare signed with unsigned or with different bit width. 1152 if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth()) 1153 return {}; 1154 1155 // Values that will be used to determine if result of logical 1156 // operator is always true/false 1157 const llvm::APSInt Values[] = { 1158 // Value less than both Value1 and Value2 1159 llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()), 1160 // L1 1161 L1, 1162 // Value between Value1 and Value2 1163 ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1), 1164 L1.isUnsigned()), 1165 // L2 1166 L2, 1167 // Value greater than both Value1 and Value2 1168 llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()), 1169 }; 1170 1171 // Check whether expression is always true/false by evaluating the following 1172 // * variable x is less than the smallest literal. 1173 // * variable x is equal to the smallest literal. 1174 // * Variable x is between smallest and largest literal. 1175 // * Variable x is equal to the largest literal. 1176 // * Variable x is greater than largest literal. 1177 bool AlwaysTrue = true, AlwaysFalse = true; 1178 // Track value of both subexpressions. If either side is always 1179 // true/false, another warning should have already been emitted. 1180 bool LHSAlwaysTrue = true, LHSAlwaysFalse = true; 1181 bool RHSAlwaysTrue = true, RHSAlwaysFalse = true; 1182 for (const llvm::APSInt &Value : Values) { 1183 TryResult Res1, Res2; 1184 Res1 = analyzeLogicOperatorCondition(BO1, Value, L1); 1185 Res2 = analyzeLogicOperatorCondition(BO2, Value, L2); 1186 1187 if (!Res1.isKnown() || !Res2.isKnown()) 1188 return {}; 1189 1190 if (B->getOpcode() == BO_LAnd) { 1191 AlwaysTrue &= (Res1.isTrue() && Res2.isTrue()); 1192 AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue()); 1193 } else { 1194 AlwaysTrue &= (Res1.isTrue() || Res2.isTrue()); 1195 AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue()); 1196 } 1197 1198 LHSAlwaysTrue &= Res1.isTrue(); 1199 LHSAlwaysFalse &= Res1.isFalse(); 1200 RHSAlwaysTrue &= Res2.isTrue(); 1201 RHSAlwaysFalse &= Res2.isFalse(); 1202 } 1203 1204 if (AlwaysTrue || AlwaysFalse) { 1205 if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue && 1206 !RHSAlwaysFalse && BuildOpts.Observer) 1207 BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue); 1208 return TryResult(AlwaysTrue); 1209 } 1210 return {}; 1211 } 1212 1213 /// A bitwise-or with a non-zero constant always evaluates to true. 1214 TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) { 1215 const Expr *LHSConstant = 1216 tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts()); 1217 const Expr *RHSConstant = 1218 tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts()); 1219 1220 if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant)) 1221 return {}; 1222 1223 const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant; 1224 1225 Expr::EvalResult Result; 1226 if (!Constant->EvaluateAsInt(Result, *Context)) 1227 return {}; 1228 1229 if (Result.Val.getInt() == 0) 1230 return {}; 1231 1232 if (BuildOpts.Observer) 1233 BuildOpts.Observer->compareBitwiseOr(B); 1234 1235 return TryResult(true); 1236 } 1237 1238 /// Try and evaluate an expression to an integer constant. 1239 bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) { 1240 if (!BuildOpts.PruneTriviallyFalseEdges) 1241 return false; 1242 return !S->isTypeDependent() && 1243 !S->isValueDependent() && 1244 S->EvaluateAsRValue(outResult, *Context); 1245 } 1246 1247 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 1248 /// if we can evaluate to a known value, otherwise return -1. 1249 TryResult tryEvaluateBool(Expr *S) { 1250 if (!BuildOpts.PruneTriviallyFalseEdges || 1251 S->isTypeDependent() || S->isValueDependent()) 1252 return {}; 1253 1254 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) { 1255 if (Bop->isLogicalOp() || Bop->isEqualityOp()) { 1256 // Check the cache first. 1257 CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S); 1258 if (I != CachedBoolEvals.end()) 1259 return I->second; // already in map; 1260 1261 // Retrieve result at first, or the map might be updated. 1262 TryResult Result = evaluateAsBooleanConditionNoCache(S); 1263 CachedBoolEvals[S] = Result; // update or insert 1264 return Result; 1265 } 1266 else { 1267 switch (Bop->getOpcode()) { 1268 default: break; 1269 // For 'x & 0' and 'x * 0', we can determine that 1270 // the value is always false. 1271 case BO_Mul: 1272 case BO_And: { 1273 // If either operand is zero, we know the value 1274 // must be false. 1275 Expr::EvalResult LHSResult; 1276 if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) { 1277 llvm::APSInt IntVal = LHSResult.Val.getInt(); 1278 if (!IntVal.getBoolValue()) { 1279 return TryResult(false); 1280 } 1281 } 1282 Expr::EvalResult RHSResult; 1283 if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) { 1284 llvm::APSInt IntVal = RHSResult.Val.getInt(); 1285 if (!IntVal.getBoolValue()) { 1286 return TryResult(false); 1287 } 1288 } 1289 } 1290 break; 1291 } 1292 } 1293 } 1294 1295 return evaluateAsBooleanConditionNoCache(S); 1296 } 1297 1298 /// Evaluate as boolean \param E without using the cache. 1299 TryResult evaluateAsBooleanConditionNoCache(Expr *E) { 1300 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) { 1301 if (Bop->isLogicalOp()) { 1302 TryResult LHS = tryEvaluateBool(Bop->getLHS()); 1303 if (LHS.isKnown()) { 1304 // We were able to evaluate the LHS, see if we can get away with not 1305 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 1306 if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr)) 1307 return LHS.isTrue(); 1308 1309 TryResult RHS = tryEvaluateBool(Bop->getRHS()); 1310 if (RHS.isKnown()) { 1311 if (Bop->getOpcode() == BO_LOr) 1312 return LHS.isTrue() || RHS.isTrue(); 1313 else 1314 return LHS.isTrue() && RHS.isTrue(); 1315 } 1316 } else { 1317 TryResult RHS = tryEvaluateBool(Bop->getRHS()); 1318 if (RHS.isKnown()) { 1319 // We can't evaluate the LHS; however, sometimes the result 1320 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 1321 if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr)) 1322 return RHS.isTrue(); 1323 } else { 1324 TryResult BopRes = checkIncorrectLogicOperator(Bop); 1325 if (BopRes.isKnown()) 1326 return BopRes.isTrue(); 1327 } 1328 } 1329 1330 return {}; 1331 } else if (Bop->isEqualityOp()) { 1332 TryResult BopRes = checkIncorrectEqualityOperator(Bop); 1333 if (BopRes.isKnown()) 1334 return BopRes.isTrue(); 1335 } else if (Bop->isRelationalOp()) { 1336 TryResult BopRes = checkIncorrectRelationalOperator(Bop); 1337 if (BopRes.isKnown()) 1338 return BopRes.isTrue(); 1339 } else if (Bop->getOpcode() == BO_Or) { 1340 TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop); 1341 if (BopRes.isKnown()) 1342 return BopRes.isTrue(); 1343 } 1344 } 1345 1346 bool Result; 1347 if (E->EvaluateAsBooleanCondition(Result, *Context)) 1348 return Result; 1349 1350 return {}; 1351 } 1352 1353 bool hasTrivialDestructor(const VarDecl *VD) const; 1354 bool needsAutomaticDestruction(const VarDecl *VD) const; 1355 }; 1356 1357 } // namespace 1358 1359 Expr * 1360 clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE) { 1361 if (!AILE) 1362 return nullptr; 1363 1364 Expr *AILEInit = AILE->getSubExpr(); 1365 while (const auto *E = dyn_cast<ArrayInitLoopExpr>(AILEInit)) 1366 AILEInit = E->getSubExpr(); 1367 1368 return AILEInit; 1369 } 1370 1371 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder, 1372 const Stmt *stmt) const { 1373 return builder.alwaysAdd(stmt) || kind == AlwaysAdd; 1374 } 1375 1376 bool CFGBuilder::alwaysAdd(const Stmt *stmt) { 1377 bool shouldAdd = BuildOpts.alwaysAdd(stmt); 1378 1379 if (!BuildOpts.forcedBlkExprs) 1380 return shouldAdd; 1381 1382 if (lastLookup == stmt) { 1383 if (cachedEntry) { 1384 assert(cachedEntry->first == stmt); 1385 return true; 1386 } 1387 return shouldAdd; 1388 } 1389 1390 lastLookup = stmt; 1391 1392 // Perform the lookup! 1393 CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs; 1394 1395 if (!fb) { 1396 // No need to update 'cachedEntry', since it will always be null. 1397 assert(!cachedEntry); 1398 return shouldAdd; 1399 } 1400 1401 CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt); 1402 if (itr == fb->end()) { 1403 cachedEntry = nullptr; 1404 return shouldAdd; 1405 } 1406 1407 cachedEntry = &*itr; 1408 return true; 1409 } 1410 1411 // FIXME: Add support for dependent-sized array types in C++? 1412 // Does it even make sense to build a CFG for an uninstantiated template? 1413 static const VariableArrayType *FindVA(const Type *t) { 1414 while (const ArrayType *vt = dyn_cast<ArrayType>(t)) { 1415 if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt)) 1416 if (vat->getSizeExpr()) 1417 return vat; 1418 1419 t = vt->getElementType().getTypePtr(); 1420 } 1421 1422 return nullptr; 1423 } 1424 1425 void CFGBuilder::consumeConstructionContext( 1426 const ConstructionContextLayer *Layer, Expr *E) { 1427 assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || 1428 isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!"); 1429 if (const ConstructionContextLayer *PreviouslyStoredLayer = 1430 ConstructionContextMap.lookup(E)) { 1431 (void)PreviouslyStoredLayer; 1432 // We might have visited this child when we were finding construction 1433 // contexts within its parents. 1434 assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) && 1435 "Already within a different construction context!"); 1436 } else { 1437 ConstructionContextMap[E] = Layer; 1438 } 1439 } 1440 1441 void CFGBuilder::findConstructionContexts( 1442 const ConstructionContextLayer *Layer, Stmt *Child) { 1443 if (!BuildOpts.AddRichCXXConstructors) 1444 return; 1445 1446 if (!Child) 1447 return; 1448 1449 auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) { 1450 return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item, 1451 Layer); 1452 }; 1453 1454 switch(Child->getStmtClass()) { 1455 case Stmt::CXXConstructExprClass: 1456 case Stmt::CXXTemporaryObjectExprClass: { 1457 // Support pre-C++17 copy elision AST. 1458 auto *CE = cast<CXXConstructExpr>(Child); 1459 if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) { 1460 findConstructionContexts(withExtraLayer(CE), CE->getArg(0)); 1461 } 1462 1463 consumeConstructionContext(Layer, CE); 1464 break; 1465 } 1466 // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr. 1467 // FIXME: An isa<> would look much better but this whole switch is a 1468 // workaround for an internal compiler error in MSVC 2015 (see r326021). 1469 case Stmt::CallExprClass: 1470 case Stmt::CXXMemberCallExprClass: 1471 case Stmt::CXXOperatorCallExprClass: 1472 case Stmt::UserDefinedLiteralClass: 1473 case Stmt::ObjCMessageExprClass: { 1474 auto *E = cast<Expr>(Child); 1475 if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E)) 1476 consumeConstructionContext(Layer, E); 1477 break; 1478 } 1479 case Stmt::ExprWithCleanupsClass: { 1480 auto *Cleanups = cast<ExprWithCleanups>(Child); 1481 findConstructionContexts(Layer, Cleanups->getSubExpr()); 1482 break; 1483 } 1484 case Stmt::CXXFunctionalCastExprClass: { 1485 auto *Cast = cast<CXXFunctionalCastExpr>(Child); 1486 findConstructionContexts(Layer, Cast->getSubExpr()); 1487 break; 1488 } 1489 case Stmt::ImplicitCastExprClass: { 1490 auto *Cast = cast<ImplicitCastExpr>(Child); 1491 // Should we support other implicit cast kinds? 1492 switch (Cast->getCastKind()) { 1493 case CK_NoOp: 1494 case CK_ConstructorConversion: 1495 findConstructionContexts(Layer, Cast->getSubExpr()); 1496 break; 1497 default: 1498 break; 1499 } 1500 break; 1501 } 1502 case Stmt::CXXBindTemporaryExprClass: { 1503 auto *BTE = cast<CXXBindTemporaryExpr>(Child); 1504 findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr()); 1505 break; 1506 } 1507 case Stmt::MaterializeTemporaryExprClass: { 1508 // Normally we don't want to search in MaterializeTemporaryExpr because 1509 // it indicates the beginning of a temporary object construction context, 1510 // so it shouldn't be found in the middle. However, if it is the beginning 1511 // of an elidable copy or move construction context, we need to include it. 1512 if (Layer->getItem().getKind() == 1513 ConstructionContextItem::ElidableConstructorKind) { 1514 auto *MTE = cast<MaterializeTemporaryExpr>(Child); 1515 findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr()); 1516 } 1517 break; 1518 } 1519 case Stmt::ConditionalOperatorClass: { 1520 auto *CO = cast<ConditionalOperator>(Child); 1521 if (Layer->getItem().getKind() != 1522 ConstructionContextItem::MaterializationKind) { 1523 // If the object returned by the conditional operator is not going to be a 1524 // temporary object that needs to be immediately materialized, then 1525 // it must be C++17 with its mandatory copy elision. Do not yet promise 1526 // to support this case. 1527 assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() || 1528 Context->getLangOpts().CPlusPlus17); 1529 break; 1530 } 1531 findConstructionContexts(Layer, CO->getLHS()); 1532 findConstructionContexts(Layer, CO->getRHS()); 1533 break; 1534 } 1535 case Stmt::InitListExprClass: { 1536 auto *ILE = cast<InitListExpr>(Child); 1537 if (ILE->isTransparent()) { 1538 findConstructionContexts(Layer, ILE->getInit(0)); 1539 break; 1540 } 1541 // TODO: Handle other cases. For now, fail to find construction contexts. 1542 break; 1543 } 1544 case Stmt::ParenExprClass: { 1545 // If expression is placed into parenthesis we should propagate the parent 1546 // construction context to subexpressions. 1547 auto *PE = cast<ParenExpr>(Child); 1548 findConstructionContexts(Layer, PE->getSubExpr()); 1549 break; 1550 } 1551 default: 1552 break; 1553 } 1554 } 1555 1556 void CFGBuilder::cleanupConstructionContext(Expr *E) { 1557 assert(BuildOpts.AddRichCXXConstructors && 1558 "We should not be managing construction contexts!"); 1559 assert(ConstructionContextMap.count(E) && 1560 "Cannot exit construction context without the context!"); 1561 ConstructionContextMap.erase(E); 1562 } 1563 1564 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an 1565 /// arbitrary statement. Examples include a single expression or a function 1566 /// body (compound statement). The ownership of the returned CFG is 1567 /// transferred to the caller. If CFG construction fails, this method returns 1568 /// NULL. 1569 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) { 1570 assert(cfg.get()); 1571 if (!Statement) 1572 return nullptr; 1573 1574 // Create an empty block that will serve as the exit block for the CFG. Since 1575 // this is the first block added to the CFG, it will be implicitly registered 1576 // as the exit block. 1577 Succ = createBlock(); 1578 assert(Succ == &cfg->getExit()); 1579 Block = nullptr; // the EXIT block is empty. Create all other blocks lazily. 1580 1581 if (BuildOpts.AddImplicitDtors) 1582 if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D)) 1583 addImplicitDtorsForDestructor(DD); 1584 1585 // Visit the statements and create the CFG. 1586 CFGBlock *B = addStmt(Statement); 1587 1588 if (badCFG) 1589 return nullptr; 1590 1591 // For C++ constructor add initializers to CFG. Constructors of virtual bases 1592 // are ignored unless the object is of the most derived class. 1593 // class VBase { VBase() = default; VBase(int) {} }; 1594 // class A : virtual public VBase { A() : VBase(0) {} }; 1595 // class B : public A {}; 1596 // B b; // Constructor calls in order: VBase(), A(), B(). 1597 // // VBase(0) is ignored because A isn't the most derived class. 1598 // This may result in the virtual base(s) being already initialized at this 1599 // point, in which case we should jump right onto non-virtual bases and 1600 // fields. To handle this, make a CFG branch. We only need to add one such 1601 // branch per constructor, since the Standard states that all virtual bases 1602 // shall be initialized before non-virtual bases and direct data members. 1603 if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) { 1604 CFGBlock *VBaseSucc = nullptr; 1605 for (auto *I : llvm::reverse(CD->inits())) { 1606 if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc && 1607 I->isBaseInitializer() && I->isBaseVirtual()) { 1608 // We've reached the first virtual base init while iterating in reverse 1609 // order. Make a new block for virtual base initializers so that we 1610 // could skip them. 1611 VBaseSucc = Succ = B ? B : &cfg->getExit(); 1612 Block = createBlock(); 1613 } 1614 B = addInitializer(I); 1615 if (badCFG) 1616 return nullptr; 1617 } 1618 if (VBaseSucc) { 1619 // Make a branch block for potentially skipping virtual base initializers. 1620 Succ = VBaseSucc; 1621 B = createBlock(); 1622 B->setTerminator( 1623 CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch)); 1624 addSuccessor(B, Block, true); 1625 } 1626 } 1627 1628 if (B) 1629 Succ = B; 1630 1631 // Backpatch the gotos whose label -> block mappings we didn't know when we 1632 // encountered them. 1633 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), 1634 E = BackpatchBlocks.end(); I != E; ++I ) { 1635 1636 CFGBlock *B = I->block; 1637 if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) { 1638 LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); 1639 // If there is no target for the goto, then we are looking at an 1640 // incomplete AST. Handle this by not registering a successor. 1641 if (LI == LabelMap.end()) 1642 continue; 1643 JumpTarget JT = LI->second; 1644 1645 CFGBlock *SuccBlk = createScopeChangesHandlingBlock( 1646 I->scopePosition, B, JT.scopePosition, JT.block); 1647 addSuccessor(B, SuccBlk); 1648 } else if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) { 1649 CFGBlock *Successor = (I+1)->block; 1650 for (auto *L : G->labels()) { 1651 LabelMapTy::iterator LI = LabelMap.find(L->getLabel()); 1652 // If there is no target for the goto, then we are looking at an 1653 // incomplete AST. Handle this by not registering a successor. 1654 if (LI == LabelMap.end()) 1655 continue; 1656 JumpTarget JT = LI->second; 1657 // Successor has been added, so skip it. 1658 if (JT.block == Successor) 1659 continue; 1660 addSuccessor(B, JT.block); 1661 } 1662 I++; 1663 } 1664 } 1665 1666 // Add successors to the Indirect Goto Dispatch block (if we have one). 1667 if (CFGBlock *B = cfg->getIndirectGotoBlock()) 1668 for (LabelSetTy::iterator I = AddressTakenLabels.begin(), 1669 E = AddressTakenLabels.end(); I != E; ++I ) { 1670 // Lookup the target block. 1671 LabelMapTy::iterator LI = LabelMap.find(*I); 1672 1673 // If there is no target block that contains label, then we are looking 1674 // at an incomplete AST. Handle this by not registering a successor. 1675 if (LI == LabelMap.end()) continue; 1676 1677 addSuccessor(B, LI->second.block); 1678 } 1679 1680 // Create an empty entry block that has no predecessors. 1681 cfg->setEntry(createBlock()); 1682 1683 if (BuildOpts.AddRichCXXConstructors) 1684 assert(ConstructionContextMap.empty() && 1685 "Not all construction contexts were cleaned up!"); 1686 1687 return std::move(cfg); 1688 } 1689 1690 /// createBlock - Used to lazily create blocks that are connected 1691 /// to the current (global) successor. 1692 CFGBlock *CFGBuilder::createBlock(bool add_successor) { 1693 CFGBlock *B = cfg->createBlock(); 1694 if (add_successor && Succ) 1695 addSuccessor(B, Succ); 1696 return B; 1697 } 1698 1699 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the 1700 /// CFG. It is *not* connected to the current (global) successor, and instead 1701 /// directly tied to the exit block in order to be reachable. 1702 CFGBlock *CFGBuilder::createNoReturnBlock() { 1703 CFGBlock *B = createBlock(false); 1704 B->setHasNoReturnElement(); 1705 addSuccessor(B, &cfg->getExit(), Succ); 1706 return B; 1707 } 1708 1709 /// addInitializer - Add C++ base or member initializer element to CFG. 1710 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) { 1711 if (!BuildOpts.AddInitializers) 1712 return Block; 1713 1714 bool HasTemporaries = false; 1715 1716 // Destructors of temporaries in initialization expression should be called 1717 // after initialization finishes. 1718 Expr *Init = I->getInit(); 1719 if (Init) { 1720 HasTemporaries = isa<ExprWithCleanups>(Init); 1721 1722 if (BuildOpts.AddTemporaryDtors && HasTemporaries) { 1723 // Generate destructors for temporaries in initialization expression. 1724 TempDtorContext Context; 1725 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), 1726 /*ExternallyDestructed=*/false, Context); 1727 } 1728 } 1729 1730 autoCreateBlock(); 1731 appendInitializer(Block, I); 1732 1733 if (Init) { 1734 // If the initializer is an ArrayInitLoopExpr, we want to extract the 1735 // initializer, that's used for each element. 1736 auto *AILEInit = extractElementInitializerFromNestedAILE( 1737 dyn_cast<ArrayInitLoopExpr>(Init)); 1738 1739 findConstructionContexts( 1740 ConstructionContextLayer::create(cfg->getBumpVectorContext(), I), 1741 AILEInit ? AILEInit : Init); 1742 1743 if (HasTemporaries) { 1744 // For expression with temporaries go directly to subexpression to omit 1745 // generating destructors for the second time. 1746 return Visit(cast<ExprWithCleanups>(Init)->getSubExpr()); 1747 } 1748 if (BuildOpts.AddCXXDefaultInitExprInCtors) { 1749 if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) { 1750 // In general, appending the expression wrapped by a CXXDefaultInitExpr 1751 // may cause the same Expr to appear more than once in the CFG. Doing it 1752 // here is safe because there's only one initializer per field. 1753 autoCreateBlock(); 1754 appendStmt(Block, Default); 1755 if (Stmt *Child = Default->getExpr()) 1756 if (CFGBlock *R = Visit(Child)) 1757 Block = R; 1758 return Block; 1759 } 1760 } 1761 return Visit(Init); 1762 } 1763 1764 return Block; 1765 } 1766 1767 /// Retrieve the type of the temporary object whose lifetime was 1768 /// extended by a local reference with the given initializer. 1769 static QualType getReferenceInitTemporaryType(const Expr *Init, 1770 bool *FoundMTE = nullptr) { 1771 while (true) { 1772 // Skip parentheses. 1773 Init = Init->IgnoreParens(); 1774 1775 // Skip through cleanups. 1776 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) { 1777 Init = EWC->getSubExpr(); 1778 continue; 1779 } 1780 1781 // Skip through the temporary-materialization expression. 1782 if (const MaterializeTemporaryExpr *MTE 1783 = dyn_cast<MaterializeTemporaryExpr>(Init)) { 1784 Init = MTE->getSubExpr(); 1785 if (FoundMTE) 1786 *FoundMTE = true; 1787 continue; 1788 } 1789 1790 // Skip sub-object accesses into rvalues. 1791 const Expr *SkippedInit = Init->skipRValueSubobjectAdjustments(); 1792 if (SkippedInit != Init) { 1793 Init = SkippedInit; 1794 continue; 1795 } 1796 1797 break; 1798 } 1799 1800 return Init->getType(); 1801 } 1802 1803 // TODO: Support adding LoopExit element to the CFG in case where the loop is 1804 // ended by ReturnStmt, GotoStmt or ThrowExpr. 1805 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){ 1806 if(!BuildOpts.AddLoopExit) 1807 return; 1808 autoCreateBlock(); 1809 appendLoopExit(Block, LoopStmt); 1810 } 1811 1812 /// Adds the CFG elements for leaving the scope of automatic objects in 1813 /// range [B, E). This include following: 1814 /// * AutomaticObjectDtor for variables with non-trivial destructor 1815 /// * LifetimeEnds for all variables 1816 /// * ScopeEnd for each scope left 1817 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B, 1818 LocalScope::const_iterator E, 1819 Stmt *S) { 1820 if (!BuildOpts.AddScopes && !BuildOpts.AddImplicitDtors && 1821 !BuildOpts.AddLifetime) 1822 return; 1823 1824 if (B == E) 1825 return; 1826 1827 // Not leaving the scope, only need to handle destruction and lifetime 1828 if (B.inSameLocalScope(E)) { 1829 addAutomaticObjDestruction(B, E, S); 1830 return; 1831 } 1832 1833 // Extract information about all local scopes that are left 1834 SmallVector<LocalScope::const_iterator, 10> LocalScopeEndMarkers; 1835 LocalScopeEndMarkers.push_back(B); 1836 for (LocalScope::const_iterator I = B; I != E; ++I) { 1837 if (!I.inSameLocalScope(LocalScopeEndMarkers.back())) 1838 LocalScopeEndMarkers.push_back(I); 1839 } 1840 LocalScopeEndMarkers.push_back(E); 1841 1842 // We need to leave the scope in reverse order, so we reverse the end 1843 // markers 1844 std::reverse(LocalScopeEndMarkers.begin(), LocalScopeEndMarkers.end()); 1845 auto Pairwise = 1846 llvm::zip(LocalScopeEndMarkers, llvm::drop_begin(LocalScopeEndMarkers)); 1847 for (auto [E, B] : Pairwise) { 1848 if (!B.inSameLocalScope(E)) 1849 addScopeExitHandling(B, E, S); 1850 addAutomaticObjDestruction(B, E, S); 1851 } 1852 } 1853 1854 /// Add CFG elements corresponding to call destructor and end of lifetime 1855 /// of all automatic variables with non-trivial destructor in range [B, E). 1856 /// This include AutomaticObjectDtor and LifetimeEnds elements. 1857 void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B, 1858 LocalScope::const_iterator E, 1859 Stmt *S) { 1860 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime) 1861 return; 1862 1863 if (B == E) 1864 return; 1865 1866 SmallVector<VarDecl *, 10> DeclsNeedDestruction; 1867 DeclsNeedDestruction.reserve(B.distance(E)); 1868 1869 for (VarDecl* D : llvm::make_range(B, E)) 1870 if (needsAutomaticDestruction(D)) 1871 DeclsNeedDestruction.push_back(D); 1872 1873 for (VarDecl *VD : llvm::reverse(DeclsNeedDestruction)) { 1874 if (BuildOpts.AddImplicitDtors) { 1875 // If this destructor is marked as a no-return destructor, we need to 1876 // create a new block for the destructor which does not have as a 1877 // successor anything built thus far: control won't flow out of this 1878 // block. 1879 QualType Ty = VD->getType(); 1880 if (Ty->isReferenceType()) 1881 Ty = getReferenceInitTemporaryType(VD->getInit()); 1882 Ty = Context->getBaseElementType(Ty); 1883 1884 const CXXRecordDecl *CRD = Ty->getAsCXXRecordDecl(); 1885 if (CRD && CRD->isAnyDestructorNoReturn()) 1886 Block = createNoReturnBlock(); 1887 } 1888 1889 autoCreateBlock(); 1890 1891 // Add LifetimeEnd after automatic obj with non-trivial destructors, 1892 // as they end their lifetime when the destructor returns. For trivial 1893 // objects, we end lifetime with scope end. 1894 if (BuildOpts.AddLifetime) 1895 appendLifetimeEnds(Block, VD, S); 1896 if (BuildOpts.AddImplicitDtors && !hasTrivialDestructor(VD)) 1897 appendAutomaticObjDtor(Block, VD, S); 1898 if (VD->hasAttr<CleanupAttr>()) 1899 appendCleanupFunction(Block, VD); 1900 } 1901 } 1902 1903 /// Add CFG elements corresponding to leaving a scope. 1904 /// Assumes that range [B, E) corresponds to single scope. 1905 /// This add following elements: 1906 /// * LifetimeEnds for all variables with non-trivial destructor 1907 /// * ScopeEnd for each scope left 1908 void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B, 1909 LocalScope::const_iterator E, Stmt *S) { 1910 assert(!B.inSameLocalScope(E)); 1911 if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes) 1912 return; 1913 1914 if (BuildOpts.AddScopes) { 1915 autoCreateBlock(); 1916 appendScopeEnd(Block, B.getFirstVarInScope(), S); 1917 } 1918 1919 if (!BuildOpts.AddLifetime) 1920 return; 1921 1922 // We need to perform the scope leaving in reverse order 1923 SmallVector<VarDecl *, 10> DeclsTrivial; 1924 DeclsTrivial.reserve(B.distance(E)); 1925 1926 // Objects with trivial destructor ends their lifetime when their storage 1927 // is destroyed, for automatic variables, this happens when the end of the 1928 // scope is added. 1929 for (VarDecl* D : llvm::make_range(B, E)) 1930 if (!needsAutomaticDestruction(D)) 1931 DeclsTrivial.push_back(D); 1932 1933 if (DeclsTrivial.empty()) 1934 return; 1935 1936 autoCreateBlock(); 1937 for (VarDecl *VD : llvm::reverse(DeclsTrivial)) 1938 appendLifetimeEnds(Block, VD, S); 1939 } 1940 1941 /// addScopeChangesHandling - appends information about destruction, lifetime 1942 /// and cfgScopeEnd for variables in the scope that was left by the jump, and 1943 /// appends cfgScopeBegin for all scopes that where entered. 1944 /// We insert the cfgScopeBegin at the end of the jump node, as depending on 1945 /// the sourceBlock, each goto, may enter different amount of scopes. 1946 void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos, 1947 LocalScope::const_iterator DstPos, 1948 Stmt *S) { 1949 assert(Block && "Source block should be always crated"); 1950 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && 1951 !BuildOpts.AddScopes) { 1952 return; 1953 } 1954 1955 if (SrcPos == DstPos) 1956 return; 1957 1958 // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and 1959 // enter all scopes between [DstPos, BasePos) 1960 LocalScope::const_iterator BasePos = SrcPos.shared_parent(DstPos); 1961 1962 // Append scope begins for scopes entered by goto 1963 if (BuildOpts.AddScopes && !DstPos.inSameLocalScope(BasePos)) { 1964 for (LocalScope::const_iterator I = DstPos; I != BasePos; ++I) 1965 if (I.pointsToFirstDeclaredVar()) 1966 appendScopeBegin(Block, *I, S); 1967 } 1968 1969 // Append scopeEnds, destructor and lifetime with the terminator for 1970 // block left by goto. 1971 addAutomaticObjHandling(SrcPos, BasePos, S); 1972 } 1973 1974 /// createScopeChangesHandlingBlock - Creates a block with cfgElements 1975 /// corresponding to changing the scope from the source scope of the GotoStmt, 1976 /// to destination scope. Add destructor, lifetime and cfgScopeEnd 1977 /// CFGElements to newly created CFGBlock, that will have the CFG terminator 1978 /// transferred. 1979 CFGBlock *CFGBuilder::createScopeChangesHandlingBlock( 1980 LocalScope::const_iterator SrcPos, CFGBlock *SrcBlk, 1981 LocalScope::const_iterator DstPos, CFGBlock *DstBlk) { 1982 if (SrcPos == DstPos) 1983 return DstBlk; 1984 1985 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && 1986 (!BuildOpts.AddScopes || SrcPos.inSameLocalScope(DstPos))) 1987 return DstBlk; 1988 1989 // We will update CFBBuilder when creating new block, restore the 1990 // previous state at exit. 1991 SaveAndRestore save_Block(Block), save_Succ(Succ); 1992 1993 // Create a new block, and transfer terminator 1994 Block = createBlock(false); 1995 Block->setTerminator(SrcBlk->getTerminator()); 1996 SrcBlk->setTerminator(CFGTerminator()); 1997 addSuccessor(Block, DstBlk); 1998 1999 // Fill the created Block with the required elements. 2000 addScopeChangesHandling(SrcPos, DstPos, Block->getTerminatorStmt()); 2001 2002 assert(Block && "There should be at least one scope changing Block"); 2003 return Block; 2004 } 2005 2006 /// addImplicitDtorsForDestructor - Add implicit destructors generated for 2007 /// base and member objects in destructor. 2008 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) { 2009 assert(BuildOpts.AddImplicitDtors && 2010 "Can be called only when dtors should be added"); 2011 const CXXRecordDecl *RD = DD->getParent(); 2012 2013 // At the end destroy virtual base objects. 2014 for (const auto &VI : RD->vbases()) { 2015 // TODO: Add a VirtualBaseBranch to see if the most derived class 2016 // (which is different from the current class) is responsible for 2017 // destroying them. 2018 const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl(); 2019 if (CD && !CD->hasTrivialDestructor()) { 2020 autoCreateBlock(); 2021 appendBaseDtor(Block, &VI); 2022 } 2023 } 2024 2025 // Before virtual bases destroy direct base objects. 2026 for (const auto &BI : RD->bases()) { 2027 if (!BI.isVirtual()) { 2028 const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl(); 2029 if (CD && !CD->hasTrivialDestructor()) { 2030 autoCreateBlock(); 2031 appendBaseDtor(Block, &BI); 2032 } 2033 } 2034 } 2035 2036 // First destroy member objects. 2037 for (auto *FI : RD->fields()) { 2038 // Check for constant size array. Set type to array element type. 2039 QualType QT = FI->getType(); 2040 // It may be a multidimensional array. 2041 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { 2042 if (AT->isZeroSize()) 2043 break; 2044 QT = AT->getElementType(); 2045 } 2046 2047 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) 2048 if (!CD->hasTrivialDestructor()) { 2049 autoCreateBlock(); 2050 appendMemberDtor(Block, FI); 2051 } 2052 } 2053 } 2054 2055 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either 2056 /// way return valid LocalScope object. 2057 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) { 2058 if (Scope) 2059 return Scope; 2060 llvm::BumpPtrAllocator &alloc = cfg->getAllocator(); 2061 return new (alloc) LocalScope(BumpVectorContext(alloc), ScopePos); 2062 } 2063 2064 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement 2065 /// that should create implicit scope (e.g. if/else substatements). 2066 void CFGBuilder::addLocalScopeForStmt(Stmt *S) { 2067 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && 2068 !BuildOpts.AddScopes) 2069 return; 2070 2071 LocalScope *Scope = nullptr; 2072 2073 // For compound statement we will be creating explicit scope. 2074 if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 2075 for (auto *BI : CS->body()) { 2076 Stmt *SI = BI->stripLabelLikeStatements(); 2077 if (DeclStmt *DS = dyn_cast<DeclStmt>(SI)) 2078 Scope = addLocalScopeForDeclStmt(DS, Scope); 2079 } 2080 return; 2081 } 2082 2083 // For any other statement scope will be implicit and as such will be 2084 // interesting only for DeclStmt. 2085 if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements())) 2086 addLocalScopeForDeclStmt(DS); 2087 } 2088 2089 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will 2090 /// reuse Scope if not NULL. 2091 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS, 2092 LocalScope* Scope) { 2093 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && 2094 !BuildOpts.AddScopes) 2095 return Scope; 2096 2097 for (auto *DI : DS->decls()) 2098 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) 2099 Scope = addLocalScopeForVarDecl(VD, Scope); 2100 return Scope; 2101 } 2102 2103 bool CFGBuilder::needsAutomaticDestruction(const VarDecl *VD) const { 2104 return !hasTrivialDestructor(VD) || VD->hasAttr<CleanupAttr>(); 2105 } 2106 2107 bool CFGBuilder::hasTrivialDestructor(const VarDecl *VD) const { 2108 // Check for const references bound to temporary. Set type to pointee. 2109 QualType QT = VD->getType(); 2110 if (QT->isReferenceType()) { 2111 // Attempt to determine whether this declaration lifetime-extends a 2112 // temporary. 2113 // 2114 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend 2115 // temporaries, and a single declaration can extend multiple temporaries. 2116 // We should look at the storage duration on each nested 2117 // MaterializeTemporaryExpr instead. 2118 2119 const Expr *Init = VD->getInit(); 2120 if (!Init) { 2121 // Probably an exception catch-by-reference variable. 2122 // FIXME: It doesn't really mean that the object has a trivial destructor. 2123 // Also are there other cases? 2124 return true; 2125 } 2126 2127 // Lifetime-extending a temporary? 2128 bool FoundMTE = false; 2129 QT = getReferenceInitTemporaryType(Init, &FoundMTE); 2130 if (!FoundMTE) 2131 return true; 2132 } 2133 2134 // Check for constant size array. Set type to array element type. 2135 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { 2136 if (AT->isZeroSize()) 2137 return true; 2138 QT = AT->getElementType(); 2139 } 2140 2141 // Check if type is a C++ class with non-trivial destructor. 2142 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) 2143 return !CD->hasDefinition() || CD->hasTrivialDestructor(); 2144 return true; 2145 } 2146 2147 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will 2148 /// create add scope for automatic objects and temporary objects bound to 2149 /// const reference. Will reuse Scope if not NULL. 2150 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD, 2151 LocalScope* Scope) { 2152 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && 2153 !BuildOpts.AddScopes) 2154 return Scope; 2155 2156 // Check if variable is local. 2157 if (!VD->hasLocalStorage()) 2158 return Scope; 2159 2160 if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes && 2161 !needsAutomaticDestruction(VD)) { 2162 assert(BuildOpts.AddImplicitDtors); 2163 return Scope; 2164 } 2165 2166 // Add the variable to scope 2167 Scope = createOrReuseLocalScope(Scope); 2168 Scope->addVar(VD); 2169 ScopePos = Scope->begin(); 2170 return Scope; 2171 } 2172 2173 /// addLocalScopeAndDtors - For given statement add local scope for it and 2174 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL. 2175 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) { 2176 LocalScope::const_iterator scopeBeginPos = ScopePos; 2177 addLocalScopeForStmt(S); 2178 addAutomaticObjHandling(ScopePos, scopeBeginPos, S); 2179 } 2180 2181 /// Visit - Walk the subtree of a statement and add extra 2182 /// blocks for ternary operators, &&, and ||. We also process "," and 2183 /// DeclStmts (which may contain nested control-flow). 2184 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc, 2185 bool ExternallyDestructed) { 2186 if (!S) { 2187 badCFG = true; 2188 return nullptr; 2189 } 2190 2191 if (Expr *E = dyn_cast<Expr>(S)) 2192 S = E->IgnoreParens(); 2193 2194 if (Context->getLangOpts().OpenMP) 2195 if (auto *D = dyn_cast<OMPExecutableDirective>(S)) 2196 return VisitOMPExecutableDirective(D, asc); 2197 2198 switch (S->getStmtClass()) { 2199 default: 2200 return VisitStmt(S, asc); 2201 2202 case Stmt::ImplicitValueInitExprClass: 2203 if (BuildOpts.OmitImplicitValueInitializers) 2204 return Block; 2205 return VisitStmt(S, asc); 2206 2207 case Stmt::InitListExprClass: 2208 return VisitInitListExpr(cast<InitListExpr>(S), asc); 2209 2210 case Stmt::AttributedStmtClass: 2211 return VisitAttributedStmt(cast<AttributedStmt>(S), asc); 2212 2213 case Stmt::AddrLabelExprClass: 2214 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc); 2215 2216 case Stmt::BinaryConditionalOperatorClass: 2217 return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc); 2218 2219 case Stmt::BinaryOperatorClass: 2220 return VisitBinaryOperator(cast<BinaryOperator>(S), asc); 2221 2222 case Stmt::BlockExprClass: 2223 return VisitBlockExpr(cast<BlockExpr>(S), asc); 2224 2225 case Stmt::BreakStmtClass: 2226 return VisitBreakStmt(cast<BreakStmt>(S)); 2227 2228 case Stmt::CallExprClass: 2229 case Stmt::CXXOperatorCallExprClass: 2230 case Stmt::CXXMemberCallExprClass: 2231 case Stmt::UserDefinedLiteralClass: 2232 return VisitCallExpr(cast<CallExpr>(S), asc); 2233 2234 case Stmt::CaseStmtClass: 2235 return VisitCaseStmt(cast<CaseStmt>(S)); 2236 2237 case Stmt::ChooseExprClass: 2238 return VisitChooseExpr(cast<ChooseExpr>(S), asc); 2239 2240 case Stmt::CompoundStmtClass: 2241 return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed); 2242 2243 case Stmt::ConditionalOperatorClass: 2244 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc); 2245 2246 case Stmt::ContinueStmtClass: 2247 return VisitContinueStmt(cast<ContinueStmt>(S)); 2248 2249 case Stmt::CXXCatchStmtClass: 2250 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S)); 2251 2252 case Stmt::ExprWithCleanupsClass: 2253 return VisitExprWithCleanups(cast<ExprWithCleanups>(S), 2254 asc, ExternallyDestructed); 2255 2256 case Stmt::CXXDefaultArgExprClass: 2257 case Stmt::CXXDefaultInitExprClass: 2258 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the 2259 // called function's declaration, not by the caller. If we simply add 2260 // this expression to the CFG, we could end up with the same Expr 2261 // appearing multiple times (PR13385). 2262 // 2263 // It's likewise possible for multiple CXXDefaultInitExprs for the same 2264 // expression to be used in the same function (through aggregate 2265 // initialization). 2266 return VisitStmt(S, asc); 2267 2268 case Stmt::CXXBindTemporaryExprClass: 2269 return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc); 2270 2271 case Stmt::CXXConstructExprClass: 2272 return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc); 2273 2274 case Stmt::CXXNewExprClass: 2275 return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc); 2276 2277 case Stmt::CXXDeleteExprClass: 2278 return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc); 2279 2280 case Stmt::CXXFunctionalCastExprClass: 2281 return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc); 2282 2283 case Stmt::CXXTemporaryObjectExprClass: 2284 return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc); 2285 2286 case Stmt::CXXThrowExprClass: 2287 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S)); 2288 2289 case Stmt::CXXTryStmtClass: 2290 return VisitCXXTryStmt(cast<CXXTryStmt>(S)); 2291 2292 case Stmt::CXXTypeidExprClass: 2293 return VisitCXXTypeidExpr(cast<CXXTypeidExpr>(S), asc); 2294 2295 case Stmt::CXXForRangeStmtClass: 2296 return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 2297 2298 case Stmt::DeclStmtClass: 2299 return VisitDeclStmt(cast<DeclStmt>(S)); 2300 2301 case Stmt::DefaultStmtClass: 2302 return VisitDefaultStmt(cast<DefaultStmt>(S)); 2303 2304 case Stmt::DoStmtClass: 2305 return VisitDoStmt(cast<DoStmt>(S)); 2306 2307 case Stmt::ForStmtClass: 2308 return VisitForStmt(cast<ForStmt>(S)); 2309 2310 case Stmt::GotoStmtClass: 2311 return VisitGotoStmt(cast<GotoStmt>(S)); 2312 2313 case Stmt::GCCAsmStmtClass: 2314 return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc); 2315 2316 case Stmt::IfStmtClass: 2317 return VisitIfStmt(cast<IfStmt>(S)); 2318 2319 case Stmt::ImplicitCastExprClass: 2320 return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc); 2321 2322 case Stmt::ConstantExprClass: 2323 return VisitConstantExpr(cast<ConstantExpr>(S), asc); 2324 2325 case Stmt::IndirectGotoStmtClass: 2326 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S)); 2327 2328 case Stmt::LabelStmtClass: 2329 return VisitLabelStmt(cast<LabelStmt>(S)); 2330 2331 case Stmt::LambdaExprClass: 2332 return VisitLambdaExpr(cast<LambdaExpr>(S), asc); 2333 2334 case Stmt::MaterializeTemporaryExprClass: 2335 return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S), 2336 asc); 2337 2338 case Stmt::MemberExprClass: 2339 return VisitMemberExpr(cast<MemberExpr>(S), asc); 2340 2341 case Stmt::NullStmtClass: 2342 return Block; 2343 2344 case Stmt::ObjCAtCatchStmtClass: 2345 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S)); 2346 2347 case Stmt::ObjCAutoreleasePoolStmtClass: 2348 return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S)); 2349 2350 case Stmt::ObjCAtSynchronizedStmtClass: 2351 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S)); 2352 2353 case Stmt::ObjCAtThrowStmtClass: 2354 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S)); 2355 2356 case Stmt::ObjCAtTryStmtClass: 2357 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S)); 2358 2359 case Stmt::ObjCForCollectionStmtClass: 2360 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S)); 2361 2362 case Stmt::ObjCMessageExprClass: 2363 return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc); 2364 2365 case Stmt::OpaqueValueExprClass: 2366 return Block; 2367 2368 case Stmt::PseudoObjectExprClass: 2369 return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S)); 2370 2371 case Stmt::ReturnStmtClass: 2372 case Stmt::CoreturnStmtClass: 2373 return VisitReturnStmt(S); 2374 2375 case Stmt::CoyieldExprClass: 2376 case Stmt::CoawaitExprClass: 2377 return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc); 2378 2379 case Stmt::SEHExceptStmtClass: 2380 return VisitSEHExceptStmt(cast<SEHExceptStmt>(S)); 2381 2382 case Stmt::SEHFinallyStmtClass: 2383 return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S)); 2384 2385 case Stmt::SEHLeaveStmtClass: 2386 return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S)); 2387 2388 case Stmt::SEHTryStmtClass: 2389 return VisitSEHTryStmt(cast<SEHTryStmt>(S)); 2390 2391 case Stmt::UnaryExprOrTypeTraitExprClass: 2392 return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), 2393 asc); 2394 2395 case Stmt::StmtExprClass: 2396 return VisitStmtExpr(cast<StmtExpr>(S), asc); 2397 2398 case Stmt::SwitchStmtClass: 2399 return VisitSwitchStmt(cast<SwitchStmt>(S)); 2400 2401 case Stmt::UnaryOperatorClass: 2402 return VisitUnaryOperator(cast<UnaryOperator>(S), asc); 2403 2404 case Stmt::WhileStmtClass: 2405 return VisitWhileStmt(cast<WhileStmt>(S)); 2406 2407 case Stmt::ArrayInitLoopExprClass: 2408 return VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), asc); 2409 } 2410 } 2411 2412 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) { 2413 if (asc.alwaysAdd(*this, S)) { 2414 autoCreateBlock(); 2415 appendStmt(Block, S); 2416 } 2417 2418 return VisitChildren(S); 2419 } 2420 2421 /// VisitChildren - Visit the children of a Stmt. 2422 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) { 2423 CFGBlock *B = Block; 2424 2425 // Visit the children in their reverse order so that they appear in 2426 // left-to-right (natural) order in the CFG. 2427 reverse_children RChildren(S); 2428 for (Stmt *Child : RChildren) { 2429 if (Child) 2430 if (CFGBlock *R = Visit(Child)) 2431 B = R; 2432 } 2433 return B; 2434 } 2435 2436 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) { 2437 if (asc.alwaysAdd(*this, ILE)) { 2438 autoCreateBlock(); 2439 appendStmt(Block, ILE); 2440 } 2441 CFGBlock *B = Block; 2442 2443 reverse_children RChildren(ILE); 2444 for (Stmt *Child : RChildren) { 2445 if (!Child) 2446 continue; 2447 if (CFGBlock *R = Visit(Child)) 2448 B = R; 2449 if (BuildOpts.AddCXXDefaultInitExprInAggregates) { 2450 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child)) 2451 if (Stmt *Child = DIE->getExpr()) 2452 if (CFGBlock *R = Visit(Child)) 2453 B = R; 2454 } 2455 } 2456 return B; 2457 } 2458 2459 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, 2460 AddStmtChoice asc) { 2461 AddressTakenLabels.insert(A->getLabel()); 2462 2463 if (asc.alwaysAdd(*this, A)) { 2464 autoCreateBlock(); 2465 appendStmt(Block, A); 2466 } 2467 2468 return Block; 2469 } 2470 2471 static bool isFallthroughStatement(const AttributedStmt *A) { 2472 bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs()); 2473 assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) && 2474 "expected fallthrough not to have children"); 2475 return isFallthrough; 2476 } 2477 2478 CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A, 2479 AddStmtChoice asc) { 2480 // AttributedStmts for [[likely]] can have arbitrary statements as children, 2481 // and the current visitation order here would add the AttributedStmts 2482 // for [[likely]] after the child nodes, which is undesirable: For example, 2483 // if the child contains an unconditional return, the [[likely]] would be 2484 // considered unreachable. 2485 // So only add the AttributedStmt for FallThrough, which has CFG effects and 2486 // also no children, and omit the others. None of the other current StmtAttrs 2487 // have semantic meaning for the CFG. 2488 if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) { 2489 autoCreateBlock(); 2490 appendStmt(Block, A); 2491 } 2492 2493 return VisitChildren(A); 2494 } 2495 2496 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) { 2497 if (asc.alwaysAdd(*this, U)) { 2498 autoCreateBlock(); 2499 appendStmt(Block, U); 2500 } 2501 2502 if (U->getOpcode() == UO_LNot) 2503 tryEvaluateBool(U->getSubExpr()->IgnoreParens()); 2504 2505 return Visit(U->getSubExpr(), AddStmtChoice()); 2506 } 2507 2508 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) { 2509 CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); 2510 appendStmt(ConfluenceBlock, B); 2511 2512 if (badCFG) 2513 return nullptr; 2514 2515 return VisitLogicalOperator(B, nullptr, ConfluenceBlock, 2516 ConfluenceBlock).first; 2517 } 2518 2519 std::pair<CFGBlock*, CFGBlock*> 2520 CFGBuilder::VisitLogicalOperator(BinaryOperator *B, 2521 Stmt *Term, 2522 CFGBlock *TrueBlock, 2523 CFGBlock *FalseBlock) { 2524 // Introspect the RHS. If it is a nested logical operation, we recursively 2525 // build the CFG using this function. Otherwise, resort to default 2526 // CFG construction behavior. 2527 Expr *RHS = B->getRHS()->IgnoreParens(); 2528 CFGBlock *RHSBlock, *ExitBlock; 2529 2530 do { 2531 if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS)) 2532 if (B_RHS->isLogicalOp()) { 2533 std::tie(RHSBlock, ExitBlock) = 2534 VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock); 2535 break; 2536 } 2537 2538 // The RHS is not a nested logical operation. Don't push the terminator 2539 // down further, but instead visit RHS and construct the respective 2540 // pieces of the CFG, and link up the RHSBlock with the terminator 2541 // we have been provided. 2542 ExitBlock = RHSBlock = createBlock(false); 2543 2544 // Even though KnownVal is only used in the else branch of the next 2545 // conditional, tryEvaluateBool performs additional checking on the 2546 // Expr, so it should be called unconditionally. 2547 TryResult KnownVal = tryEvaluateBool(RHS); 2548 if (!KnownVal.isKnown()) 2549 KnownVal = tryEvaluateBool(B); 2550 2551 if (!Term) { 2552 assert(TrueBlock == FalseBlock); 2553 addSuccessor(RHSBlock, TrueBlock); 2554 } 2555 else { 2556 RHSBlock->setTerminator(Term); 2557 addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse()); 2558 addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue()); 2559 } 2560 2561 Block = RHSBlock; 2562 RHSBlock = addStmt(RHS); 2563 } 2564 while (false); 2565 2566 if (badCFG) 2567 return std::make_pair(nullptr, nullptr); 2568 2569 // Generate the blocks for evaluating the LHS. 2570 Expr *LHS = B->getLHS()->IgnoreParens(); 2571 2572 if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS)) 2573 if (B_LHS->isLogicalOp()) { 2574 if (B->getOpcode() == BO_LOr) 2575 FalseBlock = RHSBlock; 2576 else 2577 TrueBlock = RHSBlock; 2578 2579 // For the LHS, treat 'B' as the terminator that we want to sink 2580 // into the nested branch. The RHS always gets the top-most 2581 // terminator. 2582 return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock); 2583 } 2584 2585 // Create the block evaluating the LHS. 2586 // This contains the '&&' or '||' as the terminator. 2587 CFGBlock *LHSBlock = createBlock(false); 2588 LHSBlock->setTerminator(B); 2589 2590 Block = LHSBlock; 2591 CFGBlock *EntryLHSBlock = addStmt(LHS); 2592 2593 if (badCFG) 2594 return std::make_pair(nullptr, nullptr); 2595 2596 // See if this is a known constant. 2597 TryResult KnownVal = tryEvaluateBool(LHS); 2598 2599 // Now link the LHSBlock with RHSBlock. 2600 if (B->getOpcode() == BO_LOr) { 2601 addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse()); 2602 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue()); 2603 } else { 2604 assert(B->getOpcode() == BO_LAnd); 2605 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse()); 2606 addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue()); 2607 } 2608 2609 return std::make_pair(EntryLHSBlock, ExitBlock); 2610 } 2611 2612 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, 2613 AddStmtChoice asc) { 2614 // && or || 2615 if (B->isLogicalOp()) 2616 return VisitLogicalOperator(B); 2617 2618 if (B->getOpcode() == BO_Comma) { // , 2619 autoCreateBlock(); 2620 appendStmt(Block, B); 2621 addStmt(B->getRHS()); 2622 return addStmt(B->getLHS()); 2623 } 2624 2625 if (B->isAssignmentOp()) { 2626 if (asc.alwaysAdd(*this, B)) { 2627 autoCreateBlock(); 2628 appendStmt(Block, B); 2629 } 2630 Visit(B->getLHS()); 2631 return Visit(B->getRHS()); 2632 } 2633 2634 if (asc.alwaysAdd(*this, B)) { 2635 autoCreateBlock(); 2636 appendStmt(Block, B); 2637 } 2638 2639 if (B->isEqualityOp() || B->isRelationalOp()) 2640 tryEvaluateBool(B); 2641 2642 CFGBlock *RBlock = Visit(B->getRHS()); 2643 CFGBlock *LBlock = Visit(B->getLHS()); 2644 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr 2645 // containing a DoStmt, and the LHS doesn't create a new block, then we should 2646 // return RBlock. Otherwise we'll incorrectly return NULL. 2647 return (LBlock ? LBlock : RBlock); 2648 } 2649 2650 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) { 2651 if (asc.alwaysAdd(*this, E)) { 2652 autoCreateBlock(); 2653 appendStmt(Block, E); 2654 } 2655 return Block; 2656 } 2657 2658 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { 2659 // "break" is a control-flow statement. Thus we stop processing the current 2660 // block. 2661 if (badCFG) 2662 return nullptr; 2663 2664 // Now create a new block that ends with the break statement. 2665 Block = createBlock(false); 2666 Block->setTerminator(B); 2667 2668 // If there is no target for the break, then we are looking at an incomplete 2669 // AST. This means that the CFG cannot be constructed. 2670 if (BreakJumpTarget.block) { 2671 addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B); 2672 addSuccessor(Block, BreakJumpTarget.block); 2673 } else 2674 badCFG = true; 2675 2676 return Block; 2677 } 2678 2679 static bool CanThrow(Expr *E, ASTContext &Ctx) { 2680 QualType Ty = E->getType(); 2681 if (Ty->isFunctionPointerType() || Ty->isBlockPointerType()) 2682 Ty = Ty->getPointeeType(); 2683 2684 const FunctionType *FT = Ty->getAs<FunctionType>(); 2685 if (FT) { 2686 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) 2687 if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) && 2688 Proto->isNothrow()) 2689 return false; 2690 } 2691 return true; 2692 } 2693 2694 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) { 2695 // Compute the callee type. 2696 QualType calleeType = C->getCallee()->getType(); 2697 if (calleeType == Context->BoundMemberTy) { 2698 QualType boundType = Expr::findBoundMemberType(C->getCallee()); 2699 2700 // We should only get a null bound type if processing a dependent 2701 // CFG. Recover by assuming nothing. 2702 if (!boundType.isNull()) calleeType = boundType; 2703 } 2704 2705 // If this is a call to a no-return function, this stops the block here. 2706 bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn(); 2707 2708 bool AddEHEdge = false; 2709 2710 // Languages without exceptions are assumed to not throw. 2711 if (Context->getLangOpts().Exceptions) { 2712 if (BuildOpts.AddEHEdges) 2713 AddEHEdge = true; 2714 } 2715 2716 // If this is a call to a builtin function, it might not actually evaluate 2717 // its arguments. Don't add them to the CFG if this is the case. 2718 bool OmitArguments = false; 2719 2720 if (FunctionDecl *FD = C->getDirectCallee()) { 2721 // TODO: Support construction contexts for variadic function arguments. 2722 // These are a bit problematic and not very useful because passing 2723 // C++ objects as C-style variadic arguments doesn't work in general 2724 // (see [expr.call]). 2725 if (!FD->isVariadic()) 2726 findConstructionContextsForArguments(C); 2727 2728 if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context)) 2729 NoReturn = true; 2730 if (FD->hasAttr<NoThrowAttr>()) 2731 AddEHEdge = false; 2732 if (FD->getBuiltinID() == Builtin::BI__builtin_object_size || 2733 FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size) 2734 OmitArguments = true; 2735 } 2736 2737 if (!CanThrow(C->getCallee(), *Context)) 2738 AddEHEdge = false; 2739 2740 if (OmitArguments) { 2741 assert(!NoReturn && "noreturn calls with unevaluated args not implemented"); 2742 assert(!AddEHEdge && "EH calls with unevaluated args not implemented"); 2743 autoCreateBlock(); 2744 appendStmt(Block, C); 2745 return Visit(C->getCallee()); 2746 } 2747 2748 if (!NoReturn && !AddEHEdge) { 2749 autoCreateBlock(); 2750 appendCall(Block, C); 2751 2752 return VisitChildren(C); 2753 } 2754 2755 if (Block) { 2756 Succ = Block; 2757 if (badCFG) 2758 return nullptr; 2759 } 2760 2761 if (NoReturn) 2762 Block = createNoReturnBlock(); 2763 else 2764 Block = createBlock(); 2765 2766 appendCall(Block, C); 2767 2768 if (AddEHEdge) { 2769 // Add exceptional edges. 2770 if (TryTerminatedBlock) 2771 addSuccessor(Block, TryTerminatedBlock); 2772 else 2773 addSuccessor(Block, &cfg->getExit()); 2774 } 2775 2776 return VisitChildren(C); 2777 } 2778 2779 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C, 2780 AddStmtChoice asc) { 2781 CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); 2782 appendStmt(ConfluenceBlock, C); 2783 if (badCFG) 2784 return nullptr; 2785 2786 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); 2787 Succ = ConfluenceBlock; 2788 Block = nullptr; 2789 CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd); 2790 if (badCFG) 2791 return nullptr; 2792 2793 Succ = ConfluenceBlock; 2794 Block = nullptr; 2795 CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd); 2796 if (badCFG) 2797 return nullptr; 2798 2799 Block = createBlock(false); 2800 // See if this is a known constant. 2801 const TryResult& KnownVal = tryEvaluateBool(C->getCond()); 2802 addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock); 2803 addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock); 2804 Block->setTerminator(C); 2805 return addStmt(C->getCond()); 2806 } 2807 2808 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, 2809 bool ExternallyDestructed) { 2810 LocalScope::const_iterator scopeBeginPos = ScopePos; 2811 addLocalScopeForStmt(C); 2812 2813 if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) { 2814 // If the body ends with a ReturnStmt, the dtors will be added in 2815 // VisitReturnStmt. 2816 addAutomaticObjHandling(ScopePos, scopeBeginPos, C); 2817 } 2818 2819 CFGBlock *LastBlock = Block; 2820 2821 for (Stmt *S : llvm::reverse(C->body())) { 2822 // If we hit a segment of code just containing ';' (NullStmts), we can 2823 // get a null block back. In such cases, just use the LastBlock 2824 CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd, 2825 ExternallyDestructed); 2826 2827 if (newBlock) 2828 LastBlock = newBlock; 2829 2830 if (badCFG) 2831 return nullptr; 2832 2833 ExternallyDestructed = false; 2834 } 2835 2836 return LastBlock; 2837 } 2838 2839 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C, 2840 AddStmtChoice asc) { 2841 const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C); 2842 const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr); 2843 2844 // Create the confluence block that will "merge" the results of the ternary 2845 // expression. 2846 CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); 2847 appendStmt(ConfluenceBlock, C); 2848 if (badCFG) 2849 return nullptr; 2850 2851 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); 2852 2853 // Create a block for the LHS expression if there is an LHS expression. A 2854 // GCC extension allows LHS to be NULL, causing the condition to be the 2855 // value that is returned instead. 2856 // e.g: x ?: y is shorthand for: x ? x : y; 2857 Succ = ConfluenceBlock; 2858 Block = nullptr; 2859 CFGBlock *LHSBlock = nullptr; 2860 const Expr *trueExpr = C->getTrueExpr(); 2861 if (trueExpr != opaqueValue) { 2862 LHSBlock = Visit(C->getTrueExpr(), alwaysAdd); 2863 if (badCFG) 2864 return nullptr; 2865 Block = nullptr; 2866 } 2867 else 2868 LHSBlock = ConfluenceBlock; 2869 2870 // Create the block for the RHS expression. 2871 Succ = ConfluenceBlock; 2872 CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd); 2873 if (badCFG) 2874 return nullptr; 2875 2876 // If the condition is a logical '&&' or '||', build a more accurate CFG. 2877 if (BinaryOperator *Cond = 2878 dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens())) 2879 if (Cond->isLogicalOp()) 2880 return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first; 2881 2882 // Create the block that will contain the condition. 2883 Block = createBlock(false); 2884 2885 // See if this is a known constant. 2886 const TryResult& KnownVal = tryEvaluateBool(C->getCond()); 2887 addSuccessor(Block, LHSBlock, !KnownVal.isFalse()); 2888 addSuccessor(Block, RHSBlock, !KnownVal.isTrue()); 2889 Block->setTerminator(C); 2890 Expr *condExpr = C->getCond(); 2891 2892 if (opaqueValue) { 2893 // Run the condition expression if it's not trivially expressed in 2894 // terms of the opaque value (or if there is no opaque value). 2895 if (condExpr != opaqueValue) 2896 addStmt(condExpr); 2897 2898 // Before that, run the common subexpression if there was one. 2899 // At least one of this or the above will be run. 2900 return addStmt(BCO->getCommon()); 2901 } 2902 2903 return addStmt(condExpr); 2904 } 2905 2906 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { 2907 // Check if the Decl is for an __label__. If so, elide it from the 2908 // CFG entirely. 2909 if (isa<LabelDecl>(*DS->decl_begin())) 2910 return Block; 2911 2912 // This case also handles static_asserts. 2913 if (DS->isSingleDecl()) 2914 return VisitDeclSubExpr(DS); 2915 2916 CFGBlock *B = nullptr; 2917 2918 // Build an individual DeclStmt for each decl. 2919 for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(), 2920 E = DS->decl_rend(); 2921 I != E; ++I) { 2922 2923 // Allocate the DeclStmt using the BumpPtrAllocator. It will get 2924 // automatically freed with the CFG. 2925 DeclGroupRef DG(*I); 2926 Decl *D = *I; 2927 DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); 2928 cfg->addSyntheticDeclStmt(DSNew, DS); 2929 2930 // Append the fake DeclStmt to block. 2931 B = VisitDeclSubExpr(DSNew); 2932 } 2933 2934 return B; 2935 } 2936 2937 /// VisitDeclSubExpr - Utility method to add block-level expressions for 2938 /// DeclStmts and initializers in them. 2939 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) { 2940 assert(DS->isSingleDecl() && "Can handle single declarations only."); 2941 2942 if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) { 2943 // If we encounter a VLA, process its size expressions. 2944 const Type *T = TND->getUnderlyingType().getTypePtr(); 2945 if (!T->isVariablyModifiedType()) 2946 return Block; 2947 2948 autoCreateBlock(); 2949 appendStmt(Block, DS); 2950 2951 CFGBlock *LastBlock = Block; 2952 for (const VariableArrayType *VA = FindVA(T); VA != nullptr; 2953 VA = FindVA(VA->getElementType().getTypePtr())) { 2954 if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr())) 2955 LastBlock = NewBlock; 2956 } 2957 return LastBlock; 2958 } 2959 2960 VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); 2961 2962 if (!VD) { 2963 // Of everything that can be declared in a DeclStmt, only VarDecls and the 2964 // exceptions above impact runtime semantics. 2965 return Block; 2966 } 2967 2968 bool HasTemporaries = false; 2969 2970 // Guard static initializers under a branch. 2971 CFGBlock *blockAfterStaticInit = nullptr; 2972 2973 if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) { 2974 // For static variables, we need to create a branch to track 2975 // whether or not they are initialized. 2976 if (Block) { 2977 Succ = Block; 2978 Block = nullptr; 2979 if (badCFG) 2980 return nullptr; 2981 } 2982 blockAfterStaticInit = Succ; 2983 } 2984 2985 // Destructors of temporaries in initialization expression should be called 2986 // after initialization finishes. 2987 Expr *Init = VD->getInit(); 2988 if (Init) { 2989 HasTemporaries = isa<ExprWithCleanups>(Init); 2990 2991 if (BuildOpts.AddTemporaryDtors && HasTemporaries) { 2992 // Generate destructors for temporaries in initialization expression. 2993 TempDtorContext Context; 2994 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), 2995 /*ExternallyDestructed=*/true, Context); 2996 } 2997 } 2998 2999 // If we bind to a tuple-like type, we iterate over the HoldingVars, and 3000 // create a DeclStmt for each of them. 3001 if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) { 3002 for (auto *BD : llvm::reverse(DD->bindings())) { 3003 if (auto *VD = BD->getHoldingVar()) { 3004 DeclGroupRef DG(VD); 3005 DeclStmt *DSNew = 3006 new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(VD)); 3007 cfg->addSyntheticDeclStmt(DSNew, DS); 3008 Block = VisitDeclSubExpr(DSNew); 3009 } 3010 } 3011 } 3012 3013 autoCreateBlock(); 3014 appendStmt(Block, DS); 3015 3016 // If the initializer is an ArrayInitLoopExpr, we want to extract the 3017 // initializer, that's used for each element. 3018 const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init); 3019 3020 findConstructionContexts( 3021 ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS), 3022 AILE ? AILE->getSubExpr() : Init); 3023 3024 // Keep track of the last non-null block, as 'Block' can be nulled out 3025 // if the initializer expression is something like a 'while' in a 3026 // statement-expression. 3027 CFGBlock *LastBlock = Block; 3028 3029 if (Init) { 3030 if (HasTemporaries) { 3031 // For expression with temporaries go directly to subexpression to omit 3032 // generating destructors for the second time. 3033 ExprWithCleanups *EC = cast<ExprWithCleanups>(Init); 3034 if (CFGBlock *newBlock = Visit(EC->getSubExpr())) 3035 LastBlock = newBlock; 3036 } 3037 else { 3038 if (CFGBlock *newBlock = Visit(Init)) 3039 LastBlock = newBlock; 3040 } 3041 } 3042 3043 // If the type of VD is a VLA, then we must process its size expressions. 3044 // FIXME: This does not find the VLA if it is embedded in other types, 3045 // like here: `int (*p_vla)[x];` 3046 for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); 3047 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) { 3048 if (CFGBlock *newBlock = addStmt(VA->getSizeExpr())) 3049 LastBlock = newBlock; 3050 } 3051 3052 maybeAddScopeBeginForVarDecl(Block, VD, DS); 3053 3054 // Remove variable from local scope. 3055 if (ScopePos && VD == *ScopePos) 3056 ++ScopePos; 3057 3058 CFGBlock *B = LastBlock; 3059 if (blockAfterStaticInit) { 3060 Succ = B; 3061 Block = createBlock(false); 3062 Block->setTerminator(DS); 3063 addSuccessor(Block, blockAfterStaticInit); 3064 addSuccessor(Block, B); 3065 B = Block; 3066 } 3067 3068 return B; 3069 } 3070 3071 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) { 3072 // We may see an if statement in the middle of a basic block, or it may be the 3073 // first statement we are processing. In either case, we create a new basic 3074 // block. First, we create the blocks for the then...else statements, and 3075 // then we create the block containing the if statement. If we were in the 3076 // middle of a block, we stop processing that block. That block is then the 3077 // implicit successor for the "then" and "else" clauses. 3078 3079 // Save local scope position because in case of condition variable ScopePos 3080 // won't be restored when traversing AST. 3081 SaveAndRestore save_scope_pos(ScopePos); 3082 3083 // Create local scope for C++17 if init-stmt if one exists. 3084 if (Stmt *Init = I->getInit()) 3085 addLocalScopeForStmt(Init); 3086 3087 // Create local scope for possible condition variable. 3088 // Store scope position. Add implicit destructor. 3089 if (VarDecl *VD = I->getConditionVariable()) 3090 addLocalScopeForVarDecl(VD); 3091 3092 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I); 3093 3094 // The block we were processing is now finished. Make it the successor 3095 // block. 3096 if (Block) { 3097 Succ = Block; 3098 if (badCFG) 3099 return nullptr; 3100 } 3101 3102 // Process the false branch. 3103 CFGBlock *ElseBlock = Succ; 3104 3105 if (Stmt *Else = I->getElse()) { 3106 SaveAndRestore sv(Succ); 3107 3108 // NULL out Block so that the recursive call to Visit will 3109 // create a new basic block. 3110 Block = nullptr; 3111 3112 // If branch is not a compound statement create implicit scope 3113 // and add destructors. 3114 if (!isa<CompoundStmt>(Else)) 3115 addLocalScopeAndDtors(Else); 3116 3117 ElseBlock = addStmt(Else); 3118 3119 if (!ElseBlock) // Can occur when the Else body has all NullStmts. 3120 ElseBlock = sv.get(); 3121 else if (Block) { 3122 if (badCFG) 3123 return nullptr; 3124 } 3125 } 3126 3127 // Process the true branch. 3128 CFGBlock *ThenBlock; 3129 { 3130 Stmt *Then = I->getThen(); 3131 assert(Then); 3132 SaveAndRestore sv(Succ); 3133 Block = nullptr; 3134 3135 // If branch is not a compound statement create implicit scope 3136 // and add destructors. 3137 if (!isa<CompoundStmt>(Then)) 3138 addLocalScopeAndDtors(Then); 3139 3140 ThenBlock = addStmt(Then); 3141 3142 if (!ThenBlock) { 3143 // We can reach here if the "then" body has all NullStmts. 3144 // Create an empty block so we can distinguish between true and false 3145 // branches in path-sensitive analyses. 3146 ThenBlock = createBlock(false); 3147 addSuccessor(ThenBlock, sv.get()); 3148 } else if (Block) { 3149 if (badCFG) 3150 return nullptr; 3151 } 3152 } 3153 3154 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by 3155 // having these handle the actual control-flow jump. Note that 3156 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)" 3157 // we resort to the old control-flow behavior. This special handling 3158 // removes infeasible paths from the control-flow graph by having the 3159 // control-flow transfer of '&&' or '||' go directly into the then/else 3160 // blocks directly. 3161 BinaryOperator *Cond = 3162 (I->isConsteval() || I->getConditionVariable()) 3163 ? nullptr 3164 : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()); 3165 CFGBlock *LastBlock; 3166 if (Cond && Cond->isLogicalOp()) 3167 LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first; 3168 else { 3169 // Now create a new block containing the if statement. 3170 Block = createBlock(false); 3171 3172 // Set the terminator of the new block to the If statement. 3173 Block->setTerminator(I); 3174 3175 // See if this is a known constant. 3176 TryResult KnownVal; 3177 if (!I->isConsteval()) 3178 KnownVal = tryEvaluateBool(I->getCond()); 3179 3180 // Add the successors. If we know that specific branches are 3181 // unreachable, inform addSuccessor() of that knowledge. 3182 addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse()); 3183 addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue()); 3184 3185 // Add the condition as the last statement in the new block. This may 3186 // create new blocks as the condition may contain control-flow. Any newly 3187 // created blocks will be pointed to be "Block". 3188 LastBlock = addStmt(I->getCond()); 3189 3190 // If the IfStmt contains a condition variable, add it and its 3191 // initializer to the CFG. 3192 if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) { 3193 autoCreateBlock(); 3194 LastBlock = addStmt(const_cast<DeclStmt *>(DS)); 3195 } 3196 } 3197 3198 // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG. 3199 if (Stmt *Init = I->getInit()) { 3200 autoCreateBlock(); 3201 LastBlock = addStmt(Init); 3202 } 3203 3204 return LastBlock; 3205 } 3206 3207 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) { 3208 // If we were in the middle of a block we stop processing that block. 3209 // 3210 // NOTE: If a "return" or "co_return" appears in the middle of a block, this 3211 // means that the code afterwards is DEAD (unreachable). We still keep 3212 // a basic block for that code; a simple "mark-and-sweep" from the entry 3213 // block will be able to report such dead blocks. 3214 assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)); 3215 3216 // Create the new block. 3217 Block = createBlock(false); 3218 3219 addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S); 3220 3221 if (auto *R = dyn_cast<ReturnStmt>(S)) 3222 findConstructionContexts( 3223 ConstructionContextLayer::create(cfg->getBumpVectorContext(), R), 3224 R->getRetValue()); 3225 3226 // If the one of the destructors does not return, we already have the Exit 3227 // block as a successor. 3228 if (!Block->hasNoReturnElement()) 3229 addSuccessor(Block, &cfg->getExit()); 3230 3231 // Add the return statement to the block. 3232 appendStmt(Block, S); 3233 3234 // Visit children 3235 if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) { 3236 if (Expr *O = RS->getRetValue()) 3237 return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true); 3238 return Block; 3239 } 3240 3241 CoreturnStmt *CRS = cast<CoreturnStmt>(S); 3242 auto *B = Block; 3243 if (CFGBlock *R = Visit(CRS->getPromiseCall())) 3244 B = R; 3245 3246 if (Expr *RV = CRS->getOperand()) 3247 if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV)) 3248 // A non-initlist void expression. 3249 if (CFGBlock *R = Visit(RV)) 3250 B = R; 3251 3252 return B; 3253 } 3254 3255 CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E, 3256 AddStmtChoice asc) { 3257 // We're modelling the pre-coro-xform CFG. Thus just evalate the various 3258 // active components of the co_await or co_yield. Note we do not model the 3259 // edge from the builtin_suspend to the exit node. 3260 if (asc.alwaysAdd(*this, E)) { 3261 autoCreateBlock(); 3262 appendStmt(Block, E); 3263 } 3264 CFGBlock *B = Block; 3265 if (auto *R = Visit(E->getResumeExpr())) 3266 B = R; 3267 if (auto *R = Visit(E->getSuspendExpr())) 3268 B = R; 3269 if (auto *R = Visit(E->getReadyExpr())) 3270 B = R; 3271 if (auto *R = Visit(E->getCommonExpr())) 3272 B = R; 3273 return B; 3274 } 3275 3276 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) { 3277 // SEHExceptStmt are treated like labels, so they are the first statement in a 3278 // block. 3279 3280 // Save local scope position because in case of exception variable ScopePos 3281 // won't be restored when traversing AST. 3282 SaveAndRestore save_scope_pos(ScopePos); 3283 3284 addStmt(ES->getBlock()); 3285 CFGBlock *SEHExceptBlock = Block; 3286 if (!SEHExceptBlock) 3287 SEHExceptBlock = createBlock(); 3288 3289 appendStmt(SEHExceptBlock, ES); 3290 3291 // Also add the SEHExceptBlock as a label, like with regular labels. 3292 SEHExceptBlock->setLabel(ES); 3293 3294 // Bail out if the CFG is bad. 3295 if (badCFG) 3296 return nullptr; 3297 3298 // We set Block to NULL to allow lazy creation of a new block (if necessary). 3299 Block = nullptr; 3300 3301 return SEHExceptBlock; 3302 } 3303 3304 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) { 3305 return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false); 3306 } 3307 3308 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) { 3309 // "__leave" is a control-flow statement. Thus we stop processing the current 3310 // block. 3311 if (badCFG) 3312 return nullptr; 3313 3314 // Now create a new block that ends with the __leave statement. 3315 Block = createBlock(false); 3316 Block->setTerminator(LS); 3317 3318 // If there is no target for the __leave, then we are looking at an incomplete 3319 // AST. This means that the CFG cannot be constructed. 3320 if (SEHLeaveJumpTarget.block) { 3321 addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS); 3322 addSuccessor(Block, SEHLeaveJumpTarget.block); 3323 } else 3324 badCFG = true; 3325 3326 return Block; 3327 } 3328 3329 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) { 3330 // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop 3331 // processing the current block. 3332 CFGBlock *SEHTrySuccessor = nullptr; 3333 3334 if (Block) { 3335 if (badCFG) 3336 return nullptr; 3337 SEHTrySuccessor = Block; 3338 } else SEHTrySuccessor = Succ; 3339 3340 // FIXME: Implement __finally support. 3341 if (Terminator->getFinallyHandler()) 3342 return NYS(); 3343 3344 CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock; 3345 3346 // Create a new block that will contain the __try statement. 3347 CFGBlock *NewTryTerminatedBlock = createBlock(false); 3348 3349 // Add the terminator in the __try block. 3350 NewTryTerminatedBlock->setTerminator(Terminator); 3351 3352 if (SEHExceptStmt *Except = Terminator->getExceptHandler()) { 3353 // The code after the try is the implicit successor if there's an __except. 3354 Succ = SEHTrySuccessor; 3355 Block = nullptr; 3356 CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except); 3357 if (!ExceptBlock) 3358 return nullptr; 3359 // Add this block to the list of successors for the block with the try 3360 // statement. 3361 addSuccessor(NewTryTerminatedBlock, ExceptBlock); 3362 } 3363 if (PrevSEHTryTerminatedBlock) 3364 addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock); 3365 else 3366 addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); 3367 3368 // The code after the try is the implicit successor. 3369 Succ = SEHTrySuccessor; 3370 3371 // Save the current "__try" context. 3372 SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); 3373 cfg->addTryDispatchBlock(TryTerminatedBlock); 3374 3375 // Save the current value for the __leave target. 3376 // All __leaves should go to the code following the __try 3377 // (FIXME: or if the __try has a __finally, to the __finally.) 3378 SaveAndRestore save_break(SEHLeaveJumpTarget); 3379 SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos); 3380 3381 assert(Terminator->getTryBlock() && "__try must contain a non-NULL body"); 3382 Block = nullptr; 3383 return addStmt(Terminator->getTryBlock()); 3384 } 3385 3386 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) { 3387 // Get the block of the labeled statement. Add it to our map. 3388 addStmt(L->getSubStmt()); 3389 CFGBlock *LabelBlock = Block; 3390 3391 if (!LabelBlock) // This can happen when the body is empty, i.e. 3392 LabelBlock = createBlock(); // scopes that only contains NullStmts. 3393 3394 assert(!LabelMap.contains(L->getDecl()) && "label already in map"); 3395 LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos); 3396 3397 // Labels partition blocks, so this is the end of the basic block we were 3398 // processing (L is the block's label). Because this is label (and we have 3399 // already processed the substatement) there is no extra control-flow to worry 3400 // about. 3401 LabelBlock->setLabel(L); 3402 if (badCFG) 3403 return nullptr; 3404 3405 // We set Block to NULL to allow lazy creation of a new block (if necessary). 3406 Block = nullptr; 3407 3408 // This block is now the implicit successor of other blocks. 3409 Succ = LabelBlock; 3410 3411 return LabelBlock; 3412 } 3413 3414 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) { 3415 CFGBlock *LastBlock = VisitNoRecurse(E, asc); 3416 for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) { 3417 if (Expr *CopyExpr = CI.getCopyExpr()) { 3418 CFGBlock *Tmp = Visit(CopyExpr); 3419 if (Tmp) 3420 LastBlock = Tmp; 3421 } 3422 } 3423 return LastBlock; 3424 } 3425 3426 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) { 3427 CFGBlock *LastBlock = VisitNoRecurse(E, asc); 3428 3429 unsigned Idx = 0; 3430 for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(), 3431 et = E->capture_init_end(); 3432 it != et; ++it, ++Idx) { 3433 if (Expr *Init = *it) { 3434 // If the initializer is an ArrayInitLoopExpr, we want to extract the 3435 // initializer, that's used for each element. 3436 auto *AILEInit = extractElementInitializerFromNestedAILE( 3437 dyn_cast<ArrayInitLoopExpr>(Init)); 3438 3439 findConstructionContexts(ConstructionContextLayer::create( 3440 cfg->getBumpVectorContext(), {E, Idx}), 3441 AILEInit ? AILEInit : Init); 3442 3443 CFGBlock *Tmp = Visit(Init); 3444 if (Tmp) 3445 LastBlock = Tmp; 3446 } 3447 } 3448 return LastBlock; 3449 } 3450 3451 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) { 3452 // Goto is a control-flow statement. Thus we stop processing the current 3453 // block and create a new one. 3454 3455 Block = createBlock(false); 3456 Block->setTerminator(G); 3457 3458 // If we already know the mapping to the label block add the successor now. 3459 LabelMapTy::iterator I = LabelMap.find(G->getLabel()); 3460 3461 if (I == LabelMap.end()) 3462 // We will need to backpatch this block later. 3463 BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); 3464 else { 3465 JumpTarget JT = I->second; 3466 addSuccessor(Block, JT.block); 3467 addScopeChangesHandling(ScopePos, JT.scopePosition, G); 3468 } 3469 3470 return Block; 3471 } 3472 3473 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) { 3474 // Goto is a control-flow statement. Thus we stop processing the current 3475 // block and create a new one. 3476 3477 if (!G->isAsmGoto()) 3478 return VisitStmt(G, asc); 3479 3480 if (Block) { 3481 Succ = Block; 3482 if (badCFG) 3483 return nullptr; 3484 } 3485 Block = createBlock(); 3486 Block->setTerminator(G); 3487 // We will backpatch this block later for all the labels. 3488 BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); 3489 // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is 3490 // used to avoid adding "Succ" again. 3491 BackpatchBlocks.push_back(JumpSource(Succ, ScopePos)); 3492 return VisitChildren(G); 3493 } 3494 3495 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) { 3496 CFGBlock *LoopSuccessor = nullptr; 3497 3498 // Save local scope position because in case of condition variable ScopePos 3499 // won't be restored when traversing AST. 3500 SaveAndRestore save_scope_pos(ScopePos); 3501 3502 // Create local scope for init statement and possible condition variable. 3503 // Add destructor for init statement and condition variable. 3504 // Store scope position for continue statement. 3505 if (Stmt *Init = F->getInit()) 3506 addLocalScopeForStmt(Init); 3507 LocalScope::const_iterator LoopBeginScopePos = ScopePos; 3508 3509 if (VarDecl *VD = F->getConditionVariable()) 3510 addLocalScopeForVarDecl(VD); 3511 LocalScope::const_iterator ContinueScopePos = ScopePos; 3512 3513 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F); 3514 3515 addLoopExit(F); 3516 3517 // "for" is a control-flow statement. Thus we stop processing the current 3518 // block. 3519 if (Block) { 3520 if (badCFG) 3521 return nullptr; 3522 LoopSuccessor = Block; 3523 } else 3524 LoopSuccessor = Succ; 3525 3526 // Save the current value for the break targets. 3527 // All breaks should go to the code following the loop. 3528 SaveAndRestore save_break(BreakJumpTarget); 3529 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); 3530 3531 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; 3532 3533 // Now create the loop body. 3534 { 3535 assert(F->getBody()); 3536 3537 // Save the current values for Block, Succ, continue and break targets. 3538 SaveAndRestore save_Block(Block), save_Succ(Succ); 3539 SaveAndRestore save_continue(ContinueJumpTarget); 3540 3541 // Create an empty block to represent the transition block for looping back 3542 // to the head of the loop. If we have increment code, it will 3543 // go in this block as well. 3544 Block = Succ = TransitionBlock = createBlock(false); 3545 TransitionBlock->setLoopTarget(F); 3546 3547 3548 // Loop iteration (after increment) should end with destructor of Condition 3549 // variable (if any). 3550 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F); 3551 3552 if (Stmt *I = F->getInc()) { 3553 // Generate increment code in its own basic block. This is the target of 3554 // continue statements. 3555 Succ = addStmt(I); 3556 } 3557 3558 // Finish up the increment (or empty) block if it hasn't been already. 3559 if (Block) { 3560 assert(Block == Succ); 3561 if (badCFG) 3562 return nullptr; 3563 Block = nullptr; 3564 } 3565 3566 // The starting block for the loop increment is the block that should 3567 // represent the 'loop target' for looping back to the start of the loop. 3568 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); 3569 ContinueJumpTarget.block->setLoopTarget(F); 3570 3571 3572 // If body is not a compound statement create implicit scope 3573 // and add destructors. 3574 if (!isa<CompoundStmt>(F->getBody())) 3575 addLocalScopeAndDtors(F->getBody()); 3576 3577 // Now populate the body block, and in the process create new blocks as we 3578 // walk the body of the loop. 3579 BodyBlock = addStmt(F->getBody()); 3580 3581 if (!BodyBlock) { 3582 // In the case of "for (...;...;...);" we can have a null BodyBlock. 3583 // Use the continue jump target as the proxy for the body. 3584 BodyBlock = ContinueJumpTarget.block; 3585 } 3586 else if (badCFG) 3587 return nullptr; 3588 } 3589 3590 // Because of short-circuit evaluation, the condition of the loop can span 3591 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that 3592 // evaluate the condition. 3593 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; 3594 3595 do { 3596 Expr *C = F->getCond(); 3597 SaveAndRestore save_scope_pos(ScopePos); 3598 3599 // Specially handle logical operators, which have a slightly 3600 // more optimal CFG representation. 3601 if (BinaryOperator *Cond = 3602 dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr)) 3603 if (Cond->isLogicalOp()) { 3604 std::tie(EntryConditionBlock, ExitConditionBlock) = 3605 VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor); 3606 break; 3607 } 3608 3609 // The default case when not handling logical operators. 3610 EntryConditionBlock = ExitConditionBlock = createBlock(false); 3611 ExitConditionBlock->setTerminator(F); 3612 3613 // See if this is a known constant. 3614 TryResult KnownVal(true); 3615 3616 if (C) { 3617 // Now add the actual condition to the condition block. 3618 // Because the condition itself may contain control-flow, new blocks may 3619 // be created. Thus we update "Succ" after adding the condition. 3620 Block = ExitConditionBlock; 3621 EntryConditionBlock = addStmt(C); 3622 3623 // If this block contains a condition variable, add both the condition 3624 // variable and initializer to the CFG. 3625 if (VarDecl *VD = F->getConditionVariable()) { 3626 if (Expr *Init = VD->getInit()) { 3627 autoCreateBlock(); 3628 const DeclStmt *DS = F->getConditionVariableDeclStmt(); 3629 assert(DS->isSingleDecl()); 3630 findConstructionContexts( 3631 ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS), 3632 Init); 3633 appendStmt(Block, DS); 3634 EntryConditionBlock = addStmt(Init); 3635 assert(Block == EntryConditionBlock); 3636 maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C); 3637 } 3638 } 3639 3640 if (Block && badCFG) 3641 return nullptr; 3642 3643 KnownVal = tryEvaluateBool(C); 3644 } 3645 3646 // Add the loop body entry as a successor to the condition. 3647 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); 3648 // Link up the condition block with the code that follows the loop. (the 3649 // false branch). 3650 addSuccessor(ExitConditionBlock, 3651 KnownVal.isTrue() ? nullptr : LoopSuccessor); 3652 } while (false); 3653 3654 // Link up the loop-back block to the entry condition block. 3655 addSuccessor(TransitionBlock, EntryConditionBlock); 3656 3657 // The condition block is the implicit successor for any code above the loop. 3658 Succ = EntryConditionBlock; 3659 3660 // If the loop contains initialization, create a new block for those 3661 // statements. This block can also contain statements that precede the loop. 3662 if (Stmt *I = F->getInit()) { 3663 SaveAndRestore save_scope_pos(ScopePos); 3664 ScopePos = LoopBeginScopePos; 3665 Block = createBlock(); 3666 return addStmt(I); 3667 } 3668 3669 // There is no loop initialization. We are thus basically a while loop. 3670 // NULL out Block to force lazy block construction. 3671 Block = nullptr; 3672 Succ = EntryConditionBlock; 3673 return EntryConditionBlock; 3674 } 3675 3676 CFGBlock * 3677 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, 3678 AddStmtChoice asc) { 3679 findConstructionContexts( 3680 ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE), 3681 MTE->getSubExpr()); 3682 3683 return VisitStmt(MTE, asc); 3684 } 3685 3686 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) { 3687 if (asc.alwaysAdd(*this, M)) { 3688 autoCreateBlock(); 3689 appendStmt(Block, M); 3690 } 3691 return Visit(M->getBase()); 3692 } 3693 3694 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { 3695 // Objective-C fast enumeration 'for' statements: 3696 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC 3697 // 3698 // for ( Type newVariable in collection_expression ) { statements } 3699 // 3700 // becomes: 3701 // 3702 // prologue: 3703 // 1. collection_expression 3704 // T. jump to loop_entry 3705 // loop_entry: 3706 // 1. side-effects of element expression 3707 // 1. ObjCForCollectionStmt [performs binding to newVariable] 3708 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] 3709 // TB: 3710 // statements 3711 // T. jump to loop_entry 3712 // FB: 3713 // what comes after 3714 // 3715 // and 3716 // 3717 // Type existingItem; 3718 // for ( existingItem in expression ) { statements } 3719 // 3720 // becomes: 3721 // 3722 // the same with newVariable replaced with existingItem; the binding works 3723 // the same except that for one ObjCForCollectionStmt::getElement() returns 3724 // a DeclStmt and the other returns a DeclRefExpr. 3725 3726 CFGBlock *LoopSuccessor = nullptr; 3727 3728 if (Block) { 3729 if (badCFG) 3730 return nullptr; 3731 LoopSuccessor = Block; 3732 Block = nullptr; 3733 } else 3734 LoopSuccessor = Succ; 3735 3736 // Build the condition blocks. 3737 CFGBlock *ExitConditionBlock = createBlock(false); 3738 3739 // Set the terminator for the "exit" condition block. 3740 ExitConditionBlock->setTerminator(S); 3741 3742 // The last statement in the block should be the ObjCForCollectionStmt, which 3743 // performs the actual binding to 'element' and determines if there are any 3744 // more items in the collection. 3745 appendStmt(ExitConditionBlock, S); 3746 Block = ExitConditionBlock; 3747 3748 // Walk the 'element' expression to see if there are any side-effects. We 3749 // generate new blocks as necessary. We DON'T add the statement by default to 3750 // the CFG unless it contains control-flow. 3751 CFGBlock *EntryConditionBlock = Visit(S->getElement(), 3752 AddStmtChoice::NotAlwaysAdd); 3753 if (Block) { 3754 if (badCFG) 3755 return nullptr; 3756 Block = nullptr; 3757 } 3758 3759 // The condition block is the implicit successor for the loop body as well as 3760 // any code above the loop. 3761 Succ = EntryConditionBlock; 3762 3763 // Now create the true branch. 3764 { 3765 // Save the current values for Succ, continue and break targets. 3766 SaveAndRestore save_Block(Block), save_Succ(Succ); 3767 SaveAndRestore save_continue(ContinueJumpTarget), 3768 save_break(BreakJumpTarget); 3769 3770 // Add an intermediate block between the BodyBlock and the 3771 // EntryConditionBlock to represent the "loop back" transition, for looping 3772 // back to the head of the loop. 3773 CFGBlock *LoopBackBlock = nullptr; 3774 Succ = LoopBackBlock = createBlock(); 3775 LoopBackBlock->setLoopTarget(S); 3776 3777 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); 3778 ContinueJumpTarget = JumpTarget(Succ, ScopePos); 3779 3780 CFGBlock *BodyBlock = addStmt(S->getBody()); 3781 3782 if (!BodyBlock) 3783 BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;" 3784 else if (Block) { 3785 if (badCFG) 3786 return nullptr; 3787 } 3788 3789 // This new body block is a successor to our "exit" condition block. 3790 addSuccessor(ExitConditionBlock, BodyBlock); 3791 } 3792 3793 // Link up the condition block with the code that follows the loop. 3794 // (the false branch). 3795 addSuccessor(ExitConditionBlock, LoopSuccessor); 3796 3797 // Now create a prologue block to contain the collection expression. 3798 Block = createBlock(); 3799 return addStmt(S->getCollection()); 3800 } 3801 3802 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) { 3803 // Inline the body. 3804 return addStmt(S->getSubStmt()); 3805 // TODO: consider adding cleanups for the end of @autoreleasepool scope. 3806 } 3807 3808 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) { 3809 // FIXME: Add locking 'primitives' to CFG for @synchronized. 3810 3811 // Inline the body. 3812 CFGBlock *SyncBlock = addStmt(S->getSynchBody()); 3813 3814 // The sync body starts its own basic block. This makes it a little easier 3815 // for diagnostic clients. 3816 if (SyncBlock) { 3817 if (badCFG) 3818 return nullptr; 3819 3820 Block = nullptr; 3821 Succ = SyncBlock; 3822 } 3823 3824 // Add the @synchronized to the CFG. 3825 autoCreateBlock(); 3826 appendStmt(Block, S); 3827 3828 // Inline the sync expression. 3829 return addStmt(S->getSynchExpr()); 3830 } 3831 3832 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) { 3833 autoCreateBlock(); 3834 3835 // Add the PseudoObject as the last thing. 3836 appendStmt(Block, E); 3837 3838 CFGBlock *lastBlock = Block; 3839 3840 // Before that, evaluate all of the semantics in order. In 3841 // CFG-land, that means appending them in reverse order. 3842 for (unsigned i = E->getNumSemanticExprs(); i != 0; ) { 3843 Expr *Semantic = E->getSemanticExpr(--i); 3844 3845 // If the semantic is an opaque value, we're being asked to bind 3846 // it to its source expression. 3847 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic)) 3848 Semantic = OVE->getSourceExpr(); 3849 3850 if (CFGBlock *B = Visit(Semantic)) 3851 lastBlock = B; 3852 } 3853 3854 return lastBlock; 3855 } 3856 3857 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) { 3858 CFGBlock *LoopSuccessor = nullptr; 3859 3860 // Save local scope position because in case of condition variable ScopePos 3861 // won't be restored when traversing AST. 3862 SaveAndRestore save_scope_pos(ScopePos); 3863 3864 // Create local scope for possible condition variable. 3865 // Store scope position for continue statement. 3866 LocalScope::const_iterator LoopBeginScopePos = ScopePos; 3867 if (VarDecl *VD = W->getConditionVariable()) { 3868 addLocalScopeForVarDecl(VD); 3869 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W); 3870 } 3871 addLoopExit(W); 3872 3873 // "while" is a control-flow statement. Thus we stop processing the current 3874 // block. 3875 if (Block) { 3876 if (badCFG) 3877 return nullptr; 3878 LoopSuccessor = Block; 3879 Block = nullptr; 3880 } else { 3881 LoopSuccessor = Succ; 3882 } 3883 3884 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; 3885 3886 // Process the loop body. 3887 { 3888 assert(W->getBody()); 3889 3890 // Save the current values for Block, Succ, continue and break targets. 3891 SaveAndRestore save_Block(Block), save_Succ(Succ); 3892 SaveAndRestore save_continue(ContinueJumpTarget), 3893 save_break(BreakJumpTarget); 3894 3895 // Create an empty block to represent the transition block for looping back 3896 // to the head of the loop. 3897 Succ = TransitionBlock = createBlock(false); 3898 TransitionBlock->setLoopTarget(W); 3899 ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos); 3900 3901 // All breaks should go to the code following the loop. 3902 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); 3903 3904 // Loop body should end with destructor of Condition variable (if any). 3905 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W); 3906 3907 // If body is not a compound statement create implicit scope 3908 // and add destructors. 3909 if (!isa<CompoundStmt>(W->getBody())) 3910 addLocalScopeAndDtors(W->getBody()); 3911 3912 // Create the body. The returned block is the entry to the loop body. 3913 BodyBlock = addStmt(W->getBody()); 3914 3915 if (!BodyBlock) 3916 BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;" 3917 else if (Block && badCFG) 3918 return nullptr; 3919 } 3920 3921 // Because of short-circuit evaluation, the condition of the loop can span 3922 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that 3923 // evaluate the condition. 3924 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; 3925 3926 do { 3927 Expr *C = W->getCond(); 3928 3929 // Specially handle logical operators, which have a slightly 3930 // more optimal CFG representation. 3931 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens())) 3932 if (Cond->isLogicalOp()) { 3933 std::tie(EntryConditionBlock, ExitConditionBlock) = 3934 VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor); 3935 break; 3936 } 3937 3938 // The default case when not handling logical operators. 3939 ExitConditionBlock = createBlock(false); 3940 ExitConditionBlock->setTerminator(W); 3941 3942 // Now add the actual condition to the condition block. 3943 // Because the condition itself may contain control-flow, new blocks may 3944 // be created. Thus we update "Succ" after adding the condition. 3945 Block = ExitConditionBlock; 3946 Block = EntryConditionBlock = addStmt(C); 3947 3948 // If this block contains a condition variable, add both the condition 3949 // variable and initializer to the CFG. 3950 if (VarDecl *VD = W->getConditionVariable()) { 3951 if (Expr *Init = VD->getInit()) { 3952 autoCreateBlock(); 3953 const DeclStmt *DS = W->getConditionVariableDeclStmt(); 3954 assert(DS->isSingleDecl()); 3955 findConstructionContexts( 3956 ConstructionContextLayer::create(cfg->getBumpVectorContext(), 3957 const_cast<DeclStmt *>(DS)), 3958 Init); 3959 appendStmt(Block, DS); 3960 EntryConditionBlock = addStmt(Init); 3961 assert(Block == EntryConditionBlock); 3962 maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C); 3963 } 3964 } 3965 3966 if (Block && badCFG) 3967 return nullptr; 3968 3969 // See if this is a known constant. 3970 const TryResult& KnownVal = tryEvaluateBool(C); 3971 3972 // Add the loop body entry as a successor to the condition. 3973 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); 3974 // Link up the condition block with the code that follows the loop. (the 3975 // false branch). 3976 addSuccessor(ExitConditionBlock, 3977 KnownVal.isTrue() ? nullptr : LoopSuccessor); 3978 } while(false); 3979 3980 // Link up the loop-back block to the entry condition block. 3981 addSuccessor(TransitionBlock, EntryConditionBlock); 3982 3983 // There can be no more statements in the condition block since we loop back 3984 // to this block. NULL out Block to force lazy creation of another block. 3985 Block = nullptr; 3986 3987 // Return the condition block, which is the dominating block for the loop. 3988 Succ = EntryConditionBlock; 3989 return EntryConditionBlock; 3990 } 3991 3992 CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, 3993 AddStmtChoice asc) { 3994 if (asc.alwaysAdd(*this, A)) { 3995 autoCreateBlock(); 3996 appendStmt(Block, A); 3997 } 3998 3999 CFGBlock *B = Block; 4000 4001 if (CFGBlock *R = Visit(A->getSubExpr())) 4002 B = R; 4003 4004 auto *OVE = dyn_cast<OpaqueValueExpr>(A->getCommonExpr()); 4005 assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an " 4006 "OpaqueValueExpr!"); 4007 if (CFGBlock *R = Visit(OVE->getSourceExpr())) 4008 B = R; 4009 4010 return B; 4011 } 4012 4013 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) { 4014 // ObjCAtCatchStmt are treated like labels, so they are the first statement 4015 // in a block. 4016 4017 // Save local scope position because in case of exception variable ScopePos 4018 // won't be restored when traversing AST. 4019 SaveAndRestore save_scope_pos(ScopePos); 4020 4021 if (CS->getCatchBody()) 4022 addStmt(CS->getCatchBody()); 4023 4024 CFGBlock *CatchBlock = Block; 4025 if (!CatchBlock) 4026 CatchBlock = createBlock(); 4027 4028 appendStmt(CatchBlock, CS); 4029 4030 // Also add the ObjCAtCatchStmt as a label, like with regular labels. 4031 CatchBlock->setLabel(CS); 4032 4033 // Bail out if the CFG is bad. 4034 if (badCFG) 4035 return nullptr; 4036 4037 // We set Block to NULL to allow lazy creation of a new block (if necessary). 4038 Block = nullptr; 4039 4040 return CatchBlock; 4041 } 4042 4043 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { 4044 // If we were in the middle of a block we stop processing that block. 4045 if (badCFG) 4046 return nullptr; 4047 4048 // Create the new block. 4049 Block = createBlock(false); 4050 4051 if (TryTerminatedBlock) 4052 // The current try statement is the only successor. 4053 addSuccessor(Block, TryTerminatedBlock); 4054 else 4055 // otherwise the Exit block is the only successor. 4056 addSuccessor(Block, &cfg->getExit()); 4057 4058 // Add the statement to the block. This may create new blocks if S contains 4059 // control-flow (short-circuit operations). 4060 return VisitStmt(S, AddStmtChoice::AlwaysAdd); 4061 } 4062 4063 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) { 4064 // "@try"/"@catch" is a control-flow statement. Thus we stop processing the 4065 // current block. 4066 CFGBlock *TrySuccessor = nullptr; 4067 4068 if (Block) { 4069 if (badCFG) 4070 return nullptr; 4071 TrySuccessor = Block; 4072 } else 4073 TrySuccessor = Succ; 4074 4075 // FIXME: Implement @finally support. 4076 if (Terminator->getFinallyStmt()) 4077 return NYS(); 4078 4079 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; 4080 4081 // Create a new block that will contain the try statement. 4082 CFGBlock *NewTryTerminatedBlock = createBlock(false); 4083 // Add the terminator in the try block. 4084 NewTryTerminatedBlock->setTerminator(Terminator); 4085 4086 bool HasCatchAll = false; 4087 for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) { 4088 // The code after the try is the implicit successor. 4089 Succ = TrySuccessor; 4090 if (CS->hasEllipsis()) { 4091 HasCatchAll = true; 4092 } 4093 Block = nullptr; 4094 CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS); 4095 if (!CatchBlock) 4096 return nullptr; 4097 // Add this block to the list of successors for the block with the try 4098 // statement. 4099 addSuccessor(NewTryTerminatedBlock, CatchBlock); 4100 } 4101 4102 // FIXME: This needs updating when @finally support is added. 4103 if (!HasCatchAll) { 4104 if (PrevTryTerminatedBlock) 4105 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); 4106 else 4107 addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); 4108 } 4109 4110 // The code after the try is the implicit successor. 4111 Succ = TrySuccessor; 4112 4113 // Save the current "try" context. 4114 SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); 4115 cfg->addTryDispatchBlock(TryTerminatedBlock); 4116 4117 assert(Terminator->getTryBody() && "try must contain a non-NULL body"); 4118 Block = nullptr; 4119 return addStmt(Terminator->getTryBody()); 4120 } 4121 4122 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME, 4123 AddStmtChoice asc) { 4124 findConstructionContextsForArguments(ME); 4125 4126 autoCreateBlock(); 4127 appendObjCMessage(Block, ME); 4128 4129 return VisitChildren(ME); 4130 } 4131 4132 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) { 4133 // If we were in the middle of a block we stop processing that block. 4134 if (badCFG) 4135 return nullptr; 4136 4137 // Create the new block. 4138 Block = createBlock(false); 4139 4140 if (TryTerminatedBlock) 4141 // The current try statement is the only successor. 4142 addSuccessor(Block, TryTerminatedBlock); 4143 else 4144 // otherwise the Exit block is the only successor. 4145 addSuccessor(Block, &cfg->getExit()); 4146 4147 // Add the statement to the block. This may create new blocks if S contains 4148 // control-flow (short-circuit operations). 4149 return VisitStmt(T, AddStmtChoice::AlwaysAdd); 4150 } 4151 4152 CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) { 4153 if (asc.alwaysAdd(*this, S)) { 4154 autoCreateBlock(); 4155 appendStmt(Block, S); 4156 } 4157 4158 // C++ [expr.typeid]p3: 4159 // When typeid is applied to an expression other than an glvalue of a 4160 // polymorphic class type [...] [the] expression is an unevaluated 4161 // operand. [...] 4162 // We add only potentially evaluated statements to the block to avoid 4163 // CFG generation for unevaluated operands. 4164 if (!S->isTypeDependent() && S->isPotentiallyEvaluated()) 4165 return VisitChildren(S); 4166 4167 // Return block without CFG for unevaluated operands. 4168 return Block; 4169 } 4170 4171 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) { 4172 CFGBlock *LoopSuccessor = nullptr; 4173 4174 addLoopExit(D); 4175 4176 // "do...while" is a control-flow statement. Thus we stop processing the 4177 // current block. 4178 if (Block) { 4179 if (badCFG) 4180 return nullptr; 4181 LoopSuccessor = Block; 4182 } else 4183 LoopSuccessor = Succ; 4184 4185 // Because of short-circuit evaluation, the condition of the loop can span 4186 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that 4187 // evaluate the condition. 4188 CFGBlock *ExitConditionBlock = createBlock(false); 4189 CFGBlock *EntryConditionBlock = ExitConditionBlock; 4190 4191 // Set the terminator for the "exit" condition block. 4192 ExitConditionBlock->setTerminator(D); 4193 4194 // Now add the actual condition to the condition block. Because the condition 4195 // itself may contain control-flow, new blocks may be created. 4196 if (Stmt *C = D->getCond()) { 4197 Block = ExitConditionBlock; 4198 EntryConditionBlock = addStmt(C); 4199 if (Block) { 4200 if (badCFG) 4201 return nullptr; 4202 } 4203 } 4204 4205 // The condition block is the implicit successor for the loop body. 4206 Succ = EntryConditionBlock; 4207 4208 // See if this is a known constant. 4209 const TryResult &KnownVal = tryEvaluateBool(D->getCond()); 4210 4211 // Process the loop body. 4212 CFGBlock *BodyBlock = nullptr; 4213 { 4214 assert(D->getBody()); 4215 4216 // Save the current values for Block, Succ, and continue and break targets 4217 SaveAndRestore save_Block(Block), save_Succ(Succ); 4218 SaveAndRestore save_continue(ContinueJumpTarget), 4219 save_break(BreakJumpTarget); 4220 4221 // All continues within this loop should go to the condition block 4222 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos); 4223 4224 // All breaks should go to the code following the loop. 4225 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); 4226 4227 // NULL out Block to force lazy instantiation of blocks for the body. 4228 Block = nullptr; 4229 4230 // If body is not a compound statement create implicit scope 4231 // and add destructors. 4232 if (!isa<CompoundStmt>(D->getBody())) 4233 addLocalScopeAndDtors(D->getBody()); 4234 4235 // Create the body. The returned block is the entry to the loop body. 4236 BodyBlock = addStmt(D->getBody()); 4237 4238 if (!BodyBlock) 4239 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" 4240 else if (Block) { 4241 if (badCFG) 4242 return nullptr; 4243 } 4244 4245 // Add an intermediate block between the BodyBlock and the 4246 // ExitConditionBlock to represent the "loop back" transition. Create an 4247 // empty block to represent the transition block for looping back to the 4248 // head of the loop. 4249 // FIXME: Can we do this more efficiently without adding another block? 4250 Block = nullptr; 4251 Succ = BodyBlock; 4252 CFGBlock *LoopBackBlock = createBlock(); 4253 LoopBackBlock->setLoopTarget(D); 4254 4255 if (!KnownVal.isFalse()) 4256 // Add the loop body entry as a successor to the condition. 4257 addSuccessor(ExitConditionBlock, LoopBackBlock); 4258 else 4259 addSuccessor(ExitConditionBlock, nullptr); 4260 } 4261 4262 // Link up the condition block with the code that follows the loop. 4263 // (the false branch). 4264 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); 4265 4266 // There can be no more statements in the body block(s) since we loop back to 4267 // the body. NULL out Block to force lazy creation of another block. 4268 Block = nullptr; 4269 4270 // Return the loop body, which is the dominating block for the loop. 4271 Succ = BodyBlock; 4272 return BodyBlock; 4273 } 4274 4275 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) { 4276 // "continue" is a control-flow statement. Thus we stop processing the 4277 // current block. 4278 if (badCFG) 4279 return nullptr; 4280 4281 // Now create a new block that ends with the continue statement. 4282 Block = createBlock(false); 4283 Block->setTerminator(C); 4284 4285 // If there is no target for the continue, then we are looking at an 4286 // incomplete AST. This means the CFG cannot be constructed. 4287 if (ContinueJumpTarget.block) { 4288 addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C); 4289 addSuccessor(Block, ContinueJumpTarget.block); 4290 } else 4291 badCFG = true; 4292 4293 return Block; 4294 } 4295 4296 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, 4297 AddStmtChoice asc) { 4298 if (asc.alwaysAdd(*this, E)) { 4299 autoCreateBlock(); 4300 appendStmt(Block, E); 4301 } 4302 4303 // VLA types have expressions that must be evaluated. 4304 // Evaluation is done only for `sizeof`. 4305 4306 if (E->getKind() != UETT_SizeOf) 4307 return Block; 4308 4309 CFGBlock *lastBlock = Block; 4310 4311 if (E->isArgumentType()) { 4312 for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr()); 4313 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) 4314 lastBlock = addStmt(VA->getSizeExpr()); 4315 } 4316 return lastBlock; 4317 } 4318 4319 /// VisitStmtExpr - Utility method to handle (nested) statement 4320 /// expressions (a GCC extension). 4321 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) { 4322 if (asc.alwaysAdd(*this, SE)) { 4323 autoCreateBlock(); 4324 appendStmt(Block, SE); 4325 } 4326 return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true); 4327 } 4328 4329 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) { 4330 // "switch" is a control-flow statement. Thus we stop processing the current 4331 // block. 4332 CFGBlock *SwitchSuccessor = nullptr; 4333 4334 // Save local scope position because in case of condition variable ScopePos 4335 // won't be restored when traversing AST. 4336 SaveAndRestore save_scope_pos(ScopePos); 4337 4338 // Create local scope for C++17 switch init-stmt if one exists. 4339 if (Stmt *Init = Terminator->getInit()) 4340 addLocalScopeForStmt(Init); 4341 4342 // Create local scope for possible condition variable. 4343 // Store scope position. Add implicit destructor. 4344 if (VarDecl *VD = Terminator->getConditionVariable()) 4345 addLocalScopeForVarDecl(VD); 4346 4347 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator); 4348 4349 if (Block) { 4350 if (badCFG) 4351 return nullptr; 4352 SwitchSuccessor = Block; 4353 } else SwitchSuccessor = Succ; 4354 4355 // Save the current "switch" context. 4356 SaveAndRestore save_switch(SwitchTerminatedBlock), 4357 save_default(DefaultCaseBlock); 4358 SaveAndRestore save_break(BreakJumpTarget); 4359 4360 // Set the "default" case to be the block after the switch statement. If the 4361 // switch statement contains a "default:", this value will be overwritten with 4362 // the block for that code. 4363 DefaultCaseBlock = SwitchSuccessor; 4364 4365 // Create a new block that will contain the switch statement. 4366 SwitchTerminatedBlock = createBlock(false); 4367 4368 // Now process the switch body. The code after the switch is the implicit 4369 // successor. 4370 Succ = SwitchSuccessor; 4371 BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos); 4372 4373 // When visiting the body, the case statements should automatically get linked 4374 // up to the switch. We also don't keep a pointer to the body, since all 4375 // control-flow from the switch goes to case/default statements. 4376 assert(Terminator->getBody() && "switch must contain a non-NULL body"); 4377 Block = nullptr; 4378 4379 // For pruning unreachable case statements, save the current state 4380 // for tracking the condition value. 4381 SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false); 4382 4383 // Determine if the switch condition can be explicitly evaluated. 4384 assert(Terminator->getCond() && "switch condition must be non-NULL"); 4385 Expr::EvalResult result; 4386 bool b = tryEvaluate(Terminator->getCond(), result); 4387 SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr); 4388 4389 // If body is not a compound statement create implicit scope 4390 // and add destructors. 4391 if (!isa<CompoundStmt>(Terminator->getBody())) 4392 addLocalScopeAndDtors(Terminator->getBody()); 4393 4394 addStmt(Terminator->getBody()); 4395 if (Block) { 4396 if (badCFG) 4397 return nullptr; 4398 } 4399 4400 // If we have no "default:" case, the default transition is to the code 4401 // following the switch body. Moreover, take into account if all the 4402 // cases of a switch are covered (e.g., switching on an enum value). 4403 // 4404 // Note: We add a successor to a switch that is considered covered yet has no 4405 // case statements if the enumeration has no enumerators. 4406 bool SwitchAlwaysHasSuccessor = false; 4407 SwitchAlwaysHasSuccessor |= switchExclusivelyCovered; 4408 SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() && 4409 Terminator->getSwitchCaseList(); 4410 addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock, 4411 !SwitchAlwaysHasSuccessor); 4412 4413 // Add the terminator and condition in the switch block. 4414 SwitchTerminatedBlock->setTerminator(Terminator); 4415 Block = SwitchTerminatedBlock; 4416 CFGBlock *LastBlock = addStmt(Terminator->getCond()); 4417 4418 // If the SwitchStmt contains a condition variable, add both the 4419 // SwitchStmt and the condition variable initialization to the CFG. 4420 if (VarDecl *VD = Terminator->getConditionVariable()) { 4421 if (Expr *Init = VD->getInit()) { 4422 autoCreateBlock(); 4423 appendStmt(Block, Terminator->getConditionVariableDeclStmt()); 4424 LastBlock = addStmt(Init); 4425 maybeAddScopeBeginForVarDecl(LastBlock, VD, Init); 4426 } 4427 } 4428 4429 // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG. 4430 if (Stmt *Init = Terminator->getInit()) { 4431 autoCreateBlock(); 4432 LastBlock = addStmt(Init); 4433 } 4434 4435 return LastBlock; 4436 } 4437 4438 static bool shouldAddCase(bool &switchExclusivelyCovered, 4439 const Expr::EvalResult *switchCond, 4440 const CaseStmt *CS, 4441 ASTContext &Ctx) { 4442 if (!switchCond) 4443 return true; 4444 4445 bool addCase = false; 4446 4447 if (!switchExclusivelyCovered) { 4448 if (switchCond->Val.isInt()) { 4449 // Evaluate the LHS of the case value. 4450 const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx); 4451 const llvm::APSInt &condInt = switchCond->Val.getInt(); 4452 4453 if (condInt == lhsInt) { 4454 addCase = true; 4455 switchExclusivelyCovered = true; 4456 } 4457 else if (condInt > lhsInt) { 4458 if (const Expr *RHS = CS->getRHS()) { 4459 // Evaluate the RHS of the case value. 4460 const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx); 4461 if (V2 >= condInt) { 4462 addCase = true; 4463 switchExclusivelyCovered = true; 4464 } 4465 } 4466 } 4467 } 4468 else 4469 addCase = true; 4470 } 4471 return addCase; 4472 } 4473 4474 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) { 4475 // CaseStmts are essentially labels, so they are the first statement in a 4476 // block. 4477 CFGBlock *TopBlock = nullptr, *LastBlock = nullptr; 4478 4479 if (Stmt *Sub = CS->getSubStmt()) { 4480 // For deeply nested chains of CaseStmts, instead of doing a recursion 4481 // (which can blow out the stack), manually unroll and create blocks 4482 // along the way. 4483 while (isa<CaseStmt>(Sub)) { 4484 CFGBlock *currentBlock = createBlock(false); 4485 currentBlock->setLabel(CS); 4486 4487 if (TopBlock) 4488 addSuccessor(LastBlock, currentBlock); 4489 else 4490 TopBlock = currentBlock; 4491 4492 addSuccessor(SwitchTerminatedBlock, 4493 shouldAddCase(switchExclusivelyCovered, switchCond, 4494 CS, *Context) 4495 ? currentBlock : nullptr); 4496 4497 LastBlock = currentBlock; 4498 CS = cast<CaseStmt>(Sub); 4499 Sub = CS->getSubStmt(); 4500 } 4501 4502 addStmt(Sub); 4503 } 4504 4505 CFGBlock *CaseBlock = Block; 4506 if (!CaseBlock) 4507 CaseBlock = createBlock(); 4508 4509 // Cases statements partition blocks, so this is the top of the basic block we 4510 // were processing (the "case XXX:" is the label). 4511 CaseBlock->setLabel(CS); 4512 4513 if (badCFG) 4514 return nullptr; 4515 4516 // Add this block to the list of successors for the block with the switch 4517 // statement. 4518 assert(SwitchTerminatedBlock); 4519 addSuccessor(SwitchTerminatedBlock, CaseBlock, 4520 shouldAddCase(switchExclusivelyCovered, switchCond, 4521 CS, *Context)); 4522 4523 // We set Block to NULL to allow lazy creation of a new block (if necessary). 4524 Block = nullptr; 4525 4526 if (TopBlock) { 4527 addSuccessor(LastBlock, CaseBlock); 4528 Succ = TopBlock; 4529 } else { 4530 // This block is now the implicit successor of other blocks. 4531 Succ = CaseBlock; 4532 } 4533 4534 return Succ; 4535 } 4536 4537 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) { 4538 if (Terminator->getSubStmt()) 4539 addStmt(Terminator->getSubStmt()); 4540 4541 DefaultCaseBlock = Block; 4542 4543 if (!DefaultCaseBlock) 4544 DefaultCaseBlock = createBlock(); 4545 4546 // Default statements partition blocks, so this is the top of the basic block 4547 // we were processing (the "default:" is the label). 4548 DefaultCaseBlock->setLabel(Terminator); 4549 4550 if (badCFG) 4551 return nullptr; 4552 4553 // Unlike case statements, we don't add the default block to the successors 4554 // for the switch statement immediately. This is done when we finish 4555 // processing the switch statement. This allows for the default case 4556 // (including a fall-through to the code after the switch statement) to always 4557 // be the last successor of a switch-terminated block. 4558 4559 // We set Block to NULL to allow lazy creation of a new block (if necessary). 4560 Block = nullptr; 4561 4562 // This block is now the implicit successor of other blocks. 4563 Succ = DefaultCaseBlock; 4564 4565 return DefaultCaseBlock; 4566 } 4567 4568 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) { 4569 // "try"/"catch" is a control-flow statement. Thus we stop processing the 4570 // current block. 4571 CFGBlock *TrySuccessor = nullptr; 4572 4573 if (Block) { 4574 if (badCFG) 4575 return nullptr; 4576 TrySuccessor = Block; 4577 } else 4578 TrySuccessor = Succ; 4579 4580 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; 4581 4582 // Create a new block that will contain the try statement. 4583 CFGBlock *NewTryTerminatedBlock = createBlock(false); 4584 // Add the terminator in the try block. 4585 NewTryTerminatedBlock->setTerminator(Terminator); 4586 4587 bool HasCatchAll = false; 4588 for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) { 4589 // The code after the try is the implicit successor. 4590 Succ = TrySuccessor; 4591 CXXCatchStmt *CS = Terminator->getHandler(I); 4592 if (CS->getExceptionDecl() == nullptr) { 4593 HasCatchAll = true; 4594 } 4595 Block = nullptr; 4596 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS); 4597 if (!CatchBlock) 4598 return nullptr; 4599 // Add this block to the list of successors for the block with the try 4600 // statement. 4601 addSuccessor(NewTryTerminatedBlock, CatchBlock); 4602 } 4603 if (!HasCatchAll) { 4604 if (PrevTryTerminatedBlock) 4605 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); 4606 else 4607 addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); 4608 } 4609 4610 // The code after the try is the implicit successor. 4611 Succ = TrySuccessor; 4612 4613 // Save the current "try" context. 4614 SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); 4615 cfg->addTryDispatchBlock(TryTerminatedBlock); 4616 4617 assert(Terminator->getTryBlock() && "try must contain a non-NULL body"); 4618 Block = nullptr; 4619 return addStmt(Terminator->getTryBlock()); 4620 } 4621 4622 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) { 4623 // CXXCatchStmt are treated like labels, so they are the first statement in a 4624 // block. 4625 4626 // Save local scope position because in case of exception variable ScopePos 4627 // won't be restored when traversing AST. 4628 SaveAndRestore save_scope_pos(ScopePos); 4629 4630 // Create local scope for possible exception variable. 4631 // Store scope position. Add implicit destructor. 4632 if (VarDecl *VD = CS->getExceptionDecl()) { 4633 LocalScope::const_iterator BeginScopePos = ScopePos; 4634 addLocalScopeForVarDecl(VD); 4635 addAutomaticObjHandling(ScopePos, BeginScopePos, CS); 4636 } 4637 4638 if (CS->getHandlerBlock()) 4639 addStmt(CS->getHandlerBlock()); 4640 4641 CFGBlock *CatchBlock = Block; 4642 if (!CatchBlock) 4643 CatchBlock = createBlock(); 4644 4645 // CXXCatchStmt is more than just a label. They have semantic meaning 4646 // as well, as they implicitly "initialize" the catch variable. Add 4647 // it to the CFG as a CFGElement so that the control-flow of these 4648 // semantics gets captured. 4649 appendStmt(CatchBlock, CS); 4650 4651 // Also add the CXXCatchStmt as a label, to mirror handling of regular 4652 // labels. 4653 CatchBlock->setLabel(CS); 4654 4655 // Bail out if the CFG is bad. 4656 if (badCFG) 4657 return nullptr; 4658 4659 // We set Block to NULL to allow lazy creation of a new block (if necessary). 4660 Block = nullptr; 4661 4662 return CatchBlock; 4663 } 4664 4665 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) { 4666 // C++0x for-range statements are specified as [stmt.ranged]: 4667 // 4668 // { 4669 // auto && __range = range-init; 4670 // for ( auto __begin = begin-expr, 4671 // __end = end-expr; 4672 // __begin != __end; 4673 // ++__begin ) { 4674 // for-range-declaration = *__begin; 4675 // statement 4676 // } 4677 // } 4678 4679 // Save local scope position before the addition of the implicit variables. 4680 SaveAndRestore save_scope_pos(ScopePos); 4681 4682 // Create local scopes and destructors for range, begin and end variables. 4683 if (Stmt *Range = S->getRangeStmt()) 4684 addLocalScopeForStmt(Range); 4685 if (Stmt *Begin = S->getBeginStmt()) 4686 addLocalScopeForStmt(Begin); 4687 if (Stmt *End = S->getEndStmt()) 4688 addLocalScopeForStmt(End); 4689 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S); 4690 4691 LocalScope::const_iterator ContinueScopePos = ScopePos; 4692 4693 // "for" is a control-flow statement. Thus we stop processing the current 4694 // block. 4695 CFGBlock *LoopSuccessor = nullptr; 4696 if (Block) { 4697 if (badCFG) 4698 return nullptr; 4699 LoopSuccessor = Block; 4700 } else 4701 LoopSuccessor = Succ; 4702 4703 // Save the current value for the break targets. 4704 // All breaks should go to the code following the loop. 4705 SaveAndRestore save_break(BreakJumpTarget); 4706 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); 4707 4708 // The block for the __begin != __end expression. 4709 CFGBlock *ConditionBlock = createBlock(false); 4710 ConditionBlock->setTerminator(S); 4711 4712 // Now add the actual condition to the condition block. 4713 if (Expr *C = S->getCond()) { 4714 Block = ConditionBlock; 4715 CFGBlock *BeginConditionBlock = addStmt(C); 4716 if (badCFG) 4717 return nullptr; 4718 assert(BeginConditionBlock == ConditionBlock && 4719 "condition block in for-range was unexpectedly complex"); 4720 (void)BeginConditionBlock; 4721 } 4722 4723 // The condition block is the implicit successor for the loop body as well as 4724 // any code above the loop. 4725 Succ = ConditionBlock; 4726 4727 // See if this is a known constant. 4728 TryResult KnownVal(true); 4729 4730 if (S->getCond()) 4731 KnownVal = tryEvaluateBool(S->getCond()); 4732 4733 // Now create the loop body. 4734 { 4735 assert(S->getBody()); 4736 4737 // Save the current values for Block, Succ, and continue targets. 4738 SaveAndRestore save_Block(Block), save_Succ(Succ); 4739 SaveAndRestore save_continue(ContinueJumpTarget); 4740 4741 // Generate increment code in its own basic block. This is the target of 4742 // continue statements. 4743 Block = nullptr; 4744 Succ = addStmt(S->getInc()); 4745 if (badCFG) 4746 return nullptr; 4747 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); 4748 4749 // The starting block for the loop increment is the block that should 4750 // represent the 'loop target' for looping back to the start of the loop. 4751 ContinueJumpTarget.block->setLoopTarget(S); 4752 4753 // Finish up the increment block and prepare to start the loop body. 4754 assert(Block); 4755 if (badCFG) 4756 return nullptr; 4757 Block = nullptr; 4758 4759 // Add implicit scope and dtors for loop variable. 4760 addLocalScopeAndDtors(S->getLoopVarStmt()); 4761 4762 // If body is not a compound statement create implicit scope 4763 // and add destructors. 4764 if (!isa<CompoundStmt>(S->getBody())) 4765 addLocalScopeAndDtors(S->getBody()); 4766 4767 // Populate a new block to contain the loop body and loop variable. 4768 addStmt(S->getBody()); 4769 4770 if (badCFG) 4771 return nullptr; 4772 CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt()); 4773 if (badCFG) 4774 return nullptr; 4775 4776 // This new body block is a successor to our condition block. 4777 addSuccessor(ConditionBlock, 4778 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock); 4779 } 4780 4781 // Link up the condition block with the code that follows the loop (the 4782 // false branch). 4783 addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); 4784 4785 // Add the initialization statements. 4786 Block = createBlock(); 4787 addStmt(S->getBeginStmt()); 4788 addStmt(S->getEndStmt()); 4789 CFGBlock *Head = addStmt(S->getRangeStmt()); 4790 if (S->getInit()) 4791 Head = addStmt(S->getInit()); 4792 return Head; 4793 } 4794 4795 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E, 4796 AddStmtChoice asc, bool ExternallyDestructed) { 4797 if (BuildOpts.AddTemporaryDtors) { 4798 // If adding implicit destructors visit the full expression for adding 4799 // destructors of temporaries. 4800 TempDtorContext Context; 4801 VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context); 4802 4803 // Full expression has to be added as CFGStmt so it will be sequenced 4804 // before destructors of it's temporaries. 4805 asc = asc.withAlwaysAdd(true); 4806 } 4807 return Visit(E->getSubExpr(), asc); 4808 } 4809 4810 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, 4811 AddStmtChoice asc) { 4812 if (asc.alwaysAdd(*this, E)) { 4813 autoCreateBlock(); 4814 appendStmt(Block, E); 4815 4816 findConstructionContexts( 4817 ConstructionContextLayer::create(cfg->getBumpVectorContext(), E), 4818 E->getSubExpr()); 4819 4820 // We do not want to propagate the AlwaysAdd property. 4821 asc = asc.withAlwaysAdd(false); 4822 } 4823 return Visit(E->getSubExpr(), asc); 4824 } 4825 4826 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C, 4827 AddStmtChoice asc) { 4828 // If the constructor takes objects as arguments by value, we need to properly 4829 // construct these objects. Construction contexts we find here aren't for the 4830 // constructor C, they're for its arguments only. 4831 findConstructionContextsForArguments(C); 4832 4833 autoCreateBlock(); 4834 appendConstructor(Block, C); 4835 4836 return VisitChildren(C); 4837 } 4838 4839 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE, 4840 AddStmtChoice asc) { 4841 autoCreateBlock(); 4842 appendStmt(Block, NE); 4843 4844 findConstructionContexts( 4845 ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE), 4846 const_cast<CXXConstructExpr *>(NE->getConstructExpr())); 4847 4848 if (NE->getInitializer()) 4849 Block = Visit(NE->getInitializer()); 4850 4851 if (BuildOpts.AddCXXNewAllocator) 4852 appendNewAllocator(Block, NE); 4853 4854 if (NE->isArray() && *NE->getArraySize()) 4855 Block = Visit(*NE->getArraySize()); 4856 4857 for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(), 4858 E = NE->placement_arg_end(); I != E; ++I) 4859 Block = Visit(*I); 4860 4861 return Block; 4862 } 4863 4864 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE, 4865 AddStmtChoice asc) { 4866 autoCreateBlock(); 4867 appendStmt(Block, DE); 4868 QualType DTy = DE->getDestroyedType(); 4869 if (!DTy.isNull()) { 4870 DTy = DTy.getNonReferenceType(); 4871 CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl(); 4872 if (RD) { 4873 if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor()) 4874 appendDeleteDtor(Block, RD, DE); 4875 } 4876 } 4877 4878 return VisitChildren(DE); 4879 } 4880 4881 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, 4882 AddStmtChoice asc) { 4883 if (asc.alwaysAdd(*this, E)) { 4884 autoCreateBlock(); 4885 appendStmt(Block, E); 4886 // We do not want to propagate the AlwaysAdd property. 4887 asc = asc.withAlwaysAdd(false); 4888 } 4889 return Visit(E->getSubExpr(), asc); 4890 } 4891 4892 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, 4893 AddStmtChoice asc) { 4894 // If the constructor takes objects as arguments by value, we need to properly 4895 // construct these objects. Construction contexts we find here aren't for the 4896 // constructor C, they're for its arguments only. 4897 findConstructionContextsForArguments(C); 4898 4899 autoCreateBlock(); 4900 appendConstructor(Block, C); 4901 return VisitChildren(C); 4902 } 4903 4904 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E, 4905 AddStmtChoice asc) { 4906 if (asc.alwaysAdd(*this, E)) { 4907 autoCreateBlock(); 4908 appendStmt(Block, E); 4909 } 4910 4911 if (E->getCastKind() == CK_IntegralToBoolean) 4912 tryEvaluateBool(E->getSubExpr()->IgnoreParens()); 4913 4914 return Visit(E->getSubExpr(), AddStmtChoice()); 4915 } 4916 4917 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) { 4918 return Visit(E->getSubExpr(), AddStmtChoice()); 4919 } 4920 4921 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) { 4922 // Lazily create the indirect-goto dispatch block if there isn't one already. 4923 CFGBlock *IBlock = cfg->getIndirectGotoBlock(); 4924 4925 if (!IBlock) { 4926 IBlock = createBlock(false); 4927 cfg->setIndirectGotoBlock(IBlock); 4928 } 4929 4930 // IndirectGoto is a control-flow statement. Thus we stop processing the 4931 // current block and create a new one. 4932 if (badCFG) 4933 return nullptr; 4934 4935 Block = createBlock(false); 4936 Block->setTerminator(I); 4937 addSuccessor(Block, IBlock); 4938 return addStmt(I->getTarget()); 4939 } 4940 4941 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, 4942 TempDtorContext &Context) { 4943 assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors); 4944 4945 tryAgain: 4946 if (!E) { 4947 badCFG = true; 4948 return nullptr; 4949 } 4950 switch (E->getStmtClass()) { 4951 default: 4952 return VisitChildrenForTemporaryDtors(E, false, Context); 4953 4954 case Stmt::InitListExprClass: 4955 return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); 4956 4957 case Stmt::BinaryOperatorClass: 4958 return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E), 4959 ExternallyDestructed, 4960 Context); 4961 4962 case Stmt::CXXBindTemporaryExprClass: 4963 return VisitCXXBindTemporaryExprForTemporaryDtors( 4964 cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context); 4965 4966 case Stmt::BinaryConditionalOperatorClass: 4967 case Stmt::ConditionalOperatorClass: 4968 return VisitConditionalOperatorForTemporaryDtors( 4969 cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context); 4970 4971 case Stmt::ImplicitCastExprClass: 4972 // For implicit cast we want ExternallyDestructed to be passed further. 4973 E = cast<CastExpr>(E)->getSubExpr(); 4974 goto tryAgain; 4975 4976 case Stmt::CXXFunctionalCastExprClass: 4977 // For functional cast we want ExternallyDestructed to be passed further. 4978 E = cast<CXXFunctionalCastExpr>(E)->getSubExpr(); 4979 goto tryAgain; 4980 4981 case Stmt::ConstantExprClass: 4982 E = cast<ConstantExpr>(E)->getSubExpr(); 4983 goto tryAgain; 4984 4985 case Stmt::ParenExprClass: 4986 E = cast<ParenExpr>(E)->getSubExpr(); 4987 goto tryAgain; 4988 4989 case Stmt::MaterializeTemporaryExprClass: { 4990 const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E); 4991 ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression); 4992 SmallVector<const Expr *, 2> CommaLHSs; 4993 SmallVector<SubobjectAdjustment, 2> Adjustments; 4994 // Find the expression whose lifetime needs to be extended. 4995 E = const_cast<Expr *>( 4996 cast<MaterializeTemporaryExpr>(E) 4997 ->getSubExpr() 4998 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 4999 // Visit the skipped comma operator left-hand sides for other temporaries. 5000 for (const Expr *CommaLHS : CommaLHSs) { 5001 VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS), 5002 /*ExternallyDestructed=*/false, Context); 5003 } 5004 goto tryAgain; 5005 } 5006 5007 case Stmt::BlockExprClass: 5008 // Don't recurse into blocks; their subexpressions don't get evaluated 5009 // here. 5010 return Block; 5011 5012 case Stmt::LambdaExprClass: { 5013 // For lambda expressions, only recurse into the capture initializers, 5014 // and not the body. 5015 auto *LE = cast<LambdaExpr>(E); 5016 CFGBlock *B = Block; 5017 for (Expr *Init : LE->capture_inits()) { 5018 if (Init) { 5019 if (CFGBlock *R = VisitForTemporaryDtors( 5020 Init, /*ExternallyDestructed=*/true, Context)) 5021 B = R; 5022 } 5023 } 5024 return B; 5025 } 5026 5027 case Stmt::StmtExprClass: 5028 // Don't recurse into statement expressions; any cleanups inside them 5029 // will be wrapped in their own ExprWithCleanups. 5030 return Block; 5031 5032 case Stmt::CXXDefaultArgExprClass: 5033 E = cast<CXXDefaultArgExpr>(E)->getExpr(); 5034 goto tryAgain; 5035 5036 case Stmt::CXXDefaultInitExprClass: 5037 E = cast<CXXDefaultInitExpr>(E)->getExpr(); 5038 goto tryAgain; 5039 } 5040 } 5041 5042 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E, 5043 bool ExternallyDestructed, 5044 TempDtorContext &Context) { 5045 if (isa<LambdaExpr>(E)) { 5046 // Do not visit the children of lambdas; they have their own CFGs. 5047 return Block; 5048 } 5049 5050 // When visiting children for destructors we want to visit them in reverse 5051 // order that they will appear in the CFG. Because the CFG is built 5052 // bottom-up, this means we visit them in their natural order, which 5053 // reverses them in the CFG. 5054 CFGBlock *B = Block; 5055 for (Stmt *Child : E->children()) 5056 if (Child) 5057 if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context)) 5058 B = R; 5059 5060 return B; 5061 } 5062 5063 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors( 5064 BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) { 5065 if (E->isCommaOp()) { 5066 // For the comma operator, the LHS expression is evaluated before the RHS 5067 // expression, so prepend temporary destructors for the LHS first. 5068 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context); 5069 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context); 5070 return RHSBlock ? RHSBlock : LHSBlock; 5071 } 5072 5073 if (E->isLogicalOp()) { 5074 VisitForTemporaryDtors(E->getLHS(), false, Context); 5075 TryResult RHSExecuted = tryEvaluateBool(E->getLHS()); 5076 if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr) 5077 RHSExecuted.negate(); 5078 5079 // We do not know at CFG-construction time whether the right-hand-side was 5080 // executed, thus we add a branch node that depends on the temporary 5081 // constructor call. 5082 TempDtorContext RHSContext( 5083 bothKnownTrue(Context.KnownExecuted, RHSExecuted)); 5084 VisitForTemporaryDtors(E->getRHS(), false, RHSContext); 5085 InsertTempDtorDecisionBlock(RHSContext); 5086 5087 return Block; 5088 } 5089 5090 if (E->isAssignmentOp()) { 5091 // For assignment operators, the RHS expression is evaluated before the LHS 5092 // expression, so prepend temporary destructors for the RHS first. 5093 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context); 5094 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context); 5095 return LHSBlock ? LHSBlock : RHSBlock; 5096 } 5097 5098 // Any other operator is visited normally. 5099 return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); 5100 } 5101 5102 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors( 5103 CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) { 5104 // First add destructors for temporaries in subexpression. 5105 // Because VisitCXXBindTemporaryExpr calls setDestructed: 5106 CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context); 5107 if (!ExternallyDestructed) { 5108 // If lifetime of temporary is not prolonged (by assigning to constant 5109 // reference) add destructor for it. 5110 5111 const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor(); 5112 5113 if (Dtor->getParent()->isAnyDestructorNoReturn()) { 5114 // If the destructor is marked as a no-return destructor, we need to 5115 // create a new block for the destructor which does not have as a 5116 // successor anything built thus far. Control won't flow out of this 5117 // block. 5118 if (B) Succ = B; 5119 Block = createNoReturnBlock(); 5120 } else if (Context.needsTempDtorBranch()) { 5121 // If we need to introduce a branch, we add a new block that we will hook 5122 // up to a decision block later. 5123 if (B) Succ = B; 5124 Block = createBlock(); 5125 } else { 5126 autoCreateBlock(); 5127 } 5128 if (Context.needsTempDtorBranch()) { 5129 Context.setDecisionPoint(Succ, E); 5130 } 5131 appendTemporaryDtor(Block, E); 5132 5133 B = Block; 5134 } 5135 return B; 5136 } 5137 5138 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context, 5139 CFGBlock *FalseSucc) { 5140 if (!Context.TerminatorExpr) { 5141 // If no temporary was found, we do not need to insert a decision point. 5142 return; 5143 } 5144 assert(Context.TerminatorExpr); 5145 CFGBlock *Decision = createBlock(false); 5146 Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, 5147 CFGTerminator::TemporaryDtorsBranch)); 5148 addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse()); 5149 addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ, 5150 !Context.KnownExecuted.isTrue()); 5151 Block = Decision; 5152 } 5153 5154 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors( 5155 AbstractConditionalOperator *E, bool ExternallyDestructed, 5156 TempDtorContext &Context) { 5157 VisitForTemporaryDtors(E->getCond(), false, Context); 5158 CFGBlock *ConditionBlock = Block; 5159 CFGBlock *ConditionSucc = Succ; 5160 TryResult ConditionVal = tryEvaluateBool(E->getCond()); 5161 TryResult NegatedVal = ConditionVal; 5162 if (NegatedVal.isKnown()) NegatedVal.negate(); 5163 5164 TempDtorContext TrueContext( 5165 bothKnownTrue(Context.KnownExecuted, ConditionVal)); 5166 VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext); 5167 CFGBlock *TrueBlock = Block; 5168 5169 Block = ConditionBlock; 5170 Succ = ConditionSucc; 5171 TempDtorContext FalseContext( 5172 bothKnownTrue(Context.KnownExecuted, NegatedVal)); 5173 VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext); 5174 5175 if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) { 5176 InsertTempDtorDecisionBlock(FalseContext, TrueBlock); 5177 } else if (TrueContext.TerminatorExpr) { 5178 Block = TrueBlock; 5179 InsertTempDtorDecisionBlock(TrueContext); 5180 } else { 5181 InsertTempDtorDecisionBlock(FalseContext); 5182 } 5183 return Block; 5184 } 5185 5186 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D, 5187 AddStmtChoice asc) { 5188 if (asc.alwaysAdd(*this, D)) { 5189 autoCreateBlock(); 5190 appendStmt(Block, D); 5191 } 5192 5193 // Iterate over all used expression in clauses. 5194 CFGBlock *B = Block; 5195 5196 // Reverse the elements to process them in natural order. Iterators are not 5197 // bidirectional, so we need to create temp vector. 5198 SmallVector<Stmt *, 8> Used( 5199 OMPExecutableDirective::used_clauses_children(D->clauses())); 5200 for (Stmt *S : llvm::reverse(Used)) { 5201 assert(S && "Expected non-null used-in-clause child."); 5202 if (CFGBlock *R = Visit(S)) 5203 B = R; 5204 } 5205 // Visit associated structured block if any. 5206 if (!D->isStandaloneDirective()) { 5207 Stmt *S = D->getRawStmt(); 5208 if (!isa<CompoundStmt>(S)) 5209 addLocalScopeAndDtors(S); 5210 if (CFGBlock *R = addStmt(S)) 5211 B = R; 5212 } 5213 5214 return B; 5215 } 5216 5217 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has 5218 /// no successors or predecessors. If this is the first block created in the 5219 /// CFG, it is automatically set to be the Entry and Exit of the CFG. 5220 CFGBlock *CFG::createBlock() { 5221 bool first_block = begin() == end(); 5222 5223 // Create the block. 5224 CFGBlock *Mem = new (getAllocator()) CFGBlock(NumBlockIDs++, BlkBVC, this); 5225 Blocks.push_back(Mem, BlkBVC); 5226 5227 // If this is the first block, set it as the Entry and Exit. 5228 if (first_block) 5229 Entry = Exit = &back(); 5230 5231 // Return the block. 5232 return &back(); 5233 } 5234 5235 /// buildCFG - Constructs a CFG from an AST. 5236 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement, 5237 ASTContext *C, const BuildOptions &BO) { 5238 CFGBuilder Builder(C, BO); 5239 return Builder.buildCFG(D, Statement); 5240 } 5241 5242 bool CFG::isLinear() const { 5243 // Quick path: if we only have the ENTRY block, the EXIT block, and some code 5244 // in between, then we have no room for control flow. 5245 if (size() <= 3) 5246 return true; 5247 5248 // Traverse the CFG until we find a branch. 5249 // TODO: While this should still be very fast, 5250 // maybe we should cache the answer. 5251 llvm::SmallPtrSet<const CFGBlock *, 4> Visited; 5252 const CFGBlock *B = Entry; 5253 while (B != Exit) { 5254 auto IteratorAndFlag = Visited.insert(B); 5255 if (!IteratorAndFlag.second) { 5256 // We looped back to a block that we've already visited. Not linear. 5257 return false; 5258 } 5259 5260 // Iterate over reachable successors. 5261 const CFGBlock *FirstReachableB = nullptr; 5262 for (const CFGBlock::AdjacentBlock &AB : B->succs()) { 5263 if (!AB.isReachable()) 5264 continue; 5265 5266 if (FirstReachableB == nullptr) { 5267 FirstReachableB = &*AB; 5268 } else { 5269 // We've encountered a branch. It's not a linear CFG. 5270 return false; 5271 } 5272 } 5273 5274 if (!FirstReachableB) { 5275 // We reached a dead end. EXIT is unreachable. This is linear enough. 5276 return true; 5277 } 5278 5279 // There's only one way to move forward. Proceed. 5280 B = FirstReachableB; 5281 } 5282 5283 // We reached EXIT and found no branches. 5284 return true; 5285 } 5286 5287 const CXXDestructorDecl * 5288 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const { 5289 switch (getKind()) { 5290 case CFGElement::Initializer: 5291 case CFGElement::NewAllocator: 5292 case CFGElement::LoopExit: 5293 case CFGElement::LifetimeEnds: 5294 case CFGElement::Statement: 5295 case CFGElement::Constructor: 5296 case CFGElement::CXXRecordTypedCall: 5297 case CFGElement::ScopeBegin: 5298 case CFGElement::ScopeEnd: 5299 case CFGElement::CleanupFunction: 5300 llvm_unreachable("getDestructorDecl should only be used with " 5301 "ImplicitDtors"); 5302 case CFGElement::AutomaticObjectDtor: { 5303 const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl(); 5304 QualType ty = var->getType(); 5305 5306 // FIXME: See CFGBuilder::addLocalScopeForVarDecl. 5307 // 5308 // Lifetime-extending constructs are handled here. This works for a single 5309 // temporary in an initializer expression. 5310 if (ty->isReferenceType()) { 5311 if (const Expr *Init = var->getInit()) { 5312 ty = getReferenceInitTemporaryType(Init); 5313 } 5314 } 5315 5316 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) { 5317 ty = arrayType->getElementType(); 5318 } 5319 5320 // The situation when the type of the lifetime-extending reference 5321 // does not correspond to the type of the object is supposed 5322 // to be handled by now. In particular, 'ty' is now the unwrapped 5323 // record type. 5324 const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); 5325 assert(classDecl); 5326 return classDecl->getDestructor(); 5327 } 5328 case CFGElement::DeleteDtor: { 5329 const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr(); 5330 QualType DTy = DE->getDestroyedType(); 5331 DTy = DTy.getNonReferenceType(); 5332 const CXXRecordDecl *classDecl = 5333 astContext.getBaseElementType(DTy)->getAsCXXRecordDecl(); 5334 return classDecl->getDestructor(); 5335 } 5336 case CFGElement::TemporaryDtor: { 5337 const CXXBindTemporaryExpr *bindExpr = 5338 castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); 5339 const CXXTemporary *temp = bindExpr->getTemporary(); 5340 return temp->getDestructor(); 5341 } 5342 case CFGElement::MemberDtor: { 5343 const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl(); 5344 QualType ty = field->getType(); 5345 5346 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) { 5347 ty = arrayType->getElementType(); 5348 } 5349 5350 const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); 5351 assert(classDecl); 5352 return classDecl->getDestructor(); 5353 } 5354 case CFGElement::BaseDtor: 5355 // Not yet supported. 5356 return nullptr; 5357 } 5358 llvm_unreachable("getKind() returned bogus value"); 5359 } 5360 5361 //===----------------------------------------------------------------------===// 5362 // CFGBlock operations. 5363 //===----------------------------------------------------------------------===// 5364 5365 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable) 5366 : ReachableBlock(IsReachable ? B : nullptr), 5367 UnreachableBlock(!IsReachable ? B : nullptr, 5368 B && IsReachable ? AB_Normal : AB_Unreachable) {} 5369 5370 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock) 5371 : ReachableBlock(B), 5372 UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock, 5373 B == AlternateBlock ? AB_Alternate : AB_Normal) {} 5374 5375 void CFGBlock::addSuccessor(AdjacentBlock Succ, 5376 BumpVectorContext &C) { 5377 if (CFGBlock *B = Succ.getReachableBlock()) 5378 B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C); 5379 5380 if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock()) 5381 UnreachableB->Preds.push_back(AdjacentBlock(this, false), C); 5382 5383 Succs.push_back(Succ, C); 5384 } 5385 5386 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F, 5387 const CFGBlock *From, const CFGBlock *To) { 5388 if (F.IgnoreNullPredecessors && !From) 5389 return true; 5390 5391 if (To && From && F.IgnoreDefaultsWithCoveredEnums) { 5392 // If the 'To' has no label or is labeled but the label isn't a 5393 // CaseStmt then filter this edge. 5394 if (const SwitchStmt *S = 5395 dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) { 5396 if (S->isAllEnumCasesCovered()) { 5397 const Stmt *L = To->getLabel(); 5398 if (!L || !isa<CaseStmt>(L)) 5399 return true; 5400 } 5401 } 5402 } 5403 5404 return false; 5405 } 5406 5407 //===----------------------------------------------------------------------===// 5408 // CFG pretty printing 5409 //===----------------------------------------------------------------------===// 5410 5411 namespace { 5412 5413 class StmtPrinterHelper : public PrinterHelper { 5414 using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>; 5415 using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>; 5416 5417 StmtMapTy StmtMap; 5418 DeclMapTy DeclMap; 5419 signed currentBlock = 0; 5420 unsigned currStmt = 0; 5421 const LangOptions &LangOpts; 5422 5423 public: 5424 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) 5425 : LangOpts(LO) { 5426 if (!cfg) 5427 return; 5428 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { 5429 unsigned j = 1; 5430 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; 5431 BI != BEnd; ++BI, ++j ) { 5432 if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) { 5433 const Stmt *stmt= SE->getStmt(); 5434 std::pair<unsigned, unsigned> P((*I)->getBlockID(), j); 5435 StmtMap[stmt] = P; 5436 5437 switch (stmt->getStmtClass()) { 5438 case Stmt::DeclStmtClass: 5439 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P; 5440 break; 5441 case Stmt::IfStmtClass: { 5442 const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable(); 5443 if (var) 5444 DeclMap[var] = P; 5445 break; 5446 } 5447 case Stmt::ForStmtClass: { 5448 const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable(); 5449 if (var) 5450 DeclMap[var] = P; 5451 break; 5452 } 5453 case Stmt::WhileStmtClass: { 5454 const VarDecl *var = 5455 cast<WhileStmt>(stmt)->getConditionVariable(); 5456 if (var) 5457 DeclMap[var] = P; 5458 break; 5459 } 5460 case Stmt::SwitchStmtClass: { 5461 const VarDecl *var = 5462 cast<SwitchStmt>(stmt)->getConditionVariable(); 5463 if (var) 5464 DeclMap[var] = P; 5465 break; 5466 } 5467 case Stmt::CXXCatchStmtClass: { 5468 const VarDecl *var = 5469 cast<CXXCatchStmt>(stmt)->getExceptionDecl(); 5470 if (var) 5471 DeclMap[var] = P; 5472 break; 5473 } 5474 default: 5475 break; 5476 } 5477 } 5478 } 5479 } 5480 } 5481 5482 ~StmtPrinterHelper() override = default; 5483 5484 const LangOptions &getLangOpts() const { return LangOpts; } 5485 void setBlockID(signed i) { currentBlock = i; } 5486 void setStmtID(unsigned i) { currStmt = i; } 5487 5488 bool handledStmt(Stmt *S, raw_ostream &OS) override { 5489 StmtMapTy::iterator I = StmtMap.find(S); 5490 5491 if (I == StmtMap.end()) 5492 return false; 5493 5494 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock 5495 && I->second.second == currStmt) { 5496 return false; 5497 } 5498 5499 OS << "[B" << I->second.first << "." << I->second.second << "]"; 5500 return true; 5501 } 5502 5503 bool handleDecl(const Decl *D, raw_ostream &OS) { 5504 DeclMapTy::iterator I = DeclMap.find(D); 5505 5506 if (I == DeclMap.end()) 5507 return false; 5508 5509 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock 5510 && I->second.second == currStmt) { 5511 return false; 5512 } 5513 5514 OS << "[B" << I->second.first << "." << I->second.second << "]"; 5515 return true; 5516 } 5517 }; 5518 5519 class CFGBlockTerminatorPrint 5520 : public StmtVisitor<CFGBlockTerminatorPrint,void> { 5521 raw_ostream &OS; 5522 StmtPrinterHelper* Helper; 5523 PrintingPolicy Policy; 5524 5525 public: 5526 CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper, 5527 const PrintingPolicy &Policy) 5528 : OS(os), Helper(helper), Policy(Policy) { 5529 this->Policy.IncludeNewlines = false; 5530 } 5531 5532 void VisitIfStmt(IfStmt *I) { 5533 OS << "if "; 5534 if (Stmt *C = I->getCond()) 5535 C->printPretty(OS, Helper, Policy); 5536 } 5537 5538 // Default case. 5539 void VisitStmt(Stmt *Terminator) { 5540 Terminator->printPretty(OS, Helper, Policy); 5541 } 5542 5543 void VisitDeclStmt(DeclStmt *DS) { 5544 VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); 5545 OS << "static init " << VD->getName(); 5546 } 5547 5548 void VisitForStmt(ForStmt *F) { 5549 OS << "for (" ; 5550 if (F->getInit()) 5551 OS << "..."; 5552 OS << "; "; 5553 if (Stmt *C = F->getCond()) 5554 C->printPretty(OS, Helper, Policy); 5555 OS << "; "; 5556 if (F->getInc()) 5557 OS << "..."; 5558 OS << ")"; 5559 } 5560 5561 void VisitWhileStmt(WhileStmt *W) { 5562 OS << "while " ; 5563 if (Stmt *C = W->getCond()) 5564 C->printPretty(OS, Helper, Policy); 5565 } 5566 5567 void VisitDoStmt(DoStmt *D) { 5568 OS << "do ... while "; 5569 if (Stmt *C = D->getCond()) 5570 C->printPretty(OS, Helper, Policy); 5571 } 5572 5573 void VisitSwitchStmt(SwitchStmt *Terminator) { 5574 OS << "switch "; 5575 Terminator->getCond()->printPretty(OS, Helper, Policy); 5576 } 5577 5578 void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; } 5579 5580 void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; } 5581 5582 void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; } 5583 5584 void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) { 5585 if (Stmt *Cond = C->getCond()) 5586 Cond->printPretty(OS, Helper, Policy); 5587 OS << " ? ... : ..."; 5588 } 5589 5590 void VisitChooseExpr(ChooseExpr *C) { 5591 OS << "__builtin_choose_expr( "; 5592 if (Stmt *Cond = C->getCond()) 5593 Cond->printPretty(OS, Helper, Policy); 5594 OS << " )"; 5595 } 5596 5597 void VisitIndirectGotoStmt(IndirectGotoStmt *I) { 5598 OS << "goto *"; 5599 if (Stmt *T = I->getTarget()) 5600 T->printPretty(OS, Helper, Policy); 5601 } 5602 5603 void VisitBinaryOperator(BinaryOperator* B) { 5604 if (!B->isLogicalOp()) { 5605 VisitExpr(B); 5606 return; 5607 } 5608 5609 if (B->getLHS()) 5610 B->getLHS()->printPretty(OS, Helper, Policy); 5611 5612 switch (B->getOpcode()) { 5613 case BO_LOr: 5614 OS << " || ..."; 5615 return; 5616 case BO_LAnd: 5617 OS << " && ..."; 5618 return; 5619 default: 5620 llvm_unreachable("Invalid logical operator."); 5621 } 5622 } 5623 5624 void VisitExpr(Expr *E) { 5625 E->printPretty(OS, Helper, Policy); 5626 } 5627 5628 public: 5629 void print(CFGTerminator T) { 5630 switch (T.getKind()) { 5631 case CFGTerminator::StmtBranch: 5632 Visit(T.getStmt()); 5633 break; 5634 case CFGTerminator::TemporaryDtorsBranch: 5635 OS << "(Temp Dtor) "; 5636 Visit(T.getStmt()); 5637 break; 5638 case CFGTerminator::VirtualBaseBranch: 5639 OS << "(See if most derived ctor has already initialized vbases)"; 5640 break; 5641 } 5642 } 5643 }; 5644 5645 } // namespace 5646 5647 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper, 5648 const CXXCtorInitializer *I) { 5649 if (I->isBaseInitializer()) 5650 OS << I->getBaseClass()->getAsCXXRecordDecl()->getName(); 5651 else if (I->isDelegatingInitializer()) 5652 OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName(); 5653 else 5654 OS << I->getAnyMember()->getName(); 5655 OS << "("; 5656 if (Expr *IE = I->getInit()) 5657 IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); 5658 OS << ")"; 5659 5660 if (I->isBaseInitializer()) 5661 OS << " (Base initializer)"; 5662 else if (I->isDelegatingInitializer()) 5663 OS << " (Delegating initializer)"; 5664 else 5665 OS << " (Member initializer)"; 5666 } 5667 5668 static void print_construction_context(raw_ostream &OS, 5669 StmtPrinterHelper &Helper, 5670 const ConstructionContext *CC) { 5671 SmallVector<const Stmt *, 3> Stmts; 5672 switch (CC->getKind()) { 5673 case ConstructionContext::SimpleConstructorInitializerKind: { 5674 OS << ", "; 5675 const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC); 5676 print_initializer(OS, Helper, SICC->getCXXCtorInitializer()); 5677 return; 5678 } 5679 case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: { 5680 OS << ", "; 5681 const auto *CICC = 5682 cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC); 5683 print_initializer(OS, Helper, CICC->getCXXCtorInitializer()); 5684 Stmts.push_back(CICC->getCXXBindTemporaryExpr()); 5685 break; 5686 } 5687 case ConstructionContext::SimpleVariableKind: { 5688 const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC); 5689 Stmts.push_back(SDSCC->getDeclStmt()); 5690 break; 5691 } 5692 case ConstructionContext::CXX17ElidedCopyVariableKind: { 5693 const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC); 5694 Stmts.push_back(CDSCC->getDeclStmt()); 5695 Stmts.push_back(CDSCC->getCXXBindTemporaryExpr()); 5696 break; 5697 } 5698 case ConstructionContext::NewAllocatedObjectKind: { 5699 const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC); 5700 Stmts.push_back(NECC->getCXXNewExpr()); 5701 break; 5702 } 5703 case ConstructionContext::SimpleReturnedValueKind: { 5704 const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC); 5705 Stmts.push_back(RSCC->getReturnStmt()); 5706 break; 5707 } 5708 case ConstructionContext::CXX17ElidedCopyReturnedValueKind: { 5709 const auto *RSCC = 5710 cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC); 5711 Stmts.push_back(RSCC->getReturnStmt()); 5712 Stmts.push_back(RSCC->getCXXBindTemporaryExpr()); 5713 break; 5714 } 5715 case ConstructionContext::SimpleTemporaryObjectKind: { 5716 const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC); 5717 Stmts.push_back(TOCC->getCXXBindTemporaryExpr()); 5718 Stmts.push_back(TOCC->getMaterializedTemporaryExpr()); 5719 break; 5720 } 5721 case ConstructionContext::ElidedTemporaryObjectKind: { 5722 const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC); 5723 Stmts.push_back(TOCC->getCXXBindTemporaryExpr()); 5724 Stmts.push_back(TOCC->getMaterializedTemporaryExpr()); 5725 Stmts.push_back(TOCC->getConstructorAfterElision()); 5726 break; 5727 } 5728 case ConstructionContext::LambdaCaptureKind: { 5729 const auto *LCC = cast<LambdaCaptureConstructionContext>(CC); 5730 Helper.handledStmt(const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS); 5731 OS << "+" << LCC->getIndex(); 5732 return; 5733 } 5734 case ConstructionContext::ArgumentKind: { 5735 const auto *ACC = cast<ArgumentConstructionContext>(CC); 5736 if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) { 5737 OS << ", "; 5738 Helper.handledStmt(const_cast<Stmt *>(BTE), OS); 5739 } 5740 OS << ", "; 5741 Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS); 5742 OS << "+" << ACC->getIndex(); 5743 return; 5744 } 5745 } 5746 for (auto I: Stmts) 5747 if (I) { 5748 OS << ", "; 5749 Helper.handledStmt(const_cast<Stmt *>(I), OS); 5750 } 5751 } 5752 5753 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, 5754 const CFGElement &E); 5755 5756 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const { 5757 LangOptions LangOpts; 5758 StmtPrinterHelper Helper(nullptr, LangOpts); 5759 print_elem(OS, Helper, *this); 5760 } 5761 5762 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, 5763 const CFGElement &E) { 5764 switch (E.getKind()) { 5765 case CFGElement::Kind::Statement: 5766 case CFGElement::Kind::CXXRecordTypedCall: 5767 case CFGElement::Kind::Constructor: { 5768 CFGStmt CS = E.castAs<CFGStmt>(); 5769 const Stmt *S = CS.getStmt(); 5770 assert(S != nullptr && "Expecting non-null Stmt"); 5771 5772 // special printing for statement-expressions. 5773 if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) { 5774 const CompoundStmt *Sub = SE->getSubStmt(); 5775 5776 auto Children = Sub->children(); 5777 if (Children.begin() != Children.end()) { 5778 OS << "({ ... ; "; 5779 Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS); 5780 OS << " })\n"; 5781 return; 5782 } 5783 } 5784 // special printing for comma expressions. 5785 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { 5786 if (B->getOpcode() == BO_Comma) { 5787 OS << "... , "; 5788 Helper.handledStmt(B->getRHS(),OS); 5789 OS << '\n'; 5790 return; 5791 } 5792 } 5793 S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); 5794 5795 if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) { 5796 if (isa<CXXOperatorCallExpr>(S)) 5797 OS << " (OperatorCall)"; 5798 OS << " (CXXRecordTypedCall"; 5799 print_construction_context(OS, Helper, VTC->getConstructionContext()); 5800 OS << ")"; 5801 } else if (isa<CXXOperatorCallExpr>(S)) { 5802 OS << " (OperatorCall)"; 5803 } else if (isa<CXXBindTemporaryExpr>(S)) { 5804 OS << " (BindTemporary)"; 5805 } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) { 5806 OS << " (CXXConstructExpr"; 5807 if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) { 5808 print_construction_context(OS, Helper, CE->getConstructionContext()); 5809 } 5810 OS << ", " << CCE->getType() << ")"; 5811 } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) { 5812 OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName() 5813 << ", " << CE->getType() << ")"; 5814 } 5815 5816 // Expressions need a newline. 5817 if (isa<Expr>(S)) 5818 OS << '\n'; 5819 5820 break; 5821 } 5822 5823 case CFGElement::Kind::Initializer: 5824 print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer()); 5825 OS << '\n'; 5826 break; 5827 5828 case CFGElement::Kind::AutomaticObjectDtor: { 5829 CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>(); 5830 const VarDecl *VD = DE.getVarDecl(); 5831 Helper.handleDecl(VD, OS); 5832 5833 QualType T = VD->getType(); 5834 if (T->isReferenceType()) 5835 T = getReferenceInitTemporaryType(VD->getInit(), nullptr); 5836 5837 OS << ".~"; 5838 T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts())); 5839 OS << "() (Implicit destructor)\n"; 5840 break; 5841 } 5842 5843 case CFGElement::Kind::CleanupFunction: 5844 OS << "CleanupFunction (" 5845 << E.castAs<CFGCleanupFunction>().getFunctionDecl()->getName() << ")\n"; 5846 break; 5847 5848 case CFGElement::Kind::LifetimeEnds: 5849 Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS); 5850 OS << " (Lifetime ends)\n"; 5851 break; 5852 5853 case CFGElement::Kind::LoopExit: 5854 OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n"; 5855 break; 5856 5857 case CFGElement::Kind::ScopeBegin: 5858 OS << "CFGScopeBegin("; 5859 if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl()) 5860 OS << VD->getQualifiedNameAsString(); 5861 OS << ")\n"; 5862 break; 5863 5864 case CFGElement::Kind::ScopeEnd: 5865 OS << "CFGScopeEnd("; 5866 if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl()) 5867 OS << VD->getQualifiedNameAsString(); 5868 OS << ")\n"; 5869 break; 5870 5871 case CFGElement::Kind::NewAllocator: 5872 OS << "CFGNewAllocator("; 5873 if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr()) 5874 AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); 5875 OS << ")\n"; 5876 break; 5877 5878 case CFGElement::Kind::DeleteDtor: { 5879 CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>(); 5880 const CXXRecordDecl *RD = DE.getCXXRecordDecl(); 5881 if (!RD) 5882 return; 5883 CXXDeleteExpr *DelExpr = 5884 const_cast<CXXDeleteExpr*>(DE.getDeleteExpr()); 5885 Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS); 5886 OS << "->~" << RD->getName().str() << "()"; 5887 OS << " (Implicit destructor)\n"; 5888 break; 5889 } 5890 5891 case CFGElement::Kind::BaseDtor: { 5892 const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier(); 5893 OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()"; 5894 OS << " (Base object destructor)\n"; 5895 break; 5896 } 5897 5898 case CFGElement::Kind::MemberDtor: { 5899 const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl(); 5900 const Type *T = FD->getType()->getBaseElementTypeUnsafe(); 5901 OS << "this->" << FD->getName(); 5902 OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()"; 5903 OS << " (Member object destructor)\n"; 5904 break; 5905 } 5906 5907 case CFGElement::Kind::TemporaryDtor: { 5908 const CXXBindTemporaryExpr *BT = 5909 E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); 5910 OS << "~"; 5911 BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); 5912 OS << "() (Temporary object destructor)\n"; 5913 break; 5914 } 5915 } 5916 } 5917 5918 static void print_block(raw_ostream &OS, const CFG* cfg, 5919 const CFGBlock &B, 5920 StmtPrinterHelper &Helper, bool print_edges, 5921 bool ShowColors) { 5922 Helper.setBlockID(B.getBlockID()); 5923 5924 // Print the header. 5925 if (ShowColors) 5926 OS.changeColor(raw_ostream::YELLOW, true); 5927 5928 OS << "\n [B" << B.getBlockID(); 5929 5930 if (&B == &cfg->getEntry()) 5931 OS << " (ENTRY)]\n"; 5932 else if (&B == &cfg->getExit()) 5933 OS << " (EXIT)]\n"; 5934 else if (&B == cfg->getIndirectGotoBlock()) 5935 OS << " (INDIRECT GOTO DISPATCH)]\n"; 5936 else if (B.hasNoReturnElement()) 5937 OS << " (NORETURN)]\n"; 5938 else 5939 OS << "]\n"; 5940 5941 if (ShowColors) 5942 OS.resetColor(); 5943 5944 // Print the label of this block. 5945 if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) { 5946 if (print_edges) 5947 OS << " "; 5948 5949 if (LabelStmt *L = dyn_cast<LabelStmt>(Label)) 5950 OS << L->getName(); 5951 else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) { 5952 OS << "case "; 5953 if (const Expr *LHS = C->getLHS()) 5954 LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); 5955 if (const Expr *RHS = C->getRHS()) { 5956 OS << " ... "; 5957 RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); 5958 } 5959 } else if (isa<DefaultStmt>(Label)) 5960 OS << "default"; 5961 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) { 5962 OS << "catch ("; 5963 if (const VarDecl *ED = CS->getExceptionDecl()) 5964 ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); 5965 else 5966 OS << "..."; 5967 OS << ")"; 5968 } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) { 5969 OS << "@catch ("; 5970 if (const VarDecl *PD = CS->getCatchParamDecl()) 5971 PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); 5972 else 5973 OS << "..."; 5974 OS << ")"; 5975 } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) { 5976 OS << "__except ("; 5977 ES->getFilterExpr()->printPretty(OS, &Helper, 5978 PrintingPolicy(Helper.getLangOpts()), 0); 5979 OS << ")"; 5980 } else 5981 llvm_unreachable("Invalid label statement in CFGBlock."); 5982 5983 OS << ":\n"; 5984 } 5985 5986 // Iterate through the statements in the block and print them. 5987 unsigned j = 1; 5988 5989 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; 5990 I != E ; ++I, ++j ) { 5991 // Print the statement # in the basic block and the statement itself. 5992 if (print_edges) 5993 OS << " "; 5994 5995 OS << llvm::format("%3d", j) << ": "; 5996 5997 Helper.setStmtID(j); 5998 5999 print_elem(OS, Helper, *I); 6000 } 6001 6002 // Print the terminator of this block. 6003 if (B.getTerminator().isValid()) { 6004 if (ShowColors) 6005 OS.changeColor(raw_ostream::GREEN); 6006 6007 OS << " T: "; 6008 6009 Helper.setBlockID(-1); 6010 6011 PrintingPolicy PP(Helper.getLangOpts()); 6012 CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP); 6013 TPrinter.print(B.getTerminator()); 6014 OS << '\n'; 6015 6016 if (ShowColors) 6017 OS.resetColor(); 6018 } 6019 6020 if (print_edges) { 6021 // Print the predecessors of this block. 6022 if (!B.pred_empty()) { 6023 const raw_ostream::Colors Color = raw_ostream::BLUE; 6024 if (ShowColors) 6025 OS.changeColor(Color); 6026 OS << " Preds " ; 6027 if (ShowColors) 6028 OS.resetColor(); 6029 OS << '(' << B.pred_size() << "):"; 6030 unsigned i = 0; 6031 6032 if (ShowColors) 6033 OS.changeColor(Color); 6034 6035 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); 6036 I != E; ++I, ++i) { 6037 if (i % 10 == 8) 6038 OS << "\n "; 6039 6040 CFGBlock *B = *I; 6041 bool Reachable = true; 6042 if (!B) { 6043 Reachable = false; 6044 B = I->getPossiblyUnreachableBlock(); 6045 } 6046 6047 OS << " B" << B->getBlockID(); 6048 if (!Reachable) 6049 OS << "(Unreachable)"; 6050 } 6051 6052 if (ShowColors) 6053 OS.resetColor(); 6054 6055 OS << '\n'; 6056 } 6057 6058 // Print the successors of this block. 6059 if (!B.succ_empty()) { 6060 const raw_ostream::Colors Color = raw_ostream::MAGENTA; 6061 if (ShowColors) 6062 OS.changeColor(Color); 6063 OS << " Succs "; 6064 if (ShowColors) 6065 OS.resetColor(); 6066 OS << '(' << B.succ_size() << "):"; 6067 unsigned i = 0; 6068 6069 if (ShowColors) 6070 OS.changeColor(Color); 6071 6072 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); 6073 I != E; ++I, ++i) { 6074 if (i % 10 == 8) 6075 OS << "\n "; 6076 6077 CFGBlock *B = *I; 6078 6079 bool Reachable = true; 6080 if (!B) { 6081 Reachable = false; 6082 B = I->getPossiblyUnreachableBlock(); 6083 } 6084 6085 if (B) { 6086 OS << " B" << B->getBlockID(); 6087 if (!Reachable) 6088 OS << "(Unreachable)"; 6089 } 6090 else { 6091 OS << " NULL"; 6092 } 6093 } 6094 6095 if (ShowColors) 6096 OS.resetColor(); 6097 OS << '\n'; 6098 } 6099 } 6100 } 6101 6102 /// dump - A simple pretty printer of a CFG that outputs to stderr. 6103 void CFG::dump(const LangOptions &LO, bool ShowColors) const { 6104 print(llvm::errs(), LO, ShowColors); 6105 } 6106 6107 /// print - A simple pretty printer of a CFG that outputs to an ostream. 6108 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const { 6109 StmtPrinterHelper Helper(this, LO); 6110 6111 // Print the entry block. 6112 print_block(OS, this, getEntry(), Helper, true, ShowColors); 6113 6114 // Iterate through the CFGBlocks and print them one by one. 6115 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { 6116 // Skip the entry block, because we already printed it. 6117 if (&(**I) == &getEntry() || &(**I) == &getExit()) 6118 continue; 6119 6120 print_block(OS, this, **I, Helper, true, ShowColors); 6121 } 6122 6123 // Print the exit block. 6124 print_block(OS, this, getExit(), Helper, true, ShowColors); 6125 OS << '\n'; 6126 OS.flush(); 6127 } 6128 6129 size_t CFGBlock::getIndexInCFG() const { 6130 return llvm::find(*getParent(), this) - getParent()->begin(); 6131 } 6132 6133 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. 6134 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO, 6135 bool ShowColors) const { 6136 print(llvm::errs(), cfg, LO, ShowColors); 6137 } 6138 6139 LLVM_DUMP_METHOD void CFGBlock::dump() const { 6140 dump(getParent(), LangOptions(), false); 6141 } 6142 6143 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. 6144 /// Generally this will only be called from CFG::print. 6145 void CFGBlock::print(raw_ostream &OS, const CFG* cfg, 6146 const LangOptions &LO, bool ShowColors) const { 6147 StmtPrinterHelper Helper(cfg, LO); 6148 print_block(OS, cfg, *this, Helper, true, ShowColors); 6149 OS << '\n'; 6150 } 6151 6152 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. 6153 void CFGBlock::printTerminator(raw_ostream &OS, 6154 const LangOptions &LO) const { 6155 CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO)); 6156 TPrinter.print(getTerminator()); 6157 } 6158 6159 /// printTerminatorJson - Pretty-prints the terminator in JSON format. 6160 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO, 6161 bool AddQuotes) const { 6162 std::string Buf; 6163 llvm::raw_string_ostream TempOut(Buf); 6164 6165 printTerminator(TempOut, LO); 6166 6167 Out << JsonFormat(TempOut.str(), AddQuotes); 6168 } 6169 6170 // Returns true if by simply looking at the block, we can be sure that it 6171 // results in a sink during analysis. This is useful to know when the analysis 6172 // was interrupted, and we try to figure out if it would sink eventually. 6173 // There may be many more reasons why a sink would appear during analysis 6174 // (eg. checkers may generate sinks arbitrarily), but here we only consider 6175 // sinks that would be obvious by looking at the CFG. 6176 static bool isImmediateSinkBlock(const CFGBlock *Blk) { 6177 if (Blk->hasNoReturnElement()) 6178 return true; 6179 6180 // FIXME: Throw-expressions are currently generating sinks during analysis: 6181 // they're not supported yet, and also often used for actually terminating 6182 // the program. So we should treat them as sinks in this analysis as well, 6183 // at least for now, but once we have better support for exceptions, 6184 // we'd need to carefully handle the case when the throw is being 6185 // immediately caught. 6186 if (llvm::any_of(*Blk, [](const CFGElement &Elm) { 6187 if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) 6188 if (isa<CXXThrowExpr>(StmtElm->getStmt())) 6189 return true; 6190 return false; 6191 })) 6192 return true; 6193 6194 return false; 6195 } 6196 6197 bool CFGBlock::isInevitablySinking() const { 6198 const CFG &Cfg = *getParent(); 6199 6200 const CFGBlock *StartBlk = this; 6201 if (isImmediateSinkBlock(StartBlk)) 6202 return true; 6203 6204 llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; 6205 llvm::SmallPtrSet<const CFGBlock *, 32> Visited; 6206 6207 DFSWorkList.push_back(StartBlk); 6208 while (!DFSWorkList.empty()) { 6209 const CFGBlock *Blk = DFSWorkList.back(); 6210 DFSWorkList.pop_back(); 6211 Visited.insert(Blk); 6212 6213 // If at least one path reaches the CFG exit, it means that control is 6214 // returned to the caller. For now, say that we are not sure what 6215 // happens next. If necessary, this can be improved to analyze 6216 // the parent StackFrameContext's call site in a similar manner. 6217 if (Blk == &Cfg.getExit()) 6218 return false; 6219 6220 for (const auto &Succ : Blk->succs()) { 6221 if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { 6222 if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) { 6223 // If the block has reachable child blocks that aren't no-return, 6224 // add them to the worklist. 6225 DFSWorkList.push_back(SuccBlk); 6226 } 6227 } 6228 } 6229 } 6230 6231 // Nothing reached the exit. It can only mean one thing: there's no return. 6232 return true; 6233 } 6234 6235 const Expr *CFGBlock::getLastCondition() const { 6236 // If the terminator is a temporary dtor or a virtual base, etc, we can't 6237 // retrieve a meaningful condition, bail out. 6238 if (Terminator.getKind() != CFGTerminator::StmtBranch) 6239 return nullptr; 6240 6241 // Also, if this method was called on a block that doesn't have 2 successors, 6242 // this block doesn't have retrievable condition. 6243 if (succ_size() < 2) 6244 return nullptr; 6245 6246 // FIXME: Is there a better condition expression we can return in this case? 6247 if (size() == 0) 6248 return nullptr; 6249 6250 auto StmtElem = rbegin()->getAs<CFGStmt>(); 6251 if (!StmtElem) 6252 return nullptr; 6253 6254 const Stmt *Cond = StmtElem->getStmt(); 6255 if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond)) 6256 return nullptr; 6257 6258 // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence 6259 // the cast<>. 6260 return cast<Expr>(Cond)->IgnoreParens(); 6261 } 6262 6263 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) { 6264 Stmt *Terminator = getTerminatorStmt(); 6265 if (!Terminator) 6266 return nullptr; 6267 6268 Expr *E = nullptr; 6269 6270 switch (Terminator->getStmtClass()) { 6271 default: 6272 break; 6273 6274 case Stmt::CXXForRangeStmtClass: 6275 E = cast<CXXForRangeStmt>(Terminator)->getCond(); 6276 break; 6277 6278 case Stmt::ForStmtClass: 6279 E = cast<ForStmt>(Terminator)->getCond(); 6280 break; 6281 6282 case Stmt::WhileStmtClass: 6283 E = cast<WhileStmt>(Terminator)->getCond(); 6284 break; 6285 6286 case Stmt::DoStmtClass: 6287 E = cast<DoStmt>(Terminator)->getCond(); 6288 break; 6289 6290 case Stmt::IfStmtClass: 6291 E = cast<IfStmt>(Terminator)->getCond(); 6292 break; 6293 6294 case Stmt::ChooseExprClass: 6295 E = cast<ChooseExpr>(Terminator)->getCond(); 6296 break; 6297 6298 case Stmt::IndirectGotoStmtClass: 6299 E = cast<IndirectGotoStmt>(Terminator)->getTarget(); 6300 break; 6301 6302 case Stmt::SwitchStmtClass: 6303 E = cast<SwitchStmt>(Terminator)->getCond(); 6304 break; 6305 6306 case Stmt::BinaryConditionalOperatorClass: 6307 E = cast<BinaryConditionalOperator>(Terminator)->getCond(); 6308 break; 6309 6310 case Stmt::ConditionalOperatorClass: 6311 E = cast<ConditionalOperator>(Terminator)->getCond(); 6312 break; 6313 6314 case Stmt::BinaryOperatorClass: // '&&' and '||' 6315 E = cast<BinaryOperator>(Terminator)->getLHS(); 6316 break; 6317 6318 case Stmt::ObjCForCollectionStmtClass: 6319 return Terminator; 6320 } 6321 6322 if (!StripParens) 6323 return E; 6324 6325 return E ? E->IgnoreParens() : nullptr; 6326 } 6327 6328 //===----------------------------------------------------------------------===// 6329 // CFG Graphviz Visualization 6330 //===----------------------------------------------------------------------===// 6331 6332 static StmtPrinterHelper *GraphHelper; 6333 6334 void CFG::viewCFG(const LangOptions &LO) const { 6335 StmtPrinterHelper H(this, LO); 6336 GraphHelper = &H; 6337 llvm::ViewGraph(this,"CFG"); 6338 GraphHelper = nullptr; 6339 } 6340 6341 namespace llvm { 6342 6343 template<> 6344 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { 6345 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 6346 6347 static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) { 6348 std::string OutSStr; 6349 llvm::raw_string_ostream Out(OutSStr); 6350 print_block(Out,Graph, *Node, *GraphHelper, false, false); 6351 std::string& OutStr = Out.str(); 6352 6353 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 6354 6355 // Process string output to make it nicer... 6356 for (unsigned i = 0; i != OutStr.length(); ++i) 6357 if (OutStr[i] == '\n') { // Left justify 6358 OutStr[i] = '\\'; 6359 OutStr.insert(OutStr.begin()+i+1, 'l'); 6360 } 6361 6362 return OutStr; 6363 } 6364 }; 6365 6366 } // namespace llvm 6367