xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/CFG.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the CFG and CFGBuilder classes for representing and
10 //  building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/DOTGraphTraits.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/SaveAndRestore.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <memory>
58 #include <optional>
59 #include <string>
60 #include <tuple>
61 #include <utility>
62 #include <vector>
63 
64 using namespace clang;
65 
66 static SourceLocation GetEndLoc(Decl *D) {
67   if (VarDecl *VD = dyn_cast<VarDecl>(D))
68     if (Expr *Ex = VD->getInit())
69       return Ex->getSourceRange().getEnd();
70   return D->getLocation();
71 }
72 
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 /// FIXME: it would be good to unify this function with
76 /// getIntegerLiteralSubexpressionValue at some point given the similarity
77 /// between the functions.
78 
79 static bool IsIntegerLiteralConstantExpr(const Expr *E) {
80   // Allow parentheses
81   E = E->IgnoreParens();
82 
83   // Allow conversions to different integer kind.
84   if (const auto *CE = dyn_cast<CastExpr>(E)) {
85     if (CE->getCastKind() != CK_IntegralCast)
86       return false;
87     E = CE->getSubExpr();
88   }
89 
90   // Allow negative numbers.
91   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
92     if (UO->getOpcode() != UO_Minus)
93       return false;
94     E = UO->getSubExpr();
95   }
96 
97   return isa<IntegerLiteral>(E);
98 }
99 
100 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
101 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
102 /// returns nullptr.
103 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
104   E = E->IgnoreParens();
105   if (IsIntegerLiteralConstantExpr(E))
106     return E;
107   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
108     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
109   return nullptr;
110 }
111 
112 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
113 /// NumExpr is an integer literal or an enum constant.
114 ///
115 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
116 /// null.
117 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
118 tryNormalizeBinaryOperator(const BinaryOperator *B) {
119   BinaryOperatorKind Op = B->getOpcode();
120 
121   const Expr *MaybeDecl = B->getLHS();
122   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
123   // Expr looked like `0 == Foo` instead of `Foo == 0`
124   if (Constant == nullptr) {
125     // Flip the operator
126     if (Op == BO_GT)
127       Op = BO_LT;
128     else if (Op == BO_GE)
129       Op = BO_LE;
130     else if (Op == BO_LT)
131       Op = BO_GT;
132     else if (Op == BO_LE)
133       Op = BO_GE;
134 
135     MaybeDecl = B->getRHS();
136     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
137   }
138 
139   return std::make_tuple(MaybeDecl, Op, Constant);
140 }
141 
142 /// For an expression `x == Foo && x == Bar`, this determines whether the
143 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
144 /// literals.
145 ///
146 /// It's an error to pass this arguments that are not either IntegerLiterals
147 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
148 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
149   // User intent isn't clear if they're mixing int literals with enum
150   // constants.
151   if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
152     return false;
153 
154   // Integer literal comparisons, regardless of literal type, are acceptable.
155   if (!isa<DeclRefExpr>(E1))
156     return true;
157 
158   // IntegerLiterals are handled above and only EnumConstantDecls are expected
159   // beyond this point
160   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
161   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
162   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
163 
164   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
165   const DeclContext *DC1 = Decl1->getDeclContext();
166   const DeclContext *DC2 = Decl2->getDeclContext();
167 
168   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
169   return DC1 == DC2;
170 }
171 
172 namespace {
173 
174 class CFGBuilder;
175 
176 /// The CFG builder uses a recursive algorithm to build the CFG.  When
177 ///  we process an expression, sometimes we know that we must add the
178 ///  subexpressions as block-level expressions.  For example:
179 ///
180 ///    exp1 || exp2
181 ///
182 ///  When processing the '||' expression, we know that exp1 and exp2
183 ///  need to be added as block-level expressions, even though they
184 ///  might not normally need to be.  AddStmtChoice records this
185 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
186 ///  the builder has an option not to add a subexpression as a
187 ///  block-level expression.
188 class AddStmtChoice {
189 public:
190   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
191 
192   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
193 
194   bool alwaysAdd(CFGBuilder &builder,
195                  const Stmt *stmt) const;
196 
197   /// Return a copy of this object, except with the 'always-add' bit
198   ///  set as specified.
199   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
200     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
201   }
202 
203 private:
204   Kind kind;
205 };
206 
207 /// LocalScope - Node in tree of local scopes created for C++ implicit
208 /// destructor calls generation. It contains list of automatic variables
209 /// declared in the scope and link to position in previous scope this scope
210 /// began in.
211 ///
212 /// The process of creating local scopes is as follows:
213 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
214 /// - Before processing statements in scope (e.g. CompoundStmt) create
215 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
216 ///   and set CFGBuilder::ScopePos to the end of new scope,
217 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
218 ///   at this VarDecl,
219 /// - For every normal (without jump) end of scope add to CFGBlock destructors
220 ///   for objects in the current scope,
221 /// - For every jump add to CFGBlock destructors for objects
222 ///   between CFGBuilder::ScopePos and local scope position saved for jump
223 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
224 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
225 ///   (adding any variable that doesn't need constructor to be called to
226 ///   LocalScope can break this assumption),
227 ///
228 class LocalScope {
229 public:
230   using AutomaticVarsTy = BumpVector<VarDecl *>;
231 
232   /// const_iterator - Iterates local scope backwards and jumps to previous
233   /// scope on reaching the beginning of currently iterated scope.
234   class const_iterator {
235     const LocalScope* Scope = nullptr;
236 
237     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
238     /// Invalid iterator (with null Scope) has VarIter equal to 0.
239     unsigned VarIter = 0;
240 
241   public:
242     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
243     /// Incrementing invalid iterator is allowed and will result in invalid
244     /// iterator.
245     const_iterator() = default;
246 
247     /// Create valid iterator. In case when S.Prev is an invalid iterator and
248     /// I is equal to 0, this will create invalid iterator.
249     const_iterator(const LocalScope& S, unsigned I)
250         : Scope(&S), VarIter(I) {
251       // Iterator to "end" of scope is not allowed. Handle it by going up
252       // in scopes tree possibly up to invalid iterator in the root.
253       if (VarIter == 0 && Scope)
254         *this = Scope->Prev;
255     }
256 
257     VarDecl *const* operator->() const {
258       assert(Scope && "Dereferencing invalid iterator is not allowed");
259       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
260       return &Scope->Vars[VarIter - 1];
261     }
262 
263     const VarDecl *getFirstVarInScope() const {
264       assert(Scope && "Dereferencing invalid iterator is not allowed");
265       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
266       return Scope->Vars[0];
267     }
268 
269     VarDecl *operator*() const {
270       return *this->operator->();
271     }
272 
273     const_iterator &operator++() {
274       if (!Scope)
275         return *this;
276 
277       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
278       --VarIter;
279       if (VarIter == 0)
280         *this = Scope->Prev;
281       return *this;
282     }
283     const_iterator operator++(int) {
284       const_iterator P = *this;
285       ++*this;
286       return P;
287     }
288 
289     bool operator==(const const_iterator &rhs) const {
290       return Scope == rhs.Scope && VarIter == rhs.VarIter;
291     }
292     bool operator!=(const const_iterator &rhs) const {
293       return !(*this == rhs);
294     }
295 
296     explicit operator bool() const {
297       return *this != const_iterator();
298     }
299 
300     int distance(const_iterator L);
301     const_iterator shared_parent(const_iterator L);
302     bool pointsToFirstDeclaredVar() { return VarIter == 1; }
303     bool inSameLocalScope(const_iterator rhs) { return Scope == rhs.Scope; }
304   };
305 
306 private:
307   BumpVectorContext ctx;
308 
309   /// Automatic variables in order of declaration.
310   AutomaticVarsTy Vars;
311 
312   /// Iterator to variable in previous scope that was declared just before
313   /// begin of this scope.
314   const_iterator Prev;
315 
316 public:
317   /// Constructs empty scope linked to previous scope in specified place.
318   LocalScope(BumpVectorContext ctx, const_iterator P)
319       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
320 
321   /// Begin of scope in direction of CFG building (backwards).
322   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
323 
324   void addVar(VarDecl *VD) {
325     Vars.push_back(VD, ctx);
326   }
327 };
328 
329 } // namespace
330 
331 /// distance - Calculates distance from this to L. L must be reachable from this
332 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
333 /// number of scopes between this and L.
334 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
335   int D = 0;
336   const_iterator F = *this;
337   while (F.Scope != L.Scope) {
338     assert(F != const_iterator() &&
339            "L iterator is not reachable from F iterator.");
340     D += F.VarIter;
341     F = F.Scope->Prev;
342   }
343   D += F.VarIter - L.VarIter;
344   return D;
345 }
346 
347 /// Calculates the closest parent of this iterator
348 /// that is in a scope reachable through the parents of L.
349 /// I.e. when using 'goto' from this to L, the lifetime of all variables
350 /// between this and shared_parent(L) end.
351 LocalScope::const_iterator
352 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
353   // one of iterators is not valid (we are not in scope), so common
354   // parent is const_iterator() (i.e. sentinel).
355   if ((*this == const_iterator()) || (L == const_iterator())) {
356     return const_iterator();
357   }
358 
359   const_iterator F = *this;
360   if (F.inSameLocalScope(L)) {
361     // Iterators are in the same scope, get common subset of variables.
362     F.VarIter = std::min(F.VarIter, L.VarIter);
363     return F;
364   }
365 
366   llvm::SmallDenseMap<const LocalScope *, unsigned, 4> ScopesOfL;
367   while (true) {
368     ScopesOfL.try_emplace(L.Scope, L.VarIter);
369     if (L == const_iterator())
370       break;
371     L = L.Scope->Prev;
372   }
373 
374   while (true) {
375     if (auto LIt = ScopesOfL.find(F.Scope); LIt != ScopesOfL.end()) {
376       // Get common subset of variables in given scope
377       F.VarIter = std::min(F.VarIter, LIt->getSecond());
378       return F;
379     }
380     assert(F != const_iterator() &&
381            "L iterator is not reachable from F iterator.");
382     F = F.Scope->Prev;
383   }
384 }
385 
386 namespace {
387 
388 /// Structure for specifying position in CFG during its build process. It
389 /// consists of CFGBlock that specifies position in CFG and
390 /// LocalScope::const_iterator that specifies position in LocalScope graph.
391 struct BlockScopePosPair {
392   CFGBlock *block = nullptr;
393   LocalScope::const_iterator scopePosition;
394 
395   BlockScopePosPair() = default;
396   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
397       : block(b), scopePosition(scopePos) {}
398 };
399 
400 /// TryResult - a class representing a variant over the values
401 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
402 ///  and is used by the CFGBuilder to decide if a branch condition
403 ///  can be decided up front during CFG construction.
404 class TryResult {
405   int X = -1;
406 
407 public:
408   TryResult() = default;
409   TryResult(bool b) : X(b ? 1 : 0) {}
410 
411   bool isTrue() const { return X == 1; }
412   bool isFalse() const { return X == 0; }
413   bool isKnown() const { return X >= 0; }
414 
415   void negate() {
416     assert(isKnown());
417     X ^= 0x1;
418   }
419 };
420 
421 } // namespace
422 
423 static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
424   if (!R1.isKnown() || !R2.isKnown())
425     return TryResult();
426   return TryResult(R1.isTrue() && R2.isTrue());
427 }
428 
429 namespace {
430 
431 class reverse_children {
432   llvm::SmallVector<Stmt *, 12> childrenBuf;
433   ArrayRef<Stmt *> children;
434 
435 public:
436   reverse_children(Stmt *S);
437 
438   using iterator = ArrayRef<Stmt *>::reverse_iterator;
439 
440   iterator begin() const { return children.rbegin(); }
441   iterator end() const { return children.rend(); }
442 };
443 
444 } // namespace
445 
446 reverse_children::reverse_children(Stmt *S) {
447   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
448     children = CE->getRawSubExprs();
449     return;
450   }
451   switch (S->getStmtClass()) {
452     // Note: Fill in this switch with more cases we want to optimize.
453     case Stmt::InitListExprClass: {
454       InitListExpr *IE = cast<InitListExpr>(S);
455       children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()),
456                                 IE->getNumInits());
457       return;
458     }
459     default:
460       break;
461   }
462 
463   // Default case for all other statements.
464   llvm::append_range(childrenBuf, S->children());
465 
466   // This needs to be done *after* childrenBuf has been populated.
467   children = childrenBuf;
468 }
469 
470 namespace {
471 
472 /// CFGBuilder - This class implements CFG construction from an AST.
473 ///   The builder is stateful: an instance of the builder should be used to only
474 ///   construct a single CFG.
475 ///
476 ///   Example usage:
477 ///
478 ///     CFGBuilder builder;
479 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
480 ///
481 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
482 ///  the AST in reverse order so that the successor of a basic block is
483 ///  constructed prior to its predecessor.  This allows us to nicely capture
484 ///  implicit fall-throughs without extra basic blocks.
485 class CFGBuilder {
486   using JumpTarget = BlockScopePosPair;
487   using JumpSource = BlockScopePosPair;
488 
489   ASTContext *Context;
490   std::unique_ptr<CFG> cfg;
491 
492   // Current block.
493   CFGBlock *Block = nullptr;
494 
495   // Block after the current block.
496   CFGBlock *Succ = nullptr;
497 
498   JumpTarget ContinueJumpTarget;
499   JumpTarget BreakJumpTarget;
500   JumpTarget SEHLeaveJumpTarget;
501   CFGBlock *SwitchTerminatedBlock = nullptr;
502   CFGBlock *DefaultCaseBlock = nullptr;
503 
504   // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
505   // try and @try can be mixed and generally work the same.
506   // The frontend forbids mixing SEH __try with either try or @try.
507   // So having one for all three is enough.
508   CFGBlock *TryTerminatedBlock = nullptr;
509 
510   // Current position in local scope.
511   LocalScope::const_iterator ScopePos;
512 
513   // LabelMap records the mapping from Label expressions to their jump targets.
514   using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
515   LabelMapTy LabelMap;
516 
517   // A list of blocks that end with a "goto" that must be backpatched to their
518   // resolved targets upon completion of CFG construction.
519   using BackpatchBlocksTy = std::vector<JumpSource>;
520   BackpatchBlocksTy BackpatchBlocks;
521 
522   // A list of labels whose address has been taken (for indirect gotos).
523   using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
524   LabelSetTy AddressTakenLabels;
525 
526   // Information about the currently visited C++ object construction site.
527   // This is set in the construction trigger and read when the constructor
528   // or a function that returns an object by value is being visited.
529   llvm::DenseMap<Expr *, const ConstructionContextLayer *>
530       ConstructionContextMap;
531 
532   bool badCFG = false;
533   const CFG::BuildOptions &BuildOpts;
534 
535   // State to track for building switch statements.
536   bool switchExclusivelyCovered = false;
537   Expr::EvalResult *switchCond = nullptr;
538 
539   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
540   const Stmt *lastLookup = nullptr;
541 
542   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
543   // during construction of branches for chained logical operators.
544   using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
545   CachedBoolEvalsTy CachedBoolEvals;
546 
547 public:
548   explicit CFGBuilder(ASTContext *astContext,
549                       const CFG::BuildOptions &buildOpts)
550       : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {}
551 
552   // buildCFG - Used by external clients to construct the CFG.
553   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
554 
555   bool alwaysAdd(const Stmt *stmt);
556 
557 private:
558   // Visitors to walk an AST and construct the CFG.
559   CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
560   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
561   CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc);
562   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
563   CFGBlock *VisitBreakStmt(BreakStmt *B);
564   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
565   CFGBlock *VisitCaseStmt(CaseStmt *C);
566   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
567   CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
568   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
569                                      AddStmtChoice asc);
570   CFGBlock *VisitContinueStmt(ContinueStmt *C);
571   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
572                                       AddStmtChoice asc);
573   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
574   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
575   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
576   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
577   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
578   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
579                                        AddStmtChoice asc);
580   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
581                                         AddStmtChoice asc);
582   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
583   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
584   CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc);
585   CFGBlock *VisitDeclStmt(DeclStmt *DS);
586   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
587   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
588   CFGBlock *VisitDoStmt(DoStmt *D);
589   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
590                                   AddStmtChoice asc, bool ExternallyDestructed);
591   CFGBlock *VisitForStmt(ForStmt *F);
592   CFGBlock *VisitGotoStmt(GotoStmt *G);
593   CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
594   CFGBlock *VisitIfStmt(IfStmt *I);
595   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
596   CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
597   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
598   CFGBlock *VisitLabelStmt(LabelStmt *L);
599   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
600   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
601   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
602   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
603                                                          Stmt *Term,
604                                                          CFGBlock *TrueBlock,
605                                                          CFGBlock *FalseBlock);
606   CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
607                                           AddStmtChoice asc);
608   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
609   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
610   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
611   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
612   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
613   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
614   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
615   CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
616   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
617   CFGBlock *VisitReturnStmt(Stmt *S);
618   CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S,
619                                       AddStmtChoice asc);
620   CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
621   CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
622   CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
623   CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
624   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
625   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
626   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
627                                           AddStmtChoice asc);
628   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
629   CFGBlock *VisitWhileStmt(WhileStmt *W);
630   CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc);
631 
632   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
633                   bool ExternallyDestructed = false);
634   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
635   CFGBlock *VisitChildren(Stmt *S);
636   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
637   CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
638                                         AddStmtChoice asc);
639 
640   void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
641                                     const Stmt *S) {
642     if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
643       appendScopeBegin(B, VD, S);
644   }
645 
646   /// When creating the CFG for temporary destructors, we want to mirror the
647   /// branch structure of the corresponding constructor calls.
648   /// Thus, while visiting a statement for temporary destructors, we keep a
649   /// context to keep track of the following information:
650   /// - whether a subexpression is executed unconditionally
651   /// - if a subexpression is executed conditionally, the first
652   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
653   ///   corresponds to the last temporary destructor we have to call for this
654   ///   subexpression) and the CFG block at that point (which will become the
655   ///   successor block when inserting the decision point).
656   ///
657   /// That way, we can build the branch structure for temporary destructors as
658   /// follows:
659   /// 1. If a subexpression is executed unconditionally, we add the temporary
660   ///    destructor calls to the current block.
661   /// 2. If a subexpression is executed conditionally, when we encounter a
662   ///    CXXBindTemporaryExpr:
663   ///    a) If it is the first temporary destructor call in the subexpression,
664   ///       we remember the CXXBindTemporaryExpr and the current block in the
665   ///       TempDtorContext; we start a new block, and insert the temporary
666   ///       destructor call.
667   ///    b) Otherwise, add the temporary destructor call to the current block.
668   ///  3. When we finished visiting a conditionally executed subexpression,
669   ///     and we found at least one temporary constructor during the visitation
670   ///     (2.a has executed), we insert a decision block that uses the
671   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
672   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
673   ///     branches to the stored successor.
674   struct TempDtorContext {
675     TempDtorContext() = default;
676     TempDtorContext(TryResult KnownExecuted)
677         : IsConditional(true), KnownExecuted(KnownExecuted) {}
678 
679     /// Returns whether we need to start a new branch for a temporary destructor
680     /// call. This is the case when the temporary destructor is
681     /// conditionally executed, and it is the first one we encounter while
682     /// visiting a subexpression - other temporary destructors at the same level
683     /// will be added to the same block and are executed under the same
684     /// condition.
685     bool needsTempDtorBranch() const {
686       return IsConditional && !TerminatorExpr;
687     }
688 
689     /// Remember the successor S of a temporary destructor decision branch for
690     /// the corresponding CXXBindTemporaryExpr E.
691     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
692       Succ = S;
693       TerminatorExpr = E;
694     }
695 
696     const bool IsConditional = false;
697     const TryResult KnownExecuted = true;
698     CFGBlock *Succ = nullptr;
699     CXXBindTemporaryExpr *TerminatorExpr = nullptr;
700   };
701 
702   // Visitors to walk an AST and generate destructors of temporaries in
703   // full expression.
704   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
705                                    TempDtorContext &Context);
706   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E,  bool ExternallyDestructed,
707                                            TempDtorContext &Context);
708   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
709                                                  bool ExternallyDestructed,
710                                                  TempDtorContext &Context);
711   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
712       CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
713   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
714       AbstractConditionalOperator *E, bool ExternallyDestructed,
715       TempDtorContext &Context);
716   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
717                                    CFGBlock *FalseSucc = nullptr);
718 
719   // NYS == Not Yet Supported
720   CFGBlock *NYS() {
721     badCFG = true;
722     return Block;
723   }
724 
725   // Remember to apply the construction context based on the current \p Layer
726   // when constructing the CFG element for \p CE.
727   void consumeConstructionContext(const ConstructionContextLayer *Layer,
728                                   Expr *E);
729 
730   // Scan \p Child statement to find constructors in it, while keeping in mind
731   // that its parent statement is providing a partial construction context
732   // described by \p Layer. If a constructor is found, it would be assigned
733   // the context based on the layer. If an additional construction context layer
734   // is found, the function recurses into that.
735   void findConstructionContexts(const ConstructionContextLayer *Layer,
736                                 Stmt *Child);
737 
738   // Scan all arguments of a call expression for a construction context.
739   // These sorts of call expressions don't have a common superclass,
740   // hence strict duck-typing.
741   template <typename CallLikeExpr,
742             typename = std::enable_if_t<
743                 std::is_base_of_v<CallExpr, CallLikeExpr> ||
744                 std::is_base_of_v<CXXConstructExpr, CallLikeExpr> ||
745                 std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>>
746   void findConstructionContextsForArguments(CallLikeExpr *E) {
747     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
748       Expr *Arg = E->getArg(i);
749       if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
750         findConstructionContexts(
751             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
752                                              ConstructionContextItem(E, i)),
753             Arg);
754     }
755   }
756 
757   // Unset the construction context after consuming it. This is done immediately
758   // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
759   // there's no need to do this manually in every Visit... function.
760   void cleanupConstructionContext(Expr *E);
761 
762   void autoCreateBlock() { if (!Block) Block = createBlock(); }
763   CFGBlock *createBlock(bool add_successor = true);
764   CFGBlock *createNoReturnBlock();
765 
766   CFGBlock *addStmt(Stmt *S) {
767     return Visit(S, AddStmtChoice::AlwaysAdd);
768   }
769 
770   CFGBlock *addInitializer(CXXCtorInitializer *I);
771   void addLoopExit(const Stmt *LoopStmt);
772   void addAutomaticObjHandling(LocalScope::const_iterator B,
773                                LocalScope::const_iterator E, Stmt *S);
774   void addAutomaticObjDestruction(LocalScope::const_iterator B,
775                                   LocalScope::const_iterator E, Stmt *S);
776   void addScopeExitHandling(LocalScope::const_iterator B,
777                             LocalScope::const_iterator E, Stmt *S);
778   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
779   void addScopeChangesHandling(LocalScope::const_iterator SrcPos,
780                                LocalScope::const_iterator DstPos,
781                                Stmt *S);
782   CFGBlock *createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos,
783                                             CFGBlock *SrcBlk,
784                                             LocalScope::const_iterator DstPost,
785                                             CFGBlock *DstBlk);
786 
787   // Local scopes creation.
788   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
789 
790   void addLocalScopeForStmt(Stmt *S);
791   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
792                                        LocalScope* Scope = nullptr);
793   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
794 
795   void addLocalScopeAndDtors(Stmt *S);
796 
797   const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
798     if (!BuildOpts.AddRichCXXConstructors)
799       return nullptr;
800 
801     const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
802     if (!Layer)
803       return nullptr;
804 
805     cleanupConstructionContext(E);
806     return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
807                                                  Layer);
808   }
809 
810   // Interface to CFGBlock - adding CFGElements.
811 
812   void appendStmt(CFGBlock *B, const Stmt *S) {
813     if (alwaysAdd(S) && cachedEntry)
814       cachedEntry->second = B;
815 
816     // All block-level expressions should have already been IgnoreParens()ed.
817     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
818     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
819   }
820 
821   void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
822     if (const ConstructionContext *CC =
823             retrieveAndCleanupConstructionContext(CE)) {
824       B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
825       return;
826     }
827 
828     // No valid construction context found. Fall back to statement.
829     B->appendStmt(CE, cfg->getBumpVectorContext());
830   }
831 
832   void appendCall(CFGBlock *B, CallExpr *CE) {
833     if (alwaysAdd(CE) && cachedEntry)
834       cachedEntry->second = B;
835 
836     if (const ConstructionContext *CC =
837             retrieveAndCleanupConstructionContext(CE)) {
838       B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
839       return;
840     }
841 
842     // No valid construction context found. Fall back to statement.
843     B->appendStmt(CE, cfg->getBumpVectorContext());
844   }
845 
846   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
847     B->appendInitializer(I, cfg->getBumpVectorContext());
848   }
849 
850   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
851     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
852   }
853 
854   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
855     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
856   }
857 
858   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
859     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
860   }
861 
862   void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
863     if (alwaysAdd(ME) && cachedEntry)
864       cachedEntry->second = B;
865 
866     if (const ConstructionContext *CC =
867             retrieveAndCleanupConstructionContext(ME)) {
868       B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
869       return;
870     }
871 
872     B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
873                   cfg->getBumpVectorContext());
874   }
875 
876   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
877     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
878   }
879 
880   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
881     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
882   }
883 
884   void appendCleanupFunction(CFGBlock *B, VarDecl *VD) {
885     B->appendCleanupFunction(VD, cfg->getBumpVectorContext());
886   }
887 
888   void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
889     B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
890   }
891 
892   void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
893     B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
894   }
895 
896   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
897     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
898   }
899 
900   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
901     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
902                     cfg->getBumpVectorContext());
903   }
904 
905   /// Add a reachable successor to a block, with the alternate variant that is
906   /// unreachable.
907   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
908     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
909                     cfg->getBumpVectorContext());
910   }
911 
912   void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
913     if (BuildOpts.AddScopes)
914       B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
915   }
916 
917   void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
918     if (BuildOpts.AddScopes)
919       B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
920   }
921 
922   /// Find a relational comparison with an expression evaluating to a
923   /// boolean and a constant other than 0 and 1.
924   /// e.g. if ((x < y) == 10)
925   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
926     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
927     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
928 
929     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
930     const Expr *BoolExpr = RHSExpr;
931     bool IntFirst = true;
932     if (!IntLiteral) {
933       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
934       BoolExpr = LHSExpr;
935       IntFirst = false;
936     }
937 
938     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
939       return TryResult();
940 
941     llvm::APInt IntValue = IntLiteral->getValue();
942     if ((IntValue == 1) || (IntValue == 0))
943       return TryResult();
944 
945     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
946                      !IntValue.isNegative();
947 
948     BinaryOperatorKind Bok = B->getOpcode();
949     if (Bok == BO_GT || Bok == BO_GE) {
950       // Always true for 10 > bool and bool > -1
951       // Always false for -1 > bool and bool > 10
952       return TryResult(IntFirst == IntLarger);
953     } else {
954       // Always true for -1 < bool and bool < 10
955       // Always false for 10 < bool and bool < -1
956       return TryResult(IntFirst != IntLarger);
957     }
958   }
959 
960   /// Find an incorrect equality comparison. Either with an expression
961   /// evaluating to a boolean and a constant other than 0 and 1.
962   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
963   /// true/false e.q. (x & 8) == 4.
964   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
965     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
966     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
967 
968     std::optional<llvm::APInt> IntLiteral1 =
969         getIntegerLiteralSubexpressionValue(LHSExpr);
970     const Expr *BoolExpr = RHSExpr;
971 
972     if (!IntLiteral1) {
973       IntLiteral1 = getIntegerLiteralSubexpressionValue(RHSExpr);
974       BoolExpr = LHSExpr;
975     }
976 
977     if (!IntLiteral1)
978       return TryResult();
979 
980     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
981     if (BitOp && (BitOp->getOpcode() == BO_And ||
982                   BitOp->getOpcode() == BO_Or)) {
983       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
984       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
985 
986       std::optional<llvm::APInt> IntLiteral2 =
987           getIntegerLiteralSubexpressionValue(LHSExpr2);
988 
989       if (!IntLiteral2)
990         IntLiteral2 = getIntegerLiteralSubexpressionValue(RHSExpr2);
991 
992       if (!IntLiteral2)
993         return TryResult();
994 
995       if ((BitOp->getOpcode() == BO_And &&
996            (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) ||
997           (BitOp->getOpcode() == BO_Or &&
998            (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) {
999         if (BuildOpts.Observer)
1000           BuildOpts.Observer->compareBitwiseEquality(B,
1001                                                      B->getOpcode() != BO_EQ);
1002         return TryResult(B->getOpcode() != BO_EQ);
1003       }
1004     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
1005       if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) {
1006         return TryResult();
1007       }
1008       return TryResult(B->getOpcode() != BO_EQ);
1009     }
1010 
1011     return TryResult();
1012   }
1013 
1014   // Helper function to get an APInt from an expression. Supports expressions
1015   // which are an IntegerLiteral or a UnaryOperator and returns the value with
1016   // all operations performed on it.
1017   // FIXME: it would be good to unify this function with
1018   // IsIntegerLiteralConstantExpr at some point given the similarity between the
1019   // functions.
1020   std::optional<llvm::APInt>
1021   getIntegerLiteralSubexpressionValue(const Expr *E) {
1022 
1023     // If unary.
1024     if (const auto *UnOp = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1025       // Get the sub expression of the unary expression and get the Integer
1026       // Literal.
1027       const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens();
1028 
1029       if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(SubExpr)) {
1030 
1031         llvm::APInt Value = IntLiteral->getValue();
1032 
1033         // Perform the operation manually.
1034         switch (UnOp->getOpcode()) {
1035         case UO_Plus:
1036           return Value;
1037         case UO_Minus:
1038           return -Value;
1039         case UO_Not:
1040           return ~Value;
1041         case UO_LNot:
1042           return llvm::APInt(Context->getTypeSize(Context->IntTy), !Value);
1043         default:
1044           assert(false && "Unexpected unary operator!");
1045           return std::nullopt;
1046         }
1047       }
1048     } else if (const auto *IntLiteral =
1049                    dyn_cast<IntegerLiteral>(E->IgnoreParens()))
1050       return IntLiteral->getValue();
1051 
1052     return std::nullopt;
1053   }
1054 
1055   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1056                                           const llvm::APSInt &Value1,
1057                                           const llvm::APSInt &Value2) {
1058     assert(Value1.isSigned() == Value2.isSigned());
1059     switch (Relation) {
1060       default:
1061         return TryResult();
1062       case BO_EQ:
1063         return TryResult(Value1 == Value2);
1064       case BO_NE:
1065         return TryResult(Value1 != Value2);
1066       case BO_LT:
1067         return TryResult(Value1 <  Value2);
1068       case BO_LE:
1069         return TryResult(Value1 <= Value2);
1070       case BO_GT:
1071         return TryResult(Value1 >  Value2);
1072       case BO_GE:
1073         return TryResult(Value1 >= Value2);
1074     }
1075   }
1076 
1077   /// There are two checks handled by this function:
1078   /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression
1079   /// e.g. if (x || !x), if (x && !x)
1080   /// 2. Find a pair of comparison expressions with or without parentheses
1081   /// with a shared variable and constants and a logical operator between them
1082   /// that always evaluates to either true or false.
1083   /// e.g. if (x != 3 || x != 4)
1084   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1085     assert(B->isLogicalOp());
1086     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
1087     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
1088 
1089     auto CheckLogicalOpWithNegatedVariable = [this, B](const Expr *E1,
1090                                                        const Expr *E2) {
1091       if (const auto *Negate = dyn_cast<UnaryOperator>(E1)) {
1092         if (Negate->getOpcode() == UO_LNot &&
1093             Expr::isSameComparisonOperand(Negate->getSubExpr(), E2)) {
1094           bool AlwaysTrue = B->getOpcode() == BO_LOr;
1095           if (BuildOpts.Observer)
1096             BuildOpts.Observer->logicAlwaysTrue(B, AlwaysTrue);
1097           return TryResult(AlwaysTrue);
1098         }
1099       }
1100       return TryResult();
1101     };
1102 
1103     TryResult Result = CheckLogicalOpWithNegatedVariable(LHSExpr, RHSExpr);
1104     if (Result.isKnown())
1105         return Result;
1106     Result = CheckLogicalOpWithNegatedVariable(RHSExpr, LHSExpr);
1107     if (Result.isKnown())
1108         return Result;
1109 
1110     const auto *LHS = dyn_cast<BinaryOperator>(LHSExpr);
1111     const auto *RHS = dyn_cast<BinaryOperator>(RHSExpr);
1112     if (!LHS || !RHS)
1113       return {};
1114 
1115     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1116       return {};
1117 
1118     const Expr *DeclExpr1;
1119     const Expr *NumExpr1;
1120     BinaryOperatorKind BO1;
1121     std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1122 
1123     if (!DeclExpr1 || !NumExpr1)
1124       return {};
1125 
1126     const Expr *DeclExpr2;
1127     const Expr *NumExpr2;
1128     BinaryOperatorKind BO2;
1129     std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1130 
1131     if (!DeclExpr2 || !NumExpr2)
1132       return {};
1133 
1134     // Check that it is the same variable on both sides.
1135     if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1136       return {};
1137 
1138     // Make sure the user's intent is clear (e.g. they're comparing against two
1139     // int literals, or two things from the same enum)
1140     if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1141       return {};
1142 
1143     Expr::EvalResult L1Result, L2Result;
1144     if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1145         !NumExpr2->EvaluateAsInt(L2Result, *Context))
1146       return {};
1147 
1148     llvm::APSInt L1 = L1Result.Val.getInt();
1149     llvm::APSInt L2 = L2Result.Val.getInt();
1150 
1151     // Can't compare signed with unsigned or with different bit width.
1152     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1153       return {};
1154 
1155     // Values that will be used to determine if result of logical
1156     // operator is always true/false
1157     const llvm::APSInt Values[] = {
1158       // Value less than both Value1 and Value2
1159       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1160       // L1
1161       L1,
1162       // Value between Value1 and Value2
1163       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1164                               L1.isUnsigned()),
1165       // L2
1166       L2,
1167       // Value greater than both Value1 and Value2
1168       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1169     };
1170 
1171     // Check whether expression is always true/false by evaluating the following
1172     // * variable x is less than the smallest literal.
1173     // * variable x is equal to the smallest literal.
1174     // * Variable x is between smallest and largest literal.
1175     // * Variable x is equal to the largest literal.
1176     // * Variable x is greater than largest literal.
1177     bool AlwaysTrue = true, AlwaysFalse = true;
1178     // Track value of both subexpressions.  If either side is always
1179     // true/false, another warning should have already been emitted.
1180     bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1181     bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1182     for (const llvm::APSInt &Value : Values) {
1183       TryResult Res1, Res2;
1184       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1185       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1186 
1187       if (!Res1.isKnown() || !Res2.isKnown())
1188         return {};
1189 
1190       if (B->getOpcode() == BO_LAnd) {
1191         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1192         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1193       } else {
1194         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1195         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1196       }
1197 
1198       LHSAlwaysTrue &= Res1.isTrue();
1199       LHSAlwaysFalse &= Res1.isFalse();
1200       RHSAlwaysTrue &= Res2.isTrue();
1201       RHSAlwaysFalse &= Res2.isFalse();
1202     }
1203 
1204     if (AlwaysTrue || AlwaysFalse) {
1205       if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1206           !RHSAlwaysFalse && BuildOpts.Observer)
1207         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1208       return TryResult(AlwaysTrue);
1209     }
1210     return {};
1211   }
1212 
1213   /// A bitwise-or with a non-zero constant always evaluates to true.
1214   TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1215     const Expr *LHSConstant =
1216         tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1217     const Expr *RHSConstant =
1218         tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1219 
1220     if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1221       return {};
1222 
1223     const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1224 
1225     Expr::EvalResult Result;
1226     if (!Constant->EvaluateAsInt(Result, *Context))
1227       return {};
1228 
1229     if (Result.Val.getInt() == 0)
1230       return {};
1231 
1232     if (BuildOpts.Observer)
1233       BuildOpts.Observer->compareBitwiseOr(B);
1234 
1235     return TryResult(true);
1236   }
1237 
1238   /// Try and evaluate an expression to an integer constant.
1239   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1240     if (!BuildOpts.PruneTriviallyFalseEdges)
1241       return false;
1242     return !S->isTypeDependent() &&
1243            !S->isValueDependent() &&
1244            S->EvaluateAsRValue(outResult, *Context);
1245   }
1246 
1247   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1248   /// if we can evaluate to a known value, otherwise return -1.
1249   TryResult tryEvaluateBool(Expr *S) {
1250     if (!BuildOpts.PruneTriviallyFalseEdges ||
1251         S->isTypeDependent() || S->isValueDependent())
1252       return {};
1253 
1254     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1255       if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1256         // Check the cache first.
1257         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1258         if (I != CachedBoolEvals.end())
1259           return I->second; // already in map;
1260 
1261         // Retrieve result at first, or the map might be updated.
1262         TryResult Result = evaluateAsBooleanConditionNoCache(S);
1263         CachedBoolEvals[S] = Result; // update or insert
1264         return Result;
1265       }
1266       else {
1267         switch (Bop->getOpcode()) {
1268           default: break;
1269           // For 'x & 0' and 'x * 0', we can determine that
1270           // the value is always false.
1271           case BO_Mul:
1272           case BO_And: {
1273             // If either operand is zero, we know the value
1274             // must be false.
1275             Expr::EvalResult LHSResult;
1276             if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1277               llvm::APSInt IntVal = LHSResult.Val.getInt();
1278               if (!IntVal.getBoolValue()) {
1279                 return TryResult(false);
1280               }
1281             }
1282             Expr::EvalResult RHSResult;
1283             if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1284               llvm::APSInt IntVal = RHSResult.Val.getInt();
1285               if (!IntVal.getBoolValue()) {
1286                 return TryResult(false);
1287               }
1288             }
1289           }
1290           break;
1291         }
1292       }
1293     }
1294 
1295     return evaluateAsBooleanConditionNoCache(S);
1296   }
1297 
1298   /// Evaluate as boolean \param E without using the cache.
1299   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1300     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1301       if (Bop->isLogicalOp()) {
1302         TryResult LHS = tryEvaluateBool(Bop->getLHS());
1303         if (LHS.isKnown()) {
1304           // We were able to evaluate the LHS, see if we can get away with not
1305           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1306           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1307             return LHS.isTrue();
1308 
1309           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1310           if (RHS.isKnown()) {
1311             if (Bop->getOpcode() == BO_LOr)
1312               return LHS.isTrue() || RHS.isTrue();
1313             else
1314               return LHS.isTrue() && RHS.isTrue();
1315           }
1316         } else {
1317           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1318           if (RHS.isKnown()) {
1319             // We can't evaluate the LHS; however, sometimes the result
1320             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1321             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1322               return RHS.isTrue();
1323           } else {
1324             TryResult BopRes = checkIncorrectLogicOperator(Bop);
1325             if (BopRes.isKnown())
1326               return BopRes.isTrue();
1327           }
1328         }
1329 
1330         return {};
1331       } else if (Bop->isEqualityOp()) {
1332           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1333           if (BopRes.isKnown())
1334             return BopRes.isTrue();
1335       } else if (Bop->isRelationalOp()) {
1336         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1337         if (BopRes.isKnown())
1338           return BopRes.isTrue();
1339       } else if (Bop->getOpcode() == BO_Or) {
1340         TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1341         if (BopRes.isKnown())
1342           return BopRes.isTrue();
1343       }
1344     }
1345 
1346     bool Result;
1347     if (E->EvaluateAsBooleanCondition(Result, *Context))
1348       return Result;
1349 
1350     return {};
1351   }
1352 
1353   bool hasTrivialDestructor(const VarDecl *VD) const;
1354   bool needsAutomaticDestruction(const VarDecl *VD) const;
1355 };
1356 
1357 } // namespace
1358 
1359 Expr *
1360 clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE) {
1361   if (!AILE)
1362     return nullptr;
1363 
1364   Expr *AILEInit = AILE->getSubExpr();
1365   while (const auto *E = dyn_cast<ArrayInitLoopExpr>(AILEInit))
1366     AILEInit = E->getSubExpr();
1367 
1368   return AILEInit;
1369 }
1370 
1371 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1372                                      const Stmt *stmt) const {
1373   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1374 }
1375 
1376 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1377   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1378 
1379   if (!BuildOpts.forcedBlkExprs)
1380     return shouldAdd;
1381 
1382   if (lastLookup == stmt) {
1383     if (cachedEntry) {
1384       assert(cachedEntry->first == stmt);
1385       return true;
1386     }
1387     return shouldAdd;
1388   }
1389 
1390   lastLookup = stmt;
1391 
1392   // Perform the lookup!
1393   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1394 
1395   if (!fb) {
1396     // No need to update 'cachedEntry', since it will always be null.
1397     assert(!cachedEntry);
1398     return shouldAdd;
1399   }
1400 
1401   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1402   if (itr == fb->end()) {
1403     cachedEntry = nullptr;
1404     return shouldAdd;
1405   }
1406 
1407   cachedEntry = &*itr;
1408   return true;
1409 }
1410 
1411 // FIXME: Add support for dependent-sized array types in C++?
1412 // Does it even make sense to build a CFG for an uninstantiated template?
1413 static const VariableArrayType *FindVA(const Type *t) {
1414   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1415     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1416       if (vat->getSizeExpr())
1417         return vat;
1418 
1419     t = vt->getElementType().getTypePtr();
1420   }
1421 
1422   return nullptr;
1423 }
1424 
1425 void CFGBuilder::consumeConstructionContext(
1426     const ConstructionContextLayer *Layer, Expr *E) {
1427   assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1428           isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1429   if (const ConstructionContextLayer *PreviouslyStoredLayer =
1430           ConstructionContextMap.lookup(E)) {
1431     (void)PreviouslyStoredLayer;
1432     // We might have visited this child when we were finding construction
1433     // contexts within its parents.
1434     assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1435            "Already within a different construction context!");
1436   } else {
1437     ConstructionContextMap[E] = Layer;
1438   }
1439 }
1440 
1441 void CFGBuilder::findConstructionContexts(
1442     const ConstructionContextLayer *Layer, Stmt *Child) {
1443   if (!BuildOpts.AddRichCXXConstructors)
1444     return;
1445 
1446   if (!Child)
1447     return;
1448 
1449   auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1450     return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1451                                             Layer);
1452   };
1453 
1454   switch(Child->getStmtClass()) {
1455   case Stmt::CXXConstructExprClass:
1456   case Stmt::CXXTemporaryObjectExprClass: {
1457     // Support pre-C++17 copy elision AST.
1458     auto *CE = cast<CXXConstructExpr>(Child);
1459     if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1460       findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1461     }
1462 
1463     consumeConstructionContext(Layer, CE);
1464     break;
1465   }
1466   // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1467   // FIXME: An isa<> would look much better but this whole switch is a
1468   // workaround for an internal compiler error in MSVC 2015 (see r326021).
1469   case Stmt::CallExprClass:
1470   case Stmt::CXXMemberCallExprClass:
1471   case Stmt::CXXOperatorCallExprClass:
1472   case Stmt::UserDefinedLiteralClass:
1473   case Stmt::ObjCMessageExprClass: {
1474     auto *E = cast<Expr>(Child);
1475     if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1476       consumeConstructionContext(Layer, E);
1477     break;
1478   }
1479   case Stmt::ExprWithCleanupsClass: {
1480     auto *Cleanups = cast<ExprWithCleanups>(Child);
1481     findConstructionContexts(Layer, Cleanups->getSubExpr());
1482     break;
1483   }
1484   case Stmt::CXXFunctionalCastExprClass: {
1485     auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1486     findConstructionContexts(Layer, Cast->getSubExpr());
1487     break;
1488   }
1489   case Stmt::ImplicitCastExprClass: {
1490     auto *Cast = cast<ImplicitCastExpr>(Child);
1491     // Should we support other implicit cast kinds?
1492     switch (Cast->getCastKind()) {
1493     case CK_NoOp:
1494     case CK_ConstructorConversion:
1495       findConstructionContexts(Layer, Cast->getSubExpr());
1496       break;
1497     default:
1498       break;
1499     }
1500     break;
1501   }
1502   case Stmt::CXXBindTemporaryExprClass: {
1503     auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1504     findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1505     break;
1506   }
1507   case Stmt::MaterializeTemporaryExprClass: {
1508     // Normally we don't want to search in MaterializeTemporaryExpr because
1509     // it indicates the beginning of a temporary object construction context,
1510     // so it shouldn't be found in the middle. However, if it is the beginning
1511     // of an elidable copy or move construction context, we need to include it.
1512     if (Layer->getItem().getKind() ==
1513         ConstructionContextItem::ElidableConstructorKind) {
1514       auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1515       findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1516     }
1517     break;
1518   }
1519   case Stmt::ConditionalOperatorClass: {
1520     auto *CO = cast<ConditionalOperator>(Child);
1521     if (Layer->getItem().getKind() !=
1522         ConstructionContextItem::MaterializationKind) {
1523       // If the object returned by the conditional operator is not going to be a
1524       // temporary object that needs to be immediately materialized, then
1525       // it must be C++17 with its mandatory copy elision. Do not yet promise
1526       // to support this case.
1527       assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1528              Context->getLangOpts().CPlusPlus17);
1529       break;
1530     }
1531     findConstructionContexts(Layer, CO->getLHS());
1532     findConstructionContexts(Layer, CO->getRHS());
1533     break;
1534   }
1535   case Stmt::InitListExprClass: {
1536     auto *ILE = cast<InitListExpr>(Child);
1537     if (ILE->isTransparent()) {
1538       findConstructionContexts(Layer, ILE->getInit(0));
1539       break;
1540     }
1541     // TODO: Handle other cases. For now, fail to find construction contexts.
1542     break;
1543   }
1544   case Stmt::ParenExprClass: {
1545     // If expression is placed into parenthesis we should propagate the parent
1546     // construction context to subexpressions.
1547     auto *PE = cast<ParenExpr>(Child);
1548     findConstructionContexts(Layer, PE->getSubExpr());
1549     break;
1550   }
1551   default:
1552     break;
1553   }
1554 }
1555 
1556 void CFGBuilder::cleanupConstructionContext(Expr *E) {
1557   assert(BuildOpts.AddRichCXXConstructors &&
1558          "We should not be managing construction contexts!");
1559   assert(ConstructionContextMap.count(E) &&
1560          "Cannot exit construction context without the context!");
1561   ConstructionContextMap.erase(E);
1562 }
1563 
1564 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
1565 ///  arbitrary statement.  Examples include a single expression or a function
1566 ///  body (compound statement).  The ownership of the returned CFG is
1567 ///  transferred to the caller.  If CFG construction fails, this method returns
1568 ///  NULL.
1569 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1570   assert(cfg.get());
1571   if (!Statement)
1572     return nullptr;
1573 
1574   // Create an empty block that will serve as the exit block for the CFG.  Since
1575   // this is the first block added to the CFG, it will be implicitly registered
1576   // as the exit block.
1577   Succ = createBlock();
1578   assert(Succ == &cfg->getExit());
1579   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
1580 
1581   if (BuildOpts.AddImplicitDtors)
1582     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1583       addImplicitDtorsForDestructor(DD);
1584 
1585   // Visit the statements and create the CFG.
1586   CFGBlock *B = addStmt(Statement);
1587 
1588   if (badCFG)
1589     return nullptr;
1590 
1591   // For C++ constructor add initializers to CFG. Constructors of virtual bases
1592   // are ignored unless the object is of the most derived class.
1593   //   class VBase { VBase() = default; VBase(int) {} };
1594   //   class A : virtual public VBase { A() : VBase(0) {} };
1595   //   class B : public A {};
1596   //   B b; // Constructor calls in order: VBase(), A(), B().
1597   //        // VBase(0) is ignored because A isn't the most derived class.
1598   // This may result in the virtual base(s) being already initialized at this
1599   // point, in which case we should jump right onto non-virtual bases and
1600   // fields. To handle this, make a CFG branch. We only need to add one such
1601   // branch per constructor, since the Standard states that all virtual bases
1602   // shall be initialized before non-virtual bases and direct data members.
1603   if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1604     CFGBlock *VBaseSucc = nullptr;
1605     for (auto *I : llvm::reverse(CD->inits())) {
1606       if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1607           I->isBaseInitializer() && I->isBaseVirtual()) {
1608         // We've reached the first virtual base init while iterating in reverse
1609         // order. Make a new block for virtual base initializers so that we
1610         // could skip them.
1611         VBaseSucc = Succ = B ? B : &cfg->getExit();
1612         Block = createBlock();
1613       }
1614       B = addInitializer(I);
1615       if (badCFG)
1616         return nullptr;
1617     }
1618     if (VBaseSucc) {
1619       // Make a branch block for potentially skipping virtual base initializers.
1620       Succ = VBaseSucc;
1621       B = createBlock();
1622       B->setTerminator(
1623           CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1624       addSuccessor(B, Block, true);
1625     }
1626   }
1627 
1628   if (B)
1629     Succ = B;
1630 
1631   // Backpatch the gotos whose label -> block mappings we didn't know when we
1632   // encountered them.
1633   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1634                                    E = BackpatchBlocks.end(); I != E; ++I ) {
1635 
1636     CFGBlock *B = I->block;
1637     if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1638       LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1639       // If there is no target for the goto, then we are looking at an
1640       // incomplete AST.  Handle this by not registering a successor.
1641       if (LI == LabelMap.end())
1642         continue;
1643       JumpTarget JT = LI->second;
1644 
1645       CFGBlock *SuccBlk = createScopeChangesHandlingBlock(
1646           I->scopePosition, B, JT.scopePosition, JT.block);
1647       addSuccessor(B, SuccBlk);
1648     } else if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1649       CFGBlock *Successor  = (I+1)->block;
1650       for (auto *L : G->labels()) {
1651         LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1652         // If there is no target for the goto, then we are looking at an
1653         // incomplete AST.  Handle this by not registering a successor.
1654         if (LI == LabelMap.end())
1655           continue;
1656         JumpTarget JT = LI->second;
1657         // Successor has been added, so skip it.
1658         if (JT.block == Successor)
1659           continue;
1660         addSuccessor(B, JT.block);
1661       }
1662       I++;
1663     }
1664   }
1665 
1666   // Add successors to the Indirect Goto Dispatch block (if we have one).
1667   if (CFGBlock *B = cfg->getIndirectGotoBlock())
1668     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1669                               E = AddressTakenLabels.end(); I != E; ++I ) {
1670       // Lookup the target block.
1671       LabelMapTy::iterator LI = LabelMap.find(*I);
1672 
1673       // If there is no target block that contains label, then we are looking
1674       // at an incomplete AST.  Handle this by not registering a successor.
1675       if (LI == LabelMap.end()) continue;
1676 
1677       addSuccessor(B, LI->second.block);
1678     }
1679 
1680   // Create an empty entry block that has no predecessors.
1681   cfg->setEntry(createBlock());
1682 
1683   if (BuildOpts.AddRichCXXConstructors)
1684     assert(ConstructionContextMap.empty() &&
1685            "Not all construction contexts were cleaned up!");
1686 
1687   return std::move(cfg);
1688 }
1689 
1690 /// createBlock - Used to lazily create blocks that are connected
1691 ///  to the current (global) successor.
1692 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1693   CFGBlock *B = cfg->createBlock();
1694   if (add_successor && Succ)
1695     addSuccessor(B, Succ);
1696   return B;
1697 }
1698 
1699 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1700 /// CFG. It is *not* connected to the current (global) successor, and instead
1701 /// directly tied to the exit block in order to be reachable.
1702 CFGBlock *CFGBuilder::createNoReturnBlock() {
1703   CFGBlock *B = createBlock(false);
1704   B->setHasNoReturnElement();
1705   addSuccessor(B, &cfg->getExit(), Succ);
1706   return B;
1707 }
1708 
1709 /// addInitializer - Add C++ base or member initializer element to CFG.
1710 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1711   if (!BuildOpts.AddInitializers)
1712     return Block;
1713 
1714   bool HasTemporaries = false;
1715 
1716   // Destructors of temporaries in initialization expression should be called
1717   // after initialization finishes.
1718   Expr *Init = I->getInit();
1719   if (Init) {
1720     HasTemporaries = isa<ExprWithCleanups>(Init);
1721 
1722     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1723       // Generate destructors for temporaries in initialization expression.
1724       TempDtorContext Context;
1725       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1726                              /*ExternallyDestructed=*/false, Context);
1727     }
1728   }
1729 
1730   autoCreateBlock();
1731   appendInitializer(Block, I);
1732 
1733   if (Init) {
1734     // If the initializer is an ArrayInitLoopExpr, we want to extract the
1735     // initializer, that's used for each element.
1736     auto *AILEInit = extractElementInitializerFromNestedAILE(
1737         dyn_cast<ArrayInitLoopExpr>(Init));
1738 
1739     findConstructionContexts(
1740         ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1741         AILEInit ? AILEInit : Init);
1742 
1743     if (HasTemporaries) {
1744       // For expression with temporaries go directly to subexpression to omit
1745       // generating destructors for the second time.
1746       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1747     }
1748     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1749       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1750         // In general, appending the expression wrapped by a CXXDefaultInitExpr
1751         // may cause the same Expr to appear more than once in the CFG. Doing it
1752         // here is safe because there's only one initializer per field.
1753         autoCreateBlock();
1754         appendStmt(Block, Default);
1755         if (Stmt *Child = Default->getExpr())
1756           if (CFGBlock *R = Visit(Child))
1757             Block = R;
1758         return Block;
1759       }
1760     }
1761     return Visit(Init);
1762   }
1763 
1764   return Block;
1765 }
1766 
1767 /// Retrieve the type of the temporary object whose lifetime was
1768 /// extended by a local reference with the given initializer.
1769 static QualType getReferenceInitTemporaryType(const Expr *Init,
1770                                               bool *FoundMTE = nullptr) {
1771   while (true) {
1772     // Skip parentheses.
1773     Init = Init->IgnoreParens();
1774 
1775     // Skip through cleanups.
1776     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1777       Init = EWC->getSubExpr();
1778       continue;
1779     }
1780 
1781     // Skip through the temporary-materialization expression.
1782     if (const MaterializeTemporaryExpr *MTE
1783           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1784       Init = MTE->getSubExpr();
1785       if (FoundMTE)
1786         *FoundMTE = true;
1787       continue;
1788     }
1789 
1790     // Skip sub-object accesses into rvalues.
1791     const Expr *SkippedInit = Init->skipRValueSubobjectAdjustments();
1792     if (SkippedInit != Init) {
1793       Init = SkippedInit;
1794       continue;
1795     }
1796 
1797     break;
1798   }
1799 
1800   return Init->getType();
1801 }
1802 
1803 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1804 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1805 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1806   if(!BuildOpts.AddLoopExit)
1807     return;
1808   autoCreateBlock();
1809   appendLoopExit(Block, LoopStmt);
1810 }
1811 
1812 /// Adds the CFG elements for leaving the scope of automatic objects in
1813 /// range [B, E). This include following:
1814 ///   * AutomaticObjectDtor for variables with non-trivial destructor
1815 ///   * LifetimeEnds for all variables
1816 ///   * ScopeEnd for each scope left
1817 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1818                                          LocalScope::const_iterator E,
1819                                          Stmt *S) {
1820   if (!BuildOpts.AddScopes && !BuildOpts.AddImplicitDtors &&
1821       !BuildOpts.AddLifetime)
1822     return;
1823 
1824   if (B == E)
1825     return;
1826 
1827   // Not leaving the scope, only need to handle destruction and lifetime
1828   if (B.inSameLocalScope(E)) {
1829     addAutomaticObjDestruction(B, E, S);
1830     return;
1831   }
1832 
1833   // Extract information about all local scopes that are left
1834   SmallVector<LocalScope::const_iterator, 10> LocalScopeEndMarkers;
1835   LocalScopeEndMarkers.push_back(B);
1836   for (LocalScope::const_iterator I = B; I != E; ++I) {
1837     if (!I.inSameLocalScope(LocalScopeEndMarkers.back()))
1838       LocalScopeEndMarkers.push_back(I);
1839   }
1840   LocalScopeEndMarkers.push_back(E);
1841 
1842   // We need to leave the scope in reverse order, so we reverse the end
1843   // markers
1844   std::reverse(LocalScopeEndMarkers.begin(), LocalScopeEndMarkers.end());
1845   auto Pairwise =
1846       llvm::zip(LocalScopeEndMarkers, llvm::drop_begin(LocalScopeEndMarkers));
1847   for (auto [E, B] : Pairwise) {
1848     if (!B.inSameLocalScope(E))
1849       addScopeExitHandling(B, E, S);
1850     addAutomaticObjDestruction(B, E, S);
1851   }
1852 }
1853 
1854 /// Add CFG elements corresponding to call destructor and end of lifetime
1855 /// of all automatic variables with non-trivial destructor in range [B, E).
1856 /// This include AutomaticObjectDtor and LifetimeEnds elements.
1857 void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B,
1858                                             LocalScope::const_iterator E,
1859                                             Stmt *S) {
1860   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime)
1861     return;
1862 
1863   if (B == E)
1864     return;
1865 
1866   SmallVector<VarDecl *, 10> DeclsNeedDestruction;
1867   DeclsNeedDestruction.reserve(B.distance(E));
1868 
1869   for (VarDecl* D : llvm::make_range(B, E))
1870     if (needsAutomaticDestruction(D))
1871       DeclsNeedDestruction.push_back(D);
1872 
1873   for (VarDecl *VD : llvm::reverse(DeclsNeedDestruction)) {
1874     if (BuildOpts.AddImplicitDtors) {
1875       // If this destructor is marked as a no-return destructor, we need to
1876       // create a new block for the destructor which does not have as a
1877       // successor anything built thus far: control won't flow out of this
1878       // block.
1879       QualType Ty = VD->getType();
1880       if (Ty->isReferenceType())
1881         Ty = getReferenceInitTemporaryType(VD->getInit());
1882       Ty = Context->getBaseElementType(Ty);
1883 
1884       const CXXRecordDecl *CRD = Ty->getAsCXXRecordDecl();
1885       if (CRD && CRD->isAnyDestructorNoReturn())
1886         Block = createNoReturnBlock();
1887     }
1888 
1889     autoCreateBlock();
1890 
1891     // Add LifetimeEnd after automatic obj with non-trivial destructors,
1892     // as they end their lifetime when the destructor returns. For trivial
1893     // objects, we end lifetime with scope end.
1894     if (BuildOpts.AddLifetime)
1895       appendLifetimeEnds(Block, VD, S);
1896     if (BuildOpts.AddImplicitDtors && !hasTrivialDestructor(VD))
1897       appendAutomaticObjDtor(Block, VD, S);
1898     if (VD->hasAttr<CleanupAttr>())
1899       appendCleanupFunction(Block, VD);
1900   }
1901 }
1902 
1903 /// Add CFG elements corresponding to leaving a scope.
1904 /// Assumes that range [B, E) corresponds to single scope.
1905 /// This add following elements:
1906 ///   * LifetimeEnds for all variables with non-trivial destructor
1907 ///   * ScopeEnd for each scope left
1908 void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B,
1909                                       LocalScope::const_iterator E, Stmt *S) {
1910   assert(!B.inSameLocalScope(E));
1911   if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes)
1912     return;
1913 
1914   if (BuildOpts.AddScopes) {
1915     autoCreateBlock();
1916     appendScopeEnd(Block, B.getFirstVarInScope(), S);
1917   }
1918 
1919   if (!BuildOpts.AddLifetime)
1920     return;
1921 
1922   // We need to perform the scope leaving in reverse order
1923   SmallVector<VarDecl *, 10> DeclsTrivial;
1924   DeclsTrivial.reserve(B.distance(E));
1925 
1926   // Objects with trivial destructor ends their lifetime when their storage
1927   // is destroyed, for automatic variables, this happens when the end of the
1928   // scope is added.
1929   for (VarDecl* D : llvm::make_range(B, E))
1930     if (!needsAutomaticDestruction(D))
1931       DeclsTrivial.push_back(D);
1932 
1933   if (DeclsTrivial.empty())
1934     return;
1935 
1936   autoCreateBlock();
1937   for (VarDecl *VD : llvm::reverse(DeclsTrivial))
1938     appendLifetimeEnds(Block, VD, S);
1939 }
1940 
1941 /// addScopeChangesHandling - appends information about destruction, lifetime
1942 /// and cfgScopeEnd for variables in the scope that was left by the jump, and
1943 /// appends cfgScopeBegin for all scopes that where entered.
1944 /// We insert the cfgScopeBegin at the end of the jump node, as depending on
1945 /// the sourceBlock, each goto, may enter different amount of scopes.
1946 void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos,
1947                                          LocalScope::const_iterator DstPos,
1948                                          Stmt *S) {
1949   assert(Block && "Source block should be always crated");
1950   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1951       !BuildOpts.AddScopes) {
1952     return;
1953   }
1954 
1955   if (SrcPos == DstPos)
1956     return;
1957 
1958   // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and
1959   // enter all scopes between [DstPos, BasePos)
1960   LocalScope::const_iterator BasePos = SrcPos.shared_parent(DstPos);
1961 
1962   // Append scope begins for scopes entered by goto
1963   if (BuildOpts.AddScopes && !DstPos.inSameLocalScope(BasePos)) {
1964     for (LocalScope::const_iterator I = DstPos; I != BasePos; ++I)
1965       if (I.pointsToFirstDeclaredVar())
1966         appendScopeBegin(Block, *I, S);
1967   }
1968 
1969   // Append scopeEnds, destructor and lifetime with the terminator for
1970   // block left by goto.
1971   addAutomaticObjHandling(SrcPos, BasePos, S);
1972 }
1973 
1974 /// createScopeChangesHandlingBlock - Creates a block with cfgElements
1975 /// corresponding to changing the scope from the source scope of the GotoStmt,
1976 /// to destination scope. Add destructor, lifetime and cfgScopeEnd
1977 /// CFGElements to newly created CFGBlock, that will have the CFG terminator
1978 /// transferred.
1979 CFGBlock *CFGBuilder::createScopeChangesHandlingBlock(
1980     LocalScope::const_iterator SrcPos, CFGBlock *SrcBlk,
1981     LocalScope::const_iterator DstPos, CFGBlock *DstBlk) {
1982   if (SrcPos == DstPos)
1983     return DstBlk;
1984 
1985   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1986       (!BuildOpts.AddScopes || SrcPos.inSameLocalScope(DstPos)))
1987     return DstBlk;
1988 
1989   // We will update CFBBuilder when creating new block, restore the
1990   // previous state at exit.
1991   SaveAndRestore save_Block(Block), save_Succ(Succ);
1992 
1993   // Create a new block, and transfer terminator
1994   Block = createBlock(false);
1995   Block->setTerminator(SrcBlk->getTerminator());
1996   SrcBlk->setTerminator(CFGTerminator());
1997   addSuccessor(Block, DstBlk);
1998 
1999   // Fill the created Block with the required elements.
2000   addScopeChangesHandling(SrcPos, DstPos, Block->getTerminatorStmt());
2001 
2002   assert(Block && "There should be at least one scope changing Block");
2003   return Block;
2004 }
2005 
2006 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
2007 /// base and member objects in destructor.
2008 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
2009   assert(BuildOpts.AddImplicitDtors &&
2010          "Can be called only when dtors should be added");
2011   const CXXRecordDecl *RD = DD->getParent();
2012 
2013   // At the end destroy virtual base objects.
2014   for (const auto &VI : RD->vbases()) {
2015     // TODO: Add a VirtualBaseBranch to see if the most derived class
2016     // (which is different from the current class) is responsible for
2017     // destroying them.
2018     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
2019     if (CD && !CD->hasTrivialDestructor()) {
2020       autoCreateBlock();
2021       appendBaseDtor(Block, &VI);
2022     }
2023   }
2024 
2025   // Before virtual bases destroy direct base objects.
2026   for (const auto &BI : RD->bases()) {
2027     if (!BI.isVirtual()) {
2028       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
2029       if (CD && !CD->hasTrivialDestructor()) {
2030         autoCreateBlock();
2031         appendBaseDtor(Block, &BI);
2032       }
2033     }
2034   }
2035 
2036   // First destroy member objects.
2037   for (auto *FI : RD->fields()) {
2038     // Check for constant size array. Set type to array element type.
2039     QualType QT = FI->getType();
2040     // It may be a multidimensional array.
2041     while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2042       if (AT->isZeroSize())
2043         break;
2044       QT = AT->getElementType();
2045     }
2046 
2047     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2048       if (!CD->hasTrivialDestructor()) {
2049         autoCreateBlock();
2050         appendMemberDtor(Block, FI);
2051       }
2052   }
2053 }
2054 
2055 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
2056 /// way return valid LocalScope object.
2057 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
2058   if (Scope)
2059     return Scope;
2060   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
2061   return new (alloc) LocalScope(BumpVectorContext(alloc), ScopePos);
2062 }
2063 
2064 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
2065 /// that should create implicit scope (e.g. if/else substatements).
2066 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
2067   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2068       !BuildOpts.AddScopes)
2069     return;
2070 
2071   LocalScope *Scope = nullptr;
2072 
2073   // For compound statement we will be creating explicit scope.
2074   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
2075     for (auto *BI : CS->body()) {
2076       Stmt *SI = BI->stripLabelLikeStatements();
2077       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
2078         Scope = addLocalScopeForDeclStmt(DS, Scope);
2079     }
2080     return;
2081   }
2082 
2083   // For any other statement scope will be implicit and as such will be
2084   // interesting only for DeclStmt.
2085   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
2086     addLocalScopeForDeclStmt(DS);
2087 }
2088 
2089 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
2090 /// reuse Scope if not NULL.
2091 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
2092                                                  LocalScope* Scope) {
2093   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2094       !BuildOpts.AddScopes)
2095     return Scope;
2096 
2097   for (auto *DI : DS->decls())
2098     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
2099       Scope = addLocalScopeForVarDecl(VD, Scope);
2100   return Scope;
2101 }
2102 
2103 bool CFGBuilder::needsAutomaticDestruction(const VarDecl *VD) const {
2104   return !hasTrivialDestructor(VD) || VD->hasAttr<CleanupAttr>();
2105 }
2106 
2107 bool CFGBuilder::hasTrivialDestructor(const VarDecl *VD) const {
2108   // Check for const references bound to temporary. Set type to pointee.
2109   QualType QT = VD->getType();
2110   if (QT->isReferenceType()) {
2111     // Attempt to determine whether this declaration lifetime-extends a
2112     // temporary.
2113     //
2114     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
2115     // temporaries, and a single declaration can extend multiple temporaries.
2116     // We should look at the storage duration on each nested
2117     // MaterializeTemporaryExpr instead.
2118 
2119     const Expr *Init = VD->getInit();
2120     if (!Init) {
2121       // Probably an exception catch-by-reference variable.
2122       // FIXME: It doesn't really mean that the object has a trivial destructor.
2123       // Also are there other cases?
2124       return true;
2125     }
2126 
2127     // Lifetime-extending a temporary?
2128     bool FoundMTE = false;
2129     QT = getReferenceInitTemporaryType(Init, &FoundMTE);
2130     if (!FoundMTE)
2131       return true;
2132   }
2133 
2134   // Check for constant size array. Set type to array element type.
2135   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2136     if (AT->isZeroSize())
2137       return true;
2138     QT = AT->getElementType();
2139   }
2140 
2141   // Check if type is a C++ class with non-trivial destructor.
2142   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2143     return !CD->hasDefinition() || CD->hasTrivialDestructor();
2144   return true;
2145 }
2146 
2147 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2148 /// create add scope for automatic objects and temporary objects bound to
2149 /// const reference. Will reuse Scope if not NULL.
2150 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2151                                                 LocalScope* Scope) {
2152   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2153       !BuildOpts.AddScopes)
2154     return Scope;
2155 
2156   // Check if variable is local.
2157   if (!VD->hasLocalStorage())
2158     return Scope;
2159 
2160   if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes &&
2161       !needsAutomaticDestruction(VD)) {
2162     assert(BuildOpts.AddImplicitDtors);
2163     return Scope;
2164   }
2165 
2166   // Add the variable to scope
2167   Scope = createOrReuseLocalScope(Scope);
2168   Scope->addVar(VD);
2169   ScopePos = Scope->begin();
2170   return Scope;
2171 }
2172 
2173 /// addLocalScopeAndDtors - For given statement add local scope for it and
2174 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2175 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2176   LocalScope::const_iterator scopeBeginPos = ScopePos;
2177   addLocalScopeForStmt(S);
2178   addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2179 }
2180 
2181 /// Visit - Walk the subtree of a statement and add extra
2182 ///   blocks for ternary operators, &&, and ||.  We also process "," and
2183 ///   DeclStmts (which may contain nested control-flow).
2184 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2185                             bool ExternallyDestructed) {
2186   if (!S) {
2187     badCFG = true;
2188     return nullptr;
2189   }
2190 
2191   if (Expr *E = dyn_cast<Expr>(S))
2192     S = E->IgnoreParens();
2193 
2194   if (Context->getLangOpts().OpenMP)
2195     if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2196       return VisitOMPExecutableDirective(D, asc);
2197 
2198   switch (S->getStmtClass()) {
2199     default:
2200       return VisitStmt(S, asc);
2201 
2202     case Stmt::ImplicitValueInitExprClass:
2203       if (BuildOpts.OmitImplicitValueInitializers)
2204         return Block;
2205       return VisitStmt(S, asc);
2206 
2207     case Stmt::InitListExprClass:
2208       return VisitInitListExpr(cast<InitListExpr>(S), asc);
2209 
2210     case Stmt::AttributedStmtClass:
2211       return VisitAttributedStmt(cast<AttributedStmt>(S), asc);
2212 
2213     case Stmt::AddrLabelExprClass:
2214       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2215 
2216     case Stmt::BinaryConditionalOperatorClass:
2217       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2218 
2219     case Stmt::BinaryOperatorClass:
2220       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2221 
2222     case Stmt::BlockExprClass:
2223       return VisitBlockExpr(cast<BlockExpr>(S), asc);
2224 
2225     case Stmt::BreakStmtClass:
2226       return VisitBreakStmt(cast<BreakStmt>(S));
2227 
2228     case Stmt::CallExprClass:
2229     case Stmt::CXXOperatorCallExprClass:
2230     case Stmt::CXXMemberCallExprClass:
2231     case Stmt::UserDefinedLiteralClass:
2232       return VisitCallExpr(cast<CallExpr>(S), asc);
2233 
2234     case Stmt::CaseStmtClass:
2235       return VisitCaseStmt(cast<CaseStmt>(S));
2236 
2237     case Stmt::ChooseExprClass:
2238       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2239 
2240     case Stmt::CompoundStmtClass:
2241       return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2242 
2243     case Stmt::ConditionalOperatorClass:
2244       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2245 
2246     case Stmt::ContinueStmtClass:
2247       return VisitContinueStmt(cast<ContinueStmt>(S));
2248 
2249     case Stmt::CXXCatchStmtClass:
2250       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2251 
2252     case Stmt::ExprWithCleanupsClass:
2253       return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2254                                    asc, ExternallyDestructed);
2255 
2256     case Stmt::CXXDefaultArgExprClass:
2257     case Stmt::CXXDefaultInitExprClass:
2258       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2259       // called function's declaration, not by the caller. If we simply add
2260       // this expression to the CFG, we could end up with the same Expr
2261       // appearing multiple times (PR13385).
2262       //
2263       // It's likewise possible for multiple CXXDefaultInitExprs for the same
2264       // expression to be used in the same function (through aggregate
2265       // initialization).
2266       return VisitStmt(S, asc);
2267 
2268     case Stmt::CXXBindTemporaryExprClass:
2269       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2270 
2271     case Stmt::CXXConstructExprClass:
2272       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2273 
2274     case Stmt::CXXNewExprClass:
2275       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2276 
2277     case Stmt::CXXDeleteExprClass:
2278       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2279 
2280     case Stmt::CXXFunctionalCastExprClass:
2281       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2282 
2283     case Stmt::CXXTemporaryObjectExprClass:
2284       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2285 
2286     case Stmt::CXXThrowExprClass:
2287       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2288 
2289     case Stmt::CXXTryStmtClass:
2290       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2291 
2292     case Stmt::CXXTypeidExprClass:
2293       return VisitCXXTypeidExpr(cast<CXXTypeidExpr>(S), asc);
2294 
2295     case Stmt::CXXForRangeStmtClass:
2296       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2297 
2298     case Stmt::DeclStmtClass:
2299       return VisitDeclStmt(cast<DeclStmt>(S));
2300 
2301     case Stmt::DefaultStmtClass:
2302       return VisitDefaultStmt(cast<DefaultStmt>(S));
2303 
2304     case Stmt::DoStmtClass:
2305       return VisitDoStmt(cast<DoStmt>(S));
2306 
2307     case Stmt::ForStmtClass:
2308       return VisitForStmt(cast<ForStmt>(S));
2309 
2310     case Stmt::GotoStmtClass:
2311       return VisitGotoStmt(cast<GotoStmt>(S));
2312 
2313     case Stmt::GCCAsmStmtClass:
2314       return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2315 
2316     case Stmt::IfStmtClass:
2317       return VisitIfStmt(cast<IfStmt>(S));
2318 
2319     case Stmt::ImplicitCastExprClass:
2320       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2321 
2322     case Stmt::ConstantExprClass:
2323       return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2324 
2325     case Stmt::IndirectGotoStmtClass:
2326       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2327 
2328     case Stmt::LabelStmtClass:
2329       return VisitLabelStmt(cast<LabelStmt>(S));
2330 
2331     case Stmt::LambdaExprClass:
2332       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2333 
2334     case Stmt::MaterializeTemporaryExprClass:
2335       return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2336                                            asc);
2337 
2338     case Stmt::MemberExprClass:
2339       return VisitMemberExpr(cast<MemberExpr>(S), asc);
2340 
2341     case Stmt::NullStmtClass:
2342       return Block;
2343 
2344     case Stmt::ObjCAtCatchStmtClass:
2345       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2346 
2347     case Stmt::ObjCAutoreleasePoolStmtClass:
2348       return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2349 
2350     case Stmt::ObjCAtSynchronizedStmtClass:
2351       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2352 
2353     case Stmt::ObjCAtThrowStmtClass:
2354       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2355 
2356     case Stmt::ObjCAtTryStmtClass:
2357       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2358 
2359     case Stmt::ObjCForCollectionStmtClass:
2360       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2361 
2362     case Stmt::ObjCMessageExprClass:
2363       return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2364 
2365     case Stmt::OpaqueValueExprClass:
2366       return Block;
2367 
2368     case Stmt::PseudoObjectExprClass:
2369       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2370 
2371     case Stmt::ReturnStmtClass:
2372     case Stmt::CoreturnStmtClass:
2373       return VisitReturnStmt(S);
2374 
2375     case Stmt::CoyieldExprClass:
2376     case Stmt::CoawaitExprClass:
2377       return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc);
2378 
2379     case Stmt::SEHExceptStmtClass:
2380       return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2381 
2382     case Stmt::SEHFinallyStmtClass:
2383       return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2384 
2385     case Stmt::SEHLeaveStmtClass:
2386       return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2387 
2388     case Stmt::SEHTryStmtClass:
2389       return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2390 
2391     case Stmt::UnaryExprOrTypeTraitExprClass:
2392       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2393                                            asc);
2394 
2395     case Stmt::StmtExprClass:
2396       return VisitStmtExpr(cast<StmtExpr>(S), asc);
2397 
2398     case Stmt::SwitchStmtClass:
2399       return VisitSwitchStmt(cast<SwitchStmt>(S));
2400 
2401     case Stmt::UnaryOperatorClass:
2402       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2403 
2404     case Stmt::WhileStmtClass:
2405       return VisitWhileStmt(cast<WhileStmt>(S));
2406 
2407     case Stmt::ArrayInitLoopExprClass:
2408       return VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), asc);
2409   }
2410 }
2411 
2412 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2413   if (asc.alwaysAdd(*this, S)) {
2414     autoCreateBlock();
2415     appendStmt(Block, S);
2416   }
2417 
2418   return VisitChildren(S);
2419 }
2420 
2421 /// VisitChildren - Visit the children of a Stmt.
2422 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2423   CFGBlock *B = Block;
2424 
2425   // Visit the children in their reverse order so that they appear in
2426   // left-to-right (natural) order in the CFG.
2427   reverse_children RChildren(S);
2428   for (Stmt *Child : RChildren) {
2429     if (Child)
2430       if (CFGBlock *R = Visit(Child))
2431         B = R;
2432   }
2433   return B;
2434 }
2435 
2436 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2437   if (asc.alwaysAdd(*this, ILE)) {
2438     autoCreateBlock();
2439     appendStmt(Block, ILE);
2440   }
2441   CFGBlock *B = Block;
2442 
2443   reverse_children RChildren(ILE);
2444   for (Stmt *Child : RChildren) {
2445     if (!Child)
2446       continue;
2447     if (CFGBlock *R = Visit(Child))
2448       B = R;
2449     if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2450       if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2451         if (Stmt *Child = DIE->getExpr())
2452           if (CFGBlock *R = Visit(Child))
2453             B = R;
2454     }
2455   }
2456   return B;
2457 }
2458 
2459 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2460                                          AddStmtChoice asc) {
2461   AddressTakenLabels.insert(A->getLabel());
2462 
2463   if (asc.alwaysAdd(*this, A)) {
2464     autoCreateBlock();
2465     appendStmt(Block, A);
2466   }
2467 
2468   return Block;
2469 }
2470 
2471 static bool isFallthroughStatement(const AttributedStmt *A) {
2472   bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs());
2473   assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) &&
2474          "expected fallthrough not to have children");
2475   return isFallthrough;
2476 }
2477 
2478 CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A,
2479                                           AddStmtChoice asc) {
2480   // AttributedStmts for [[likely]] can have arbitrary statements as children,
2481   // and the current visitation order here would add the AttributedStmts
2482   // for [[likely]] after the child nodes, which is undesirable: For example,
2483   // if the child contains an unconditional return, the [[likely]] would be
2484   // considered unreachable.
2485   // So only add the AttributedStmt for FallThrough, which has CFG effects and
2486   // also no children, and omit the others. None of the other current StmtAttrs
2487   // have semantic meaning for the CFG.
2488   if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) {
2489     autoCreateBlock();
2490     appendStmt(Block, A);
2491   }
2492 
2493   return VisitChildren(A);
2494 }
2495 
2496 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) {
2497   if (asc.alwaysAdd(*this, U)) {
2498     autoCreateBlock();
2499     appendStmt(Block, U);
2500   }
2501 
2502   if (U->getOpcode() == UO_LNot)
2503     tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2504 
2505   return Visit(U->getSubExpr(), AddStmtChoice());
2506 }
2507 
2508 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2509   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2510   appendStmt(ConfluenceBlock, B);
2511 
2512   if (badCFG)
2513     return nullptr;
2514 
2515   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2516                               ConfluenceBlock).first;
2517 }
2518 
2519 std::pair<CFGBlock*, CFGBlock*>
2520 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2521                                  Stmt *Term,
2522                                  CFGBlock *TrueBlock,
2523                                  CFGBlock *FalseBlock) {
2524   // Introspect the RHS.  If it is a nested logical operation, we recursively
2525   // build the CFG using this function.  Otherwise, resort to default
2526   // CFG construction behavior.
2527   Expr *RHS = B->getRHS()->IgnoreParens();
2528   CFGBlock *RHSBlock, *ExitBlock;
2529 
2530   do {
2531     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2532       if (B_RHS->isLogicalOp()) {
2533         std::tie(RHSBlock, ExitBlock) =
2534           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2535         break;
2536       }
2537 
2538     // The RHS is not a nested logical operation.  Don't push the terminator
2539     // down further, but instead visit RHS and construct the respective
2540     // pieces of the CFG, and link up the RHSBlock with the terminator
2541     // we have been provided.
2542     ExitBlock = RHSBlock = createBlock(false);
2543 
2544     // Even though KnownVal is only used in the else branch of the next
2545     // conditional, tryEvaluateBool performs additional checking on the
2546     // Expr, so it should be called unconditionally.
2547     TryResult KnownVal = tryEvaluateBool(RHS);
2548     if (!KnownVal.isKnown())
2549       KnownVal = tryEvaluateBool(B);
2550 
2551     if (!Term) {
2552       assert(TrueBlock == FalseBlock);
2553       addSuccessor(RHSBlock, TrueBlock);
2554     }
2555     else {
2556       RHSBlock->setTerminator(Term);
2557       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2558       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2559     }
2560 
2561     Block = RHSBlock;
2562     RHSBlock = addStmt(RHS);
2563   }
2564   while (false);
2565 
2566   if (badCFG)
2567     return std::make_pair(nullptr, nullptr);
2568 
2569   // Generate the blocks for evaluating the LHS.
2570   Expr *LHS = B->getLHS()->IgnoreParens();
2571 
2572   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2573     if (B_LHS->isLogicalOp()) {
2574       if (B->getOpcode() == BO_LOr)
2575         FalseBlock = RHSBlock;
2576       else
2577         TrueBlock = RHSBlock;
2578 
2579       // For the LHS, treat 'B' as the terminator that we want to sink
2580       // into the nested branch.  The RHS always gets the top-most
2581       // terminator.
2582       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2583     }
2584 
2585   // Create the block evaluating the LHS.
2586   // This contains the '&&' or '||' as the terminator.
2587   CFGBlock *LHSBlock = createBlock(false);
2588   LHSBlock->setTerminator(B);
2589 
2590   Block = LHSBlock;
2591   CFGBlock *EntryLHSBlock = addStmt(LHS);
2592 
2593   if (badCFG)
2594     return std::make_pair(nullptr, nullptr);
2595 
2596   // See if this is a known constant.
2597   TryResult KnownVal = tryEvaluateBool(LHS);
2598 
2599   // Now link the LHSBlock with RHSBlock.
2600   if (B->getOpcode() == BO_LOr) {
2601     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2602     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2603   } else {
2604     assert(B->getOpcode() == BO_LAnd);
2605     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2606     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2607   }
2608 
2609   return std::make_pair(EntryLHSBlock, ExitBlock);
2610 }
2611 
2612 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2613                                           AddStmtChoice asc) {
2614    // && or ||
2615   if (B->isLogicalOp())
2616     return VisitLogicalOperator(B);
2617 
2618   if (B->getOpcode() == BO_Comma) { // ,
2619     autoCreateBlock();
2620     appendStmt(Block, B);
2621     addStmt(B->getRHS());
2622     return addStmt(B->getLHS());
2623   }
2624 
2625   if (B->isAssignmentOp()) {
2626     if (asc.alwaysAdd(*this, B)) {
2627       autoCreateBlock();
2628       appendStmt(Block, B);
2629     }
2630     Visit(B->getLHS());
2631     return Visit(B->getRHS());
2632   }
2633 
2634   if (asc.alwaysAdd(*this, B)) {
2635     autoCreateBlock();
2636     appendStmt(Block, B);
2637   }
2638 
2639   if (B->isEqualityOp() || B->isRelationalOp())
2640     tryEvaluateBool(B);
2641 
2642   CFGBlock *RBlock = Visit(B->getRHS());
2643   CFGBlock *LBlock = Visit(B->getLHS());
2644   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2645   // containing a DoStmt, and the LHS doesn't create a new block, then we should
2646   // return RBlock.  Otherwise we'll incorrectly return NULL.
2647   return (LBlock ? LBlock : RBlock);
2648 }
2649 
2650 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2651   if (asc.alwaysAdd(*this, E)) {
2652     autoCreateBlock();
2653     appendStmt(Block, E);
2654   }
2655   return Block;
2656 }
2657 
2658 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2659   // "break" is a control-flow statement.  Thus we stop processing the current
2660   // block.
2661   if (badCFG)
2662     return nullptr;
2663 
2664   // Now create a new block that ends with the break statement.
2665   Block = createBlock(false);
2666   Block->setTerminator(B);
2667 
2668   // If there is no target for the break, then we are looking at an incomplete
2669   // AST.  This means that the CFG cannot be constructed.
2670   if (BreakJumpTarget.block) {
2671     addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2672     addSuccessor(Block, BreakJumpTarget.block);
2673   } else
2674     badCFG = true;
2675 
2676   return Block;
2677 }
2678 
2679 static bool CanThrow(Expr *E, ASTContext &Ctx) {
2680   QualType Ty = E->getType();
2681   if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2682     Ty = Ty->getPointeeType();
2683 
2684   const FunctionType *FT = Ty->getAs<FunctionType>();
2685   if (FT) {
2686     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2687       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2688           Proto->isNothrow())
2689         return false;
2690   }
2691   return true;
2692 }
2693 
2694 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2695   // Compute the callee type.
2696   QualType calleeType = C->getCallee()->getType();
2697   if (calleeType == Context->BoundMemberTy) {
2698     QualType boundType = Expr::findBoundMemberType(C->getCallee());
2699 
2700     // We should only get a null bound type if processing a dependent
2701     // CFG.  Recover by assuming nothing.
2702     if (!boundType.isNull()) calleeType = boundType;
2703   }
2704 
2705   // If this is a call to a no-return function, this stops the block here.
2706   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2707 
2708   bool AddEHEdge = false;
2709 
2710   // Languages without exceptions are assumed to not throw.
2711   if (Context->getLangOpts().Exceptions) {
2712     if (BuildOpts.AddEHEdges)
2713       AddEHEdge = true;
2714   }
2715 
2716   // If this is a call to a builtin function, it might not actually evaluate
2717   // its arguments. Don't add them to the CFG if this is the case.
2718   bool OmitArguments = false;
2719 
2720   if (FunctionDecl *FD = C->getDirectCallee()) {
2721     // TODO: Support construction contexts for variadic function arguments.
2722     // These are a bit problematic and not very useful because passing
2723     // C++ objects as C-style variadic arguments doesn't work in general
2724     // (see [expr.call]).
2725     if (!FD->isVariadic())
2726       findConstructionContextsForArguments(C);
2727 
2728     if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2729       NoReturn = true;
2730     if (FD->hasAttr<NoThrowAttr>())
2731       AddEHEdge = false;
2732     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2733         FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2734       OmitArguments = true;
2735   }
2736 
2737   if (!CanThrow(C->getCallee(), *Context))
2738     AddEHEdge = false;
2739 
2740   if (OmitArguments) {
2741     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2742     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2743     autoCreateBlock();
2744     appendStmt(Block, C);
2745     return Visit(C->getCallee());
2746   }
2747 
2748   if (!NoReturn && !AddEHEdge) {
2749     autoCreateBlock();
2750     appendCall(Block, C);
2751 
2752     return VisitChildren(C);
2753   }
2754 
2755   if (Block) {
2756     Succ = Block;
2757     if (badCFG)
2758       return nullptr;
2759   }
2760 
2761   if (NoReturn)
2762     Block = createNoReturnBlock();
2763   else
2764     Block = createBlock();
2765 
2766   appendCall(Block, C);
2767 
2768   if (AddEHEdge) {
2769     // Add exceptional edges.
2770     if (TryTerminatedBlock)
2771       addSuccessor(Block, TryTerminatedBlock);
2772     else
2773       addSuccessor(Block, &cfg->getExit());
2774   }
2775 
2776   return VisitChildren(C);
2777 }
2778 
2779 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2780                                       AddStmtChoice asc) {
2781   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2782   appendStmt(ConfluenceBlock, C);
2783   if (badCFG)
2784     return nullptr;
2785 
2786   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2787   Succ = ConfluenceBlock;
2788   Block = nullptr;
2789   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2790   if (badCFG)
2791     return nullptr;
2792 
2793   Succ = ConfluenceBlock;
2794   Block = nullptr;
2795   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2796   if (badCFG)
2797     return nullptr;
2798 
2799   Block = createBlock(false);
2800   // See if this is a known constant.
2801   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2802   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2803   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2804   Block->setTerminator(C);
2805   return addStmt(C->getCond());
2806 }
2807 
2808 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C,
2809                                         bool ExternallyDestructed) {
2810   LocalScope::const_iterator scopeBeginPos = ScopePos;
2811   addLocalScopeForStmt(C);
2812 
2813   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2814     // If the body ends with a ReturnStmt, the dtors will be added in
2815     // VisitReturnStmt.
2816     addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2817   }
2818 
2819   CFGBlock *LastBlock = Block;
2820 
2821   for (Stmt *S : llvm::reverse(C->body())) {
2822     // If we hit a segment of code just containing ';' (NullStmts), we can
2823     // get a null block back.  In such cases, just use the LastBlock
2824     CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd,
2825                                ExternallyDestructed);
2826 
2827     if (newBlock)
2828       LastBlock = newBlock;
2829 
2830     if (badCFG)
2831       return nullptr;
2832 
2833     ExternallyDestructed = false;
2834   }
2835 
2836   return LastBlock;
2837 }
2838 
2839 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2840                                                AddStmtChoice asc) {
2841   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2842   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2843 
2844   // Create the confluence block that will "merge" the results of the ternary
2845   // expression.
2846   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2847   appendStmt(ConfluenceBlock, C);
2848   if (badCFG)
2849     return nullptr;
2850 
2851   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2852 
2853   // Create a block for the LHS expression if there is an LHS expression.  A
2854   // GCC extension allows LHS to be NULL, causing the condition to be the
2855   // value that is returned instead.
2856   //  e.g: x ?: y is shorthand for: x ? x : y;
2857   Succ = ConfluenceBlock;
2858   Block = nullptr;
2859   CFGBlock *LHSBlock = nullptr;
2860   const Expr *trueExpr = C->getTrueExpr();
2861   if (trueExpr != opaqueValue) {
2862     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2863     if (badCFG)
2864       return nullptr;
2865     Block = nullptr;
2866   }
2867   else
2868     LHSBlock = ConfluenceBlock;
2869 
2870   // Create the block for the RHS expression.
2871   Succ = ConfluenceBlock;
2872   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2873   if (badCFG)
2874     return nullptr;
2875 
2876   // If the condition is a logical '&&' or '||', build a more accurate CFG.
2877   if (BinaryOperator *Cond =
2878         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2879     if (Cond->isLogicalOp())
2880       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2881 
2882   // Create the block that will contain the condition.
2883   Block = createBlock(false);
2884 
2885   // See if this is a known constant.
2886   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2887   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2888   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2889   Block->setTerminator(C);
2890   Expr *condExpr = C->getCond();
2891 
2892   if (opaqueValue) {
2893     // Run the condition expression if it's not trivially expressed in
2894     // terms of the opaque value (or if there is no opaque value).
2895     if (condExpr != opaqueValue)
2896       addStmt(condExpr);
2897 
2898     // Before that, run the common subexpression if there was one.
2899     // At least one of this or the above will be run.
2900     return addStmt(BCO->getCommon());
2901   }
2902 
2903   return addStmt(condExpr);
2904 }
2905 
2906 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2907   // Check if the Decl is for an __label__.  If so, elide it from the
2908   // CFG entirely.
2909   if (isa<LabelDecl>(*DS->decl_begin()))
2910     return Block;
2911 
2912   // This case also handles static_asserts.
2913   if (DS->isSingleDecl())
2914     return VisitDeclSubExpr(DS);
2915 
2916   CFGBlock *B = nullptr;
2917 
2918   // Build an individual DeclStmt for each decl.
2919   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2920                                        E = DS->decl_rend();
2921        I != E; ++I) {
2922 
2923     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
2924     // automatically freed with the CFG.
2925     DeclGroupRef DG(*I);
2926     Decl *D = *I;
2927     DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2928     cfg->addSyntheticDeclStmt(DSNew, DS);
2929 
2930     // Append the fake DeclStmt to block.
2931     B = VisitDeclSubExpr(DSNew);
2932   }
2933 
2934   return B;
2935 }
2936 
2937 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2938 /// DeclStmts and initializers in them.
2939 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2940   assert(DS->isSingleDecl() && "Can handle single declarations only.");
2941 
2942   if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
2943     // If we encounter a VLA, process its size expressions.
2944     const Type *T = TND->getUnderlyingType().getTypePtr();
2945     if (!T->isVariablyModifiedType())
2946       return Block;
2947 
2948     autoCreateBlock();
2949     appendStmt(Block, DS);
2950 
2951     CFGBlock *LastBlock = Block;
2952     for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
2953          VA = FindVA(VA->getElementType().getTypePtr())) {
2954       if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
2955         LastBlock = NewBlock;
2956     }
2957     return LastBlock;
2958   }
2959 
2960   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2961 
2962   if (!VD) {
2963     // Of everything that can be declared in a DeclStmt, only VarDecls and the
2964     // exceptions above impact runtime semantics.
2965     return Block;
2966   }
2967 
2968   bool HasTemporaries = false;
2969 
2970   // Guard static initializers under a branch.
2971   CFGBlock *blockAfterStaticInit = nullptr;
2972 
2973   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2974     // For static variables, we need to create a branch to track
2975     // whether or not they are initialized.
2976     if (Block) {
2977       Succ = Block;
2978       Block = nullptr;
2979       if (badCFG)
2980         return nullptr;
2981     }
2982     blockAfterStaticInit = Succ;
2983   }
2984 
2985   // Destructors of temporaries in initialization expression should be called
2986   // after initialization finishes.
2987   Expr *Init = VD->getInit();
2988   if (Init) {
2989     HasTemporaries = isa<ExprWithCleanups>(Init);
2990 
2991     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2992       // Generate destructors for temporaries in initialization expression.
2993       TempDtorContext Context;
2994       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2995                              /*ExternallyDestructed=*/true, Context);
2996     }
2997   }
2998 
2999   // If we bind to a tuple-like type, we iterate over the HoldingVars, and
3000   // create a DeclStmt for each of them.
3001   if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) {
3002     for (auto *BD : llvm::reverse(DD->bindings())) {
3003       if (auto *VD = BD->getHoldingVar()) {
3004         DeclGroupRef DG(VD);
3005         DeclStmt *DSNew =
3006             new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(VD));
3007         cfg->addSyntheticDeclStmt(DSNew, DS);
3008         Block = VisitDeclSubExpr(DSNew);
3009       }
3010     }
3011   }
3012 
3013   autoCreateBlock();
3014   appendStmt(Block, DS);
3015 
3016   // If the initializer is an ArrayInitLoopExpr, we want to extract the
3017   // initializer, that's used for each element.
3018   const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init);
3019 
3020   findConstructionContexts(
3021       ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3022       AILE ? AILE->getSubExpr() : Init);
3023 
3024   // Keep track of the last non-null block, as 'Block' can be nulled out
3025   // if the initializer expression is something like a 'while' in a
3026   // statement-expression.
3027   CFGBlock *LastBlock = Block;
3028 
3029   if (Init) {
3030     if (HasTemporaries) {
3031       // For expression with temporaries go directly to subexpression to omit
3032       // generating destructors for the second time.
3033       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
3034       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
3035         LastBlock = newBlock;
3036     }
3037     else {
3038       if (CFGBlock *newBlock = Visit(Init))
3039         LastBlock = newBlock;
3040     }
3041   }
3042 
3043   // If the type of VD is a VLA, then we must process its size expressions.
3044   // FIXME: This does not find the VLA if it is embedded in other types,
3045   // like here: `int (*p_vla)[x];`
3046   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
3047        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
3048     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
3049       LastBlock = newBlock;
3050   }
3051 
3052   maybeAddScopeBeginForVarDecl(Block, VD, DS);
3053 
3054   // Remove variable from local scope.
3055   if (ScopePos && VD == *ScopePos)
3056     ++ScopePos;
3057 
3058   CFGBlock *B = LastBlock;
3059   if (blockAfterStaticInit) {
3060     Succ = B;
3061     Block = createBlock(false);
3062     Block->setTerminator(DS);
3063     addSuccessor(Block, blockAfterStaticInit);
3064     addSuccessor(Block, B);
3065     B = Block;
3066   }
3067 
3068   return B;
3069 }
3070 
3071 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
3072   // We may see an if statement in the middle of a basic block, or it may be the
3073   // first statement we are processing.  In either case, we create a new basic
3074   // block.  First, we create the blocks for the then...else statements, and
3075   // then we create the block containing the if statement.  If we were in the
3076   // middle of a block, we stop processing that block.  That block is then the
3077   // implicit successor for the "then" and "else" clauses.
3078 
3079   // Save local scope position because in case of condition variable ScopePos
3080   // won't be restored when traversing AST.
3081   SaveAndRestore save_scope_pos(ScopePos);
3082 
3083   // Create local scope for C++17 if init-stmt if one exists.
3084   if (Stmt *Init = I->getInit())
3085     addLocalScopeForStmt(Init);
3086 
3087   // Create local scope for possible condition variable.
3088   // Store scope position. Add implicit destructor.
3089   if (VarDecl *VD = I->getConditionVariable())
3090     addLocalScopeForVarDecl(VD);
3091 
3092   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
3093 
3094   // The block we were processing is now finished.  Make it the successor
3095   // block.
3096   if (Block) {
3097     Succ = Block;
3098     if (badCFG)
3099       return nullptr;
3100   }
3101 
3102   // Process the false branch.
3103   CFGBlock *ElseBlock = Succ;
3104 
3105   if (Stmt *Else = I->getElse()) {
3106     SaveAndRestore sv(Succ);
3107 
3108     // NULL out Block so that the recursive call to Visit will
3109     // create a new basic block.
3110     Block = nullptr;
3111 
3112     // If branch is not a compound statement create implicit scope
3113     // and add destructors.
3114     if (!isa<CompoundStmt>(Else))
3115       addLocalScopeAndDtors(Else);
3116 
3117     ElseBlock = addStmt(Else);
3118 
3119     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
3120       ElseBlock = sv.get();
3121     else if (Block) {
3122       if (badCFG)
3123         return nullptr;
3124     }
3125   }
3126 
3127   // Process the true branch.
3128   CFGBlock *ThenBlock;
3129   {
3130     Stmt *Then = I->getThen();
3131     assert(Then);
3132     SaveAndRestore sv(Succ);
3133     Block = nullptr;
3134 
3135     // If branch is not a compound statement create implicit scope
3136     // and add destructors.
3137     if (!isa<CompoundStmt>(Then))
3138       addLocalScopeAndDtors(Then);
3139 
3140     ThenBlock = addStmt(Then);
3141 
3142     if (!ThenBlock) {
3143       // We can reach here if the "then" body has all NullStmts.
3144       // Create an empty block so we can distinguish between true and false
3145       // branches in path-sensitive analyses.
3146       ThenBlock = createBlock(false);
3147       addSuccessor(ThenBlock, sv.get());
3148     } else if (Block) {
3149       if (badCFG)
3150         return nullptr;
3151     }
3152   }
3153 
3154   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3155   // having these handle the actual control-flow jump.  Note that
3156   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3157   // we resort to the old control-flow behavior.  This special handling
3158   // removes infeasible paths from the control-flow graph by having the
3159   // control-flow transfer of '&&' or '||' go directly into the then/else
3160   // blocks directly.
3161   BinaryOperator *Cond =
3162       (I->isConsteval() || I->getConditionVariable())
3163           ? nullptr
3164           : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3165   CFGBlock *LastBlock;
3166   if (Cond && Cond->isLogicalOp())
3167     LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3168   else {
3169     // Now create a new block containing the if statement.
3170     Block = createBlock(false);
3171 
3172     // Set the terminator of the new block to the If statement.
3173     Block->setTerminator(I);
3174 
3175     // See if this is a known constant.
3176     TryResult KnownVal;
3177     if (!I->isConsteval())
3178       KnownVal = tryEvaluateBool(I->getCond());
3179 
3180     // Add the successors.  If we know that specific branches are
3181     // unreachable, inform addSuccessor() of that knowledge.
3182     addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3183     addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3184 
3185     // Add the condition as the last statement in the new block.  This may
3186     // create new blocks as the condition may contain control-flow.  Any newly
3187     // created blocks will be pointed to be "Block".
3188     LastBlock = addStmt(I->getCond());
3189 
3190     // If the IfStmt contains a condition variable, add it and its
3191     // initializer to the CFG.
3192     if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3193       autoCreateBlock();
3194       LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3195     }
3196   }
3197 
3198   // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3199   if (Stmt *Init = I->getInit()) {
3200     autoCreateBlock();
3201     LastBlock = addStmt(Init);
3202   }
3203 
3204   return LastBlock;
3205 }
3206 
3207 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3208   // If we were in the middle of a block we stop processing that block.
3209   //
3210   // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3211   //       means that the code afterwards is DEAD (unreachable).  We still keep
3212   //       a basic block for that code; a simple "mark-and-sweep" from the entry
3213   //       block will be able to report such dead blocks.
3214   assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3215 
3216   // Create the new block.
3217   Block = createBlock(false);
3218 
3219   addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3220 
3221   if (auto *R = dyn_cast<ReturnStmt>(S))
3222     findConstructionContexts(
3223         ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3224         R->getRetValue());
3225 
3226   // If the one of the destructors does not return, we already have the Exit
3227   // block as a successor.
3228   if (!Block->hasNoReturnElement())
3229     addSuccessor(Block, &cfg->getExit());
3230 
3231   // Add the return statement to the block.
3232   appendStmt(Block, S);
3233 
3234   // Visit children
3235   if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3236     if (Expr *O = RS->getRetValue())
3237       return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3238     return Block;
3239   }
3240 
3241   CoreturnStmt *CRS = cast<CoreturnStmt>(S);
3242   auto *B = Block;
3243   if (CFGBlock *R = Visit(CRS->getPromiseCall()))
3244     B = R;
3245 
3246   if (Expr *RV = CRS->getOperand())
3247     if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV))
3248       // A non-initlist void expression.
3249       if (CFGBlock *R = Visit(RV))
3250         B = R;
3251 
3252   return B;
3253 }
3254 
3255 CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E,
3256                                                 AddStmtChoice asc) {
3257   // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3258   // active components of the co_await or co_yield. Note we do not model the
3259   // edge from the builtin_suspend to the exit node.
3260   if (asc.alwaysAdd(*this, E)) {
3261     autoCreateBlock();
3262     appendStmt(Block, E);
3263   }
3264   CFGBlock *B = Block;
3265   if (auto *R = Visit(E->getResumeExpr()))
3266     B = R;
3267   if (auto *R = Visit(E->getSuspendExpr()))
3268     B = R;
3269   if (auto *R = Visit(E->getReadyExpr()))
3270     B = R;
3271   if (auto *R = Visit(E->getCommonExpr()))
3272     B = R;
3273   return B;
3274 }
3275 
3276 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3277   // SEHExceptStmt are treated like labels, so they are the first statement in a
3278   // block.
3279 
3280   // Save local scope position because in case of exception variable ScopePos
3281   // won't be restored when traversing AST.
3282   SaveAndRestore save_scope_pos(ScopePos);
3283 
3284   addStmt(ES->getBlock());
3285   CFGBlock *SEHExceptBlock = Block;
3286   if (!SEHExceptBlock)
3287     SEHExceptBlock = createBlock();
3288 
3289   appendStmt(SEHExceptBlock, ES);
3290 
3291   // Also add the SEHExceptBlock as a label, like with regular labels.
3292   SEHExceptBlock->setLabel(ES);
3293 
3294   // Bail out if the CFG is bad.
3295   if (badCFG)
3296     return nullptr;
3297 
3298   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3299   Block = nullptr;
3300 
3301   return SEHExceptBlock;
3302 }
3303 
3304 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3305   return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3306 }
3307 
3308 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3309   // "__leave" is a control-flow statement.  Thus we stop processing the current
3310   // block.
3311   if (badCFG)
3312     return nullptr;
3313 
3314   // Now create a new block that ends with the __leave statement.
3315   Block = createBlock(false);
3316   Block->setTerminator(LS);
3317 
3318   // If there is no target for the __leave, then we are looking at an incomplete
3319   // AST.  This means that the CFG cannot be constructed.
3320   if (SEHLeaveJumpTarget.block) {
3321     addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3322     addSuccessor(Block, SEHLeaveJumpTarget.block);
3323   } else
3324     badCFG = true;
3325 
3326   return Block;
3327 }
3328 
3329 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3330   // "__try"/"__except"/"__finally" is a control-flow statement.  Thus we stop
3331   // processing the current block.
3332   CFGBlock *SEHTrySuccessor = nullptr;
3333 
3334   if (Block) {
3335     if (badCFG)
3336       return nullptr;
3337     SEHTrySuccessor = Block;
3338   } else SEHTrySuccessor = Succ;
3339 
3340   // FIXME: Implement __finally support.
3341   if (Terminator->getFinallyHandler())
3342     return NYS();
3343 
3344   CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3345 
3346   // Create a new block that will contain the __try statement.
3347   CFGBlock *NewTryTerminatedBlock = createBlock(false);
3348 
3349   // Add the terminator in the __try block.
3350   NewTryTerminatedBlock->setTerminator(Terminator);
3351 
3352   if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3353     // The code after the try is the implicit successor if there's an __except.
3354     Succ = SEHTrySuccessor;
3355     Block = nullptr;
3356     CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3357     if (!ExceptBlock)
3358       return nullptr;
3359     // Add this block to the list of successors for the block with the try
3360     // statement.
3361     addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3362   }
3363   if (PrevSEHTryTerminatedBlock)
3364     addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3365   else
3366     addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3367 
3368   // The code after the try is the implicit successor.
3369   Succ = SEHTrySuccessor;
3370 
3371   // Save the current "__try" context.
3372   SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
3373   cfg->addTryDispatchBlock(TryTerminatedBlock);
3374 
3375   // Save the current value for the __leave target.
3376   // All __leaves should go to the code following the __try
3377   // (FIXME: or if the __try has a __finally, to the __finally.)
3378   SaveAndRestore save_break(SEHLeaveJumpTarget);
3379   SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3380 
3381   assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3382   Block = nullptr;
3383   return addStmt(Terminator->getTryBlock());
3384 }
3385 
3386 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3387   // Get the block of the labeled statement.  Add it to our map.
3388   addStmt(L->getSubStmt());
3389   CFGBlock *LabelBlock = Block;
3390 
3391   if (!LabelBlock)              // This can happen when the body is empty, i.e.
3392     LabelBlock = createBlock(); // scopes that only contains NullStmts.
3393 
3394   assert(!LabelMap.contains(L->getDecl()) && "label already in map");
3395   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3396 
3397   // Labels partition blocks, so this is the end of the basic block we were
3398   // processing (L is the block's label).  Because this is label (and we have
3399   // already processed the substatement) there is no extra control-flow to worry
3400   // about.
3401   LabelBlock->setLabel(L);
3402   if (badCFG)
3403     return nullptr;
3404 
3405   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3406   Block = nullptr;
3407 
3408   // This block is now the implicit successor of other blocks.
3409   Succ = LabelBlock;
3410 
3411   return LabelBlock;
3412 }
3413 
3414 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3415   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3416   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3417     if (Expr *CopyExpr = CI.getCopyExpr()) {
3418       CFGBlock *Tmp = Visit(CopyExpr);
3419       if (Tmp)
3420         LastBlock = Tmp;
3421     }
3422   }
3423   return LastBlock;
3424 }
3425 
3426 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3427   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3428 
3429   unsigned Idx = 0;
3430   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3431                                          et = E->capture_init_end();
3432        it != et; ++it, ++Idx) {
3433     if (Expr *Init = *it) {
3434       // If the initializer is an ArrayInitLoopExpr, we want to extract the
3435       // initializer, that's used for each element.
3436       auto *AILEInit = extractElementInitializerFromNestedAILE(
3437           dyn_cast<ArrayInitLoopExpr>(Init));
3438 
3439       findConstructionContexts(ConstructionContextLayer::create(
3440                                    cfg->getBumpVectorContext(), {E, Idx}),
3441                                AILEInit ? AILEInit : Init);
3442 
3443       CFGBlock *Tmp = Visit(Init);
3444       if (Tmp)
3445         LastBlock = Tmp;
3446     }
3447   }
3448   return LastBlock;
3449 }
3450 
3451 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3452   // Goto is a control-flow statement.  Thus we stop processing the current
3453   // block and create a new one.
3454 
3455   Block = createBlock(false);
3456   Block->setTerminator(G);
3457 
3458   // If we already know the mapping to the label block add the successor now.
3459   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3460 
3461   if (I == LabelMap.end())
3462     // We will need to backpatch this block later.
3463     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3464   else {
3465     JumpTarget JT = I->second;
3466     addSuccessor(Block, JT.block);
3467     addScopeChangesHandling(ScopePos, JT.scopePosition, G);
3468   }
3469 
3470   return Block;
3471 }
3472 
3473 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3474   // Goto is a control-flow statement.  Thus we stop processing the current
3475   // block and create a new one.
3476 
3477   if (!G->isAsmGoto())
3478     return VisitStmt(G, asc);
3479 
3480   if (Block) {
3481     Succ = Block;
3482     if (badCFG)
3483       return nullptr;
3484   }
3485   Block = createBlock();
3486   Block->setTerminator(G);
3487   // We will backpatch this block later for all the labels.
3488   BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3489   // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3490   // used to avoid adding "Succ" again.
3491   BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3492   return VisitChildren(G);
3493 }
3494 
3495 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3496   CFGBlock *LoopSuccessor = nullptr;
3497 
3498   // Save local scope position because in case of condition variable ScopePos
3499   // won't be restored when traversing AST.
3500   SaveAndRestore save_scope_pos(ScopePos);
3501 
3502   // Create local scope for init statement and possible condition variable.
3503   // Add destructor for init statement and condition variable.
3504   // Store scope position for continue statement.
3505   if (Stmt *Init = F->getInit())
3506     addLocalScopeForStmt(Init);
3507   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3508 
3509   if (VarDecl *VD = F->getConditionVariable())
3510     addLocalScopeForVarDecl(VD);
3511   LocalScope::const_iterator ContinueScopePos = ScopePos;
3512 
3513   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3514 
3515   addLoopExit(F);
3516 
3517   // "for" is a control-flow statement.  Thus we stop processing the current
3518   // block.
3519   if (Block) {
3520     if (badCFG)
3521       return nullptr;
3522     LoopSuccessor = Block;
3523   } else
3524     LoopSuccessor = Succ;
3525 
3526   // Save the current value for the break targets.
3527   // All breaks should go to the code following the loop.
3528   SaveAndRestore save_break(BreakJumpTarget);
3529   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3530 
3531   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3532 
3533   // Now create the loop body.
3534   {
3535     assert(F->getBody());
3536 
3537     // Save the current values for Block, Succ, continue and break targets.
3538     SaveAndRestore save_Block(Block), save_Succ(Succ);
3539     SaveAndRestore save_continue(ContinueJumpTarget);
3540 
3541     // Create an empty block to represent the transition block for looping back
3542     // to the head of the loop.  If we have increment code, it will
3543     // go in this block as well.
3544     Block = Succ = TransitionBlock = createBlock(false);
3545     TransitionBlock->setLoopTarget(F);
3546 
3547 
3548     // Loop iteration (after increment) should end with destructor of Condition
3549     // variable (if any).
3550     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3551 
3552     if (Stmt *I = F->getInc()) {
3553       // Generate increment code in its own basic block.  This is the target of
3554       // continue statements.
3555       Succ = addStmt(I);
3556     }
3557 
3558     // Finish up the increment (or empty) block if it hasn't been already.
3559     if (Block) {
3560       assert(Block == Succ);
3561       if (badCFG)
3562         return nullptr;
3563       Block = nullptr;
3564     }
3565 
3566    // The starting block for the loop increment is the block that should
3567    // represent the 'loop target' for looping back to the start of the loop.
3568    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3569    ContinueJumpTarget.block->setLoopTarget(F);
3570 
3571 
3572     // If body is not a compound statement create implicit scope
3573     // and add destructors.
3574     if (!isa<CompoundStmt>(F->getBody()))
3575       addLocalScopeAndDtors(F->getBody());
3576 
3577     // Now populate the body block, and in the process create new blocks as we
3578     // walk the body of the loop.
3579     BodyBlock = addStmt(F->getBody());
3580 
3581     if (!BodyBlock) {
3582       // In the case of "for (...;...;...);" we can have a null BodyBlock.
3583       // Use the continue jump target as the proxy for the body.
3584       BodyBlock = ContinueJumpTarget.block;
3585     }
3586     else if (badCFG)
3587       return nullptr;
3588   }
3589 
3590   // Because of short-circuit evaluation, the condition of the loop can span
3591   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3592   // evaluate the condition.
3593   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3594 
3595   do {
3596     Expr *C = F->getCond();
3597     SaveAndRestore save_scope_pos(ScopePos);
3598 
3599     // Specially handle logical operators, which have a slightly
3600     // more optimal CFG representation.
3601     if (BinaryOperator *Cond =
3602             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3603       if (Cond->isLogicalOp()) {
3604         std::tie(EntryConditionBlock, ExitConditionBlock) =
3605           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3606         break;
3607       }
3608 
3609     // The default case when not handling logical operators.
3610     EntryConditionBlock = ExitConditionBlock = createBlock(false);
3611     ExitConditionBlock->setTerminator(F);
3612 
3613     // See if this is a known constant.
3614     TryResult KnownVal(true);
3615 
3616     if (C) {
3617       // Now add the actual condition to the condition block.
3618       // Because the condition itself may contain control-flow, new blocks may
3619       // be created.  Thus we update "Succ" after adding the condition.
3620       Block = ExitConditionBlock;
3621       EntryConditionBlock = addStmt(C);
3622 
3623       // If this block contains a condition variable, add both the condition
3624       // variable and initializer to the CFG.
3625       if (VarDecl *VD = F->getConditionVariable()) {
3626         if (Expr *Init = VD->getInit()) {
3627           autoCreateBlock();
3628           const DeclStmt *DS = F->getConditionVariableDeclStmt();
3629           assert(DS->isSingleDecl());
3630           findConstructionContexts(
3631               ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3632               Init);
3633           appendStmt(Block, DS);
3634           EntryConditionBlock = addStmt(Init);
3635           assert(Block == EntryConditionBlock);
3636           maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3637         }
3638       }
3639 
3640       if (Block && badCFG)
3641         return nullptr;
3642 
3643       KnownVal = tryEvaluateBool(C);
3644     }
3645 
3646     // Add the loop body entry as a successor to the condition.
3647     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3648     // Link up the condition block with the code that follows the loop.  (the
3649     // false branch).
3650     addSuccessor(ExitConditionBlock,
3651                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3652   } while (false);
3653 
3654   // Link up the loop-back block to the entry condition block.
3655   addSuccessor(TransitionBlock, EntryConditionBlock);
3656 
3657   // The condition block is the implicit successor for any code above the loop.
3658   Succ = EntryConditionBlock;
3659 
3660   // If the loop contains initialization, create a new block for those
3661   // statements.  This block can also contain statements that precede the loop.
3662   if (Stmt *I = F->getInit()) {
3663     SaveAndRestore save_scope_pos(ScopePos);
3664     ScopePos = LoopBeginScopePos;
3665     Block = createBlock();
3666     return addStmt(I);
3667   }
3668 
3669   // There is no loop initialization.  We are thus basically a while loop.
3670   // NULL out Block to force lazy block construction.
3671   Block = nullptr;
3672   Succ = EntryConditionBlock;
3673   return EntryConditionBlock;
3674 }
3675 
3676 CFGBlock *
3677 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3678                                           AddStmtChoice asc) {
3679   findConstructionContexts(
3680       ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3681       MTE->getSubExpr());
3682 
3683   return VisitStmt(MTE, asc);
3684 }
3685 
3686 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3687   if (asc.alwaysAdd(*this, M)) {
3688     autoCreateBlock();
3689     appendStmt(Block, M);
3690   }
3691   return Visit(M->getBase());
3692 }
3693 
3694 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3695   // Objective-C fast enumeration 'for' statements:
3696   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3697   //
3698   //  for ( Type newVariable in collection_expression ) { statements }
3699   //
3700   //  becomes:
3701   //
3702   //   prologue:
3703   //     1. collection_expression
3704   //     T. jump to loop_entry
3705   //   loop_entry:
3706   //     1. side-effects of element expression
3707   //     1. ObjCForCollectionStmt [performs binding to newVariable]
3708   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
3709   //   TB:
3710   //     statements
3711   //     T. jump to loop_entry
3712   //   FB:
3713   //     what comes after
3714   //
3715   //  and
3716   //
3717   //  Type existingItem;
3718   //  for ( existingItem in expression ) { statements }
3719   //
3720   //  becomes:
3721   //
3722   //   the same with newVariable replaced with existingItem; the binding works
3723   //   the same except that for one ObjCForCollectionStmt::getElement() returns
3724   //   a DeclStmt and the other returns a DeclRefExpr.
3725 
3726   CFGBlock *LoopSuccessor = nullptr;
3727 
3728   if (Block) {
3729     if (badCFG)
3730       return nullptr;
3731     LoopSuccessor = Block;
3732     Block = nullptr;
3733   } else
3734     LoopSuccessor = Succ;
3735 
3736   // Build the condition blocks.
3737   CFGBlock *ExitConditionBlock = createBlock(false);
3738 
3739   // Set the terminator for the "exit" condition block.
3740   ExitConditionBlock->setTerminator(S);
3741 
3742   // The last statement in the block should be the ObjCForCollectionStmt, which
3743   // performs the actual binding to 'element' and determines if there are any
3744   // more items in the collection.
3745   appendStmt(ExitConditionBlock, S);
3746   Block = ExitConditionBlock;
3747 
3748   // Walk the 'element' expression to see if there are any side-effects.  We
3749   // generate new blocks as necessary.  We DON'T add the statement by default to
3750   // the CFG unless it contains control-flow.
3751   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3752                                         AddStmtChoice::NotAlwaysAdd);
3753   if (Block) {
3754     if (badCFG)
3755       return nullptr;
3756     Block = nullptr;
3757   }
3758 
3759   // The condition block is the implicit successor for the loop body as well as
3760   // any code above the loop.
3761   Succ = EntryConditionBlock;
3762 
3763   // Now create the true branch.
3764   {
3765     // Save the current values for Succ, continue and break targets.
3766     SaveAndRestore save_Block(Block), save_Succ(Succ);
3767     SaveAndRestore save_continue(ContinueJumpTarget),
3768         save_break(BreakJumpTarget);
3769 
3770     // Add an intermediate block between the BodyBlock and the
3771     // EntryConditionBlock to represent the "loop back" transition, for looping
3772     // back to the head of the loop.
3773     CFGBlock *LoopBackBlock = nullptr;
3774     Succ = LoopBackBlock = createBlock();
3775     LoopBackBlock->setLoopTarget(S);
3776 
3777     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3778     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3779 
3780     CFGBlock *BodyBlock = addStmt(S->getBody());
3781 
3782     if (!BodyBlock)
3783       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3784     else if (Block) {
3785       if (badCFG)
3786         return nullptr;
3787     }
3788 
3789     // This new body block is a successor to our "exit" condition block.
3790     addSuccessor(ExitConditionBlock, BodyBlock);
3791   }
3792 
3793   // Link up the condition block with the code that follows the loop.
3794   // (the false branch).
3795   addSuccessor(ExitConditionBlock, LoopSuccessor);
3796 
3797   // Now create a prologue block to contain the collection expression.
3798   Block = createBlock();
3799   return addStmt(S->getCollection());
3800 }
3801 
3802 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3803   // Inline the body.
3804   return addStmt(S->getSubStmt());
3805   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3806 }
3807 
3808 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3809   // FIXME: Add locking 'primitives' to CFG for @synchronized.
3810 
3811   // Inline the body.
3812   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3813 
3814   // The sync body starts its own basic block.  This makes it a little easier
3815   // for diagnostic clients.
3816   if (SyncBlock) {
3817     if (badCFG)
3818       return nullptr;
3819 
3820     Block = nullptr;
3821     Succ = SyncBlock;
3822   }
3823 
3824   // Add the @synchronized to the CFG.
3825   autoCreateBlock();
3826   appendStmt(Block, S);
3827 
3828   // Inline the sync expression.
3829   return addStmt(S->getSynchExpr());
3830 }
3831 
3832 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3833   autoCreateBlock();
3834 
3835   // Add the PseudoObject as the last thing.
3836   appendStmt(Block, E);
3837 
3838   CFGBlock *lastBlock = Block;
3839 
3840   // Before that, evaluate all of the semantics in order.  In
3841   // CFG-land, that means appending them in reverse order.
3842   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3843     Expr *Semantic = E->getSemanticExpr(--i);
3844 
3845     // If the semantic is an opaque value, we're being asked to bind
3846     // it to its source expression.
3847     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3848       Semantic = OVE->getSourceExpr();
3849 
3850     if (CFGBlock *B = Visit(Semantic))
3851       lastBlock = B;
3852   }
3853 
3854   return lastBlock;
3855 }
3856 
3857 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3858   CFGBlock *LoopSuccessor = nullptr;
3859 
3860   // Save local scope position because in case of condition variable ScopePos
3861   // won't be restored when traversing AST.
3862   SaveAndRestore save_scope_pos(ScopePos);
3863 
3864   // Create local scope for possible condition variable.
3865   // Store scope position for continue statement.
3866   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3867   if (VarDecl *VD = W->getConditionVariable()) {
3868     addLocalScopeForVarDecl(VD);
3869     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3870   }
3871   addLoopExit(W);
3872 
3873   // "while" is a control-flow statement.  Thus we stop processing the current
3874   // block.
3875   if (Block) {
3876     if (badCFG)
3877       return nullptr;
3878     LoopSuccessor = Block;
3879     Block = nullptr;
3880   } else {
3881     LoopSuccessor = Succ;
3882   }
3883 
3884   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3885 
3886   // Process the loop body.
3887   {
3888     assert(W->getBody());
3889 
3890     // Save the current values for Block, Succ, continue and break targets.
3891     SaveAndRestore save_Block(Block), save_Succ(Succ);
3892     SaveAndRestore save_continue(ContinueJumpTarget),
3893         save_break(BreakJumpTarget);
3894 
3895     // Create an empty block to represent the transition block for looping back
3896     // to the head of the loop.
3897     Succ = TransitionBlock = createBlock(false);
3898     TransitionBlock->setLoopTarget(W);
3899     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3900 
3901     // All breaks should go to the code following the loop.
3902     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3903 
3904     // Loop body should end with destructor of Condition variable (if any).
3905     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3906 
3907     // If body is not a compound statement create implicit scope
3908     // and add destructors.
3909     if (!isa<CompoundStmt>(W->getBody()))
3910       addLocalScopeAndDtors(W->getBody());
3911 
3912     // Create the body.  The returned block is the entry to the loop body.
3913     BodyBlock = addStmt(W->getBody());
3914 
3915     if (!BodyBlock)
3916       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3917     else if (Block && badCFG)
3918       return nullptr;
3919   }
3920 
3921   // Because of short-circuit evaluation, the condition of the loop can span
3922   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3923   // evaluate the condition.
3924   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3925 
3926   do {
3927     Expr *C = W->getCond();
3928 
3929     // Specially handle logical operators, which have a slightly
3930     // more optimal CFG representation.
3931     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3932       if (Cond->isLogicalOp()) {
3933         std::tie(EntryConditionBlock, ExitConditionBlock) =
3934             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3935         break;
3936       }
3937 
3938     // The default case when not handling logical operators.
3939     ExitConditionBlock = createBlock(false);
3940     ExitConditionBlock->setTerminator(W);
3941 
3942     // Now add the actual condition to the condition block.
3943     // Because the condition itself may contain control-flow, new blocks may
3944     // be created.  Thus we update "Succ" after adding the condition.
3945     Block = ExitConditionBlock;
3946     Block = EntryConditionBlock = addStmt(C);
3947 
3948     // If this block contains a condition variable, add both the condition
3949     // variable and initializer to the CFG.
3950     if (VarDecl *VD = W->getConditionVariable()) {
3951       if (Expr *Init = VD->getInit()) {
3952         autoCreateBlock();
3953         const DeclStmt *DS = W->getConditionVariableDeclStmt();
3954         assert(DS->isSingleDecl());
3955         findConstructionContexts(
3956             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3957                                              const_cast<DeclStmt *>(DS)),
3958             Init);
3959         appendStmt(Block, DS);
3960         EntryConditionBlock = addStmt(Init);
3961         assert(Block == EntryConditionBlock);
3962         maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3963       }
3964     }
3965 
3966     if (Block && badCFG)
3967       return nullptr;
3968 
3969     // See if this is a known constant.
3970     const TryResult& KnownVal = tryEvaluateBool(C);
3971 
3972     // Add the loop body entry as a successor to the condition.
3973     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3974     // Link up the condition block with the code that follows the loop.  (the
3975     // false branch).
3976     addSuccessor(ExitConditionBlock,
3977                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3978   } while(false);
3979 
3980   // Link up the loop-back block to the entry condition block.
3981   addSuccessor(TransitionBlock, EntryConditionBlock);
3982 
3983   // There can be no more statements in the condition block since we loop back
3984   // to this block.  NULL out Block to force lazy creation of another block.
3985   Block = nullptr;
3986 
3987   // Return the condition block, which is the dominating block for the loop.
3988   Succ = EntryConditionBlock;
3989   return EntryConditionBlock;
3990 }
3991 
3992 CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A,
3993                                              AddStmtChoice asc) {
3994   if (asc.alwaysAdd(*this, A)) {
3995     autoCreateBlock();
3996     appendStmt(Block, A);
3997   }
3998 
3999   CFGBlock *B = Block;
4000 
4001   if (CFGBlock *R = Visit(A->getSubExpr()))
4002     B = R;
4003 
4004   auto *OVE = dyn_cast<OpaqueValueExpr>(A->getCommonExpr());
4005   assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an "
4006                 "OpaqueValueExpr!");
4007   if (CFGBlock *R = Visit(OVE->getSourceExpr()))
4008     B = R;
4009 
4010   return B;
4011 }
4012 
4013 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) {
4014   // ObjCAtCatchStmt are treated like labels, so they are the first statement
4015   // in a block.
4016 
4017   // Save local scope position because in case of exception variable ScopePos
4018   // won't be restored when traversing AST.
4019   SaveAndRestore save_scope_pos(ScopePos);
4020 
4021   if (CS->getCatchBody())
4022     addStmt(CS->getCatchBody());
4023 
4024   CFGBlock *CatchBlock = Block;
4025   if (!CatchBlock)
4026     CatchBlock = createBlock();
4027 
4028   appendStmt(CatchBlock, CS);
4029 
4030   // Also add the ObjCAtCatchStmt as a label, like with regular labels.
4031   CatchBlock->setLabel(CS);
4032 
4033   // Bail out if the CFG is bad.
4034   if (badCFG)
4035     return nullptr;
4036 
4037   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4038   Block = nullptr;
4039 
4040   return CatchBlock;
4041 }
4042 
4043 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
4044   // If we were in the middle of a block we stop processing that block.
4045   if (badCFG)
4046     return nullptr;
4047 
4048   // Create the new block.
4049   Block = createBlock(false);
4050 
4051   if (TryTerminatedBlock)
4052     // The current try statement is the only successor.
4053     addSuccessor(Block, TryTerminatedBlock);
4054   else
4055     // otherwise the Exit block is the only successor.
4056     addSuccessor(Block, &cfg->getExit());
4057 
4058   // Add the statement to the block.  This may create new blocks if S contains
4059   // control-flow (short-circuit operations).
4060   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
4061 }
4062 
4063 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) {
4064   // "@try"/"@catch" is a control-flow statement.  Thus we stop processing the
4065   // current block.
4066   CFGBlock *TrySuccessor = nullptr;
4067 
4068   if (Block) {
4069     if (badCFG)
4070       return nullptr;
4071     TrySuccessor = Block;
4072   } else
4073     TrySuccessor = Succ;
4074 
4075   // FIXME: Implement @finally support.
4076   if (Terminator->getFinallyStmt())
4077     return NYS();
4078 
4079   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4080 
4081   // Create a new block that will contain the try statement.
4082   CFGBlock *NewTryTerminatedBlock = createBlock(false);
4083   // Add the terminator in the try block.
4084   NewTryTerminatedBlock->setTerminator(Terminator);
4085 
4086   bool HasCatchAll = false;
4087   for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) {
4088     // The code after the try is the implicit successor.
4089     Succ = TrySuccessor;
4090     if (CS->hasEllipsis()) {
4091       HasCatchAll = true;
4092     }
4093     Block = nullptr;
4094     CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS);
4095     if (!CatchBlock)
4096       return nullptr;
4097     // Add this block to the list of successors for the block with the try
4098     // statement.
4099     addSuccessor(NewTryTerminatedBlock, CatchBlock);
4100   }
4101 
4102   // FIXME: This needs updating when @finally support is added.
4103   if (!HasCatchAll) {
4104     if (PrevTryTerminatedBlock)
4105       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4106     else
4107       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4108   }
4109 
4110   // The code after the try is the implicit successor.
4111   Succ = TrySuccessor;
4112 
4113   // Save the current "try" context.
4114   SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4115   cfg->addTryDispatchBlock(TryTerminatedBlock);
4116 
4117   assert(Terminator->getTryBody() && "try must contain a non-NULL body");
4118   Block = nullptr;
4119   return addStmt(Terminator->getTryBody());
4120 }
4121 
4122 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
4123                                            AddStmtChoice asc) {
4124   findConstructionContextsForArguments(ME);
4125 
4126   autoCreateBlock();
4127   appendObjCMessage(Block, ME);
4128 
4129   return VisitChildren(ME);
4130 }
4131 
4132 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
4133   // If we were in the middle of a block we stop processing that block.
4134   if (badCFG)
4135     return nullptr;
4136 
4137   // Create the new block.
4138   Block = createBlock(false);
4139 
4140   if (TryTerminatedBlock)
4141     // The current try statement is the only successor.
4142     addSuccessor(Block, TryTerminatedBlock);
4143   else
4144     // otherwise the Exit block is the only successor.
4145     addSuccessor(Block, &cfg->getExit());
4146 
4147   // Add the statement to the block.  This may create new blocks if S contains
4148   // control-flow (short-circuit operations).
4149   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
4150 }
4151 
4152 CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) {
4153   if (asc.alwaysAdd(*this, S)) {
4154     autoCreateBlock();
4155     appendStmt(Block, S);
4156   }
4157 
4158   // C++ [expr.typeid]p3:
4159   //   When typeid is applied to an expression other than an glvalue of a
4160   //   polymorphic class type [...] [the] expression is an unevaluated
4161   //   operand. [...]
4162   // We add only potentially evaluated statements to the block to avoid
4163   // CFG generation for unevaluated operands.
4164   if (!S->isTypeDependent() && S->isPotentiallyEvaluated())
4165     return VisitChildren(S);
4166 
4167   // Return block without CFG for unevaluated operands.
4168   return Block;
4169 }
4170 
4171 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
4172   CFGBlock *LoopSuccessor = nullptr;
4173 
4174   addLoopExit(D);
4175 
4176   // "do...while" is a control-flow statement.  Thus we stop processing the
4177   // current block.
4178   if (Block) {
4179     if (badCFG)
4180       return nullptr;
4181     LoopSuccessor = Block;
4182   } else
4183     LoopSuccessor = Succ;
4184 
4185   // Because of short-circuit evaluation, the condition of the loop can span
4186   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
4187   // evaluate the condition.
4188   CFGBlock *ExitConditionBlock = createBlock(false);
4189   CFGBlock *EntryConditionBlock = ExitConditionBlock;
4190 
4191   // Set the terminator for the "exit" condition block.
4192   ExitConditionBlock->setTerminator(D);
4193 
4194   // Now add the actual condition to the condition block.  Because the condition
4195   // itself may contain control-flow, new blocks may be created.
4196   if (Stmt *C = D->getCond()) {
4197     Block = ExitConditionBlock;
4198     EntryConditionBlock = addStmt(C);
4199     if (Block) {
4200       if (badCFG)
4201         return nullptr;
4202     }
4203   }
4204 
4205   // The condition block is the implicit successor for the loop body.
4206   Succ = EntryConditionBlock;
4207 
4208   // See if this is a known constant.
4209   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
4210 
4211   // Process the loop body.
4212   CFGBlock *BodyBlock = nullptr;
4213   {
4214     assert(D->getBody());
4215 
4216     // Save the current values for Block, Succ, and continue and break targets
4217     SaveAndRestore save_Block(Block), save_Succ(Succ);
4218     SaveAndRestore save_continue(ContinueJumpTarget),
4219         save_break(BreakJumpTarget);
4220 
4221     // All continues within this loop should go to the condition block
4222     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
4223 
4224     // All breaks should go to the code following the loop.
4225     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4226 
4227     // NULL out Block to force lazy instantiation of blocks for the body.
4228     Block = nullptr;
4229 
4230     // If body is not a compound statement create implicit scope
4231     // and add destructors.
4232     if (!isa<CompoundStmt>(D->getBody()))
4233       addLocalScopeAndDtors(D->getBody());
4234 
4235     // Create the body.  The returned block is the entry to the loop body.
4236     BodyBlock = addStmt(D->getBody());
4237 
4238     if (!BodyBlock)
4239       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
4240     else if (Block) {
4241       if (badCFG)
4242         return nullptr;
4243     }
4244 
4245     // Add an intermediate block between the BodyBlock and the
4246     // ExitConditionBlock to represent the "loop back" transition.  Create an
4247     // empty block to represent the transition block for looping back to the
4248     // head of the loop.
4249     // FIXME: Can we do this more efficiently without adding another block?
4250     Block = nullptr;
4251     Succ = BodyBlock;
4252     CFGBlock *LoopBackBlock = createBlock();
4253     LoopBackBlock->setLoopTarget(D);
4254 
4255     if (!KnownVal.isFalse())
4256       // Add the loop body entry as a successor to the condition.
4257       addSuccessor(ExitConditionBlock, LoopBackBlock);
4258     else
4259       addSuccessor(ExitConditionBlock, nullptr);
4260   }
4261 
4262   // Link up the condition block with the code that follows the loop.
4263   // (the false branch).
4264   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4265 
4266   // There can be no more statements in the body block(s) since we loop back to
4267   // the body.  NULL out Block to force lazy creation of another block.
4268   Block = nullptr;
4269 
4270   // Return the loop body, which is the dominating block for the loop.
4271   Succ = BodyBlock;
4272   return BodyBlock;
4273 }
4274 
4275 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
4276   // "continue" is a control-flow statement.  Thus we stop processing the
4277   // current block.
4278   if (badCFG)
4279     return nullptr;
4280 
4281   // Now create a new block that ends with the continue statement.
4282   Block = createBlock(false);
4283   Block->setTerminator(C);
4284 
4285   // If there is no target for the continue, then we are looking at an
4286   // incomplete AST.  This means the CFG cannot be constructed.
4287   if (ContinueJumpTarget.block) {
4288     addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
4289     addSuccessor(Block, ContinueJumpTarget.block);
4290   } else
4291     badCFG = true;
4292 
4293   return Block;
4294 }
4295 
4296 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
4297                                                     AddStmtChoice asc) {
4298   if (asc.alwaysAdd(*this, E)) {
4299     autoCreateBlock();
4300     appendStmt(Block, E);
4301   }
4302 
4303   // VLA types have expressions that must be evaluated.
4304   // Evaluation is done only for `sizeof`.
4305 
4306   if (E->getKind() != UETT_SizeOf)
4307     return Block;
4308 
4309   CFGBlock *lastBlock = Block;
4310 
4311   if (E->isArgumentType()) {
4312     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4313          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4314       lastBlock = addStmt(VA->getSizeExpr());
4315   }
4316   return lastBlock;
4317 }
4318 
4319 /// VisitStmtExpr - Utility method to handle (nested) statement
4320 ///  expressions (a GCC extension).
4321 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4322   if (asc.alwaysAdd(*this, SE)) {
4323     autoCreateBlock();
4324     appendStmt(Block, SE);
4325   }
4326   return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4327 }
4328 
4329 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4330   // "switch" is a control-flow statement.  Thus we stop processing the current
4331   // block.
4332   CFGBlock *SwitchSuccessor = nullptr;
4333 
4334   // Save local scope position because in case of condition variable ScopePos
4335   // won't be restored when traversing AST.
4336   SaveAndRestore save_scope_pos(ScopePos);
4337 
4338   // Create local scope for C++17 switch init-stmt if one exists.
4339   if (Stmt *Init = Terminator->getInit())
4340     addLocalScopeForStmt(Init);
4341 
4342   // Create local scope for possible condition variable.
4343   // Store scope position. Add implicit destructor.
4344   if (VarDecl *VD = Terminator->getConditionVariable())
4345     addLocalScopeForVarDecl(VD);
4346 
4347   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4348 
4349   if (Block) {
4350     if (badCFG)
4351       return nullptr;
4352     SwitchSuccessor = Block;
4353   } else SwitchSuccessor = Succ;
4354 
4355   // Save the current "switch" context.
4356   SaveAndRestore save_switch(SwitchTerminatedBlock),
4357       save_default(DefaultCaseBlock);
4358   SaveAndRestore save_break(BreakJumpTarget);
4359 
4360   // Set the "default" case to be the block after the switch statement.  If the
4361   // switch statement contains a "default:", this value will be overwritten with
4362   // the block for that code.
4363   DefaultCaseBlock = SwitchSuccessor;
4364 
4365   // Create a new block that will contain the switch statement.
4366   SwitchTerminatedBlock = createBlock(false);
4367 
4368   // Now process the switch body.  The code after the switch is the implicit
4369   // successor.
4370   Succ = SwitchSuccessor;
4371   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4372 
4373   // When visiting the body, the case statements should automatically get linked
4374   // up to the switch.  We also don't keep a pointer to the body, since all
4375   // control-flow from the switch goes to case/default statements.
4376   assert(Terminator->getBody() && "switch must contain a non-NULL body");
4377   Block = nullptr;
4378 
4379   // For pruning unreachable case statements, save the current state
4380   // for tracking the condition value.
4381   SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false);
4382 
4383   // Determine if the switch condition can be explicitly evaluated.
4384   assert(Terminator->getCond() && "switch condition must be non-NULL");
4385   Expr::EvalResult result;
4386   bool b = tryEvaluate(Terminator->getCond(), result);
4387   SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr);
4388 
4389   // If body is not a compound statement create implicit scope
4390   // and add destructors.
4391   if (!isa<CompoundStmt>(Terminator->getBody()))
4392     addLocalScopeAndDtors(Terminator->getBody());
4393 
4394   addStmt(Terminator->getBody());
4395   if (Block) {
4396     if (badCFG)
4397       return nullptr;
4398   }
4399 
4400   // If we have no "default:" case, the default transition is to the code
4401   // following the switch body.  Moreover, take into account if all the
4402   // cases of a switch are covered (e.g., switching on an enum value).
4403   //
4404   // Note: We add a successor to a switch that is considered covered yet has no
4405   //       case statements if the enumeration has no enumerators.
4406   bool SwitchAlwaysHasSuccessor = false;
4407   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4408   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4409                               Terminator->getSwitchCaseList();
4410   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4411                !SwitchAlwaysHasSuccessor);
4412 
4413   // Add the terminator and condition in the switch block.
4414   SwitchTerminatedBlock->setTerminator(Terminator);
4415   Block = SwitchTerminatedBlock;
4416   CFGBlock *LastBlock = addStmt(Terminator->getCond());
4417 
4418   // If the SwitchStmt contains a condition variable, add both the
4419   // SwitchStmt and the condition variable initialization to the CFG.
4420   if (VarDecl *VD = Terminator->getConditionVariable()) {
4421     if (Expr *Init = VD->getInit()) {
4422       autoCreateBlock();
4423       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4424       LastBlock = addStmt(Init);
4425       maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4426     }
4427   }
4428 
4429   // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4430   if (Stmt *Init = Terminator->getInit()) {
4431     autoCreateBlock();
4432     LastBlock = addStmt(Init);
4433   }
4434 
4435   return LastBlock;
4436 }
4437 
4438 static bool shouldAddCase(bool &switchExclusivelyCovered,
4439                           const Expr::EvalResult *switchCond,
4440                           const CaseStmt *CS,
4441                           ASTContext &Ctx) {
4442   if (!switchCond)
4443     return true;
4444 
4445   bool addCase = false;
4446 
4447   if (!switchExclusivelyCovered) {
4448     if (switchCond->Val.isInt()) {
4449       // Evaluate the LHS of the case value.
4450       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4451       const llvm::APSInt &condInt = switchCond->Val.getInt();
4452 
4453       if (condInt == lhsInt) {
4454         addCase = true;
4455         switchExclusivelyCovered = true;
4456       }
4457       else if (condInt > lhsInt) {
4458         if (const Expr *RHS = CS->getRHS()) {
4459           // Evaluate the RHS of the case value.
4460           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4461           if (V2 >= condInt) {
4462             addCase = true;
4463             switchExclusivelyCovered = true;
4464           }
4465         }
4466       }
4467     }
4468     else
4469       addCase = true;
4470   }
4471   return addCase;
4472 }
4473 
4474 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4475   // CaseStmts are essentially labels, so they are the first statement in a
4476   // block.
4477   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4478 
4479   if (Stmt *Sub = CS->getSubStmt()) {
4480     // For deeply nested chains of CaseStmts, instead of doing a recursion
4481     // (which can blow out the stack), manually unroll and create blocks
4482     // along the way.
4483     while (isa<CaseStmt>(Sub)) {
4484       CFGBlock *currentBlock = createBlock(false);
4485       currentBlock->setLabel(CS);
4486 
4487       if (TopBlock)
4488         addSuccessor(LastBlock, currentBlock);
4489       else
4490         TopBlock = currentBlock;
4491 
4492       addSuccessor(SwitchTerminatedBlock,
4493                    shouldAddCase(switchExclusivelyCovered, switchCond,
4494                                  CS, *Context)
4495                    ? currentBlock : nullptr);
4496 
4497       LastBlock = currentBlock;
4498       CS = cast<CaseStmt>(Sub);
4499       Sub = CS->getSubStmt();
4500     }
4501 
4502     addStmt(Sub);
4503   }
4504 
4505   CFGBlock *CaseBlock = Block;
4506   if (!CaseBlock)
4507     CaseBlock = createBlock();
4508 
4509   // Cases statements partition blocks, so this is the top of the basic block we
4510   // were processing (the "case XXX:" is the label).
4511   CaseBlock->setLabel(CS);
4512 
4513   if (badCFG)
4514     return nullptr;
4515 
4516   // Add this block to the list of successors for the block with the switch
4517   // statement.
4518   assert(SwitchTerminatedBlock);
4519   addSuccessor(SwitchTerminatedBlock, CaseBlock,
4520                shouldAddCase(switchExclusivelyCovered, switchCond,
4521                              CS, *Context));
4522 
4523   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4524   Block = nullptr;
4525 
4526   if (TopBlock) {
4527     addSuccessor(LastBlock, CaseBlock);
4528     Succ = TopBlock;
4529   } else {
4530     // This block is now the implicit successor of other blocks.
4531     Succ = CaseBlock;
4532   }
4533 
4534   return Succ;
4535 }
4536 
4537 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4538   if (Terminator->getSubStmt())
4539     addStmt(Terminator->getSubStmt());
4540 
4541   DefaultCaseBlock = Block;
4542 
4543   if (!DefaultCaseBlock)
4544     DefaultCaseBlock = createBlock();
4545 
4546   // Default statements partition blocks, so this is the top of the basic block
4547   // we were processing (the "default:" is the label).
4548   DefaultCaseBlock->setLabel(Terminator);
4549 
4550   if (badCFG)
4551     return nullptr;
4552 
4553   // Unlike case statements, we don't add the default block to the successors
4554   // for the switch statement immediately.  This is done when we finish
4555   // processing the switch statement.  This allows for the default case
4556   // (including a fall-through to the code after the switch statement) to always
4557   // be the last successor of a switch-terminated block.
4558 
4559   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4560   Block = nullptr;
4561 
4562   // This block is now the implicit successor of other blocks.
4563   Succ = DefaultCaseBlock;
4564 
4565   return DefaultCaseBlock;
4566 }
4567 
4568 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4569   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
4570   // current block.
4571   CFGBlock *TrySuccessor = nullptr;
4572 
4573   if (Block) {
4574     if (badCFG)
4575       return nullptr;
4576     TrySuccessor = Block;
4577   } else
4578     TrySuccessor = Succ;
4579 
4580   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4581 
4582   // Create a new block that will contain the try statement.
4583   CFGBlock *NewTryTerminatedBlock = createBlock(false);
4584   // Add the terminator in the try block.
4585   NewTryTerminatedBlock->setTerminator(Terminator);
4586 
4587   bool HasCatchAll = false;
4588   for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) {
4589     // The code after the try is the implicit successor.
4590     Succ = TrySuccessor;
4591     CXXCatchStmt *CS = Terminator->getHandler(I);
4592     if (CS->getExceptionDecl() == nullptr) {
4593       HasCatchAll = true;
4594     }
4595     Block = nullptr;
4596     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4597     if (!CatchBlock)
4598       return nullptr;
4599     // Add this block to the list of successors for the block with the try
4600     // statement.
4601     addSuccessor(NewTryTerminatedBlock, CatchBlock);
4602   }
4603   if (!HasCatchAll) {
4604     if (PrevTryTerminatedBlock)
4605       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4606     else
4607       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4608   }
4609 
4610   // The code after the try is the implicit successor.
4611   Succ = TrySuccessor;
4612 
4613   // Save the current "try" context.
4614   SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4615   cfg->addTryDispatchBlock(TryTerminatedBlock);
4616 
4617   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4618   Block = nullptr;
4619   return addStmt(Terminator->getTryBlock());
4620 }
4621 
4622 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4623   // CXXCatchStmt are treated like labels, so they are the first statement in a
4624   // block.
4625 
4626   // Save local scope position because in case of exception variable ScopePos
4627   // won't be restored when traversing AST.
4628   SaveAndRestore save_scope_pos(ScopePos);
4629 
4630   // Create local scope for possible exception variable.
4631   // Store scope position. Add implicit destructor.
4632   if (VarDecl *VD = CS->getExceptionDecl()) {
4633     LocalScope::const_iterator BeginScopePos = ScopePos;
4634     addLocalScopeForVarDecl(VD);
4635     addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4636   }
4637 
4638   if (CS->getHandlerBlock())
4639     addStmt(CS->getHandlerBlock());
4640 
4641   CFGBlock *CatchBlock = Block;
4642   if (!CatchBlock)
4643     CatchBlock = createBlock();
4644 
4645   // CXXCatchStmt is more than just a label.  They have semantic meaning
4646   // as well, as they implicitly "initialize" the catch variable.  Add
4647   // it to the CFG as a CFGElement so that the control-flow of these
4648   // semantics gets captured.
4649   appendStmt(CatchBlock, CS);
4650 
4651   // Also add the CXXCatchStmt as a label, to mirror handling of regular
4652   // labels.
4653   CatchBlock->setLabel(CS);
4654 
4655   // Bail out if the CFG is bad.
4656   if (badCFG)
4657     return nullptr;
4658 
4659   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4660   Block = nullptr;
4661 
4662   return CatchBlock;
4663 }
4664 
4665 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4666   // C++0x for-range statements are specified as [stmt.ranged]:
4667   //
4668   // {
4669   //   auto && __range = range-init;
4670   //   for ( auto __begin = begin-expr,
4671   //         __end = end-expr;
4672   //         __begin != __end;
4673   //         ++__begin ) {
4674   //     for-range-declaration = *__begin;
4675   //     statement
4676   //   }
4677   // }
4678 
4679   // Save local scope position before the addition of the implicit variables.
4680   SaveAndRestore save_scope_pos(ScopePos);
4681 
4682   // Create local scopes and destructors for range, begin and end variables.
4683   if (Stmt *Range = S->getRangeStmt())
4684     addLocalScopeForStmt(Range);
4685   if (Stmt *Begin = S->getBeginStmt())
4686     addLocalScopeForStmt(Begin);
4687   if (Stmt *End = S->getEndStmt())
4688     addLocalScopeForStmt(End);
4689   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4690 
4691   LocalScope::const_iterator ContinueScopePos = ScopePos;
4692 
4693   // "for" is a control-flow statement.  Thus we stop processing the current
4694   // block.
4695   CFGBlock *LoopSuccessor = nullptr;
4696   if (Block) {
4697     if (badCFG)
4698       return nullptr;
4699     LoopSuccessor = Block;
4700   } else
4701     LoopSuccessor = Succ;
4702 
4703   // Save the current value for the break targets.
4704   // All breaks should go to the code following the loop.
4705   SaveAndRestore save_break(BreakJumpTarget);
4706   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4707 
4708   // The block for the __begin != __end expression.
4709   CFGBlock *ConditionBlock = createBlock(false);
4710   ConditionBlock->setTerminator(S);
4711 
4712   // Now add the actual condition to the condition block.
4713   if (Expr *C = S->getCond()) {
4714     Block = ConditionBlock;
4715     CFGBlock *BeginConditionBlock = addStmt(C);
4716     if (badCFG)
4717       return nullptr;
4718     assert(BeginConditionBlock == ConditionBlock &&
4719            "condition block in for-range was unexpectedly complex");
4720     (void)BeginConditionBlock;
4721   }
4722 
4723   // The condition block is the implicit successor for the loop body as well as
4724   // any code above the loop.
4725   Succ = ConditionBlock;
4726 
4727   // See if this is a known constant.
4728   TryResult KnownVal(true);
4729 
4730   if (S->getCond())
4731     KnownVal = tryEvaluateBool(S->getCond());
4732 
4733   // Now create the loop body.
4734   {
4735     assert(S->getBody());
4736 
4737     // Save the current values for Block, Succ, and continue targets.
4738     SaveAndRestore save_Block(Block), save_Succ(Succ);
4739     SaveAndRestore save_continue(ContinueJumpTarget);
4740 
4741     // Generate increment code in its own basic block.  This is the target of
4742     // continue statements.
4743     Block = nullptr;
4744     Succ = addStmt(S->getInc());
4745     if (badCFG)
4746       return nullptr;
4747     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4748 
4749     // The starting block for the loop increment is the block that should
4750     // represent the 'loop target' for looping back to the start of the loop.
4751     ContinueJumpTarget.block->setLoopTarget(S);
4752 
4753     // Finish up the increment block and prepare to start the loop body.
4754     assert(Block);
4755     if (badCFG)
4756       return nullptr;
4757     Block = nullptr;
4758 
4759     // Add implicit scope and dtors for loop variable.
4760     addLocalScopeAndDtors(S->getLoopVarStmt());
4761 
4762     // If body is not a compound statement create implicit scope
4763     // and add destructors.
4764     if (!isa<CompoundStmt>(S->getBody()))
4765       addLocalScopeAndDtors(S->getBody());
4766 
4767     // Populate a new block to contain the loop body and loop variable.
4768     addStmt(S->getBody());
4769 
4770     if (badCFG)
4771       return nullptr;
4772     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4773     if (badCFG)
4774       return nullptr;
4775 
4776     // This new body block is a successor to our condition block.
4777     addSuccessor(ConditionBlock,
4778                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4779   }
4780 
4781   // Link up the condition block with the code that follows the loop (the
4782   // false branch).
4783   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4784 
4785   // Add the initialization statements.
4786   Block = createBlock();
4787   addStmt(S->getBeginStmt());
4788   addStmt(S->getEndStmt());
4789   CFGBlock *Head = addStmt(S->getRangeStmt());
4790   if (S->getInit())
4791     Head = addStmt(S->getInit());
4792   return Head;
4793 }
4794 
4795 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4796     AddStmtChoice asc, bool ExternallyDestructed) {
4797   if (BuildOpts.AddTemporaryDtors) {
4798     // If adding implicit destructors visit the full expression for adding
4799     // destructors of temporaries.
4800     TempDtorContext Context;
4801     VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4802 
4803     // Full expression has to be added as CFGStmt so it will be sequenced
4804     // before destructors of it's temporaries.
4805     asc = asc.withAlwaysAdd(true);
4806   }
4807   return Visit(E->getSubExpr(), asc);
4808 }
4809 
4810 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4811                                                 AddStmtChoice asc) {
4812   if (asc.alwaysAdd(*this, E)) {
4813     autoCreateBlock();
4814     appendStmt(Block, E);
4815 
4816     findConstructionContexts(
4817         ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4818         E->getSubExpr());
4819 
4820     // We do not want to propagate the AlwaysAdd property.
4821     asc = asc.withAlwaysAdd(false);
4822   }
4823   return Visit(E->getSubExpr(), asc);
4824 }
4825 
4826 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4827                                             AddStmtChoice asc) {
4828   // If the constructor takes objects as arguments by value, we need to properly
4829   // construct these objects. Construction contexts we find here aren't for the
4830   // constructor C, they're for its arguments only.
4831   findConstructionContextsForArguments(C);
4832 
4833   autoCreateBlock();
4834   appendConstructor(Block, C);
4835 
4836   return VisitChildren(C);
4837 }
4838 
4839 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4840                                       AddStmtChoice asc) {
4841   autoCreateBlock();
4842   appendStmt(Block, NE);
4843 
4844   findConstructionContexts(
4845       ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4846       const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4847 
4848   if (NE->getInitializer())
4849     Block = Visit(NE->getInitializer());
4850 
4851   if (BuildOpts.AddCXXNewAllocator)
4852     appendNewAllocator(Block, NE);
4853 
4854   if (NE->isArray() && *NE->getArraySize())
4855     Block = Visit(*NE->getArraySize());
4856 
4857   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4858        E = NE->placement_arg_end(); I != E; ++I)
4859     Block = Visit(*I);
4860 
4861   return Block;
4862 }
4863 
4864 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4865                                          AddStmtChoice asc) {
4866   autoCreateBlock();
4867   appendStmt(Block, DE);
4868   QualType DTy = DE->getDestroyedType();
4869   if (!DTy.isNull()) {
4870     DTy = DTy.getNonReferenceType();
4871     CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4872     if (RD) {
4873       if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4874         appendDeleteDtor(Block, RD, DE);
4875     }
4876   }
4877 
4878   return VisitChildren(DE);
4879 }
4880 
4881 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4882                                                  AddStmtChoice asc) {
4883   if (asc.alwaysAdd(*this, E)) {
4884     autoCreateBlock();
4885     appendStmt(Block, E);
4886     // We do not want to propagate the AlwaysAdd property.
4887     asc = asc.withAlwaysAdd(false);
4888   }
4889   return Visit(E->getSubExpr(), asc);
4890 }
4891 
4892 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4893                                                   AddStmtChoice asc) {
4894   // If the constructor takes objects as arguments by value, we need to properly
4895   // construct these objects. Construction contexts we find here aren't for the
4896   // constructor C, they're for its arguments only.
4897   findConstructionContextsForArguments(C);
4898 
4899   autoCreateBlock();
4900   appendConstructor(Block, C);
4901   return VisitChildren(C);
4902 }
4903 
4904 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4905                                             AddStmtChoice asc) {
4906   if (asc.alwaysAdd(*this, E)) {
4907     autoCreateBlock();
4908     appendStmt(Block, E);
4909   }
4910 
4911   if (E->getCastKind() == CK_IntegralToBoolean)
4912     tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4913 
4914   return Visit(E->getSubExpr(), AddStmtChoice());
4915 }
4916 
4917 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4918   return Visit(E->getSubExpr(), AddStmtChoice());
4919 }
4920 
4921 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4922   // Lazily create the indirect-goto dispatch block if there isn't one already.
4923   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4924 
4925   if (!IBlock) {
4926     IBlock = createBlock(false);
4927     cfg->setIndirectGotoBlock(IBlock);
4928   }
4929 
4930   // IndirectGoto is a control-flow statement.  Thus we stop processing the
4931   // current block and create a new one.
4932   if (badCFG)
4933     return nullptr;
4934 
4935   Block = createBlock(false);
4936   Block->setTerminator(I);
4937   addSuccessor(Block, IBlock);
4938   return addStmt(I->getTarget());
4939 }
4940 
4941 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4942                                              TempDtorContext &Context) {
4943   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4944 
4945 tryAgain:
4946   if (!E) {
4947     badCFG = true;
4948     return nullptr;
4949   }
4950   switch (E->getStmtClass()) {
4951     default:
4952       return VisitChildrenForTemporaryDtors(E, false, Context);
4953 
4954     case Stmt::InitListExprClass:
4955       return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4956 
4957     case Stmt::BinaryOperatorClass:
4958       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4959                                                   ExternallyDestructed,
4960                                                   Context);
4961 
4962     case Stmt::CXXBindTemporaryExprClass:
4963       return VisitCXXBindTemporaryExprForTemporaryDtors(
4964           cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4965 
4966     case Stmt::BinaryConditionalOperatorClass:
4967     case Stmt::ConditionalOperatorClass:
4968       return VisitConditionalOperatorForTemporaryDtors(
4969           cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4970 
4971     case Stmt::ImplicitCastExprClass:
4972       // For implicit cast we want ExternallyDestructed to be passed further.
4973       E = cast<CastExpr>(E)->getSubExpr();
4974       goto tryAgain;
4975 
4976     case Stmt::CXXFunctionalCastExprClass:
4977       // For functional cast we want ExternallyDestructed to be passed further.
4978       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4979       goto tryAgain;
4980 
4981     case Stmt::ConstantExprClass:
4982       E = cast<ConstantExpr>(E)->getSubExpr();
4983       goto tryAgain;
4984 
4985     case Stmt::ParenExprClass:
4986       E = cast<ParenExpr>(E)->getSubExpr();
4987       goto tryAgain;
4988 
4989     case Stmt::MaterializeTemporaryExprClass: {
4990       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4991       ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4992       SmallVector<const Expr *, 2> CommaLHSs;
4993       SmallVector<SubobjectAdjustment, 2> Adjustments;
4994       // Find the expression whose lifetime needs to be extended.
4995       E = const_cast<Expr *>(
4996           cast<MaterializeTemporaryExpr>(E)
4997               ->getSubExpr()
4998               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
4999       // Visit the skipped comma operator left-hand sides for other temporaries.
5000       for (const Expr *CommaLHS : CommaLHSs) {
5001         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
5002                                /*ExternallyDestructed=*/false, Context);
5003       }
5004       goto tryAgain;
5005     }
5006 
5007     case Stmt::BlockExprClass:
5008       // Don't recurse into blocks; their subexpressions don't get evaluated
5009       // here.
5010       return Block;
5011 
5012     case Stmt::LambdaExprClass: {
5013       // For lambda expressions, only recurse into the capture initializers,
5014       // and not the body.
5015       auto *LE = cast<LambdaExpr>(E);
5016       CFGBlock *B = Block;
5017       for (Expr *Init : LE->capture_inits()) {
5018         if (Init) {
5019           if (CFGBlock *R = VisitForTemporaryDtors(
5020                   Init, /*ExternallyDestructed=*/true, Context))
5021             B = R;
5022         }
5023       }
5024       return B;
5025     }
5026 
5027     case Stmt::StmtExprClass:
5028       // Don't recurse into statement expressions; any cleanups inside them
5029       // will be wrapped in their own ExprWithCleanups.
5030       return Block;
5031 
5032     case Stmt::CXXDefaultArgExprClass:
5033       E = cast<CXXDefaultArgExpr>(E)->getExpr();
5034       goto tryAgain;
5035 
5036     case Stmt::CXXDefaultInitExprClass:
5037       E = cast<CXXDefaultInitExpr>(E)->getExpr();
5038       goto tryAgain;
5039   }
5040 }
5041 
5042 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
5043                                                      bool ExternallyDestructed,
5044                                                      TempDtorContext &Context) {
5045   if (isa<LambdaExpr>(E)) {
5046     // Do not visit the children of lambdas; they have their own CFGs.
5047     return Block;
5048   }
5049 
5050   // When visiting children for destructors we want to visit them in reverse
5051   // order that they will appear in the CFG.  Because the CFG is built
5052   // bottom-up, this means we visit them in their natural order, which
5053   // reverses them in the CFG.
5054   CFGBlock *B = Block;
5055   for (Stmt *Child : E->children())
5056     if (Child)
5057       if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
5058         B = R;
5059 
5060   return B;
5061 }
5062 
5063 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
5064     BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
5065   if (E->isCommaOp()) {
5066     // For the comma operator, the LHS expression is evaluated before the RHS
5067     // expression, so prepend temporary destructors for the LHS first.
5068     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5069     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
5070     return RHSBlock ? RHSBlock : LHSBlock;
5071   }
5072 
5073   if (E->isLogicalOp()) {
5074     VisitForTemporaryDtors(E->getLHS(), false, Context);
5075     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
5076     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
5077       RHSExecuted.negate();
5078 
5079     // We do not know at CFG-construction time whether the right-hand-side was
5080     // executed, thus we add a branch node that depends on the temporary
5081     // constructor call.
5082     TempDtorContext RHSContext(
5083         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
5084     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
5085     InsertTempDtorDecisionBlock(RHSContext);
5086 
5087     return Block;
5088   }
5089 
5090   if (E->isAssignmentOp()) {
5091     // For assignment operators, the RHS expression is evaluated before the LHS
5092     // expression, so prepend temporary destructors for the RHS first.
5093     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
5094     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5095     return LHSBlock ? LHSBlock : RHSBlock;
5096   }
5097 
5098   // Any other operator is visited normally.
5099   return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
5100 }
5101 
5102 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
5103     CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
5104   // First add destructors for temporaries in subexpression.
5105   // Because VisitCXXBindTemporaryExpr calls setDestructed:
5106   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
5107   if (!ExternallyDestructed) {
5108     // If lifetime of temporary is not prolonged (by assigning to constant
5109     // reference) add destructor for it.
5110 
5111     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
5112 
5113     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
5114       // If the destructor is marked as a no-return destructor, we need to
5115       // create a new block for the destructor which does not have as a
5116       // successor anything built thus far. Control won't flow out of this
5117       // block.
5118       if (B) Succ = B;
5119       Block = createNoReturnBlock();
5120     } else if (Context.needsTempDtorBranch()) {
5121       // If we need to introduce a branch, we add a new block that we will hook
5122       // up to a decision block later.
5123       if (B) Succ = B;
5124       Block = createBlock();
5125     } else {
5126       autoCreateBlock();
5127     }
5128     if (Context.needsTempDtorBranch()) {
5129       Context.setDecisionPoint(Succ, E);
5130     }
5131     appendTemporaryDtor(Block, E);
5132 
5133     B = Block;
5134   }
5135   return B;
5136 }
5137 
5138 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
5139                                              CFGBlock *FalseSucc) {
5140   if (!Context.TerminatorExpr) {
5141     // If no temporary was found, we do not need to insert a decision point.
5142     return;
5143   }
5144   assert(Context.TerminatorExpr);
5145   CFGBlock *Decision = createBlock(false);
5146   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
5147                                         CFGTerminator::TemporaryDtorsBranch));
5148   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
5149   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
5150                !Context.KnownExecuted.isTrue());
5151   Block = Decision;
5152 }
5153 
5154 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5155     AbstractConditionalOperator *E, bool ExternallyDestructed,
5156     TempDtorContext &Context) {
5157   VisitForTemporaryDtors(E->getCond(), false, Context);
5158   CFGBlock *ConditionBlock = Block;
5159   CFGBlock *ConditionSucc = Succ;
5160   TryResult ConditionVal = tryEvaluateBool(E->getCond());
5161   TryResult NegatedVal = ConditionVal;
5162   if (NegatedVal.isKnown()) NegatedVal.negate();
5163 
5164   TempDtorContext TrueContext(
5165       bothKnownTrue(Context.KnownExecuted, ConditionVal));
5166   VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
5167   CFGBlock *TrueBlock = Block;
5168 
5169   Block = ConditionBlock;
5170   Succ = ConditionSucc;
5171   TempDtorContext FalseContext(
5172       bothKnownTrue(Context.KnownExecuted, NegatedVal));
5173   VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
5174 
5175   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
5176     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
5177   } else if (TrueContext.TerminatorExpr) {
5178     Block = TrueBlock;
5179     InsertTempDtorDecisionBlock(TrueContext);
5180   } else {
5181     InsertTempDtorDecisionBlock(FalseContext);
5182   }
5183   return Block;
5184 }
5185 
5186 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
5187                                                   AddStmtChoice asc) {
5188   if (asc.alwaysAdd(*this, D)) {
5189     autoCreateBlock();
5190     appendStmt(Block, D);
5191   }
5192 
5193   // Iterate over all used expression in clauses.
5194   CFGBlock *B = Block;
5195 
5196   // Reverse the elements to process them in natural order. Iterators are not
5197   // bidirectional, so we need to create temp vector.
5198   SmallVector<Stmt *, 8> Used(
5199       OMPExecutableDirective::used_clauses_children(D->clauses()));
5200   for (Stmt *S : llvm::reverse(Used)) {
5201     assert(S && "Expected non-null used-in-clause child.");
5202     if (CFGBlock *R = Visit(S))
5203       B = R;
5204   }
5205   // Visit associated structured block if any.
5206   if (!D->isStandaloneDirective()) {
5207     Stmt *S = D->getRawStmt();
5208     if (!isa<CompoundStmt>(S))
5209       addLocalScopeAndDtors(S);
5210     if (CFGBlock *R = addStmt(S))
5211       B = R;
5212   }
5213 
5214   return B;
5215 }
5216 
5217 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
5218 ///  no successors or predecessors.  If this is the first block created in the
5219 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
5220 CFGBlock *CFG::createBlock() {
5221   bool first_block = begin() == end();
5222 
5223   // Create the block.
5224   CFGBlock *Mem = new (getAllocator()) CFGBlock(NumBlockIDs++, BlkBVC, this);
5225   Blocks.push_back(Mem, BlkBVC);
5226 
5227   // If this is the first block, set it as the Entry and Exit.
5228   if (first_block)
5229     Entry = Exit = &back();
5230 
5231   // Return the block.
5232   return &back();
5233 }
5234 
5235 /// buildCFG - Constructs a CFG from an AST.
5236 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
5237                                    ASTContext *C, const BuildOptions &BO) {
5238   CFGBuilder Builder(C, BO);
5239   return Builder.buildCFG(D, Statement);
5240 }
5241 
5242 bool CFG::isLinear() const {
5243   // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5244   // in between, then we have no room for control flow.
5245   if (size() <= 3)
5246     return true;
5247 
5248   // Traverse the CFG until we find a branch.
5249   // TODO: While this should still be very fast,
5250   // maybe we should cache the answer.
5251   llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
5252   const CFGBlock *B = Entry;
5253   while (B != Exit) {
5254     auto IteratorAndFlag = Visited.insert(B);
5255     if (!IteratorAndFlag.second) {
5256       // We looped back to a block that we've already visited. Not linear.
5257       return false;
5258     }
5259 
5260     // Iterate over reachable successors.
5261     const CFGBlock *FirstReachableB = nullptr;
5262     for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
5263       if (!AB.isReachable())
5264         continue;
5265 
5266       if (FirstReachableB == nullptr) {
5267         FirstReachableB = &*AB;
5268       } else {
5269         // We've encountered a branch. It's not a linear CFG.
5270         return false;
5271       }
5272     }
5273 
5274     if (!FirstReachableB) {
5275       // We reached a dead end. EXIT is unreachable. This is linear enough.
5276       return true;
5277     }
5278 
5279     // There's only one way to move forward. Proceed.
5280     B = FirstReachableB;
5281   }
5282 
5283   // We reached EXIT and found no branches.
5284   return true;
5285 }
5286 
5287 const CXXDestructorDecl *
5288 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
5289   switch (getKind()) {
5290     case CFGElement::Initializer:
5291     case CFGElement::NewAllocator:
5292     case CFGElement::LoopExit:
5293     case CFGElement::LifetimeEnds:
5294     case CFGElement::Statement:
5295     case CFGElement::Constructor:
5296     case CFGElement::CXXRecordTypedCall:
5297     case CFGElement::ScopeBegin:
5298     case CFGElement::ScopeEnd:
5299     case CFGElement::CleanupFunction:
5300       llvm_unreachable("getDestructorDecl should only be used with "
5301                        "ImplicitDtors");
5302     case CFGElement::AutomaticObjectDtor: {
5303       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
5304       QualType ty = var->getType();
5305 
5306       // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5307       //
5308       // Lifetime-extending constructs are handled here. This works for a single
5309       // temporary in an initializer expression.
5310       if (ty->isReferenceType()) {
5311         if (const Expr *Init = var->getInit()) {
5312           ty = getReferenceInitTemporaryType(Init);
5313         }
5314       }
5315 
5316       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5317         ty = arrayType->getElementType();
5318       }
5319 
5320       // The situation when the type of the lifetime-extending reference
5321       // does not correspond to the type of the object is supposed
5322       // to be handled by now. In particular, 'ty' is now the unwrapped
5323       // record type.
5324       const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5325       assert(classDecl);
5326       return classDecl->getDestructor();
5327     }
5328     case CFGElement::DeleteDtor: {
5329       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5330       QualType DTy = DE->getDestroyedType();
5331       DTy = DTy.getNonReferenceType();
5332       const CXXRecordDecl *classDecl =
5333           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5334       return classDecl->getDestructor();
5335     }
5336     case CFGElement::TemporaryDtor: {
5337       const CXXBindTemporaryExpr *bindExpr =
5338         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5339       const CXXTemporary *temp = bindExpr->getTemporary();
5340       return temp->getDestructor();
5341     }
5342     case CFGElement::MemberDtor: {
5343       const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl();
5344       QualType ty = field->getType();
5345 
5346       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5347         ty = arrayType->getElementType();
5348       }
5349 
5350       const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5351       assert(classDecl);
5352       return classDecl->getDestructor();
5353     }
5354     case CFGElement::BaseDtor:
5355       // Not yet supported.
5356       return nullptr;
5357   }
5358   llvm_unreachable("getKind() returned bogus value");
5359 }
5360 
5361 //===----------------------------------------------------------------------===//
5362 // CFGBlock operations.
5363 //===----------------------------------------------------------------------===//
5364 
5365 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5366     : ReachableBlock(IsReachable ? B : nullptr),
5367       UnreachableBlock(!IsReachable ? B : nullptr,
5368                        B && IsReachable ? AB_Normal : AB_Unreachable) {}
5369 
5370 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5371     : ReachableBlock(B),
5372       UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5373                        B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5374 
5375 void CFGBlock::addSuccessor(AdjacentBlock Succ,
5376                             BumpVectorContext &C) {
5377   if (CFGBlock *B = Succ.getReachableBlock())
5378     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5379 
5380   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5381     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5382 
5383   Succs.push_back(Succ, C);
5384 }
5385 
5386 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5387         const CFGBlock *From, const CFGBlock *To) {
5388   if (F.IgnoreNullPredecessors && !From)
5389     return true;
5390 
5391   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5392     // If the 'To' has no label or is labeled but the label isn't a
5393     // CaseStmt then filter this edge.
5394     if (const SwitchStmt *S =
5395         dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5396       if (S->isAllEnumCasesCovered()) {
5397         const Stmt *L = To->getLabel();
5398         if (!L || !isa<CaseStmt>(L))
5399           return true;
5400       }
5401     }
5402   }
5403 
5404   return false;
5405 }
5406 
5407 //===----------------------------------------------------------------------===//
5408 // CFG pretty printing
5409 //===----------------------------------------------------------------------===//
5410 
5411 namespace {
5412 
5413 class StmtPrinterHelper : public PrinterHelper  {
5414   using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5415   using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5416 
5417   StmtMapTy StmtMap;
5418   DeclMapTy DeclMap;
5419   signed currentBlock = 0;
5420   unsigned currStmt = 0;
5421   const LangOptions &LangOpts;
5422 
5423 public:
5424   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5425       : LangOpts(LO) {
5426     if (!cfg)
5427       return;
5428     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5429       unsigned j = 1;
5430       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5431            BI != BEnd; ++BI, ++j ) {
5432         if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5433           const Stmt *stmt= SE->getStmt();
5434           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5435           StmtMap[stmt] = P;
5436 
5437           switch (stmt->getStmtClass()) {
5438             case Stmt::DeclStmtClass:
5439               DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5440               break;
5441             case Stmt::IfStmtClass: {
5442               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5443               if (var)
5444                 DeclMap[var] = P;
5445               break;
5446             }
5447             case Stmt::ForStmtClass: {
5448               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5449               if (var)
5450                 DeclMap[var] = P;
5451               break;
5452             }
5453             case Stmt::WhileStmtClass: {
5454               const VarDecl *var =
5455                 cast<WhileStmt>(stmt)->getConditionVariable();
5456               if (var)
5457                 DeclMap[var] = P;
5458               break;
5459             }
5460             case Stmt::SwitchStmtClass: {
5461               const VarDecl *var =
5462                 cast<SwitchStmt>(stmt)->getConditionVariable();
5463               if (var)
5464                 DeclMap[var] = P;
5465               break;
5466             }
5467             case Stmt::CXXCatchStmtClass: {
5468               const VarDecl *var =
5469                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5470               if (var)
5471                 DeclMap[var] = P;
5472               break;
5473             }
5474             default:
5475               break;
5476           }
5477         }
5478       }
5479     }
5480   }
5481 
5482   ~StmtPrinterHelper() override = default;
5483 
5484   const LangOptions &getLangOpts() const { return LangOpts; }
5485   void setBlockID(signed i) { currentBlock = i; }
5486   void setStmtID(unsigned i) { currStmt = i; }
5487 
5488   bool handledStmt(Stmt *S, raw_ostream &OS) override {
5489     StmtMapTy::iterator I = StmtMap.find(S);
5490 
5491     if (I == StmtMap.end())
5492       return false;
5493 
5494     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5495                           && I->second.second == currStmt) {
5496       return false;
5497     }
5498 
5499     OS << "[B" << I->second.first << "." << I->second.second << "]";
5500     return true;
5501   }
5502 
5503   bool handleDecl(const Decl *D, raw_ostream &OS) {
5504     DeclMapTy::iterator I = DeclMap.find(D);
5505 
5506     if (I == DeclMap.end())
5507       return false;
5508 
5509     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5510                           && I->second.second == currStmt) {
5511       return false;
5512     }
5513 
5514     OS << "[B" << I->second.first << "." << I->second.second << "]";
5515     return true;
5516   }
5517 };
5518 
5519 class CFGBlockTerminatorPrint
5520     : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5521   raw_ostream &OS;
5522   StmtPrinterHelper* Helper;
5523   PrintingPolicy Policy;
5524 
5525 public:
5526   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5527                           const PrintingPolicy &Policy)
5528       : OS(os), Helper(helper), Policy(Policy) {
5529     this->Policy.IncludeNewlines = false;
5530   }
5531 
5532   void VisitIfStmt(IfStmt *I) {
5533     OS << "if ";
5534     if (Stmt *C = I->getCond())
5535       C->printPretty(OS, Helper, Policy);
5536   }
5537 
5538   // Default case.
5539   void VisitStmt(Stmt *Terminator) {
5540     Terminator->printPretty(OS, Helper, Policy);
5541   }
5542 
5543   void VisitDeclStmt(DeclStmt *DS) {
5544     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5545     OS << "static init " << VD->getName();
5546   }
5547 
5548   void VisitForStmt(ForStmt *F) {
5549     OS << "for (" ;
5550     if (F->getInit())
5551       OS << "...";
5552     OS << "; ";
5553     if (Stmt *C = F->getCond())
5554       C->printPretty(OS, Helper, Policy);
5555     OS << "; ";
5556     if (F->getInc())
5557       OS << "...";
5558     OS << ")";
5559   }
5560 
5561   void VisitWhileStmt(WhileStmt *W) {
5562     OS << "while " ;
5563     if (Stmt *C = W->getCond())
5564       C->printPretty(OS, Helper, Policy);
5565   }
5566 
5567   void VisitDoStmt(DoStmt *D) {
5568     OS << "do ... while ";
5569     if (Stmt *C = D->getCond())
5570       C->printPretty(OS, Helper, Policy);
5571   }
5572 
5573   void VisitSwitchStmt(SwitchStmt *Terminator) {
5574     OS << "switch ";
5575     Terminator->getCond()->printPretty(OS, Helper, Policy);
5576   }
5577 
5578   void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; }
5579 
5580   void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; }
5581 
5582   void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; }
5583 
5584   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5585     if (Stmt *Cond = C->getCond())
5586       Cond->printPretty(OS, Helper, Policy);
5587     OS << " ? ... : ...";
5588   }
5589 
5590   void VisitChooseExpr(ChooseExpr *C) {
5591     OS << "__builtin_choose_expr( ";
5592     if (Stmt *Cond = C->getCond())
5593       Cond->printPretty(OS, Helper, Policy);
5594     OS << " )";
5595   }
5596 
5597   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5598     OS << "goto *";
5599     if (Stmt *T = I->getTarget())
5600       T->printPretty(OS, Helper, Policy);
5601   }
5602 
5603   void VisitBinaryOperator(BinaryOperator* B) {
5604     if (!B->isLogicalOp()) {
5605       VisitExpr(B);
5606       return;
5607     }
5608 
5609     if (B->getLHS())
5610       B->getLHS()->printPretty(OS, Helper, Policy);
5611 
5612     switch (B->getOpcode()) {
5613       case BO_LOr:
5614         OS << " || ...";
5615         return;
5616       case BO_LAnd:
5617         OS << " && ...";
5618         return;
5619       default:
5620         llvm_unreachable("Invalid logical operator.");
5621     }
5622   }
5623 
5624   void VisitExpr(Expr *E) {
5625     E->printPretty(OS, Helper, Policy);
5626   }
5627 
5628 public:
5629   void print(CFGTerminator T) {
5630     switch (T.getKind()) {
5631     case CFGTerminator::StmtBranch:
5632       Visit(T.getStmt());
5633       break;
5634     case CFGTerminator::TemporaryDtorsBranch:
5635       OS << "(Temp Dtor) ";
5636       Visit(T.getStmt());
5637       break;
5638     case CFGTerminator::VirtualBaseBranch:
5639       OS << "(See if most derived ctor has already initialized vbases)";
5640       break;
5641     }
5642   }
5643 };
5644 
5645 } // namespace
5646 
5647 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5648                               const CXXCtorInitializer *I) {
5649   if (I->isBaseInitializer())
5650     OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5651   else if (I->isDelegatingInitializer())
5652     OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5653   else
5654     OS << I->getAnyMember()->getName();
5655   OS << "(";
5656   if (Expr *IE = I->getInit())
5657     IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5658   OS << ")";
5659 
5660   if (I->isBaseInitializer())
5661     OS << " (Base initializer)";
5662   else if (I->isDelegatingInitializer())
5663     OS << " (Delegating initializer)";
5664   else
5665     OS << " (Member initializer)";
5666 }
5667 
5668 static void print_construction_context(raw_ostream &OS,
5669                                        StmtPrinterHelper &Helper,
5670                                        const ConstructionContext *CC) {
5671   SmallVector<const Stmt *, 3> Stmts;
5672   switch (CC->getKind()) {
5673   case ConstructionContext::SimpleConstructorInitializerKind: {
5674     OS << ", ";
5675     const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5676     print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5677     return;
5678   }
5679   case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5680     OS << ", ";
5681     const auto *CICC =
5682         cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5683     print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5684     Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5685     break;
5686   }
5687   case ConstructionContext::SimpleVariableKind: {
5688     const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5689     Stmts.push_back(SDSCC->getDeclStmt());
5690     break;
5691   }
5692   case ConstructionContext::CXX17ElidedCopyVariableKind: {
5693     const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5694     Stmts.push_back(CDSCC->getDeclStmt());
5695     Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5696     break;
5697   }
5698   case ConstructionContext::NewAllocatedObjectKind: {
5699     const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5700     Stmts.push_back(NECC->getCXXNewExpr());
5701     break;
5702   }
5703   case ConstructionContext::SimpleReturnedValueKind: {
5704     const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5705     Stmts.push_back(RSCC->getReturnStmt());
5706     break;
5707   }
5708   case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5709     const auto *RSCC =
5710         cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5711     Stmts.push_back(RSCC->getReturnStmt());
5712     Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5713     break;
5714   }
5715   case ConstructionContext::SimpleTemporaryObjectKind: {
5716     const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5717     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5718     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5719     break;
5720   }
5721   case ConstructionContext::ElidedTemporaryObjectKind: {
5722     const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5723     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5724     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5725     Stmts.push_back(TOCC->getConstructorAfterElision());
5726     break;
5727   }
5728   case ConstructionContext::LambdaCaptureKind: {
5729     const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
5730     Helper.handledStmt(const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS);
5731     OS << "+" << LCC->getIndex();
5732     return;
5733   }
5734   case ConstructionContext::ArgumentKind: {
5735     const auto *ACC = cast<ArgumentConstructionContext>(CC);
5736     if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5737       OS << ", ";
5738       Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5739     }
5740     OS << ", ";
5741     Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5742     OS << "+" << ACC->getIndex();
5743     return;
5744   }
5745   }
5746   for (auto I: Stmts)
5747     if (I) {
5748       OS << ", ";
5749       Helper.handledStmt(const_cast<Stmt *>(I), OS);
5750     }
5751 }
5752 
5753 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5754                        const CFGElement &E);
5755 
5756 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5757   LangOptions LangOpts;
5758   StmtPrinterHelper Helper(nullptr, LangOpts);
5759   print_elem(OS, Helper, *this);
5760 }
5761 
5762 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5763                        const CFGElement &E) {
5764   switch (E.getKind()) {
5765   case CFGElement::Kind::Statement:
5766   case CFGElement::Kind::CXXRecordTypedCall:
5767   case CFGElement::Kind::Constructor: {
5768     CFGStmt CS = E.castAs<CFGStmt>();
5769     const Stmt *S = CS.getStmt();
5770     assert(S != nullptr && "Expecting non-null Stmt");
5771 
5772     // special printing for statement-expressions.
5773     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5774       const CompoundStmt *Sub = SE->getSubStmt();
5775 
5776       auto Children = Sub->children();
5777       if (Children.begin() != Children.end()) {
5778         OS << "({ ... ; ";
5779         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5780         OS << " })\n";
5781         return;
5782       }
5783     }
5784     // special printing for comma expressions.
5785     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5786       if (B->getOpcode() == BO_Comma) {
5787         OS << "... , ";
5788         Helper.handledStmt(B->getRHS(),OS);
5789         OS << '\n';
5790         return;
5791       }
5792     }
5793     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5794 
5795     if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5796       if (isa<CXXOperatorCallExpr>(S))
5797         OS << " (OperatorCall)";
5798       OS << " (CXXRecordTypedCall";
5799       print_construction_context(OS, Helper, VTC->getConstructionContext());
5800       OS << ")";
5801     } else if (isa<CXXOperatorCallExpr>(S)) {
5802       OS << " (OperatorCall)";
5803     } else if (isa<CXXBindTemporaryExpr>(S)) {
5804       OS << " (BindTemporary)";
5805     } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5806       OS << " (CXXConstructExpr";
5807       if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5808         print_construction_context(OS, Helper, CE->getConstructionContext());
5809       }
5810       OS << ", " << CCE->getType() << ")";
5811     } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5812       OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName()
5813          << ", " << CE->getType() << ")";
5814     }
5815 
5816     // Expressions need a newline.
5817     if (isa<Expr>(S))
5818       OS << '\n';
5819 
5820     break;
5821   }
5822 
5823   case CFGElement::Kind::Initializer:
5824     print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5825     OS << '\n';
5826     break;
5827 
5828   case CFGElement::Kind::AutomaticObjectDtor: {
5829     CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5830     const VarDecl *VD = DE.getVarDecl();
5831     Helper.handleDecl(VD, OS);
5832 
5833     QualType T = VD->getType();
5834     if (T->isReferenceType())
5835       T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5836 
5837     OS << ".~";
5838     T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5839     OS << "() (Implicit destructor)\n";
5840     break;
5841   }
5842 
5843   case CFGElement::Kind::CleanupFunction:
5844     OS << "CleanupFunction ("
5845        << E.castAs<CFGCleanupFunction>().getFunctionDecl()->getName() << ")\n";
5846     break;
5847 
5848   case CFGElement::Kind::LifetimeEnds:
5849     Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5850     OS << " (Lifetime ends)\n";
5851     break;
5852 
5853   case CFGElement::Kind::LoopExit:
5854     OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5855     break;
5856 
5857   case CFGElement::Kind::ScopeBegin:
5858     OS << "CFGScopeBegin(";
5859     if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5860       OS << VD->getQualifiedNameAsString();
5861     OS << ")\n";
5862     break;
5863 
5864   case CFGElement::Kind::ScopeEnd:
5865     OS << "CFGScopeEnd(";
5866     if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5867       OS << VD->getQualifiedNameAsString();
5868     OS << ")\n";
5869     break;
5870 
5871   case CFGElement::Kind::NewAllocator:
5872     OS << "CFGNewAllocator(";
5873     if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5874       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5875     OS << ")\n";
5876     break;
5877 
5878   case CFGElement::Kind::DeleteDtor: {
5879     CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5880     const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5881     if (!RD)
5882       return;
5883     CXXDeleteExpr *DelExpr =
5884         const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5885     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5886     OS << "->~" << RD->getName().str() << "()";
5887     OS << " (Implicit destructor)\n";
5888     break;
5889   }
5890 
5891   case CFGElement::Kind::BaseDtor: {
5892     const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5893     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5894     OS << " (Base object destructor)\n";
5895     break;
5896   }
5897 
5898   case CFGElement::Kind::MemberDtor: {
5899     const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5900     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5901     OS << "this->" << FD->getName();
5902     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5903     OS << " (Member object destructor)\n";
5904     break;
5905   }
5906 
5907   case CFGElement::Kind::TemporaryDtor: {
5908     const CXXBindTemporaryExpr *BT =
5909         E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5910     OS << "~";
5911     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5912     OS << "() (Temporary object destructor)\n";
5913     break;
5914   }
5915   }
5916 }
5917 
5918 static void print_block(raw_ostream &OS, const CFG* cfg,
5919                         const CFGBlock &B,
5920                         StmtPrinterHelper &Helper, bool print_edges,
5921                         bool ShowColors) {
5922   Helper.setBlockID(B.getBlockID());
5923 
5924   // Print the header.
5925   if (ShowColors)
5926     OS.changeColor(raw_ostream::YELLOW, true);
5927 
5928   OS << "\n [B" << B.getBlockID();
5929 
5930   if (&B == &cfg->getEntry())
5931     OS << " (ENTRY)]\n";
5932   else if (&B == &cfg->getExit())
5933     OS << " (EXIT)]\n";
5934   else if (&B == cfg->getIndirectGotoBlock())
5935     OS << " (INDIRECT GOTO DISPATCH)]\n";
5936   else if (B.hasNoReturnElement())
5937     OS << " (NORETURN)]\n";
5938   else
5939     OS << "]\n";
5940 
5941   if (ShowColors)
5942     OS.resetColor();
5943 
5944   // Print the label of this block.
5945   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5946     if (print_edges)
5947       OS << "  ";
5948 
5949     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5950       OS << L->getName();
5951     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5952       OS << "case ";
5953       if (const Expr *LHS = C->getLHS())
5954         LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5955       if (const Expr *RHS = C->getRHS()) {
5956         OS << " ... ";
5957         RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5958       }
5959     } else if (isa<DefaultStmt>(Label))
5960       OS << "default";
5961     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5962       OS << "catch (";
5963       if (const VarDecl *ED = CS->getExceptionDecl())
5964         ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5965       else
5966         OS << "...";
5967       OS << ")";
5968     } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) {
5969       OS << "@catch (";
5970       if (const VarDecl *PD = CS->getCatchParamDecl())
5971         PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5972       else
5973         OS << "...";
5974       OS << ")";
5975     } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5976       OS << "__except (";
5977       ES->getFilterExpr()->printPretty(OS, &Helper,
5978                                        PrintingPolicy(Helper.getLangOpts()), 0);
5979       OS << ")";
5980     } else
5981       llvm_unreachable("Invalid label statement in CFGBlock.");
5982 
5983     OS << ":\n";
5984   }
5985 
5986   // Iterate through the statements in the block and print them.
5987   unsigned j = 1;
5988 
5989   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5990        I != E ; ++I, ++j ) {
5991     // Print the statement # in the basic block and the statement itself.
5992     if (print_edges)
5993       OS << " ";
5994 
5995     OS << llvm::format("%3d", j) << ": ";
5996 
5997     Helper.setStmtID(j);
5998 
5999     print_elem(OS, Helper, *I);
6000   }
6001 
6002   // Print the terminator of this block.
6003   if (B.getTerminator().isValid()) {
6004     if (ShowColors)
6005       OS.changeColor(raw_ostream::GREEN);
6006 
6007     OS << "   T: ";
6008 
6009     Helper.setBlockID(-1);
6010 
6011     PrintingPolicy PP(Helper.getLangOpts());
6012     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
6013     TPrinter.print(B.getTerminator());
6014     OS << '\n';
6015 
6016     if (ShowColors)
6017       OS.resetColor();
6018   }
6019 
6020   if (print_edges) {
6021     // Print the predecessors of this block.
6022     if (!B.pred_empty()) {
6023       const raw_ostream::Colors Color = raw_ostream::BLUE;
6024       if (ShowColors)
6025         OS.changeColor(Color);
6026       OS << "   Preds " ;
6027       if (ShowColors)
6028         OS.resetColor();
6029       OS << '(' << B.pred_size() << "):";
6030       unsigned i = 0;
6031 
6032       if (ShowColors)
6033         OS.changeColor(Color);
6034 
6035       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
6036            I != E; ++I, ++i) {
6037         if (i % 10 == 8)
6038           OS << "\n     ";
6039 
6040         CFGBlock *B = *I;
6041         bool Reachable = true;
6042         if (!B) {
6043           Reachable = false;
6044           B = I->getPossiblyUnreachableBlock();
6045         }
6046 
6047         OS << " B" << B->getBlockID();
6048         if (!Reachable)
6049           OS << "(Unreachable)";
6050       }
6051 
6052       if (ShowColors)
6053         OS.resetColor();
6054 
6055       OS << '\n';
6056     }
6057 
6058     // Print the successors of this block.
6059     if (!B.succ_empty()) {
6060       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
6061       if (ShowColors)
6062         OS.changeColor(Color);
6063       OS << "   Succs ";
6064       if (ShowColors)
6065         OS.resetColor();
6066       OS << '(' << B.succ_size() << "):";
6067       unsigned i = 0;
6068 
6069       if (ShowColors)
6070         OS.changeColor(Color);
6071 
6072       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
6073            I != E; ++I, ++i) {
6074         if (i % 10 == 8)
6075           OS << "\n    ";
6076 
6077         CFGBlock *B = *I;
6078 
6079         bool Reachable = true;
6080         if (!B) {
6081           Reachable = false;
6082           B = I->getPossiblyUnreachableBlock();
6083         }
6084 
6085         if (B) {
6086           OS << " B" << B->getBlockID();
6087           if (!Reachable)
6088             OS << "(Unreachable)";
6089         }
6090         else {
6091           OS << " NULL";
6092         }
6093       }
6094 
6095       if (ShowColors)
6096         OS.resetColor();
6097       OS << '\n';
6098     }
6099   }
6100 }
6101 
6102 /// dump - A simple pretty printer of a CFG that outputs to stderr.
6103 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
6104   print(llvm::errs(), LO, ShowColors);
6105 }
6106 
6107 /// print - A simple pretty printer of a CFG that outputs to an ostream.
6108 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
6109   StmtPrinterHelper Helper(this, LO);
6110 
6111   // Print the entry block.
6112   print_block(OS, this, getEntry(), Helper, true, ShowColors);
6113 
6114   // Iterate through the CFGBlocks and print them one by one.
6115   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
6116     // Skip the entry block, because we already printed it.
6117     if (&(**I) == &getEntry() || &(**I) == &getExit())
6118       continue;
6119 
6120     print_block(OS, this, **I, Helper, true, ShowColors);
6121   }
6122 
6123   // Print the exit block.
6124   print_block(OS, this, getExit(), Helper, true, ShowColors);
6125   OS << '\n';
6126   OS.flush();
6127 }
6128 
6129 size_t CFGBlock::getIndexInCFG() const {
6130   return llvm::find(*getParent(), this) - getParent()->begin();
6131 }
6132 
6133 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
6134 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
6135                     bool ShowColors) const {
6136   print(llvm::errs(), cfg, LO, ShowColors);
6137 }
6138 
6139 LLVM_DUMP_METHOD void CFGBlock::dump() const {
6140   dump(getParent(), LangOptions(), false);
6141 }
6142 
6143 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
6144 ///   Generally this will only be called from CFG::print.
6145 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
6146                      const LangOptions &LO, bool ShowColors) const {
6147   StmtPrinterHelper Helper(cfg, LO);
6148   print_block(OS, cfg, *this, Helper, true, ShowColors);
6149   OS << '\n';
6150 }
6151 
6152 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
6153 void CFGBlock::printTerminator(raw_ostream &OS,
6154                                const LangOptions &LO) const {
6155   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
6156   TPrinter.print(getTerminator());
6157 }
6158 
6159 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
6160 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
6161                                    bool AddQuotes) const {
6162   std::string Buf;
6163   llvm::raw_string_ostream TempOut(Buf);
6164 
6165   printTerminator(TempOut, LO);
6166 
6167   Out << JsonFormat(TempOut.str(), AddQuotes);
6168 }
6169 
6170 // Returns true if by simply looking at the block, we can be sure that it
6171 // results in a sink during analysis. This is useful to know when the analysis
6172 // was interrupted, and we try to figure out if it would sink eventually.
6173 // There may be many more reasons why a sink would appear during analysis
6174 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6175 // sinks that would be obvious by looking at the CFG.
6176 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
6177   if (Blk->hasNoReturnElement())
6178     return true;
6179 
6180   // FIXME: Throw-expressions are currently generating sinks during analysis:
6181   // they're not supported yet, and also often used for actually terminating
6182   // the program. So we should treat them as sinks in this analysis as well,
6183   // at least for now, but once we have better support for exceptions,
6184   // we'd need to carefully handle the case when the throw is being
6185   // immediately caught.
6186   if (llvm::any_of(*Blk, [](const CFGElement &Elm) {
6187         if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
6188           if (isa<CXXThrowExpr>(StmtElm->getStmt()))
6189             return true;
6190         return false;
6191       }))
6192     return true;
6193 
6194   return false;
6195 }
6196 
6197 bool CFGBlock::isInevitablySinking() const {
6198   const CFG &Cfg = *getParent();
6199 
6200   const CFGBlock *StartBlk = this;
6201   if (isImmediateSinkBlock(StartBlk))
6202     return true;
6203 
6204   llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
6205   llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
6206 
6207   DFSWorkList.push_back(StartBlk);
6208   while (!DFSWorkList.empty()) {
6209     const CFGBlock *Blk = DFSWorkList.back();
6210     DFSWorkList.pop_back();
6211     Visited.insert(Blk);
6212 
6213     // If at least one path reaches the CFG exit, it means that control is
6214     // returned to the caller. For now, say that we are not sure what
6215     // happens next. If necessary, this can be improved to analyze
6216     // the parent StackFrameContext's call site in a similar manner.
6217     if (Blk == &Cfg.getExit())
6218       return false;
6219 
6220     for (const auto &Succ : Blk->succs()) {
6221       if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
6222         if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
6223           // If the block has reachable child blocks that aren't no-return,
6224           // add them to the worklist.
6225           DFSWorkList.push_back(SuccBlk);
6226         }
6227       }
6228     }
6229   }
6230 
6231   // Nothing reached the exit. It can only mean one thing: there's no return.
6232   return true;
6233 }
6234 
6235 const Expr *CFGBlock::getLastCondition() const {
6236   // If the terminator is a temporary dtor or a virtual base, etc, we can't
6237   // retrieve a meaningful condition, bail out.
6238   if (Terminator.getKind() != CFGTerminator::StmtBranch)
6239     return nullptr;
6240 
6241   // Also, if this method was called on a block that doesn't have 2 successors,
6242   // this block doesn't have retrievable condition.
6243   if (succ_size() < 2)
6244     return nullptr;
6245 
6246   // FIXME: Is there a better condition expression we can return in this case?
6247   if (size() == 0)
6248     return nullptr;
6249 
6250   auto StmtElem = rbegin()->getAs<CFGStmt>();
6251   if (!StmtElem)
6252     return nullptr;
6253 
6254   const Stmt *Cond = StmtElem->getStmt();
6255   if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
6256     return nullptr;
6257 
6258   // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6259   // the cast<>.
6260   return cast<Expr>(Cond)->IgnoreParens();
6261 }
6262 
6263 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
6264   Stmt *Terminator = getTerminatorStmt();
6265   if (!Terminator)
6266     return nullptr;
6267 
6268   Expr *E = nullptr;
6269 
6270   switch (Terminator->getStmtClass()) {
6271     default:
6272       break;
6273 
6274     case Stmt::CXXForRangeStmtClass:
6275       E = cast<CXXForRangeStmt>(Terminator)->getCond();
6276       break;
6277 
6278     case Stmt::ForStmtClass:
6279       E = cast<ForStmt>(Terminator)->getCond();
6280       break;
6281 
6282     case Stmt::WhileStmtClass:
6283       E = cast<WhileStmt>(Terminator)->getCond();
6284       break;
6285 
6286     case Stmt::DoStmtClass:
6287       E = cast<DoStmt>(Terminator)->getCond();
6288       break;
6289 
6290     case Stmt::IfStmtClass:
6291       E = cast<IfStmt>(Terminator)->getCond();
6292       break;
6293 
6294     case Stmt::ChooseExprClass:
6295       E = cast<ChooseExpr>(Terminator)->getCond();
6296       break;
6297 
6298     case Stmt::IndirectGotoStmtClass:
6299       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
6300       break;
6301 
6302     case Stmt::SwitchStmtClass:
6303       E = cast<SwitchStmt>(Terminator)->getCond();
6304       break;
6305 
6306     case Stmt::BinaryConditionalOperatorClass:
6307       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
6308       break;
6309 
6310     case Stmt::ConditionalOperatorClass:
6311       E = cast<ConditionalOperator>(Terminator)->getCond();
6312       break;
6313 
6314     case Stmt::BinaryOperatorClass: // '&&' and '||'
6315       E = cast<BinaryOperator>(Terminator)->getLHS();
6316       break;
6317 
6318     case Stmt::ObjCForCollectionStmtClass:
6319       return Terminator;
6320   }
6321 
6322   if (!StripParens)
6323     return E;
6324 
6325   return E ? E->IgnoreParens() : nullptr;
6326 }
6327 
6328 //===----------------------------------------------------------------------===//
6329 // CFG Graphviz Visualization
6330 //===----------------------------------------------------------------------===//
6331 
6332 static StmtPrinterHelper *GraphHelper;
6333 
6334 void CFG::viewCFG(const LangOptions &LO) const {
6335   StmtPrinterHelper H(this, LO);
6336   GraphHelper = &H;
6337   llvm::ViewGraph(this,"CFG");
6338   GraphHelper = nullptr;
6339 }
6340 
6341 namespace llvm {
6342 
6343 template<>
6344 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
6345   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6346 
6347   static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) {
6348     std::string OutSStr;
6349     llvm::raw_string_ostream Out(OutSStr);
6350     print_block(Out,Graph, *Node, *GraphHelper, false, false);
6351     std::string& OutStr = Out.str();
6352 
6353     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6354 
6355     // Process string output to make it nicer...
6356     for (unsigned i = 0; i != OutStr.length(); ++i)
6357       if (OutStr[i] == '\n') {                            // Left justify
6358         OutStr[i] = '\\';
6359         OutStr.insert(OutStr.begin()+i+1, 'l');
6360       }
6361 
6362     return OutStr;
6363   }
6364 };
6365 
6366 } // namespace llvm
6367