xref: /freebsd/contrib/llvm-project/clang/lib/Analysis/CFG.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the CFG and CFGBuilder classes for representing and
10 //  building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/DOTGraphTraits.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/SaveAndRestore.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <memory>
58 #include <optional>
59 #include <string>
60 #include <tuple>
61 #include <utility>
62 #include <vector>
63 
64 using namespace clang;
65 
66 static SourceLocation GetEndLoc(Decl *D) {
67   if (VarDecl *VD = dyn_cast<VarDecl>(D))
68     if (Expr *Ex = VD->getInit())
69       return Ex->getSourceRange().getEnd();
70   return D->getLocation();
71 }
72 
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 /// FIXME: it would be good to unify this function with
76 /// getIntegerLiteralSubexpressionValue at some point given the similarity
77 /// between the functions.
78 
79 static bool IsIntegerLiteralConstantExpr(const Expr *E) {
80   // Allow parentheses
81   E = E->IgnoreParens();
82 
83   // Allow conversions to different integer kind.
84   if (const auto *CE = dyn_cast<CastExpr>(E)) {
85     if (CE->getCastKind() != CK_IntegralCast)
86       return false;
87     E = CE->getSubExpr();
88   }
89 
90   // Allow negative numbers.
91   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
92     if (UO->getOpcode() != UO_Minus)
93       return false;
94     E = UO->getSubExpr();
95   }
96 
97   return isa<IntegerLiteral>(E);
98 }
99 
100 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
101 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
102 /// returns nullptr.
103 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
104   E = E->IgnoreParens();
105   if (IsIntegerLiteralConstantExpr(E))
106     return E;
107   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
108     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
109   return nullptr;
110 }
111 
112 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
113 /// NumExpr is an integer literal or an enum constant.
114 ///
115 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
116 /// null.
117 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
118 tryNormalizeBinaryOperator(const BinaryOperator *B) {
119   BinaryOperatorKind Op = B->getOpcode();
120 
121   const Expr *MaybeDecl = B->getLHS();
122   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
123   // Expr looked like `0 == Foo` instead of `Foo == 0`
124   if (Constant == nullptr) {
125     // Flip the operator
126     if (Op == BO_GT)
127       Op = BO_LT;
128     else if (Op == BO_GE)
129       Op = BO_LE;
130     else if (Op == BO_LT)
131       Op = BO_GT;
132     else if (Op == BO_LE)
133       Op = BO_GE;
134 
135     MaybeDecl = B->getRHS();
136     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
137   }
138 
139   return std::make_tuple(MaybeDecl, Op, Constant);
140 }
141 
142 /// For an expression `x == Foo && x == Bar`, this determines whether the
143 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
144 /// literals.
145 ///
146 /// It's an error to pass this arguments that are not either IntegerLiterals
147 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
148 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
149   // User intent isn't clear if they're mixing int literals with enum
150   // constants.
151   if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
152     return false;
153 
154   // Integer literal comparisons, regardless of literal type, are acceptable.
155   if (!isa<DeclRefExpr>(E1))
156     return true;
157 
158   // IntegerLiterals are handled above and only EnumConstantDecls are expected
159   // beyond this point
160   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
161   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
162   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
163 
164   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
165   const DeclContext *DC1 = Decl1->getDeclContext();
166   const DeclContext *DC2 = Decl2->getDeclContext();
167 
168   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
169   return DC1 == DC2;
170 }
171 
172 namespace {
173 
174 class CFGBuilder;
175 
176 /// The CFG builder uses a recursive algorithm to build the CFG.  When
177 ///  we process an expression, sometimes we know that we must add the
178 ///  subexpressions as block-level expressions.  For example:
179 ///
180 ///    exp1 || exp2
181 ///
182 ///  When processing the '||' expression, we know that exp1 and exp2
183 ///  need to be added as block-level expressions, even though they
184 ///  might not normally need to be.  AddStmtChoice records this
185 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
186 ///  the builder has an option not to add a subexpression as a
187 ///  block-level expression.
188 class AddStmtChoice {
189 public:
190   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
191 
192   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
193 
194   bool alwaysAdd(CFGBuilder &builder,
195                  const Stmt *stmt) const;
196 
197   /// Return a copy of this object, except with the 'always-add' bit
198   ///  set as specified.
199   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
200     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
201   }
202 
203 private:
204   Kind kind;
205 };
206 
207 /// LocalScope - Node in tree of local scopes created for C++ implicit
208 /// destructor calls generation. It contains list of automatic variables
209 /// declared in the scope and link to position in previous scope this scope
210 /// began in.
211 ///
212 /// The process of creating local scopes is as follows:
213 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
214 /// - Before processing statements in scope (e.g. CompoundStmt) create
215 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
216 ///   and set CFGBuilder::ScopePos to the end of new scope,
217 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
218 ///   at this VarDecl,
219 /// - For every normal (without jump) end of scope add to CFGBlock destructors
220 ///   for objects in the current scope,
221 /// - For every jump add to CFGBlock destructors for objects
222 ///   between CFGBuilder::ScopePos and local scope position saved for jump
223 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
224 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
225 ///   (adding any variable that doesn't need constructor to be called to
226 ///   LocalScope can break this assumption),
227 ///
228 class LocalScope {
229 public:
230   using AutomaticVarsTy = BumpVector<VarDecl *>;
231 
232   /// const_iterator - Iterates local scope backwards and jumps to previous
233   /// scope on reaching the beginning of currently iterated scope.
234   class const_iterator {
235     const LocalScope* Scope = nullptr;
236 
237     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
238     /// Invalid iterator (with null Scope) has VarIter equal to 0.
239     unsigned VarIter = 0;
240 
241   public:
242     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
243     /// Incrementing invalid iterator is allowed and will result in invalid
244     /// iterator.
245     const_iterator() = default;
246 
247     /// Create valid iterator. In case when S.Prev is an invalid iterator and
248     /// I is equal to 0, this will create invalid iterator.
249     const_iterator(const LocalScope& S, unsigned I)
250         : Scope(&S), VarIter(I) {
251       // Iterator to "end" of scope is not allowed. Handle it by going up
252       // in scopes tree possibly up to invalid iterator in the root.
253       if (VarIter == 0 && Scope)
254         *this = Scope->Prev;
255     }
256 
257     VarDecl *const* operator->() const {
258       assert(Scope && "Dereferencing invalid iterator is not allowed");
259       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
260       return &Scope->Vars[VarIter - 1];
261     }
262 
263     const VarDecl *getFirstVarInScope() const {
264       assert(Scope && "Dereferencing invalid iterator is not allowed");
265       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
266       return Scope->Vars[0];
267     }
268 
269     VarDecl *operator*() const {
270       return *this->operator->();
271     }
272 
273     const_iterator &operator++() {
274       if (!Scope)
275         return *this;
276 
277       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
278       --VarIter;
279       if (VarIter == 0)
280         *this = Scope->Prev;
281       return *this;
282     }
283     const_iterator operator++(int) {
284       const_iterator P = *this;
285       ++*this;
286       return P;
287     }
288 
289     bool operator==(const const_iterator &rhs) const {
290       return Scope == rhs.Scope && VarIter == rhs.VarIter;
291     }
292     bool operator!=(const const_iterator &rhs) const {
293       return !(*this == rhs);
294     }
295 
296     explicit operator bool() const {
297       return *this != const_iterator();
298     }
299 
300     int distance(const_iterator L);
301     const_iterator shared_parent(const_iterator L);
302     bool pointsToFirstDeclaredVar() { return VarIter == 1; }
303     bool inSameLocalScope(const_iterator rhs) { return Scope == rhs.Scope; }
304   };
305 
306 private:
307   BumpVectorContext ctx;
308 
309   /// Automatic variables in order of declaration.
310   AutomaticVarsTy Vars;
311 
312   /// Iterator to variable in previous scope that was declared just before
313   /// begin of this scope.
314   const_iterator Prev;
315 
316 public:
317   /// Constructs empty scope linked to previous scope in specified place.
318   LocalScope(BumpVectorContext ctx, const_iterator P)
319       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
320 
321   /// Begin of scope in direction of CFG building (backwards).
322   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
323 
324   void addVar(VarDecl *VD) {
325     Vars.push_back(VD, ctx);
326   }
327 };
328 
329 } // namespace
330 
331 /// distance - Calculates distance from this to L. L must be reachable from this
332 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
333 /// number of scopes between this and L.
334 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
335   int D = 0;
336   const_iterator F = *this;
337   while (F.Scope != L.Scope) {
338     assert(F != const_iterator() &&
339            "L iterator is not reachable from F iterator.");
340     D += F.VarIter;
341     F = F.Scope->Prev;
342   }
343   D += F.VarIter - L.VarIter;
344   return D;
345 }
346 
347 /// Calculates the closest parent of this iterator
348 /// that is in a scope reachable through the parents of L.
349 /// I.e. when using 'goto' from this to L, the lifetime of all variables
350 /// between this and shared_parent(L) end.
351 LocalScope::const_iterator
352 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
353   // one of iterators is not valid (we are not in scope), so common
354   // parent is const_iterator() (i.e. sentinel).
355   if ((*this == const_iterator()) || (L == const_iterator())) {
356     return const_iterator();
357   }
358 
359   const_iterator F = *this;
360   if (F.inSameLocalScope(L)) {
361     // Iterators are in the same scope, get common subset of variables.
362     F.VarIter = std::min(F.VarIter, L.VarIter);
363     return F;
364   }
365 
366   llvm::SmallDenseMap<const LocalScope *, unsigned, 4> ScopesOfL;
367   while (true) {
368     ScopesOfL.try_emplace(L.Scope, L.VarIter);
369     if (L == const_iterator())
370       break;
371     L = L.Scope->Prev;
372   }
373 
374   while (true) {
375     if (auto LIt = ScopesOfL.find(F.Scope); LIt != ScopesOfL.end()) {
376       // Get common subset of variables in given scope
377       F.VarIter = std::min(F.VarIter, LIt->getSecond());
378       return F;
379     }
380     assert(F != const_iterator() &&
381            "L iterator is not reachable from F iterator.");
382     F = F.Scope->Prev;
383   }
384 }
385 
386 namespace {
387 
388 /// Structure for specifying position in CFG during its build process. It
389 /// consists of CFGBlock that specifies position in CFG and
390 /// LocalScope::const_iterator that specifies position in LocalScope graph.
391 struct BlockScopePosPair {
392   CFGBlock *block = nullptr;
393   LocalScope::const_iterator scopePosition;
394 
395   BlockScopePosPair() = default;
396   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
397       : block(b), scopePosition(scopePos) {}
398 };
399 
400 /// TryResult - a class representing a variant over the values
401 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
402 ///  and is used by the CFGBuilder to decide if a branch condition
403 ///  can be decided up front during CFG construction.
404 class TryResult {
405   int X = -1;
406 
407 public:
408   TryResult() = default;
409   TryResult(bool b) : X(b ? 1 : 0) {}
410 
411   bool isTrue() const { return X == 1; }
412   bool isFalse() const { return X == 0; }
413   bool isKnown() const { return X >= 0; }
414 
415   void negate() {
416     assert(isKnown());
417     X ^= 0x1;
418   }
419 };
420 
421 } // namespace
422 
423 static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
424   if (!R1.isKnown() || !R2.isKnown())
425     return TryResult();
426   return TryResult(R1.isTrue() && R2.isTrue());
427 }
428 
429 namespace {
430 
431 class reverse_children {
432   llvm::SmallVector<Stmt *, 12> childrenBuf;
433   ArrayRef<Stmt *> children;
434 
435 public:
436   reverse_children(Stmt *S);
437 
438   using iterator = ArrayRef<Stmt *>::reverse_iterator;
439 
440   iterator begin() const { return children.rbegin(); }
441   iterator end() const { return children.rend(); }
442 };
443 
444 } // namespace
445 
446 reverse_children::reverse_children(Stmt *S) {
447   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
448     children = CE->getRawSubExprs();
449     return;
450   }
451   switch (S->getStmtClass()) {
452     // Note: Fill in this switch with more cases we want to optimize.
453     case Stmt::InitListExprClass: {
454       InitListExpr *IE = cast<InitListExpr>(S);
455       children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()),
456                                 IE->getNumInits());
457       return;
458     }
459     default:
460       break;
461   }
462 
463   // Default case for all other statements.
464   llvm::append_range(childrenBuf, S->children());
465 
466   // This needs to be done *after* childrenBuf has been populated.
467   children = childrenBuf;
468 }
469 
470 namespace {
471 
472 /// CFGBuilder - This class implements CFG construction from an AST.
473 ///   The builder is stateful: an instance of the builder should be used to only
474 ///   construct a single CFG.
475 ///
476 ///   Example usage:
477 ///
478 ///     CFGBuilder builder;
479 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
480 ///
481 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
482 ///  the AST in reverse order so that the successor of a basic block is
483 ///  constructed prior to its predecessor.  This allows us to nicely capture
484 ///  implicit fall-throughs without extra basic blocks.
485 class CFGBuilder {
486   using JumpTarget = BlockScopePosPair;
487   using JumpSource = BlockScopePosPair;
488 
489   ASTContext *Context;
490   std::unique_ptr<CFG> cfg;
491 
492   // Current block.
493   CFGBlock *Block = nullptr;
494 
495   // Block after the current block.
496   CFGBlock *Succ = nullptr;
497 
498   JumpTarget ContinueJumpTarget;
499   JumpTarget BreakJumpTarget;
500   JumpTarget SEHLeaveJumpTarget;
501   CFGBlock *SwitchTerminatedBlock = nullptr;
502   CFGBlock *DefaultCaseBlock = nullptr;
503 
504   // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
505   // try and @try can be mixed and generally work the same.
506   // The frontend forbids mixing SEH __try with either try or @try.
507   // So having one for all three is enough.
508   CFGBlock *TryTerminatedBlock = nullptr;
509 
510   // Current position in local scope.
511   LocalScope::const_iterator ScopePos;
512 
513   // LabelMap records the mapping from Label expressions to their jump targets.
514   using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
515   LabelMapTy LabelMap;
516 
517   // A list of blocks that end with a "goto" that must be backpatched to their
518   // resolved targets upon completion of CFG construction.
519   using BackpatchBlocksTy = std::vector<JumpSource>;
520   BackpatchBlocksTy BackpatchBlocks;
521 
522   // A list of labels whose address has been taken (for indirect gotos).
523   using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
524   LabelSetTy AddressTakenLabels;
525 
526   // Information about the currently visited C++ object construction site.
527   // This is set in the construction trigger and read when the constructor
528   // or a function that returns an object by value is being visited.
529   llvm::DenseMap<Expr *, const ConstructionContextLayer *>
530       ConstructionContextMap;
531 
532   bool badCFG = false;
533   const CFG::BuildOptions &BuildOpts;
534 
535   // State to track for building switch statements.
536   bool switchExclusivelyCovered = false;
537   Expr::EvalResult *switchCond = nullptr;
538 
539   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
540   const Stmt *lastLookup = nullptr;
541 
542   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
543   // during construction of branches for chained logical operators.
544   using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
545   CachedBoolEvalsTy CachedBoolEvals;
546 
547 public:
548   explicit CFGBuilder(ASTContext *astContext,
549                       const CFG::BuildOptions &buildOpts)
550       : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {}
551 
552   // buildCFG - Used by external clients to construct the CFG.
553   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
554 
555   bool alwaysAdd(const Stmt *stmt);
556 
557 private:
558   // Visitors to walk an AST and construct the CFG.
559   CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
560   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
561   CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc);
562   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
563   CFGBlock *VisitBreakStmt(BreakStmt *B);
564   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
565   CFGBlock *VisitCaseStmt(CaseStmt *C);
566   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
567   CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
568   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
569                                      AddStmtChoice asc);
570   CFGBlock *VisitContinueStmt(ContinueStmt *C);
571   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
572                                       AddStmtChoice asc);
573   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
574   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
575   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
576   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
577   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
578   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
579                                        AddStmtChoice asc);
580   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
581                                         AddStmtChoice asc);
582   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
583   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
584   CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc);
585   CFGBlock *VisitDeclStmt(DeclStmt *DS);
586   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
587   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
588   CFGBlock *VisitDoStmt(DoStmt *D);
589   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
590                                   AddStmtChoice asc, bool ExternallyDestructed);
591   CFGBlock *VisitForStmt(ForStmt *F);
592   CFGBlock *VisitGotoStmt(GotoStmt *G);
593   CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
594   CFGBlock *VisitIfStmt(IfStmt *I);
595   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
596   CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
597   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
598   CFGBlock *VisitLabelStmt(LabelStmt *L);
599   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
600   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
601   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
602   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
603                                                          Stmt *Term,
604                                                          CFGBlock *TrueBlock,
605                                                          CFGBlock *FalseBlock);
606   CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
607                                           AddStmtChoice asc);
608   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
609   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
610   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
611   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
612   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
613   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
614   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
615   CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
616   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
617   CFGBlock *VisitReturnStmt(Stmt *S);
618   CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S,
619                                       AddStmtChoice asc);
620   CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
621   CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
622   CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
623   CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
624   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
625   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
626   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
627                                           AddStmtChoice asc);
628   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
629   CFGBlock *VisitWhileStmt(WhileStmt *W);
630   CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc);
631 
632   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
633                   bool ExternallyDestructed = false);
634   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
635   CFGBlock *VisitChildren(Stmt *S);
636   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
637   CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
638                                         AddStmtChoice asc);
639 
640   void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
641                                     const Stmt *S) {
642     if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
643       appendScopeBegin(B, VD, S);
644   }
645 
646   /// When creating the CFG for temporary destructors, we want to mirror the
647   /// branch structure of the corresponding constructor calls.
648   /// Thus, while visiting a statement for temporary destructors, we keep a
649   /// context to keep track of the following information:
650   /// - whether a subexpression is executed unconditionally
651   /// - if a subexpression is executed conditionally, the first
652   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
653   ///   corresponds to the last temporary destructor we have to call for this
654   ///   subexpression) and the CFG block at that point (which will become the
655   ///   successor block when inserting the decision point).
656   ///
657   /// That way, we can build the branch structure for temporary destructors as
658   /// follows:
659   /// 1. If a subexpression is executed unconditionally, we add the temporary
660   ///    destructor calls to the current block.
661   /// 2. If a subexpression is executed conditionally, when we encounter a
662   ///    CXXBindTemporaryExpr:
663   ///    a) If it is the first temporary destructor call in the subexpression,
664   ///       we remember the CXXBindTemporaryExpr and the current block in the
665   ///       TempDtorContext; we start a new block, and insert the temporary
666   ///       destructor call.
667   ///    b) Otherwise, add the temporary destructor call to the current block.
668   ///  3. When we finished visiting a conditionally executed subexpression,
669   ///     and we found at least one temporary constructor during the visitation
670   ///     (2.a has executed), we insert a decision block that uses the
671   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
672   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
673   ///     branches to the stored successor.
674   struct TempDtorContext {
675     TempDtorContext() = default;
676     TempDtorContext(TryResult KnownExecuted)
677         : IsConditional(true), KnownExecuted(KnownExecuted) {}
678 
679     /// Returns whether we need to start a new branch for a temporary destructor
680     /// call. This is the case when the temporary destructor is
681     /// conditionally executed, and it is the first one we encounter while
682     /// visiting a subexpression - other temporary destructors at the same level
683     /// will be added to the same block and are executed under the same
684     /// condition.
685     bool needsTempDtorBranch() const {
686       return IsConditional && !TerminatorExpr;
687     }
688 
689     /// Remember the successor S of a temporary destructor decision branch for
690     /// the corresponding CXXBindTemporaryExpr E.
691     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
692       Succ = S;
693       TerminatorExpr = E;
694     }
695 
696     const bool IsConditional = false;
697     const TryResult KnownExecuted = true;
698     CFGBlock *Succ = nullptr;
699     CXXBindTemporaryExpr *TerminatorExpr = nullptr;
700   };
701 
702   // Visitors to walk an AST and generate destructors of temporaries in
703   // full expression.
704   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
705                                    TempDtorContext &Context);
706   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E,  bool ExternallyDestructed,
707                                            TempDtorContext &Context);
708   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
709                                                  bool ExternallyDestructed,
710                                                  TempDtorContext &Context);
711   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
712       CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
713   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
714       AbstractConditionalOperator *E, bool ExternallyDestructed,
715       TempDtorContext &Context);
716   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
717                                    CFGBlock *FalseSucc = nullptr);
718 
719   // NYS == Not Yet Supported
720   CFGBlock *NYS() {
721     badCFG = true;
722     return Block;
723   }
724 
725   // Remember to apply the construction context based on the current \p Layer
726   // when constructing the CFG element for \p CE.
727   void consumeConstructionContext(const ConstructionContextLayer *Layer,
728                                   Expr *E);
729 
730   // Scan \p Child statement to find constructors in it, while keeping in mind
731   // that its parent statement is providing a partial construction context
732   // described by \p Layer. If a constructor is found, it would be assigned
733   // the context based on the layer. If an additional construction context layer
734   // is found, the function recurses into that.
735   void findConstructionContexts(const ConstructionContextLayer *Layer,
736                                 Stmt *Child);
737 
738   // Scan all arguments of a call expression for a construction context.
739   // These sorts of call expressions don't have a common superclass,
740   // hence strict duck-typing.
741   template <typename CallLikeExpr,
742             typename = std::enable_if_t<
743                 std::is_base_of_v<CallExpr, CallLikeExpr> ||
744                 std::is_base_of_v<CXXConstructExpr, CallLikeExpr> ||
745                 std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>>
746   void findConstructionContextsForArguments(CallLikeExpr *E) {
747     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
748       Expr *Arg = E->getArg(i);
749       if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
750         findConstructionContexts(
751             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
752                                              ConstructionContextItem(E, i)),
753             Arg);
754     }
755   }
756 
757   // Unset the construction context after consuming it. This is done immediately
758   // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
759   // there's no need to do this manually in every Visit... function.
760   void cleanupConstructionContext(Expr *E);
761 
762   void autoCreateBlock() { if (!Block) Block = createBlock(); }
763   CFGBlock *createBlock(bool add_successor = true);
764   CFGBlock *createNoReturnBlock();
765 
766   CFGBlock *addStmt(Stmt *S) {
767     return Visit(S, AddStmtChoice::AlwaysAdd);
768   }
769 
770   CFGBlock *addInitializer(CXXCtorInitializer *I);
771   void addLoopExit(const Stmt *LoopStmt);
772   void addAutomaticObjHandling(LocalScope::const_iterator B,
773                                LocalScope::const_iterator E, Stmt *S);
774   void addAutomaticObjDestruction(LocalScope::const_iterator B,
775                                   LocalScope::const_iterator E, Stmt *S);
776   void addScopeExitHandling(LocalScope::const_iterator B,
777                             LocalScope::const_iterator E, Stmt *S);
778   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
779   void addScopeChangesHandling(LocalScope::const_iterator SrcPos,
780                                LocalScope::const_iterator DstPos,
781                                Stmt *S);
782   CFGBlock *createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos,
783                                             CFGBlock *SrcBlk,
784                                             LocalScope::const_iterator DstPost,
785                                             CFGBlock *DstBlk);
786 
787   // Local scopes creation.
788   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
789 
790   void addLocalScopeForStmt(Stmt *S);
791   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
792                                        LocalScope* Scope = nullptr);
793   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
794 
795   void addLocalScopeAndDtors(Stmt *S);
796 
797   const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
798     if (!BuildOpts.AddRichCXXConstructors)
799       return nullptr;
800 
801     const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
802     if (!Layer)
803       return nullptr;
804 
805     cleanupConstructionContext(E);
806     return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
807                                                  Layer);
808   }
809 
810   // Interface to CFGBlock - adding CFGElements.
811 
812   void appendStmt(CFGBlock *B, const Stmt *S) {
813     if (alwaysAdd(S) && cachedEntry)
814       cachedEntry->second = B;
815 
816     // All block-level expressions should have already been IgnoreParens()ed.
817     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
818     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
819   }
820 
821   void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
822     if (const ConstructionContext *CC =
823             retrieveAndCleanupConstructionContext(CE)) {
824       B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
825       return;
826     }
827 
828     // No valid construction context found. Fall back to statement.
829     B->appendStmt(CE, cfg->getBumpVectorContext());
830   }
831 
832   void appendCall(CFGBlock *B, CallExpr *CE) {
833     if (alwaysAdd(CE) && cachedEntry)
834       cachedEntry->second = B;
835 
836     if (const ConstructionContext *CC =
837             retrieveAndCleanupConstructionContext(CE)) {
838       B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
839       return;
840     }
841 
842     // No valid construction context found. Fall back to statement.
843     B->appendStmt(CE, cfg->getBumpVectorContext());
844   }
845 
846   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
847     B->appendInitializer(I, cfg->getBumpVectorContext());
848   }
849 
850   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
851     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
852   }
853 
854   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
855     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
856   }
857 
858   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
859     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
860   }
861 
862   void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
863     if (alwaysAdd(ME) && cachedEntry)
864       cachedEntry->second = B;
865 
866     if (const ConstructionContext *CC =
867             retrieveAndCleanupConstructionContext(ME)) {
868       B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
869       return;
870     }
871 
872     B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
873                   cfg->getBumpVectorContext());
874   }
875 
876   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
877     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
878   }
879 
880   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
881     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
882   }
883 
884   void appendCleanupFunction(CFGBlock *B, VarDecl *VD) {
885     B->appendCleanupFunction(VD, cfg->getBumpVectorContext());
886   }
887 
888   void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
889     B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
890   }
891 
892   void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
893     B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
894   }
895 
896   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
897     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
898   }
899 
900   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
901     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
902                     cfg->getBumpVectorContext());
903   }
904 
905   /// Add a reachable successor to a block, with the alternate variant that is
906   /// unreachable.
907   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
908     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
909                     cfg->getBumpVectorContext());
910   }
911 
912   void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
913     if (BuildOpts.AddScopes)
914       B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
915   }
916 
917   void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
918     if (BuildOpts.AddScopes)
919       B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
920   }
921 
922   /// Find a relational comparison with an expression evaluating to a
923   /// boolean and a constant other than 0 and 1.
924   /// e.g. if ((x < y) == 10)
925   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
926     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
927     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
928 
929     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
930     const Expr *BoolExpr = RHSExpr;
931     bool IntFirst = true;
932     if (!IntLiteral) {
933       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
934       BoolExpr = LHSExpr;
935       IntFirst = false;
936     }
937 
938     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
939       return TryResult();
940 
941     llvm::APInt IntValue = IntLiteral->getValue();
942     if ((IntValue == 1) || (IntValue == 0))
943       return TryResult();
944 
945     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
946                      !IntValue.isNegative();
947 
948     BinaryOperatorKind Bok = B->getOpcode();
949     if (Bok == BO_GT || Bok == BO_GE) {
950       // Always true for 10 > bool and bool > -1
951       // Always false for -1 > bool and bool > 10
952       return TryResult(IntFirst == IntLarger);
953     } else {
954       // Always true for -1 < bool and bool < 10
955       // Always false for 10 < bool and bool < -1
956       return TryResult(IntFirst != IntLarger);
957     }
958   }
959 
960   /// Find an incorrect equality comparison. Either with an expression
961   /// evaluating to a boolean and a constant other than 0 and 1.
962   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
963   /// true/false e.q. (x & 8) == 4.
964   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
965     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
966     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
967 
968     std::optional<llvm::APInt> IntLiteral1 =
969         getIntegerLiteralSubexpressionValue(LHSExpr);
970     const Expr *BoolExpr = RHSExpr;
971 
972     if (!IntLiteral1) {
973       IntLiteral1 = getIntegerLiteralSubexpressionValue(RHSExpr);
974       BoolExpr = LHSExpr;
975     }
976 
977     if (!IntLiteral1)
978       return TryResult();
979 
980     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
981     if (BitOp && (BitOp->getOpcode() == BO_And ||
982                   BitOp->getOpcode() == BO_Or)) {
983       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
984       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
985 
986       std::optional<llvm::APInt> IntLiteral2 =
987           getIntegerLiteralSubexpressionValue(LHSExpr2);
988 
989       if (!IntLiteral2)
990         IntLiteral2 = getIntegerLiteralSubexpressionValue(RHSExpr2);
991 
992       if (!IntLiteral2)
993         return TryResult();
994 
995       if ((BitOp->getOpcode() == BO_And &&
996            (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) ||
997           (BitOp->getOpcode() == BO_Or &&
998            (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) {
999         if (BuildOpts.Observer)
1000           BuildOpts.Observer->compareBitwiseEquality(B,
1001                                                      B->getOpcode() != BO_EQ);
1002         return TryResult(B->getOpcode() != BO_EQ);
1003       }
1004     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
1005       if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) {
1006         return TryResult();
1007       }
1008       return TryResult(B->getOpcode() != BO_EQ);
1009     }
1010 
1011     return TryResult();
1012   }
1013 
1014   // Helper function to get an APInt from an expression. Supports expressions
1015   // which are an IntegerLiteral or a UnaryOperator and returns the value with
1016   // all operations performed on it.
1017   // FIXME: it would be good to unify this function with
1018   // IsIntegerLiteralConstantExpr at some point given the similarity between the
1019   // functions.
1020   std::optional<llvm::APInt>
1021   getIntegerLiteralSubexpressionValue(const Expr *E) {
1022 
1023     // If unary.
1024     if (const auto *UnOp = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1025       // Get the sub expression of the unary expression and get the Integer
1026       // Literal.
1027       const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens();
1028 
1029       if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(SubExpr)) {
1030 
1031         llvm::APInt Value = IntLiteral->getValue();
1032 
1033         // Perform the operation manually.
1034         switch (UnOp->getOpcode()) {
1035         case UO_Plus:
1036           return Value;
1037         case UO_Minus:
1038           return -Value;
1039         case UO_Not:
1040           return ~Value;
1041         case UO_LNot:
1042           return llvm::APInt(Context->getTypeSize(Context->IntTy), !Value);
1043         default:
1044           assert(false && "Unexpected unary operator!");
1045           return std::nullopt;
1046         }
1047       }
1048     } else if (const auto *IntLiteral =
1049                    dyn_cast<IntegerLiteral>(E->IgnoreParens()))
1050       return IntLiteral->getValue();
1051 
1052     return std::nullopt;
1053   }
1054 
1055   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1056                                           const llvm::APSInt &Value1,
1057                                           const llvm::APSInt &Value2) {
1058     assert(Value1.isSigned() == Value2.isSigned());
1059     switch (Relation) {
1060       default:
1061         return TryResult();
1062       case BO_EQ:
1063         return TryResult(Value1 == Value2);
1064       case BO_NE:
1065         return TryResult(Value1 != Value2);
1066       case BO_LT:
1067         return TryResult(Value1 <  Value2);
1068       case BO_LE:
1069         return TryResult(Value1 <= Value2);
1070       case BO_GT:
1071         return TryResult(Value1 >  Value2);
1072       case BO_GE:
1073         return TryResult(Value1 >= Value2);
1074     }
1075   }
1076 
1077   /// There are two checks handled by this function:
1078   /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression
1079   /// e.g. if (x || !x), if (x && !x)
1080   /// 2. Find a pair of comparison expressions with or without parentheses
1081   /// with a shared variable and constants and a logical operator between them
1082   /// that always evaluates to either true or false.
1083   /// e.g. if (x != 3 || x != 4)
1084   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1085     assert(B->isLogicalOp());
1086     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
1087     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
1088 
1089     auto CheckLogicalOpWithNegatedVariable = [this, B](const Expr *E1,
1090                                                        const Expr *E2) {
1091       if (const auto *Negate = dyn_cast<UnaryOperator>(E1)) {
1092         if (Negate->getOpcode() == UO_LNot &&
1093             Expr::isSameComparisonOperand(Negate->getSubExpr(), E2)) {
1094           bool AlwaysTrue = B->getOpcode() == BO_LOr;
1095           if (BuildOpts.Observer)
1096             BuildOpts.Observer->logicAlwaysTrue(B, AlwaysTrue);
1097           return TryResult(AlwaysTrue);
1098         }
1099       }
1100       return TryResult();
1101     };
1102 
1103     TryResult Result = CheckLogicalOpWithNegatedVariable(LHSExpr, RHSExpr);
1104     if (Result.isKnown())
1105         return Result;
1106     Result = CheckLogicalOpWithNegatedVariable(RHSExpr, LHSExpr);
1107     if (Result.isKnown())
1108         return Result;
1109 
1110     const auto *LHS = dyn_cast<BinaryOperator>(LHSExpr);
1111     const auto *RHS = dyn_cast<BinaryOperator>(RHSExpr);
1112     if (!LHS || !RHS)
1113       return {};
1114 
1115     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1116       return {};
1117 
1118     const Expr *DeclExpr1;
1119     const Expr *NumExpr1;
1120     BinaryOperatorKind BO1;
1121     std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1122 
1123     if (!DeclExpr1 || !NumExpr1)
1124       return {};
1125 
1126     const Expr *DeclExpr2;
1127     const Expr *NumExpr2;
1128     BinaryOperatorKind BO2;
1129     std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1130 
1131     if (!DeclExpr2 || !NumExpr2)
1132       return {};
1133 
1134     // Check that it is the same variable on both sides.
1135     if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1136       return {};
1137 
1138     // Make sure the user's intent is clear (e.g. they're comparing against two
1139     // int literals, or two things from the same enum)
1140     if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1141       return {};
1142 
1143     Expr::EvalResult L1Result, L2Result;
1144     if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1145         !NumExpr2->EvaluateAsInt(L2Result, *Context))
1146       return {};
1147 
1148     llvm::APSInt L1 = L1Result.Val.getInt();
1149     llvm::APSInt L2 = L2Result.Val.getInt();
1150 
1151     // Can't compare signed with unsigned or with different bit width.
1152     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1153       return {};
1154 
1155     // Values that will be used to determine if result of logical
1156     // operator is always true/false
1157     const llvm::APSInt Values[] = {
1158       // Value less than both Value1 and Value2
1159       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1160       // L1
1161       L1,
1162       // Value between Value1 and Value2
1163       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1164                               L1.isUnsigned()),
1165       // L2
1166       L2,
1167       // Value greater than both Value1 and Value2
1168       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1169     };
1170 
1171     // Check whether expression is always true/false by evaluating the following
1172     // * variable x is less than the smallest literal.
1173     // * variable x is equal to the smallest literal.
1174     // * Variable x is between smallest and largest literal.
1175     // * Variable x is equal to the largest literal.
1176     // * Variable x is greater than largest literal.
1177     bool AlwaysTrue = true, AlwaysFalse = true;
1178     // Track value of both subexpressions.  If either side is always
1179     // true/false, another warning should have already been emitted.
1180     bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1181     bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1182     for (const llvm::APSInt &Value : Values) {
1183       TryResult Res1, Res2;
1184       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1185       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1186 
1187       if (!Res1.isKnown() || !Res2.isKnown())
1188         return {};
1189 
1190       if (B->getOpcode() == BO_LAnd) {
1191         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1192         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1193       } else {
1194         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1195         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1196       }
1197 
1198       LHSAlwaysTrue &= Res1.isTrue();
1199       LHSAlwaysFalse &= Res1.isFalse();
1200       RHSAlwaysTrue &= Res2.isTrue();
1201       RHSAlwaysFalse &= Res2.isFalse();
1202     }
1203 
1204     if (AlwaysTrue || AlwaysFalse) {
1205       if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1206           !RHSAlwaysFalse && BuildOpts.Observer)
1207         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1208       return TryResult(AlwaysTrue);
1209     }
1210     return {};
1211   }
1212 
1213   /// A bitwise-or with a non-zero constant always evaluates to true.
1214   TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1215     const Expr *LHSConstant =
1216         tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1217     const Expr *RHSConstant =
1218         tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1219 
1220     if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1221       return {};
1222 
1223     const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1224 
1225     Expr::EvalResult Result;
1226     if (!Constant->EvaluateAsInt(Result, *Context))
1227       return {};
1228 
1229     if (Result.Val.getInt() == 0)
1230       return {};
1231 
1232     if (BuildOpts.Observer)
1233       BuildOpts.Observer->compareBitwiseOr(B);
1234 
1235     return TryResult(true);
1236   }
1237 
1238   /// Try and evaluate an expression to an integer constant.
1239   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1240     if (!BuildOpts.PruneTriviallyFalseEdges)
1241       return false;
1242     return !S->isTypeDependent() &&
1243            !S->isValueDependent() &&
1244            S->EvaluateAsRValue(outResult, *Context);
1245   }
1246 
1247   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1248   /// if we can evaluate to a known value, otherwise return -1.
1249   TryResult tryEvaluateBool(Expr *S) {
1250     if (!BuildOpts.PruneTriviallyFalseEdges ||
1251         S->isTypeDependent() || S->isValueDependent())
1252       return {};
1253 
1254     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1255       if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1256         // Check the cache first.
1257         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1258         if (I != CachedBoolEvals.end())
1259           return I->second; // already in map;
1260 
1261         // Retrieve result at first, or the map might be updated.
1262         TryResult Result = evaluateAsBooleanConditionNoCache(S);
1263         CachedBoolEvals[S] = Result; // update or insert
1264         return Result;
1265       }
1266       else {
1267         switch (Bop->getOpcode()) {
1268           default: break;
1269           // For 'x & 0' and 'x * 0', we can determine that
1270           // the value is always false.
1271           case BO_Mul:
1272           case BO_And: {
1273             // If either operand is zero, we know the value
1274             // must be false.
1275             Expr::EvalResult LHSResult;
1276             if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1277               llvm::APSInt IntVal = LHSResult.Val.getInt();
1278               if (!IntVal.getBoolValue()) {
1279                 return TryResult(false);
1280               }
1281             }
1282             Expr::EvalResult RHSResult;
1283             if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1284               llvm::APSInt IntVal = RHSResult.Val.getInt();
1285               if (!IntVal.getBoolValue()) {
1286                 return TryResult(false);
1287               }
1288             }
1289           }
1290           break;
1291         }
1292       }
1293     }
1294 
1295     return evaluateAsBooleanConditionNoCache(S);
1296   }
1297 
1298   /// Evaluate as boolean \param E without using the cache.
1299   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1300     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1301       if (Bop->isLogicalOp()) {
1302         TryResult LHS = tryEvaluateBool(Bop->getLHS());
1303         if (LHS.isKnown()) {
1304           // We were able to evaluate the LHS, see if we can get away with not
1305           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1306           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1307             return LHS.isTrue();
1308 
1309           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1310           if (RHS.isKnown()) {
1311             if (Bop->getOpcode() == BO_LOr)
1312               return LHS.isTrue() || RHS.isTrue();
1313             else
1314               return LHS.isTrue() && RHS.isTrue();
1315           }
1316         } else {
1317           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1318           if (RHS.isKnown()) {
1319             // We can't evaluate the LHS; however, sometimes the result
1320             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1321             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1322               return RHS.isTrue();
1323           } else {
1324             TryResult BopRes = checkIncorrectLogicOperator(Bop);
1325             if (BopRes.isKnown())
1326               return BopRes.isTrue();
1327           }
1328         }
1329 
1330         return {};
1331       } else if (Bop->isEqualityOp()) {
1332           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1333           if (BopRes.isKnown())
1334             return BopRes.isTrue();
1335       } else if (Bop->isRelationalOp()) {
1336         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1337         if (BopRes.isKnown())
1338           return BopRes.isTrue();
1339       } else if (Bop->getOpcode() == BO_Or) {
1340         TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1341         if (BopRes.isKnown())
1342           return BopRes.isTrue();
1343       }
1344     }
1345 
1346     bool Result;
1347     if (E->EvaluateAsBooleanCondition(Result, *Context))
1348       return Result;
1349 
1350     return {};
1351   }
1352 
1353   bool hasTrivialDestructor(const VarDecl *VD) const;
1354   bool needsAutomaticDestruction(const VarDecl *VD) const;
1355 };
1356 
1357 } // namespace
1358 
1359 Expr *
1360 clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE) {
1361   if (!AILE)
1362     return nullptr;
1363 
1364   Expr *AILEInit = AILE->getSubExpr();
1365   while (const auto *E = dyn_cast<ArrayInitLoopExpr>(AILEInit))
1366     AILEInit = E->getSubExpr();
1367 
1368   return AILEInit;
1369 }
1370 
1371 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1372                                      const Stmt *stmt) const {
1373   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1374 }
1375 
1376 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1377   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1378 
1379   if (!BuildOpts.forcedBlkExprs)
1380     return shouldAdd;
1381 
1382   if (lastLookup == stmt) {
1383     if (cachedEntry) {
1384       assert(cachedEntry->first == stmt);
1385       return true;
1386     }
1387     return shouldAdd;
1388   }
1389 
1390   lastLookup = stmt;
1391 
1392   // Perform the lookup!
1393   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1394 
1395   if (!fb) {
1396     // No need to update 'cachedEntry', since it will always be null.
1397     assert(!cachedEntry);
1398     return shouldAdd;
1399   }
1400 
1401   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1402   if (itr == fb->end()) {
1403     cachedEntry = nullptr;
1404     return shouldAdd;
1405   }
1406 
1407   cachedEntry = &*itr;
1408   return true;
1409 }
1410 
1411 // FIXME: Add support for dependent-sized array types in C++?
1412 // Does it even make sense to build a CFG for an uninstantiated template?
1413 static const VariableArrayType *FindVA(const Type *t) {
1414   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1415     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1416       if (vat->getSizeExpr())
1417         return vat;
1418 
1419     t = vt->getElementType().getTypePtr();
1420   }
1421 
1422   return nullptr;
1423 }
1424 
1425 void CFGBuilder::consumeConstructionContext(
1426     const ConstructionContextLayer *Layer, Expr *E) {
1427   assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1428           isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1429   if (const ConstructionContextLayer *PreviouslyStoredLayer =
1430           ConstructionContextMap.lookup(E)) {
1431     (void)PreviouslyStoredLayer;
1432     // We might have visited this child when we were finding construction
1433     // contexts within its parents.
1434     assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1435            "Already within a different construction context!");
1436   } else {
1437     ConstructionContextMap[E] = Layer;
1438   }
1439 }
1440 
1441 void CFGBuilder::findConstructionContexts(
1442     const ConstructionContextLayer *Layer, Stmt *Child) {
1443   if (!BuildOpts.AddRichCXXConstructors)
1444     return;
1445 
1446   if (!Child)
1447     return;
1448 
1449   auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1450     return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1451                                             Layer);
1452   };
1453 
1454   switch(Child->getStmtClass()) {
1455   case Stmt::CXXConstructExprClass:
1456   case Stmt::CXXTemporaryObjectExprClass: {
1457     // Support pre-C++17 copy elision AST.
1458     auto *CE = cast<CXXConstructExpr>(Child);
1459     if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1460       findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1461     }
1462 
1463     consumeConstructionContext(Layer, CE);
1464     break;
1465   }
1466   // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1467   // FIXME: An isa<> would look much better but this whole switch is a
1468   // workaround for an internal compiler error in MSVC 2015 (see r326021).
1469   case Stmt::CallExprClass:
1470   case Stmt::CXXMemberCallExprClass:
1471   case Stmt::CXXOperatorCallExprClass:
1472   case Stmt::UserDefinedLiteralClass:
1473   case Stmt::ObjCMessageExprClass: {
1474     auto *E = cast<Expr>(Child);
1475     if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1476       consumeConstructionContext(Layer, E);
1477     break;
1478   }
1479   case Stmt::ExprWithCleanupsClass: {
1480     auto *Cleanups = cast<ExprWithCleanups>(Child);
1481     findConstructionContexts(Layer, Cleanups->getSubExpr());
1482     break;
1483   }
1484   case Stmt::CXXFunctionalCastExprClass: {
1485     auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1486     findConstructionContexts(Layer, Cast->getSubExpr());
1487     break;
1488   }
1489   case Stmt::ImplicitCastExprClass: {
1490     auto *Cast = cast<ImplicitCastExpr>(Child);
1491     // Should we support other implicit cast kinds?
1492     switch (Cast->getCastKind()) {
1493     case CK_NoOp:
1494     case CK_ConstructorConversion:
1495       findConstructionContexts(Layer, Cast->getSubExpr());
1496       break;
1497     default:
1498       break;
1499     }
1500     break;
1501   }
1502   case Stmt::CXXBindTemporaryExprClass: {
1503     auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1504     findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1505     break;
1506   }
1507   case Stmt::MaterializeTemporaryExprClass: {
1508     // Normally we don't want to search in MaterializeTemporaryExpr because
1509     // it indicates the beginning of a temporary object construction context,
1510     // so it shouldn't be found in the middle. However, if it is the beginning
1511     // of an elidable copy or move construction context, we need to include it.
1512     if (Layer->getItem().getKind() ==
1513         ConstructionContextItem::ElidableConstructorKind) {
1514       auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1515       findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1516     }
1517     break;
1518   }
1519   case Stmt::ConditionalOperatorClass: {
1520     auto *CO = cast<ConditionalOperator>(Child);
1521     if (Layer->getItem().getKind() !=
1522         ConstructionContextItem::MaterializationKind) {
1523       // If the object returned by the conditional operator is not going to be a
1524       // temporary object that needs to be immediately materialized, then
1525       // it must be C++17 with its mandatory copy elision. Do not yet promise
1526       // to support this case.
1527       assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1528              Context->getLangOpts().CPlusPlus17);
1529       break;
1530     }
1531     findConstructionContexts(Layer, CO->getLHS());
1532     findConstructionContexts(Layer, CO->getRHS());
1533     break;
1534   }
1535   case Stmt::InitListExprClass: {
1536     auto *ILE = cast<InitListExpr>(Child);
1537     if (ILE->isTransparent()) {
1538       findConstructionContexts(Layer, ILE->getInit(0));
1539       break;
1540     }
1541     // TODO: Handle other cases. For now, fail to find construction contexts.
1542     break;
1543   }
1544   case Stmt::ParenExprClass: {
1545     // If expression is placed into parenthesis we should propagate the parent
1546     // construction context to subexpressions.
1547     auto *PE = cast<ParenExpr>(Child);
1548     findConstructionContexts(Layer, PE->getSubExpr());
1549     break;
1550   }
1551   default:
1552     break;
1553   }
1554 }
1555 
1556 void CFGBuilder::cleanupConstructionContext(Expr *E) {
1557   assert(BuildOpts.AddRichCXXConstructors &&
1558          "We should not be managing construction contexts!");
1559   assert(ConstructionContextMap.count(E) &&
1560          "Cannot exit construction context without the context!");
1561   ConstructionContextMap.erase(E);
1562 }
1563 
1564 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
1565 ///  arbitrary statement.  Examples include a single expression or a function
1566 ///  body (compound statement).  The ownership of the returned CFG is
1567 ///  transferred to the caller.  If CFG construction fails, this method returns
1568 ///  NULL.
1569 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1570   assert(cfg.get());
1571   if (!Statement)
1572     return nullptr;
1573 
1574   // Create an empty block that will serve as the exit block for the CFG.  Since
1575   // this is the first block added to the CFG, it will be implicitly registered
1576   // as the exit block.
1577   Succ = createBlock();
1578   assert(Succ == &cfg->getExit());
1579   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
1580 
1581   if (BuildOpts.AddImplicitDtors)
1582     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1583       addImplicitDtorsForDestructor(DD);
1584 
1585   // Visit the statements and create the CFG.
1586   CFGBlock *B = addStmt(Statement);
1587 
1588   if (badCFG)
1589     return nullptr;
1590 
1591   // For C++ constructor add initializers to CFG. Constructors of virtual bases
1592   // are ignored unless the object is of the most derived class.
1593   //   class VBase { VBase() = default; VBase(int) {} };
1594   //   class A : virtual public VBase { A() : VBase(0) {} };
1595   //   class B : public A {};
1596   //   B b; // Constructor calls in order: VBase(), A(), B().
1597   //        // VBase(0) is ignored because A isn't the most derived class.
1598   // This may result in the virtual base(s) being already initialized at this
1599   // point, in which case we should jump right onto non-virtual bases and
1600   // fields. To handle this, make a CFG branch. We only need to add one such
1601   // branch per constructor, since the Standard states that all virtual bases
1602   // shall be initialized before non-virtual bases and direct data members.
1603   if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1604     CFGBlock *VBaseSucc = nullptr;
1605     for (auto *I : llvm::reverse(CD->inits())) {
1606       if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1607           I->isBaseInitializer() && I->isBaseVirtual()) {
1608         // We've reached the first virtual base init while iterating in reverse
1609         // order. Make a new block for virtual base initializers so that we
1610         // could skip them.
1611         VBaseSucc = Succ = B ? B : &cfg->getExit();
1612         Block = createBlock();
1613       }
1614       B = addInitializer(I);
1615       if (badCFG)
1616         return nullptr;
1617     }
1618     if (VBaseSucc) {
1619       // Make a branch block for potentially skipping virtual base initializers.
1620       Succ = VBaseSucc;
1621       B = createBlock();
1622       B->setTerminator(
1623           CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1624       addSuccessor(B, Block, true);
1625     }
1626   }
1627 
1628   if (B)
1629     Succ = B;
1630 
1631   // Backpatch the gotos whose label -> block mappings we didn't know when we
1632   // encountered them.
1633   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1634                                    E = BackpatchBlocks.end(); I != E; ++I ) {
1635 
1636     CFGBlock *B = I->block;
1637     if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1638       LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1639       // If there is no target for the goto, then we are looking at an
1640       // incomplete AST.  Handle this by not registering a successor.
1641       if (LI == LabelMap.end())
1642         continue;
1643       JumpTarget JT = LI->second;
1644 
1645       CFGBlock *SuccBlk = createScopeChangesHandlingBlock(
1646           I->scopePosition, B, JT.scopePosition, JT.block);
1647       addSuccessor(B, SuccBlk);
1648     } else if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1649       CFGBlock *Successor  = (I+1)->block;
1650       for (auto *L : G->labels()) {
1651         LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1652         // If there is no target for the goto, then we are looking at an
1653         // incomplete AST.  Handle this by not registering a successor.
1654         if (LI == LabelMap.end())
1655           continue;
1656         JumpTarget JT = LI->second;
1657         // Successor has been added, so skip it.
1658         if (JT.block == Successor)
1659           continue;
1660         addSuccessor(B, JT.block);
1661       }
1662       I++;
1663     }
1664   }
1665 
1666   // Add successors to the Indirect Goto Dispatch block (if we have one).
1667   if (CFGBlock *B = cfg->getIndirectGotoBlock())
1668     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1669                               E = AddressTakenLabels.end(); I != E; ++I ) {
1670       // Lookup the target block.
1671       LabelMapTy::iterator LI = LabelMap.find(*I);
1672 
1673       // If there is no target block that contains label, then we are looking
1674       // at an incomplete AST.  Handle this by not registering a successor.
1675       if (LI == LabelMap.end()) continue;
1676 
1677       addSuccessor(B, LI->second.block);
1678     }
1679 
1680   // Create an empty entry block that has no predecessors.
1681   cfg->setEntry(createBlock());
1682 
1683   if (BuildOpts.AddRichCXXConstructors)
1684     assert(ConstructionContextMap.empty() &&
1685            "Not all construction contexts were cleaned up!");
1686 
1687   return std::move(cfg);
1688 }
1689 
1690 /// createBlock - Used to lazily create blocks that are connected
1691 ///  to the current (global) successor.
1692 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1693   CFGBlock *B = cfg->createBlock();
1694   if (add_successor && Succ)
1695     addSuccessor(B, Succ);
1696   return B;
1697 }
1698 
1699 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1700 /// CFG. It is *not* connected to the current (global) successor, and instead
1701 /// directly tied to the exit block in order to be reachable.
1702 CFGBlock *CFGBuilder::createNoReturnBlock() {
1703   CFGBlock *B = createBlock(false);
1704   B->setHasNoReturnElement();
1705   addSuccessor(B, &cfg->getExit(), Succ);
1706   return B;
1707 }
1708 
1709 /// addInitializer - Add C++ base or member initializer element to CFG.
1710 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1711   if (!BuildOpts.AddInitializers)
1712     return Block;
1713 
1714   bool HasTemporaries = false;
1715 
1716   // Destructors of temporaries in initialization expression should be called
1717   // after initialization finishes.
1718   Expr *Init = I->getInit();
1719   if (Init) {
1720     HasTemporaries = isa<ExprWithCleanups>(Init);
1721 
1722     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1723       // Generate destructors for temporaries in initialization expression.
1724       TempDtorContext Context;
1725       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1726                              /*ExternallyDestructed=*/false, Context);
1727     }
1728   }
1729 
1730   autoCreateBlock();
1731   appendInitializer(Block, I);
1732 
1733   if (Init) {
1734     // If the initializer is an ArrayInitLoopExpr, we want to extract the
1735     // initializer, that's used for each element.
1736     auto *AILEInit = extractElementInitializerFromNestedAILE(
1737         dyn_cast<ArrayInitLoopExpr>(Init));
1738 
1739     findConstructionContexts(
1740         ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1741         AILEInit ? AILEInit : Init);
1742 
1743     if (HasTemporaries) {
1744       // For expression with temporaries go directly to subexpression to omit
1745       // generating destructors for the second time.
1746       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1747     }
1748     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1749       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1750         // In general, appending the expression wrapped by a CXXDefaultInitExpr
1751         // may cause the same Expr to appear more than once in the CFG. Doing it
1752         // here is safe because there's only one initializer per field.
1753         autoCreateBlock();
1754         appendStmt(Block, Default);
1755         if (Stmt *Child = Default->getExpr())
1756           if (CFGBlock *R = Visit(Child))
1757             Block = R;
1758         return Block;
1759       }
1760     }
1761     return Visit(Init);
1762   }
1763 
1764   return Block;
1765 }
1766 
1767 /// Retrieve the type of the temporary object whose lifetime was
1768 /// extended by a local reference with the given initializer.
1769 static QualType getReferenceInitTemporaryType(const Expr *Init,
1770                                               bool *FoundMTE = nullptr) {
1771   while (true) {
1772     // Skip parentheses.
1773     Init = Init->IgnoreParens();
1774 
1775     // Skip through cleanups.
1776     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1777       Init = EWC->getSubExpr();
1778       continue;
1779     }
1780 
1781     // Skip through the temporary-materialization expression.
1782     if (const MaterializeTemporaryExpr *MTE
1783           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1784       Init = MTE->getSubExpr();
1785       if (FoundMTE)
1786         *FoundMTE = true;
1787       continue;
1788     }
1789 
1790     // Skip sub-object accesses into rvalues.
1791     SmallVector<const Expr *, 2> CommaLHSs;
1792     SmallVector<SubobjectAdjustment, 2> Adjustments;
1793     const Expr *SkippedInit =
1794         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1795     if (SkippedInit != Init) {
1796       Init = SkippedInit;
1797       continue;
1798     }
1799 
1800     break;
1801   }
1802 
1803   return Init->getType();
1804 }
1805 
1806 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1807 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1808 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1809   if(!BuildOpts.AddLoopExit)
1810     return;
1811   autoCreateBlock();
1812   appendLoopExit(Block, LoopStmt);
1813 }
1814 
1815 /// Adds the CFG elements for leaving the scope of automatic objects in
1816 /// range [B, E). This include following:
1817 ///   * AutomaticObjectDtor for variables with non-trivial destructor
1818 ///   * LifetimeEnds for all variables
1819 ///   * ScopeEnd for each scope left
1820 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1821                                          LocalScope::const_iterator E,
1822                                          Stmt *S) {
1823   if (!BuildOpts.AddScopes && !BuildOpts.AddImplicitDtors &&
1824       !BuildOpts.AddLifetime)
1825     return;
1826 
1827   if (B == E)
1828     return;
1829 
1830   // Not leaving the scope, only need to handle destruction and lifetime
1831   if (B.inSameLocalScope(E)) {
1832     addAutomaticObjDestruction(B, E, S);
1833     return;
1834   }
1835 
1836   // Extract information about all local scopes that are left
1837   SmallVector<LocalScope::const_iterator, 10> LocalScopeEndMarkers;
1838   LocalScopeEndMarkers.push_back(B);
1839   for (LocalScope::const_iterator I = B; I != E; ++I) {
1840     if (!I.inSameLocalScope(LocalScopeEndMarkers.back()))
1841       LocalScopeEndMarkers.push_back(I);
1842   }
1843   LocalScopeEndMarkers.push_back(E);
1844 
1845   // We need to leave the scope in reverse order, so we reverse the end
1846   // markers
1847   std::reverse(LocalScopeEndMarkers.begin(), LocalScopeEndMarkers.end());
1848   auto Pairwise =
1849       llvm::zip(LocalScopeEndMarkers, llvm::drop_begin(LocalScopeEndMarkers));
1850   for (auto [E, B] : Pairwise) {
1851     if (!B.inSameLocalScope(E))
1852       addScopeExitHandling(B, E, S);
1853     addAutomaticObjDestruction(B, E, S);
1854   }
1855 }
1856 
1857 /// Add CFG elements corresponding to call destructor and end of lifetime
1858 /// of all automatic variables with non-trivial destructor in range [B, E).
1859 /// This include AutomaticObjectDtor and LifetimeEnds elements.
1860 void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B,
1861                                             LocalScope::const_iterator E,
1862                                             Stmt *S) {
1863   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime)
1864     return;
1865 
1866   if (B == E)
1867     return;
1868 
1869   SmallVector<VarDecl *, 10> DeclsNeedDestruction;
1870   DeclsNeedDestruction.reserve(B.distance(E));
1871 
1872   for (VarDecl* D : llvm::make_range(B, E))
1873     if (needsAutomaticDestruction(D))
1874       DeclsNeedDestruction.push_back(D);
1875 
1876   for (VarDecl *VD : llvm::reverse(DeclsNeedDestruction)) {
1877     if (BuildOpts.AddImplicitDtors) {
1878       // If this destructor is marked as a no-return destructor, we need to
1879       // create a new block for the destructor which does not have as a
1880       // successor anything built thus far: control won't flow out of this
1881       // block.
1882       QualType Ty = VD->getType();
1883       if (Ty->isReferenceType())
1884         Ty = getReferenceInitTemporaryType(VD->getInit());
1885       Ty = Context->getBaseElementType(Ty);
1886 
1887       const CXXRecordDecl *CRD = Ty->getAsCXXRecordDecl();
1888       if (CRD && CRD->isAnyDestructorNoReturn())
1889         Block = createNoReturnBlock();
1890     }
1891 
1892     autoCreateBlock();
1893 
1894     // Add LifetimeEnd after automatic obj with non-trivial destructors,
1895     // as they end their lifetime when the destructor returns. For trivial
1896     // objects, we end lifetime with scope end.
1897     if (BuildOpts.AddLifetime)
1898       appendLifetimeEnds(Block, VD, S);
1899     if (BuildOpts.AddImplicitDtors && !hasTrivialDestructor(VD))
1900       appendAutomaticObjDtor(Block, VD, S);
1901     if (VD->hasAttr<CleanupAttr>())
1902       appendCleanupFunction(Block, VD);
1903   }
1904 }
1905 
1906 /// Add CFG elements corresponding to leaving a scope.
1907 /// Assumes that range [B, E) corresponds to single scope.
1908 /// This add following elements:
1909 ///   * LifetimeEnds for all variables with non-trivial destructor
1910 ///   * ScopeEnd for each scope left
1911 void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B,
1912                                       LocalScope::const_iterator E, Stmt *S) {
1913   assert(!B.inSameLocalScope(E));
1914   if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes)
1915     return;
1916 
1917   if (BuildOpts.AddScopes) {
1918     autoCreateBlock();
1919     appendScopeEnd(Block, B.getFirstVarInScope(), S);
1920   }
1921 
1922   if (!BuildOpts.AddLifetime)
1923     return;
1924 
1925   // We need to perform the scope leaving in reverse order
1926   SmallVector<VarDecl *, 10> DeclsTrivial;
1927   DeclsTrivial.reserve(B.distance(E));
1928 
1929   // Objects with trivial destructor ends their lifetime when their storage
1930   // is destroyed, for automatic variables, this happens when the end of the
1931   // scope is added.
1932   for (VarDecl* D : llvm::make_range(B, E))
1933     if (!needsAutomaticDestruction(D))
1934       DeclsTrivial.push_back(D);
1935 
1936   if (DeclsTrivial.empty())
1937     return;
1938 
1939   autoCreateBlock();
1940   for (VarDecl *VD : llvm::reverse(DeclsTrivial))
1941     appendLifetimeEnds(Block, VD, S);
1942 }
1943 
1944 /// addScopeChangesHandling - appends information about destruction, lifetime
1945 /// and cfgScopeEnd for variables in the scope that was left by the jump, and
1946 /// appends cfgScopeBegin for all scopes that where entered.
1947 /// We insert the cfgScopeBegin at the end of the jump node, as depending on
1948 /// the sourceBlock, each goto, may enter different amount of scopes.
1949 void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos,
1950                                          LocalScope::const_iterator DstPos,
1951                                          Stmt *S) {
1952   assert(Block && "Source block should be always crated");
1953   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1954       !BuildOpts.AddScopes) {
1955     return;
1956   }
1957 
1958   if (SrcPos == DstPos)
1959     return;
1960 
1961   // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and
1962   // enter all scopes between [DstPos, BasePos)
1963   LocalScope::const_iterator BasePos = SrcPos.shared_parent(DstPos);
1964 
1965   // Append scope begins for scopes entered by goto
1966   if (BuildOpts.AddScopes && !DstPos.inSameLocalScope(BasePos)) {
1967     for (LocalScope::const_iterator I = DstPos; I != BasePos; ++I)
1968       if (I.pointsToFirstDeclaredVar())
1969         appendScopeBegin(Block, *I, S);
1970   }
1971 
1972   // Append scopeEnds, destructor and lifetime with the terminator for
1973   // block left by goto.
1974   addAutomaticObjHandling(SrcPos, BasePos, S);
1975 }
1976 
1977 /// createScopeChangesHandlingBlock - Creates a block with cfgElements
1978 /// corresponding to changing the scope from the source scope of the GotoStmt,
1979 /// to destination scope. Add destructor, lifetime and cfgScopeEnd
1980 /// CFGElements to newly created CFGBlock, that will have the CFG terminator
1981 /// transferred.
1982 CFGBlock *CFGBuilder::createScopeChangesHandlingBlock(
1983     LocalScope::const_iterator SrcPos, CFGBlock *SrcBlk,
1984     LocalScope::const_iterator DstPos, CFGBlock *DstBlk) {
1985   if (SrcPos == DstPos)
1986     return DstBlk;
1987 
1988   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1989       (!BuildOpts.AddScopes || SrcPos.inSameLocalScope(DstPos)))
1990     return DstBlk;
1991 
1992   // We will update CFBBuilder when creating new block, restore the
1993   // previous state at exit.
1994   SaveAndRestore save_Block(Block), save_Succ(Succ);
1995 
1996   // Create a new block, and transfer terminator
1997   Block = createBlock(false);
1998   Block->setTerminator(SrcBlk->getTerminator());
1999   SrcBlk->setTerminator(CFGTerminator());
2000   addSuccessor(Block, DstBlk);
2001 
2002   // Fill the created Block with the required elements.
2003   addScopeChangesHandling(SrcPos, DstPos, Block->getTerminatorStmt());
2004 
2005   assert(Block && "There should be at least one scope changing Block");
2006   return Block;
2007 }
2008 
2009 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
2010 /// base and member objects in destructor.
2011 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
2012   assert(BuildOpts.AddImplicitDtors &&
2013          "Can be called only when dtors should be added");
2014   const CXXRecordDecl *RD = DD->getParent();
2015 
2016   // At the end destroy virtual base objects.
2017   for (const auto &VI : RD->vbases()) {
2018     // TODO: Add a VirtualBaseBranch to see if the most derived class
2019     // (which is different from the current class) is responsible for
2020     // destroying them.
2021     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
2022     if (CD && !CD->hasTrivialDestructor()) {
2023       autoCreateBlock();
2024       appendBaseDtor(Block, &VI);
2025     }
2026   }
2027 
2028   // Before virtual bases destroy direct base objects.
2029   for (const auto &BI : RD->bases()) {
2030     if (!BI.isVirtual()) {
2031       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
2032       if (CD && !CD->hasTrivialDestructor()) {
2033         autoCreateBlock();
2034         appendBaseDtor(Block, &BI);
2035       }
2036     }
2037   }
2038 
2039   // First destroy member objects.
2040   for (auto *FI : RD->fields()) {
2041     // Check for constant size array. Set type to array element type.
2042     QualType QT = FI->getType();
2043     // It may be a multidimensional array.
2044     while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2045       if (AT->getSize() == 0)
2046         break;
2047       QT = AT->getElementType();
2048     }
2049 
2050     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2051       if (!CD->hasTrivialDestructor()) {
2052         autoCreateBlock();
2053         appendMemberDtor(Block, FI);
2054       }
2055   }
2056 }
2057 
2058 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
2059 /// way return valid LocalScope object.
2060 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
2061   if (Scope)
2062     return Scope;
2063   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
2064   return new (alloc) LocalScope(BumpVectorContext(alloc), ScopePos);
2065 }
2066 
2067 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
2068 /// that should create implicit scope (e.g. if/else substatements).
2069 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
2070   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2071       !BuildOpts.AddScopes)
2072     return;
2073 
2074   LocalScope *Scope = nullptr;
2075 
2076   // For compound statement we will be creating explicit scope.
2077   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
2078     for (auto *BI : CS->body()) {
2079       Stmt *SI = BI->stripLabelLikeStatements();
2080       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
2081         Scope = addLocalScopeForDeclStmt(DS, Scope);
2082     }
2083     return;
2084   }
2085 
2086   // For any other statement scope will be implicit and as such will be
2087   // interesting only for DeclStmt.
2088   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
2089     addLocalScopeForDeclStmt(DS);
2090 }
2091 
2092 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
2093 /// reuse Scope if not NULL.
2094 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
2095                                                  LocalScope* Scope) {
2096   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2097       !BuildOpts.AddScopes)
2098     return Scope;
2099 
2100   for (auto *DI : DS->decls())
2101     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
2102       Scope = addLocalScopeForVarDecl(VD, Scope);
2103   return Scope;
2104 }
2105 
2106 bool CFGBuilder::needsAutomaticDestruction(const VarDecl *VD) const {
2107   return !hasTrivialDestructor(VD) || VD->hasAttr<CleanupAttr>();
2108 }
2109 
2110 bool CFGBuilder::hasTrivialDestructor(const VarDecl *VD) const {
2111   // Check for const references bound to temporary. Set type to pointee.
2112   QualType QT = VD->getType();
2113   if (QT->isReferenceType()) {
2114     // Attempt to determine whether this declaration lifetime-extends a
2115     // temporary.
2116     //
2117     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
2118     // temporaries, and a single declaration can extend multiple temporaries.
2119     // We should look at the storage duration on each nested
2120     // MaterializeTemporaryExpr instead.
2121 
2122     const Expr *Init = VD->getInit();
2123     if (!Init) {
2124       // Probably an exception catch-by-reference variable.
2125       // FIXME: It doesn't really mean that the object has a trivial destructor.
2126       // Also are there other cases?
2127       return true;
2128     }
2129 
2130     // Lifetime-extending a temporary?
2131     bool FoundMTE = false;
2132     QT = getReferenceInitTemporaryType(Init, &FoundMTE);
2133     if (!FoundMTE)
2134       return true;
2135   }
2136 
2137   // Check for constant size array. Set type to array element type.
2138   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2139     if (AT->getSize() == 0)
2140       return true;
2141     QT = AT->getElementType();
2142   }
2143 
2144   // Check if type is a C++ class with non-trivial destructor.
2145   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2146     return !CD->hasDefinition() || CD->hasTrivialDestructor();
2147   return true;
2148 }
2149 
2150 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2151 /// create add scope for automatic objects and temporary objects bound to
2152 /// const reference. Will reuse Scope if not NULL.
2153 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2154                                                 LocalScope* Scope) {
2155   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2156       !BuildOpts.AddScopes)
2157     return Scope;
2158 
2159   // Check if variable is local.
2160   if (!VD->hasLocalStorage())
2161     return Scope;
2162 
2163   if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes &&
2164       !needsAutomaticDestruction(VD)) {
2165     assert(BuildOpts.AddImplicitDtors);
2166     return Scope;
2167   }
2168 
2169   // Add the variable to scope
2170   Scope = createOrReuseLocalScope(Scope);
2171   Scope->addVar(VD);
2172   ScopePos = Scope->begin();
2173   return Scope;
2174 }
2175 
2176 /// addLocalScopeAndDtors - For given statement add local scope for it and
2177 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2178 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2179   LocalScope::const_iterator scopeBeginPos = ScopePos;
2180   addLocalScopeForStmt(S);
2181   addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2182 }
2183 
2184 /// Visit - Walk the subtree of a statement and add extra
2185 ///   blocks for ternary operators, &&, and ||.  We also process "," and
2186 ///   DeclStmts (which may contain nested control-flow).
2187 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2188                             bool ExternallyDestructed) {
2189   if (!S) {
2190     badCFG = true;
2191     return nullptr;
2192   }
2193 
2194   if (Expr *E = dyn_cast<Expr>(S))
2195     S = E->IgnoreParens();
2196 
2197   if (Context->getLangOpts().OpenMP)
2198     if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2199       return VisitOMPExecutableDirective(D, asc);
2200 
2201   switch (S->getStmtClass()) {
2202     default:
2203       return VisitStmt(S, asc);
2204 
2205     case Stmt::ImplicitValueInitExprClass:
2206       if (BuildOpts.OmitImplicitValueInitializers)
2207         return Block;
2208       return VisitStmt(S, asc);
2209 
2210     case Stmt::InitListExprClass:
2211       return VisitInitListExpr(cast<InitListExpr>(S), asc);
2212 
2213     case Stmt::AttributedStmtClass:
2214       return VisitAttributedStmt(cast<AttributedStmt>(S), asc);
2215 
2216     case Stmt::AddrLabelExprClass:
2217       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2218 
2219     case Stmt::BinaryConditionalOperatorClass:
2220       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2221 
2222     case Stmt::BinaryOperatorClass:
2223       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2224 
2225     case Stmt::BlockExprClass:
2226       return VisitBlockExpr(cast<BlockExpr>(S), asc);
2227 
2228     case Stmt::BreakStmtClass:
2229       return VisitBreakStmt(cast<BreakStmt>(S));
2230 
2231     case Stmt::CallExprClass:
2232     case Stmt::CXXOperatorCallExprClass:
2233     case Stmt::CXXMemberCallExprClass:
2234     case Stmt::UserDefinedLiteralClass:
2235       return VisitCallExpr(cast<CallExpr>(S), asc);
2236 
2237     case Stmt::CaseStmtClass:
2238       return VisitCaseStmt(cast<CaseStmt>(S));
2239 
2240     case Stmt::ChooseExprClass:
2241       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2242 
2243     case Stmt::CompoundStmtClass:
2244       return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2245 
2246     case Stmt::ConditionalOperatorClass:
2247       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2248 
2249     case Stmt::ContinueStmtClass:
2250       return VisitContinueStmt(cast<ContinueStmt>(S));
2251 
2252     case Stmt::CXXCatchStmtClass:
2253       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2254 
2255     case Stmt::ExprWithCleanupsClass:
2256       return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2257                                    asc, ExternallyDestructed);
2258 
2259     case Stmt::CXXDefaultArgExprClass:
2260     case Stmt::CXXDefaultInitExprClass:
2261       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2262       // called function's declaration, not by the caller. If we simply add
2263       // this expression to the CFG, we could end up with the same Expr
2264       // appearing multiple times (PR13385).
2265       //
2266       // It's likewise possible for multiple CXXDefaultInitExprs for the same
2267       // expression to be used in the same function (through aggregate
2268       // initialization).
2269       return VisitStmt(S, asc);
2270 
2271     case Stmt::CXXBindTemporaryExprClass:
2272       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2273 
2274     case Stmt::CXXConstructExprClass:
2275       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2276 
2277     case Stmt::CXXNewExprClass:
2278       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2279 
2280     case Stmt::CXXDeleteExprClass:
2281       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2282 
2283     case Stmt::CXXFunctionalCastExprClass:
2284       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2285 
2286     case Stmt::CXXTemporaryObjectExprClass:
2287       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2288 
2289     case Stmt::CXXThrowExprClass:
2290       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2291 
2292     case Stmt::CXXTryStmtClass:
2293       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2294 
2295     case Stmt::CXXTypeidExprClass:
2296       return VisitCXXTypeidExpr(cast<CXXTypeidExpr>(S), asc);
2297 
2298     case Stmt::CXXForRangeStmtClass:
2299       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2300 
2301     case Stmt::DeclStmtClass:
2302       return VisitDeclStmt(cast<DeclStmt>(S));
2303 
2304     case Stmt::DefaultStmtClass:
2305       return VisitDefaultStmt(cast<DefaultStmt>(S));
2306 
2307     case Stmt::DoStmtClass:
2308       return VisitDoStmt(cast<DoStmt>(S));
2309 
2310     case Stmt::ForStmtClass:
2311       return VisitForStmt(cast<ForStmt>(S));
2312 
2313     case Stmt::GotoStmtClass:
2314       return VisitGotoStmt(cast<GotoStmt>(S));
2315 
2316     case Stmt::GCCAsmStmtClass:
2317       return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2318 
2319     case Stmt::IfStmtClass:
2320       return VisitIfStmt(cast<IfStmt>(S));
2321 
2322     case Stmt::ImplicitCastExprClass:
2323       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2324 
2325     case Stmt::ConstantExprClass:
2326       return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2327 
2328     case Stmt::IndirectGotoStmtClass:
2329       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2330 
2331     case Stmt::LabelStmtClass:
2332       return VisitLabelStmt(cast<LabelStmt>(S));
2333 
2334     case Stmt::LambdaExprClass:
2335       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2336 
2337     case Stmt::MaterializeTemporaryExprClass:
2338       return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2339                                            asc);
2340 
2341     case Stmt::MemberExprClass:
2342       return VisitMemberExpr(cast<MemberExpr>(S), asc);
2343 
2344     case Stmt::NullStmtClass:
2345       return Block;
2346 
2347     case Stmt::ObjCAtCatchStmtClass:
2348       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2349 
2350     case Stmt::ObjCAutoreleasePoolStmtClass:
2351       return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2352 
2353     case Stmt::ObjCAtSynchronizedStmtClass:
2354       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2355 
2356     case Stmt::ObjCAtThrowStmtClass:
2357       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2358 
2359     case Stmt::ObjCAtTryStmtClass:
2360       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2361 
2362     case Stmt::ObjCForCollectionStmtClass:
2363       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2364 
2365     case Stmt::ObjCMessageExprClass:
2366       return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2367 
2368     case Stmt::OpaqueValueExprClass:
2369       return Block;
2370 
2371     case Stmt::PseudoObjectExprClass:
2372       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2373 
2374     case Stmt::ReturnStmtClass:
2375     case Stmt::CoreturnStmtClass:
2376       return VisitReturnStmt(S);
2377 
2378     case Stmt::CoyieldExprClass:
2379     case Stmt::CoawaitExprClass:
2380       return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc);
2381 
2382     case Stmt::SEHExceptStmtClass:
2383       return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2384 
2385     case Stmt::SEHFinallyStmtClass:
2386       return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2387 
2388     case Stmt::SEHLeaveStmtClass:
2389       return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2390 
2391     case Stmt::SEHTryStmtClass:
2392       return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2393 
2394     case Stmt::UnaryExprOrTypeTraitExprClass:
2395       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2396                                            asc);
2397 
2398     case Stmt::StmtExprClass:
2399       return VisitStmtExpr(cast<StmtExpr>(S), asc);
2400 
2401     case Stmt::SwitchStmtClass:
2402       return VisitSwitchStmt(cast<SwitchStmt>(S));
2403 
2404     case Stmt::UnaryOperatorClass:
2405       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2406 
2407     case Stmt::WhileStmtClass:
2408       return VisitWhileStmt(cast<WhileStmt>(S));
2409 
2410     case Stmt::ArrayInitLoopExprClass:
2411       return VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), asc);
2412   }
2413 }
2414 
2415 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2416   if (asc.alwaysAdd(*this, S)) {
2417     autoCreateBlock();
2418     appendStmt(Block, S);
2419   }
2420 
2421   return VisitChildren(S);
2422 }
2423 
2424 /// VisitChildren - Visit the children of a Stmt.
2425 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2426   CFGBlock *B = Block;
2427 
2428   // Visit the children in their reverse order so that they appear in
2429   // left-to-right (natural) order in the CFG.
2430   reverse_children RChildren(S);
2431   for (Stmt *Child : RChildren) {
2432     if (Child)
2433       if (CFGBlock *R = Visit(Child))
2434         B = R;
2435   }
2436   return B;
2437 }
2438 
2439 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2440   if (asc.alwaysAdd(*this, ILE)) {
2441     autoCreateBlock();
2442     appendStmt(Block, ILE);
2443   }
2444   CFGBlock *B = Block;
2445 
2446   reverse_children RChildren(ILE);
2447   for (Stmt *Child : RChildren) {
2448     if (!Child)
2449       continue;
2450     if (CFGBlock *R = Visit(Child))
2451       B = R;
2452     if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2453       if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2454         if (Stmt *Child = DIE->getExpr())
2455           if (CFGBlock *R = Visit(Child))
2456             B = R;
2457     }
2458   }
2459   return B;
2460 }
2461 
2462 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2463                                          AddStmtChoice asc) {
2464   AddressTakenLabels.insert(A->getLabel());
2465 
2466   if (asc.alwaysAdd(*this, A)) {
2467     autoCreateBlock();
2468     appendStmt(Block, A);
2469   }
2470 
2471   return Block;
2472 }
2473 
2474 static bool isFallthroughStatement(const AttributedStmt *A) {
2475   bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs());
2476   assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) &&
2477          "expected fallthrough not to have children");
2478   return isFallthrough;
2479 }
2480 
2481 CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A,
2482                                           AddStmtChoice asc) {
2483   // AttributedStmts for [[likely]] can have arbitrary statements as children,
2484   // and the current visitation order here would add the AttributedStmts
2485   // for [[likely]] after the child nodes, which is undesirable: For example,
2486   // if the child contains an unconditional return, the [[likely]] would be
2487   // considered unreachable.
2488   // So only add the AttributedStmt for FallThrough, which has CFG effects and
2489   // also no children, and omit the others. None of the other current StmtAttrs
2490   // have semantic meaning for the CFG.
2491   if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) {
2492     autoCreateBlock();
2493     appendStmt(Block, A);
2494   }
2495 
2496   return VisitChildren(A);
2497 }
2498 
2499 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) {
2500   if (asc.alwaysAdd(*this, U)) {
2501     autoCreateBlock();
2502     appendStmt(Block, U);
2503   }
2504 
2505   if (U->getOpcode() == UO_LNot)
2506     tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2507 
2508   return Visit(U->getSubExpr(), AddStmtChoice());
2509 }
2510 
2511 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2512   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2513   appendStmt(ConfluenceBlock, B);
2514 
2515   if (badCFG)
2516     return nullptr;
2517 
2518   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2519                               ConfluenceBlock).first;
2520 }
2521 
2522 std::pair<CFGBlock*, CFGBlock*>
2523 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2524                                  Stmt *Term,
2525                                  CFGBlock *TrueBlock,
2526                                  CFGBlock *FalseBlock) {
2527   // Introspect the RHS.  If it is a nested logical operation, we recursively
2528   // build the CFG using this function.  Otherwise, resort to default
2529   // CFG construction behavior.
2530   Expr *RHS = B->getRHS()->IgnoreParens();
2531   CFGBlock *RHSBlock, *ExitBlock;
2532 
2533   do {
2534     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2535       if (B_RHS->isLogicalOp()) {
2536         std::tie(RHSBlock, ExitBlock) =
2537           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2538         break;
2539       }
2540 
2541     // The RHS is not a nested logical operation.  Don't push the terminator
2542     // down further, but instead visit RHS and construct the respective
2543     // pieces of the CFG, and link up the RHSBlock with the terminator
2544     // we have been provided.
2545     ExitBlock = RHSBlock = createBlock(false);
2546 
2547     // Even though KnownVal is only used in the else branch of the next
2548     // conditional, tryEvaluateBool performs additional checking on the
2549     // Expr, so it should be called unconditionally.
2550     TryResult KnownVal = tryEvaluateBool(RHS);
2551     if (!KnownVal.isKnown())
2552       KnownVal = tryEvaluateBool(B);
2553 
2554     if (!Term) {
2555       assert(TrueBlock == FalseBlock);
2556       addSuccessor(RHSBlock, TrueBlock);
2557     }
2558     else {
2559       RHSBlock->setTerminator(Term);
2560       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2561       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2562     }
2563 
2564     Block = RHSBlock;
2565     RHSBlock = addStmt(RHS);
2566   }
2567   while (false);
2568 
2569   if (badCFG)
2570     return std::make_pair(nullptr, nullptr);
2571 
2572   // Generate the blocks for evaluating the LHS.
2573   Expr *LHS = B->getLHS()->IgnoreParens();
2574 
2575   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2576     if (B_LHS->isLogicalOp()) {
2577       if (B->getOpcode() == BO_LOr)
2578         FalseBlock = RHSBlock;
2579       else
2580         TrueBlock = RHSBlock;
2581 
2582       // For the LHS, treat 'B' as the terminator that we want to sink
2583       // into the nested branch.  The RHS always gets the top-most
2584       // terminator.
2585       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2586     }
2587 
2588   // Create the block evaluating the LHS.
2589   // This contains the '&&' or '||' as the terminator.
2590   CFGBlock *LHSBlock = createBlock(false);
2591   LHSBlock->setTerminator(B);
2592 
2593   Block = LHSBlock;
2594   CFGBlock *EntryLHSBlock = addStmt(LHS);
2595 
2596   if (badCFG)
2597     return std::make_pair(nullptr, nullptr);
2598 
2599   // See if this is a known constant.
2600   TryResult KnownVal = tryEvaluateBool(LHS);
2601 
2602   // Now link the LHSBlock with RHSBlock.
2603   if (B->getOpcode() == BO_LOr) {
2604     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2605     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2606   } else {
2607     assert(B->getOpcode() == BO_LAnd);
2608     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2609     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2610   }
2611 
2612   return std::make_pair(EntryLHSBlock, ExitBlock);
2613 }
2614 
2615 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2616                                           AddStmtChoice asc) {
2617    // && or ||
2618   if (B->isLogicalOp())
2619     return VisitLogicalOperator(B);
2620 
2621   if (B->getOpcode() == BO_Comma) { // ,
2622     autoCreateBlock();
2623     appendStmt(Block, B);
2624     addStmt(B->getRHS());
2625     return addStmt(B->getLHS());
2626   }
2627 
2628   if (B->isAssignmentOp()) {
2629     if (asc.alwaysAdd(*this, B)) {
2630       autoCreateBlock();
2631       appendStmt(Block, B);
2632     }
2633     Visit(B->getLHS());
2634     return Visit(B->getRHS());
2635   }
2636 
2637   if (asc.alwaysAdd(*this, B)) {
2638     autoCreateBlock();
2639     appendStmt(Block, B);
2640   }
2641 
2642   if (B->isEqualityOp() || B->isRelationalOp())
2643     tryEvaluateBool(B);
2644 
2645   CFGBlock *RBlock = Visit(B->getRHS());
2646   CFGBlock *LBlock = Visit(B->getLHS());
2647   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2648   // containing a DoStmt, and the LHS doesn't create a new block, then we should
2649   // return RBlock.  Otherwise we'll incorrectly return NULL.
2650   return (LBlock ? LBlock : RBlock);
2651 }
2652 
2653 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2654   if (asc.alwaysAdd(*this, E)) {
2655     autoCreateBlock();
2656     appendStmt(Block, E);
2657   }
2658   return Block;
2659 }
2660 
2661 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2662   // "break" is a control-flow statement.  Thus we stop processing the current
2663   // block.
2664   if (badCFG)
2665     return nullptr;
2666 
2667   // Now create a new block that ends with the break statement.
2668   Block = createBlock(false);
2669   Block->setTerminator(B);
2670 
2671   // If there is no target for the break, then we are looking at an incomplete
2672   // AST.  This means that the CFG cannot be constructed.
2673   if (BreakJumpTarget.block) {
2674     addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2675     addSuccessor(Block, BreakJumpTarget.block);
2676   } else
2677     badCFG = true;
2678 
2679   return Block;
2680 }
2681 
2682 static bool CanThrow(Expr *E, ASTContext &Ctx) {
2683   QualType Ty = E->getType();
2684   if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2685     Ty = Ty->getPointeeType();
2686 
2687   const FunctionType *FT = Ty->getAs<FunctionType>();
2688   if (FT) {
2689     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2690       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2691           Proto->isNothrow())
2692         return false;
2693   }
2694   return true;
2695 }
2696 
2697 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2698   // Compute the callee type.
2699   QualType calleeType = C->getCallee()->getType();
2700   if (calleeType == Context->BoundMemberTy) {
2701     QualType boundType = Expr::findBoundMemberType(C->getCallee());
2702 
2703     // We should only get a null bound type if processing a dependent
2704     // CFG.  Recover by assuming nothing.
2705     if (!boundType.isNull()) calleeType = boundType;
2706   }
2707 
2708   // If this is a call to a no-return function, this stops the block here.
2709   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2710 
2711   bool AddEHEdge = false;
2712 
2713   // Languages without exceptions are assumed to not throw.
2714   if (Context->getLangOpts().Exceptions) {
2715     if (BuildOpts.AddEHEdges)
2716       AddEHEdge = true;
2717   }
2718 
2719   // If this is a call to a builtin function, it might not actually evaluate
2720   // its arguments. Don't add them to the CFG if this is the case.
2721   bool OmitArguments = false;
2722 
2723   if (FunctionDecl *FD = C->getDirectCallee()) {
2724     // TODO: Support construction contexts for variadic function arguments.
2725     // These are a bit problematic and not very useful because passing
2726     // C++ objects as C-style variadic arguments doesn't work in general
2727     // (see [expr.call]).
2728     if (!FD->isVariadic())
2729       findConstructionContextsForArguments(C);
2730 
2731     if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2732       NoReturn = true;
2733     if (FD->hasAttr<NoThrowAttr>())
2734       AddEHEdge = false;
2735     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2736         FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2737       OmitArguments = true;
2738   }
2739 
2740   if (!CanThrow(C->getCallee(), *Context))
2741     AddEHEdge = false;
2742 
2743   if (OmitArguments) {
2744     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2745     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2746     autoCreateBlock();
2747     appendStmt(Block, C);
2748     return Visit(C->getCallee());
2749   }
2750 
2751   if (!NoReturn && !AddEHEdge) {
2752     autoCreateBlock();
2753     appendCall(Block, C);
2754 
2755     return VisitChildren(C);
2756   }
2757 
2758   if (Block) {
2759     Succ = Block;
2760     if (badCFG)
2761       return nullptr;
2762   }
2763 
2764   if (NoReturn)
2765     Block = createNoReturnBlock();
2766   else
2767     Block = createBlock();
2768 
2769   appendCall(Block, C);
2770 
2771   if (AddEHEdge) {
2772     // Add exceptional edges.
2773     if (TryTerminatedBlock)
2774       addSuccessor(Block, TryTerminatedBlock);
2775     else
2776       addSuccessor(Block, &cfg->getExit());
2777   }
2778 
2779   return VisitChildren(C);
2780 }
2781 
2782 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2783                                       AddStmtChoice asc) {
2784   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2785   appendStmt(ConfluenceBlock, C);
2786   if (badCFG)
2787     return nullptr;
2788 
2789   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2790   Succ = ConfluenceBlock;
2791   Block = nullptr;
2792   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2793   if (badCFG)
2794     return nullptr;
2795 
2796   Succ = ConfluenceBlock;
2797   Block = nullptr;
2798   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2799   if (badCFG)
2800     return nullptr;
2801 
2802   Block = createBlock(false);
2803   // See if this is a known constant.
2804   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2805   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2806   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2807   Block->setTerminator(C);
2808   return addStmt(C->getCond());
2809 }
2810 
2811 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C,
2812                                         bool ExternallyDestructed) {
2813   LocalScope::const_iterator scopeBeginPos = ScopePos;
2814   addLocalScopeForStmt(C);
2815 
2816   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2817     // If the body ends with a ReturnStmt, the dtors will be added in
2818     // VisitReturnStmt.
2819     addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2820   }
2821 
2822   CFGBlock *LastBlock = Block;
2823 
2824   for (Stmt *S : llvm::reverse(C->body())) {
2825     // If we hit a segment of code just containing ';' (NullStmts), we can
2826     // get a null block back.  In such cases, just use the LastBlock
2827     CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd,
2828                                ExternallyDestructed);
2829 
2830     if (newBlock)
2831       LastBlock = newBlock;
2832 
2833     if (badCFG)
2834       return nullptr;
2835 
2836     ExternallyDestructed = false;
2837   }
2838 
2839   return LastBlock;
2840 }
2841 
2842 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2843                                                AddStmtChoice asc) {
2844   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2845   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2846 
2847   // Create the confluence block that will "merge" the results of the ternary
2848   // expression.
2849   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2850   appendStmt(ConfluenceBlock, C);
2851   if (badCFG)
2852     return nullptr;
2853 
2854   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2855 
2856   // Create a block for the LHS expression if there is an LHS expression.  A
2857   // GCC extension allows LHS to be NULL, causing the condition to be the
2858   // value that is returned instead.
2859   //  e.g: x ?: y is shorthand for: x ? x : y;
2860   Succ = ConfluenceBlock;
2861   Block = nullptr;
2862   CFGBlock *LHSBlock = nullptr;
2863   const Expr *trueExpr = C->getTrueExpr();
2864   if (trueExpr != opaqueValue) {
2865     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2866     if (badCFG)
2867       return nullptr;
2868     Block = nullptr;
2869   }
2870   else
2871     LHSBlock = ConfluenceBlock;
2872 
2873   // Create the block for the RHS expression.
2874   Succ = ConfluenceBlock;
2875   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2876   if (badCFG)
2877     return nullptr;
2878 
2879   // If the condition is a logical '&&' or '||', build a more accurate CFG.
2880   if (BinaryOperator *Cond =
2881         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2882     if (Cond->isLogicalOp())
2883       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2884 
2885   // Create the block that will contain the condition.
2886   Block = createBlock(false);
2887 
2888   // See if this is a known constant.
2889   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2890   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2891   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2892   Block->setTerminator(C);
2893   Expr *condExpr = C->getCond();
2894 
2895   if (opaqueValue) {
2896     // Run the condition expression if it's not trivially expressed in
2897     // terms of the opaque value (or if there is no opaque value).
2898     if (condExpr != opaqueValue)
2899       addStmt(condExpr);
2900 
2901     // Before that, run the common subexpression if there was one.
2902     // At least one of this or the above will be run.
2903     return addStmt(BCO->getCommon());
2904   }
2905 
2906   return addStmt(condExpr);
2907 }
2908 
2909 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2910   // Check if the Decl is for an __label__.  If so, elide it from the
2911   // CFG entirely.
2912   if (isa<LabelDecl>(*DS->decl_begin()))
2913     return Block;
2914 
2915   // This case also handles static_asserts.
2916   if (DS->isSingleDecl())
2917     return VisitDeclSubExpr(DS);
2918 
2919   CFGBlock *B = nullptr;
2920 
2921   // Build an individual DeclStmt for each decl.
2922   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2923                                        E = DS->decl_rend();
2924        I != E; ++I) {
2925 
2926     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
2927     // automatically freed with the CFG.
2928     DeclGroupRef DG(*I);
2929     Decl *D = *I;
2930     DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2931     cfg->addSyntheticDeclStmt(DSNew, DS);
2932 
2933     // Append the fake DeclStmt to block.
2934     B = VisitDeclSubExpr(DSNew);
2935   }
2936 
2937   return B;
2938 }
2939 
2940 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2941 /// DeclStmts and initializers in them.
2942 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2943   assert(DS->isSingleDecl() && "Can handle single declarations only.");
2944 
2945   if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
2946     // If we encounter a VLA, process its size expressions.
2947     const Type *T = TND->getUnderlyingType().getTypePtr();
2948     if (!T->isVariablyModifiedType())
2949       return Block;
2950 
2951     autoCreateBlock();
2952     appendStmt(Block, DS);
2953 
2954     CFGBlock *LastBlock = Block;
2955     for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
2956          VA = FindVA(VA->getElementType().getTypePtr())) {
2957       if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
2958         LastBlock = NewBlock;
2959     }
2960     return LastBlock;
2961   }
2962 
2963   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2964 
2965   if (!VD) {
2966     // Of everything that can be declared in a DeclStmt, only VarDecls and the
2967     // exceptions above impact runtime semantics.
2968     return Block;
2969   }
2970 
2971   bool HasTemporaries = false;
2972 
2973   // Guard static initializers under a branch.
2974   CFGBlock *blockAfterStaticInit = nullptr;
2975 
2976   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2977     // For static variables, we need to create a branch to track
2978     // whether or not they are initialized.
2979     if (Block) {
2980       Succ = Block;
2981       Block = nullptr;
2982       if (badCFG)
2983         return nullptr;
2984     }
2985     blockAfterStaticInit = Succ;
2986   }
2987 
2988   // Destructors of temporaries in initialization expression should be called
2989   // after initialization finishes.
2990   Expr *Init = VD->getInit();
2991   if (Init) {
2992     HasTemporaries = isa<ExprWithCleanups>(Init);
2993 
2994     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2995       // Generate destructors for temporaries in initialization expression.
2996       TempDtorContext Context;
2997       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2998                              /*ExternallyDestructed=*/true, Context);
2999     }
3000   }
3001 
3002   // If we bind to a tuple-like type, we iterate over the HoldingVars, and
3003   // create a DeclStmt for each of them.
3004   if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) {
3005     for (auto *BD : llvm::reverse(DD->bindings())) {
3006       if (auto *VD = BD->getHoldingVar()) {
3007         DeclGroupRef DG(VD);
3008         DeclStmt *DSNew =
3009             new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(VD));
3010         cfg->addSyntheticDeclStmt(DSNew, DS);
3011         Block = VisitDeclSubExpr(DSNew);
3012       }
3013     }
3014   }
3015 
3016   autoCreateBlock();
3017   appendStmt(Block, DS);
3018 
3019   // If the initializer is an ArrayInitLoopExpr, we want to extract the
3020   // initializer, that's used for each element.
3021   const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init);
3022 
3023   findConstructionContexts(
3024       ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3025       AILE ? AILE->getSubExpr() : Init);
3026 
3027   // Keep track of the last non-null block, as 'Block' can be nulled out
3028   // if the initializer expression is something like a 'while' in a
3029   // statement-expression.
3030   CFGBlock *LastBlock = Block;
3031 
3032   if (Init) {
3033     if (HasTemporaries) {
3034       // For expression with temporaries go directly to subexpression to omit
3035       // generating destructors for the second time.
3036       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
3037       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
3038         LastBlock = newBlock;
3039     }
3040     else {
3041       if (CFGBlock *newBlock = Visit(Init))
3042         LastBlock = newBlock;
3043     }
3044   }
3045 
3046   // If the type of VD is a VLA, then we must process its size expressions.
3047   // FIXME: This does not find the VLA if it is embedded in other types,
3048   // like here: `int (*p_vla)[x];`
3049   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
3050        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
3051     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
3052       LastBlock = newBlock;
3053   }
3054 
3055   maybeAddScopeBeginForVarDecl(Block, VD, DS);
3056 
3057   // Remove variable from local scope.
3058   if (ScopePos && VD == *ScopePos)
3059     ++ScopePos;
3060 
3061   CFGBlock *B = LastBlock;
3062   if (blockAfterStaticInit) {
3063     Succ = B;
3064     Block = createBlock(false);
3065     Block->setTerminator(DS);
3066     addSuccessor(Block, blockAfterStaticInit);
3067     addSuccessor(Block, B);
3068     B = Block;
3069   }
3070 
3071   return B;
3072 }
3073 
3074 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
3075   // We may see an if statement in the middle of a basic block, or it may be the
3076   // first statement we are processing.  In either case, we create a new basic
3077   // block.  First, we create the blocks for the then...else statements, and
3078   // then we create the block containing the if statement.  If we were in the
3079   // middle of a block, we stop processing that block.  That block is then the
3080   // implicit successor for the "then" and "else" clauses.
3081 
3082   // Save local scope position because in case of condition variable ScopePos
3083   // won't be restored when traversing AST.
3084   SaveAndRestore save_scope_pos(ScopePos);
3085 
3086   // Create local scope for C++17 if init-stmt if one exists.
3087   if (Stmt *Init = I->getInit())
3088     addLocalScopeForStmt(Init);
3089 
3090   // Create local scope for possible condition variable.
3091   // Store scope position. Add implicit destructor.
3092   if (VarDecl *VD = I->getConditionVariable())
3093     addLocalScopeForVarDecl(VD);
3094 
3095   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
3096 
3097   // The block we were processing is now finished.  Make it the successor
3098   // block.
3099   if (Block) {
3100     Succ = Block;
3101     if (badCFG)
3102       return nullptr;
3103   }
3104 
3105   // Process the false branch.
3106   CFGBlock *ElseBlock = Succ;
3107 
3108   if (Stmt *Else = I->getElse()) {
3109     SaveAndRestore sv(Succ);
3110 
3111     // NULL out Block so that the recursive call to Visit will
3112     // create a new basic block.
3113     Block = nullptr;
3114 
3115     // If branch is not a compound statement create implicit scope
3116     // and add destructors.
3117     if (!isa<CompoundStmt>(Else))
3118       addLocalScopeAndDtors(Else);
3119 
3120     ElseBlock = addStmt(Else);
3121 
3122     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
3123       ElseBlock = sv.get();
3124     else if (Block) {
3125       if (badCFG)
3126         return nullptr;
3127     }
3128   }
3129 
3130   // Process the true branch.
3131   CFGBlock *ThenBlock;
3132   {
3133     Stmt *Then = I->getThen();
3134     assert(Then);
3135     SaveAndRestore sv(Succ);
3136     Block = nullptr;
3137 
3138     // If branch is not a compound statement create implicit scope
3139     // and add destructors.
3140     if (!isa<CompoundStmt>(Then))
3141       addLocalScopeAndDtors(Then);
3142 
3143     ThenBlock = addStmt(Then);
3144 
3145     if (!ThenBlock) {
3146       // We can reach here if the "then" body has all NullStmts.
3147       // Create an empty block so we can distinguish between true and false
3148       // branches in path-sensitive analyses.
3149       ThenBlock = createBlock(false);
3150       addSuccessor(ThenBlock, sv.get());
3151     } else if (Block) {
3152       if (badCFG)
3153         return nullptr;
3154     }
3155   }
3156 
3157   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3158   // having these handle the actual control-flow jump.  Note that
3159   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3160   // we resort to the old control-flow behavior.  This special handling
3161   // removes infeasible paths from the control-flow graph by having the
3162   // control-flow transfer of '&&' or '||' go directly into the then/else
3163   // blocks directly.
3164   BinaryOperator *Cond =
3165       (I->isConsteval() || I->getConditionVariable())
3166           ? nullptr
3167           : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3168   CFGBlock *LastBlock;
3169   if (Cond && Cond->isLogicalOp())
3170     LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3171   else {
3172     // Now create a new block containing the if statement.
3173     Block = createBlock(false);
3174 
3175     // Set the terminator of the new block to the If statement.
3176     Block->setTerminator(I);
3177 
3178     // See if this is a known constant.
3179     TryResult KnownVal;
3180     if (!I->isConsteval())
3181       KnownVal = tryEvaluateBool(I->getCond());
3182 
3183     // Add the successors.  If we know that specific branches are
3184     // unreachable, inform addSuccessor() of that knowledge.
3185     addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3186     addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3187 
3188     // Add the condition as the last statement in the new block.  This may
3189     // create new blocks as the condition may contain control-flow.  Any newly
3190     // created blocks will be pointed to be "Block".
3191     LastBlock = addStmt(I->getCond());
3192 
3193     // If the IfStmt contains a condition variable, add it and its
3194     // initializer to the CFG.
3195     if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3196       autoCreateBlock();
3197       LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3198     }
3199   }
3200 
3201   // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3202   if (Stmt *Init = I->getInit()) {
3203     autoCreateBlock();
3204     LastBlock = addStmt(Init);
3205   }
3206 
3207   return LastBlock;
3208 }
3209 
3210 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3211   // If we were in the middle of a block we stop processing that block.
3212   //
3213   // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3214   //       means that the code afterwards is DEAD (unreachable).  We still keep
3215   //       a basic block for that code; a simple "mark-and-sweep" from the entry
3216   //       block will be able to report such dead blocks.
3217   assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3218 
3219   // Create the new block.
3220   Block = createBlock(false);
3221 
3222   addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3223 
3224   if (auto *R = dyn_cast<ReturnStmt>(S))
3225     findConstructionContexts(
3226         ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3227         R->getRetValue());
3228 
3229   // If the one of the destructors does not return, we already have the Exit
3230   // block as a successor.
3231   if (!Block->hasNoReturnElement())
3232     addSuccessor(Block, &cfg->getExit());
3233 
3234   // Add the return statement to the block.
3235   appendStmt(Block, S);
3236 
3237   // Visit children
3238   if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3239     if (Expr *O = RS->getRetValue())
3240       return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3241     return Block;
3242   }
3243 
3244   CoreturnStmt *CRS = cast<CoreturnStmt>(S);
3245   auto *B = Block;
3246   if (CFGBlock *R = Visit(CRS->getPromiseCall()))
3247     B = R;
3248 
3249   if (Expr *RV = CRS->getOperand())
3250     if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV))
3251       // A non-initlist void expression.
3252       if (CFGBlock *R = Visit(RV))
3253         B = R;
3254 
3255   return B;
3256 }
3257 
3258 CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E,
3259                                                 AddStmtChoice asc) {
3260   // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3261   // active components of the co_await or co_yield. Note we do not model the
3262   // edge from the builtin_suspend to the exit node.
3263   if (asc.alwaysAdd(*this, E)) {
3264     autoCreateBlock();
3265     appendStmt(Block, E);
3266   }
3267   CFGBlock *B = Block;
3268   if (auto *R = Visit(E->getResumeExpr()))
3269     B = R;
3270   if (auto *R = Visit(E->getSuspendExpr()))
3271     B = R;
3272   if (auto *R = Visit(E->getReadyExpr()))
3273     B = R;
3274   if (auto *R = Visit(E->getCommonExpr()))
3275     B = R;
3276   return B;
3277 }
3278 
3279 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3280   // SEHExceptStmt are treated like labels, so they are the first statement in a
3281   // block.
3282 
3283   // Save local scope position because in case of exception variable ScopePos
3284   // won't be restored when traversing AST.
3285   SaveAndRestore save_scope_pos(ScopePos);
3286 
3287   addStmt(ES->getBlock());
3288   CFGBlock *SEHExceptBlock = Block;
3289   if (!SEHExceptBlock)
3290     SEHExceptBlock = createBlock();
3291 
3292   appendStmt(SEHExceptBlock, ES);
3293 
3294   // Also add the SEHExceptBlock as a label, like with regular labels.
3295   SEHExceptBlock->setLabel(ES);
3296 
3297   // Bail out if the CFG is bad.
3298   if (badCFG)
3299     return nullptr;
3300 
3301   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3302   Block = nullptr;
3303 
3304   return SEHExceptBlock;
3305 }
3306 
3307 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3308   return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3309 }
3310 
3311 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3312   // "__leave" is a control-flow statement.  Thus we stop processing the current
3313   // block.
3314   if (badCFG)
3315     return nullptr;
3316 
3317   // Now create a new block that ends with the __leave statement.
3318   Block = createBlock(false);
3319   Block->setTerminator(LS);
3320 
3321   // If there is no target for the __leave, then we are looking at an incomplete
3322   // AST.  This means that the CFG cannot be constructed.
3323   if (SEHLeaveJumpTarget.block) {
3324     addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3325     addSuccessor(Block, SEHLeaveJumpTarget.block);
3326   } else
3327     badCFG = true;
3328 
3329   return Block;
3330 }
3331 
3332 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3333   // "__try"/"__except"/"__finally" is a control-flow statement.  Thus we stop
3334   // processing the current block.
3335   CFGBlock *SEHTrySuccessor = nullptr;
3336 
3337   if (Block) {
3338     if (badCFG)
3339       return nullptr;
3340     SEHTrySuccessor = Block;
3341   } else SEHTrySuccessor = Succ;
3342 
3343   // FIXME: Implement __finally support.
3344   if (Terminator->getFinallyHandler())
3345     return NYS();
3346 
3347   CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3348 
3349   // Create a new block that will contain the __try statement.
3350   CFGBlock *NewTryTerminatedBlock = createBlock(false);
3351 
3352   // Add the terminator in the __try block.
3353   NewTryTerminatedBlock->setTerminator(Terminator);
3354 
3355   if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3356     // The code after the try is the implicit successor if there's an __except.
3357     Succ = SEHTrySuccessor;
3358     Block = nullptr;
3359     CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3360     if (!ExceptBlock)
3361       return nullptr;
3362     // Add this block to the list of successors for the block with the try
3363     // statement.
3364     addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3365   }
3366   if (PrevSEHTryTerminatedBlock)
3367     addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3368   else
3369     addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3370 
3371   // The code after the try is the implicit successor.
3372   Succ = SEHTrySuccessor;
3373 
3374   // Save the current "__try" context.
3375   SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
3376   cfg->addTryDispatchBlock(TryTerminatedBlock);
3377 
3378   // Save the current value for the __leave target.
3379   // All __leaves should go to the code following the __try
3380   // (FIXME: or if the __try has a __finally, to the __finally.)
3381   SaveAndRestore save_break(SEHLeaveJumpTarget);
3382   SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3383 
3384   assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3385   Block = nullptr;
3386   return addStmt(Terminator->getTryBlock());
3387 }
3388 
3389 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3390   // Get the block of the labeled statement.  Add it to our map.
3391   addStmt(L->getSubStmt());
3392   CFGBlock *LabelBlock = Block;
3393 
3394   if (!LabelBlock)              // This can happen when the body is empty, i.e.
3395     LabelBlock = createBlock(); // scopes that only contains NullStmts.
3396 
3397   assert(!LabelMap.contains(L->getDecl()) && "label already in map");
3398   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3399 
3400   // Labels partition blocks, so this is the end of the basic block we were
3401   // processing (L is the block's label).  Because this is label (and we have
3402   // already processed the substatement) there is no extra control-flow to worry
3403   // about.
3404   LabelBlock->setLabel(L);
3405   if (badCFG)
3406     return nullptr;
3407 
3408   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3409   Block = nullptr;
3410 
3411   // This block is now the implicit successor of other blocks.
3412   Succ = LabelBlock;
3413 
3414   return LabelBlock;
3415 }
3416 
3417 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3418   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3419   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3420     if (Expr *CopyExpr = CI.getCopyExpr()) {
3421       CFGBlock *Tmp = Visit(CopyExpr);
3422       if (Tmp)
3423         LastBlock = Tmp;
3424     }
3425   }
3426   return LastBlock;
3427 }
3428 
3429 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3430   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3431 
3432   unsigned Idx = 0;
3433   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3434                                          et = E->capture_init_end();
3435        it != et; ++it, ++Idx) {
3436     if (Expr *Init = *it) {
3437       // If the initializer is an ArrayInitLoopExpr, we want to extract the
3438       // initializer, that's used for each element.
3439       auto *AILEInit = extractElementInitializerFromNestedAILE(
3440           dyn_cast<ArrayInitLoopExpr>(Init));
3441 
3442       findConstructionContexts(ConstructionContextLayer::create(
3443                                    cfg->getBumpVectorContext(), {E, Idx}),
3444                                AILEInit ? AILEInit : Init);
3445 
3446       CFGBlock *Tmp = Visit(Init);
3447       if (Tmp)
3448         LastBlock = Tmp;
3449     }
3450   }
3451   return LastBlock;
3452 }
3453 
3454 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3455   // Goto is a control-flow statement.  Thus we stop processing the current
3456   // block and create a new one.
3457 
3458   Block = createBlock(false);
3459   Block->setTerminator(G);
3460 
3461   // If we already know the mapping to the label block add the successor now.
3462   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3463 
3464   if (I == LabelMap.end())
3465     // We will need to backpatch this block later.
3466     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3467   else {
3468     JumpTarget JT = I->second;
3469     addSuccessor(Block, JT.block);
3470     addScopeChangesHandling(ScopePos, JT.scopePosition, G);
3471   }
3472 
3473   return Block;
3474 }
3475 
3476 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3477   // Goto is a control-flow statement.  Thus we stop processing the current
3478   // block and create a new one.
3479 
3480   if (!G->isAsmGoto())
3481     return VisitStmt(G, asc);
3482 
3483   if (Block) {
3484     Succ = Block;
3485     if (badCFG)
3486       return nullptr;
3487   }
3488   Block = createBlock();
3489   Block->setTerminator(G);
3490   // We will backpatch this block later for all the labels.
3491   BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3492   // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3493   // used to avoid adding "Succ" again.
3494   BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3495   return VisitChildren(G);
3496 }
3497 
3498 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3499   CFGBlock *LoopSuccessor = nullptr;
3500 
3501   // Save local scope position because in case of condition variable ScopePos
3502   // won't be restored when traversing AST.
3503   SaveAndRestore save_scope_pos(ScopePos);
3504 
3505   // Create local scope for init statement and possible condition variable.
3506   // Add destructor for init statement and condition variable.
3507   // Store scope position for continue statement.
3508   if (Stmt *Init = F->getInit())
3509     addLocalScopeForStmt(Init);
3510   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3511 
3512   if (VarDecl *VD = F->getConditionVariable())
3513     addLocalScopeForVarDecl(VD);
3514   LocalScope::const_iterator ContinueScopePos = ScopePos;
3515 
3516   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3517 
3518   addLoopExit(F);
3519 
3520   // "for" is a control-flow statement.  Thus we stop processing the current
3521   // block.
3522   if (Block) {
3523     if (badCFG)
3524       return nullptr;
3525     LoopSuccessor = Block;
3526   } else
3527     LoopSuccessor = Succ;
3528 
3529   // Save the current value for the break targets.
3530   // All breaks should go to the code following the loop.
3531   SaveAndRestore save_break(BreakJumpTarget);
3532   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3533 
3534   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3535 
3536   // Now create the loop body.
3537   {
3538     assert(F->getBody());
3539 
3540     // Save the current values for Block, Succ, continue and break targets.
3541     SaveAndRestore save_Block(Block), save_Succ(Succ);
3542     SaveAndRestore save_continue(ContinueJumpTarget);
3543 
3544     // Create an empty block to represent the transition block for looping back
3545     // to the head of the loop.  If we have increment code, it will
3546     // go in this block as well.
3547     Block = Succ = TransitionBlock = createBlock(false);
3548     TransitionBlock->setLoopTarget(F);
3549 
3550 
3551     // Loop iteration (after increment) should end with destructor of Condition
3552     // variable (if any).
3553     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3554 
3555     if (Stmt *I = F->getInc()) {
3556       // Generate increment code in its own basic block.  This is the target of
3557       // continue statements.
3558       Succ = addStmt(I);
3559     }
3560 
3561     // Finish up the increment (or empty) block if it hasn't been already.
3562     if (Block) {
3563       assert(Block == Succ);
3564       if (badCFG)
3565         return nullptr;
3566       Block = nullptr;
3567     }
3568 
3569    // The starting block for the loop increment is the block that should
3570    // represent the 'loop target' for looping back to the start of the loop.
3571    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3572    ContinueJumpTarget.block->setLoopTarget(F);
3573 
3574 
3575     // If body is not a compound statement create implicit scope
3576     // and add destructors.
3577     if (!isa<CompoundStmt>(F->getBody()))
3578       addLocalScopeAndDtors(F->getBody());
3579 
3580     // Now populate the body block, and in the process create new blocks as we
3581     // walk the body of the loop.
3582     BodyBlock = addStmt(F->getBody());
3583 
3584     if (!BodyBlock) {
3585       // In the case of "for (...;...;...);" we can have a null BodyBlock.
3586       // Use the continue jump target as the proxy for the body.
3587       BodyBlock = ContinueJumpTarget.block;
3588     }
3589     else if (badCFG)
3590       return nullptr;
3591   }
3592 
3593   // Because of short-circuit evaluation, the condition of the loop can span
3594   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3595   // evaluate the condition.
3596   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3597 
3598   do {
3599     Expr *C = F->getCond();
3600     SaveAndRestore save_scope_pos(ScopePos);
3601 
3602     // Specially handle logical operators, which have a slightly
3603     // more optimal CFG representation.
3604     if (BinaryOperator *Cond =
3605             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3606       if (Cond->isLogicalOp()) {
3607         std::tie(EntryConditionBlock, ExitConditionBlock) =
3608           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3609         break;
3610       }
3611 
3612     // The default case when not handling logical operators.
3613     EntryConditionBlock = ExitConditionBlock = createBlock(false);
3614     ExitConditionBlock->setTerminator(F);
3615 
3616     // See if this is a known constant.
3617     TryResult KnownVal(true);
3618 
3619     if (C) {
3620       // Now add the actual condition to the condition block.
3621       // Because the condition itself may contain control-flow, new blocks may
3622       // be created.  Thus we update "Succ" after adding the condition.
3623       Block = ExitConditionBlock;
3624       EntryConditionBlock = addStmt(C);
3625 
3626       // If this block contains a condition variable, add both the condition
3627       // variable and initializer to the CFG.
3628       if (VarDecl *VD = F->getConditionVariable()) {
3629         if (Expr *Init = VD->getInit()) {
3630           autoCreateBlock();
3631           const DeclStmt *DS = F->getConditionVariableDeclStmt();
3632           assert(DS->isSingleDecl());
3633           findConstructionContexts(
3634               ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3635               Init);
3636           appendStmt(Block, DS);
3637           EntryConditionBlock = addStmt(Init);
3638           assert(Block == EntryConditionBlock);
3639           maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3640         }
3641       }
3642 
3643       if (Block && badCFG)
3644         return nullptr;
3645 
3646       KnownVal = tryEvaluateBool(C);
3647     }
3648 
3649     // Add the loop body entry as a successor to the condition.
3650     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3651     // Link up the condition block with the code that follows the loop.  (the
3652     // false branch).
3653     addSuccessor(ExitConditionBlock,
3654                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3655   } while (false);
3656 
3657   // Link up the loop-back block to the entry condition block.
3658   addSuccessor(TransitionBlock, EntryConditionBlock);
3659 
3660   // The condition block is the implicit successor for any code above the loop.
3661   Succ = EntryConditionBlock;
3662 
3663   // If the loop contains initialization, create a new block for those
3664   // statements.  This block can also contain statements that precede the loop.
3665   if (Stmt *I = F->getInit()) {
3666     SaveAndRestore save_scope_pos(ScopePos);
3667     ScopePos = LoopBeginScopePos;
3668     Block = createBlock();
3669     return addStmt(I);
3670   }
3671 
3672   // There is no loop initialization.  We are thus basically a while loop.
3673   // NULL out Block to force lazy block construction.
3674   Block = nullptr;
3675   Succ = EntryConditionBlock;
3676   return EntryConditionBlock;
3677 }
3678 
3679 CFGBlock *
3680 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3681                                           AddStmtChoice asc) {
3682   findConstructionContexts(
3683       ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3684       MTE->getSubExpr());
3685 
3686   return VisitStmt(MTE, asc);
3687 }
3688 
3689 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3690   if (asc.alwaysAdd(*this, M)) {
3691     autoCreateBlock();
3692     appendStmt(Block, M);
3693   }
3694   return Visit(M->getBase());
3695 }
3696 
3697 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3698   // Objective-C fast enumeration 'for' statements:
3699   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3700   //
3701   //  for ( Type newVariable in collection_expression ) { statements }
3702   //
3703   //  becomes:
3704   //
3705   //   prologue:
3706   //     1. collection_expression
3707   //     T. jump to loop_entry
3708   //   loop_entry:
3709   //     1. side-effects of element expression
3710   //     1. ObjCForCollectionStmt [performs binding to newVariable]
3711   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
3712   //   TB:
3713   //     statements
3714   //     T. jump to loop_entry
3715   //   FB:
3716   //     what comes after
3717   //
3718   //  and
3719   //
3720   //  Type existingItem;
3721   //  for ( existingItem in expression ) { statements }
3722   //
3723   //  becomes:
3724   //
3725   //   the same with newVariable replaced with existingItem; the binding works
3726   //   the same except that for one ObjCForCollectionStmt::getElement() returns
3727   //   a DeclStmt and the other returns a DeclRefExpr.
3728 
3729   CFGBlock *LoopSuccessor = nullptr;
3730 
3731   if (Block) {
3732     if (badCFG)
3733       return nullptr;
3734     LoopSuccessor = Block;
3735     Block = nullptr;
3736   } else
3737     LoopSuccessor = Succ;
3738 
3739   // Build the condition blocks.
3740   CFGBlock *ExitConditionBlock = createBlock(false);
3741 
3742   // Set the terminator for the "exit" condition block.
3743   ExitConditionBlock->setTerminator(S);
3744 
3745   // The last statement in the block should be the ObjCForCollectionStmt, which
3746   // performs the actual binding to 'element' and determines if there are any
3747   // more items in the collection.
3748   appendStmt(ExitConditionBlock, S);
3749   Block = ExitConditionBlock;
3750 
3751   // Walk the 'element' expression to see if there are any side-effects.  We
3752   // generate new blocks as necessary.  We DON'T add the statement by default to
3753   // the CFG unless it contains control-flow.
3754   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3755                                         AddStmtChoice::NotAlwaysAdd);
3756   if (Block) {
3757     if (badCFG)
3758       return nullptr;
3759     Block = nullptr;
3760   }
3761 
3762   // The condition block is the implicit successor for the loop body as well as
3763   // any code above the loop.
3764   Succ = EntryConditionBlock;
3765 
3766   // Now create the true branch.
3767   {
3768     // Save the current values for Succ, continue and break targets.
3769     SaveAndRestore save_Block(Block), save_Succ(Succ);
3770     SaveAndRestore save_continue(ContinueJumpTarget),
3771         save_break(BreakJumpTarget);
3772 
3773     // Add an intermediate block between the BodyBlock and the
3774     // EntryConditionBlock to represent the "loop back" transition, for looping
3775     // back to the head of the loop.
3776     CFGBlock *LoopBackBlock = nullptr;
3777     Succ = LoopBackBlock = createBlock();
3778     LoopBackBlock->setLoopTarget(S);
3779 
3780     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3781     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3782 
3783     CFGBlock *BodyBlock = addStmt(S->getBody());
3784 
3785     if (!BodyBlock)
3786       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3787     else if (Block) {
3788       if (badCFG)
3789         return nullptr;
3790     }
3791 
3792     // This new body block is a successor to our "exit" condition block.
3793     addSuccessor(ExitConditionBlock, BodyBlock);
3794   }
3795 
3796   // Link up the condition block with the code that follows the loop.
3797   // (the false branch).
3798   addSuccessor(ExitConditionBlock, LoopSuccessor);
3799 
3800   // Now create a prologue block to contain the collection expression.
3801   Block = createBlock();
3802   return addStmt(S->getCollection());
3803 }
3804 
3805 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3806   // Inline the body.
3807   return addStmt(S->getSubStmt());
3808   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3809 }
3810 
3811 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3812   // FIXME: Add locking 'primitives' to CFG for @synchronized.
3813 
3814   // Inline the body.
3815   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3816 
3817   // The sync body starts its own basic block.  This makes it a little easier
3818   // for diagnostic clients.
3819   if (SyncBlock) {
3820     if (badCFG)
3821       return nullptr;
3822 
3823     Block = nullptr;
3824     Succ = SyncBlock;
3825   }
3826 
3827   // Add the @synchronized to the CFG.
3828   autoCreateBlock();
3829   appendStmt(Block, S);
3830 
3831   // Inline the sync expression.
3832   return addStmt(S->getSynchExpr());
3833 }
3834 
3835 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3836   autoCreateBlock();
3837 
3838   // Add the PseudoObject as the last thing.
3839   appendStmt(Block, E);
3840 
3841   CFGBlock *lastBlock = Block;
3842 
3843   // Before that, evaluate all of the semantics in order.  In
3844   // CFG-land, that means appending them in reverse order.
3845   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3846     Expr *Semantic = E->getSemanticExpr(--i);
3847 
3848     // If the semantic is an opaque value, we're being asked to bind
3849     // it to its source expression.
3850     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3851       Semantic = OVE->getSourceExpr();
3852 
3853     if (CFGBlock *B = Visit(Semantic))
3854       lastBlock = B;
3855   }
3856 
3857   return lastBlock;
3858 }
3859 
3860 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3861   CFGBlock *LoopSuccessor = nullptr;
3862 
3863   // Save local scope position because in case of condition variable ScopePos
3864   // won't be restored when traversing AST.
3865   SaveAndRestore save_scope_pos(ScopePos);
3866 
3867   // Create local scope for possible condition variable.
3868   // Store scope position for continue statement.
3869   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3870   if (VarDecl *VD = W->getConditionVariable()) {
3871     addLocalScopeForVarDecl(VD);
3872     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3873   }
3874   addLoopExit(W);
3875 
3876   // "while" is a control-flow statement.  Thus we stop processing the current
3877   // block.
3878   if (Block) {
3879     if (badCFG)
3880       return nullptr;
3881     LoopSuccessor = Block;
3882     Block = nullptr;
3883   } else {
3884     LoopSuccessor = Succ;
3885   }
3886 
3887   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3888 
3889   // Process the loop body.
3890   {
3891     assert(W->getBody());
3892 
3893     // Save the current values for Block, Succ, continue and break targets.
3894     SaveAndRestore save_Block(Block), save_Succ(Succ);
3895     SaveAndRestore save_continue(ContinueJumpTarget),
3896         save_break(BreakJumpTarget);
3897 
3898     // Create an empty block to represent the transition block for looping back
3899     // to the head of the loop.
3900     Succ = TransitionBlock = createBlock(false);
3901     TransitionBlock->setLoopTarget(W);
3902     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3903 
3904     // All breaks should go to the code following the loop.
3905     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3906 
3907     // Loop body should end with destructor of Condition variable (if any).
3908     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3909 
3910     // If body is not a compound statement create implicit scope
3911     // and add destructors.
3912     if (!isa<CompoundStmt>(W->getBody()))
3913       addLocalScopeAndDtors(W->getBody());
3914 
3915     // Create the body.  The returned block is the entry to the loop body.
3916     BodyBlock = addStmt(W->getBody());
3917 
3918     if (!BodyBlock)
3919       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3920     else if (Block && badCFG)
3921       return nullptr;
3922   }
3923 
3924   // Because of short-circuit evaluation, the condition of the loop can span
3925   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3926   // evaluate the condition.
3927   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3928 
3929   do {
3930     Expr *C = W->getCond();
3931 
3932     // Specially handle logical operators, which have a slightly
3933     // more optimal CFG representation.
3934     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3935       if (Cond->isLogicalOp()) {
3936         std::tie(EntryConditionBlock, ExitConditionBlock) =
3937             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3938         break;
3939       }
3940 
3941     // The default case when not handling logical operators.
3942     ExitConditionBlock = createBlock(false);
3943     ExitConditionBlock->setTerminator(W);
3944 
3945     // Now add the actual condition to the condition block.
3946     // Because the condition itself may contain control-flow, new blocks may
3947     // be created.  Thus we update "Succ" after adding the condition.
3948     Block = ExitConditionBlock;
3949     Block = EntryConditionBlock = addStmt(C);
3950 
3951     // If this block contains a condition variable, add both the condition
3952     // variable and initializer to the CFG.
3953     if (VarDecl *VD = W->getConditionVariable()) {
3954       if (Expr *Init = VD->getInit()) {
3955         autoCreateBlock();
3956         const DeclStmt *DS = W->getConditionVariableDeclStmt();
3957         assert(DS->isSingleDecl());
3958         findConstructionContexts(
3959             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3960                                              const_cast<DeclStmt *>(DS)),
3961             Init);
3962         appendStmt(Block, DS);
3963         EntryConditionBlock = addStmt(Init);
3964         assert(Block == EntryConditionBlock);
3965         maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3966       }
3967     }
3968 
3969     if (Block && badCFG)
3970       return nullptr;
3971 
3972     // See if this is a known constant.
3973     const TryResult& KnownVal = tryEvaluateBool(C);
3974 
3975     // Add the loop body entry as a successor to the condition.
3976     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3977     // Link up the condition block with the code that follows the loop.  (the
3978     // false branch).
3979     addSuccessor(ExitConditionBlock,
3980                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3981   } while(false);
3982 
3983   // Link up the loop-back block to the entry condition block.
3984   addSuccessor(TransitionBlock, EntryConditionBlock);
3985 
3986   // There can be no more statements in the condition block since we loop back
3987   // to this block.  NULL out Block to force lazy creation of another block.
3988   Block = nullptr;
3989 
3990   // Return the condition block, which is the dominating block for the loop.
3991   Succ = EntryConditionBlock;
3992   return EntryConditionBlock;
3993 }
3994 
3995 CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A,
3996                                              AddStmtChoice asc) {
3997   if (asc.alwaysAdd(*this, A)) {
3998     autoCreateBlock();
3999     appendStmt(Block, A);
4000   }
4001 
4002   CFGBlock *B = Block;
4003 
4004   if (CFGBlock *R = Visit(A->getSubExpr()))
4005     B = R;
4006 
4007   auto *OVE = dyn_cast<OpaqueValueExpr>(A->getCommonExpr());
4008   assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an "
4009                 "OpaqueValueExpr!");
4010   if (CFGBlock *R = Visit(OVE->getSourceExpr()))
4011     B = R;
4012 
4013   return B;
4014 }
4015 
4016 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) {
4017   // ObjCAtCatchStmt are treated like labels, so they are the first statement
4018   // in a block.
4019 
4020   // Save local scope position because in case of exception variable ScopePos
4021   // won't be restored when traversing AST.
4022   SaveAndRestore save_scope_pos(ScopePos);
4023 
4024   if (CS->getCatchBody())
4025     addStmt(CS->getCatchBody());
4026 
4027   CFGBlock *CatchBlock = Block;
4028   if (!CatchBlock)
4029     CatchBlock = createBlock();
4030 
4031   appendStmt(CatchBlock, CS);
4032 
4033   // Also add the ObjCAtCatchStmt as a label, like with regular labels.
4034   CatchBlock->setLabel(CS);
4035 
4036   // Bail out if the CFG is bad.
4037   if (badCFG)
4038     return nullptr;
4039 
4040   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4041   Block = nullptr;
4042 
4043   return CatchBlock;
4044 }
4045 
4046 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
4047   // If we were in the middle of a block we stop processing that block.
4048   if (badCFG)
4049     return nullptr;
4050 
4051   // Create the new block.
4052   Block = createBlock(false);
4053 
4054   if (TryTerminatedBlock)
4055     // The current try statement is the only successor.
4056     addSuccessor(Block, TryTerminatedBlock);
4057   else
4058     // otherwise the Exit block is the only successor.
4059     addSuccessor(Block, &cfg->getExit());
4060 
4061   // Add the statement to the block.  This may create new blocks if S contains
4062   // control-flow (short-circuit operations).
4063   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
4064 }
4065 
4066 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) {
4067   // "@try"/"@catch" is a control-flow statement.  Thus we stop processing the
4068   // current block.
4069   CFGBlock *TrySuccessor = nullptr;
4070 
4071   if (Block) {
4072     if (badCFG)
4073       return nullptr;
4074     TrySuccessor = Block;
4075   } else
4076     TrySuccessor = Succ;
4077 
4078   // FIXME: Implement @finally support.
4079   if (Terminator->getFinallyStmt())
4080     return NYS();
4081 
4082   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4083 
4084   // Create a new block that will contain the try statement.
4085   CFGBlock *NewTryTerminatedBlock = createBlock(false);
4086   // Add the terminator in the try block.
4087   NewTryTerminatedBlock->setTerminator(Terminator);
4088 
4089   bool HasCatchAll = false;
4090   for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) {
4091     // The code after the try is the implicit successor.
4092     Succ = TrySuccessor;
4093     if (CS->hasEllipsis()) {
4094       HasCatchAll = true;
4095     }
4096     Block = nullptr;
4097     CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS);
4098     if (!CatchBlock)
4099       return nullptr;
4100     // Add this block to the list of successors for the block with the try
4101     // statement.
4102     addSuccessor(NewTryTerminatedBlock, CatchBlock);
4103   }
4104 
4105   // FIXME: This needs updating when @finally support is added.
4106   if (!HasCatchAll) {
4107     if (PrevTryTerminatedBlock)
4108       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4109     else
4110       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4111   }
4112 
4113   // The code after the try is the implicit successor.
4114   Succ = TrySuccessor;
4115 
4116   // Save the current "try" context.
4117   SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4118   cfg->addTryDispatchBlock(TryTerminatedBlock);
4119 
4120   assert(Terminator->getTryBody() && "try must contain a non-NULL body");
4121   Block = nullptr;
4122   return addStmt(Terminator->getTryBody());
4123 }
4124 
4125 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
4126                                            AddStmtChoice asc) {
4127   findConstructionContextsForArguments(ME);
4128 
4129   autoCreateBlock();
4130   appendObjCMessage(Block, ME);
4131 
4132   return VisitChildren(ME);
4133 }
4134 
4135 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
4136   // If we were in the middle of a block we stop processing that block.
4137   if (badCFG)
4138     return nullptr;
4139 
4140   // Create the new block.
4141   Block = createBlock(false);
4142 
4143   if (TryTerminatedBlock)
4144     // The current try statement is the only successor.
4145     addSuccessor(Block, TryTerminatedBlock);
4146   else
4147     // otherwise the Exit block is the only successor.
4148     addSuccessor(Block, &cfg->getExit());
4149 
4150   // Add the statement to the block.  This may create new blocks if S contains
4151   // control-flow (short-circuit operations).
4152   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
4153 }
4154 
4155 CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) {
4156   if (asc.alwaysAdd(*this, S)) {
4157     autoCreateBlock();
4158     appendStmt(Block, S);
4159   }
4160 
4161   // C++ [expr.typeid]p3:
4162   //   When typeid is applied to an expression other than an glvalue of a
4163   //   polymorphic class type [...] [the] expression is an unevaluated
4164   //   operand. [...]
4165   // We add only potentially evaluated statements to the block to avoid
4166   // CFG generation for unevaluated operands.
4167   if (!S->isTypeDependent() && S->isPotentiallyEvaluated())
4168     return VisitChildren(S);
4169 
4170   // Return block without CFG for unevaluated operands.
4171   return Block;
4172 }
4173 
4174 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
4175   CFGBlock *LoopSuccessor = nullptr;
4176 
4177   addLoopExit(D);
4178 
4179   // "do...while" is a control-flow statement.  Thus we stop processing the
4180   // current block.
4181   if (Block) {
4182     if (badCFG)
4183       return nullptr;
4184     LoopSuccessor = Block;
4185   } else
4186     LoopSuccessor = Succ;
4187 
4188   // Because of short-circuit evaluation, the condition of the loop can span
4189   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
4190   // evaluate the condition.
4191   CFGBlock *ExitConditionBlock = createBlock(false);
4192   CFGBlock *EntryConditionBlock = ExitConditionBlock;
4193 
4194   // Set the terminator for the "exit" condition block.
4195   ExitConditionBlock->setTerminator(D);
4196 
4197   // Now add the actual condition to the condition block.  Because the condition
4198   // itself may contain control-flow, new blocks may be created.
4199   if (Stmt *C = D->getCond()) {
4200     Block = ExitConditionBlock;
4201     EntryConditionBlock = addStmt(C);
4202     if (Block) {
4203       if (badCFG)
4204         return nullptr;
4205     }
4206   }
4207 
4208   // The condition block is the implicit successor for the loop body.
4209   Succ = EntryConditionBlock;
4210 
4211   // See if this is a known constant.
4212   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
4213 
4214   // Process the loop body.
4215   CFGBlock *BodyBlock = nullptr;
4216   {
4217     assert(D->getBody());
4218 
4219     // Save the current values for Block, Succ, and continue and break targets
4220     SaveAndRestore save_Block(Block), save_Succ(Succ);
4221     SaveAndRestore save_continue(ContinueJumpTarget),
4222         save_break(BreakJumpTarget);
4223 
4224     // All continues within this loop should go to the condition block
4225     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
4226 
4227     // All breaks should go to the code following the loop.
4228     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4229 
4230     // NULL out Block to force lazy instantiation of blocks for the body.
4231     Block = nullptr;
4232 
4233     // If body is not a compound statement create implicit scope
4234     // and add destructors.
4235     if (!isa<CompoundStmt>(D->getBody()))
4236       addLocalScopeAndDtors(D->getBody());
4237 
4238     // Create the body.  The returned block is the entry to the loop body.
4239     BodyBlock = addStmt(D->getBody());
4240 
4241     if (!BodyBlock)
4242       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
4243     else if (Block) {
4244       if (badCFG)
4245         return nullptr;
4246     }
4247 
4248     // Add an intermediate block between the BodyBlock and the
4249     // ExitConditionBlock to represent the "loop back" transition.  Create an
4250     // empty block to represent the transition block for looping back to the
4251     // head of the loop.
4252     // FIXME: Can we do this more efficiently without adding another block?
4253     Block = nullptr;
4254     Succ = BodyBlock;
4255     CFGBlock *LoopBackBlock = createBlock();
4256     LoopBackBlock->setLoopTarget(D);
4257 
4258     if (!KnownVal.isFalse())
4259       // Add the loop body entry as a successor to the condition.
4260       addSuccessor(ExitConditionBlock, LoopBackBlock);
4261     else
4262       addSuccessor(ExitConditionBlock, nullptr);
4263   }
4264 
4265   // Link up the condition block with the code that follows the loop.
4266   // (the false branch).
4267   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4268 
4269   // There can be no more statements in the body block(s) since we loop back to
4270   // the body.  NULL out Block to force lazy creation of another block.
4271   Block = nullptr;
4272 
4273   // Return the loop body, which is the dominating block for the loop.
4274   Succ = BodyBlock;
4275   return BodyBlock;
4276 }
4277 
4278 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
4279   // "continue" is a control-flow statement.  Thus we stop processing the
4280   // current block.
4281   if (badCFG)
4282     return nullptr;
4283 
4284   // Now create a new block that ends with the continue statement.
4285   Block = createBlock(false);
4286   Block->setTerminator(C);
4287 
4288   // If there is no target for the continue, then we are looking at an
4289   // incomplete AST.  This means the CFG cannot be constructed.
4290   if (ContinueJumpTarget.block) {
4291     addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
4292     addSuccessor(Block, ContinueJumpTarget.block);
4293   } else
4294     badCFG = true;
4295 
4296   return Block;
4297 }
4298 
4299 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
4300                                                     AddStmtChoice asc) {
4301   if (asc.alwaysAdd(*this, E)) {
4302     autoCreateBlock();
4303     appendStmt(Block, E);
4304   }
4305 
4306   // VLA types have expressions that must be evaluated.
4307   // Evaluation is done only for `sizeof`.
4308 
4309   if (E->getKind() != UETT_SizeOf)
4310     return Block;
4311 
4312   CFGBlock *lastBlock = Block;
4313 
4314   if (E->isArgumentType()) {
4315     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4316          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4317       lastBlock = addStmt(VA->getSizeExpr());
4318   }
4319   return lastBlock;
4320 }
4321 
4322 /// VisitStmtExpr - Utility method to handle (nested) statement
4323 ///  expressions (a GCC extension).
4324 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4325   if (asc.alwaysAdd(*this, SE)) {
4326     autoCreateBlock();
4327     appendStmt(Block, SE);
4328   }
4329   return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4330 }
4331 
4332 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4333   // "switch" is a control-flow statement.  Thus we stop processing the current
4334   // block.
4335   CFGBlock *SwitchSuccessor = nullptr;
4336 
4337   // Save local scope position because in case of condition variable ScopePos
4338   // won't be restored when traversing AST.
4339   SaveAndRestore save_scope_pos(ScopePos);
4340 
4341   // Create local scope for C++17 switch init-stmt if one exists.
4342   if (Stmt *Init = Terminator->getInit())
4343     addLocalScopeForStmt(Init);
4344 
4345   // Create local scope for possible condition variable.
4346   // Store scope position. Add implicit destructor.
4347   if (VarDecl *VD = Terminator->getConditionVariable())
4348     addLocalScopeForVarDecl(VD);
4349 
4350   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4351 
4352   if (Block) {
4353     if (badCFG)
4354       return nullptr;
4355     SwitchSuccessor = Block;
4356   } else SwitchSuccessor = Succ;
4357 
4358   // Save the current "switch" context.
4359   SaveAndRestore save_switch(SwitchTerminatedBlock),
4360       save_default(DefaultCaseBlock);
4361   SaveAndRestore save_break(BreakJumpTarget);
4362 
4363   // Set the "default" case to be the block after the switch statement.  If the
4364   // switch statement contains a "default:", this value will be overwritten with
4365   // the block for that code.
4366   DefaultCaseBlock = SwitchSuccessor;
4367 
4368   // Create a new block that will contain the switch statement.
4369   SwitchTerminatedBlock = createBlock(false);
4370 
4371   // Now process the switch body.  The code after the switch is the implicit
4372   // successor.
4373   Succ = SwitchSuccessor;
4374   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4375 
4376   // When visiting the body, the case statements should automatically get linked
4377   // up to the switch.  We also don't keep a pointer to the body, since all
4378   // control-flow from the switch goes to case/default statements.
4379   assert(Terminator->getBody() && "switch must contain a non-NULL body");
4380   Block = nullptr;
4381 
4382   // For pruning unreachable case statements, save the current state
4383   // for tracking the condition value.
4384   SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false);
4385 
4386   // Determine if the switch condition can be explicitly evaluated.
4387   assert(Terminator->getCond() && "switch condition must be non-NULL");
4388   Expr::EvalResult result;
4389   bool b = tryEvaluate(Terminator->getCond(), result);
4390   SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr);
4391 
4392   // If body is not a compound statement create implicit scope
4393   // and add destructors.
4394   if (!isa<CompoundStmt>(Terminator->getBody()))
4395     addLocalScopeAndDtors(Terminator->getBody());
4396 
4397   addStmt(Terminator->getBody());
4398   if (Block) {
4399     if (badCFG)
4400       return nullptr;
4401   }
4402 
4403   // If we have no "default:" case, the default transition is to the code
4404   // following the switch body.  Moreover, take into account if all the
4405   // cases of a switch are covered (e.g., switching on an enum value).
4406   //
4407   // Note: We add a successor to a switch that is considered covered yet has no
4408   //       case statements if the enumeration has no enumerators.
4409   bool SwitchAlwaysHasSuccessor = false;
4410   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4411   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4412                               Terminator->getSwitchCaseList();
4413   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4414                !SwitchAlwaysHasSuccessor);
4415 
4416   // Add the terminator and condition in the switch block.
4417   SwitchTerminatedBlock->setTerminator(Terminator);
4418   Block = SwitchTerminatedBlock;
4419   CFGBlock *LastBlock = addStmt(Terminator->getCond());
4420 
4421   // If the SwitchStmt contains a condition variable, add both the
4422   // SwitchStmt and the condition variable initialization to the CFG.
4423   if (VarDecl *VD = Terminator->getConditionVariable()) {
4424     if (Expr *Init = VD->getInit()) {
4425       autoCreateBlock();
4426       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4427       LastBlock = addStmt(Init);
4428       maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4429     }
4430   }
4431 
4432   // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4433   if (Stmt *Init = Terminator->getInit()) {
4434     autoCreateBlock();
4435     LastBlock = addStmt(Init);
4436   }
4437 
4438   return LastBlock;
4439 }
4440 
4441 static bool shouldAddCase(bool &switchExclusivelyCovered,
4442                           const Expr::EvalResult *switchCond,
4443                           const CaseStmt *CS,
4444                           ASTContext &Ctx) {
4445   if (!switchCond)
4446     return true;
4447 
4448   bool addCase = false;
4449 
4450   if (!switchExclusivelyCovered) {
4451     if (switchCond->Val.isInt()) {
4452       // Evaluate the LHS of the case value.
4453       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4454       const llvm::APSInt &condInt = switchCond->Val.getInt();
4455 
4456       if (condInt == lhsInt) {
4457         addCase = true;
4458         switchExclusivelyCovered = true;
4459       }
4460       else if (condInt > lhsInt) {
4461         if (const Expr *RHS = CS->getRHS()) {
4462           // Evaluate the RHS of the case value.
4463           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4464           if (V2 >= condInt) {
4465             addCase = true;
4466             switchExclusivelyCovered = true;
4467           }
4468         }
4469       }
4470     }
4471     else
4472       addCase = true;
4473   }
4474   return addCase;
4475 }
4476 
4477 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4478   // CaseStmts are essentially labels, so they are the first statement in a
4479   // block.
4480   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4481 
4482   if (Stmt *Sub = CS->getSubStmt()) {
4483     // For deeply nested chains of CaseStmts, instead of doing a recursion
4484     // (which can blow out the stack), manually unroll and create blocks
4485     // along the way.
4486     while (isa<CaseStmt>(Sub)) {
4487       CFGBlock *currentBlock = createBlock(false);
4488       currentBlock->setLabel(CS);
4489 
4490       if (TopBlock)
4491         addSuccessor(LastBlock, currentBlock);
4492       else
4493         TopBlock = currentBlock;
4494 
4495       addSuccessor(SwitchTerminatedBlock,
4496                    shouldAddCase(switchExclusivelyCovered, switchCond,
4497                                  CS, *Context)
4498                    ? currentBlock : nullptr);
4499 
4500       LastBlock = currentBlock;
4501       CS = cast<CaseStmt>(Sub);
4502       Sub = CS->getSubStmt();
4503     }
4504 
4505     addStmt(Sub);
4506   }
4507 
4508   CFGBlock *CaseBlock = Block;
4509   if (!CaseBlock)
4510     CaseBlock = createBlock();
4511 
4512   // Cases statements partition blocks, so this is the top of the basic block we
4513   // were processing (the "case XXX:" is the label).
4514   CaseBlock->setLabel(CS);
4515 
4516   if (badCFG)
4517     return nullptr;
4518 
4519   // Add this block to the list of successors for the block with the switch
4520   // statement.
4521   assert(SwitchTerminatedBlock);
4522   addSuccessor(SwitchTerminatedBlock, CaseBlock,
4523                shouldAddCase(switchExclusivelyCovered, switchCond,
4524                              CS, *Context));
4525 
4526   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4527   Block = nullptr;
4528 
4529   if (TopBlock) {
4530     addSuccessor(LastBlock, CaseBlock);
4531     Succ = TopBlock;
4532   } else {
4533     // This block is now the implicit successor of other blocks.
4534     Succ = CaseBlock;
4535   }
4536 
4537   return Succ;
4538 }
4539 
4540 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4541   if (Terminator->getSubStmt())
4542     addStmt(Terminator->getSubStmt());
4543 
4544   DefaultCaseBlock = Block;
4545 
4546   if (!DefaultCaseBlock)
4547     DefaultCaseBlock = createBlock();
4548 
4549   // Default statements partition blocks, so this is the top of the basic block
4550   // we were processing (the "default:" is the label).
4551   DefaultCaseBlock->setLabel(Terminator);
4552 
4553   if (badCFG)
4554     return nullptr;
4555 
4556   // Unlike case statements, we don't add the default block to the successors
4557   // for the switch statement immediately.  This is done when we finish
4558   // processing the switch statement.  This allows for the default case
4559   // (including a fall-through to the code after the switch statement) to always
4560   // be the last successor of a switch-terminated block.
4561 
4562   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4563   Block = nullptr;
4564 
4565   // This block is now the implicit successor of other blocks.
4566   Succ = DefaultCaseBlock;
4567 
4568   return DefaultCaseBlock;
4569 }
4570 
4571 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4572   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
4573   // current block.
4574   CFGBlock *TrySuccessor = nullptr;
4575 
4576   if (Block) {
4577     if (badCFG)
4578       return nullptr;
4579     TrySuccessor = Block;
4580   } else
4581     TrySuccessor = Succ;
4582 
4583   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4584 
4585   // Create a new block that will contain the try statement.
4586   CFGBlock *NewTryTerminatedBlock = createBlock(false);
4587   // Add the terminator in the try block.
4588   NewTryTerminatedBlock->setTerminator(Terminator);
4589 
4590   bool HasCatchAll = false;
4591   for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) {
4592     // The code after the try is the implicit successor.
4593     Succ = TrySuccessor;
4594     CXXCatchStmt *CS = Terminator->getHandler(I);
4595     if (CS->getExceptionDecl() == nullptr) {
4596       HasCatchAll = true;
4597     }
4598     Block = nullptr;
4599     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4600     if (!CatchBlock)
4601       return nullptr;
4602     // Add this block to the list of successors for the block with the try
4603     // statement.
4604     addSuccessor(NewTryTerminatedBlock, CatchBlock);
4605   }
4606   if (!HasCatchAll) {
4607     if (PrevTryTerminatedBlock)
4608       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4609     else
4610       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4611   }
4612 
4613   // The code after the try is the implicit successor.
4614   Succ = TrySuccessor;
4615 
4616   // Save the current "try" context.
4617   SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4618   cfg->addTryDispatchBlock(TryTerminatedBlock);
4619 
4620   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4621   Block = nullptr;
4622   return addStmt(Terminator->getTryBlock());
4623 }
4624 
4625 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4626   // CXXCatchStmt are treated like labels, so they are the first statement in a
4627   // block.
4628 
4629   // Save local scope position because in case of exception variable ScopePos
4630   // won't be restored when traversing AST.
4631   SaveAndRestore save_scope_pos(ScopePos);
4632 
4633   // Create local scope for possible exception variable.
4634   // Store scope position. Add implicit destructor.
4635   if (VarDecl *VD = CS->getExceptionDecl()) {
4636     LocalScope::const_iterator BeginScopePos = ScopePos;
4637     addLocalScopeForVarDecl(VD);
4638     addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4639   }
4640 
4641   if (CS->getHandlerBlock())
4642     addStmt(CS->getHandlerBlock());
4643 
4644   CFGBlock *CatchBlock = Block;
4645   if (!CatchBlock)
4646     CatchBlock = createBlock();
4647 
4648   // CXXCatchStmt is more than just a label.  They have semantic meaning
4649   // as well, as they implicitly "initialize" the catch variable.  Add
4650   // it to the CFG as a CFGElement so that the control-flow of these
4651   // semantics gets captured.
4652   appendStmt(CatchBlock, CS);
4653 
4654   // Also add the CXXCatchStmt as a label, to mirror handling of regular
4655   // labels.
4656   CatchBlock->setLabel(CS);
4657 
4658   // Bail out if the CFG is bad.
4659   if (badCFG)
4660     return nullptr;
4661 
4662   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4663   Block = nullptr;
4664 
4665   return CatchBlock;
4666 }
4667 
4668 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4669   // C++0x for-range statements are specified as [stmt.ranged]:
4670   //
4671   // {
4672   //   auto && __range = range-init;
4673   //   for ( auto __begin = begin-expr,
4674   //         __end = end-expr;
4675   //         __begin != __end;
4676   //         ++__begin ) {
4677   //     for-range-declaration = *__begin;
4678   //     statement
4679   //   }
4680   // }
4681 
4682   // Save local scope position before the addition of the implicit variables.
4683   SaveAndRestore save_scope_pos(ScopePos);
4684 
4685   // Create local scopes and destructors for range, begin and end variables.
4686   if (Stmt *Range = S->getRangeStmt())
4687     addLocalScopeForStmt(Range);
4688   if (Stmt *Begin = S->getBeginStmt())
4689     addLocalScopeForStmt(Begin);
4690   if (Stmt *End = S->getEndStmt())
4691     addLocalScopeForStmt(End);
4692   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4693 
4694   LocalScope::const_iterator ContinueScopePos = ScopePos;
4695 
4696   // "for" is a control-flow statement.  Thus we stop processing the current
4697   // block.
4698   CFGBlock *LoopSuccessor = nullptr;
4699   if (Block) {
4700     if (badCFG)
4701       return nullptr;
4702     LoopSuccessor = Block;
4703   } else
4704     LoopSuccessor = Succ;
4705 
4706   // Save the current value for the break targets.
4707   // All breaks should go to the code following the loop.
4708   SaveAndRestore save_break(BreakJumpTarget);
4709   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4710 
4711   // The block for the __begin != __end expression.
4712   CFGBlock *ConditionBlock = createBlock(false);
4713   ConditionBlock->setTerminator(S);
4714 
4715   // Now add the actual condition to the condition block.
4716   if (Expr *C = S->getCond()) {
4717     Block = ConditionBlock;
4718     CFGBlock *BeginConditionBlock = addStmt(C);
4719     if (badCFG)
4720       return nullptr;
4721     assert(BeginConditionBlock == ConditionBlock &&
4722            "condition block in for-range was unexpectedly complex");
4723     (void)BeginConditionBlock;
4724   }
4725 
4726   // The condition block is the implicit successor for the loop body as well as
4727   // any code above the loop.
4728   Succ = ConditionBlock;
4729 
4730   // See if this is a known constant.
4731   TryResult KnownVal(true);
4732 
4733   if (S->getCond())
4734     KnownVal = tryEvaluateBool(S->getCond());
4735 
4736   // Now create the loop body.
4737   {
4738     assert(S->getBody());
4739 
4740     // Save the current values for Block, Succ, and continue targets.
4741     SaveAndRestore save_Block(Block), save_Succ(Succ);
4742     SaveAndRestore save_continue(ContinueJumpTarget);
4743 
4744     // Generate increment code in its own basic block.  This is the target of
4745     // continue statements.
4746     Block = nullptr;
4747     Succ = addStmt(S->getInc());
4748     if (badCFG)
4749       return nullptr;
4750     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4751 
4752     // The starting block for the loop increment is the block that should
4753     // represent the 'loop target' for looping back to the start of the loop.
4754     ContinueJumpTarget.block->setLoopTarget(S);
4755 
4756     // Finish up the increment block and prepare to start the loop body.
4757     assert(Block);
4758     if (badCFG)
4759       return nullptr;
4760     Block = nullptr;
4761 
4762     // Add implicit scope and dtors for loop variable.
4763     addLocalScopeAndDtors(S->getLoopVarStmt());
4764 
4765     // If body is not a compound statement create implicit scope
4766     // and add destructors.
4767     if (!isa<CompoundStmt>(S->getBody()))
4768       addLocalScopeAndDtors(S->getBody());
4769 
4770     // Populate a new block to contain the loop body and loop variable.
4771     addStmt(S->getBody());
4772 
4773     if (badCFG)
4774       return nullptr;
4775     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4776     if (badCFG)
4777       return nullptr;
4778 
4779     // This new body block is a successor to our condition block.
4780     addSuccessor(ConditionBlock,
4781                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4782   }
4783 
4784   // Link up the condition block with the code that follows the loop (the
4785   // false branch).
4786   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4787 
4788   // Add the initialization statements.
4789   Block = createBlock();
4790   addStmt(S->getBeginStmt());
4791   addStmt(S->getEndStmt());
4792   CFGBlock *Head = addStmt(S->getRangeStmt());
4793   if (S->getInit())
4794     Head = addStmt(S->getInit());
4795   return Head;
4796 }
4797 
4798 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4799     AddStmtChoice asc, bool ExternallyDestructed) {
4800   if (BuildOpts.AddTemporaryDtors) {
4801     // If adding implicit destructors visit the full expression for adding
4802     // destructors of temporaries.
4803     TempDtorContext Context;
4804     VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4805 
4806     // Full expression has to be added as CFGStmt so it will be sequenced
4807     // before destructors of it's temporaries.
4808     asc = asc.withAlwaysAdd(true);
4809   }
4810   return Visit(E->getSubExpr(), asc);
4811 }
4812 
4813 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4814                                                 AddStmtChoice asc) {
4815   if (asc.alwaysAdd(*this, E)) {
4816     autoCreateBlock();
4817     appendStmt(Block, E);
4818 
4819     findConstructionContexts(
4820         ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4821         E->getSubExpr());
4822 
4823     // We do not want to propagate the AlwaysAdd property.
4824     asc = asc.withAlwaysAdd(false);
4825   }
4826   return Visit(E->getSubExpr(), asc);
4827 }
4828 
4829 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4830                                             AddStmtChoice asc) {
4831   // If the constructor takes objects as arguments by value, we need to properly
4832   // construct these objects. Construction contexts we find here aren't for the
4833   // constructor C, they're for its arguments only.
4834   findConstructionContextsForArguments(C);
4835 
4836   autoCreateBlock();
4837   appendConstructor(Block, C);
4838 
4839   return VisitChildren(C);
4840 }
4841 
4842 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4843                                       AddStmtChoice asc) {
4844   autoCreateBlock();
4845   appendStmt(Block, NE);
4846 
4847   findConstructionContexts(
4848       ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4849       const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4850 
4851   if (NE->getInitializer())
4852     Block = Visit(NE->getInitializer());
4853 
4854   if (BuildOpts.AddCXXNewAllocator)
4855     appendNewAllocator(Block, NE);
4856 
4857   if (NE->isArray() && *NE->getArraySize())
4858     Block = Visit(*NE->getArraySize());
4859 
4860   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4861        E = NE->placement_arg_end(); I != E; ++I)
4862     Block = Visit(*I);
4863 
4864   return Block;
4865 }
4866 
4867 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4868                                          AddStmtChoice asc) {
4869   autoCreateBlock();
4870   appendStmt(Block, DE);
4871   QualType DTy = DE->getDestroyedType();
4872   if (!DTy.isNull()) {
4873     DTy = DTy.getNonReferenceType();
4874     CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4875     if (RD) {
4876       if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4877         appendDeleteDtor(Block, RD, DE);
4878     }
4879   }
4880 
4881   return VisitChildren(DE);
4882 }
4883 
4884 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4885                                                  AddStmtChoice asc) {
4886   if (asc.alwaysAdd(*this, E)) {
4887     autoCreateBlock();
4888     appendStmt(Block, E);
4889     // We do not want to propagate the AlwaysAdd property.
4890     asc = asc.withAlwaysAdd(false);
4891   }
4892   return Visit(E->getSubExpr(), asc);
4893 }
4894 
4895 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4896                                                   AddStmtChoice asc) {
4897   // If the constructor takes objects as arguments by value, we need to properly
4898   // construct these objects. Construction contexts we find here aren't for the
4899   // constructor C, they're for its arguments only.
4900   findConstructionContextsForArguments(C);
4901 
4902   autoCreateBlock();
4903   appendConstructor(Block, C);
4904   return VisitChildren(C);
4905 }
4906 
4907 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4908                                             AddStmtChoice asc) {
4909   if (asc.alwaysAdd(*this, E)) {
4910     autoCreateBlock();
4911     appendStmt(Block, E);
4912   }
4913 
4914   if (E->getCastKind() == CK_IntegralToBoolean)
4915     tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4916 
4917   return Visit(E->getSubExpr(), AddStmtChoice());
4918 }
4919 
4920 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4921   return Visit(E->getSubExpr(), AddStmtChoice());
4922 }
4923 
4924 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4925   // Lazily create the indirect-goto dispatch block if there isn't one already.
4926   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4927 
4928   if (!IBlock) {
4929     IBlock = createBlock(false);
4930     cfg->setIndirectGotoBlock(IBlock);
4931   }
4932 
4933   // IndirectGoto is a control-flow statement.  Thus we stop processing the
4934   // current block and create a new one.
4935   if (badCFG)
4936     return nullptr;
4937 
4938   Block = createBlock(false);
4939   Block->setTerminator(I);
4940   addSuccessor(Block, IBlock);
4941   return addStmt(I->getTarget());
4942 }
4943 
4944 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4945                                              TempDtorContext &Context) {
4946   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4947 
4948 tryAgain:
4949   if (!E) {
4950     badCFG = true;
4951     return nullptr;
4952   }
4953   switch (E->getStmtClass()) {
4954     default:
4955       return VisitChildrenForTemporaryDtors(E, false, Context);
4956 
4957     case Stmt::InitListExprClass:
4958       return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4959 
4960     case Stmt::BinaryOperatorClass:
4961       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4962                                                   ExternallyDestructed,
4963                                                   Context);
4964 
4965     case Stmt::CXXBindTemporaryExprClass:
4966       return VisitCXXBindTemporaryExprForTemporaryDtors(
4967           cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4968 
4969     case Stmt::BinaryConditionalOperatorClass:
4970     case Stmt::ConditionalOperatorClass:
4971       return VisitConditionalOperatorForTemporaryDtors(
4972           cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4973 
4974     case Stmt::ImplicitCastExprClass:
4975       // For implicit cast we want ExternallyDestructed to be passed further.
4976       E = cast<CastExpr>(E)->getSubExpr();
4977       goto tryAgain;
4978 
4979     case Stmt::CXXFunctionalCastExprClass:
4980       // For functional cast we want ExternallyDestructed to be passed further.
4981       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4982       goto tryAgain;
4983 
4984     case Stmt::ConstantExprClass:
4985       E = cast<ConstantExpr>(E)->getSubExpr();
4986       goto tryAgain;
4987 
4988     case Stmt::ParenExprClass:
4989       E = cast<ParenExpr>(E)->getSubExpr();
4990       goto tryAgain;
4991 
4992     case Stmt::MaterializeTemporaryExprClass: {
4993       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4994       ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4995       SmallVector<const Expr *, 2> CommaLHSs;
4996       SmallVector<SubobjectAdjustment, 2> Adjustments;
4997       // Find the expression whose lifetime needs to be extended.
4998       E = const_cast<Expr *>(
4999           cast<MaterializeTemporaryExpr>(E)
5000               ->getSubExpr()
5001               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5002       // Visit the skipped comma operator left-hand sides for other temporaries.
5003       for (const Expr *CommaLHS : CommaLHSs) {
5004         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
5005                                /*ExternallyDestructed=*/false, Context);
5006       }
5007       goto tryAgain;
5008     }
5009 
5010     case Stmt::BlockExprClass:
5011       // Don't recurse into blocks; their subexpressions don't get evaluated
5012       // here.
5013       return Block;
5014 
5015     case Stmt::LambdaExprClass: {
5016       // For lambda expressions, only recurse into the capture initializers,
5017       // and not the body.
5018       auto *LE = cast<LambdaExpr>(E);
5019       CFGBlock *B = Block;
5020       for (Expr *Init : LE->capture_inits()) {
5021         if (Init) {
5022           if (CFGBlock *R = VisitForTemporaryDtors(
5023                   Init, /*ExternallyDestructed=*/true, Context))
5024             B = R;
5025         }
5026       }
5027       return B;
5028     }
5029 
5030     case Stmt::StmtExprClass:
5031       // Don't recurse into statement expressions; any cleanups inside them
5032       // will be wrapped in their own ExprWithCleanups.
5033       return Block;
5034 
5035     case Stmt::CXXDefaultArgExprClass:
5036       E = cast<CXXDefaultArgExpr>(E)->getExpr();
5037       goto tryAgain;
5038 
5039     case Stmt::CXXDefaultInitExprClass:
5040       E = cast<CXXDefaultInitExpr>(E)->getExpr();
5041       goto tryAgain;
5042   }
5043 }
5044 
5045 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
5046                                                      bool ExternallyDestructed,
5047                                                      TempDtorContext &Context) {
5048   if (isa<LambdaExpr>(E)) {
5049     // Do not visit the children of lambdas; they have their own CFGs.
5050     return Block;
5051   }
5052 
5053   // When visiting children for destructors we want to visit them in reverse
5054   // order that they will appear in the CFG.  Because the CFG is built
5055   // bottom-up, this means we visit them in their natural order, which
5056   // reverses them in the CFG.
5057   CFGBlock *B = Block;
5058   for (Stmt *Child : E->children())
5059     if (Child)
5060       if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
5061         B = R;
5062 
5063   return B;
5064 }
5065 
5066 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
5067     BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
5068   if (E->isCommaOp()) {
5069     // For the comma operator, the LHS expression is evaluated before the RHS
5070     // expression, so prepend temporary destructors for the LHS first.
5071     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5072     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
5073     return RHSBlock ? RHSBlock : LHSBlock;
5074   }
5075 
5076   if (E->isLogicalOp()) {
5077     VisitForTemporaryDtors(E->getLHS(), false, Context);
5078     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
5079     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
5080       RHSExecuted.negate();
5081 
5082     // We do not know at CFG-construction time whether the right-hand-side was
5083     // executed, thus we add a branch node that depends on the temporary
5084     // constructor call.
5085     TempDtorContext RHSContext(
5086         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
5087     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
5088     InsertTempDtorDecisionBlock(RHSContext);
5089 
5090     return Block;
5091   }
5092 
5093   if (E->isAssignmentOp()) {
5094     // For assignment operators, the RHS expression is evaluated before the LHS
5095     // expression, so prepend temporary destructors for the RHS first.
5096     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
5097     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5098     return LHSBlock ? LHSBlock : RHSBlock;
5099   }
5100 
5101   // Any other operator is visited normally.
5102   return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
5103 }
5104 
5105 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
5106     CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
5107   // First add destructors for temporaries in subexpression.
5108   // Because VisitCXXBindTemporaryExpr calls setDestructed:
5109   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
5110   if (!ExternallyDestructed) {
5111     // If lifetime of temporary is not prolonged (by assigning to constant
5112     // reference) add destructor for it.
5113 
5114     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
5115 
5116     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
5117       // If the destructor is marked as a no-return destructor, we need to
5118       // create a new block for the destructor which does not have as a
5119       // successor anything built thus far. Control won't flow out of this
5120       // block.
5121       if (B) Succ = B;
5122       Block = createNoReturnBlock();
5123     } else if (Context.needsTempDtorBranch()) {
5124       // If we need to introduce a branch, we add a new block that we will hook
5125       // up to a decision block later.
5126       if (B) Succ = B;
5127       Block = createBlock();
5128     } else {
5129       autoCreateBlock();
5130     }
5131     if (Context.needsTempDtorBranch()) {
5132       Context.setDecisionPoint(Succ, E);
5133     }
5134     appendTemporaryDtor(Block, E);
5135 
5136     B = Block;
5137   }
5138   return B;
5139 }
5140 
5141 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
5142                                              CFGBlock *FalseSucc) {
5143   if (!Context.TerminatorExpr) {
5144     // If no temporary was found, we do not need to insert a decision point.
5145     return;
5146   }
5147   assert(Context.TerminatorExpr);
5148   CFGBlock *Decision = createBlock(false);
5149   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
5150                                         CFGTerminator::TemporaryDtorsBranch));
5151   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
5152   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
5153                !Context.KnownExecuted.isTrue());
5154   Block = Decision;
5155 }
5156 
5157 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5158     AbstractConditionalOperator *E, bool ExternallyDestructed,
5159     TempDtorContext &Context) {
5160   VisitForTemporaryDtors(E->getCond(), false, Context);
5161   CFGBlock *ConditionBlock = Block;
5162   CFGBlock *ConditionSucc = Succ;
5163   TryResult ConditionVal = tryEvaluateBool(E->getCond());
5164   TryResult NegatedVal = ConditionVal;
5165   if (NegatedVal.isKnown()) NegatedVal.negate();
5166 
5167   TempDtorContext TrueContext(
5168       bothKnownTrue(Context.KnownExecuted, ConditionVal));
5169   VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
5170   CFGBlock *TrueBlock = Block;
5171 
5172   Block = ConditionBlock;
5173   Succ = ConditionSucc;
5174   TempDtorContext FalseContext(
5175       bothKnownTrue(Context.KnownExecuted, NegatedVal));
5176   VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
5177 
5178   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
5179     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
5180   } else if (TrueContext.TerminatorExpr) {
5181     Block = TrueBlock;
5182     InsertTempDtorDecisionBlock(TrueContext);
5183   } else {
5184     InsertTempDtorDecisionBlock(FalseContext);
5185   }
5186   return Block;
5187 }
5188 
5189 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
5190                                                   AddStmtChoice asc) {
5191   if (asc.alwaysAdd(*this, D)) {
5192     autoCreateBlock();
5193     appendStmt(Block, D);
5194   }
5195 
5196   // Iterate over all used expression in clauses.
5197   CFGBlock *B = Block;
5198 
5199   // Reverse the elements to process them in natural order. Iterators are not
5200   // bidirectional, so we need to create temp vector.
5201   SmallVector<Stmt *, 8> Used(
5202       OMPExecutableDirective::used_clauses_children(D->clauses()));
5203   for (Stmt *S : llvm::reverse(Used)) {
5204     assert(S && "Expected non-null used-in-clause child.");
5205     if (CFGBlock *R = Visit(S))
5206       B = R;
5207   }
5208   // Visit associated structured block if any.
5209   if (!D->isStandaloneDirective()) {
5210     Stmt *S = D->getRawStmt();
5211     if (!isa<CompoundStmt>(S))
5212       addLocalScopeAndDtors(S);
5213     if (CFGBlock *R = addStmt(S))
5214       B = R;
5215   }
5216 
5217   return B;
5218 }
5219 
5220 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
5221 ///  no successors or predecessors.  If this is the first block created in the
5222 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
5223 CFGBlock *CFG::createBlock() {
5224   bool first_block = begin() == end();
5225 
5226   // Create the block.
5227   CFGBlock *Mem = new (getAllocator()) CFGBlock(NumBlockIDs++, BlkBVC, this);
5228   Blocks.push_back(Mem, BlkBVC);
5229 
5230   // If this is the first block, set it as the Entry and Exit.
5231   if (first_block)
5232     Entry = Exit = &back();
5233 
5234   // Return the block.
5235   return &back();
5236 }
5237 
5238 /// buildCFG - Constructs a CFG from an AST.
5239 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
5240                                    ASTContext *C, const BuildOptions &BO) {
5241   CFGBuilder Builder(C, BO);
5242   return Builder.buildCFG(D, Statement);
5243 }
5244 
5245 bool CFG::isLinear() const {
5246   // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5247   // in between, then we have no room for control flow.
5248   if (size() <= 3)
5249     return true;
5250 
5251   // Traverse the CFG until we find a branch.
5252   // TODO: While this should still be very fast,
5253   // maybe we should cache the answer.
5254   llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
5255   const CFGBlock *B = Entry;
5256   while (B != Exit) {
5257     auto IteratorAndFlag = Visited.insert(B);
5258     if (!IteratorAndFlag.second) {
5259       // We looped back to a block that we've already visited. Not linear.
5260       return false;
5261     }
5262 
5263     // Iterate over reachable successors.
5264     const CFGBlock *FirstReachableB = nullptr;
5265     for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
5266       if (!AB.isReachable())
5267         continue;
5268 
5269       if (FirstReachableB == nullptr) {
5270         FirstReachableB = &*AB;
5271       } else {
5272         // We've encountered a branch. It's not a linear CFG.
5273         return false;
5274       }
5275     }
5276 
5277     if (!FirstReachableB) {
5278       // We reached a dead end. EXIT is unreachable. This is linear enough.
5279       return true;
5280     }
5281 
5282     // There's only one way to move forward. Proceed.
5283     B = FirstReachableB;
5284   }
5285 
5286   // We reached EXIT and found no branches.
5287   return true;
5288 }
5289 
5290 const CXXDestructorDecl *
5291 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
5292   switch (getKind()) {
5293     case CFGElement::Initializer:
5294     case CFGElement::NewAllocator:
5295     case CFGElement::LoopExit:
5296     case CFGElement::LifetimeEnds:
5297     case CFGElement::Statement:
5298     case CFGElement::Constructor:
5299     case CFGElement::CXXRecordTypedCall:
5300     case CFGElement::ScopeBegin:
5301     case CFGElement::ScopeEnd:
5302     case CFGElement::CleanupFunction:
5303       llvm_unreachable("getDestructorDecl should only be used with "
5304                        "ImplicitDtors");
5305     case CFGElement::AutomaticObjectDtor: {
5306       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
5307       QualType ty = var->getType();
5308 
5309       // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5310       //
5311       // Lifetime-extending constructs are handled here. This works for a single
5312       // temporary in an initializer expression.
5313       if (ty->isReferenceType()) {
5314         if (const Expr *Init = var->getInit()) {
5315           ty = getReferenceInitTemporaryType(Init);
5316         }
5317       }
5318 
5319       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5320         ty = arrayType->getElementType();
5321       }
5322 
5323       // The situation when the type of the lifetime-extending reference
5324       // does not correspond to the type of the object is supposed
5325       // to be handled by now. In particular, 'ty' is now the unwrapped
5326       // record type.
5327       const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5328       assert(classDecl);
5329       return classDecl->getDestructor();
5330     }
5331     case CFGElement::DeleteDtor: {
5332       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5333       QualType DTy = DE->getDestroyedType();
5334       DTy = DTy.getNonReferenceType();
5335       const CXXRecordDecl *classDecl =
5336           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5337       return classDecl->getDestructor();
5338     }
5339     case CFGElement::TemporaryDtor: {
5340       const CXXBindTemporaryExpr *bindExpr =
5341         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5342       const CXXTemporary *temp = bindExpr->getTemporary();
5343       return temp->getDestructor();
5344     }
5345     case CFGElement::MemberDtor: {
5346       const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl();
5347       QualType ty = field->getType();
5348 
5349       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5350         ty = arrayType->getElementType();
5351       }
5352 
5353       const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5354       assert(classDecl);
5355       return classDecl->getDestructor();
5356     }
5357     case CFGElement::BaseDtor:
5358       // Not yet supported.
5359       return nullptr;
5360   }
5361   llvm_unreachable("getKind() returned bogus value");
5362 }
5363 
5364 //===----------------------------------------------------------------------===//
5365 // CFGBlock operations.
5366 //===----------------------------------------------------------------------===//
5367 
5368 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5369     : ReachableBlock(IsReachable ? B : nullptr),
5370       UnreachableBlock(!IsReachable ? B : nullptr,
5371                        B && IsReachable ? AB_Normal : AB_Unreachable) {}
5372 
5373 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5374     : ReachableBlock(B),
5375       UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5376                        B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5377 
5378 void CFGBlock::addSuccessor(AdjacentBlock Succ,
5379                             BumpVectorContext &C) {
5380   if (CFGBlock *B = Succ.getReachableBlock())
5381     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5382 
5383   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5384     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5385 
5386   Succs.push_back(Succ, C);
5387 }
5388 
5389 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5390         const CFGBlock *From, const CFGBlock *To) {
5391   if (F.IgnoreNullPredecessors && !From)
5392     return true;
5393 
5394   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5395     // If the 'To' has no label or is labeled but the label isn't a
5396     // CaseStmt then filter this edge.
5397     if (const SwitchStmt *S =
5398         dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5399       if (S->isAllEnumCasesCovered()) {
5400         const Stmt *L = To->getLabel();
5401         if (!L || !isa<CaseStmt>(L))
5402           return true;
5403       }
5404     }
5405   }
5406 
5407   return false;
5408 }
5409 
5410 //===----------------------------------------------------------------------===//
5411 // CFG pretty printing
5412 //===----------------------------------------------------------------------===//
5413 
5414 namespace {
5415 
5416 class StmtPrinterHelper : public PrinterHelper  {
5417   using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5418   using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5419 
5420   StmtMapTy StmtMap;
5421   DeclMapTy DeclMap;
5422   signed currentBlock = 0;
5423   unsigned currStmt = 0;
5424   const LangOptions &LangOpts;
5425 
5426 public:
5427   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5428       : LangOpts(LO) {
5429     if (!cfg)
5430       return;
5431     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5432       unsigned j = 1;
5433       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5434            BI != BEnd; ++BI, ++j ) {
5435         if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5436           const Stmt *stmt= SE->getStmt();
5437           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5438           StmtMap[stmt] = P;
5439 
5440           switch (stmt->getStmtClass()) {
5441             case Stmt::DeclStmtClass:
5442               DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5443               break;
5444             case Stmt::IfStmtClass: {
5445               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5446               if (var)
5447                 DeclMap[var] = P;
5448               break;
5449             }
5450             case Stmt::ForStmtClass: {
5451               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5452               if (var)
5453                 DeclMap[var] = P;
5454               break;
5455             }
5456             case Stmt::WhileStmtClass: {
5457               const VarDecl *var =
5458                 cast<WhileStmt>(stmt)->getConditionVariable();
5459               if (var)
5460                 DeclMap[var] = P;
5461               break;
5462             }
5463             case Stmt::SwitchStmtClass: {
5464               const VarDecl *var =
5465                 cast<SwitchStmt>(stmt)->getConditionVariable();
5466               if (var)
5467                 DeclMap[var] = P;
5468               break;
5469             }
5470             case Stmt::CXXCatchStmtClass: {
5471               const VarDecl *var =
5472                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5473               if (var)
5474                 DeclMap[var] = P;
5475               break;
5476             }
5477             default:
5478               break;
5479           }
5480         }
5481       }
5482     }
5483   }
5484 
5485   ~StmtPrinterHelper() override = default;
5486 
5487   const LangOptions &getLangOpts() const { return LangOpts; }
5488   void setBlockID(signed i) { currentBlock = i; }
5489   void setStmtID(unsigned i) { currStmt = i; }
5490 
5491   bool handledStmt(Stmt *S, raw_ostream &OS) override {
5492     StmtMapTy::iterator I = StmtMap.find(S);
5493 
5494     if (I == StmtMap.end())
5495       return false;
5496 
5497     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5498                           && I->second.second == currStmt) {
5499       return false;
5500     }
5501 
5502     OS << "[B" << I->second.first << "." << I->second.second << "]";
5503     return true;
5504   }
5505 
5506   bool handleDecl(const Decl *D, raw_ostream &OS) {
5507     DeclMapTy::iterator I = DeclMap.find(D);
5508 
5509     if (I == DeclMap.end())
5510       return false;
5511 
5512     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5513                           && I->second.second == currStmt) {
5514       return false;
5515     }
5516 
5517     OS << "[B" << I->second.first << "." << I->second.second << "]";
5518     return true;
5519   }
5520 };
5521 
5522 class CFGBlockTerminatorPrint
5523     : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5524   raw_ostream &OS;
5525   StmtPrinterHelper* Helper;
5526   PrintingPolicy Policy;
5527 
5528 public:
5529   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5530                           const PrintingPolicy &Policy)
5531       : OS(os), Helper(helper), Policy(Policy) {
5532     this->Policy.IncludeNewlines = false;
5533   }
5534 
5535   void VisitIfStmt(IfStmt *I) {
5536     OS << "if ";
5537     if (Stmt *C = I->getCond())
5538       C->printPretty(OS, Helper, Policy);
5539   }
5540 
5541   // Default case.
5542   void VisitStmt(Stmt *Terminator) {
5543     Terminator->printPretty(OS, Helper, Policy);
5544   }
5545 
5546   void VisitDeclStmt(DeclStmt *DS) {
5547     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5548     OS << "static init " << VD->getName();
5549   }
5550 
5551   void VisitForStmt(ForStmt *F) {
5552     OS << "for (" ;
5553     if (F->getInit())
5554       OS << "...";
5555     OS << "; ";
5556     if (Stmt *C = F->getCond())
5557       C->printPretty(OS, Helper, Policy);
5558     OS << "; ";
5559     if (F->getInc())
5560       OS << "...";
5561     OS << ")";
5562   }
5563 
5564   void VisitWhileStmt(WhileStmt *W) {
5565     OS << "while " ;
5566     if (Stmt *C = W->getCond())
5567       C->printPretty(OS, Helper, Policy);
5568   }
5569 
5570   void VisitDoStmt(DoStmt *D) {
5571     OS << "do ... while ";
5572     if (Stmt *C = D->getCond())
5573       C->printPretty(OS, Helper, Policy);
5574   }
5575 
5576   void VisitSwitchStmt(SwitchStmt *Terminator) {
5577     OS << "switch ";
5578     Terminator->getCond()->printPretty(OS, Helper, Policy);
5579   }
5580 
5581   void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; }
5582 
5583   void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; }
5584 
5585   void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; }
5586 
5587   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5588     if (Stmt *Cond = C->getCond())
5589       Cond->printPretty(OS, Helper, Policy);
5590     OS << " ? ... : ...";
5591   }
5592 
5593   void VisitChooseExpr(ChooseExpr *C) {
5594     OS << "__builtin_choose_expr( ";
5595     if (Stmt *Cond = C->getCond())
5596       Cond->printPretty(OS, Helper, Policy);
5597     OS << " )";
5598   }
5599 
5600   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5601     OS << "goto *";
5602     if (Stmt *T = I->getTarget())
5603       T->printPretty(OS, Helper, Policy);
5604   }
5605 
5606   void VisitBinaryOperator(BinaryOperator* B) {
5607     if (!B->isLogicalOp()) {
5608       VisitExpr(B);
5609       return;
5610     }
5611 
5612     if (B->getLHS())
5613       B->getLHS()->printPretty(OS, Helper, Policy);
5614 
5615     switch (B->getOpcode()) {
5616       case BO_LOr:
5617         OS << " || ...";
5618         return;
5619       case BO_LAnd:
5620         OS << " && ...";
5621         return;
5622       default:
5623         llvm_unreachable("Invalid logical operator.");
5624     }
5625   }
5626 
5627   void VisitExpr(Expr *E) {
5628     E->printPretty(OS, Helper, Policy);
5629   }
5630 
5631 public:
5632   void print(CFGTerminator T) {
5633     switch (T.getKind()) {
5634     case CFGTerminator::StmtBranch:
5635       Visit(T.getStmt());
5636       break;
5637     case CFGTerminator::TemporaryDtorsBranch:
5638       OS << "(Temp Dtor) ";
5639       Visit(T.getStmt());
5640       break;
5641     case CFGTerminator::VirtualBaseBranch:
5642       OS << "(See if most derived ctor has already initialized vbases)";
5643       break;
5644     }
5645   }
5646 };
5647 
5648 } // namespace
5649 
5650 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5651                               const CXXCtorInitializer *I) {
5652   if (I->isBaseInitializer())
5653     OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5654   else if (I->isDelegatingInitializer())
5655     OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5656   else
5657     OS << I->getAnyMember()->getName();
5658   OS << "(";
5659   if (Expr *IE = I->getInit())
5660     IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5661   OS << ")";
5662 
5663   if (I->isBaseInitializer())
5664     OS << " (Base initializer)";
5665   else if (I->isDelegatingInitializer())
5666     OS << " (Delegating initializer)";
5667   else
5668     OS << " (Member initializer)";
5669 }
5670 
5671 static void print_construction_context(raw_ostream &OS,
5672                                        StmtPrinterHelper &Helper,
5673                                        const ConstructionContext *CC) {
5674   SmallVector<const Stmt *, 3> Stmts;
5675   switch (CC->getKind()) {
5676   case ConstructionContext::SimpleConstructorInitializerKind: {
5677     OS << ", ";
5678     const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5679     print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5680     return;
5681   }
5682   case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5683     OS << ", ";
5684     const auto *CICC =
5685         cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5686     print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5687     Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5688     break;
5689   }
5690   case ConstructionContext::SimpleVariableKind: {
5691     const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5692     Stmts.push_back(SDSCC->getDeclStmt());
5693     break;
5694   }
5695   case ConstructionContext::CXX17ElidedCopyVariableKind: {
5696     const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5697     Stmts.push_back(CDSCC->getDeclStmt());
5698     Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5699     break;
5700   }
5701   case ConstructionContext::NewAllocatedObjectKind: {
5702     const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5703     Stmts.push_back(NECC->getCXXNewExpr());
5704     break;
5705   }
5706   case ConstructionContext::SimpleReturnedValueKind: {
5707     const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5708     Stmts.push_back(RSCC->getReturnStmt());
5709     break;
5710   }
5711   case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5712     const auto *RSCC =
5713         cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5714     Stmts.push_back(RSCC->getReturnStmt());
5715     Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5716     break;
5717   }
5718   case ConstructionContext::SimpleTemporaryObjectKind: {
5719     const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5720     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5721     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5722     break;
5723   }
5724   case ConstructionContext::ElidedTemporaryObjectKind: {
5725     const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5726     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5727     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5728     Stmts.push_back(TOCC->getConstructorAfterElision());
5729     break;
5730   }
5731   case ConstructionContext::LambdaCaptureKind: {
5732     const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
5733     Helper.handledStmt(const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS);
5734     OS << "+" << LCC->getIndex();
5735     return;
5736   }
5737   case ConstructionContext::ArgumentKind: {
5738     const auto *ACC = cast<ArgumentConstructionContext>(CC);
5739     if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5740       OS << ", ";
5741       Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5742     }
5743     OS << ", ";
5744     Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5745     OS << "+" << ACC->getIndex();
5746     return;
5747   }
5748   }
5749   for (auto I: Stmts)
5750     if (I) {
5751       OS << ", ";
5752       Helper.handledStmt(const_cast<Stmt *>(I), OS);
5753     }
5754 }
5755 
5756 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5757                        const CFGElement &E);
5758 
5759 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5760   LangOptions LangOpts;
5761   StmtPrinterHelper Helper(nullptr, LangOpts);
5762   print_elem(OS, Helper, *this);
5763 }
5764 
5765 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5766                        const CFGElement &E) {
5767   switch (E.getKind()) {
5768   case CFGElement::Kind::Statement:
5769   case CFGElement::Kind::CXXRecordTypedCall:
5770   case CFGElement::Kind::Constructor: {
5771     CFGStmt CS = E.castAs<CFGStmt>();
5772     const Stmt *S = CS.getStmt();
5773     assert(S != nullptr && "Expecting non-null Stmt");
5774 
5775     // special printing for statement-expressions.
5776     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5777       const CompoundStmt *Sub = SE->getSubStmt();
5778 
5779       auto Children = Sub->children();
5780       if (Children.begin() != Children.end()) {
5781         OS << "({ ... ; ";
5782         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5783         OS << " })\n";
5784         return;
5785       }
5786     }
5787     // special printing for comma expressions.
5788     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5789       if (B->getOpcode() == BO_Comma) {
5790         OS << "... , ";
5791         Helper.handledStmt(B->getRHS(),OS);
5792         OS << '\n';
5793         return;
5794       }
5795     }
5796     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5797 
5798     if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5799       if (isa<CXXOperatorCallExpr>(S))
5800         OS << " (OperatorCall)";
5801       OS << " (CXXRecordTypedCall";
5802       print_construction_context(OS, Helper, VTC->getConstructionContext());
5803       OS << ")";
5804     } else if (isa<CXXOperatorCallExpr>(S)) {
5805       OS << " (OperatorCall)";
5806     } else if (isa<CXXBindTemporaryExpr>(S)) {
5807       OS << " (BindTemporary)";
5808     } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5809       OS << " (CXXConstructExpr";
5810       if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5811         print_construction_context(OS, Helper, CE->getConstructionContext());
5812       }
5813       OS << ", " << CCE->getType() << ")";
5814     } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5815       OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName()
5816          << ", " << CE->getType() << ")";
5817     }
5818 
5819     // Expressions need a newline.
5820     if (isa<Expr>(S))
5821       OS << '\n';
5822 
5823     break;
5824   }
5825 
5826   case CFGElement::Kind::Initializer:
5827     print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5828     OS << '\n';
5829     break;
5830 
5831   case CFGElement::Kind::AutomaticObjectDtor: {
5832     CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5833     const VarDecl *VD = DE.getVarDecl();
5834     Helper.handleDecl(VD, OS);
5835 
5836     QualType T = VD->getType();
5837     if (T->isReferenceType())
5838       T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5839 
5840     OS << ".~";
5841     T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5842     OS << "() (Implicit destructor)\n";
5843     break;
5844   }
5845 
5846   case CFGElement::Kind::CleanupFunction:
5847     OS << "CleanupFunction ("
5848        << E.castAs<CFGCleanupFunction>().getFunctionDecl()->getName() << ")\n";
5849     break;
5850 
5851   case CFGElement::Kind::LifetimeEnds:
5852     Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5853     OS << " (Lifetime ends)\n";
5854     break;
5855 
5856   case CFGElement::Kind::LoopExit:
5857     OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5858     break;
5859 
5860   case CFGElement::Kind::ScopeBegin:
5861     OS << "CFGScopeBegin(";
5862     if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5863       OS << VD->getQualifiedNameAsString();
5864     OS << ")\n";
5865     break;
5866 
5867   case CFGElement::Kind::ScopeEnd:
5868     OS << "CFGScopeEnd(";
5869     if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5870       OS << VD->getQualifiedNameAsString();
5871     OS << ")\n";
5872     break;
5873 
5874   case CFGElement::Kind::NewAllocator:
5875     OS << "CFGNewAllocator(";
5876     if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5877       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5878     OS << ")\n";
5879     break;
5880 
5881   case CFGElement::Kind::DeleteDtor: {
5882     CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5883     const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5884     if (!RD)
5885       return;
5886     CXXDeleteExpr *DelExpr =
5887         const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5888     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5889     OS << "->~" << RD->getName().str() << "()";
5890     OS << " (Implicit destructor)\n";
5891     break;
5892   }
5893 
5894   case CFGElement::Kind::BaseDtor: {
5895     const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5896     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5897     OS << " (Base object destructor)\n";
5898     break;
5899   }
5900 
5901   case CFGElement::Kind::MemberDtor: {
5902     const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5903     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5904     OS << "this->" << FD->getName();
5905     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5906     OS << " (Member object destructor)\n";
5907     break;
5908   }
5909 
5910   case CFGElement::Kind::TemporaryDtor: {
5911     const CXXBindTemporaryExpr *BT =
5912         E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5913     OS << "~";
5914     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5915     OS << "() (Temporary object destructor)\n";
5916     break;
5917   }
5918   }
5919 }
5920 
5921 static void print_block(raw_ostream &OS, const CFG* cfg,
5922                         const CFGBlock &B,
5923                         StmtPrinterHelper &Helper, bool print_edges,
5924                         bool ShowColors) {
5925   Helper.setBlockID(B.getBlockID());
5926 
5927   // Print the header.
5928   if (ShowColors)
5929     OS.changeColor(raw_ostream::YELLOW, true);
5930 
5931   OS << "\n [B" << B.getBlockID();
5932 
5933   if (&B == &cfg->getEntry())
5934     OS << " (ENTRY)]\n";
5935   else if (&B == &cfg->getExit())
5936     OS << " (EXIT)]\n";
5937   else if (&B == cfg->getIndirectGotoBlock())
5938     OS << " (INDIRECT GOTO DISPATCH)]\n";
5939   else if (B.hasNoReturnElement())
5940     OS << " (NORETURN)]\n";
5941   else
5942     OS << "]\n";
5943 
5944   if (ShowColors)
5945     OS.resetColor();
5946 
5947   // Print the label of this block.
5948   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5949     if (print_edges)
5950       OS << "  ";
5951 
5952     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5953       OS << L->getName();
5954     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5955       OS << "case ";
5956       if (const Expr *LHS = C->getLHS())
5957         LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5958       if (const Expr *RHS = C->getRHS()) {
5959         OS << " ... ";
5960         RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5961       }
5962     } else if (isa<DefaultStmt>(Label))
5963       OS << "default";
5964     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5965       OS << "catch (";
5966       if (const VarDecl *ED = CS->getExceptionDecl())
5967         ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5968       else
5969         OS << "...";
5970       OS << ")";
5971     } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) {
5972       OS << "@catch (";
5973       if (const VarDecl *PD = CS->getCatchParamDecl())
5974         PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5975       else
5976         OS << "...";
5977       OS << ")";
5978     } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5979       OS << "__except (";
5980       ES->getFilterExpr()->printPretty(OS, &Helper,
5981                                        PrintingPolicy(Helper.getLangOpts()), 0);
5982       OS << ")";
5983     } else
5984       llvm_unreachable("Invalid label statement in CFGBlock.");
5985 
5986     OS << ":\n";
5987   }
5988 
5989   // Iterate through the statements in the block and print them.
5990   unsigned j = 1;
5991 
5992   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5993        I != E ; ++I, ++j ) {
5994     // Print the statement # in the basic block and the statement itself.
5995     if (print_edges)
5996       OS << " ";
5997 
5998     OS << llvm::format("%3d", j) << ": ";
5999 
6000     Helper.setStmtID(j);
6001 
6002     print_elem(OS, Helper, *I);
6003   }
6004 
6005   // Print the terminator of this block.
6006   if (B.getTerminator().isValid()) {
6007     if (ShowColors)
6008       OS.changeColor(raw_ostream::GREEN);
6009 
6010     OS << "   T: ";
6011 
6012     Helper.setBlockID(-1);
6013 
6014     PrintingPolicy PP(Helper.getLangOpts());
6015     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
6016     TPrinter.print(B.getTerminator());
6017     OS << '\n';
6018 
6019     if (ShowColors)
6020       OS.resetColor();
6021   }
6022 
6023   if (print_edges) {
6024     // Print the predecessors of this block.
6025     if (!B.pred_empty()) {
6026       const raw_ostream::Colors Color = raw_ostream::BLUE;
6027       if (ShowColors)
6028         OS.changeColor(Color);
6029       OS << "   Preds " ;
6030       if (ShowColors)
6031         OS.resetColor();
6032       OS << '(' << B.pred_size() << "):";
6033       unsigned i = 0;
6034 
6035       if (ShowColors)
6036         OS.changeColor(Color);
6037 
6038       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
6039            I != E; ++I, ++i) {
6040         if (i % 10 == 8)
6041           OS << "\n     ";
6042 
6043         CFGBlock *B = *I;
6044         bool Reachable = true;
6045         if (!B) {
6046           Reachable = false;
6047           B = I->getPossiblyUnreachableBlock();
6048         }
6049 
6050         OS << " B" << B->getBlockID();
6051         if (!Reachable)
6052           OS << "(Unreachable)";
6053       }
6054 
6055       if (ShowColors)
6056         OS.resetColor();
6057 
6058       OS << '\n';
6059     }
6060 
6061     // Print the successors of this block.
6062     if (!B.succ_empty()) {
6063       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
6064       if (ShowColors)
6065         OS.changeColor(Color);
6066       OS << "   Succs ";
6067       if (ShowColors)
6068         OS.resetColor();
6069       OS << '(' << B.succ_size() << "):";
6070       unsigned i = 0;
6071 
6072       if (ShowColors)
6073         OS.changeColor(Color);
6074 
6075       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
6076            I != E; ++I, ++i) {
6077         if (i % 10 == 8)
6078           OS << "\n    ";
6079 
6080         CFGBlock *B = *I;
6081 
6082         bool Reachable = true;
6083         if (!B) {
6084           Reachable = false;
6085           B = I->getPossiblyUnreachableBlock();
6086         }
6087 
6088         if (B) {
6089           OS << " B" << B->getBlockID();
6090           if (!Reachable)
6091             OS << "(Unreachable)";
6092         }
6093         else {
6094           OS << " NULL";
6095         }
6096       }
6097 
6098       if (ShowColors)
6099         OS.resetColor();
6100       OS << '\n';
6101     }
6102   }
6103 }
6104 
6105 /// dump - A simple pretty printer of a CFG that outputs to stderr.
6106 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
6107   print(llvm::errs(), LO, ShowColors);
6108 }
6109 
6110 /// print - A simple pretty printer of a CFG that outputs to an ostream.
6111 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
6112   StmtPrinterHelper Helper(this, LO);
6113 
6114   // Print the entry block.
6115   print_block(OS, this, getEntry(), Helper, true, ShowColors);
6116 
6117   // Iterate through the CFGBlocks and print them one by one.
6118   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
6119     // Skip the entry block, because we already printed it.
6120     if (&(**I) == &getEntry() || &(**I) == &getExit())
6121       continue;
6122 
6123     print_block(OS, this, **I, Helper, true, ShowColors);
6124   }
6125 
6126   // Print the exit block.
6127   print_block(OS, this, getExit(), Helper, true, ShowColors);
6128   OS << '\n';
6129   OS.flush();
6130 }
6131 
6132 size_t CFGBlock::getIndexInCFG() const {
6133   return llvm::find(*getParent(), this) - getParent()->begin();
6134 }
6135 
6136 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
6137 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
6138                     bool ShowColors) const {
6139   print(llvm::errs(), cfg, LO, ShowColors);
6140 }
6141 
6142 LLVM_DUMP_METHOD void CFGBlock::dump() const {
6143   dump(getParent(), LangOptions(), false);
6144 }
6145 
6146 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
6147 ///   Generally this will only be called from CFG::print.
6148 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
6149                      const LangOptions &LO, bool ShowColors) const {
6150   StmtPrinterHelper Helper(cfg, LO);
6151   print_block(OS, cfg, *this, Helper, true, ShowColors);
6152   OS << '\n';
6153 }
6154 
6155 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
6156 void CFGBlock::printTerminator(raw_ostream &OS,
6157                                const LangOptions &LO) const {
6158   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
6159   TPrinter.print(getTerminator());
6160 }
6161 
6162 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
6163 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
6164                                    bool AddQuotes) const {
6165   std::string Buf;
6166   llvm::raw_string_ostream TempOut(Buf);
6167 
6168   printTerminator(TempOut, LO);
6169 
6170   Out << JsonFormat(TempOut.str(), AddQuotes);
6171 }
6172 
6173 // Returns true if by simply looking at the block, we can be sure that it
6174 // results in a sink during analysis. This is useful to know when the analysis
6175 // was interrupted, and we try to figure out if it would sink eventually.
6176 // There may be many more reasons why a sink would appear during analysis
6177 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6178 // sinks that would be obvious by looking at the CFG.
6179 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
6180   if (Blk->hasNoReturnElement())
6181     return true;
6182 
6183   // FIXME: Throw-expressions are currently generating sinks during analysis:
6184   // they're not supported yet, and also often used for actually terminating
6185   // the program. So we should treat them as sinks in this analysis as well,
6186   // at least for now, but once we have better support for exceptions,
6187   // we'd need to carefully handle the case when the throw is being
6188   // immediately caught.
6189   if (llvm::any_of(*Blk, [](const CFGElement &Elm) {
6190         if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
6191           if (isa<CXXThrowExpr>(StmtElm->getStmt()))
6192             return true;
6193         return false;
6194       }))
6195     return true;
6196 
6197   return false;
6198 }
6199 
6200 bool CFGBlock::isInevitablySinking() const {
6201   const CFG &Cfg = *getParent();
6202 
6203   const CFGBlock *StartBlk = this;
6204   if (isImmediateSinkBlock(StartBlk))
6205     return true;
6206 
6207   llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
6208   llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
6209 
6210   DFSWorkList.push_back(StartBlk);
6211   while (!DFSWorkList.empty()) {
6212     const CFGBlock *Blk = DFSWorkList.back();
6213     DFSWorkList.pop_back();
6214     Visited.insert(Blk);
6215 
6216     // If at least one path reaches the CFG exit, it means that control is
6217     // returned to the caller. For now, say that we are not sure what
6218     // happens next. If necessary, this can be improved to analyze
6219     // the parent StackFrameContext's call site in a similar manner.
6220     if (Blk == &Cfg.getExit())
6221       return false;
6222 
6223     for (const auto &Succ : Blk->succs()) {
6224       if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
6225         if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
6226           // If the block has reachable child blocks that aren't no-return,
6227           // add them to the worklist.
6228           DFSWorkList.push_back(SuccBlk);
6229         }
6230       }
6231     }
6232   }
6233 
6234   // Nothing reached the exit. It can only mean one thing: there's no return.
6235   return true;
6236 }
6237 
6238 const Expr *CFGBlock::getLastCondition() const {
6239   // If the terminator is a temporary dtor or a virtual base, etc, we can't
6240   // retrieve a meaningful condition, bail out.
6241   if (Terminator.getKind() != CFGTerminator::StmtBranch)
6242     return nullptr;
6243 
6244   // Also, if this method was called on a block that doesn't have 2 successors,
6245   // this block doesn't have retrievable condition.
6246   if (succ_size() < 2)
6247     return nullptr;
6248 
6249   // FIXME: Is there a better condition expression we can return in this case?
6250   if (size() == 0)
6251     return nullptr;
6252 
6253   auto StmtElem = rbegin()->getAs<CFGStmt>();
6254   if (!StmtElem)
6255     return nullptr;
6256 
6257   const Stmt *Cond = StmtElem->getStmt();
6258   if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
6259     return nullptr;
6260 
6261   // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6262   // the cast<>.
6263   return cast<Expr>(Cond)->IgnoreParens();
6264 }
6265 
6266 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
6267   Stmt *Terminator = getTerminatorStmt();
6268   if (!Terminator)
6269     return nullptr;
6270 
6271   Expr *E = nullptr;
6272 
6273   switch (Terminator->getStmtClass()) {
6274     default:
6275       break;
6276 
6277     case Stmt::CXXForRangeStmtClass:
6278       E = cast<CXXForRangeStmt>(Terminator)->getCond();
6279       break;
6280 
6281     case Stmt::ForStmtClass:
6282       E = cast<ForStmt>(Terminator)->getCond();
6283       break;
6284 
6285     case Stmt::WhileStmtClass:
6286       E = cast<WhileStmt>(Terminator)->getCond();
6287       break;
6288 
6289     case Stmt::DoStmtClass:
6290       E = cast<DoStmt>(Terminator)->getCond();
6291       break;
6292 
6293     case Stmt::IfStmtClass:
6294       E = cast<IfStmt>(Terminator)->getCond();
6295       break;
6296 
6297     case Stmt::ChooseExprClass:
6298       E = cast<ChooseExpr>(Terminator)->getCond();
6299       break;
6300 
6301     case Stmt::IndirectGotoStmtClass:
6302       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
6303       break;
6304 
6305     case Stmt::SwitchStmtClass:
6306       E = cast<SwitchStmt>(Terminator)->getCond();
6307       break;
6308 
6309     case Stmt::BinaryConditionalOperatorClass:
6310       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
6311       break;
6312 
6313     case Stmt::ConditionalOperatorClass:
6314       E = cast<ConditionalOperator>(Terminator)->getCond();
6315       break;
6316 
6317     case Stmt::BinaryOperatorClass: // '&&' and '||'
6318       E = cast<BinaryOperator>(Terminator)->getLHS();
6319       break;
6320 
6321     case Stmt::ObjCForCollectionStmtClass:
6322       return Terminator;
6323   }
6324 
6325   if (!StripParens)
6326     return E;
6327 
6328   return E ? E->IgnoreParens() : nullptr;
6329 }
6330 
6331 //===----------------------------------------------------------------------===//
6332 // CFG Graphviz Visualization
6333 //===----------------------------------------------------------------------===//
6334 
6335 static StmtPrinterHelper *GraphHelper;
6336 
6337 void CFG::viewCFG(const LangOptions &LO) const {
6338   StmtPrinterHelper H(this, LO);
6339   GraphHelper = &H;
6340   llvm::ViewGraph(this,"CFG");
6341   GraphHelper = nullptr;
6342 }
6343 
6344 namespace llvm {
6345 
6346 template<>
6347 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
6348   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6349 
6350   static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) {
6351     std::string OutSStr;
6352     llvm::raw_string_ostream Out(OutSStr);
6353     print_block(Out,Graph, *Node, *GraphHelper, false, false);
6354     std::string& OutStr = Out.str();
6355 
6356     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6357 
6358     // Process string output to make it nicer...
6359     for (unsigned i = 0; i != OutStr.length(); ++i)
6360       if (OutStr[i] == '\n') {                            // Left justify
6361         OutStr[i] = '\\';
6362         OutStr.insert(OutStr.begin()+i+1, 'l');
6363       }
6364 
6365     return OutStr;
6366   }
6367 };
6368 
6369 } // namespace llvm
6370