xref: /freebsd/contrib/llvm-project/clang/lib/AST/VTableBuilder.cpp (revision d56accc7c3dcc897489b6a07834763a03b9f3d68)
1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <algorithm>
24 #include <cstdio>
25 
26 using namespace clang;
27 
28 #define DUMP_OVERRIDERS 0
29 
30 namespace {
31 
32 /// BaseOffset - Represents an offset from a derived class to a direct or
33 /// indirect base class.
34 struct BaseOffset {
35   /// DerivedClass - The derived class.
36   const CXXRecordDecl *DerivedClass;
37 
38   /// VirtualBase - If the path from the derived class to the base class
39   /// involves virtual base classes, this holds the declaration of the last
40   /// virtual base in this path (i.e. closest to the base class).
41   const CXXRecordDecl *VirtualBase;
42 
43   /// NonVirtualOffset - The offset from the derived class to the base class.
44   /// (Or the offset from the virtual base class to the base class, if the
45   /// path from the derived class to the base class involves a virtual base
46   /// class.
47   CharUnits NonVirtualOffset;
48 
49   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
50                  NonVirtualOffset(CharUnits::Zero()) { }
51   BaseOffset(const CXXRecordDecl *DerivedClass,
52              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
53     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
54     NonVirtualOffset(NonVirtualOffset) { }
55 
56   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
57 };
58 
59 /// FinalOverriders - Contains the final overrider member functions for all
60 /// member functions in the base subobjects of a class.
61 class FinalOverriders {
62 public:
63   /// OverriderInfo - Information about a final overrider.
64   struct OverriderInfo {
65     /// Method - The method decl of the overrider.
66     const CXXMethodDecl *Method;
67 
68     /// VirtualBase - The virtual base class subobject of this overrider.
69     /// Note that this records the closest derived virtual base class subobject.
70     const CXXRecordDecl *VirtualBase;
71 
72     /// Offset - the base offset of the overrider's parent in the layout class.
73     CharUnits Offset;
74 
75     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
76                       Offset(CharUnits::Zero()) { }
77   };
78 
79 private:
80   /// MostDerivedClass - The most derived class for which the final overriders
81   /// are stored.
82   const CXXRecordDecl *MostDerivedClass;
83 
84   /// MostDerivedClassOffset - If we're building final overriders for a
85   /// construction vtable, this holds the offset from the layout class to the
86   /// most derived class.
87   const CharUnits MostDerivedClassOffset;
88 
89   /// LayoutClass - The class we're using for layout information. Will be
90   /// different than the most derived class if the final overriders are for a
91   /// construction vtable.
92   const CXXRecordDecl *LayoutClass;
93 
94   ASTContext &Context;
95 
96   /// MostDerivedClassLayout - the AST record layout of the most derived class.
97   const ASTRecordLayout &MostDerivedClassLayout;
98 
99   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
100   /// in a base subobject.
101   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
102 
103   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
104                          OverriderInfo> OverridersMapTy;
105 
106   /// OverridersMap - The final overriders for all virtual member functions of
107   /// all the base subobjects of the most derived class.
108   OverridersMapTy OverridersMap;
109 
110   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
111   /// as a record decl and a subobject number) and its offsets in the most
112   /// derived class as well as the layout class.
113   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
114                          CharUnits> SubobjectOffsetMapTy;
115 
116   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
117 
118   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
119   /// given base.
120   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
121                           CharUnits OffsetInLayoutClass,
122                           SubobjectOffsetMapTy &SubobjectOffsets,
123                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
124                           SubobjectCountMapTy &SubobjectCounts);
125 
126   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
127 
128   /// dump - dump the final overriders for a base subobject, and all its direct
129   /// and indirect base subobjects.
130   void dump(raw_ostream &Out, BaseSubobject Base,
131             VisitedVirtualBasesSetTy& VisitedVirtualBases);
132 
133 public:
134   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
135                   CharUnits MostDerivedClassOffset,
136                   const CXXRecordDecl *LayoutClass);
137 
138   /// getOverrider - Get the final overrider for the given method declaration in
139   /// the subobject with the given base offset.
140   OverriderInfo getOverrider(const CXXMethodDecl *MD,
141                              CharUnits BaseOffset) const {
142     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
143            "Did not find overrider!");
144 
145     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
146   }
147 
148   /// dump - dump the final overriders.
149   void dump() {
150     VisitedVirtualBasesSetTy VisitedVirtualBases;
151     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
152          VisitedVirtualBases);
153   }
154 
155 };
156 
157 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
158                                  CharUnits MostDerivedClassOffset,
159                                  const CXXRecordDecl *LayoutClass)
160   : MostDerivedClass(MostDerivedClass),
161   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
162   Context(MostDerivedClass->getASTContext()),
163   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
164 
165   // Compute base offsets.
166   SubobjectOffsetMapTy SubobjectOffsets;
167   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
168   SubobjectCountMapTy SubobjectCounts;
169   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
170                      /*IsVirtual=*/false,
171                      MostDerivedClassOffset,
172                      SubobjectOffsets, SubobjectLayoutClassOffsets,
173                      SubobjectCounts);
174 
175   // Get the final overriders.
176   CXXFinalOverriderMap FinalOverriders;
177   MostDerivedClass->getFinalOverriders(FinalOverriders);
178 
179   for (const auto &Overrider : FinalOverriders) {
180     const CXXMethodDecl *MD = Overrider.first;
181     const OverridingMethods &Methods = Overrider.second;
182 
183     for (const auto &M : Methods) {
184       unsigned SubobjectNumber = M.first;
185       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
186                                                    SubobjectNumber)) &&
187              "Did not find subobject offset!");
188 
189       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
190                                                             SubobjectNumber)];
191 
192       assert(M.second.size() == 1 && "Final overrider is not unique!");
193       const UniqueVirtualMethod &Method = M.second.front();
194 
195       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
196       assert(SubobjectLayoutClassOffsets.count(
197              std::make_pair(OverriderRD, Method.Subobject))
198              && "Did not find subobject offset!");
199       CharUnits OverriderOffset =
200         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
201                                                    Method.Subobject)];
202 
203       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
204       assert(!Overrider.Method && "Overrider should not exist yet!");
205 
206       Overrider.Offset = OverriderOffset;
207       Overrider.Method = Method.Method;
208       Overrider.VirtualBase = Method.InVirtualSubobject;
209     }
210   }
211 
212 #if DUMP_OVERRIDERS
213   // And dump them (for now).
214   dump();
215 #endif
216 }
217 
218 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
219                                     const CXXRecordDecl *DerivedRD,
220                                     const CXXBasePath &Path) {
221   CharUnits NonVirtualOffset = CharUnits::Zero();
222 
223   unsigned NonVirtualStart = 0;
224   const CXXRecordDecl *VirtualBase = nullptr;
225 
226   // First, look for the virtual base class.
227   for (int I = Path.size(), E = 0; I != E; --I) {
228     const CXXBasePathElement &Element = Path[I - 1];
229 
230     if (Element.Base->isVirtual()) {
231       NonVirtualStart = I;
232       QualType VBaseType = Element.Base->getType();
233       VirtualBase = VBaseType->getAsCXXRecordDecl();
234       break;
235     }
236   }
237 
238   // Now compute the non-virtual offset.
239   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
240     const CXXBasePathElement &Element = Path[I];
241 
242     // Check the base class offset.
243     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
244 
245     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
246 
247     NonVirtualOffset += Layout.getBaseClassOffset(Base);
248   }
249 
250   // FIXME: This should probably use CharUnits or something. Maybe we should
251   // even change the base offsets in ASTRecordLayout to be specified in
252   // CharUnits.
253   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
254 
255 }
256 
257 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
258                                     const CXXRecordDecl *BaseRD,
259                                     const CXXRecordDecl *DerivedRD) {
260   CXXBasePaths Paths(/*FindAmbiguities=*/false,
261                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
262 
263   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
264     llvm_unreachable("Class must be derived from the passed in base class!");
265 
266   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
267 }
268 
269 static BaseOffset
270 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
271                                   const CXXMethodDecl *DerivedMD,
272                                   const CXXMethodDecl *BaseMD) {
273   const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
274   const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
275 
276   // Canonicalize the return types.
277   CanQualType CanDerivedReturnType =
278       Context.getCanonicalType(DerivedFT->getReturnType());
279   CanQualType CanBaseReturnType =
280       Context.getCanonicalType(BaseFT->getReturnType());
281 
282   assert(CanDerivedReturnType->getTypeClass() ==
283          CanBaseReturnType->getTypeClass() &&
284          "Types must have same type class!");
285 
286   if (CanDerivedReturnType == CanBaseReturnType) {
287     // No adjustment needed.
288     return BaseOffset();
289   }
290 
291   if (isa<ReferenceType>(CanDerivedReturnType)) {
292     CanDerivedReturnType =
293       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
294     CanBaseReturnType =
295       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
296   } else if (isa<PointerType>(CanDerivedReturnType)) {
297     CanDerivedReturnType =
298       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
299     CanBaseReturnType =
300       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
301   } else {
302     llvm_unreachable("Unexpected return type!");
303   }
304 
305   // We need to compare unqualified types here; consider
306   //   const T *Base::foo();
307   //   T *Derived::foo();
308   if (CanDerivedReturnType.getUnqualifiedType() ==
309       CanBaseReturnType.getUnqualifiedType()) {
310     // No adjustment needed.
311     return BaseOffset();
312   }
313 
314   const CXXRecordDecl *DerivedRD =
315     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
316 
317   const CXXRecordDecl *BaseRD =
318     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
319 
320   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
321 }
322 
323 void
324 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
325                               CharUnits OffsetInLayoutClass,
326                               SubobjectOffsetMapTy &SubobjectOffsets,
327                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
328                               SubobjectCountMapTy &SubobjectCounts) {
329   const CXXRecordDecl *RD = Base.getBase();
330 
331   unsigned SubobjectNumber = 0;
332   if (!IsVirtual)
333     SubobjectNumber = ++SubobjectCounts[RD];
334 
335   // Set up the subobject to offset mapping.
336   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
337          && "Subobject offset already exists!");
338   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
339          && "Subobject offset already exists!");
340 
341   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
342   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
343     OffsetInLayoutClass;
344 
345   // Traverse our bases.
346   for (const auto &B : RD->bases()) {
347     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
348 
349     CharUnits BaseOffset;
350     CharUnits BaseOffsetInLayoutClass;
351     if (B.isVirtual()) {
352       // Check if we've visited this virtual base before.
353       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
354         continue;
355 
356       const ASTRecordLayout &LayoutClassLayout =
357         Context.getASTRecordLayout(LayoutClass);
358 
359       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
360       BaseOffsetInLayoutClass =
361         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
362     } else {
363       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
364       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
365 
366       BaseOffset = Base.getBaseOffset() + Offset;
367       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
368     }
369 
370     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
371                        B.isVirtual(), BaseOffsetInLayoutClass,
372                        SubobjectOffsets, SubobjectLayoutClassOffsets,
373                        SubobjectCounts);
374   }
375 }
376 
377 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
378                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
379   const CXXRecordDecl *RD = Base.getBase();
380   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
381 
382   for (const auto &B : RD->bases()) {
383     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
384 
385     // Ignore bases that don't have any virtual member functions.
386     if (!BaseDecl->isPolymorphic())
387       continue;
388 
389     CharUnits BaseOffset;
390     if (B.isVirtual()) {
391       if (!VisitedVirtualBases.insert(BaseDecl).second) {
392         // We've visited this base before.
393         continue;
394       }
395 
396       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
397     } else {
398       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
399     }
400 
401     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
402   }
403 
404   Out << "Final overriders for (";
405   RD->printQualifiedName(Out);
406   Out << ", ";
407   Out << Base.getBaseOffset().getQuantity() << ")\n";
408 
409   // Now dump the overriders for this base subobject.
410   for (const auto *MD : RD->methods()) {
411     if (!VTableContextBase::hasVtableSlot(MD))
412       continue;
413     MD = MD->getCanonicalDecl();
414 
415     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
416 
417     Out << "  ";
418     MD->printQualifiedName(Out);
419     Out << " - (";
420     Overrider.Method->printQualifiedName(Out);
421     Out << ", " << Overrider.Offset.getQuantity() << ')';
422 
423     BaseOffset Offset;
424     if (!Overrider.Method->isPure())
425       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
426 
427     if (!Offset.isEmpty()) {
428       Out << " [ret-adj: ";
429       if (Offset.VirtualBase) {
430         Offset.VirtualBase->printQualifiedName(Out);
431         Out << " vbase, ";
432       }
433 
434       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
435     }
436 
437     Out << "\n";
438   }
439 }
440 
441 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
442 struct VCallOffsetMap {
443 
444   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
445 
446   /// Offsets - Keeps track of methods and their offsets.
447   // FIXME: This should be a real map and not a vector.
448   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
449 
450   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
451   /// can share the same vcall offset.
452   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
453                                          const CXXMethodDecl *RHS);
454 
455 public:
456   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
457   /// add was successful, or false if there was already a member function with
458   /// the same signature in the map.
459   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
460 
461   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
462   /// vtable address point) for the given virtual member function.
463   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
464 
465   // empty - Return whether the offset map is empty or not.
466   bool empty() const { return Offsets.empty(); }
467 };
468 
469 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
470                                     const CXXMethodDecl *RHS) {
471   const FunctionProtoType *LT =
472     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
473   const FunctionProtoType *RT =
474     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
475 
476   // Fast-path matches in the canonical types.
477   if (LT == RT) return true;
478 
479   // Force the signatures to match.  We can't rely on the overrides
480   // list here because there isn't necessarily an inheritance
481   // relationship between the two methods.
482   if (LT->getMethodQuals() != RT->getMethodQuals())
483     return false;
484   return LT->getParamTypes() == RT->getParamTypes();
485 }
486 
487 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
488                                                 const CXXMethodDecl *RHS) {
489   assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
490   assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
491 
492   // A destructor can share a vcall offset with another destructor.
493   if (isa<CXXDestructorDecl>(LHS))
494     return isa<CXXDestructorDecl>(RHS);
495 
496   // FIXME: We need to check more things here.
497 
498   // The methods must have the same name.
499   DeclarationName LHSName = LHS->getDeclName();
500   DeclarationName RHSName = RHS->getDeclName();
501   if (LHSName != RHSName)
502     return false;
503 
504   // And the same signatures.
505   return HasSameVirtualSignature(LHS, RHS);
506 }
507 
508 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
509                                     CharUnits OffsetOffset) {
510   // Check if we can reuse an offset.
511   for (const auto &OffsetPair : Offsets) {
512     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
513       return false;
514   }
515 
516   // Add the offset.
517   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
518   return true;
519 }
520 
521 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
522   // Look for an offset.
523   for (const auto &OffsetPair : Offsets) {
524     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
525       return OffsetPair.second;
526   }
527 
528   llvm_unreachable("Should always find a vcall offset offset!");
529 }
530 
531 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
532 class VCallAndVBaseOffsetBuilder {
533 public:
534   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
535     VBaseOffsetOffsetsMapTy;
536 
537 private:
538   const ItaniumVTableContext &VTables;
539 
540   /// MostDerivedClass - The most derived class for which we're building vcall
541   /// and vbase offsets.
542   const CXXRecordDecl *MostDerivedClass;
543 
544   /// LayoutClass - The class we're using for layout information. Will be
545   /// different than the most derived class if we're building a construction
546   /// vtable.
547   const CXXRecordDecl *LayoutClass;
548 
549   /// Context - The ASTContext which we will use for layout information.
550   ASTContext &Context;
551 
552   /// Components - vcall and vbase offset components
553   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
554   VTableComponentVectorTy Components;
555 
556   /// VisitedVirtualBases - Visited virtual bases.
557   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
558 
559   /// VCallOffsets - Keeps track of vcall offsets.
560   VCallOffsetMap VCallOffsets;
561 
562 
563   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
564   /// relative to the address point.
565   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
566 
567   /// FinalOverriders - The final overriders of the most derived class.
568   /// (Can be null when we're not building a vtable of the most derived class).
569   const FinalOverriders *Overriders;
570 
571   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
572   /// given base subobject.
573   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
574                                CharUnits RealBaseOffset);
575 
576   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
577   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
578 
579   /// AddVBaseOffsets - Add vbase offsets for the given class.
580   void AddVBaseOffsets(const CXXRecordDecl *Base,
581                        CharUnits OffsetInLayoutClass);
582 
583   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
584   /// chars, relative to the vtable address point.
585   CharUnits getCurrentOffsetOffset() const;
586 
587 public:
588   VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
589                              const CXXRecordDecl *MostDerivedClass,
590                              const CXXRecordDecl *LayoutClass,
591                              const FinalOverriders *Overriders,
592                              BaseSubobject Base, bool BaseIsVirtual,
593                              CharUnits OffsetInLayoutClass)
594       : VTables(VTables), MostDerivedClass(MostDerivedClass),
595         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
596         Overriders(Overriders) {
597 
598     // Add vcall and vbase offsets.
599     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
600   }
601 
602   /// Methods for iterating over the components.
603   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
604   const_iterator components_begin() const { return Components.rbegin(); }
605   const_iterator components_end() const { return Components.rend(); }
606 
607   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
608   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
609     return VBaseOffsetOffsets;
610   }
611 };
612 
613 void
614 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
615                                                     bool BaseIsVirtual,
616                                                     CharUnits RealBaseOffset) {
617   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
618 
619   // Itanium C++ ABI 2.5.2:
620   //   ..in classes sharing a virtual table with a primary base class, the vcall
621   //   and vbase offsets added by the derived class all come before the vcall
622   //   and vbase offsets required by the base class, so that the latter may be
623   //   laid out as required by the base class without regard to additions from
624   //   the derived class(es).
625 
626   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
627   // emit them for the primary base first).
628   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
629     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
630 
631     CharUnits PrimaryBaseOffset;
632 
633     // Get the base offset of the primary base.
634     if (PrimaryBaseIsVirtual) {
635       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
636              "Primary vbase should have a zero offset!");
637 
638       const ASTRecordLayout &MostDerivedClassLayout =
639         Context.getASTRecordLayout(MostDerivedClass);
640 
641       PrimaryBaseOffset =
642         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
643     } else {
644       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
645              "Primary base should have a zero offset!");
646 
647       PrimaryBaseOffset = Base.getBaseOffset();
648     }
649 
650     AddVCallAndVBaseOffsets(
651       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
652       PrimaryBaseIsVirtual, RealBaseOffset);
653   }
654 
655   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
656 
657   // We only want to add vcall offsets for virtual bases.
658   if (BaseIsVirtual)
659     AddVCallOffsets(Base, RealBaseOffset);
660 }
661 
662 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
663   // OffsetIndex is the index of this vcall or vbase offset, relative to the
664   // vtable address point. (We subtract 3 to account for the information just
665   // above the address point, the RTTI info, the offset to top, and the
666   // vcall offset itself).
667   int64_t OffsetIndex = -(int64_t)(3 + Components.size());
668 
669   // Under the relative ABI, the offset widths are 32-bit ints instead of
670   // pointer widths.
671   CharUnits OffsetWidth = Context.toCharUnitsFromBits(
672       VTables.isRelativeLayout() ? 32
673                                  : Context.getTargetInfo().getPointerWidth(0));
674   CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
675 
676   return OffsetOffset;
677 }
678 
679 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
680                                                  CharUnits VBaseOffset) {
681   const CXXRecordDecl *RD = Base.getBase();
682   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
683 
684   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
685 
686   // Handle the primary base first.
687   // We only want to add vcall offsets if the base is non-virtual; a virtual
688   // primary base will have its vcall and vbase offsets emitted already.
689   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
690     // Get the base offset of the primary base.
691     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
692            "Primary base should have a zero offset!");
693 
694     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
695                     VBaseOffset);
696   }
697 
698   // Add the vcall offsets.
699   for (const auto *MD : RD->methods()) {
700     if (!VTableContextBase::hasVtableSlot(MD))
701       continue;
702     MD = MD->getCanonicalDecl();
703 
704     CharUnits OffsetOffset = getCurrentOffsetOffset();
705 
706     // Don't add a vcall offset if we already have one for this member function
707     // signature.
708     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
709       continue;
710 
711     CharUnits Offset = CharUnits::Zero();
712 
713     if (Overriders) {
714       // Get the final overrider.
715       FinalOverriders::OverriderInfo Overrider =
716         Overriders->getOverrider(MD, Base.getBaseOffset());
717 
718       /// The vcall offset is the offset from the virtual base to the object
719       /// where the function was overridden.
720       Offset = Overrider.Offset - VBaseOffset;
721     }
722 
723     Components.push_back(
724       VTableComponent::MakeVCallOffset(Offset));
725   }
726 
727   // And iterate over all non-virtual bases (ignoring the primary base).
728   for (const auto &B : RD->bases()) {
729     if (B.isVirtual())
730       continue;
731 
732     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
733     if (BaseDecl == PrimaryBase)
734       continue;
735 
736     // Get the base offset of this base.
737     CharUnits BaseOffset = Base.getBaseOffset() +
738       Layout.getBaseClassOffset(BaseDecl);
739 
740     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
741                     VBaseOffset);
742   }
743 }
744 
745 void
746 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
747                                             CharUnits OffsetInLayoutClass) {
748   const ASTRecordLayout &LayoutClassLayout =
749     Context.getASTRecordLayout(LayoutClass);
750 
751   // Add vbase offsets.
752   for (const auto &B : RD->bases()) {
753     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
754 
755     // Check if this is a virtual base that we haven't visited before.
756     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
757       CharUnits Offset =
758         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
759 
760       // Add the vbase offset offset.
761       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
762              "vbase offset offset already exists!");
763 
764       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
765       VBaseOffsetOffsets.insert(
766           std::make_pair(BaseDecl, VBaseOffsetOffset));
767 
768       Components.push_back(
769           VTableComponent::MakeVBaseOffset(Offset));
770     }
771 
772     // Check the base class looking for more vbase offsets.
773     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
774   }
775 }
776 
777 /// ItaniumVTableBuilder - Class for building vtable layout information.
778 class ItaniumVTableBuilder {
779 public:
780   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
781   /// primary bases.
782   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
783     PrimaryBasesSetVectorTy;
784 
785   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
786     VBaseOffsetOffsetsMapTy;
787 
788   typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
789 
790   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
791 
792 private:
793   /// VTables - Global vtable information.
794   ItaniumVTableContext &VTables;
795 
796   /// MostDerivedClass - The most derived class for which we're building this
797   /// vtable.
798   const CXXRecordDecl *MostDerivedClass;
799 
800   /// MostDerivedClassOffset - If we're building a construction vtable, this
801   /// holds the offset from the layout class to the most derived class.
802   const CharUnits MostDerivedClassOffset;
803 
804   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
805   /// base. (This only makes sense when building a construction vtable).
806   bool MostDerivedClassIsVirtual;
807 
808   /// LayoutClass - The class we're using for layout information. Will be
809   /// different than the most derived class if we're building a construction
810   /// vtable.
811   const CXXRecordDecl *LayoutClass;
812 
813   /// Context - The ASTContext which we will use for layout information.
814   ASTContext &Context;
815 
816   /// FinalOverriders - The final overriders of the most derived class.
817   const FinalOverriders Overriders;
818 
819   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
820   /// bases in this vtable.
821   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
822 
823   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
824   /// the most derived class.
825   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
826 
827   /// Components - The components of the vtable being built.
828   SmallVector<VTableComponent, 64> Components;
829 
830   /// AddressPoints - Address points for the vtable being built.
831   AddressPointsMapTy AddressPoints;
832 
833   /// MethodInfo - Contains information about a method in a vtable.
834   /// (Used for computing 'this' pointer adjustment thunks.
835   struct MethodInfo {
836     /// BaseOffset - The base offset of this method.
837     const CharUnits BaseOffset;
838 
839     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
840     /// method.
841     const CharUnits BaseOffsetInLayoutClass;
842 
843     /// VTableIndex - The index in the vtable that this method has.
844     /// (For destructors, this is the index of the complete destructor).
845     const uint64_t VTableIndex;
846 
847     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
848                uint64_t VTableIndex)
849       : BaseOffset(BaseOffset),
850       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
851       VTableIndex(VTableIndex) { }
852 
853     MethodInfo()
854       : BaseOffset(CharUnits::Zero()),
855       BaseOffsetInLayoutClass(CharUnits::Zero()),
856       VTableIndex(0) { }
857 
858     MethodInfo(MethodInfo const&) = default;
859   };
860 
861   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
862 
863   /// MethodInfoMap - The information for all methods in the vtable we're
864   /// currently building.
865   MethodInfoMapTy MethodInfoMap;
866 
867   /// MethodVTableIndices - Contains the index (relative to the vtable address
868   /// point) where the function pointer for a virtual function is stored.
869   MethodVTableIndicesTy MethodVTableIndices;
870 
871   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
872 
873   /// VTableThunks - The thunks by vtable index in the vtable currently being
874   /// built.
875   VTableThunksMapTy VTableThunks;
876 
877   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
878   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
879 
880   /// Thunks - A map that contains all the thunks needed for all methods in the
881   /// most derived class for which the vtable is currently being built.
882   ThunksMapTy Thunks;
883 
884   /// AddThunk - Add a thunk for the given method.
885   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
886 
887   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
888   /// part of the vtable we're currently building.
889   void ComputeThisAdjustments();
890 
891   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
892 
893   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
894   /// some other base.
895   VisitedVirtualBasesSetTy PrimaryVirtualBases;
896 
897   /// ComputeReturnAdjustment - Compute the return adjustment given a return
898   /// adjustment base offset.
899   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
900 
901   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
902   /// the 'this' pointer from the base subobject to the derived subobject.
903   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
904                                              BaseSubobject Derived) const;
905 
906   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
907   /// given virtual member function, its offset in the layout class and its
908   /// final overrider.
909   ThisAdjustment
910   ComputeThisAdjustment(const CXXMethodDecl *MD,
911                         CharUnits BaseOffsetInLayoutClass,
912                         FinalOverriders::OverriderInfo Overrider);
913 
914   /// AddMethod - Add a single virtual member function to the vtable
915   /// components vector.
916   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
917 
918   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
919   /// part of the vtable.
920   ///
921   /// Itanium C++ ABI 2.5.2:
922   ///
923   ///   struct A { virtual void f(); };
924   ///   struct B : virtual public A { int i; };
925   ///   struct C : virtual public A { int j; };
926   ///   struct D : public B, public C {};
927   ///
928   ///   When B and C are declared, A is a primary base in each case, so although
929   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
930   ///   adjustment is required and no thunk is generated. However, inside D
931   ///   objects, A is no longer a primary base of C, so if we allowed calls to
932   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
933   ///   to adjust this from C* to B::A*, which would require a third-party
934   ///   thunk. Since we require that a call to C::f() first convert to A*,
935   ///   C-in-D's copy of A's vtable is never referenced, so this is not
936   ///   necessary.
937   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
938                        CharUnits BaseOffsetInLayoutClass,
939                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
940                        CharUnits FirstBaseOffsetInLayoutClass) const;
941 
942 
943   /// AddMethods - Add the methods of this base subobject and all its
944   /// primary bases to the vtable components vector.
945   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
946                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
947                   CharUnits FirstBaseOffsetInLayoutClass,
948                   PrimaryBasesSetVectorTy &PrimaryBases);
949 
950   // LayoutVTable - Layout the vtable for the given base class, including its
951   // secondary vtables and any vtables for virtual bases.
952   void LayoutVTable();
953 
954   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
955   /// given base subobject, as well as all its secondary vtables.
956   ///
957   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
958   /// or a direct or indirect base of a virtual base.
959   ///
960   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
961   /// in the layout class.
962   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
963                                         bool BaseIsMorallyVirtual,
964                                         bool BaseIsVirtualInLayoutClass,
965                                         CharUnits OffsetInLayoutClass);
966 
967   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
968   /// subobject.
969   ///
970   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
971   /// or a direct or indirect base of a virtual base.
972   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
973                               CharUnits OffsetInLayoutClass);
974 
975   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
976   /// class hierarchy.
977   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
978                                     CharUnits OffsetInLayoutClass,
979                                     VisitedVirtualBasesSetTy &VBases);
980 
981   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
982   /// given base (excluding any primary bases).
983   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
984                                     VisitedVirtualBasesSetTy &VBases);
985 
986   /// isBuildingConstructionVTable - Return whether this vtable builder is
987   /// building a construction vtable.
988   bool isBuildingConstructorVTable() const {
989     return MostDerivedClass != LayoutClass;
990   }
991 
992 public:
993   /// Component indices of the first component of each of the vtables in the
994   /// vtable group.
995   SmallVector<size_t, 4> VTableIndices;
996 
997   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
998                        const CXXRecordDecl *MostDerivedClass,
999                        CharUnits MostDerivedClassOffset,
1000                        bool MostDerivedClassIsVirtual,
1001                        const CXXRecordDecl *LayoutClass)
1002       : VTables(VTables), MostDerivedClass(MostDerivedClass),
1003         MostDerivedClassOffset(MostDerivedClassOffset),
1004         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1005         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1006         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1007     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1008 
1009     LayoutVTable();
1010 
1011     if (Context.getLangOpts().DumpVTableLayouts)
1012       dumpLayout(llvm::outs());
1013   }
1014 
1015   uint64_t getNumThunks() const {
1016     return Thunks.size();
1017   }
1018 
1019   ThunksMapTy::const_iterator thunks_begin() const {
1020     return Thunks.begin();
1021   }
1022 
1023   ThunksMapTy::const_iterator thunks_end() const {
1024     return Thunks.end();
1025   }
1026 
1027   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1028     return VBaseOffsetOffsets;
1029   }
1030 
1031   const AddressPointsMapTy &getAddressPoints() const {
1032     return AddressPoints;
1033   }
1034 
1035   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1036     return MethodVTableIndices.begin();
1037   }
1038 
1039   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1040     return MethodVTableIndices.end();
1041   }
1042 
1043   ArrayRef<VTableComponent> vtable_components() const { return Components; }
1044 
1045   AddressPointsMapTy::const_iterator address_points_begin() const {
1046     return AddressPoints.begin();
1047   }
1048 
1049   AddressPointsMapTy::const_iterator address_points_end() const {
1050     return AddressPoints.end();
1051   }
1052 
1053   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1054     return VTableThunks.begin();
1055   }
1056 
1057   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1058     return VTableThunks.end();
1059   }
1060 
1061   /// dumpLayout - Dump the vtable layout.
1062   void dumpLayout(raw_ostream&);
1063 };
1064 
1065 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1066                                     const ThunkInfo &Thunk) {
1067   assert(!isBuildingConstructorVTable() &&
1068          "Can't add thunks for construction vtable");
1069 
1070   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1071 
1072   // Check if we have this thunk already.
1073   if (llvm::is_contained(ThunksVector, Thunk))
1074     return;
1075 
1076   ThunksVector.push_back(Thunk);
1077 }
1078 
1079 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1080 
1081 /// Visit all the methods overridden by the given method recursively,
1082 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1083 /// indicating whether to continue the recursion for the given overridden
1084 /// method (i.e. returning false stops the iteration).
1085 template <class VisitorTy>
1086 static void
1087 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1088   assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1089 
1090   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1091     if (!Visitor(OverriddenMD))
1092       continue;
1093     visitAllOverriddenMethods(OverriddenMD, Visitor);
1094   }
1095 }
1096 
1097 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1098 /// the overridden methods that the function decl overrides.
1099 static void
1100 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1101                             OverriddenMethodsSetTy& OverriddenMethods) {
1102   auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1103     // Don't recurse on this method if we've already collected it.
1104     return OverriddenMethods.insert(MD).second;
1105   };
1106   visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1107 }
1108 
1109 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1110   // Now go through the method info map and see if any of the methods need
1111   // 'this' pointer adjustments.
1112   for (const auto &MI : MethodInfoMap) {
1113     const CXXMethodDecl *MD = MI.first;
1114     const MethodInfo &MethodInfo = MI.second;
1115 
1116     // Ignore adjustments for unused function pointers.
1117     uint64_t VTableIndex = MethodInfo.VTableIndex;
1118     if (Components[VTableIndex].getKind() ==
1119         VTableComponent::CK_UnusedFunctionPointer)
1120       continue;
1121 
1122     // Get the final overrider for this method.
1123     FinalOverriders::OverriderInfo Overrider =
1124       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1125 
1126     // Check if we need an adjustment at all.
1127     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1128       // When a return thunk is needed by a derived class that overrides a
1129       // virtual base, gcc uses a virtual 'this' adjustment as well.
1130       // While the thunk itself might be needed by vtables in subclasses or
1131       // in construction vtables, there doesn't seem to be a reason for using
1132       // the thunk in this vtable. Still, we do so to match gcc.
1133       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1134         continue;
1135     }
1136 
1137     ThisAdjustment ThisAdjustment =
1138       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1139 
1140     if (ThisAdjustment.isEmpty())
1141       continue;
1142 
1143     // Add it.
1144     VTableThunks[VTableIndex].This = ThisAdjustment;
1145 
1146     if (isa<CXXDestructorDecl>(MD)) {
1147       // Add an adjustment for the deleting destructor as well.
1148       VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1149     }
1150   }
1151 
1152   /// Clear the method info map.
1153   MethodInfoMap.clear();
1154 
1155   if (isBuildingConstructorVTable()) {
1156     // We don't need to store thunk information for construction vtables.
1157     return;
1158   }
1159 
1160   for (const auto &TI : VTableThunks) {
1161     const VTableComponent &Component = Components[TI.first];
1162     const ThunkInfo &Thunk = TI.second;
1163     const CXXMethodDecl *MD;
1164 
1165     switch (Component.getKind()) {
1166     default:
1167       llvm_unreachable("Unexpected vtable component kind!");
1168     case VTableComponent::CK_FunctionPointer:
1169       MD = Component.getFunctionDecl();
1170       break;
1171     case VTableComponent::CK_CompleteDtorPointer:
1172       MD = Component.getDestructorDecl();
1173       break;
1174     case VTableComponent::CK_DeletingDtorPointer:
1175       // We've already added the thunk when we saw the complete dtor pointer.
1176       continue;
1177     }
1178 
1179     if (MD->getParent() == MostDerivedClass)
1180       AddThunk(MD, Thunk);
1181   }
1182 }
1183 
1184 ReturnAdjustment
1185 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1186   ReturnAdjustment Adjustment;
1187 
1188   if (!Offset.isEmpty()) {
1189     if (Offset.VirtualBase) {
1190       // Get the virtual base offset offset.
1191       if (Offset.DerivedClass == MostDerivedClass) {
1192         // We can get the offset offset directly from our map.
1193         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1194           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1195       } else {
1196         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1197           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1198                                              Offset.VirtualBase).getQuantity();
1199       }
1200     }
1201 
1202     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1203   }
1204 
1205   return Adjustment;
1206 }
1207 
1208 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1209     BaseSubobject Base, BaseSubobject Derived) const {
1210   const CXXRecordDecl *BaseRD = Base.getBase();
1211   const CXXRecordDecl *DerivedRD = Derived.getBase();
1212 
1213   CXXBasePaths Paths(/*FindAmbiguities=*/true,
1214                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
1215 
1216   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1217     llvm_unreachable("Class must be derived from the passed in base class!");
1218 
1219   // We have to go through all the paths, and see which one leads us to the
1220   // right base subobject.
1221   for (const CXXBasePath &Path : Paths) {
1222     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1223 
1224     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1225 
1226     if (Offset.VirtualBase) {
1227       // If we have a virtual base class, the non-virtual offset is relative
1228       // to the virtual base class offset.
1229       const ASTRecordLayout &LayoutClassLayout =
1230         Context.getASTRecordLayout(LayoutClass);
1231 
1232       /// Get the virtual base offset, relative to the most derived class
1233       /// layout.
1234       OffsetToBaseSubobject +=
1235         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1236     } else {
1237       // Otherwise, the non-virtual offset is relative to the derived class
1238       // offset.
1239       OffsetToBaseSubobject += Derived.getBaseOffset();
1240     }
1241 
1242     // Check if this path gives us the right base subobject.
1243     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1244       // Since we're going from the base class _to_ the derived class, we'll
1245       // invert the non-virtual offset here.
1246       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1247       return Offset;
1248     }
1249   }
1250 
1251   return BaseOffset();
1252 }
1253 
1254 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1255     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1256     FinalOverriders::OverriderInfo Overrider) {
1257   // Ignore adjustments for pure virtual member functions.
1258   if (Overrider.Method->isPure())
1259     return ThisAdjustment();
1260 
1261   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1262                                         BaseOffsetInLayoutClass);
1263 
1264   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1265                                        Overrider.Offset);
1266 
1267   // Compute the adjustment offset.
1268   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1269                                                       OverriderBaseSubobject);
1270   if (Offset.isEmpty())
1271     return ThisAdjustment();
1272 
1273   ThisAdjustment Adjustment;
1274 
1275   if (Offset.VirtualBase) {
1276     // Get the vcall offset map for this virtual base.
1277     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1278 
1279     if (VCallOffsets.empty()) {
1280       // We don't have vcall offsets for this virtual base, go ahead and
1281       // build them.
1282       VCallAndVBaseOffsetBuilder Builder(
1283           VTables, MostDerivedClass, MostDerivedClass,
1284           /*Overriders=*/nullptr,
1285           BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1286           /*BaseIsVirtual=*/true,
1287           /*OffsetInLayoutClass=*/
1288           CharUnits::Zero());
1289 
1290       VCallOffsets = Builder.getVCallOffsets();
1291     }
1292 
1293     Adjustment.Virtual.Itanium.VCallOffsetOffset =
1294       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1295   }
1296 
1297   // Set the non-virtual part of the adjustment.
1298   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1299 
1300   return Adjustment;
1301 }
1302 
1303 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1304                                      ReturnAdjustment ReturnAdjustment) {
1305   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1306     assert(ReturnAdjustment.isEmpty() &&
1307            "Destructor can't have return adjustment!");
1308 
1309     // Add both the complete destructor and the deleting destructor.
1310     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1311     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1312   } else {
1313     // Add the return adjustment if necessary.
1314     if (!ReturnAdjustment.isEmpty())
1315       VTableThunks[Components.size()].Return = ReturnAdjustment;
1316 
1317     // Add the function.
1318     Components.push_back(VTableComponent::MakeFunction(MD));
1319   }
1320 }
1321 
1322 /// OverridesIndirectMethodInBase - Return whether the given member function
1323 /// overrides any methods in the set of given bases.
1324 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1325 /// For example, if we have:
1326 ///
1327 /// struct A { virtual void f(); }
1328 /// struct B : A { virtual void f(); }
1329 /// struct C : B { virtual void f(); }
1330 ///
1331 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1332 /// and { A } as the set of bases.
1333 static bool OverridesIndirectMethodInBases(
1334     const CXXMethodDecl *MD,
1335     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1336   if (Bases.count(MD->getParent()))
1337     return true;
1338 
1339   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1340     // Check "indirect overriders".
1341     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1342       return true;
1343   }
1344 
1345   return false;
1346 }
1347 
1348 bool ItaniumVTableBuilder::IsOverriderUsed(
1349     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1350     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1351     CharUnits FirstBaseOffsetInLayoutClass) const {
1352   // If the base and the first base in the primary base chain have the same
1353   // offsets, then this overrider will be used.
1354   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1355    return true;
1356 
1357   // We know now that Base (or a direct or indirect base of it) is a primary
1358   // base in part of the class hierarchy, but not a primary base in the most
1359   // derived class.
1360 
1361   // If the overrider is the first base in the primary base chain, we know
1362   // that the overrider will be used.
1363   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1364     return true;
1365 
1366   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1367 
1368   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1369   PrimaryBases.insert(RD);
1370 
1371   // Now traverse the base chain, starting with the first base, until we find
1372   // the base that is no longer a primary base.
1373   while (true) {
1374     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1375     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1376 
1377     if (!PrimaryBase)
1378       break;
1379 
1380     if (Layout.isPrimaryBaseVirtual()) {
1381       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1382              "Primary base should always be at offset 0!");
1383 
1384       const ASTRecordLayout &LayoutClassLayout =
1385         Context.getASTRecordLayout(LayoutClass);
1386 
1387       // Now check if this is the primary base that is not a primary base in the
1388       // most derived class.
1389       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1390           FirstBaseOffsetInLayoutClass) {
1391         // We found it, stop walking the chain.
1392         break;
1393       }
1394     } else {
1395       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1396              "Primary base should always be at offset 0!");
1397     }
1398 
1399     if (!PrimaryBases.insert(PrimaryBase))
1400       llvm_unreachable("Found a duplicate primary base!");
1401 
1402     RD = PrimaryBase;
1403   }
1404 
1405   // If the final overrider is an override of one of the primary bases,
1406   // then we know that it will be used.
1407   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1408 }
1409 
1410 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1411 
1412 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1413 /// from the nearest base. Returns null if no method was found.
1414 /// The Bases are expected to be sorted in a base-to-derived order.
1415 static const CXXMethodDecl *
1416 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1417                             BasesSetVectorTy &Bases) {
1418   OverriddenMethodsSetTy OverriddenMethods;
1419   ComputeAllOverriddenMethods(MD, OverriddenMethods);
1420 
1421   for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1422     // Now check the overridden methods.
1423     for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1424       // We found our overridden method.
1425       if (OverriddenMD->getParent() == PrimaryBase)
1426         return OverriddenMD;
1427     }
1428   }
1429 
1430   return nullptr;
1431 }
1432 
1433 void ItaniumVTableBuilder::AddMethods(
1434     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1435     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1436     CharUnits FirstBaseOffsetInLayoutClass,
1437     PrimaryBasesSetVectorTy &PrimaryBases) {
1438   // Itanium C++ ABI 2.5.2:
1439   //   The order of the virtual function pointers in a virtual table is the
1440   //   order of declaration of the corresponding member functions in the class.
1441   //
1442   //   There is an entry for any virtual function declared in a class,
1443   //   whether it is a new function or overrides a base class function,
1444   //   unless it overrides a function from the primary base, and conversion
1445   //   between their return types does not require an adjustment.
1446 
1447   const CXXRecordDecl *RD = Base.getBase();
1448   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1449 
1450   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1451     CharUnits PrimaryBaseOffset;
1452     CharUnits PrimaryBaseOffsetInLayoutClass;
1453     if (Layout.isPrimaryBaseVirtual()) {
1454       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1455              "Primary vbase should have a zero offset!");
1456 
1457       const ASTRecordLayout &MostDerivedClassLayout =
1458         Context.getASTRecordLayout(MostDerivedClass);
1459 
1460       PrimaryBaseOffset =
1461         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1462 
1463       const ASTRecordLayout &LayoutClassLayout =
1464         Context.getASTRecordLayout(LayoutClass);
1465 
1466       PrimaryBaseOffsetInLayoutClass =
1467         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1468     } else {
1469       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1470              "Primary base should have a zero offset!");
1471 
1472       PrimaryBaseOffset = Base.getBaseOffset();
1473       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1474     }
1475 
1476     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1477                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1478                FirstBaseOffsetInLayoutClass, PrimaryBases);
1479 
1480     if (!PrimaryBases.insert(PrimaryBase))
1481       llvm_unreachable("Found a duplicate primary base!");
1482   }
1483 
1484   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1485   NewVirtualFunctionsTy NewVirtualFunctions;
1486 
1487   llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1488 
1489   // Now go through all virtual member functions and add them.
1490   for (const auto *MD : RD->methods()) {
1491     if (!ItaniumVTableContext::hasVtableSlot(MD))
1492       continue;
1493     MD = MD->getCanonicalDecl();
1494 
1495     // Get the final overrider.
1496     FinalOverriders::OverriderInfo Overrider =
1497       Overriders.getOverrider(MD, Base.getBaseOffset());
1498 
1499     // Check if this virtual member function overrides a method in a primary
1500     // base. If this is the case, and the return type doesn't require adjustment
1501     // then we can just use the member function from the primary base.
1502     if (const CXXMethodDecl *OverriddenMD =
1503           FindNearestOverriddenMethod(MD, PrimaryBases)) {
1504       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1505                                             OverriddenMD).isEmpty()) {
1506         // Replace the method info of the overridden method with our own
1507         // method.
1508         assert(MethodInfoMap.count(OverriddenMD) &&
1509                "Did not find the overridden method!");
1510         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1511 
1512         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1513                               OverriddenMethodInfo.VTableIndex);
1514 
1515         assert(!MethodInfoMap.count(MD) &&
1516                "Should not have method info for this method yet!");
1517 
1518         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1519         MethodInfoMap.erase(OverriddenMD);
1520 
1521         // If the overridden method exists in a virtual base class or a direct
1522         // or indirect base class of a virtual base class, we need to emit a
1523         // thunk if we ever have a class hierarchy where the base class is not
1524         // a primary base in the complete object.
1525         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1526           // Compute the this adjustment.
1527           ThisAdjustment ThisAdjustment =
1528             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1529                                   Overrider);
1530 
1531           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1532               Overrider.Method->getParent() == MostDerivedClass) {
1533 
1534             // There's no return adjustment from OverriddenMD and MD,
1535             // but that doesn't mean there isn't one between MD and
1536             // the final overrider.
1537             BaseOffset ReturnAdjustmentOffset =
1538               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1539             ReturnAdjustment ReturnAdjustment =
1540               ComputeReturnAdjustment(ReturnAdjustmentOffset);
1541 
1542             // This is a virtual thunk for the most derived class, add it.
1543             AddThunk(Overrider.Method,
1544                      ThunkInfo(ThisAdjustment, ReturnAdjustment));
1545           }
1546         }
1547 
1548         continue;
1549       }
1550     }
1551 
1552     if (MD->isImplicit())
1553       NewImplicitVirtualFunctions.push_back(MD);
1554     else
1555       NewVirtualFunctions.push_back(MD);
1556   }
1557 
1558   std::stable_sort(
1559       NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1560       [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1561         if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1562           return A->isCopyAssignmentOperator();
1563         if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1564           return A->isMoveAssignmentOperator();
1565         if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1566           return isa<CXXDestructorDecl>(A);
1567         assert(A->getOverloadedOperator() == OO_EqualEqual &&
1568                B->getOverloadedOperator() == OO_EqualEqual &&
1569                "unexpected or duplicate implicit virtual function");
1570         // We rely on Sema to have declared the operator== members in the
1571         // same order as the corresponding operator<=> members.
1572         return false;
1573       });
1574   NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1575                              NewImplicitVirtualFunctions.end());
1576 
1577   for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1578     // Get the final overrider.
1579     FinalOverriders::OverriderInfo Overrider =
1580       Overriders.getOverrider(MD, Base.getBaseOffset());
1581 
1582     // Insert the method info for this method.
1583     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1584                           Components.size());
1585 
1586     assert(!MethodInfoMap.count(MD) &&
1587            "Should not have method info for this method yet!");
1588     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1589 
1590     // Check if this overrider is going to be used.
1591     const CXXMethodDecl *OverriderMD = Overrider.Method;
1592     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1593                          FirstBaseInPrimaryBaseChain,
1594                          FirstBaseOffsetInLayoutClass)) {
1595       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1596       continue;
1597     }
1598 
1599     // Check if this overrider needs a return adjustment.
1600     // We don't want to do this for pure virtual member functions.
1601     BaseOffset ReturnAdjustmentOffset;
1602     if (!OverriderMD->isPure()) {
1603       ReturnAdjustmentOffset =
1604         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1605     }
1606 
1607     ReturnAdjustment ReturnAdjustment =
1608       ComputeReturnAdjustment(ReturnAdjustmentOffset);
1609 
1610     AddMethod(Overrider.Method, ReturnAdjustment);
1611   }
1612 }
1613 
1614 void ItaniumVTableBuilder::LayoutVTable() {
1615   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1616                                                  CharUnits::Zero()),
1617                                    /*BaseIsMorallyVirtual=*/false,
1618                                    MostDerivedClassIsVirtual,
1619                                    MostDerivedClassOffset);
1620 
1621   VisitedVirtualBasesSetTy VBases;
1622 
1623   // Determine the primary virtual bases.
1624   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1625                                VBases);
1626   VBases.clear();
1627 
1628   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1629 
1630   // -fapple-kext adds an extra entry at end of vtbl.
1631   bool IsAppleKext = Context.getLangOpts().AppleKext;
1632   if (IsAppleKext)
1633     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1634 }
1635 
1636 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1637     BaseSubobject Base, bool BaseIsMorallyVirtual,
1638     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1639   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1640 
1641   unsigned VTableIndex = Components.size();
1642   VTableIndices.push_back(VTableIndex);
1643 
1644   // Add vcall and vbase offsets for this vtable.
1645   VCallAndVBaseOffsetBuilder Builder(
1646       VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1647       BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1648   Components.append(Builder.components_begin(), Builder.components_end());
1649 
1650   // Check if we need to add these vcall offsets.
1651   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1652     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1653 
1654     if (VCallOffsets.empty())
1655       VCallOffsets = Builder.getVCallOffsets();
1656   }
1657 
1658   // If we're laying out the most derived class we want to keep track of the
1659   // virtual base class offset offsets.
1660   if (Base.getBase() == MostDerivedClass)
1661     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1662 
1663   // Add the offset to top.
1664   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1665   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1666 
1667   // Next, add the RTTI.
1668   Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1669 
1670   uint64_t AddressPoint = Components.size();
1671 
1672   // Now go through all virtual member functions and add them.
1673   PrimaryBasesSetVectorTy PrimaryBases;
1674   AddMethods(Base, OffsetInLayoutClass,
1675              Base.getBase(), OffsetInLayoutClass,
1676              PrimaryBases);
1677 
1678   const CXXRecordDecl *RD = Base.getBase();
1679   if (RD == MostDerivedClass) {
1680     assert(MethodVTableIndices.empty());
1681     for (const auto &I : MethodInfoMap) {
1682       const CXXMethodDecl *MD = I.first;
1683       const MethodInfo &MI = I.second;
1684       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1685         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1686             = MI.VTableIndex - AddressPoint;
1687         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1688             = MI.VTableIndex + 1 - AddressPoint;
1689       } else {
1690         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1691       }
1692     }
1693   }
1694 
1695   // Compute 'this' pointer adjustments.
1696   ComputeThisAdjustments();
1697 
1698   // Add all address points.
1699   while (true) {
1700     AddressPoints.insert(
1701         std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1702                        VTableLayout::AddressPointLocation{
1703                            unsigned(VTableIndices.size() - 1),
1704                            unsigned(AddressPoint - VTableIndex)}));
1705 
1706     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1707     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1708 
1709     if (!PrimaryBase)
1710       break;
1711 
1712     if (Layout.isPrimaryBaseVirtual()) {
1713       // Check if this virtual primary base is a primary base in the layout
1714       // class. If it's not, we don't want to add it.
1715       const ASTRecordLayout &LayoutClassLayout =
1716         Context.getASTRecordLayout(LayoutClass);
1717 
1718       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1719           OffsetInLayoutClass) {
1720         // We don't want to add this class (or any of its primary bases).
1721         break;
1722       }
1723     }
1724 
1725     RD = PrimaryBase;
1726   }
1727 
1728   // Layout secondary vtables.
1729   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1730 }
1731 
1732 void
1733 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1734                                              bool BaseIsMorallyVirtual,
1735                                              CharUnits OffsetInLayoutClass) {
1736   // Itanium C++ ABI 2.5.2:
1737   //   Following the primary virtual table of a derived class are secondary
1738   //   virtual tables for each of its proper base classes, except any primary
1739   //   base(s) with which it shares its primary virtual table.
1740 
1741   const CXXRecordDecl *RD = Base.getBase();
1742   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1743   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1744 
1745   for (const auto &B : RD->bases()) {
1746     // Ignore virtual bases, we'll emit them later.
1747     if (B.isVirtual())
1748       continue;
1749 
1750     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1751 
1752     // Ignore bases that don't have a vtable.
1753     if (!BaseDecl->isDynamicClass())
1754       continue;
1755 
1756     if (isBuildingConstructorVTable()) {
1757       // Itanium C++ ABI 2.6.4:
1758       //   Some of the base class subobjects may not need construction virtual
1759       //   tables, which will therefore not be present in the construction
1760       //   virtual table group, even though the subobject virtual tables are
1761       //   present in the main virtual table group for the complete object.
1762       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1763         continue;
1764     }
1765 
1766     // Get the base offset of this base.
1767     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1768     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1769 
1770     CharUnits BaseOffsetInLayoutClass =
1771       OffsetInLayoutClass + RelativeBaseOffset;
1772 
1773     // Don't emit a secondary vtable for a primary base. We might however want
1774     // to emit secondary vtables for other bases of this base.
1775     if (BaseDecl == PrimaryBase) {
1776       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1777                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1778       continue;
1779     }
1780 
1781     // Layout the primary vtable (and any secondary vtables) for this base.
1782     LayoutPrimaryAndSecondaryVTables(
1783       BaseSubobject(BaseDecl, BaseOffset),
1784       BaseIsMorallyVirtual,
1785       /*BaseIsVirtualInLayoutClass=*/false,
1786       BaseOffsetInLayoutClass);
1787   }
1788 }
1789 
1790 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1791     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1792     VisitedVirtualBasesSetTy &VBases) {
1793   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1794 
1795   // Check if this base has a primary base.
1796   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1797 
1798     // Check if it's virtual.
1799     if (Layout.isPrimaryBaseVirtual()) {
1800       bool IsPrimaryVirtualBase = true;
1801 
1802       if (isBuildingConstructorVTable()) {
1803         // Check if the base is actually a primary base in the class we use for
1804         // layout.
1805         const ASTRecordLayout &LayoutClassLayout =
1806           Context.getASTRecordLayout(LayoutClass);
1807 
1808         CharUnits PrimaryBaseOffsetInLayoutClass =
1809           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1810 
1811         // We know that the base is not a primary base in the layout class if
1812         // the base offsets are different.
1813         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1814           IsPrimaryVirtualBase = false;
1815       }
1816 
1817       if (IsPrimaryVirtualBase)
1818         PrimaryVirtualBases.insert(PrimaryBase);
1819     }
1820   }
1821 
1822   // Traverse bases, looking for more primary virtual bases.
1823   for (const auto &B : RD->bases()) {
1824     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1825 
1826     CharUnits BaseOffsetInLayoutClass;
1827 
1828     if (B.isVirtual()) {
1829       if (!VBases.insert(BaseDecl).second)
1830         continue;
1831 
1832       const ASTRecordLayout &LayoutClassLayout =
1833         Context.getASTRecordLayout(LayoutClass);
1834 
1835       BaseOffsetInLayoutClass =
1836         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1837     } else {
1838       BaseOffsetInLayoutClass =
1839         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1840     }
1841 
1842     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1843   }
1844 }
1845 
1846 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1847     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1848   // Itanium C++ ABI 2.5.2:
1849   //   Then come the virtual base virtual tables, also in inheritance graph
1850   //   order, and again excluding primary bases (which share virtual tables with
1851   //   the classes for which they are primary).
1852   for (const auto &B : RD->bases()) {
1853     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1854 
1855     // Check if this base needs a vtable. (If it's virtual, not a primary base
1856     // of some other class, and we haven't visited it before).
1857     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1858         !PrimaryVirtualBases.count(BaseDecl) &&
1859         VBases.insert(BaseDecl).second) {
1860       const ASTRecordLayout &MostDerivedClassLayout =
1861         Context.getASTRecordLayout(MostDerivedClass);
1862       CharUnits BaseOffset =
1863         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1864 
1865       const ASTRecordLayout &LayoutClassLayout =
1866         Context.getASTRecordLayout(LayoutClass);
1867       CharUnits BaseOffsetInLayoutClass =
1868         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1869 
1870       LayoutPrimaryAndSecondaryVTables(
1871         BaseSubobject(BaseDecl, BaseOffset),
1872         /*BaseIsMorallyVirtual=*/true,
1873         /*BaseIsVirtualInLayoutClass=*/true,
1874         BaseOffsetInLayoutClass);
1875     }
1876 
1877     // We only need to check the base for virtual base vtables if it actually
1878     // has virtual bases.
1879     if (BaseDecl->getNumVBases())
1880       LayoutVTablesForVirtualBases(BaseDecl, VBases);
1881   }
1882 }
1883 
1884 /// dumpLayout - Dump the vtable layout.
1885 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1886   // FIXME: write more tests that actually use the dumpLayout output to prevent
1887   // ItaniumVTableBuilder regressions.
1888 
1889   if (isBuildingConstructorVTable()) {
1890     Out << "Construction vtable for ('";
1891     MostDerivedClass->printQualifiedName(Out);
1892     Out << "', ";
1893     Out << MostDerivedClassOffset.getQuantity() << ") in '";
1894     LayoutClass->printQualifiedName(Out);
1895   } else {
1896     Out << "Vtable for '";
1897     MostDerivedClass->printQualifiedName(Out);
1898   }
1899   Out << "' (" << Components.size() << " entries).\n";
1900 
1901   // Iterate through the address points and insert them into a new map where
1902   // they are keyed by the index and not the base object.
1903   // Since an address point can be shared by multiple subobjects, we use an
1904   // STL multimap.
1905   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1906   for (const auto &AP : AddressPoints) {
1907     const BaseSubobject &Base = AP.first;
1908     uint64_t Index =
1909         VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1910 
1911     AddressPointsByIndex.insert(std::make_pair(Index, Base));
1912   }
1913 
1914   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1915     uint64_t Index = I;
1916 
1917     Out << llvm::format("%4d | ", I);
1918 
1919     const VTableComponent &Component = Components[I];
1920 
1921     // Dump the component.
1922     switch (Component.getKind()) {
1923 
1924     case VTableComponent::CK_VCallOffset:
1925       Out << "vcall_offset ("
1926           << Component.getVCallOffset().getQuantity()
1927           << ")";
1928       break;
1929 
1930     case VTableComponent::CK_VBaseOffset:
1931       Out << "vbase_offset ("
1932           << Component.getVBaseOffset().getQuantity()
1933           << ")";
1934       break;
1935 
1936     case VTableComponent::CK_OffsetToTop:
1937       Out << "offset_to_top ("
1938           << Component.getOffsetToTop().getQuantity()
1939           << ")";
1940       break;
1941 
1942     case VTableComponent::CK_RTTI:
1943       Component.getRTTIDecl()->printQualifiedName(Out);
1944       Out << " RTTI";
1945       break;
1946 
1947     case VTableComponent::CK_FunctionPointer: {
1948       const CXXMethodDecl *MD = Component.getFunctionDecl();
1949 
1950       std::string Str =
1951         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1952                                     MD);
1953       Out << Str;
1954       if (MD->isPure())
1955         Out << " [pure]";
1956 
1957       if (MD->isDeleted())
1958         Out << " [deleted]";
1959 
1960       ThunkInfo Thunk = VTableThunks.lookup(I);
1961       if (!Thunk.isEmpty()) {
1962         // If this function pointer has a return adjustment, dump it.
1963         if (!Thunk.Return.isEmpty()) {
1964           Out << "\n       [return adjustment: ";
1965           Out << Thunk.Return.NonVirtual << " non-virtual";
1966 
1967           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1968             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1969             Out << " vbase offset offset";
1970           }
1971 
1972           Out << ']';
1973         }
1974 
1975         // If this function pointer has a 'this' pointer adjustment, dump it.
1976         if (!Thunk.This.isEmpty()) {
1977           Out << "\n       [this adjustment: ";
1978           Out << Thunk.This.NonVirtual << " non-virtual";
1979 
1980           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1981             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1982             Out << " vcall offset offset";
1983           }
1984 
1985           Out << ']';
1986         }
1987       }
1988 
1989       break;
1990     }
1991 
1992     case VTableComponent::CK_CompleteDtorPointer:
1993     case VTableComponent::CK_DeletingDtorPointer: {
1994       bool IsComplete =
1995         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1996 
1997       const CXXDestructorDecl *DD = Component.getDestructorDecl();
1998 
1999       DD->printQualifiedName(Out);
2000       if (IsComplete)
2001         Out << "() [complete]";
2002       else
2003         Out << "() [deleting]";
2004 
2005       if (DD->isPure())
2006         Out << " [pure]";
2007 
2008       ThunkInfo Thunk = VTableThunks.lookup(I);
2009       if (!Thunk.isEmpty()) {
2010         // If this destructor has a 'this' pointer adjustment, dump it.
2011         if (!Thunk.This.isEmpty()) {
2012           Out << "\n       [this adjustment: ";
2013           Out << Thunk.This.NonVirtual << " non-virtual";
2014 
2015           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2016             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2017             Out << " vcall offset offset";
2018           }
2019 
2020           Out << ']';
2021         }
2022       }
2023 
2024       break;
2025     }
2026 
2027     case VTableComponent::CK_UnusedFunctionPointer: {
2028       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2029 
2030       std::string Str =
2031         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2032                                     MD);
2033       Out << "[unused] " << Str;
2034       if (MD->isPure())
2035         Out << " [pure]";
2036     }
2037 
2038     }
2039 
2040     Out << '\n';
2041 
2042     // Dump the next address point.
2043     uint64_t NextIndex = Index + 1;
2044     if (AddressPointsByIndex.count(NextIndex)) {
2045       if (AddressPointsByIndex.count(NextIndex) == 1) {
2046         const BaseSubobject &Base =
2047           AddressPointsByIndex.find(NextIndex)->second;
2048 
2049         Out << "       -- (";
2050         Base.getBase()->printQualifiedName(Out);
2051         Out << ", " << Base.getBaseOffset().getQuantity();
2052         Out << ") vtable address --\n";
2053       } else {
2054         CharUnits BaseOffset =
2055           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2056 
2057         // We store the class names in a set to get a stable order.
2058         std::set<std::string> ClassNames;
2059         for (const auto &I :
2060              llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2061           assert(I.second.getBaseOffset() == BaseOffset &&
2062                  "Invalid base offset!");
2063           const CXXRecordDecl *RD = I.second.getBase();
2064           ClassNames.insert(RD->getQualifiedNameAsString());
2065         }
2066 
2067         for (const std::string &Name : ClassNames) {
2068           Out << "       -- (" << Name;
2069           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2070         }
2071       }
2072     }
2073   }
2074 
2075   Out << '\n';
2076 
2077   if (isBuildingConstructorVTable())
2078     return;
2079 
2080   if (MostDerivedClass->getNumVBases()) {
2081     // We store the virtual base class names and their offsets in a map to get
2082     // a stable order.
2083 
2084     std::map<std::string, CharUnits> ClassNamesAndOffsets;
2085     for (const auto &I : VBaseOffsetOffsets) {
2086       std::string ClassName = I.first->getQualifiedNameAsString();
2087       CharUnits OffsetOffset = I.second;
2088       ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2089     }
2090 
2091     Out << "Virtual base offset offsets for '";
2092     MostDerivedClass->printQualifiedName(Out);
2093     Out << "' (";
2094     Out << ClassNamesAndOffsets.size();
2095     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2096 
2097     for (const auto &I : ClassNamesAndOffsets)
2098       Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2099 
2100     Out << "\n";
2101   }
2102 
2103   if (!Thunks.empty()) {
2104     // We store the method names in a map to get a stable order.
2105     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2106 
2107     for (const auto &I : Thunks) {
2108       const CXXMethodDecl *MD = I.first;
2109       std::string MethodName =
2110         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2111                                     MD);
2112 
2113       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2114     }
2115 
2116     for (const auto &I : MethodNamesAndDecls) {
2117       const std::string &MethodName = I.first;
2118       const CXXMethodDecl *MD = I.second;
2119 
2120       ThunkInfoVectorTy ThunksVector = Thunks[MD];
2121       llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2122         assert(LHS.Method == nullptr && RHS.Method == nullptr);
2123         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2124       });
2125 
2126       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2127       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2128 
2129       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2130         const ThunkInfo &Thunk = ThunksVector[I];
2131 
2132         Out << llvm::format("%4d | ", I);
2133 
2134         // If this function pointer has a return pointer adjustment, dump it.
2135         if (!Thunk.Return.isEmpty()) {
2136           Out << "return adjustment: " << Thunk.Return.NonVirtual;
2137           Out << " non-virtual";
2138           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2139             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2140             Out << " vbase offset offset";
2141           }
2142 
2143           if (!Thunk.This.isEmpty())
2144             Out << "\n       ";
2145         }
2146 
2147         // If this function pointer has a 'this' pointer adjustment, dump it.
2148         if (!Thunk.This.isEmpty()) {
2149           Out << "this adjustment: ";
2150           Out << Thunk.This.NonVirtual << " non-virtual";
2151 
2152           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2153             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2154             Out << " vcall offset offset";
2155           }
2156         }
2157 
2158         Out << '\n';
2159       }
2160 
2161       Out << '\n';
2162     }
2163   }
2164 
2165   // Compute the vtable indices for all the member functions.
2166   // Store them in a map keyed by the index so we'll get a sorted table.
2167   std::map<uint64_t, std::string> IndicesMap;
2168 
2169   for (const auto *MD : MostDerivedClass->methods()) {
2170     // We only want virtual member functions.
2171     if (!ItaniumVTableContext::hasVtableSlot(MD))
2172       continue;
2173     MD = MD->getCanonicalDecl();
2174 
2175     std::string MethodName =
2176       PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2177                                   MD);
2178 
2179     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2180       GlobalDecl GD(DD, Dtor_Complete);
2181       assert(MethodVTableIndices.count(GD));
2182       uint64_t VTableIndex = MethodVTableIndices[GD];
2183       IndicesMap[VTableIndex] = MethodName + " [complete]";
2184       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2185     } else {
2186       assert(MethodVTableIndices.count(MD));
2187       IndicesMap[MethodVTableIndices[MD]] = MethodName;
2188     }
2189   }
2190 
2191   // Print the vtable indices for all the member functions.
2192   if (!IndicesMap.empty()) {
2193     Out << "VTable indices for '";
2194     MostDerivedClass->printQualifiedName(Out);
2195     Out << "' (" << IndicesMap.size() << " entries).\n";
2196 
2197     for (const auto &I : IndicesMap) {
2198       uint64_t VTableIndex = I.first;
2199       const std::string &MethodName = I.second;
2200 
2201       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2202           << '\n';
2203     }
2204   }
2205 
2206   Out << '\n';
2207 }
2208 }
2209 
2210 static VTableLayout::AddressPointsIndexMapTy
2211 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2212                         unsigned numVTables) {
2213   VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2214 
2215   for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2216     const auto &addressPointLoc = it->second;
2217     unsigned vtableIndex = addressPointLoc.VTableIndex;
2218     unsigned addressPoint = addressPointLoc.AddressPointIndex;
2219     if (indexMap[vtableIndex]) {
2220       // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2221       // every vtable index should have a unique address point.
2222       assert(indexMap[vtableIndex] == addressPoint &&
2223              "Every vtable index should have a unique address point. Found a "
2224              "vtable that has two different address points.");
2225     } else {
2226       indexMap[vtableIndex] = addressPoint;
2227     }
2228   }
2229 
2230   // Note that by this point, not all the address may be initialized if the
2231   // AddressPoints map is empty. This is ok if the map isn't needed. See
2232   // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2233   // emprt map.
2234   return indexMap;
2235 }
2236 
2237 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2238                            ArrayRef<VTableComponent> VTableComponents,
2239                            ArrayRef<VTableThunkTy> VTableThunks,
2240                            const AddressPointsMapTy &AddressPoints)
2241     : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2242       AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2243                                         AddressPoints, VTableIndices.size())) {
2244   if (VTableIndices.size() <= 1)
2245     assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2246   else
2247     this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2248 
2249   llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2250                                     const VTableLayout::VTableThunkTy &RHS) {
2251     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2252            "Different thunks should have unique indices!");
2253     return LHS.first < RHS.first;
2254   });
2255 }
2256 
2257 VTableLayout::~VTableLayout() { }
2258 
2259 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2260   return MD->isVirtual() && !MD->isConsteval();
2261 }
2262 
2263 ItaniumVTableContext::ItaniumVTableContext(
2264     ASTContext &Context, VTableComponentLayout ComponentLayout)
2265     : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2266 
2267 ItaniumVTableContext::~ItaniumVTableContext() {}
2268 
2269 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2270   GD = GD.getCanonicalDecl();
2271   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2272   if (I != MethodVTableIndices.end())
2273     return I->second;
2274 
2275   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2276 
2277   computeVTableRelatedInformation(RD);
2278 
2279   I = MethodVTableIndices.find(GD);
2280   assert(I != MethodVTableIndices.end() && "Did not find index!");
2281   return I->second;
2282 }
2283 
2284 CharUnits
2285 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2286                                                  const CXXRecordDecl *VBase) {
2287   ClassPairTy ClassPair(RD, VBase);
2288 
2289   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2290     VirtualBaseClassOffsetOffsets.find(ClassPair);
2291   if (I != VirtualBaseClassOffsetOffsets.end())
2292     return I->second;
2293 
2294   VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2295                                      BaseSubobject(RD, CharUnits::Zero()),
2296                                      /*BaseIsVirtual=*/false,
2297                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
2298 
2299   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2300     // Insert all types.
2301     ClassPairTy ClassPair(RD, I.first);
2302 
2303     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2304   }
2305 
2306   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2307   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2308 
2309   return I->second;
2310 }
2311 
2312 static std::unique_ptr<VTableLayout>
2313 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2314   SmallVector<VTableLayout::VTableThunkTy, 1>
2315     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2316 
2317   return std::make_unique<VTableLayout>(
2318       Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2319       Builder.getAddressPoints());
2320 }
2321 
2322 void
2323 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2324   std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2325 
2326   // Check if we've computed this information before.
2327   if (Entry)
2328     return;
2329 
2330   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2331                                /*MostDerivedClassIsVirtual=*/false, RD);
2332   Entry = CreateVTableLayout(Builder);
2333 
2334   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2335                              Builder.vtable_indices_end());
2336 
2337   // Add the known thunks.
2338   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2339 
2340   // If we don't have the vbase information for this class, insert it.
2341   // getVirtualBaseOffsetOffset will compute it separately without computing
2342   // the rest of the vtable related information.
2343   if (!RD->getNumVBases())
2344     return;
2345 
2346   const CXXRecordDecl *VBase =
2347     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2348 
2349   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2350     return;
2351 
2352   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2353     // Insert all types.
2354     ClassPairTy ClassPair(RD, I.first);
2355 
2356     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2357   }
2358 }
2359 
2360 std::unique_ptr<VTableLayout>
2361 ItaniumVTableContext::createConstructionVTableLayout(
2362     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2363     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2364   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2365                                MostDerivedClassIsVirtual, LayoutClass);
2366   return CreateVTableLayout(Builder);
2367 }
2368 
2369 namespace {
2370 
2371 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2372 //
2373 // The main differences are:
2374 //  1. Separate vftable and vbtable.
2375 //
2376 //  2. Each subobject with a vfptr gets its own vftable rather than an address
2377 //     point in a single vtable shared between all the subobjects.
2378 //     Each vftable is represented by a separate section and virtual calls
2379 //     must be done using the vftable which has a slot for the function to be
2380 //     called.
2381 //
2382 //  3. Virtual method definitions expect their 'this' parameter to point to the
2383 //     first vfptr whose table provides a compatible overridden method.  In many
2384 //     cases, this permits the original vf-table entry to directly call
2385 //     the method instead of passing through a thunk.
2386 //     See example before VFTableBuilder::ComputeThisOffset below.
2387 //
2388 //     A compatible overridden method is one which does not have a non-trivial
2389 //     covariant-return adjustment.
2390 //
2391 //     The first vfptr is the one with the lowest offset in the complete-object
2392 //     layout of the defining class, and the method definition will subtract
2393 //     that constant offset from the parameter value to get the real 'this'
2394 //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2395 //     function defined in a virtual base is overridden in a more derived
2396 //     virtual base and these bases have a reverse order in the complete
2397 //     object), the vf-table may require a this-adjustment thunk.
2398 //
2399 //  4. vftables do not contain new entries for overrides that merely require
2400 //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2401 //     eliminates the need for this-adjustment thunks in many cases, at the cost
2402 //     of often requiring redundant work to adjust the "this" pointer.
2403 //
2404 //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2405 //     Vtordisps are emitted into the class layout if a class has
2406 //      a) a user-defined ctor/dtor
2407 //     and
2408 //      b) a method overriding a method in a virtual base.
2409 //
2410 //  To get a better understanding of this code,
2411 //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2412 
2413 class VFTableBuilder {
2414 public:
2415   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2416     MethodVFTableLocationsTy;
2417 
2418   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2419     method_locations_range;
2420 
2421 private:
2422   /// VTables - Global vtable information.
2423   MicrosoftVTableContext &VTables;
2424 
2425   /// Context - The ASTContext which we will use for layout information.
2426   ASTContext &Context;
2427 
2428   /// MostDerivedClass - The most derived class for which we're building this
2429   /// vtable.
2430   const CXXRecordDecl *MostDerivedClass;
2431 
2432   const ASTRecordLayout &MostDerivedClassLayout;
2433 
2434   const VPtrInfo &WhichVFPtr;
2435 
2436   /// FinalOverriders - The final overriders of the most derived class.
2437   const FinalOverriders Overriders;
2438 
2439   /// Components - The components of the vftable being built.
2440   SmallVector<VTableComponent, 64> Components;
2441 
2442   MethodVFTableLocationsTy MethodVFTableLocations;
2443 
2444   /// Does this class have an RTTI component?
2445   bool HasRTTIComponent = false;
2446 
2447   /// MethodInfo - Contains information about a method in a vtable.
2448   /// (Used for computing 'this' pointer adjustment thunks.
2449   struct MethodInfo {
2450     /// VBTableIndex - The nonzero index in the vbtable that
2451     /// this method's base has, or zero.
2452     const uint64_t VBTableIndex;
2453 
2454     /// VFTableIndex - The index in the vftable that this method has.
2455     const uint64_t VFTableIndex;
2456 
2457     /// Shadowed - Indicates if this vftable slot is shadowed by
2458     /// a slot for a covariant-return override. If so, it shouldn't be printed
2459     /// or used for vcalls in the most derived class.
2460     bool Shadowed;
2461 
2462     /// UsesExtraSlot - Indicates if this vftable slot was created because
2463     /// any of the overridden slots required a return adjusting thunk.
2464     bool UsesExtraSlot;
2465 
2466     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2467                bool UsesExtraSlot = false)
2468         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2469           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2470 
2471     MethodInfo()
2472         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2473           UsesExtraSlot(false) {}
2474   };
2475 
2476   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2477 
2478   /// MethodInfoMap - The information for all methods in the vftable we're
2479   /// currently building.
2480   MethodInfoMapTy MethodInfoMap;
2481 
2482   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2483 
2484   /// VTableThunks - The thunks by vftable index in the vftable currently being
2485   /// built.
2486   VTableThunksMapTy VTableThunks;
2487 
2488   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2489   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2490 
2491   /// Thunks - A map that contains all the thunks needed for all methods in the
2492   /// most derived class for which the vftable is currently being built.
2493   ThunksMapTy Thunks;
2494 
2495   /// AddThunk - Add a thunk for the given method.
2496   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2497     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2498 
2499     // Check if we have this thunk already.
2500     if (llvm::is_contained(ThunksVector, Thunk))
2501       return;
2502 
2503     ThunksVector.push_back(Thunk);
2504   }
2505 
2506   /// ComputeThisOffset - Returns the 'this' argument offset for the given
2507   /// method, relative to the beginning of the MostDerivedClass.
2508   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2509 
2510   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2511                                    CharUnits ThisOffset, ThisAdjustment &TA);
2512 
2513   /// AddMethod - Add a single virtual member function to the vftable
2514   /// components vector.
2515   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2516     if (!TI.isEmpty()) {
2517       VTableThunks[Components.size()] = TI;
2518       AddThunk(MD, TI);
2519     }
2520     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2521       assert(TI.Return.isEmpty() &&
2522              "Destructor can't have return adjustment!");
2523       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2524     } else {
2525       Components.push_back(VTableComponent::MakeFunction(MD));
2526     }
2527   }
2528 
2529   /// AddMethods - Add the methods of this base subobject and the relevant
2530   /// subbases to the vftable we're currently laying out.
2531   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2532                   const CXXRecordDecl *LastVBase,
2533                   BasesSetVectorTy &VisitedBases);
2534 
2535   void LayoutVFTable() {
2536     // RTTI data goes before all other entries.
2537     if (HasRTTIComponent)
2538       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2539 
2540     BasesSetVectorTy VisitedBases;
2541     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2542                VisitedBases);
2543     // Note that it is possible for the vftable to contain only an RTTI
2544     // pointer, if all virtual functions are constewval.
2545     assert(!Components.empty() && "vftable can't be empty");
2546 
2547     assert(MethodVFTableLocations.empty());
2548     for (const auto &I : MethodInfoMap) {
2549       const CXXMethodDecl *MD = I.first;
2550       const MethodInfo &MI = I.second;
2551       assert(MD == MD->getCanonicalDecl());
2552 
2553       // Skip the methods that the MostDerivedClass didn't override
2554       // and the entries shadowed by return adjusting thunks.
2555       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2556         continue;
2557       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2558                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2559       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2560         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2561       } else {
2562         MethodVFTableLocations[MD] = Loc;
2563       }
2564     }
2565   }
2566 
2567 public:
2568   VFTableBuilder(MicrosoftVTableContext &VTables,
2569                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2570       : VTables(VTables),
2571         Context(MostDerivedClass->getASTContext()),
2572         MostDerivedClass(MostDerivedClass),
2573         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2574         WhichVFPtr(Which),
2575         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2576     // Provide the RTTI component if RTTIData is enabled. If the vftable would
2577     // be available externally, we should not provide the RTTI componenent. It
2578     // is currently impossible to get available externally vftables with either
2579     // dllimport or extern template instantiations, but eventually we may add a
2580     // flag to support additional devirtualization that needs this.
2581     if (Context.getLangOpts().RTTIData)
2582       HasRTTIComponent = true;
2583 
2584     LayoutVFTable();
2585 
2586     if (Context.getLangOpts().DumpVTableLayouts)
2587       dumpLayout(llvm::outs());
2588   }
2589 
2590   uint64_t getNumThunks() const { return Thunks.size(); }
2591 
2592   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2593 
2594   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2595 
2596   method_locations_range vtable_locations() const {
2597     return method_locations_range(MethodVFTableLocations.begin(),
2598                                   MethodVFTableLocations.end());
2599   }
2600 
2601   ArrayRef<VTableComponent> vtable_components() const { return Components; }
2602 
2603   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2604     return VTableThunks.begin();
2605   }
2606 
2607   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2608     return VTableThunks.end();
2609   }
2610 
2611   void dumpLayout(raw_ostream &);
2612 };
2613 
2614 } // end namespace
2615 
2616 // Let's study one class hierarchy as an example:
2617 //   struct A {
2618 //     virtual void f();
2619 //     int x;
2620 //   };
2621 //
2622 //   struct B : virtual A {
2623 //     virtual void f();
2624 //   };
2625 //
2626 // Record layouts:
2627 //   struct A:
2628 //   0 |   (A vftable pointer)
2629 //   4 |   int x
2630 //
2631 //   struct B:
2632 //   0 |   (B vbtable pointer)
2633 //   4 |   struct A (virtual base)
2634 //   4 |     (A vftable pointer)
2635 //   8 |     int x
2636 //
2637 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2638 //   B b;
2639 //   A *a = (A*)&b;
2640 //   a->f();
2641 //
2642 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2643 // "this" parameter to point at the A subobject, which is B+4.
2644 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2645 // performed as a *static* adjustment.
2646 //
2647 // Interesting thing happens when we alter the relative placement of A and B
2648 // subobjects in a class:
2649 //   struct C : virtual B { };
2650 //
2651 //   C c;
2652 //   A *a = (A*)&c;
2653 //   a->f();
2654 //
2655 // Respective record layout is:
2656 //   0 |   (C vbtable pointer)
2657 //   4 |   struct A (virtual base)
2658 //   4 |     (A vftable pointer)
2659 //   8 |     int x
2660 //  12 |   struct B (virtual base)
2661 //  12 |     (B vbtable pointer)
2662 //
2663 // The final overrider of f() in class C is still B::f(), so B+4 should be
2664 // passed as "this" to that code.  However, "a" points at B-8, so the respective
2665 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2666 // performing a tail call to B::f().
2667 //
2668 // With this example in mind, we can now calculate the 'this' argument offset
2669 // for the given method, relative to the beginning of the MostDerivedClass.
2670 CharUnits
2671 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2672   BasesSetVectorTy Bases;
2673 
2674   {
2675     // Find the set of least derived bases that define the given method.
2676     OverriddenMethodsSetTy VisitedOverriddenMethods;
2677     auto InitialOverriddenDefinitionCollector = [&](
2678         const CXXMethodDecl *OverriddenMD) {
2679       if (OverriddenMD->size_overridden_methods() == 0)
2680         Bases.insert(OverriddenMD->getParent());
2681       // Don't recurse on this method if we've already collected it.
2682       return VisitedOverriddenMethods.insert(OverriddenMD).second;
2683     };
2684     visitAllOverriddenMethods(Overrider.Method,
2685                               InitialOverriddenDefinitionCollector);
2686   }
2687 
2688   // If there are no overrides then 'this' is located
2689   // in the base that defines the method.
2690   if (Bases.size() == 0)
2691     return Overrider.Offset;
2692 
2693   CXXBasePaths Paths;
2694   Overrider.Method->getParent()->lookupInBases(
2695       [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2696         return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2697       },
2698       Paths);
2699 
2700   // This will hold the smallest this offset among overridees of MD.
2701   // This implies that an offset of a non-virtual base will dominate an offset
2702   // of a virtual base to potentially reduce the number of thunks required
2703   // in the derived classes that inherit this method.
2704   CharUnits Ret;
2705   bool First = true;
2706 
2707   const ASTRecordLayout &OverriderRDLayout =
2708       Context.getASTRecordLayout(Overrider.Method->getParent());
2709   for (const CXXBasePath &Path : Paths) {
2710     CharUnits ThisOffset = Overrider.Offset;
2711     CharUnits LastVBaseOffset;
2712 
2713     // For each path from the overrider to the parents of the overridden
2714     // methods, traverse the path, calculating the this offset in the most
2715     // derived class.
2716     for (const CXXBasePathElement &Element : Path) {
2717       QualType CurTy = Element.Base->getType();
2718       const CXXRecordDecl *PrevRD = Element.Class,
2719                           *CurRD = CurTy->getAsCXXRecordDecl();
2720       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2721 
2722       if (Element.Base->isVirtual()) {
2723         // The interesting things begin when you have virtual inheritance.
2724         // The final overrider will use a static adjustment equal to the offset
2725         // of the vbase in the final overrider class.
2726         // For example, if the final overrider is in a vbase B of the most
2727         // derived class and it overrides a method of the B's own vbase A,
2728         // it uses A* as "this".  In its prologue, it can cast A* to B* with
2729         // a static offset.  This offset is used regardless of the actual
2730         // offset of A from B in the most derived class, requiring an
2731         // this-adjusting thunk in the vftable if A and B are laid out
2732         // differently in the most derived class.
2733         LastVBaseOffset = ThisOffset =
2734             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2735       } else {
2736         ThisOffset += Layout.getBaseClassOffset(CurRD);
2737       }
2738     }
2739 
2740     if (isa<CXXDestructorDecl>(Overrider.Method)) {
2741       if (LastVBaseOffset.isZero()) {
2742         // If a "Base" class has at least one non-virtual base with a virtual
2743         // destructor, the "Base" virtual destructor will take the address
2744         // of the "Base" subobject as the "this" argument.
2745         ThisOffset = Overrider.Offset;
2746       } else {
2747         // A virtual destructor of a virtual base takes the address of the
2748         // virtual base subobject as the "this" argument.
2749         ThisOffset = LastVBaseOffset;
2750       }
2751     }
2752 
2753     if (Ret > ThisOffset || First) {
2754       First = false;
2755       Ret = ThisOffset;
2756     }
2757   }
2758 
2759   assert(!First && "Method not found in the given subobject?");
2760   return Ret;
2761 }
2762 
2763 // Things are getting even more complex when the "this" adjustment has to
2764 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2765 // This is sometimes required when a virtual call happens in the middle of
2766 // a non-most-derived class construction or destruction.
2767 //
2768 // Let's take a look at the following example:
2769 //   struct A {
2770 //     virtual void f();
2771 //   };
2772 //
2773 //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2774 //
2775 //   struct B : virtual A {
2776 //     virtual void f();
2777 //     B() {
2778 //       foo(this);
2779 //     }
2780 //   };
2781 //
2782 //   struct C : virtual B {
2783 //     virtual void f();
2784 //   };
2785 //
2786 // Record layouts for these classes are:
2787 //   struct A
2788 //   0 |   (A vftable pointer)
2789 //
2790 //   struct B
2791 //   0 |   (B vbtable pointer)
2792 //   4 |   (vtordisp for vbase A)
2793 //   8 |   struct A (virtual base)
2794 //   8 |     (A vftable pointer)
2795 //
2796 //   struct C
2797 //   0 |   (C vbtable pointer)
2798 //   4 |   (vtordisp for vbase A)
2799 //   8 |   struct A (virtual base)  // A precedes B!
2800 //   8 |     (A vftable pointer)
2801 //  12 |   struct B (virtual base)
2802 //  12 |     (B vbtable pointer)
2803 //
2804 // When one creates an object of type C, the C constructor:
2805 // - initializes all the vbptrs, then
2806 // - calls the A subobject constructor
2807 //   (initializes A's vfptr with an address of A vftable), then
2808 // - calls the B subobject constructor
2809 //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2810 //   that in turn calls foo(), then
2811 // - initializes A's vfptr with an address of C vftable and zeroes out the
2812 //   vtordisp
2813 //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2814 //   without vtordisp thunks?
2815 //   FIXME: how are vtordisp handled in the presence of nooverride/final?
2816 //
2817 // When foo() is called, an object with a layout of class C has a vftable
2818 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2819 // incorrect, unless an extra adjustment is done.  This adjustment is called
2820 // "vtordisp adjustment".  Vtordisp basically holds the difference between the
2821 // actual location of a vbase in the layout class and the location assumed by
2822 // the vftable of the class being constructed/destructed.  Vtordisp is only
2823 // needed if "this" escapes a
2824 // structor (or we can't prove otherwise).
2825 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2826 // estimation of a dynamic adjustment]
2827 //
2828 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2829 // so it just passes that pointer as "this" in a virtual call.
2830 // If there was no vtordisp, that would just dispatch to B::f().
2831 // However, B::f() assumes B+8 is passed as "this",
2832 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2833 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2834 // This vtordisp thunk subtracts the value of vtordisp
2835 // from the "this" argument (-12) before making a tailcall to B::f().
2836 //
2837 // Let's consider an even more complex example:
2838 //   struct D : virtual B, virtual C {
2839 //     D() {
2840 //       foo(this);
2841 //     }
2842 //   };
2843 //
2844 //   struct D
2845 //   0 |   (D vbtable pointer)
2846 //   4 |   (vtordisp for vbase A)
2847 //   8 |   struct A (virtual base)  // A precedes both B and C!
2848 //   8 |     (A vftable pointer)
2849 //  12 |   struct B (virtual base)  // B precedes C!
2850 //  12 |     (B vbtable pointer)
2851 //  16 |   struct C (virtual base)
2852 //  16 |     (C vbtable pointer)
2853 //
2854 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2855 // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2856 // passes along A, which is C-8.  The A vtordisp holds
2857 //   "D.vbptr[index_of_A] - offset_of_A_in_D"
2858 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2859 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2860 // and one extra static adjustment to calculate the expected value of C+8.
2861 void VFTableBuilder::CalculateVtordispAdjustment(
2862     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2863     ThisAdjustment &TA) {
2864   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2865       MostDerivedClassLayout.getVBaseOffsetsMap();
2866   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2867       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2868   assert(VBaseMapEntry != VBaseMap.end());
2869 
2870   // If there's no vtordisp or the final overrider is defined in the same vbase
2871   // as the initial declaration, we don't need any vtordisp adjustment.
2872   if (!VBaseMapEntry->second.hasVtorDisp() ||
2873       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2874     return;
2875 
2876   // OK, now we know we need to use a vtordisp thunk.
2877   // The implicit vtordisp field is located right before the vbase.
2878   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2879   TA.Virtual.Microsoft.VtordispOffset =
2880       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2881 
2882   // A simple vtordisp thunk will suffice if the final overrider is defined
2883   // in either the most derived class or its non-virtual base.
2884   if (Overrider.Method->getParent() == MostDerivedClass ||
2885       !Overrider.VirtualBase)
2886     return;
2887 
2888   // Otherwise, we need to do use the dynamic offset of the final overrider
2889   // in order to get "this" adjustment right.
2890   TA.Virtual.Microsoft.VBPtrOffset =
2891       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2892        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2893   TA.Virtual.Microsoft.VBOffsetOffset =
2894       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2895       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2896 
2897   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2898 }
2899 
2900 static void GroupNewVirtualOverloads(
2901     const CXXRecordDecl *RD,
2902     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2903   // Put the virtual methods into VirtualMethods in the proper order:
2904   // 1) Group overloads by declaration name. New groups are added to the
2905   //    vftable in the order of their first declarations in this class
2906   //    (including overrides, non-virtual methods and any other named decl that
2907   //    might be nested within the class).
2908   // 2) In each group, new overloads appear in the reverse order of declaration.
2909   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2910   SmallVector<MethodGroup, 10> Groups;
2911   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2912   VisitedGroupIndicesTy VisitedGroupIndices;
2913   for (const auto *D : RD->decls()) {
2914     const auto *ND = dyn_cast<NamedDecl>(D);
2915     if (!ND)
2916       continue;
2917     VisitedGroupIndicesTy::iterator J;
2918     bool Inserted;
2919     std::tie(J, Inserted) = VisitedGroupIndices.insert(
2920         std::make_pair(ND->getDeclName(), Groups.size()));
2921     if (Inserted)
2922       Groups.push_back(MethodGroup());
2923     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2924       if (MicrosoftVTableContext::hasVtableSlot(MD))
2925         Groups[J->second].push_back(MD->getCanonicalDecl());
2926   }
2927 
2928   for (const MethodGroup &Group : Groups)
2929     VirtualMethods.append(Group.rbegin(), Group.rend());
2930 }
2931 
2932 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2933   for (const auto &B : RD->bases()) {
2934     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2935       return true;
2936   }
2937   return false;
2938 }
2939 
2940 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2941                                 const CXXRecordDecl *LastVBase,
2942                                 BasesSetVectorTy &VisitedBases) {
2943   const CXXRecordDecl *RD = Base.getBase();
2944   if (!RD->isPolymorphic())
2945     return;
2946 
2947   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2948 
2949   // See if this class expands a vftable of the base we look at, which is either
2950   // the one defined by the vfptr base path or the primary base of the current
2951   // class.
2952   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2953   CharUnits NextBaseOffset;
2954   if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2955     NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2956     if (isDirectVBase(NextBase, RD)) {
2957       NextLastVBase = NextBase;
2958       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2959     } else {
2960       NextBaseOffset =
2961           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2962     }
2963   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2964     assert(!Layout.isPrimaryBaseVirtual() &&
2965            "No primary virtual bases in this ABI");
2966     NextBase = PrimaryBase;
2967     NextBaseOffset = Base.getBaseOffset();
2968   }
2969 
2970   if (NextBase) {
2971     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2972                NextLastVBase, VisitedBases);
2973     if (!VisitedBases.insert(NextBase))
2974       llvm_unreachable("Found a duplicate primary base!");
2975   }
2976 
2977   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2978   // Put virtual methods in the proper order.
2979   GroupNewVirtualOverloads(RD, VirtualMethods);
2980 
2981   // Now go through all virtual member functions and add them to the current
2982   // vftable. This is done by
2983   //  - replacing overridden methods in their existing slots, as long as they
2984   //    don't require return adjustment; calculating This adjustment if needed.
2985   //  - adding new slots for methods of the current base not present in any
2986   //    sub-bases;
2987   //  - adding new slots for methods that require Return adjustment.
2988   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2989   for (const CXXMethodDecl *MD : VirtualMethods) {
2990     FinalOverriders::OverriderInfo FinalOverrider =
2991         Overriders.getOverrider(MD, Base.getBaseOffset());
2992     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2993     const CXXMethodDecl *OverriddenMD =
2994         FindNearestOverriddenMethod(MD, VisitedBases);
2995 
2996     ThisAdjustment ThisAdjustmentOffset;
2997     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
2998     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
2999     ThisAdjustmentOffset.NonVirtual =
3000         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3001     if ((OverriddenMD || FinalOverriderMD != MD) &&
3002         WhichVFPtr.getVBaseWithVPtr())
3003       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3004                                   ThisAdjustmentOffset);
3005 
3006     unsigned VBIndex =
3007         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3008 
3009     if (OverriddenMD) {
3010       // If MD overrides anything in this vftable, we need to update the
3011       // entries.
3012       MethodInfoMapTy::iterator OverriddenMDIterator =
3013           MethodInfoMap.find(OverriddenMD);
3014 
3015       // If the overridden method went to a different vftable, skip it.
3016       if (OverriddenMDIterator == MethodInfoMap.end())
3017         continue;
3018 
3019       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3020 
3021       VBIndex = OverriddenMethodInfo.VBTableIndex;
3022 
3023       // Let's check if the overrider requires any return adjustments.
3024       // We must create a new slot if the MD's return type is not trivially
3025       // convertible to the OverriddenMD's one.
3026       // Once a chain of method overrides adds a return adjusting vftable slot,
3027       // all subsequent overrides will also use an extra method slot.
3028       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3029                                   Context, MD, OverriddenMD).isEmpty() ||
3030                              OverriddenMethodInfo.UsesExtraSlot;
3031 
3032       if (!ReturnAdjustingThunk) {
3033         // No return adjustment needed - just replace the overridden method info
3034         // with the current info.
3035         MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3036         MethodInfoMap.erase(OverriddenMDIterator);
3037 
3038         assert(!MethodInfoMap.count(MD) &&
3039                "Should not have method info for this method yet!");
3040         MethodInfoMap.insert(std::make_pair(MD, MI));
3041         continue;
3042       }
3043 
3044       // In case we need a return adjustment, we'll add a new slot for
3045       // the overrider. Mark the overridden method as shadowed by the new slot.
3046       OverriddenMethodInfo.Shadowed = true;
3047 
3048       // Force a special name mangling for a return-adjusting thunk
3049       // unless the method is the final overrider without this adjustment.
3050       ForceReturnAdjustmentMangling =
3051           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3052     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3053                MD->size_overridden_methods()) {
3054       // Skip methods that don't belong to the vftable of the current class,
3055       // e.g. each method that wasn't seen in any of the visited sub-bases
3056       // but overrides multiple methods of other sub-bases.
3057       continue;
3058     }
3059 
3060     // If we got here, MD is a method not seen in any of the sub-bases or
3061     // it requires return adjustment. Insert the method info for this method.
3062     MethodInfo MI(VBIndex,
3063                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
3064                   ReturnAdjustingThunk);
3065 
3066     assert(!MethodInfoMap.count(MD) &&
3067            "Should not have method info for this method yet!");
3068     MethodInfoMap.insert(std::make_pair(MD, MI));
3069 
3070     // Check if this overrider needs a return adjustment.
3071     // We don't want to do this for pure virtual member functions.
3072     BaseOffset ReturnAdjustmentOffset;
3073     ReturnAdjustment ReturnAdjustment;
3074     if (!FinalOverriderMD->isPure()) {
3075       ReturnAdjustmentOffset =
3076           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3077     }
3078     if (!ReturnAdjustmentOffset.isEmpty()) {
3079       ForceReturnAdjustmentMangling = true;
3080       ReturnAdjustment.NonVirtual =
3081           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3082       if (ReturnAdjustmentOffset.VirtualBase) {
3083         const ASTRecordLayout &DerivedLayout =
3084             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3085         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3086             DerivedLayout.getVBPtrOffset().getQuantity();
3087         ReturnAdjustment.Virtual.Microsoft.VBIndex =
3088             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3089                                     ReturnAdjustmentOffset.VirtualBase);
3090       }
3091     }
3092 
3093     AddMethod(FinalOverriderMD,
3094               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3095                         ForceReturnAdjustmentMangling ? MD : nullptr));
3096   }
3097 }
3098 
3099 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3100   for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3101     Out << "'";
3102     Elem->printQualifiedName(Out);
3103     Out << "' in ";
3104   }
3105 }
3106 
3107 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3108                                          bool ContinueFirstLine) {
3109   const ReturnAdjustment &R = TI.Return;
3110   bool Multiline = false;
3111   const char *LinePrefix = "\n       ";
3112   if (!R.isEmpty() || TI.Method) {
3113     if (!ContinueFirstLine)
3114       Out << LinePrefix;
3115     Out << "[return adjustment (to type '"
3116         << TI.Method->getReturnType().getCanonicalType().getAsString()
3117         << "'): ";
3118     if (R.Virtual.Microsoft.VBPtrOffset)
3119       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3120     if (R.Virtual.Microsoft.VBIndex)
3121       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3122     Out << R.NonVirtual << " non-virtual]";
3123     Multiline = true;
3124   }
3125 
3126   const ThisAdjustment &T = TI.This;
3127   if (!T.isEmpty()) {
3128     if (Multiline || !ContinueFirstLine)
3129       Out << LinePrefix;
3130     Out << "[this adjustment: ";
3131     if (!TI.This.Virtual.isEmpty()) {
3132       assert(T.Virtual.Microsoft.VtordispOffset < 0);
3133       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3134       if (T.Virtual.Microsoft.VBPtrOffset) {
3135         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3136             << " to the left,";
3137         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3138         Out << LinePrefix << " vboffset at "
3139             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3140       }
3141     }
3142     Out << T.NonVirtual << " non-virtual]";
3143   }
3144 }
3145 
3146 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3147   Out << "VFTable for ";
3148   PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3149   Out << "'";
3150   MostDerivedClass->printQualifiedName(Out);
3151   Out << "' (" << Components.size()
3152       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3153 
3154   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3155     Out << llvm::format("%4d | ", I);
3156 
3157     const VTableComponent &Component = Components[I];
3158 
3159     // Dump the component.
3160     switch (Component.getKind()) {
3161     case VTableComponent::CK_RTTI:
3162       Component.getRTTIDecl()->printQualifiedName(Out);
3163       Out << " RTTI";
3164       break;
3165 
3166     case VTableComponent::CK_FunctionPointer: {
3167       const CXXMethodDecl *MD = Component.getFunctionDecl();
3168 
3169       // FIXME: Figure out how to print the real thunk type, since they can
3170       // differ in the return type.
3171       std::string Str = PredefinedExpr::ComputeName(
3172           PredefinedExpr::PrettyFunctionNoVirtual, MD);
3173       Out << Str;
3174       if (MD->isPure())
3175         Out << " [pure]";
3176 
3177       if (MD->isDeleted())
3178         Out << " [deleted]";
3179 
3180       ThunkInfo Thunk = VTableThunks.lookup(I);
3181       if (!Thunk.isEmpty())
3182         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3183 
3184       break;
3185     }
3186 
3187     case VTableComponent::CK_DeletingDtorPointer: {
3188       const CXXDestructorDecl *DD = Component.getDestructorDecl();
3189 
3190       DD->printQualifiedName(Out);
3191       Out << "() [scalar deleting]";
3192 
3193       if (DD->isPure())
3194         Out << " [pure]";
3195 
3196       ThunkInfo Thunk = VTableThunks.lookup(I);
3197       if (!Thunk.isEmpty()) {
3198         assert(Thunk.Return.isEmpty() &&
3199                "No return adjustment needed for destructors!");
3200         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3201       }
3202 
3203       break;
3204     }
3205 
3206     default:
3207       DiagnosticsEngine &Diags = Context.getDiagnostics();
3208       unsigned DiagID = Diags.getCustomDiagID(
3209           DiagnosticsEngine::Error,
3210           "Unexpected vftable component type %0 for component number %1");
3211       Diags.Report(MostDerivedClass->getLocation(), DiagID)
3212           << I << Component.getKind();
3213     }
3214 
3215     Out << '\n';
3216   }
3217 
3218   Out << '\n';
3219 
3220   if (!Thunks.empty()) {
3221     // We store the method names in a map to get a stable order.
3222     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3223 
3224     for (const auto &I : Thunks) {
3225       const CXXMethodDecl *MD = I.first;
3226       std::string MethodName = PredefinedExpr::ComputeName(
3227           PredefinedExpr::PrettyFunctionNoVirtual, MD);
3228 
3229       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3230     }
3231 
3232     for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3233       const std::string &MethodName = MethodNameAndDecl.first;
3234       const CXXMethodDecl *MD = MethodNameAndDecl.second;
3235 
3236       ThunkInfoVectorTy ThunksVector = Thunks[MD];
3237       llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3238                                          const ThunkInfo &RHS) {
3239         // Keep different thunks with the same adjustments in the order they
3240         // were put into the vector.
3241         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3242       });
3243 
3244       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3245       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3246 
3247       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3248         const ThunkInfo &Thunk = ThunksVector[I];
3249 
3250         Out << llvm::format("%4d | ", I);
3251         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3252         Out << '\n';
3253       }
3254 
3255       Out << '\n';
3256     }
3257   }
3258 
3259   Out.flush();
3260 }
3261 
3262 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3263                           ArrayRef<const CXXRecordDecl *> B) {
3264   for (const CXXRecordDecl *Decl : B) {
3265     if (A.count(Decl))
3266       return true;
3267   }
3268   return false;
3269 }
3270 
3271 static bool rebucketPaths(VPtrInfoVector &Paths);
3272 
3273 /// Produces MSVC-compatible vbtable data.  The symbols produced by this
3274 /// algorithm match those produced by MSVC 2012 and newer, which is different
3275 /// from MSVC 2010.
3276 ///
3277 /// MSVC 2012 appears to minimize the vbtable names using the following
3278 /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3279 /// left to right, to find all of the subobjects which contain a vbptr field.
3280 /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3281 /// record with a vbptr creates an initially empty path.
3282 ///
3283 /// To combine paths from child nodes, the paths are compared to check for
3284 /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3285 /// components in the same order.  Each group of ambiguous paths is extended by
3286 /// appending the class of the base from which it came.  If the current class
3287 /// node produced an ambiguous path, its path is extended with the current class.
3288 /// After extending paths, MSVC again checks for ambiguity, and extends any
3289 /// ambiguous path which wasn't already extended.  Because each node yields an
3290 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3291 /// to produce an unambiguous set of paths.
3292 ///
3293 /// TODO: Presumably vftables use the same algorithm.
3294 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3295                                                 const CXXRecordDecl *RD,
3296                                                 VPtrInfoVector &Paths) {
3297   assert(Paths.empty());
3298   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3299 
3300   // Base case: this subobject has its own vptr.
3301   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3302     Paths.push_back(std::make_unique<VPtrInfo>(RD));
3303 
3304   // Recursive case: get all the vbtables from our bases and remove anything
3305   // that shares a virtual base.
3306   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3307   for (const auto &B : RD->bases()) {
3308     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3309     if (B.isVirtual() && VBasesSeen.count(Base))
3310       continue;
3311 
3312     if (!Base->isDynamicClass())
3313       continue;
3314 
3315     const VPtrInfoVector &BasePaths =
3316         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3317 
3318     for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3319       // Don't include the path if it goes through a virtual base that we've
3320       // already included.
3321       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3322         continue;
3323 
3324       // Copy the path and adjust it as necessary.
3325       auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3326 
3327       // We mangle Base into the path if the path would've been ambiguous and it
3328       // wasn't already extended with Base.
3329       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3330         P->NextBaseToMangle = Base;
3331 
3332       // Keep track of which vtable the derived class is going to extend with
3333       // new methods or bases.  We append to either the vftable of our primary
3334       // base, or the first non-virtual base that has a vbtable.
3335       if (P->ObjectWithVPtr == Base &&
3336           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3337                                : Layout.getPrimaryBase()))
3338         P->ObjectWithVPtr = RD;
3339 
3340       // Keep track of the full adjustment from the MDC to this vtable.  The
3341       // adjustment is captured by an optional vbase and a non-virtual offset.
3342       if (B.isVirtual())
3343         P->ContainingVBases.push_back(Base);
3344       else if (P->ContainingVBases.empty())
3345         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3346 
3347       // Update the full offset in the MDC.
3348       P->FullOffsetInMDC = P->NonVirtualOffset;
3349       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3350         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3351 
3352       Paths.push_back(std::move(P));
3353     }
3354 
3355     if (B.isVirtual())
3356       VBasesSeen.insert(Base);
3357 
3358     // After visiting any direct base, we've transitively visited all of its
3359     // morally virtual bases.
3360     for (const auto &VB : Base->vbases())
3361       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3362   }
3363 
3364   // Sort the paths into buckets, and if any of them are ambiguous, extend all
3365   // paths in ambiguous buckets.
3366   bool Changed = true;
3367   while (Changed)
3368     Changed = rebucketPaths(Paths);
3369 }
3370 
3371 static bool extendPath(VPtrInfo &P) {
3372   if (P.NextBaseToMangle) {
3373     P.MangledPath.push_back(P.NextBaseToMangle);
3374     P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3375     return true;
3376   }
3377   return false;
3378 }
3379 
3380 static bool rebucketPaths(VPtrInfoVector &Paths) {
3381   // What we're essentially doing here is bucketing together ambiguous paths.
3382   // Any bucket with more than one path in it gets extended by NextBase, which
3383   // is usually the direct base of the inherited the vbptr.  This code uses a
3384   // sorted vector to implement a multiset to form the buckets.  Note that the
3385   // ordering is based on pointers, but it doesn't change our output order.  The
3386   // current algorithm is designed to match MSVC 2012's names.
3387   llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted;
3388   PathsSorted.reserve(Paths.size());
3389   for (auto& P : Paths)
3390     PathsSorted.push_back(*P);
3391   llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3392     return LHS.MangledPath < RHS.MangledPath;
3393   });
3394   bool Changed = false;
3395   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3396     // Scan forward to find the end of the bucket.
3397     size_t BucketStart = I;
3398     do {
3399       ++I;
3400     } while (I != E &&
3401              PathsSorted[BucketStart].get().MangledPath ==
3402                  PathsSorted[I].get().MangledPath);
3403 
3404     // If this bucket has multiple paths, extend them all.
3405     if (I - BucketStart > 1) {
3406       for (size_t II = BucketStart; II != I; ++II)
3407         Changed |= extendPath(PathsSorted[II]);
3408       assert(Changed && "no paths were extended to fix ambiguity");
3409     }
3410   }
3411   return Changed;
3412 }
3413 
3414 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3415 
3416 namespace {
3417 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3418                         llvm::DenseSet<BaseSubobject>> FullPathTy;
3419 }
3420 
3421 // This recursive function finds all paths from a subobject centered at
3422 // (RD, Offset) to the subobject located at IntroducingObject.
3423 static void findPathsToSubobject(ASTContext &Context,
3424                                  const ASTRecordLayout &MostDerivedLayout,
3425                                  const CXXRecordDecl *RD, CharUnits Offset,
3426                                  BaseSubobject IntroducingObject,
3427                                  FullPathTy &FullPath,
3428                                  std::list<FullPathTy> &Paths) {
3429   if (BaseSubobject(RD, Offset) == IntroducingObject) {
3430     Paths.push_back(FullPath);
3431     return;
3432   }
3433 
3434   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3435 
3436   for (const CXXBaseSpecifier &BS : RD->bases()) {
3437     const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3438     CharUnits NewOffset = BS.isVirtual()
3439                               ? MostDerivedLayout.getVBaseClassOffset(Base)
3440                               : Offset + Layout.getBaseClassOffset(Base);
3441     FullPath.insert(BaseSubobject(Base, NewOffset));
3442     findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3443                          IntroducingObject, FullPath, Paths);
3444     FullPath.pop_back();
3445   }
3446 }
3447 
3448 // Return the paths which are not subsets of other paths.
3449 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3450   FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3451     for (const FullPathTy &OtherPath : FullPaths) {
3452       if (&SpecificPath == &OtherPath)
3453         continue;
3454       if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3455             return OtherPath.contains(BSO);
3456           })) {
3457         return true;
3458       }
3459     }
3460     return false;
3461   });
3462 }
3463 
3464 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3465                                      const CXXRecordDecl *RD,
3466                                      const FullPathTy &FullPath) {
3467   const ASTRecordLayout &MostDerivedLayout =
3468       Context.getASTRecordLayout(RD);
3469   CharUnits Offset = CharUnits::fromQuantity(-1);
3470   for (const BaseSubobject &BSO : FullPath) {
3471     const CXXRecordDecl *Base = BSO.getBase();
3472     // The first entry in the path is always the most derived record, skip it.
3473     if (Base == RD) {
3474       assert(Offset.getQuantity() == -1);
3475       Offset = CharUnits::Zero();
3476       continue;
3477     }
3478     assert(Offset.getQuantity() != -1);
3479     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3480     // While we know which base has to be traversed, we don't know if that base
3481     // was a virtual base.
3482     const CXXBaseSpecifier *BaseBS = std::find_if(
3483         RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3484           return BS.getType()->getAsCXXRecordDecl() == Base;
3485         });
3486     Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3487                                  : Offset + Layout.getBaseClassOffset(Base);
3488     RD = Base;
3489   }
3490   return Offset;
3491 }
3492 
3493 // We want to select the path which introduces the most covariant overrides.  If
3494 // two paths introduce overrides which the other path doesn't contain, issue a
3495 // diagnostic.
3496 static const FullPathTy *selectBestPath(ASTContext &Context,
3497                                         const CXXRecordDecl *RD,
3498                                         const VPtrInfo &Info,
3499                                         std::list<FullPathTy> &FullPaths) {
3500   // Handle some easy cases first.
3501   if (FullPaths.empty())
3502     return nullptr;
3503   if (FullPaths.size() == 1)
3504     return &FullPaths.front();
3505 
3506   const FullPathTy *BestPath = nullptr;
3507   typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3508   OverriderSetTy LastOverrides;
3509   for (const FullPathTy &SpecificPath : FullPaths) {
3510     assert(!SpecificPath.empty());
3511     OverriderSetTy CurrentOverrides;
3512     const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3513     // Find the distance from the start of the path to the subobject with the
3514     // VPtr.
3515     CharUnits BaseOffset =
3516         getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3517     FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3518     for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3519       if (!MicrosoftVTableContext::hasVtableSlot(MD))
3520         continue;
3521       FinalOverriders::OverriderInfo OI =
3522           Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3523       const CXXMethodDecl *OverridingMethod = OI.Method;
3524       // Only overriders which have a return adjustment introduce problematic
3525       // thunks.
3526       if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3527               .isEmpty())
3528         continue;
3529       // It's possible that the overrider isn't in this path.  If so, skip it
3530       // because this path didn't introduce it.
3531       const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3532       if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3533             return BSO.getBase() == OverridingParent;
3534           }))
3535         continue;
3536       CurrentOverrides.insert(OverridingMethod);
3537     }
3538     OverriderSetTy NewOverrides =
3539         llvm::set_difference(CurrentOverrides, LastOverrides);
3540     if (NewOverrides.empty())
3541       continue;
3542     OverriderSetTy MissingOverrides =
3543         llvm::set_difference(LastOverrides, CurrentOverrides);
3544     if (MissingOverrides.empty()) {
3545       // This path is a strict improvement over the last path, let's use it.
3546       BestPath = &SpecificPath;
3547       std::swap(CurrentOverrides, LastOverrides);
3548     } else {
3549       // This path introduces an overrider with a conflicting covariant thunk.
3550       DiagnosticsEngine &Diags = Context.getDiagnostics();
3551       const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3552       const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3553       Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3554           << RD;
3555       Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3556           << CovariantMD;
3557       Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3558           << ConflictMD;
3559     }
3560   }
3561   // Go with the path that introduced the most covariant overrides.  If there is
3562   // no such path, pick the first path.
3563   return BestPath ? BestPath : &FullPaths.front();
3564 }
3565 
3566 static void computeFullPathsForVFTables(ASTContext &Context,
3567                                         const CXXRecordDecl *RD,
3568                                         VPtrInfoVector &Paths) {
3569   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3570   FullPathTy FullPath;
3571   std::list<FullPathTy> FullPaths;
3572   for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3573     findPathsToSubobject(
3574         Context, MostDerivedLayout, RD, CharUnits::Zero(),
3575         BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3576         FullPaths);
3577     FullPath.clear();
3578     removeRedundantPaths(FullPaths);
3579     Info->PathToIntroducingObject.clear();
3580     if (const FullPathTy *BestPath =
3581             selectBestPath(Context, RD, *Info, FullPaths))
3582       for (const BaseSubobject &BSO : *BestPath)
3583         Info->PathToIntroducingObject.push_back(BSO.getBase());
3584     FullPaths.clear();
3585   }
3586 }
3587 
3588 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3589                                 const MethodVFTableLocation &LHS,
3590                                 const MethodVFTableLocation &RHS) {
3591   CharUnits L = LHS.VFPtrOffset;
3592   CharUnits R = RHS.VFPtrOffset;
3593   if (LHS.VBase)
3594     L += Layout.getVBaseClassOffset(LHS.VBase);
3595   if (RHS.VBase)
3596     R += Layout.getVBaseClassOffset(RHS.VBase);
3597   return L < R;
3598 }
3599 
3600 void MicrosoftVTableContext::computeVTableRelatedInformation(
3601     const CXXRecordDecl *RD) {
3602   assert(RD->isDynamicClass());
3603 
3604   // Check if we've computed this information before.
3605   if (VFPtrLocations.count(RD))
3606     return;
3607 
3608   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3609 
3610   {
3611     auto VFPtrs = std::make_unique<VPtrInfoVector>();
3612     computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3613     computeFullPathsForVFTables(Context, RD, *VFPtrs);
3614     VFPtrLocations[RD] = std::move(VFPtrs);
3615   }
3616 
3617   MethodVFTableLocationsTy NewMethodLocations;
3618   for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3619     VFTableBuilder Builder(*this, RD, *VFPtr);
3620 
3621     VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3622     assert(VFTableLayouts.count(id) == 0);
3623     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3624         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3625     VFTableLayouts[id] = std::make_unique<VTableLayout>(
3626         ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3627         EmptyAddressPointsMap);
3628     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3629 
3630     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3631     for (const auto &Loc : Builder.vtable_locations()) {
3632       auto Insert = NewMethodLocations.insert(Loc);
3633       if (!Insert.second) {
3634         const MethodVFTableLocation &NewLoc = Loc.second;
3635         MethodVFTableLocation &OldLoc = Insert.first->second;
3636         if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3637           OldLoc = NewLoc;
3638       }
3639     }
3640   }
3641 
3642   MethodVFTableLocations.insert(NewMethodLocations.begin(),
3643                                 NewMethodLocations.end());
3644   if (Context.getLangOpts().DumpVTableLayouts)
3645     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3646 }
3647 
3648 void MicrosoftVTableContext::dumpMethodLocations(
3649     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3650     raw_ostream &Out) {
3651   // Compute the vtable indices for all the member functions.
3652   // Store them in a map keyed by the location so we'll get a sorted table.
3653   std::map<MethodVFTableLocation, std::string> IndicesMap;
3654   bool HasNonzeroOffset = false;
3655 
3656   for (const auto &I : NewMethods) {
3657     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3658     assert(hasVtableSlot(MD));
3659 
3660     std::string MethodName = PredefinedExpr::ComputeName(
3661         PredefinedExpr::PrettyFunctionNoVirtual, MD);
3662 
3663     if (isa<CXXDestructorDecl>(MD)) {
3664       IndicesMap[I.second] = MethodName + " [scalar deleting]";
3665     } else {
3666       IndicesMap[I.second] = MethodName;
3667     }
3668 
3669     if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3670       HasNonzeroOffset = true;
3671   }
3672 
3673   // Print the vtable indices for all the member functions.
3674   if (!IndicesMap.empty()) {
3675     Out << "VFTable indices for ";
3676     Out << "'";
3677     RD->printQualifiedName(Out);
3678     Out << "' (" << IndicesMap.size()
3679         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3680 
3681     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3682     uint64_t LastVBIndex = 0;
3683     for (const auto &I : IndicesMap) {
3684       CharUnits VFPtrOffset = I.first.VFPtrOffset;
3685       uint64_t VBIndex = I.first.VBTableIndex;
3686       if (HasNonzeroOffset &&
3687           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3688         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3689         Out << " -- accessible via ";
3690         if (VBIndex)
3691           Out << "vbtable index " << VBIndex << ", ";
3692         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3693         LastVFPtrOffset = VFPtrOffset;
3694         LastVBIndex = VBIndex;
3695       }
3696 
3697       uint64_t VTableIndex = I.first.Index;
3698       const std::string &MethodName = I.second;
3699       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3700     }
3701     Out << '\n';
3702   }
3703 
3704   Out.flush();
3705 }
3706 
3707 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3708     const CXXRecordDecl *RD) {
3709   VirtualBaseInfo *VBI;
3710 
3711   {
3712     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3713     // as it may be modified and rehashed under us.
3714     std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3715     if (Entry)
3716       return *Entry;
3717     Entry = std::make_unique<VirtualBaseInfo>();
3718     VBI = Entry.get();
3719   }
3720 
3721   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3722 
3723   // First, see if the Derived class shared the vbptr with a non-virtual base.
3724   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3725   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3726     // If the Derived class shares the vbptr with a non-virtual base, the shared
3727     // virtual bases come first so that the layout is the same.
3728     const VirtualBaseInfo &BaseInfo =
3729         computeVBTableRelatedInformation(VBPtrBase);
3730     VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3731                                BaseInfo.VBTableIndices.end());
3732   }
3733 
3734   // New vbases are added to the end of the vbtable.
3735   // Skip the self entry and vbases visited in the non-virtual base, if any.
3736   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3737   for (const auto &VB : RD->vbases()) {
3738     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3739     if (!VBI->VBTableIndices.count(CurVBase))
3740       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3741   }
3742 
3743   return *VBI;
3744 }
3745 
3746 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3747                                                  const CXXRecordDecl *VBase) {
3748   const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3749   assert(VBInfo.VBTableIndices.count(VBase));
3750   return VBInfo.VBTableIndices.find(VBase)->second;
3751 }
3752 
3753 const VPtrInfoVector &
3754 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3755   return computeVBTableRelatedInformation(RD).VBPtrPaths;
3756 }
3757 
3758 const VPtrInfoVector &
3759 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3760   computeVTableRelatedInformation(RD);
3761 
3762   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3763   return *VFPtrLocations[RD];
3764 }
3765 
3766 const VTableLayout &
3767 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3768                                          CharUnits VFPtrOffset) {
3769   computeVTableRelatedInformation(RD);
3770 
3771   VFTableIdTy id(RD, VFPtrOffset);
3772   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3773   return *VFTableLayouts[id];
3774 }
3775 
3776 MethodVFTableLocation
3777 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3778   assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3779          "Only use this method for virtual methods or dtors");
3780   if (isa<CXXDestructorDecl>(GD.getDecl()))
3781     assert(GD.getDtorType() == Dtor_Deleting);
3782 
3783   GD = GD.getCanonicalDecl();
3784 
3785   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3786   if (I != MethodVFTableLocations.end())
3787     return I->second;
3788 
3789   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3790 
3791   computeVTableRelatedInformation(RD);
3792 
3793   I = MethodVFTableLocations.find(GD);
3794   assert(I != MethodVFTableLocations.end() && "Did not find index!");
3795   return I->second;
3796 }
3797