1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with generation of the layout of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/VTableBuilder.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 29 #define DUMP_OVERRIDERS 0 30 31 namespace { 32 33 /// BaseOffset - Represents an offset from a derived class to a direct or 34 /// indirect base class. 35 struct BaseOffset { 36 /// DerivedClass - The derived class. 37 const CXXRecordDecl *DerivedClass; 38 39 /// VirtualBase - If the path from the derived class to the base class 40 /// involves virtual base classes, this holds the declaration of the last 41 /// virtual base in this path (i.e. closest to the base class). 42 const CXXRecordDecl *VirtualBase; 43 44 /// NonVirtualOffset - The offset from the derived class to the base class. 45 /// (Or the offset from the virtual base class to the base class, if the 46 /// path from the derived class to the base class involves a virtual base 47 /// class. 48 CharUnits NonVirtualOffset; 49 50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), 51 NonVirtualOffset(CharUnits::Zero()) { } 52 BaseOffset(const CXXRecordDecl *DerivedClass, 53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) 54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase), 55 NonVirtualOffset(NonVirtualOffset) { } 56 57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } 58 }; 59 60 /// FinalOverriders - Contains the final overrider member functions for all 61 /// member functions in the base subobjects of a class. 62 class FinalOverriders { 63 public: 64 /// OverriderInfo - Information about a final overrider. 65 struct OverriderInfo { 66 /// Method - The method decl of the overrider. 67 const CXXMethodDecl *Method; 68 69 /// VirtualBase - The virtual base class subobject of this overrider. 70 /// Note that this records the closest derived virtual base class subobject. 71 const CXXRecordDecl *VirtualBase; 72 73 /// Offset - the base offset of the overrider's parent in the layout class. 74 CharUnits Offset; 75 76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr), 77 Offset(CharUnits::Zero()) { } 78 }; 79 80 private: 81 /// MostDerivedClass - The most derived class for which the final overriders 82 /// are stored. 83 const CXXRecordDecl *MostDerivedClass; 84 85 /// MostDerivedClassOffset - If we're building final overriders for a 86 /// construction vtable, this holds the offset from the layout class to the 87 /// most derived class. 88 const CharUnits MostDerivedClassOffset; 89 90 /// LayoutClass - The class we're using for layout information. Will be 91 /// different than the most derived class if the final overriders are for a 92 /// construction vtable. 93 const CXXRecordDecl *LayoutClass; 94 95 ASTContext &Context; 96 97 /// MostDerivedClassLayout - the AST record layout of the most derived class. 98 const ASTRecordLayout &MostDerivedClassLayout; 99 100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function 101 /// in a base subobject. 102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; 103 104 typedef llvm::DenseMap<MethodBaseOffsetPairTy, 105 OverriderInfo> OverridersMapTy; 106 107 /// OverridersMap - The final overriders for all virtual member functions of 108 /// all the base subobjects of the most derived class. 109 OverridersMapTy OverridersMap; 110 111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented 112 /// as a record decl and a subobject number) and its offsets in the most 113 /// derived class as well as the layout class. 114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, 115 CharUnits> SubobjectOffsetMapTy; 116 117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; 118 119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the 120 /// given base. 121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 122 CharUnits OffsetInLayoutClass, 123 SubobjectOffsetMapTy &SubobjectOffsets, 124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 125 SubobjectCountMapTy &SubobjectCounts); 126 127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 128 129 /// dump - dump the final overriders for a base subobject, and all its direct 130 /// and indirect base subobjects. 131 void dump(raw_ostream &Out, BaseSubobject Base, 132 VisitedVirtualBasesSetTy& VisitedVirtualBases); 133 134 public: 135 FinalOverriders(const CXXRecordDecl *MostDerivedClass, 136 CharUnits MostDerivedClassOffset, 137 const CXXRecordDecl *LayoutClass); 138 139 /// getOverrider - Get the final overrider for the given method declaration in 140 /// the subobject with the given base offset. 141 OverriderInfo getOverrider(const CXXMethodDecl *MD, 142 CharUnits BaseOffset) const { 143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && 144 "Did not find overrider!"); 145 146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); 147 } 148 149 /// dump - dump the final overriders. 150 void dump() { 151 VisitedVirtualBasesSetTy VisitedVirtualBases; 152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), 153 VisitedVirtualBases); 154 } 155 156 }; 157 158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, 159 CharUnits MostDerivedClassOffset, 160 const CXXRecordDecl *LayoutClass) 161 : MostDerivedClass(MostDerivedClass), 162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), 163 Context(MostDerivedClass->getASTContext()), 164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { 165 166 // Compute base offsets. 167 SubobjectOffsetMapTy SubobjectOffsets; 168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets; 169 SubobjectCountMapTy SubobjectCounts; 170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 171 /*IsVirtual=*/false, 172 MostDerivedClassOffset, 173 SubobjectOffsets, SubobjectLayoutClassOffsets, 174 SubobjectCounts); 175 176 // Get the final overriders. 177 CXXFinalOverriderMap FinalOverriders; 178 MostDerivedClass->getFinalOverriders(FinalOverriders); 179 180 for (const auto &Overrider : FinalOverriders) { 181 const CXXMethodDecl *MD = Overrider.first; 182 const OverridingMethods &Methods = Overrider.second; 183 184 for (const auto &M : Methods) { 185 unsigned SubobjectNumber = M.first; 186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), 187 SubobjectNumber)) && 188 "Did not find subobject offset!"); 189 190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), 191 SubobjectNumber)]; 192 193 assert(M.second.size() == 1 && "Final overrider is not unique!"); 194 const UniqueVirtualMethod &Method = M.second.front(); 195 196 const CXXRecordDecl *OverriderRD = Method.Method->getParent(); 197 assert(SubobjectLayoutClassOffsets.count( 198 std::make_pair(OverriderRD, Method.Subobject)) 199 && "Did not find subobject offset!"); 200 CharUnits OverriderOffset = 201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, 202 Method.Subobject)]; 203 204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; 205 assert(!Overrider.Method && "Overrider should not exist yet!"); 206 207 Overrider.Offset = OverriderOffset; 208 Overrider.Method = Method.Method; 209 Overrider.VirtualBase = Method.InVirtualSubobject; 210 } 211 } 212 213 #if DUMP_OVERRIDERS 214 // And dump them (for now). 215 dump(); 216 #endif 217 } 218 219 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 220 const CXXRecordDecl *DerivedRD, 221 const CXXBasePath &Path) { 222 CharUnits NonVirtualOffset = CharUnits::Zero(); 223 224 unsigned NonVirtualStart = 0; 225 const CXXRecordDecl *VirtualBase = nullptr; 226 227 // First, look for the virtual base class. 228 for (int I = Path.size(), E = 0; I != E; --I) { 229 const CXXBasePathElement &Element = Path[I - 1]; 230 231 if (Element.Base->isVirtual()) { 232 NonVirtualStart = I; 233 QualType VBaseType = Element.Base->getType(); 234 VirtualBase = VBaseType->getAsCXXRecordDecl(); 235 break; 236 } 237 } 238 239 // Now compute the non-virtual offset. 240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { 241 const CXXBasePathElement &Element = Path[I]; 242 243 // Check the base class offset. 244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); 245 246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); 247 248 NonVirtualOffset += Layout.getBaseClassOffset(Base); 249 } 250 251 // FIXME: This should probably use CharUnits or something. Maybe we should 252 // even change the base offsets in ASTRecordLayout to be specified in 253 // CharUnits. 254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); 255 256 } 257 258 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 259 const CXXRecordDecl *BaseRD, 260 const CXXRecordDecl *DerivedRD) { 261 CXXBasePaths Paths(/*FindAmbiguities=*/false, 262 /*RecordPaths=*/true, /*DetectVirtual=*/false); 263 264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 265 llvm_unreachable("Class must be derived from the passed in base class!"); 266 267 return ComputeBaseOffset(Context, DerivedRD, Paths.front()); 268 } 269 270 static BaseOffset 271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context, 272 const CXXMethodDecl *DerivedMD, 273 const CXXMethodDecl *BaseMD) { 274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); 275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); 276 277 // Canonicalize the return types. 278 CanQualType CanDerivedReturnType = 279 Context.getCanonicalType(DerivedFT->getReturnType()); 280 CanQualType CanBaseReturnType = 281 Context.getCanonicalType(BaseFT->getReturnType()); 282 283 assert(CanDerivedReturnType->getTypeClass() == 284 CanBaseReturnType->getTypeClass() && 285 "Types must have same type class!"); 286 287 if (CanDerivedReturnType == CanBaseReturnType) { 288 // No adjustment needed. 289 return BaseOffset(); 290 } 291 292 if (isa<ReferenceType>(CanDerivedReturnType)) { 293 CanDerivedReturnType = 294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); 295 CanBaseReturnType = 296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); 297 } else if (isa<PointerType>(CanDerivedReturnType)) { 298 CanDerivedReturnType = 299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); 300 CanBaseReturnType = 301 CanBaseReturnType->getAs<PointerType>()->getPointeeType(); 302 } else { 303 llvm_unreachable("Unexpected return type!"); 304 } 305 306 // We need to compare unqualified types here; consider 307 // const T *Base::foo(); 308 // T *Derived::foo(); 309 if (CanDerivedReturnType.getUnqualifiedType() == 310 CanBaseReturnType.getUnqualifiedType()) { 311 // No adjustment needed. 312 return BaseOffset(); 313 } 314 315 const CXXRecordDecl *DerivedRD = 316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); 317 318 const CXXRecordDecl *BaseRD = 319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); 320 321 return ComputeBaseOffset(Context, BaseRD, DerivedRD); 322 } 323 324 void 325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 326 CharUnits OffsetInLayoutClass, 327 SubobjectOffsetMapTy &SubobjectOffsets, 328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 329 SubobjectCountMapTy &SubobjectCounts) { 330 const CXXRecordDecl *RD = Base.getBase(); 331 332 unsigned SubobjectNumber = 0; 333 if (!IsVirtual) 334 SubobjectNumber = ++SubobjectCounts[RD]; 335 336 // Set up the subobject to offset mapping. 337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) 338 && "Subobject offset already exists!"); 339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) 340 && "Subobject offset already exists!"); 341 342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); 343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = 344 OffsetInLayoutClass; 345 346 // Traverse our bases. 347 for (const auto &B : RD->bases()) { 348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 349 350 CharUnits BaseOffset; 351 CharUnits BaseOffsetInLayoutClass; 352 if (B.isVirtual()) { 353 // Check if we've visited this virtual base before. 354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) 355 continue; 356 357 const ASTRecordLayout &LayoutClassLayout = 358 Context.getASTRecordLayout(LayoutClass); 359 360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 361 BaseOffsetInLayoutClass = 362 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 363 } else { 364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); 366 367 BaseOffset = Base.getBaseOffset() + Offset; 368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; 369 } 370 371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), 372 B.isVirtual(), BaseOffsetInLayoutClass, 373 SubobjectOffsets, SubobjectLayoutClassOffsets, 374 SubobjectCounts); 375 } 376 } 377 378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, 379 VisitedVirtualBasesSetTy &VisitedVirtualBases) { 380 const CXXRecordDecl *RD = Base.getBase(); 381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 382 383 for (const auto &B : RD->bases()) { 384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 385 386 // Ignore bases that don't have any virtual member functions. 387 if (!BaseDecl->isPolymorphic()) 388 continue; 389 390 CharUnits BaseOffset; 391 if (B.isVirtual()) { 392 if (!VisitedVirtualBases.insert(BaseDecl).second) { 393 // We've visited this base before. 394 continue; 395 } 396 397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 398 } else { 399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); 400 } 401 402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); 403 } 404 405 Out << "Final overriders for ("; 406 RD->printQualifiedName(Out); 407 Out << ", "; 408 Out << Base.getBaseOffset().getQuantity() << ")\n"; 409 410 // Now dump the overriders for this base subobject. 411 for (const auto *MD : RD->methods()) { 412 if (!VTableContextBase::hasVtableSlot(MD)) 413 continue; 414 MD = MD->getCanonicalDecl(); 415 416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); 417 418 Out << " "; 419 MD->printQualifiedName(Out); 420 Out << " - ("; 421 Overrider.Method->printQualifiedName(Out); 422 Out << ", " << Overrider.Offset.getQuantity() << ')'; 423 424 BaseOffset Offset; 425 if (!Overrider.Method->isPure()) 426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 427 428 if (!Offset.isEmpty()) { 429 Out << " [ret-adj: "; 430 if (Offset.VirtualBase) { 431 Offset.VirtualBase->printQualifiedName(Out); 432 Out << " vbase, "; 433 } 434 435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; 436 } 437 438 Out << "\n"; 439 } 440 } 441 442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. 443 struct VCallOffsetMap { 444 445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; 446 447 /// Offsets - Keeps track of methods and their offsets. 448 // FIXME: This should be a real map and not a vector. 449 SmallVector<MethodAndOffsetPairTy, 16> Offsets; 450 451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions 452 /// can share the same vcall offset. 453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 454 const CXXMethodDecl *RHS); 455 456 public: 457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the 458 /// add was successful, or false if there was already a member function with 459 /// the same signature in the map. 460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); 461 462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the 463 /// vtable address point) for the given virtual member function. 464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); 465 466 // empty - Return whether the offset map is empty or not. 467 bool empty() const { return Offsets.empty(); } 468 }; 469 470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, 471 const CXXMethodDecl *RHS) { 472 const FunctionProtoType *LT = 473 cast<FunctionProtoType>(LHS->getType().getCanonicalType()); 474 const FunctionProtoType *RT = 475 cast<FunctionProtoType>(RHS->getType().getCanonicalType()); 476 477 // Fast-path matches in the canonical types. 478 if (LT == RT) return true; 479 480 // Force the signatures to match. We can't rely on the overrides 481 // list here because there isn't necessarily an inheritance 482 // relationship between the two methods. 483 if (LT->getMethodQuals() != RT->getMethodQuals()) 484 return false; 485 return LT->getParamTypes() == RT->getParamTypes(); 486 } 487 488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 489 const CXXMethodDecl *RHS) { 490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!"); 491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!"); 492 493 // A destructor can share a vcall offset with another destructor. 494 if (isa<CXXDestructorDecl>(LHS)) 495 return isa<CXXDestructorDecl>(RHS); 496 497 // FIXME: We need to check more things here. 498 499 // The methods must have the same name. 500 DeclarationName LHSName = LHS->getDeclName(); 501 DeclarationName RHSName = RHS->getDeclName(); 502 if (LHSName != RHSName) 503 return false; 504 505 // And the same signatures. 506 return HasSameVirtualSignature(LHS, RHS); 507 } 508 509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, 510 CharUnits OffsetOffset) { 511 // Check if we can reuse an offset. 512 for (const auto &OffsetPair : Offsets) { 513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 514 return false; 515 } 516 517 // Add the offset. 518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); 519 return true; 520 } 521 522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { 523 // Look for an offset. 524 for (const auto &OffsetPair : Offsets) { 525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 526 return OffsetPair.second; 527 } 528 529 llvm_unreachable("Should always find a vcall offset offset!"); 530 } 531 532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. 533 class VCallAndVBaseOffsetBuilder { 534 public: 535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 536 VBaseOffsetOffsetsMapTy; 537 538 private: 539 const ItaniumVTableContext &VTables; 540 541 /// MostDerivedClass - The most derived class for which we're building vcall 542 /// and vbase offsets. 543 const CXXRecordDecl *MostDerivedClass; 544 545 /// LayoutClass - The class we're using for layout information. Will be 546 /// different than the most derived class if we're building a construction 547 /// vtable. 548 const CXXRecordDecl *LayoutClass; 549 550 /// Context - The ASTContext which we will use for layout information. 551 ASTContext &Context; 552 553 /// Components - vcall and vbase offset components 554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; 555 VTableComponentVectorTy Components; 556 557 /// VisitedVirtualBases - Visited virtual bases. 558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 559 560 /// VCallOffsets - Keeps track of vcall offsets. 561 VCallOffsetMap VCallOffsets; 562 563 564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, 565 /// relative to the address point. 566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 567 568 /// FinalOverriders - The final overriders of the most derived class. 569 /// (Can be null when we're not building a vtable of the most derived class). 570 const FinalOverriders *Overriders; 571 572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the 573 /// given base subobject. 574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, 575 CharUnits RealBaseOffset); 576 577 /// AddVCallOffsets - Add vcall offsets for the given base subobject. 578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); 579 580 /// AddVBaseOffsets - Add vbase offsets for the given class. 581 void AddVBaseOffsets(const CXXRecordDecl *Base, 582 CharUnits OffsetInLayoutClass); 583 584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in 585 /// chars, relative to the vtable address point. 586 CharUnits getCurrentOffsetOffset() const; 587 588 public: 589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, 590 const CXXRecordDecl *MostDerivedClass, 591 const CXXRecordDecl *LayoutClass, 592 const FinalOverriders *Overriders, 593 BaseSubobject Base, bool BaseIsVirtual, 594 CharUnits OffsetInLayoutClass) 595 : VTables(VTables), MostDerivedClass(MostDerivedClass), 596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 597 Overriders(Overriders) { 598 599 // Add vcall and vbase offsets. 600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); 601 } 602 603 /// Methods for iterating over the components. 604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; 605 const_iterator components_begin() const { return Components.rbegin(); } 606 const_iterator components_end() const { return Components.rend(); } 607 608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } 609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 610 return VBaseOffsetOffsets; 611 } 612 }; 613 614 void 615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, 616 bool BaseIsVirtual, 617 CharUnits RealBaseOffset) { 618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); 619 620 // Itanium C++ ABI 2.5.2: 621 // ..in classes sharing a virtual table with a primary base class, the vcall 622 // and vbase offsets added by the derived class all come before the vcall 623 // and vbase offsets required by the base class, so that the latter may be 624 // laid out as required by the base class without regard to additions from 625 // the derived class(es). 626 627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll 628 // emit them for the primary base first). 629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 631 632 CharUnits PrimaryBaseOffset; 633 634 // Get the base offset of the primary base. 635 if (PrimaryBaseIsVirtual) { 636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 637 "Primary vbase should have a zero offset!"); 638 639 const ASTRecordLayout &MostDerivedClassLayout = 640 Context.getASTRecordLayout(MostDerivedClass); 641 642 PrimaryBaseOffset = 643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 644 } else { 645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 646 "Primary base should have a zero offset!"); 647 648 PrimaryBaseOffset = Base.getBaseOffset(); 649 } 650 651 AddVCallAndVBaseOffsets( 652 BaseSubobject(PrimaryBase,PrimaryBaseOffset), 653 PrimaryBaseIsVirtual, RealBaseOffset); 654 } 655 656 AddVBaseOffsets(Base.getBase(), RealBaseOffset); 657 658 // We only want to add vcall offsets for virtual bases. 659 if (BaseIsVirtual) 660 AddVCallOffsets(Base, RealBaseOffset); 661 } 662 663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { 664 // OffsetIndex is the index of this vcall or vbase offset, relative to the 665 // vtable address point. (We subtract 3 to account for the information just 666 // above the address point, the RTTI info, the offset to top, and the 667 // vcall offset itself). 668 int64_t OffsetIndex = -(int64_t)(3 + Components.size()); 669 670 // Under the relative ABI, the offset widths are 32-bit ints instead of 671 // pointer widths. 672 CharUnits OffsetWidth = Context.toCharUnitsFromBits( 673 VTables.isRelativeLayout() ? 32 674 : Context.getTargetInfo().getPointerWidth(0)); 675 CharUnits OffsetOffset = OffsetWidth * OffsetIndex; 676 677 return OffsetOffset; 678 } 679 680 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, 681 CharUnits VBaseOffset) { 682 const CXXRecordDecl *RD = Base.getBase(); 683 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 684 685 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 686 687 // Handle the primary base first. 688 // We only want to add vcall offsets if the base is non-virtual; a virtual 689 // primary base will have its vcall and vbase offsets emitted already. 690 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { 691 // Get the base offset of the primary base. 692 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 693 "Primary base should have a zero offset!"); 694 695 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), 696 VBaseOffset); 697 } 698 699 // Add the vcall offsets. 700 for (const auto *MD : RD->methods()) { 701 if (!VTableContextBase::hasVtableSlot(MD)) 702 continue; 703 MD = MD->getCanonicalDecl(); 704 705 CharUnits OffsetOffset = getCurrentOffsetOffset(); 706 707 // Don't add a vcall offset if we already have one for this member function 708 // signature. 709 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) 710 continue; 711 712 CharUnits Offset = CharUnits::Zero(); 713 714 if (Overriders) { 715 // Get the final overrider. 716 FinalOverriders::OverriderInfo Overrider = 717 Overriders->getOverrider(MD, Base.getBaseOffset()); 718 719 /// The vcall offset is the offset from the virtual base to the object 720 /// where the function was overridden. 721 Offset = Overrider.Offset - VBaseOffset; 722 } 723 724 Components.push_back( 725 VTableComponent::MakeVCallOffset(Offset)); 726 } 727 728 // And iterate over all non-virtual bases (ignoring the primary base). 729 for (const auto &B : RD->bases()) { 730 if (B.isVirtual()) 731 continue; 732 733 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 734 if (BaseDecl == PrimaryBase) 735 continue; 736 737 // Get the base offset of this base. 738 CharUnits BaseOffset = Base.getBaseOffset() + 739 Layout.getBaseClassOffset(BaseDecl); 740 741 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), 742 VBaseOffset); 743 } 744 } 745 746 void 747 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, 748 CharUnits OffsetInLayoutClass) { 749 const ASTRecordLayout &LayoutClassLayout = 750 Context.getASTRecordLayout(LayoutClass); 751 752 // Add vbase offsets. 753 for (const auto &B : RD->bases()) { 754 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 755 756 // Check if this is a virtual base that we haven't visited before. 757 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { 758 CharUnits Offset = 759 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; 760 761 // Add the vbase offset offset. 762 assert(!VBaseOffsetOffsets.count(BaseDecl) && 763 "vbase offset offset already exists!"); 764 765 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); 766 VBaseOffsetOffsets.insert( 767 std::make_pair(BaseDecl, VBaseOffsetOffset)); 768 769 Components.push_back( 770 VTableComponent::MakeVBaseOffset(Offset)); 771 } 772 773 // Check the base class looking for more vbase offsets. 774 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); 775 } 776 } 777 778 /// ItaniumVTableBuilder - Class for building vtable layout information. 779 class ItaniumVTableBuilder { 780 public: 781 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect 782 /// primary bases. 783 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> 784 PrimaryBasesSetVectorTy; 785 786 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 787 VBaseOffsetOffsetsMapTy; 788 789 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; 790 791 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 792 793 private: 794 /// VTables - Global vtable information. 795 ItaniumVTableContext &VTables; 796 797 /// MostDerivedClass - The most derived class for which we're building this 798 /// vtable. 799 const CXXRecordDecl *MostDerivedClass; 800 801 /// MostDerivedClassOffset - If we're building a construction vtable, this 802 /// holds the offset from the layout class to the most derived class. 803 const CharUnits MostDerivedClassOffset; 804 805 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual 806 /// base. (This only makes sense when building a construction vtable). 807 bool MostDerivedClassIsVirtual; 808 809 /// LayoutClass - The class we're using for layout information. Will be 810 /// different than the most derived class if we're building a construction 811 /// vtable. 812 const CXXRecordDecl *LayoutClass; 813 814 /// Context - The ASTContext which we will use for layout information. 815 ASTContext &Context; 816 817 /// FinalOverriders - The final overriders of the most derived class. 818 const FinalOverriders Overriders; 819 820 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual 821 /// bases in this vtable. 822 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; 823 824 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for 825 /// the most derived class. 826 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 827 828 /// Components - The components of the vtable being built. 829 SmallVector<VTableComponent, 64> Components; 830 831 /// AddressPoints - Address points for the vtable being built. 832 AddressPointsMapTy AddressPoints; 833 834 /// MethodInfo - Contains information about a method in a vtable. 835 /// (Used for computing 'this' pointer adjustment thunks. 836 struct MethodInfo { 837 /// BaseOffset - The base offset of this method. 838 const CharUnits BaseOffset; 839 840 /// BaseOffsetInLayoutClass - The base offset in the layout class of this 841 /// method. 842 const CharUnits BaseOffsetInLayoutClass; 843 844 /// VTableIndex - The index in the vtable that this method has. 845 /// (For destructors, this is the index of the complete destructor). 846 const uint64_t VTableIndex; 847 848 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, 849 uint64_t VTableIndex) 850 : BaseOffset(BaseOffset), 851 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), 852 VTableIndex(VTableIndex) { } 853 854 MethodInfo() 855 : BaseOffset(CharUnits::Zero()), 856 BaseOffsetInLayoutClass(CharUnits::Zero()), 857 VTableIndex(0) { } 858 859 MethodInfo(MethodInfo const&) = default; 860 }; 861 862 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 863 864 /// MethodInfoMap - The information for all methods in the vtable we're 865 /// currently building. 866 MethodInfoMapTy MethodInfoMap; 867 868 /// MethodVTableIndices - Contains the index (relative to the vtable address 869 /// point) where the function pointer for a virtual function is stored. 870 MethodVTableIndicesTy MethodVTableIndices; 871 872 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 873 874 /// VTableThunks - The thunks by vtable index in the vtable currently being 875 /// built. 876 VTableThunksMapTy VTableThunks; 877 878 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 879 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 880 881 /// Thunks - A map that contains all the thunks needed for all methods in the 882 /// most derived class for which the vtable is currently being built. 883 ThunksMapTy Thunks; 884 885 /// AddThunk - Add a thunk for the given method. 886 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); 887 888 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the 889 /// part of the vtable we're currently building. 890 void ComputeThisAdjustments(); 891 892 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 893 894 /// PrimaryVirtualBases - All known virtual bases who are a primary base of 895 /// some other base. 896 VisitedVirtualBasesSetTy PrimaryVirtualBases; 897 898 /// ComputeReturnAdjustment - Compute the return adjustment given a return 899 /// adjustment base offset. 900 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); 901 902 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting 903 /// the 'this' pointer from the base subobject to the derived subobject. 904 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, 905 BaseSubobject Derived) const; 906 907 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the 908 /// given virtual member function, its offset in the layout class and its 909 /// final overrider. 910 ThisAdjustment 911 ComputeThisAdjustment(const CXXMethodDecl *MD, 912 CharUnits BaseOffsetInLayoutClass, 913 FinalOverriders::OverriderInfo Overrider); 914 915 /// AddMethod - Add a single virtual member function to the vtable 916 /// components vector. 917 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); 918 919 /// IsOverriderUsed - Returns whether the overrider will ever be used in this 920 /// part of the vtable. 921 /// 922 /// Itanium C++ ABI 2.5.2: 923 /// 924 /// struct A { virtual void f(); }; 925 /// struct B : virtual public A { int i; }; 926 /// struct C : virtual public A { int j; }; 927 /// struct D : public B, public C {}; 928 /// 929 /// When B and C are declared, A is a primary base in each case, so although 930 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this 931 /// adjustment is required and no thunk is generated. However, inside D 932 /// objects, A is no longer a primary base of C, so if we allowed calls to 933 /// C::f() to use the copy of A's vtable in the C subobject, we would need 934 /// to adjust this from C* to B::A*, which would require a third-party 935 /// thunk. Since we require that a call to C::f() first convert to A*, 936 /// C-in-D's copy of A's vtable is never referenced, so this is not 937 /// necessary. 938 bool IsOverriderUsed(const CXXMethodDecl *Overrider, 939 CharUnits BaseOffsetInLayoutClass, 940 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 941 CharUnits FirstBaseOffsetInLayoutClass) const; 942 943 944 /// AddMethods - Add the methods of this base subobject and all its 945 /// primary bases to the vtable components vector. 946 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 947 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 948 CharUnits FirstBaseOffsetInLayoutClass, 949 PrimaryBasesSetVectorTy &PrimaryBases); 950 951 // LayoutVTable - Layout the vtable for the given base class, including its 952 // secondary vtables and any vtables for virtual bases. 953 void LayoutVTable(); 954 955 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the 956 /// given base subobject, as well as all its secondary vtables. 957 /// 958 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 959 /// or a direct or indirect base of a virtual base. 960 /// 961 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual 962 /// in the layout class. 963 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, 964 bool BaseIsMorallyVirtual, 965 bool BaseIsVirtualInLayoutClass, 966 CharUnits OffsetInLayoutClass); 967 968 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base 969 /// subobject. 970 /// 971 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 972 /// or a direct or indirect base of a virtual base. 973 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, 974 CharUnits OffsetInLayoutClass); 975 976 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this 977 /// class hierarchy. 978 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, 979 CharUnits OffsetInLayoutClass, 980 VisitedVirtualBasesSetTy &VBases); 981 982 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the 983 /// given base (excluding any primary bases). 984 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, 985 VisitedVirtualBasesSetTy &VBases); 986 987 /// isBuildingConstructionVTable - Return whether this vtable builder is 988 /// building a construction vtable. 989 bool isBuildingConstructorVTable() const { 990 return MostDerivedClass != LayoutClass; 991 } 992 993 public: 994 /// Component indices of the first component of each of the vtables in the 995 /// vtable group. 996 SmallVector<size_t, 4> VTableIndices; 997 998 ItaniumVTableBuilder(ItaniumVTableContext &VTables, 999 const CXXRecordDecl *MostDerivedClass, 1000 CharUnits MostDerivedClassOffset, 1001 bool MostDerivedClassIsVirtual, 1002 const CXXRecordDecl *LayoutClass) 1003 : VTables(VTables), MostDerivedClass(MostDerivedClass), 1004 MostDerivedClassOffset(MostDerivedClassOffset), 1005 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), 1006 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 1007 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { 1008 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); 1009 1010 LayoutVTable(); 1011 1012 if (Context.getLangOpts().DumpVTableLayouts) 1013 dumpLayout(llvm::outs()); 1014 } 1015 1016 uint64_t getNumThunks() const { 1017 return Thunks.size(); 1018 } 1019 1020 ThunksMapTy::const_iterator thunks_begin() const { 1021 return Thunks.begin(); 1022 } 1023 1024 ThunksMapTy::const_iterator thunks_end() const { 1025 return Thunks.end(); 1026 } 1027 1028 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 1029 return VBaseOffsetOffsets; 1030 } 1031 1032 const AddressPointsMapTy &getAddressPoints() const { 1033 return AddressPoints; 1034 } 1035 1036 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { 1037 return MethodVTableIndices.begin(); 1038 } 1039 1040 MethodVTableIndicesTy::const_iterator vtable_indices_end() const { 1041 return MethodVTableIndices.end(); 1042 } 1043 1044 ArrayRef<VTableComponent> vtable_components() const { return Components; } 1045 1046 AddressPointsMapTy::const_iterator address_points_begin() const { 1047 return AddressPoints.begin(); 1048 } 1049 1050 AddressPointsMapTy::const_iterator address_points_end() const { 1051 return AddressPoints.end(); 1052 } 1053 1054 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 1055 return VTableThunks.begin(); 1056 } 1057 1058 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 1059 return VTableThunks.end(); 1060 } 1061 1062 /// dumpLayout - Dump the vtable layout. 1063 void dumpLayout(raw_ostream&); 1064 }; 1065 1066 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, 1067 const ThunkInfo &Thunk) { 1068 assert(!isBuildingConstructorVTable() && 1069 "Can't add thunks for construction vtable"); 1070 1071 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; 1072 1073 // Check if we have this thunk already. 1074 if (llvm::is_contained(ThunksVector, Thunk)) 1075 return; 1076 1077 ThunksVector.push_back(Thunk); 1078 } 1079 1080 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; 1081 1082 /// Visit all the methods overridden by the given method recursively, 1083 /// in a depth-first pre-order. The Visitor's visitor method returns a bool 1084 /// indicating whether to continue the recursion for the given overridden 1085 /// method (i.e. returning false stops the iteration). 1086 template <class VisitorTy> 1087 static void 1088 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { 1089 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!"); 1090 1091 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1092 if (!Visitor(OverriddenMD)) 1093 continue; 1094 visitAllOverriddenMethods(OverriddenMD, Visitor); 1095 } 1096 } 1097 1098 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all 1099 /// the overridden methods that the function decl overrides. 1100 static void 1101 ComputeAllOverriddenMethods(const CXXMethodDecl *MD, 1102 OverriddenMethodsSetTy& OverriddenMethods) { 1103 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { 1104 // Don't recurse on this method if we've already collected it. 1105 return OverriddenMethods.insert(MD).second; 1106 }; 1107 visitAllOverriddenMethods(MD, OverriddenMethodsCollector); 1108 } 1109 1110 void ItaniumVTableBuilder::ComputeThisAdjustments() { 1111 // Now go through the method info map and see if any of the methods need 1112 // 'this' pointer adjustments. 1113 for (const auto &MI : MethodInfoMap) { 1114 const CXXMethodDecl *MD = MI.first; 1115 const MethodInfo &MethodInfo = MI.second; 1116 1117 // Ignore adjustments for unused function pointers. 1118 uint64_t VTableIndex = MethodInfo.VTableIndex; 1119 if (Components[VTableIndex].getKind() == 1120 VTableComponent::CK_UnusedFunctionPointer) 1121 continue; 1122 1123 // Get the final overrider for this method. 1124 FinalOverriders::OverriderInfo Overrider = 1125 Overriders.getOverrider(MD, MethodInfo.BaseOffset); 1126 1127 // Check if we need an adjustment at all. 1128 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { 1129 // When a return thunk is needed by a derived class that overrides a 1130 // virtual base, gcc uses a virtual 'this' adjustment as well. 1131 // While the thunk itself might be needed by vtables in subclasses or 1132 // in construction vtables, there doesn't seem to be a reason for using 1133 // the thunk in this vtable. Still, we do so to match gcc. 1134 if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) 1135 continue; 1136 } 1137 1138 ThisAdjustment ThisAdjustment = 1139 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); 1140 1141 if (ThisAdjustment.isEmpty()) 1142 continue; 1143 1144 // Add it. 1145 VTableThunks[VTableIndex].This = ThisAdjustment; 1146 1147 if (isa<CXXDestructorDecl>(MD)) { 1148 // Add an adjustment for the deleting destructor as well. 1149 VTableThunks[VTableIndex + 1].This = ThisAdjustment; 1150 } 1151 } 1152 1153 /// Clear the method info map. 1154 MethodInfoMap.clear(); 1155 1156 if (isBuildingConstructorVTable()) { 1157 // We don't need to store thunk information for construction vtables. 1158 return; 1159 } 1160 1161 for (const auto &TI : VTableThunks) { 1162 const VTableComponent &Component = Components[TI.first]; 1163 const ThunkInfo &Thunk = TI.second; 1164 const CXXMethodDecl *MD; 1165 1166 switch (Component.getKind()) { 1167 default: 1168 llvm_unreachable("Unexpected vtable component kind!"); 1169 case VTableComponent::CK_FunctionPointer: 1170 MD = Component.getFunctionDecl(); 1171 break; 1172 case VTableComponent::CK_CompleteDtorPointer: 1173 MD = Component.getDestructorDecl(); 1174 break; 1175 case VTableComponent::CK_DeletingDtorPointer: 1176 // We've already added the thunk when we saw the complete dtor pointer. 1177 continue; 1178 } 1179 1180 if (MD->getParent() == MostDerivedClass) 1181 AddThunk(MD, Thunk); 1182 } 1183 } 1184 1185 ReturnAdjustment 1186 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { 1187 ReturnAdjustment Adjustment; 1188 1189 if (!Offset.isEmpty()) { 1190 if (Offset.VirtualBase) { 1191 // Get the virtual base offset offset. 1192 if (Offset.DerivedClass == MostDerivedClass) { 1193 // We can get the offset offset directly from our map. 1194 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1195 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); 1196 } else { 1197 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1198 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, 1199 Offset.VirtualBase).getQuantity(); 1200 } 1201 } 1202 1203 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1204 } 1205 1206 return Adjustment; 1207 } 1208 1209 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( 1210 BaseSubobject Base, BaseSubobject Derived) const { 1211 const CXXRecordDecl *BaseRD = Base.getBase(); 1212 const CXXRecordDecl *DerivedRD = Derived.getBase(); 1213 1214 CXXBasePaths Paths(/*FindAmbiguities=*/true, 1215 /*RecordPaths=*/true, /*DetectVirtual=*/true); 1216 1217 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 1218 llvm_unreachable("Class must be derived from the passed in base class!"); 1219 1220 // We have to go through all the paths, and see which one leads us to the 1221 // right base subobject. 1222 for (const CXXBasePath &Path : Paths) { 1223 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); 1224 1225 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; 1226 1227 if (Offset.VirtualBase) { 1228 // If we have a virtual base class, the non-virtual offset is relative 1229 // to the virtual base class offset. 1230 const ASTRecordLayout &LayoutClassLayout = 1231 Context.getASTRecordLayout(LayoutClass); 1232 1233 /// Get the virtual base offset, relative to the most derived class 1234 /// layout. 1235 OffsetToBaseSubobject += 1236 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); 1237 } else { 1238 // Otherwise, the non-virtual offset is relative to the derived class 1239 // offset. 1240 OffsetToBaseSubobject += Derived.getBaseOffset(); 1241 } 1242 1243 // Check if this path gives us the right base subobject. 1244 if (OffsetToBaseSubobject == Base.getBaseOffset()) { 1245 // Since we're going from the base class _to_ the derived class, we'll 1246 // invert the non-virtual offset here. 1247 Offset.NonVirtualOffset = -Offset.NonVirtualOffset; 1248 return Offset; 1249 } 1250 } 1251 1252 return BaseOffset(); 1253 } 1254 1255 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( 1256 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, 1257 FinalOverriders::OverriderInfo Overrider) { 1258 // Ignore adjustments for pure virtual member functions. 1259 if (Overrider.Method->isPure()) 1260 return ThisAdjustment(); 1261 1262 BaseSubobject OverriddenBaseSubobject(MD->getParent(), 1263 BaseOffsetInLayoutClass); 1264 1265 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), 1266 Overrider.Offset); 1267 1268 // Compute the adjustment offset. 1269 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, 1270 OverriderBaseSubobject); 1271 if (Offset.isEmpty()) 1272 return ThisAdjustment(); 1273 1274 ThisAdjustment Adjustment; 1275 1276 if (Offset.VirtualBase) { 1277 // Get the vcall offset map for this virtual base. 1278 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; 1279 1280 if (VCallOffsets.empty()) { 1281 // We don't have vcall offsets for this virtual base, go ahead and 1282 // build them. 1283 VCallAndVBaseOffsetBuilder Builder( 1284 VTables, MostDerivedClass, MostDerivedClass, 1285 /*Overriders=*/nullptr, 1286 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), 1287 /*BaseIsVirtual=*/true, 1288 /*OffsetInLayoutClass=*/ 1289 CharUnits::Zero()); 1290 1291 VCallOffsets = Builder.getVCallOffsets(); 1292 } 1293 1294 Adjustment.Virtual.Itanium.VCallOffsetOffset = 1295 VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); 1296 } 1297 1298 // Set the non-virtual part of the adjustment. 1299 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1300 1301 return Adjustment; 1302 } 1303 1304 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, 1305 ReturnAdjustment ReturnAdjustment) { 1306 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1307 assert(ReturnAdjustment.isEmpty() && 1308 "Destructor can't have return adjustment!"); 1309 1310 // Add both the complete destructor and the deleting destructor. 1311 Components.push_back(VTableComponent::MakeCompleteDtor(DD)); 1312 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 1313 } else { 1314 // Add the return adjustment if necessary. 1315 if (!ReturnAdjustment.isEmpty()) 1316 VTableThunks[Components.size()].Return = ReturnAdjustment; 1317 1318 // Add the function. 1319 Components.push_back(VTableComponent::MakeFunction(MD)); 1320 } 1321 } 1322 1323 /// OverridesIndirectMethodInBase - Return whether the given member function 1324 /// overrides any methods in the set of given bases. 1325 /// Unlike OverridesMethodInBase, this checks "overriders of overriders". 1326 /// For example, if we have: 1327 /// 1328 /// struct A { virtual void f(); } 1329 /// struct B : A { virtual void f(); } 1330 /// struct C : B { virtual void f(); } 1331 /// 1332 /// OverridesIndirectMethodInBase will return true if given C::f as the method 1333 /// and { A } as the set of bases. 1334 static bool OverridesIndirectMethodInBases( 1335 const CXXMethodDecl *MD, 1336 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { 1337 if (Bases.count(MD->getParent())) 1338 return true; 1339 1340 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1341 // Check "indirect overriders". 1342 if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) 1343 return true; 1344 } 1345 1346 return false; 1347 } 1348 1349 bool ItaniumVTableBuilder::IsOverriderUsed( 1350 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, 1351 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1352 CharUnits FirstBaseOffsetInLayoutClass) const { 1353 // If the base and the first base in the primary base chain have the same 1354 // offsets, then this overrider will be used. 1355 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) 1356 return true; 1357 1358 // We know now that Base (or a direct or indirect base of it) is a primary 1359 // base in part of the class hierarchy, but not a primary base in the most 1360 // derived class. 1361 1362 // If the overrider is the first base in the primary base chain, we know 1363 // that the overrider will be used. 1364 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) 1365 return true; 1366 1367 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; 1368 1369 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; 1370 PrimaryBases.insert(RD); 1371 1372 // Now traverse the base chain, starting with the first base, until we find 1373 // the base that is no longer a primary base. 1374 while (true) { 1375 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1376 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1377 1378 if (!PrimaryBase) 1379 break; 1380 1381 if (Layout.isPrimaryBaseVirtual()) { 1382 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1383 "Primary base should always be at offset 0!"); 1384 1385 const ASTRecordLayout &LayoutClassLayout = 1386 Context.getASTRecordLayout(LayoutClass); 1387 1388 // Now check if this is the primary base that is not a primary base in the 1389 // most derived class. 1390 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1391 FirstBaseOffsetInLayoutClass) { 1392 // We found it, stop walking the chain. 1393 break; 1394 } 1395 } else { 1396 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1397 "Primary base should always be at offset 0!"); 1398 } 1399 1400 if (!PrimaryBases.insert(PrimaryBase)) 1401 llvm_unreachable("Found a duplicate primary base!"); 1402 1403 RD = PrimaryBase; 1404 } 1405 1406 // If the final overrider is an override of one of the primary bases, 1407 // then we know that it will be used. 1408 return OverridesIndirectMethodInBases(Overrider, PrimaryBases); 1409 } 1410 1411 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; 1412 1413 /// FindNearestOverriddenMethod - Given a method, returns the overridden method 1414 /// from the nearest base. Returns null if no method was found. 1415 /// The Bases are expected to be sorted in a base-to-derived order. 1416 static const CXXMethodDecl * 1417 FindNearestOverriddenMethod(const CXXMethodDecl *MD, 1418 BasesSetVectorTy &Bases) { 1419 OverriddenMethodsSetTy OverriddenMethods; 1420 ComputeAllOverriddenMethods(MD, OverriddenMethods); 1421 1422 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) { 1423 // Now check the overridden methods. 1424 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { 1425 // We found our overridden method. 1426 if (OverriddenMD->getParent() == PrimaryBase) 1427 return OverriddenMD; 1428 } 1429 } 1430 1431 return nullptr; 1432 } 1433 1434 void ItaniumVTableBuilder::AddMethods( 1435 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 1436 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1437 CharUnits FirstBaseOffsetInLayoutClass, 1438 PrimaryBasesSetVectorTy &PrimaryBases) { 1439 // Itanium C++ ABI 2.5.2: 1440 // The order of the virtual function pointers in a virtual table is the 1441 // order of declaration of the corresponding member functions in the class. 1442 // 1443 // There is an entry for any virtual function declared in a class, 1444 // whether it is a new function or overrides a base class function, 1445 // unless it overrides a function from the primary base, and conversion 1446 // between their return types does not require an adjustment. 1447 1448 const CXXRecordDecl *RD = Base.getBase(); 1449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1450 1451 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1452 CharUnits PrimaryBaseOffset; 1453 CharUnits PrimaryBaseOffsetInLayoutClass; 1454 if (Layout.isPrimaryBaseVirtual()) { 1455 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1456 "Primary vbase should have a zero offset!"); 1457 1458 const ASTRecordLayout &MostDerivedClassLayout = 1459 Context.getASTRecordLayout(MostDerivedClass); 1460 1461 PrimaryBaseOffset = 1462 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 1463 1464 const ASTRecordLayout &LayoutClassLayout = 1465 Context.getASTRecordLayout(LayoutClass); 1466 1467 PrimaryBaseOffsetInLayoutClass = 1468 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1469 } else { 1470 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1471 "Primary base should have a zero offset!"); 1472 1473 PrimaryBaseOffset = Base.getBaseOffset(); 1474 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; 1475 } 1476 1477 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), 1478 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, 1479 FirstBaseOffsetInLayoutClass, PrimaryBases); 1480 1481 if (!PrimaryBases.insert(PrimaryBase)) 1482 llvm_unreachable("Found a duplicate primary base!"); 1483 } 1484 1485 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; 1486 NewVirtualFunctionsTy NewVirtualFunctions; 1487 1488 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; 1489 1490 // Now go through all virtual member functions and add them. 1491 for (const auto *MD : RD->methods()) { 1492 if (!ItaniumVTableContext::hasVtableSlot(MD)) 1493 continue; 1494 MD = MD->getCanonicalDecl(); 1495 1496 // Get the final overrider. 1497 FinalOverriders::OverriderInfo Overrider = 1498 Overriders.getOverrider(MD, Base.getBaseOffset()); 1499 1500 // Check if this virtual member function overrides a method in a primary 1501 // base. If this is the case, and the return type doesn't require adjustment 1502 // then we can just use the member function from the primary base. 1503 if (const CXXMethodDecl *OverriddenMD = 1504 FindNearestOverriddenMethod(MD, PrimaryBases)) { 1505 if (ComputeReturnAdjustmentBaseOffset(Context, MD, 1506 OverriddenMD).isEmpty()) { 1507 // Replace the method info of the overridden method with our own 1508 // method. 1509 assert(MethodInfoMap.count(OverriddenMD) && 1510 "Did not find the overridden method!"); 1511 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; 1512 1513 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1514 OverriddenMethodInfo.VTableIndex); 1515 1516 assert(!MethodInfoMap.count(MD) && 1517 "Should not have method info for this method yet!"); 1518 1519 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1520 MethodInfoMap.erase(OverriddenMD); 1521 1522 // If the overridden method exists in a virtual base class or a direct 1523 // or indirect base class of a virtual base class, we need to emit a 1524 // thunk if we ever have a class hierarchy where the base class is not 1525 // a primary base in the complete object. 1526 if (!isBuildingConstructorVTable() && OverriddenMD != MD) { 1527 // Compute the this adjustment. 1528 ThisAdjustment ThisAdjustment = 1529 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, 1530 Overrider); 1531 1532 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && 1533 Overrider.Method->getParent() == MostDerivedClass) { 1534 1535 // There's no return adjustment from OverriddenMD and MD, 1536 // but that doesn't mean there isn't one between MD and 1537 // the final overrider. 1538 BaseOffset ReturnAdjustmentOffset = 1539 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 1540 ReturnAdjustment ReturnAdjustment = 1541 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1542 1543 // This is a virtual thunk for the most derived class, add it. 1544 AddThunk(Overrider.Method, 1545 ThunkInfo(ThisAdjustment, ReturnAdjustment)); 1546 } 1547 } 1548 1549 continue; 1550 } 1551 } 1552 1553 if (MD->isImplicit()) 1554 NewImplicitVirtualFunctions.push_back(MD); 1555 else 1556 NewVirtualFunctions.push_back(MD); 1557 } 1558 1559 std::stable_sort( 1560 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(), 1561 [](const CXXMethodDecl *A, const CXXMethodDecl *B) { 1562 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) 1563 return A->isCopyAssignmentOperator(); 1564 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) 1565 return A->isMoveAssignmentOperator(); 1566 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B)) 1567 return isa<CXXDestructorDecl>(A); 1568 assert(A->getOverloadedOperator() == OO_EqualEqual && 1569 B->getOverloadedOperator() == OO_EqualEqual && 1570 "unexpected or duplicate implicit virtual function"); 1571 // We rely on Sema to have declared the operator== members in the 1572 // same order as the corresponding operator<=> members. 1573 return false; 1574 }); 1575 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(), 1576 NewImplicitVirtualFunctions.end()); 1577 1578 for (const CXXMethodDecl *MD : NewVirtualFunctions) { 1579 // Get the final overrider. 1580 FinalOverriders::OverriderInfo Overrider = 1581 Overriders.getOverrider(MD, Base.getBaseOffset()); 1582 1583 // Insert the method info for this method. 1584 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1585 Components.size()); 1586 1587 assert(!MethodInfoMap.count(MD) && 1588 "Should not have method info for this method yet!"); 1589 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1590 1591 // Check if this overrider is going to be used. 1592 const CXXMethodDecl *OverriderMD = Overrider.Method; 1593 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, 1594 FirstBaseInPrimaryBaseChain, 1595 FirstBaseOffsetInLayoutClass)) { 1596 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); 1597 continue; 1598 } 1599 1600 // Check if this overrider needs a return adjustment. 1601 // We don't want to do this for pure virtual member functions. 1602 BaseOffset ReturnAdjustmentOffset; 1603 if (!OverriderMD->isPure()) { 1604 ReturnAdjustmentOffset = 1605 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); 1606 } 1607 1608 ReturnAdjustment ReturnAdjustment = 1609 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1610 1611 AddMethod(Overrider.Method, ReturnAdjustment); 1612 } 1613 } 1614 1615 void ItaniumVTableBuilder::LayoutVTable() { 1616 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, 1617 CharUnits::Zero()), 1618 /*BaseIsMorallyVirtual=*/false, 1619 MostDerivedClassIsVirtual, 1620 MostDerivedClassOffset); 1621 1622 VisitedVirtualBasesSetTy VBases; 1623 1624 // Determine the primary virtual bases. 1625 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, 1626 VBases); 1627 VBases.clear(); 1628 1629 LayoutVTablesForVirtualBases(MostDerivedClass, VBases); 1630 1631 // -fapple-kext adds an extra entry at end of vtbl. 1632 bool IsAppleKext = Context.getLangOpts().AppleKext; 1633 if (IsAppleKext) 1634 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); 1635 } 1636 1637 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( 1638 BaseSubobject Base, bool BaseIsMorallyVirtual, 1639 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { 1640 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); 1641 1642 unsigned VTableIndex = Components.size(); 1643 VTableIndices.push_back(VTableIndex); 1644 1645 // Add vcall and vbase offsets for this vtable. 1646 VCallAndVBaseOffsetBuilder Builder( 1647 VTables, MostDerivedClass, LayoutClass, &Overriders, Base, 1648 BaseIsVirtualInLayoutClass, OffsetInLayoutClass); 1649 Components.append(Builder.components_begin(), Builder.components_end()); 1650 1651 // Check if we need to add these vcall offsets. 1652 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { 1653 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; 1654 1655 if (VCallOffsets.empty()) 1656 VCallOffsets = Builder.getVCallOffsets(); 1657 } 1658 1659 // If we're laying out the most derived class we want to keep track of the 1660 // virtual base class offset offsets. 1661 if (Base.getBase() == MostDerivedClass) 1662 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); 1663 1664 // Add the offset to top. 1665 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; 1666 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); 1667 1668 // Next, add the RTTI. 1669 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 1670 1671 uint64_t AddressPoint = Components.size(); 1672 1673 // Now go through all virtual member functions and add them. 1674 PrimaryBasesSetVectorTy PrimaryBases; 1675 AddMethods(Base, OffsetInLayoutClass, 1676 Base.getBase(), OffsetInLayoutClass, 1677 PrimaryBases); 1678 1679 const CXXRecordDecl *RD = Base.getBase(); 1680 if (RD == MostDerivedClass) { 1681 assert(MethodVTableIndices.empty()); 1682 for (const auto &I : MethodInfoMap) { 1683 const CXXMethodDecl *MD = I.first; 1684 const MethodInfo &MI = I.second; 1685 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1686 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] 1687 = MI.VTableIndex - AddressPoint; 1688 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] 1689 = MI.VTableIndex + 1 - AddressPoint; 1690 } else { 1691 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; 1692 } 1693 } 1694 } 1695 1696 // Compute 'this' pointer adjustments. 1697 ComputeThisAdjustments(); 1698 1699 // Add all address points. 1700 while (true) { 1701 AddressPoints.insert( 1702 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass), 1703 VTableLayout::AddressPointLocation{ 1704 unsigned(VTableIndices.size() - 1), 1705 unsigned(AddressPoint - VTableIndex)})); 1706 1707 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1708 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1709 1710 if (!PrimaryBase) 1711 break; 1712 1713 if (Layout.isPrimaryBaseVirtual()) { 1714 // Check if this virtual primary base is a primary base in the layout 1715 // class. If it's not, we don't want to add it. 1716 const ASTRecordLayout &LayoutClassLayout = 1717 Context.getASTRecordLayout(LayoutClass); 1718 1719 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1720 OffsetInLayoutClass) { 1721 // We don't want to add this class (or any of its primary bases). 1722 break; 1723 } 1724 } 1725 1726 RD = PrimaryBase; 1727 } 1728 1729 // Layout secondary vtables. 1730 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); 1731 } 1732 1733 void 1734 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, 1735 bool BaseIsMorallyVirtual, 1736 CharUnits OffsetInLayoutClass) { 1737 // Itanium C++ ABI 2.5.2: 1738 // Following the primary virtual table of a derived class are secondary 1739 // virtual tables for each of its proper base classes, except any primary 1740 // base(s) with which it shares its primary virtual table. 1741 1742 const CXXRecordDecl *RD = Base.getBase(); 1743 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1744 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1745 1746 for (const auto &B : RD->bases()) { 1747 // Ignore virtual bases, we'll emit them later. 1748 if (B.isVirtual()) 1749 continue; 1750 1751 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1752 1753 // Ignore bases that don't have a vtable. 1754 if (!BaseDecl->isDynamicClass()) 1755 continue; 1756 1757 if (isBuildingConstructorVTable()) { 1758 // Itanium C++ ABI 2.6.4: 1759 // Some of the base class subobjects may not need construction virtual 1760 // tables, which will therefore not be present in the construction 1761 // virtual table group, even though the subobject virtual tables are 1762 // present in the main virtual table group for the complete object. 1763 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) 1764 continue; 1765 } 1766 1767 // Get the base offset of this base. 1768 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); 1769 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; 1770 1771 CharUnits BaseOffsetInLayoutClass = 1772 OffsetInLayoutClass + RelativeBaseOffset; 1773 1774 // Don't emit a secondary vtable for a primary base. We might however want 1775 // to emit secondary vtables for other bases of this base. 1776 if (BaseDecl == PrimaryBase) { 1777 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), 1778 BaseIsMorallyVirtual, BaseOffsetInLayoutClass); 1779 continue; 1780 } 1781 1782 // Layout the primary vtable (and any secondary vtables) for this base. 1783 LayoutPrimaryAndSecondaryVTables( 1784 BaseSubobject(BaseDecl, BaseOffset), 1785 BaseIsMorallyVirtual, 1786 /*BaseIsVirtualInLayoutClass=*/false, 1787 BaseOffsetInLayoutClass); 1788 } 1789 } 1790 1791 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( 1792 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, 1793 VisitedVirtualBasesSetTy &VBases) { 1794 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1795 1796 // Check if this base has a primary base. 1797 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1798 1799 // Check if it's virtual. 1800 if (Layout.isPrimaryBaseVirtual()) { 1801 bool IsPrimaryVirtualBase = true; 1802 1803 if (isBuildingConstructorVTable()) { 1804 // Check if the base is actually a primary base in the class we use for 1805 // layout. 1806 const ASTRecordLayout &LayoutClassLayout = 1807 Context.getASTRecordLayout(LayoutClass); 1808 1809 CharUnits PrimaryBaseOffsetInLayoutClass = 1810 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1811 1812 // We know that the base is not a primary base in the layout class if 1813 // the base offsets are different. 1814 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) 1815 IsPrimaryVirtualBase = false; 1816 } 1817 1818 if (IsPrimaryVirtualBase) 1819 PrimaryVirtualBases.insert(PrimaryBase); 1820 } 1821 } 1822 1823 // Traverse bases, looking for more primary virtual bases. 1824 for (const auto &B : RD->bases()) { 1825 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1826 1827 CharUnits BaseOffsetInLayoutClass; 1828 1829 if (B.isVirtual()) { 1830 if (!VBases.insert(BaseDecl).second) 1831 continue; 1832 1833 const ASTRecordLayout &LayoutClassLayout = 1834 Context.getASTRecordLayout(LayoutClass); 1835 1836 BaseOffsetInLayoutClass = 1837 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1838 } else { 1839 BaseOffsetInLayoutClass = 1840 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); 1841 } 1842 1843 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); 1844 } 1845 } 1846 1847 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( 1848 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { 1849 // Itanium C++ ABI 2.5.2: 1850 // Then come the virtual base virtual tables, also in inheritance graph 1851 // order, and again excluding primary bases (which share virtual tables with 1852 // the classes for which they are primary). 1853 for (const auto &B : RD->bases()) { 1854 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1855 1856 // Check if this base needs a vtable. (If it's virtual, not a primary base 1857 // of some other class, and we haven't visited it before). 1858 if (B.isVirtual() && BaseDecl->isDynamicClass() && 1859 !PrimaryVirtualBases.count(BaseDecl) && 1860 VBases.insert(BaseDecl).second) { 1861 const ASTRecordLayout &MostDerivedClassLayout = 1862 Context.getASTRecordLayout(MostDerivedClass); 1863 CharUnits BaseOffset = 1864 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 1865 1866 const ASTRecordLayout &LayoutClassLayout = 1867 Context.getASTRecordLayout(LayoutClass); 1868 CharUnits BaseOffsetInLayoutClass = 1869 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1870 1871 LayoutPrimaryAndSecondaryVTables( 1872 BaseSubobject(BaseDecl, BaseOffset), 1873 /*BaseIsMorallyVirtual=*/true, 1874 /*BaseIsVirtualInLayoutClass=*/true, 1875 BaseOffsetInLayoutClass); 1876 } 1877 1878 // We only need to check the base for virtual base vtables if it actually 1879 // has virtual bases. 1880 if (BaseDecl->getNumVBases()) 1881 LayoutVTablesForVirtualBases(BaseDecl, VBases); 1882 } 1883 } 1884 1885 /// dumpLayout - Dump the vtable layout. 1886 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { 1887 // FIXME: write more tests that actually use the dumpLayout output to prevent 1888 // ItaniumVTableBuilder regressions. 1889 1890 if (isBuildingConstructorVTable()) { 1891 Out << "Construction vtable for ('"; 1892 MostDerivedClass->printQualifiedName(Out); 1893 Out << "', "; 1894 Out << MostDerivedClassOffset.getQuantity() << ") in '"; 1895 LayoutClass->printQualifiedName(Out); 1896 } else { 1897 Out << "Vtable for '"; 1898 MostDerivedClass->printQualifiedName(Out); 1899 } 1900 Out << "' (" << Components.size() << " entries).\n"; 1901 1902 // Iterate through the address points and insert them into a new map where 1903 // they are keyed by the index and not the base object. 1904 // Since an address point can be shared by multiple subobjects, we use an 1905 // STL multimap. 1906 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; 1907 for (const auto &AP : AddressPoints) { 1908 const BaseSubobject &Base = AP.first; 1909 uint64_t Index = 1910 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; 1911 1912 AddressPointsByIndex.insert(std::make_pair(Index, Base)); 1913 } 1914 1915 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 1916 uint64_t Index = I; 1917 1918 Out << llvm::format("%4d | ", I); 1919 1920 const VTableComponent &Component = Components[I]; 1921 1922 // Dump the component. 1923 switch (Component.getKind()) { 1924 1925 case VTableComponent::CK_VCallOffset: 1926 Out << "vcall_offset (" 1927 << Component.getVCallOffset().getQuantity() 1928 << ")"; 1929 break; 1930 1931 case VTableComponent::CK_VBaseOffset: 1932 Out << "vbase_offset (" 1933 << Component.getVBaseOffset().getQuantity() 1934 << ")"; 1935 break; 1936 1937 case VTableComponent::CK_OffsetToTop: 1938 Out << "offset_to_top (" 1939 << Component.getOffsetToTop().getQuantity() 1940 << ")"; 1941 break; 1942 1943 case VTableComponent::CK_RTTI: 1944 Component.getRTTIDecl()->printQualifiedName(Out); 1945 Out << " RTTI"; 1946 break; 1947 1948 case VTableComponent::CK_FunctionPointer: { 1949 const CXXMethodDecl *MD = Component.getFunctionDecl(); 1950 1951 std::string Str = 1952 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 1953 MD); 1954 Out << Str; 1955 if (MD->isPure()) 1956 Out << " [pure]"; 1957 1958 if (MD->isDeleted()) 1959 Out << " [deleted]"; 1960 1961 ThunkInfo Thunk = VTableThunks.lookup(I); 1962 if (!Thunk.isEmpty()) { 1963 // If this function pointer has a return adjustment, dump it. 1964 if (!Thunk.Return.isEmpty()) { 1965 Out << "\n [return adjustment: "; 1966 Out << Thunk.Return.NonVirtual << " non-virtual"; 1967 1968 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 1969 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 1970 Out << " vbase offset offset"; 1971 } 1972 1973 Out << ']'; 1974 } 1975 1976 // If this function pointer has a 'this' pointer adjustment, dump it. 1977 if (!Thunk.This.isEmpty()) { 1978 Out << "\n [this adjustment: "; 1979 Out << Thunk.This.NonVirtual << " non-virtual"; 1980 1981 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 1982 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 1983 Out << " vcall offset offset"; 1984 } 1985 1986 Out << ']'; 1987 } 1988 } 1989 1990 break; 1991 } 1992 1993 case VTableComponent::CK_CompleteDtorPointer: 1994 case VTableComponent::CK_DeletingDtorPointer: { 1995 bool IsComplete = 1996 Component.getKind() == VTableComponent::CK_CompleteDtorPointer; 1997 1998 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 1999 2000 DD->printQualifiedName(Out); 2001 if (IsComplete) 2002 Out << "() [complete]"; 2003 else 2004 Out << "() [deleting]"; 2005 2006 if (DD->isPure()) 2007 Out << " [pure]"; 2008 2009 ThunkInfo Thunk = VTableThunks.lookup(I); 2010 if (!Thunk.isEmpty()) { 2011 // If this destructor has a 'this' pointer adjustment, dump it. 2012 if (!Thunk.This.isEmpty()) { 2013 Out << "\n [this adjustment: "; 2014 Out << Thunk.This.NonVirtual << " non-virtual"; 2015 2016 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2017 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2018 Out << " vcall offset offset"; 2019 } 2020 2021 Out << ']'; 2022 } 2023 } 2024 2025 break; 2026 } 2027 2028 case VTableComponent::CK_UnusedFunctionPointer: { 2029 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); 2030 2031 std::string Str = 2032 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2033 MD); 2034 Out << "[unused] " << Str; 2035 if (MD->isPure()) 2036 Out << " [pure]"; 2037 } 2038 2039 } 2040 2041 Out << '\n'; 2042 2043 // Dump the next address point. 2044 uint64_t NextIndex = Index + 1; 2045 if (AddressPointsByIndex.count(NextIndex)) { 2046 if (AddressPointsByIndex.count(NextIndex) == 1) { 2047 const BaseSubobject &Base = 2048 AddressPointsByIndex.find(NextIndex)->second; 2049 2050 Out << " -- ("; 2051 Base.getBase()->printQualifiedName(Out); 2052 Out << ", " << Base.getBaseOffset().getQuantity(); 2053 Out << ") vtable address --\n"; 2054 } else { 2055 CharUnits BaseOffset = 2056 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); 2057 2058 // We store the class names in a set to get a stable order. 2059 std::set<std::string> ClassNames; 2060 for (const auto &I : 2061 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { 2062 assert(I.second.getBaseOffset() == BaseOffset && 2063 "Invalid base offset!"); 2064 const CXXRecordDecl *RD = I.second.getBase(); 2065 ClassNames.insert(RD->getQualifiedNameAsString()); 2066 } 2067 2068 for (const std::string &Name : ClassNames) { 2069 Out << " -- (" << Name; 2070 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; 2071 } 2072 } 2073 } 2074 } 2075 2076 Out << '\n'; 2077 2078 if (isBuildingConstructorVTable()) 2079 return; 2080 2081 if (MostDerivedClass->getNumVBases()) { 2082 // We store the virtual base class names and their offsets in a map to get 2083 // a stable order. 2084 2085 std::map<std::string, CharUnits> ClassNamesAndOffsets; 2086 for (const auto &I : VBaseOffsetOffsets) { 2087 std::string ClassName = I.first->getQualifiedNameAsString(); 2088 CharUnits OffsetOffset = I.second; 2089 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); 2090 } 2091 2092 Out << "Virtual base offset offsets for '"; 2093 MostDerivedClass->printQualifiedName(Out); 2094 Out << "' ("; 2095 Out << ClassNamesAndOffsets.size(); 2096 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; 2097 2098 for (const auto &I : ClassNamesAndOffsets) 2099 Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; 2100 2101 Out << "\n"; 2102 } 2103 2104 if (!Thunks.empty()) { 2105 // We store the method names in a map to get a stable order. 2106 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 2107 2108 for (const auto &I : Thunks) { 2109 const CXXMethodDecl *MD = I.first; 2110 std::string MethodName = 2111 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2112 MD); 2113 2114 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 2115 } 2116 2117 for (const auto &I : MethodNamesAndDecls) { 2118 const std::string &MethodName = I.first; 2119 const CXXMethodDecl *MD = I.second; 2120 2121 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 2122 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 2123 assert(LHS.Method == nullptr && RHS.Method == nullptr); 2124 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 2125 }); 2126 2127 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 2128 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 2129 2130 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 2131 const ThunkInfo &Thunk = ThunksVector[I]; 2132 2133 Out << llvm::format("%4d | ", I); 2134 2135 // If this function pointer has a return pointer adjustment, dump it. 2136 if (!Thunk.Return.isEmpty()) { 2137 Out << "return adjustment: " << Thunk.Return.NonVirtual; 2138 Out << " non-virtual"; 2139 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2140 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2141 Out << " vbase offset offset"; 2142 } 2143 2144 if (!Thunk.This.isEmpty()) 2145 Out << "\n "; 2146 } 2147 2148 // If this function pointer has a 'this' pointer adjustment, dump it. 2149 if (!Thunk.This.isEmpty()) { 2150 Out << "this adjustment: "; 2151 Out << Thunk.This.NonVirtual << " non-virtual"; 2152 2153 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2154 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2155 Out << " vcall offset offset"; 2156 } 2157 } 2158 2159 Out << '\n'; 2160 } 2161 2162 Out << '\n'; 2163 } 2164 } 2165 2166 // Compute the vtable indices for all the member functions. 2167 // Store them in a map keyed by the index so we'll get a sorted table. 2168 std::map<uint64_t, std::string> IndicesMap; 2169 2170 for (const auto *MD : MostDerivedClass->methods()) { 2171 // We only want virtual member functions. 2172 if (!ItaniumVTableContext::hasVtableSlot(MD)) 2173 continue; 2174 MD = MD->getCanonicalDecl(); 2175 2176 std::string MethodName = 2177 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2178 MD); 2179 2180 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2181 GlobalDecl GD(DD, Dtor_Complete); 2182 assert(MethodVTableIndices.count(GD)); 2183 uint64_t VTableIndex = MethodVTableIndices[GD]; 2184 IndicesMap[VTableIndex] = MethodName + " [complete]"; 2185 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; 2186 } else { 2187 assert(MethodVTableIndices.count(MD)); 2188 IndicesMap[MethodVTableIndices[MD]] = MethodName; 2189 } 2190 } 2191 2192 // Print the vtable indices for all the member functions. 2193 if (!IndicesMap.empty()) { 2194 Out << "VTable indices for '"; 2195 MostDerivedClass->printQualifiedName(Out); 2196 Out << "' (" << IndicesMap.size() << " entries).\n"; 2197 2198 for (const auto &I : IndicesMap) { 2199 uint64_t VTableIndex = I.first; 2200 const std::string &MethodName = I.second; 2201 2202 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName 2203 << '\n'; 2204 } 2205 } 2206 2207 Out << '\n'; 2208 } 2209 } 2210 2211 static VTableLayout::AddressPointsIndexMapTy 2212 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, 2213 unsigned numVTables) { 2214 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); 2215 2216 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { 2217 const auto &addressPointLoc = it->second; 2218 unsigned vtableIndex = addressPointLoc.VTableIndex; 2219 unsigned addressPoint = addressPointLoc.AddressPointIndex; 2220 if (indexMap[vtableIndex]) { 2221 // Multiple BaseSubobjects can map to the same AddressPointLocation, but 2222 // every vtable index should have a unique address point. 2223 assert(indexMap[vtableIndex] == addressPoint && 2224 "Every vtable index should have a unique address point. Found a " 2225 "vtable that has two different address points."); 2226 } else { 2227 indexMap[vtableIndex] = addressPoint; 2228 } 2229 } 2230 2231 // Note that by this point, not all the address may be initialized if the 2232 // AddressPoints map is empty. This is ok if the map isn't needed. See 2233 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an 2234 // emprt map. 2235 return indexMap; 2236 } 2237 2238 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, 2239 ArrayRef<VTableComponent> VTableComponents, 2240 ArrayRef<VTableThunkTy> VTableThunks, 2241 const AddressPointsMapTy &AddressPoints) 2242 : VTableComponents(VTableComponents), VTableThunks(VTableThunks), 2243 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( 2244 AddressPoints, VTableIndices.size())) { 2245 if (VTableIndices.size() <= 1) 2246 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); 2247 else 2248 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); 2249 2250 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS, 2251 const VTableLayout::VTableThunkTy &RHS) { 2252 assert((LHS.first != RHS.first || LHS.second == RHS.second) && 2253 "Different thunks should have unique indices!"); 2254 return LHS.first < RHS.first; 2255 }); 2256 } 2257 2258 VTableLayout::~VTableLayout() { } 2259 2260 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { 2261 return MD->isVirtual() && !MD->isConsteval(); 2262 } 2263 2264 ItaniumVTableContext::ItaniumVTableContext( 2265 ASTContext &Context, VTableComponentLayout ComponentLayout) 2266 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} 2267 2268 ItaniumVTableContext::~ItaniumVTableContext() {} 2269 2270 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { 2271 GD = GD.getCanonicalDecl(); 2272 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); 2273 if (I != MethodVTableIndices.end()) 2274 return I->second; 2275 2276 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 2277 2278 computeVTableRelatedInformation(RD); 2279 2280 I = MethodVTableIndices.find(GD); 2281 assert(I != MethodVTableIndices.end() && "Did not find index!"); 2282 return I->second; 2283 } 2284 2285 CharUnits 2286 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 2287 const CXXRecordDecl *VBase) { 2288 ClassPairTy ClassPair(RD, VBase); 2289 2290 VirtualBaseClassOffsetOffsetsMapTy::iterator I = 2291 VirtualBaseClassOffsetOffsets.find(ClassPair); 2292 if (I != VirtualBaseClassOffsetOffsets.end()) 2293 return I->second; 2294 2295 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, 2296 BaseSubobject(RD, CharUnits::Zero()), 2297 /*BaseIsVirtual=*/false, 2298 /*OffsetInLayoutClass=*/CharUnits::Zero()); 2299 2300 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2301 // Insert all types. 2302 ClassPairTy ClassPair(RD, I.first); 2303 2304 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2305 } 2306 2307 I = VirtualBaseClassOffsetOffsets.find(ClassPair); 2308 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); 2309 2310 return I->second; 2311 } 2312 2313 static std::unique_ptr<VTableLayout> 2314 CreateVTableLayout(const ItaniumVTableBuilder &Builder) { 2315 SmallVector<VTableLayout::VTableThunkTy, 1> 2316 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 2317 2318 return std::make_unique<VTableLayout>( 2319 Builder.VTableIndices, Builder.vtable_components(), VTableThunks, 2320 Builder.getAddressPoints()); 2321 } 2322 2323 void 2324 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { 2325 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; 2326 2327 // Check if we've computed this information before. 2328 if (Entry) 2329 return; 2330 2331 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), 2332 /*MostDerivedClassIsVirtual=*/false, RD); 2333 Entry = CreateVTableLayout(Builder); 2334 2335 MethodVTableIndices.insert(Builder.vtable_indices_begin(), 2336 Builder.vtable_indices_end()); 2337 2338 // Add the known thunks. 2339 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 2340 2341 // If we don't have the vbase information for this class, insert it. 2342 // getVirtualBaseOffsetOffset will compute it separately without computing 2343 // the rest of the vtable related information. 2344 if (!RD->getNumVBases()) 2345 return; 2346 2347 const CXXRecordDecl *VBase = 2348 RD->vbases_begin()->getType()->getAsCXXRecordDecl(); 2349 2350 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) 2351 return; 2352 2353 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2354 // Insert all types. 2355 ClassPairTy ClassPair(RD, I.first); 2356 2357 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2358 } 2359 } 2360 2361 std::unique_ptr<VTableLayout> 2362 ItaniumVTableContext::createConstructionVTableLayout( 2363 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 2364 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { 2365 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, 2366 MostDerivedClassIsVirtual, LayoutClass); 2367 return CreateVTableLayout(Builder); 2368 } 2369 2370 namespace { 2371 2372 // Vtables in the Microsoft ABI are different from the Itanium ABI. 2373 // 2374 // The main differences are: 2375 // 1. Separate vftable and vbtable. 2376 // 2377 // 2. Each subobject with a vfptr gets its own vftable rather than an address 2378 // point in a single vtable shared between all the subobjects. 2379 // Each vftable is represented by a separate section and virtual calls 2380 // must be done using the vftable which has a slot for the function to be 2381 // called. 2382 // 2383 // 3. Virtual method definitions expect their 'this' parameter to point to the 2384 // first vfptr whose table provides a compatible overridden method. In many 2385 // cases, this permits the original vf-table entry to directly call 2386 // the method instead of passing through a thunk. 2387 // See example before VFTableBuilder::ComputeThisOffset below. 2388 // 2389 // A compatible overridden method is one which does not have a non-trivial 2390 // covariant-return adjustment. 2391 // 2392 // The first vfptr is the one with the lowest offset in the complete-object 2393 // layout of the defining class, and the method definition will subtract 2394 // that constant offset from the parameter value to get the real 'this' 2395 // value. Therefore, if the offset isn't really constant (e.g. if a virtual 2396 // function defined in a virtual base is overridden in a more derived 2397 // virtual base and these bases have a reverse order in the complete 2398 // object), the vf-table may require a this-adjustment thunk. 2399 // 2400 // 4. vftables do not contain new entries for overrides that merely require 2401 // this-adjustment. Together with #3, this keeps vf-tables smaller and 2402 // eliminates the need for this-adjustment thunks in many cases, at the cost 2403 // of often requiring redundant work to adjust the "this" pointer. 2404 // 2405 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. 2406 // Vtordisps are emitted into the class layout if a class has 2407 // a) a user-defined ctor/dtor 2408 // and 2409 // b) a method overriding a method in a virtual base. 2410 // 2411 // To get a better understanding of this code, 2412 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp 2413 2414 class VFTableBuilder { 2415 public: 2416 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 2417 MethodVFTableLocationsTy; 2418 2419 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> 2420 method_locations_range; 2421 2422 private: 2423 /// VTables - Global vtable information. 2424 MicrosoftVTableContext &VTables; 2425 2426 /// Context - The ASTContext which we will use for layout information. 2427 ASTContext &Context; 2428 2429 /// MostDerivedClass - The most derived class for which we're building this 2430 /// vtable. 2431 const CXXRecordDecl *MostDerivedClass; 2432 2433 const ASTRecordLayout &MostDerivedClassLayout; 2434 2435 const VPtrInfo &WhichVFPtr; 2436 2437 /// FinalOverriders - The final overriders of the most derived class. 2438 const FinalOverriders Overriders; 2439 2440 /// Components - The components of the vftable being built. 2441 SmallVector<VTableComponent, 64> Components; 2442 2443 MethodVFTableLocationsTy MethodVFTableLocations; 2444 2445 /// Does this class have an RTTI component? 2446 bool HasRTTIComponent = false; 2447 2448 /// MethodInfo - Contains information about a method in a vtable. 2449 /// (Used for computing 'this' pointer adjustment thunks. 2450 struct MethodInfo { 2451 /// VBTableIndex - The nonzero index in the vbtable that 2452 /// this method's base has, or zero. 2453 const uint64_t VBTableIndex; 2454 2455 /// VFTableIndex - The index in the vftable that this method has. 2456 const uint64_t VFTableIndex; 2457 2458 /// Shadowed - Indicates if this vftable slot is shadowed by 2459 /// a slot for a covariant-return override. If so, it shouldn't be printed 2460 /// or used for vcalls in the most derived class. 2461 bool Shadowed; 2462 2463 /// UsesExtraSlot - Indicates if this vftable slot was created because 2464 /// any of the overridden slots required a return adjusting thunk. 2465 bool UsesExtraSlot; 2466 2467 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, 2468 bool UsesExtraSlot = false) 2469 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), 2470 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} 2471 2472 MethodInfo() 2473 : VBTableIndex(0), VFTableIndex(0), Shadowed(false), 2474 UsesExtraSlot(false) {} 2475 }; 2476 2477 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 2478 2479 /// MethodInfoMap - The information for all methods in the vftable we're 2480 /// currently building. 2481 MethodInfoMapTy MethodInfoMap; 2482 2483 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 2484 2485 /// VTableThunks - The thunks by vftable index in the vftable currently being 2486 /// built. 2487 VTableThunksMapTy VTableThunks; 2488 2489 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 2490 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 2491 2492 /// Thunks - A map that contains all the thunks needed for all methods in the 2493 /// most derived class for which the vftable is currently being built. 2494 ThunksMapTy Thunks; 2495 2496 /// AddThunk - Add a thunk for the given method. 2497 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { 2498 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; 2499 2500 // Check if we have this thunk already. 2501 if (llvm::is_contained(ThunksVector, Thunk)) 2502 return; 2503 2504 ThunksVector.push_back(Thunk); 2505 } 2506 2507 /// ComputeThisOffset - Returns the 'this' argument offset for the given 2508 /// method, relative to the beginning of the MostDerivedClass. 2509 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); 2510 2511 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, 2512 CharUnits ThisOffset, ThisAdjustment &TA); 2513 2514 /// AddMethod - Add a single virtual member function to the vftable 2515 /// components vector. 2516 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { 2517 if (!TI.isEmpty()) { 2518 VTableThunks[Components.size()] = TI; 2519 AddThunk(MD, TI); 2520 } 2521 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2522 assert(TI.Return.isEmpty() && 2523 "Destructor can't have return adjustment!"); 2524 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 2525 } else { 2526 Components.push_back(VTableComponent::MakeFunction(MD)); 2527 } 2528 } 2529 2530 /// AddMethods - Add the methods of this base subobject and the relevant 2531 /// subbases to the vftable we're currently laying out. 2532 void AddMethods(BaseSubobject Base, unsigned BaseDepth, 2533 const CXXRecordDecl *LastVBase, 2534 BasesSetVectorTy &VisitedBases); 2535 2536 void LayoutVFTable() { 2537 // RTTI data goes before all other entries. 2538 if (HasRTTIComponent) 2539 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 2540 2541 BasesSetVectorTy VisitedBases; 2542 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, 2543 VisitedBases); 2544 // Note that it is possible for the vftable to contain only an RTTI 2545 // pointer, if all virtual functions are constewval. 2546 assert(!Components.empty() && "vftable can't be empty"); 2547 2548 assert(MethodVFTableLocations.empty()); 2549 for (const auto &I : MethodInfoMap) { 2550 const CXXMethodDecl *MD = I.first; 2551 const MethodInfo &MI = I.second; 2552 assert(MD == MD->getCanonicalDecl()); 2553 2554 // Skip the methods that the MostDerivedClass didn't override 2555 // and the entries shadowed by return adjusting thunks. 2556 if (MD->getParent() != MostDerivedClass || MI.Shadowed) 2557 continue; 2558 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), 2559 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); 2560 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2561 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; 2562 } else { 2563 MethodVFTableLocations[MD] = Loc; 2564 } 2565 } 2566 } 2567 2568 public: 2569 VFTableBuilder(MicrosoftVTableContext &VTables, 2570 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) 2571 : VTables(VTables), 2572 Context(MostDerivedClass->getASTContext()), 2573 MostDerivedClass(MostDerivedClass), 2574 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), 2575 WhichVFPtr(Which), 2576 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { 2577 // Provide the RTTI component if RTTIData is enabled. If the vftable would 2578 // be available externally, we should not provide the RTTI componenent. It 2579 // is currently impossible to get available externally vftables with either 2580 // dllimport or extern template instantiations, but eventually we may add a 2581 // flag to support additional devirtualization that needs this. 2582 if (Context.getLangOpts().RTTIData) 2583 HasRTTIComponent = true; 2584 2585 LayoutVFTable(); 2586 2587 if (Context.getLangOpts().DumpVTableLayouts) 2588 dumpLayout(llvm::outs()); 2589 } 2590 2591 uint64_t getNumThunks() const { return Thunks.size(); } 2592 2593 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } 2594 2595 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } 2596 2597 method_locations_range vtable_locations() const { 2598 return method_locations_range(MethodVFTableLocations.begin(), 2599 MethodVFTableLocations.end()); 2600 } 2601 2602 ArrayRef<VTableComponent> vtable_components() const { return Components; } 2603 2604 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 2605 return VTableThunks.begin(); 2606 } 2607 2608 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 2609 return VTableThunks.end(); 2610 } 2611 2612 void dumpLayout(raw_ostream &); 2613 }; 2614 2615 } // end namespace 2616 2617 // Let's study one class hierarchy as an example: 2618 // struct A { 2619 // virtual void f(); 2620 // int x; 2621 // }; 2622 // 2623 // struct B : virtual A { 2624 // virtual void f(); 2625 // }; 2626 // 2627 // Record layouts: 2628 // struct A: 2629 // 0 | (A vftable pointer) 2630 // 4 | int x 2631 // 2632 // struct B: 2633 // 0 | (B vbtable pointer) 2634 // 4 | struct A (virtual base) 2635 // 4 | (A vftable pointer) 2636 // 8 | int x 2637 // 2638 // Let's assume we have a pointer to the A part of an object of dynamic type B: 2639 // B b; 2640 // A *a = (A*)&b; 2641 // a->f(); 2642 // 2643 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects 2644 // "this" parameter to point at the A subobject, which is B+4. 2645 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, 2646 // performed as a *static* adjustment. 2647 // 2648 // Interesting thing happens when we alter the relative placement of A and B 2649 // subobjects in a class: 2650 // struct C : virtual B { }; 2651 // 2652 // C c; 2653 // A *a = (A*)&c; 2654 // a->f(); 2655 // 2656 // Respective record layout is: 2657 // 0 | (C vbtable pointer) 2658 // 4 | struct A (virtual base) 2659 // 4 | (A vftable pointer) 2660 // 8 | int x 2661 // 12 | struct B (virtual base) 2662 // 12 | (B vbtable pointer) 2663 // 2664 // The final overrider of f() in class C is still B::f(), so B+4 should be 2665 // passed as "this" to that code. However, "a" points at B-8, so the respective 2666 // vftable entry should hold a thunk that adds 12 to the "this" argument before 2667 // performing a tail call to B::f(). 2668 // 2669 // With this example in mind, we can now calculate the 'this' argument offset 2670 // for the given method, relative to the beginning of the MostDerivedClass. 2671 CharUnits 2672 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { 2673 BasesSetVectorTy Bases; 2674 2675 { 2676 // Find the set of least derived bases that define the given method. 2677 OverriddenMethodsSetTy VisitedOverriddenMethods; 2678 auto InitialOverriddenDefinitionCollector = [&]( 2679 const CXXMethodDecl *OverriddenMD) { 2680 if (OverriddenMD->size_overridden_methods() == 0) 2681 Bases.insert(OverriddenMD->getParent()); 2682 // Don't recurse on this method if we've already collected it. 2683 return VisitedOverriddenMethods.insert(OverriddenMD).second; 2684 }; 2685 visitAllOverriddenMethods(Overrider.Method, 2686 InitialOverriddenDefinitionCollector); 2687 } 2688 2689 // If there are no overrides then 'this' is located 2690 // in the base that defines the method. 2691 if (Bases.size() == 0) 2692 return Overrider.Offset; 2693 2694 CXXBasePaths Paths; 2695 Overrider.Method->getParent()->lookupInBases( 2696 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { 2697 return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); 2698 }, 2699 Paths); 2700 2701 // This will hold the smallest this offset among overridees of MD. 2702 // This implies that an offset of a non-virtual base will dominate an offset 2703 // of a virtual base to potentially reduce the number of thunks required 2704 // in the derived classes that inherit this method. 2705 CharUnits Ret; 2706 bool First = true; 2707 2708 const ASTRecordLayout &OverriderRDLayout = 2709 Context.getASTRecordLayout(Overrider.Method->getParent()); 2710 for (const CXXBasePath &Path : Paths) { 2711 CharUnits ThisOffset = Overrider.Offset; 2712 CharUnits LastVBaseOffset; 2713 2714 // For each path from the overrider to the parents of the overridden 2715 // methods, traverse the path, calculating the this offset in the most 2716 // derived class. 2717 for (const CXXBasePathElement &Element : Path) { 2718 QualType CurTy = Element.Base->getType(); 2719 const CXXRecordDecl *PrevRD = Element.Class, 2720 *CurRD = CurTy->getAsCXXRecordDecl(); 2721 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); 2722 2723 if (Element.Base->isVirtual()) { 2724 // The interesting things begin when you have virtual inheritance. 2725 // The final overrider will use a static adjustment equal to the offset 2726 // of the vbase in the final overrider class. 2727 // For example, if the final overrider is in a vbase B of the most 2728 // derived class and it overrides a method of the B's own vbase A, 2729 // it uses A* as "this". In its prologue, it can cast A* to B* with 2730 // a static offset. This offset is used regardless of the actual 2731 // offset of A from B in the most derived class, requiring an 2732 // this-adjusting thunk in the vftable if A and B are laid out 2733 // differently in the most derived class. 2734 LastVBaseOffset = ThisOffset = 2735 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); 2736 } else { 2737 ThisOffset += Layout.getBaseClassOffset(CurRD); 2738 } 2739 } 2740 2741 if (isa<CXXDestructorDecl>(Overrider.Method)) { 2742 if (LastVBaseOffset.isZero()) { 2743 // If a "Base" class has at least one non-virtual base with a virtual 2744 // destructor, the "Base" virtual destructor will take the address 2745 // of the "Base" subobject as the "this" argument. 2746 ThisOffset = Overrider.Offset; 2747 } else { 2748 // A virtual destructor of a virtual base takes the address of the 2749 // virtual base subobject as the "this" argument. 2750 ThisOffset = LastVBaseOffset; 2751 } 2752 } 2753 2754 if (Ret > ThisOffset || First) { 2755 First = false; 2756 Ret = ThisOffset; 2757 } 2758 } 2759 2760 assert(!First && "Method not found in the given subobject?"); 2761 return Ret; 2762 } 2763 2764 // Things are getting even more complex when the "this" adjustment has to 2765 // use a dynamic offset instead of a static one, or even two dynamic offsets. 2766 // This is sometimes required when a virtual call happens in the middle of 2767 // a non-most-derived class construction or destruction. 2768 // 2769 // Let's take a look at the following example: 2770 // struct A { 2771 // virtual void f(); 2772 // }; 2773 // 2774 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. 2775 // 2776 // struct B : virtual A { 2777 // virtual void f(); 2778 // B() { 2779 // foo(this); 2780 // } 2781 // }; 2782 // 2783 // struct C : virtual B { 2784 // virtual void f(); 2785 // }; 2786 // 2787 // Record layouts for these classes are: 2788 // struct A 2789 // 0 | (A vftable pointer) 2790 // 2791 // struct B 2792 // 0 | (B vbtable pointer) 2793 // 4 | (vtordisp for vbase A) 2794 // 8 | struct A (virtual base) 2795 // 8 | (A vftable pointer) 2796 // 2797 // struct C 2798 // 0 | (C vbtable pointer) 2799 // 4 | (vtordisp for vbase A) 2800 // 8 | struct A (virtual base) // A precedes B! 2801 // 8 | (A vftable pointer) 2802 // 12 | struct B (virtual base) 2803 // 12 | (B vbtable pointer) 2804 // 2805 // When one creates an object of type C, the C constructor: 2806 // - initializes all the vbptrs, then 2807 // - calls the A subobject constructor 2808 // (initializes A's vfptr with an address of A vftable), then 2809 // - calls the B subobject constructor 2810 // (initializes A's vfptr with an address of B vftable and vtordisp for A), 2811 // that in turn calls foo(), then 2812 // - initializes A's vfptr with an address of C vftable and zeroes out the 2813 // vtordisp 2814 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable 2815 // without vtordisp thunks? 2816 // FIXME: how are vtordisp handled in the presence of nooverride/final? 2817 // 2818 // When foo() is called, an object with a layout of class C has a vftable 2819 // referencing B::f() that assumes a B layout, so the "this" adjustments are 2820 // incorrect, unless an extra adjustment is done. This adjustment is called 2821 // "vtordisp adjustment". Vtordisp basically holds the difference between the 2822 // actual location of a vbase in the layout class and the location assumed by 2823 // the vftable of the class being constructed/destructed. Vtordisp is only 2824 // needed if "this" escapes a 2825 // structor (or we can't prove otherwise). 2826 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an 2827 // estimation of a dynamic adjustment] 2828 // 2829 // foo() gets a pointer to the A vbase and doesn't know anything about B or C, 2830 // so it just passes that pointer as "this" in a virtual call. 2831 // If there was no vtordisp, that would just dispatch to B::f(). 2832 // However, B::f() assumes B+8 is passed as "this", 2833 // yet the pointer foo() passes along is B-4 (i.e. C+8). 2834 // An extra adjustment is needed, so we emit a thunk into the B vftable. 2835 // This vtordisp thunk subtracts the value of vtordisp 2836 // from the "this" argument (-12) before making a tailcall to B::f(). 2837 // 2838 // Let's consider an even more complex example: 2839 // struct D : virtual B, virtual C { 2840 // D() { 2841 // foo(this); 2842 // } 2843 // }; 2844 // 2845 // struct D 2846 // 0 | (D vbtable pointer) 2847 // 4 | (vtordisp for vbase A) 2848 // 8 | struct A (virtual base) // A precedes both B and C! 2849 // 8 | (A vftable pointer) 2850 // 12 | struct B (virtual base) // B precedes C! 2851 // 12 | (B vbtable pointer) 2852 // 16 | struct C (virtual base) 2853 // 16 | (C vbtable pointer) 2854 // 2855 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall 2856 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() 2857 // passes along A, which is C-8. The A vtordisp holds 2858 // "D.vbptr[index_of_A] - offset_of_A_in_D" 2859 // and we statically know offset_of_A_in_D, so can get a pointer to D. 2860 // When we know it, we can make an extra vbtable lookup to locate the C vbase 2861 // and one extra static adjustment to calculate the expected value of C+8. 2862 void VFTableBuilder::CalculateVtordispAdjustment( 2863 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, 2864 ThisAdjustment &TA) { 2865 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = 2866 MostDerivedClassLayout.getVBaseOffsetsMap(); 2867 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = 2868 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); 2869 assert(VBaseMapEntry != VBaseMap.end()); 2870 2871 // If there's no vtordisp or the final overrider is defined in the same vbase 2872 // as the initial declaration, we don't need any vtordisp adjustment. 2873 if (!VBaseMapEntry->second.hasVtorDisp() || 2874 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) 2875 return; 2876 2877 // OK, now we know we need to use a vtordisp thunk. 2878 // The implicit vtordisp field is located right before the vbase. 2879 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; 2880 TA.Virtual.Microsoft.VtordispOffset = 2881 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; 2882 2883 // A simple vtordisp thunk will suffice if the final overrider is defined 2884 // in either the most derived class or its non-virtual base. 2885 if (Overrider.Method->getParent() == MostDerivedClass || 2886 !Overrider.VirtualBase) 2887 return; 2888 2889 // Otherwise, we need to do use the dynamic offset of the final overrider 2890 // in order to get "this" adjustment right. 2891 TA.Virtual.Microsoft.VBPtrOffset = 2892 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - 2893 MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); 2894 TA.Virtual.Microsoft.VBOffsetOffset = 2895 Context.getTypeSizeInChars(Context.IntTy).getQuantity() * 2896 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); 2897 2898 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); 2899 } 2900 2901 static void GroupNewVirtualOverloads( 2902 const CXXRecordDecl *RD, 2903 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { 2904 // Put the virtual methods into VirtualMethods in the proper order: 2905 // 1) Group overloads by declaration name. New groups are added to the 2906 // vftable in the order of their first declarations in this class 2907 // (including overrides, non-virtual methods and any other named decl that 2908 // might be nested within the class). 2909 // 2) In each group, new overloads appear in the reverse order of declaration. 2910 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; 2911 SmallVector<MethodGroup, 10> Groups; 2912 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; 2913 VisitedGroupIndicesTy VisitedGroupIndices; 2914 for (const auto *D : RD->decls()) { 2915 const auto *ND = dyn_cast<NamedDecl>(D); 2916 if (!ND) 2917 continue; 2918 VisitedGroupIndicesTy::iterator J; 2919 bool Inserted; 2920 std::tie(J, Inserted) = VisitedGroupIndices.insert( 2921 std::make_pair(ND->getDeclName(), Groups.size())); 2922 if (Inserted) 2923 Groups.push_back(MethodGroup()); 2924 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 2925 if (MicrosoftVTableContext::hasVtableSlot(MD)) 2926 Groups[J->second].push_back(MD->getCanonicalDecl()); 2927 } 2928 2929 for (const MethodGroup &Group : Groups) 2930 VirtualMethods.append(Group.rbegin(), Group.rend()); 2931 } 2932 2933 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { 2934 for (const auto &B : RD->bases()) { 2935 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) 2936 return true; 2937 } 2938 return false; 2939 } 2940 2941 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, 2942 const CXXRecordDecl *LastVBase, 2943 BasesSetVectorTy &VisitedBases) { 2944 const CXXRecordDecl *RD = Base.getBase(); 2945 if (!RD->isPolymorphic()) 2946 return; 2947 2948 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2949 2950 // See if this class expands a vftable of the base we look at, which is either 2951 // the one defined by the vfptr base path or the primary base of the current 2952 // class. 2953 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; 2954 CharUnits NextBaseOffset; 2955 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { 2956 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; 2957 if (isDirectVBase(NextBase, RD)) { 2958 NextLastVBase = NextBase; 2959 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); 2960 } else { 2961 NextBaseOffset = 2962 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); 2963 } 2964 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 2965 assert(!Layout.isPrimaryBaseVirtual() && 2966 "No primary virtual bases in this ABI"); 2967 NextBase = PrimaryBase; 2968 NextBaseOffset = Base.getBaseOffset(); 2969 } 2970 2971 if (NextBase) { 2972 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, 2973 NextLastVBase, VisitedBases); 2974 if (!VisitedBases.insert(NextBase)) 2975 llvm_unreachable("Found a duplicate primary base!"); 2976 } 2977 2978 SmallVector<const CXXMethodDecl*, 10> VirtualMethods; 2979 // Put virtual methods in the proper order. 2980 GroupNewVirtualOverloads(RD, VirtualMethods); 2981 2982 // Now go through all virtual member functions and add them to the current 2983 // vftable. This is done by 2984 // - replacing overridden methods in their existing slots, as long as they 2985 // don't require return adjustment; calculating This adjustment if needed. 2986 // - adding new slots for methods of the current base not present in any 2987 // sub-bases; 2988 // - adding new slots for methods that require Return adjustment. 2989 // We keep track of the methods visited in the sub-bases in MethodInfoMap. 2990 for (const CXXMethodDecl *MD : VirtualMethods) { 2991 FinalOverriders::OverriderInfo FinalOverrider = 2992 Overriders.getOverrider(MD, Base.getBaseOffset()); 2993 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; 2994 const CXXMethodDecl *OverriddenMD = 2995 FindNearestOverriddenMethod(MD, VisitedBases); 2996 2997 ThisAdjustment ThisAdjustmentOffset; 2998 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; 2999 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); 3000 ThisAdjustmentOffset.NonVirtual = 3001 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); 3002 if ((OverriddenMD || FinalOverriderMD != MD) && 3003 WhichVFPtr.getVBaseWithVPtr()) 3004 CalculateVtordispAdjustment(FinalOverrider, ThisOffset, 3005 ThisAdjustmentOffset); 3006 3007 unsigned VBIndex = 3008 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; 3009 3010 if (OverriddenMD) { 3011 // If MD overrides anything in this vftable, we need to update the 3012 // entries. 3013 MethodInfoMapTy::iterator OverriddenMDIterator = 3014 MethodInfoMap.find(OverriddenMD); 3015 3016 // If the overridden method went to a different vftable, skip it. 3017 if (OverriddenMDIterator == MethodInfoMap.end()) 3018 continue; 3019 3020 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; 3021 3022 VBIndex = OverriddenMethodInfo.VBTableIndex; 3023 3024 // Let's check if the overrider requires any return adjustments. 3025 // We must create a new slot if the MD's return type is not trivially 3026 // convertible to the OverriddenMD's one. 3027 // Once a chain of method overrides adds a return adjusting vftable slot, 3028 // all subsequent overrides will also use an extra method slot. 3029 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( 3030 Context, MD, OverriddenMD).isEmpty() || 3031 OverriddenMethodInfo.UsesExtraSlot; 3032 3033 if (!ReturnAdjustingThunk) { 3034 // No return adjustment needed - just replace the overridden method info 3035 // with the current info. 3036 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); 3037 MethodInfoMap.erase(OverriddenMDIterator); 3038 3039 assert(!MethodInfoMap.count(MD) && 3040 "Should not have method info for this method yet!"); 3041 MethodInfoMap.insert(std::make_pair(MD, MI)); 3042 continue; 3043 } 3044 3045 // In case we need a return adjustment, we'll add a new slot for 3046 // the overrider. Mark the overridden method as shadowed by the new slot. 3047 OverriddenMethodInfo.Shadowed = true; 3048 3049 // Force a special name mangling for a return-adjusting thunk 3050 // unless the method is the final overrider without this adjustment. 3051 ForceReturnAdjustmentMangling = 3052 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); 3053 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || 3054 MD->size_overridden_methods()) { 3055 // Skip methods that don't belong to the vftable of the current class, 3056 // e.g. each method that wasn't seen in any of the visited sub-bases 3057 // but overrides multiple methods of other sub-bases. 3058 continue; 3059 } 3060 3061 // If we got here, MD is a method not seen in any of the sub-bases or 3062 // it requires return adjustment. Insert the method info for this method. 3063 MethodInfo MI(VBIndex, 3064 HasRTTIComponent ? Components.size() - 1 : Components.size(), 3065 ReturnAdjustingThunk); 3066 3067 assert(!MethodInfoMap.count(MD) && 3068 "Should not have method info for this method yet!"); 3069 MethodInfoMap.insert(std::make_pair(MD, MI)); 3070 3071 // Check if this overrider needs a return adjustment. 3072 // We don't want to do this for pure virtual member functions. 3073 BaseOffset ReturnAdjustmentOffset; 3074 ReturnAdjustment ReturnAdjustment; 3075 if (!FinalOverriderMD->isPure()) { 3076 ReturnAdjustmentOffset = 3077 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); 3078 } 3079 if (!ReturnAdjustmentOffset.isEmpty()) { 3080 ForceReturnAdjustmentMangling = true; 3081 ReturnAdjustment.NonVirtual = 3082 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); 3083 if (ReturnAdjustmentOffset.VirtualBase) { 3084 const ASTRecordLayout &DerivedLayout = 3085 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); 3086 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = 3087 DerivedLayout.getVBPtrOffset().getQuantity(); 3088 ReturnAdjustment.Virtual.Microsoft.VBIndex = 3089 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, 3090 ReturnAdjustmentOffset.VirtualBase); 3091 } 3092 } 3093 3094 AddMethod(FinalOverriderMD, 3095 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, 3096 ForceReturnAdjustmentMangling ? MD : nullptr)); 3097 } 3098 } 3099 3100 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { 3101 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) { 3102 Out << "'"; 3103 Elem->printQualifiedName(Out); 3104 Out << "' in "; 3105 } 3106 } 3107 3108 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, 3109 bool ContinueFirstLine) { 3110 const ReturnAdjustment &R = TI.Return; 3111 bool Multiline = false; 3112 const char *LinePrefix = "\n "; 3113 if (!R.isEmpty() || TI.Method) { 3114 if (!ContinueFirstLine) 3115 Out << LinePrefix; 3116 Out << "[return adjustment (to type '" 3117 << TI.Method->getReturnType().getCanonicalType() << "'): "; 3118 if (R.Virtual.Microsoft.VBPtrOffset) 3119 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; 3120 if (R.Virtual.Microsoft.VBIndex) 3121 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; 3122 Out << R.NonVirtual << " non-virtual]"; 3123 Multiline = true; 3124 } 3125 3126 const ThisAdjustment &T = TI.This; 3127 if (!T.isEmpty()) { 3128 if (Multiline || !ContinueFirstLine) 3129 Out << LinePrefix; 3130 Out << "[this adjustment: "; 3131 if (!TI.This.Virtual.isEmpty()) { 3132 assert(T.Virtual.Microsoft.VtordispOffset < 0); 3133 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; 3134 if (T.Virtual.Microsoft.VBPtrOffset) { 3135 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset 3136 << " to the left,"; 3137 assert(T.Virtual.Microsoft.VBOffsetOffset > 0); 3138 Out << LinePrefix << " vboffset at " 3139 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; 3140 } 3141 } 3142 Out << T.NonVirtual << " non-virtual]"; 3143 } 3144 } 3145 3146 void VFTableBuilder::dumpLayout(raw_ostream &Out) { 3147 Out << "VFTable for "; 3148 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out); 3149 Out << "'"; 3150 MostDerivedClass->printQualifiedName(Out); 3151 Out << "' (" << Components.size() 3152 << (Components.size() == 1 ? " entry" : " entries") << ").\n"; 3153 3154 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 3155 Out << llvm::format("%4d | ", I); 3156 3157 const VTableComponent &Component = Components[I]; 3158 3159 // Dump the component. 3160 switch (Component.getKind()) { 3161 case VTableComponent::CK_RTTI: 3162 Component.getRTTIDecl()->printQualifiedName(Out); 3163 Out << " RTTI"; 3164 break; 3165 3166 case VTableComponent::CK_FunctionPointer: { 3167 const CXXMethodDecl *MD = Component.getFunctionDecl(); 3168 3169 // FIXME: Figure out how to print the real thunk type, since they can 3170 // differ in the return type. 3171 std::string Str = PredefinedExpr::ComputeName( 3172 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3173 Out << Str; 3174 if (MD->isPure()) 3175 Out << " [pure]"; 3176 3177 if (MD->isDeleted()) 3178 Out << " [deleted]"; 3179 3180 ThunkInfo Thunk = VTableThunks.lookup(I); 3181 if (!Thunk.isEmpty()) 3182 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3183 3184 break; 3185 } 3186 3187 case VTableComponent::CK_DeletingDtorPointer: { 3188 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 3189 3190 DD->printQualifiedName(Out); 3191 Out << "() [scalar deleting]"; 3192 3193 if (DD->isPure()) 3194 Out << " [pure]"; 3195 3196 ThunkInfo Thunk = VTableThunks.lookup(I); 3197 if (!Thunk.isEmpty()) { 3198 assert(Thunk.Return.isEmpty() && 3199 "No return adjustment needed for destructors!"); 3200 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3201 } 3202 3203 break; 3204 } 3205 3206 default: 3207 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3208 unsigned DiagID = Diags.getCustomDiagID( 3209 DiagnosticsEngine::Error, 3210 "Unexpected vftable component type %0 for component number %1"); 3211 Diags.Report(MostDerivedClass->getLocation(), DiagID) 3212 << I << Component.getKind(); 3213 } 3214 3215 Out << '\n'; 3216 } 3217 3218 Out << '\n'; 3219 3220 if (!Thunks.empty()) { 3221 // We store the method names in a map to get a stable order. 3222 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 3223 3224 for (const auto &I : Thunks) { 3225 const CXXMethodDecl *MD = I.first; 3226 std::string MethodName = PredefinedExpr::ComputeName( 3227 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3228 3229 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 3230 } 3231 3232 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { 3233 const std::string &MethodName = MethodNameAndDecl.first; 3234 const CXXMethodDecl *MD = MethodNameAndDecl.second; 3235 3236 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 3237 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS, 3238 const ThunkInfo &RHS) { 3239 // Keep different thunks with the same adjustments in the order they 3240 // were put into the vector. 3241 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 3242 }); 3243 3244 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 3245 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 3246 3247 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 3248 const ThunkInfo &Thunk = ThunksVector[I]; 3249 3250 Out << llvm::format("%4d | ", I); 3251 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); 3252 Out << '\n'; 3253 } 3254 3255 Out << '\n'; 3256 } 3257 } 3258 3259 Out.flush(); 3260 } 3261 3262 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, 3263 ArrayRef<const CXXRecordDecl *> B) { 3264 for (const CXXRecordDecl *Decl : B) { 3265 if (A.count(Decl)) 3266 return true; 3267 } 3268 return false; 3269 } 3270 3271 static bool rebucketPaths(VPtrInfoVector &Paths); 3272 3273 /// Produces MSVC-compatible vbtable data. The symbols produced by this 3274 /// algorithm match those produced by MSVC 2012 and newer, which is different 3275 /// from MSVC 2010. 3276 /// 3277 /// MSVC 2012 appears to minimize the vbtable names using the following 3278 /// algorithm. First, walk the class hierarchy in the usual order, depth first, 3279 /// left to right, to find all of the subobjects which contain a vbptr field. 3280 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each 3281 /// record with a vbptr creates an initially empty path. 3282 /// 3283 /// To combine paths from child nodes, the paths are compared to check for 3284 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of 3285 /// components in the same order. Each group of ambiguous paths is extended by 3286 /// appending the class of the base from which it came. If the current class 3287 /// node produced an ambiguous path, its path is extended with the current class. 3288 /// After extending paths, MSVC again checks for ambiguity, and extends any 3289 /// ambiguous path which wasn't already extended. Because each node yields an 3290 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once 3291 /// to produce an unambiguous set of paths. 3292 /// 3293 /// TODO: Presumably vftables use the same algorithm. 3294 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, 3295 const CXXRecordDecl *RD, 3296 VPtrInfoVector &Paths) { 3297 assert(Paths.empty()); 3298 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3299 3300 // Base case: this subobject has its own vptr. 3301 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) 3302 Paths.push_back(std::make_unique<VPtrInfo>(RD)); 3303 3304 // Recursive case: get all the vbtables from our bases and remove anything 3305 // that shares a virtual base. 3306 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; 3307 for (const auto &B : RD->bases()) { 3308 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 3309 if (B.isVirtual() && VBasesSeen.count(Base)) 3310 continue; 3311 3312 if (!Base->isDynamicClass()) 3313 continue; 3314 3315 const VPtrInfoVector &BasePaths = 3316 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); 3317 3318 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { 3319 // Don't include the path if it goes through a virtual base that we've 3320 // already included. 3321 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) 3322 continue; 3323 3324 // Copy the path and adjust it as necessary. 3325 auto P = std::make_unique<VPtrInfo>(*BaseInfo); 3326 3327 // We mangle Base into the path if the path would've been ambiguous and it 3328 // wasn't already extended with Base. 3329 if (P->MangledPath.empty() || P->MangledPath.back() != Base) 3330 P->NextBaseToMangle = Base; 3331 3332 // Keep track of which vtable the derived class is going to extend with 3333 // new methods or bases. We append to either the vftable of our primary 3334 // base, or the first non-virtual base that has a vbtable. 3335 if (P->ObjectWithVPtr == Base && 3336 Base == (ForVBTables ? Layout.getBaseSharingVBPtr() 3337 : Layout.getPrimaryBase())) 3338 P->ObjectWithVPtr = RD; 3339 3340 // Keep track of the full adjustment from the MDC to this vtable. The 3341 // adjustment is captured by an optional vbase and a non-virtual offset. 3342 if (B.isVirtual()) 3343 P->ContainingVBases.push_back(Base); 3344 else if (P->ContainingVBases.empty()) 3345 P->NonVirtualOffset += Layout.getBaseClassOffset(Base); 3346 3347 // Update the full offset in the MDC. 3348 P->FullOffsetInMDC = P->NonVirtualOffset; 3349 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) 3350 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); 3351 3352 Paths.push_back(std::move(P)); 3353 } 3354 3355 if (B.isVirtual()) 3356 VBasesSeen.insert(Base); 3357 3358 // After visiting any direct base, we've transitively visited all of its 3359 // morally virtual bases. 3360 for (const auto &VB : Base->vbases()) 3361 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); 3362 } 3363 3364 // Sort the paths into buckets, and if any of them are ambiguous, extend all 3365 // paths in ambiguous buckets. 3366 bool Changed = true; 3367 while (Changed) 3368 Changed = rebucketPaths(Paths); 3369 } 3370 3371 static bool extendPath(VPtrInfo &P) { 3372 if (P.NextBaseToMangle) { 3373 P.MangledPath.push_back(P.NextBaseToMangle); 3374 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. 3375 return true; 3376 } 3377 return false; 3378 } 3379 3380 static bool rebucketPaths(VPtrInfoVector &Paths) { 3381 // What we're essentially doing here is bucketing together ambiguous paths. 3382 // Any bucket with more than one path in it gets extended by NextBase, which 3383 // is usually the direct base of the inherited the vbptr. This code uses a 3384 // sorted vector to implement a multiset to form the buckets. Note that the 3385 // ordering is based on pointers, but it doesn't change our output order. The 3386 // current algorithm is designed to match MSVC 2012's names. 3387 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted( 3388 llvm::make_pointee_range(Paths)); 3389 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) { 3390 return LHS.MangledPath < RHS.MangledPath; 3391 }); 3392 bool Changed = false; 3393 for (size_t I = 0, E = PathsSorted.size(); I != E;) { 3394 // Scan forward to find the end of the bucket. 3395 size_t BucketStart = I; 3396 do { 3397 ++I; 3398 } while (I != E && 3399 PathsSorted[BucketStart].get().MangledPath == 3400 PathsSorted[I].get().MangledPath); 3401 3402 // If this bucket has multiple paths, extend them all. 3403 if (I - BucketStart > 1) { 3404 for (size_t II = BucketStart; II != I; ++II) 3405 Changed |= extendPath(PathsSorted[II]); 3406 assert(Changed && "no paths were extended to fix ambiguity"); 3407 } 3408 } 3409 return Changed; 3410 } 3411 3412 MicrosoftVTableContext::~MicrosoftVTableContext() {} 3413 3414 namespace { 3415 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, 3416 llvm::DenseSet<BaseSubobject>> FullPathTy; 3417 } 3418 3419 // This recursive function finds all paths from a subobject centered at 3420 // (RD, Offset) to the subobject located at IntroducingObject. 3421 static void findPathsToSubobject(ASTContext &Context, 3422 const ASTRecordLayout &MostDerivedLayout, 3423 const CXXRecordDecl *RD, CharUnits Offset, 3424 BaseSubobject IntroducingObject, 3425 FullPathTy &FullPath, 3426 std::list<FullPathTy> &Paths) { 3427 if (BaseSubobject(RD, Offset) == IntroducingObject) { 3428 Paths.push_back(FullPath); 3429 return; 3430 } 3431 3432 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3433 3434 for (const CXXBaseSpecifier &BS : RD->bases()) { 3435 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); 3436 CharUnits NewOffset = BS.isVirtual() 3437 ? MostDerivedLayout.getVBaseClassOffset(Base) 3438 : Offset + Layout.getBaseClassOffset(Base); 3439 FullPath.insert(BaseSubobject(Base, NewOffset)); 3440 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, 3441 IntroducingObject, FullPath, Paths); 3442 FullPath.pop_back(); 3443 } 3444 } 3445 3446 // Return the paths which are not subsets of other paths. 3447 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { 3448 FullPaths.remove_if([&](const FullPathTy &SpecificPath) { 3449 for (const FullPathTy &OtherPath : FullPaths) { 3450 if (&SpecificPath == &OtherPath) 3451 continue; 3452 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) { 3453 return OtherPath.contains(BSO); 3454 })) { 3455 return true; 3456 } 3457 } 3458 return false; 3459 }); 3460 } 3461 3462 static CharUnits getOffsetOfFullPath(ASTContext &Context, 3463 const CXXRecordDecl *RD, 3464 const FullPathTy &FullPath) { 3465 const ASTRecordLayout &MostDerivedLayout = 3466 Context.getASTRecordLayout(RD); 3467 CharUnits Offset = CharUnits::fromQuantity(-1); 3468 for (const BaseSubobject &BSO : FullPath) { 3469 const CXXRecordDecl *Base = BSO.getBase(); 3470 // The first entry in the path is always the most derived record, skip it. 3471 if (Base == RD) { 3472 assert(Offset.getQuantity() == -1); 3473 Offset = CharUnits::Zero(); 3474 continue; 3475 } 3476 assert(Offset.getQuantity() != -1); 3477 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3478 // While we know which base has to be traversed, we don't know if that base 3479 // was a virtual base. 3480 const CXXBaseSpecifier *BaseBS = std::find_if( 3481 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { 3482 return BS.getType()->getAsCXXRecordDecl() == Base; 3483 }); 3484 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) 3485 : Offset + Layout.getBaseClassOffset(Base); 3486 RD = Base; 3487 } 3488 return Offset; 3489 } 3490 3491 // We want to select the path which introduces the most covariant overrides. If 3492 // two paths introduce overrides which the other path doesn't contain, issue a 3493 // diagnostic. 3494 static const FullPathTy *selectBestPath(ASTContext &Context, 3495 const CXXRecordDecl *RD, 3496 const VPtrInfo &Info, 3497 std::list<FullPathTy> &FullPaths) { 3498 // Handle some easy cases first. 3499 if (FullPaths.empty()) 3500 return nullptr; 3501 if (FullPaths.size() == 1) 3502 return &FullPaths.front(); 3503 3504 const FullPathTy *BestPath = nullptr; 3505 typedef std::set<const CXXMethodDecl *> OverriderSetTy; 3506 OverriderSetTy LastOverrides; 3507 for (const FullPathTy &SpecificPath : FullPaths) { 3508 assert(!SpecificPath.empty()); 3509 OverriderSetTy CurrentOverrides; 3510 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); 3511 // Find the distance from the start of the path to the subobject with the 3512 // VPtr. 3513 CharUnits BaseOffset = 3514 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); 3515 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); 3516 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { 3517 if (!MicrosoftVTableContext::hasVtableSlot(MD)) 3518 continue; 3519 FinalOverriders::OverriderInfo OI = 3520 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); 3521 const CXXMethodDecl *OverridingMethod = OI.Method; 3522 // Only overriders which have a return adjustment introduce problematic 3523 // thunks. 3524 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) 3525 .isEmpty()) 3526 continue; 3527 // It's possible that the overrider isn't in this path. If so, skip it 3528 // because this path didn't introduce it. 3529 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); 3530 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) { 3531 return BSO.getBase() == OverridingParent; 3532 })) 3533 continue; 3534 CurrentOverrides.insert(OverridingMethod); 3535 } 3536 OverriderSetTy NewOverrides = 3537 llvm::set_difference(CurrentOverrides, LastOverrides); 3538 if (NewOverrides.empty()) 3539 continue; 3540 OverriderSetTy MissingOverrides = 3541 llvm::set_difference(LastOverrides, CurrentOverrides); 3542 if (MissingOverrides.empty()) { 3543 // This path is a strict improvement over the last path, let's use it. 3544 BestPath = &SpecificPath; 3545 std::swap(CurrentOverrides, LastOverrides); 3546 } else { 3547 // This path introduces an overrider with a conflicting covariant thunk. 3548 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3549 const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); 3550 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); 3551 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) 3552 << RD; 3553 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) 3554 << CovariantMD; 3555 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) 3556 << ConflictMD; 3557 } 3558 } 3559 // Go with the path that introduced the most covariant overrides. If there is 3560 // no such path, pick the first path. 3561 return BestPath ? BestPath : &FullPaths.front(); 3562 } 3563 3564 static void computeFullPathsForVFTables(ASTContext &Context, 3565 const CXXRecordDecl *RD, 3566 VPtrInfoVector &Paths) { 3567 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); 3568 FullPathTy FullPath; 3569 std::list<FullPathTy> FullPaths; 3570 for (const std::unique_ptr<VPtrInfo>& Info : Paths) { 3571 findPathsToSubobject( 3572 Context, MostDerivedLayout, RD, CharUnits::Zero(), 3573 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, 3574 FullPaths); 3575 FullPath.clear(); 3576 removeRedundantPaths(FullPaths); 3577 Info->PathToIntroducingObject.clear(); 3578 if (const FullPathTy *BestPath = 3579 selectBestPath(Context, RD, *Info, FullPaths)) 3580 for (const BaseSubobject &BSO : *BestPath) 3581 Info->PathToIntroducingObject.push_back(BSO.getBase()); 3582 FullPaths.clear(); 3583 } 3584 } 3585 3586 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, 3587 const MethodVFTableLocation &LHS, 3588 const MethodVFTableLocation &RHS) { 3589 CharUnits L = LHS.VFPtrOffset; 3590 CharUnits R = RHS.VFPtrOffset; 3591 if (LHS.VBase) 3592 L += Layout.getVBaseClassOffset(LHS.VBase); 3593 if (RHS.VBase) 3594 R += Layout.getVBaseClassOffset(RHS.VBase); 3595 return L < R; 3596 } 3597 3598 void MicrosoftVTableContext::computeVTableRelatedInformation( 3599 const CXXRecordDecl *RD) { 3600 assert(RD->isDynamicClass()); 3601 3602 // Check if we've computed this information before. 3603 if (VFPtrLocations.count(RD)) 3604 return; 3605 3606 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; 3607 3608 { 3609 auto VFPtrs = std::make_unique<VPtrInfoVector>(); 3610 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); 3611 computeFullPathsForVFTables(Context, RD, *VFPtrs); 3612 VFPtrLocations[RD] = std::move(VFPtrs); 3613 } 3614 3615 MethodVFTableLocationsTy NewMethodLocations; 3616 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { 3617 VFTableBuilder Builder(*this, RD, *VFPtr); 3618 3619 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); 3620 assert(VFTableLayouts.count(id) == 0); 3621 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( 3622 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 3623 VFTableLayouts[id] = std::make_unique<VTableLayout>( 3624 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks, 3625 EmptyAddressPointsMap); 3626 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 3627 3628 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3629 for (const auto &Loc : Builder.vtable_locations()) { 3630 auto Insert = NewMethodLocations.insert(Loc); 3631 if (!Insert.second) { 3632 const MethodVFTableLocation &NewLoc = Loc.second; 3633 MethodVFTableLocation &OldLoc = Insert.first->second; 3634 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc)) 3635 OldLoc = NewLoc; 3636 } 3637 } 3638 } 3639 3640 MethodVFTableLocations.insert(NewMethodLocations.begin(), 3641 NewMethodLocations.end()); 3642 if (Context.getLangOpts().DumpVTableLayouts) 3643 dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); 3644 } 3645 3646 void MicrosoftVTableContext::dumpMethodLocations( 3647 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, 3648 raw_ostream &Out) { 3649 // Compute the vtable indices for all the member functions. 3650 // Store them in a map keyed by the location so we'll get a sorted table. 3651 std::map<MethodVFTableLocation, std::string> IndicesMap; 3652 bool HasNonzeroOffset = false; 3653 3654 for (const auto &I : NewMethods) { 3655 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); 3656 assert(hasVtableSlot(MD)); 3657 3658 std::string MethodName = PredefinedExpr::ComputeName( 3659 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3660 3661 if (isa<CXXDestructorDecl>(MD)) { 3662 IndicesMap[I.second] = MethodName + " [scalar deleting]"; 3663 } else { 3664 IndicesMap[I.second] = MethodName; 3665 } 3666 3667 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) 3668 HasNonzeroOffset = true; 3669 } 3670 3671 // Print the vtable indices for all the member functions. 3672 if (!IndicesMap.empty()) { 3673 Out << "VFTable indices for "; 3674 Out << "'"; 3675 RD->printQualifiedName(Out); 3676 Out << "' (" << IndicesMap.size() 3677 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; 3678 3679 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); 3680 uint64_t LastVBIndex = 0; 3681 for (const auto &I : IndicesMap) { 3682 CharUnits VFPtrOffset = I.first.VFPtrOffset; 3683 uint64_t VBIndex = I.first.VBTableIndex; 3684 if (HasNonzeroOffset && 3685 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { 3686 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); 3687 Out << " -- accessible via "; 3688 if (VBIndex) 3689 Out << "vbtable index " << VBIndex << ", "; 3690 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; 3691 LastVFPtrOffset = VFPtrOffset; 3692 LastVBIndex = VBIndex; 3693 } 3694 3695 uint64_t VTableIndex = I.first.Index; 3696 const std::string &MethodName = I.second; 3697 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; 3698 } 3699 Out << '\n'; 3700 } 3701 3702 Out.flush(); 3703 } 3704 3705 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( 3706 const CXXRecordDecl *RD) { 3707 VirtualBaseInfo *VBI; 3708 3709 { 3710 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, 3711 // as it may be modified and rehashed under us. 3712 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; 3713 if (Entry) 3714 return *Entry; 3715 Entry = std::make_unique<VirtualBaseInfo>(); 3716 VBI = Entry.get(); 3717 } 3718 3719 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); 3720 3721 // First, see if the Derived class shared the vbptr with a non-virtual base. 3722 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3723 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { 3724 // If the Derived class shares the vbptr with a non-virtual base, the shared 3725 // virtual bases come first so that the layout is the same. 3726 const VirtualBaseInfo &BaseInfo = 3727 computeVBTableRelatedInformation(VBPtrBase); 3728 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(), 3729 BaseInfo.VBTableIndices.end()); 3730 } 3731 3732 // New vbases are added to the end of the vbtable. 3733 // Skip the self entry and vbases visited in the non-virtual base, if any. 3734 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); 3735 for (const auto &VB : RD->vbases()) { 3736 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); 3737 if (!VBI->VBTableIndices.count(CurVBase)) 3738 VBI->VBTableIndices[CurVBase] = VBTableIndex++; 3739 } 3740 3741 return *VBI; 3742 } 3743 3744 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, 3745 const CXXRecordDecl *VBase) { 3746 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived); 3747 assert(VBInfo.VBTableIndices.count(VBase)); 3748 return VBInfo.VBTableIndices.find(VBase)->second; 3749 } 3750 3751 const VPtrInfoVector & 3752 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { 3753 return computeVBTableRelatedInformation(RD).VBPtrPaths; 3754 } 3755 3756 const VPtrInfoVector & 3757 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { 3758 computeVTableRelatedInformation(RD); 3759 3760 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); 3761 return *VFPtrLocations[RD]; 3762 } 3763 3764 const VTableLayout & 3765 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, 3766 CharUnits VFPtrOffset) { 3767 computeVTableRelatedInformation(RD); 3768 3769 VFTableIdTy id(RD, VFPtrOffset); 3770 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); 3771 return *VFTableLayouts[id]; 3772 } 3773 3774 MethodVFTableLocation 3775 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { 3776 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && 3777 "Only use this method for virtual methods or dtors"); 3778 if (isa<CXXDestructorDecl>(GD.getDecl())) 3779 assert(GD.getDtorType() == Dtor_Deleting); 3780 3781 GD = GD.getCanonicalDecl(); 3782 3783 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); 3784 if (I != MethodVFTableLocations.end()) 3785 return I->second; 3786 3787 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 3788 3789 computeVTableRelatedInformation(RD); 3790 3791 I = MethodVFTableLocations.find(GD); 3792 assert(I != MethodVFTableLocations.end() && "Did not find index!"); 3793 return I->second; 3794 } 3795