1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with generation of the layout of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/VTableBuilder.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 29 #define DUMP_OVERRIDERS 0 30 31 namespace { 32 33 /// BaseOffset - Represents an offset from a derived class to a direct or 34 /// indirect base class. 35 struct BaseOffset { 36 /// DerivedClass - The derived class. 37 const CXXRecordDecl *DerivedClass; 38 39 /// VirtualBase - If the path from the derived class to the base class 40 /// involves virtual base classes, this holds the declaration of the last 41 /// virtual base in this path (i.e. closest to the base class). 42 const CXXRecordDecl *VirtualBase; 43 44 /// NonVirtualOffset - The offset from the derived class to the base class. 45 /// (Or the offset from the virtual base class to the base class, if the 46 /// path from the derived class to the base class involves a virtual base 47 /// class. 48 CharUnits NonVirtualOffset; 49 50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), 51 NonVirtualOffset(CharUnits::Zero()) { } 52 BaseOffset(const CXXRecordDecl *DerivedClass, 53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) 54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase), 55 NonVirtualOffset(NonVirtualOffset) { } 56 57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } 58 }; 59 60 /// FinalOverriders - Contains the final overrider member functions for all 61 /// member functions in the base subobjects of a class. 62 class FinalOverriders { 63 public: 64 /// OverriderInfo - Information about a final overrider. 65 struct OverriderInfo { 66 /// Method - The method decl of the overrider. 67 const CXXMethodDecl *Method; 68 69 /// VirtualBase - The virtual base class subobject of this overrider. 70 /// Note that this records the closest derived virtual base class subobject. 71 const CXXRecordDecl *VirtualBase; 72 73 /// Offset - the base offset of the overrider's parent in the layout class. 74 CharUnits Offset; 75 76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr), 77 Offset(CharUnits::Zero()) { } 78 }; 79 80 private: 81 /// MostDerivedClass - The most derived class for which the final overriders 82 /// are stored. 83 const CXXRecordDecl *MostDerivedClass; 84 85 /// MostDerivedClassOffset - If we're building final overriders for a 86 /// construction vtable, this holds the offset from the layout class to the 87 /// most derived class. 88 const CharUnits MostDerivedClassOffset; 89 90 /// LayoutClass - The class we're using for layout information. Will be 91 /// different than the most derived class if the final overriders are for a 92 /// construction vtable. 93 const CXXRecordDecl *LayoutClass; 94 95 ASTContext &Context; 96 97 /// MostDerivedClassLayout - the AST record layout of the most derived class. 98 const ASTRecordLayout &MostDerivedClassLayout; 99 100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function 101 /// in a base subobject. 102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; 103 104 typedef llvm::DenseMap<MethodBaseOffsetPairTy, 105 OverriderInfo> OverridersMapTy; 106 107 /// OverridersMap - The final overriders for all virtual member functions of 108 /// all the base subobjects of the most derived class. 109 OverridersMapTy OverridersMap; 110 111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented 112 /// as a record decl and a subobject number) and its offsets in the most 113 /// derived class as well as the layout class. 114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, 115 CharUnits> SubobjectOffsetMapTy; 116 117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; 118 119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the 120 /// given base. 121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 122 CharUnits OffsetInLayoutClass, 123 SubobjectOffsetMapTy &SubobjectOffsets, 124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 125 SubobjectCountMapTy &SubobjectCounts); 126 127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 128 129 /// dump - dump the final overriders for a base subobject, and all its direct 130 /// and indirect base subobjects. 131 void dump(raw_ostream &Out, BaseSubobject Base, 132 VisitedVirtualBasesSetTy& VisitedVirtualBases); 133 134 public: 135 FinalOverriders(const CXXRecordDecl *MostDerivedClass, 136 CharUnits MostDerivedClassOffset, 137 const CXXRecordDecl *LayoutClass); 138 139 /// getOverrider - Get the final overrider for the given method declaration in 140 /// the subobject with the given base offset. 141 OverriderInfo getOverrider(const CXXMethodDecl *MD, 142 CharUnits BaseOffset) const { 143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && 144 "Did not find overrider!"); 145 146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); 147 } 148 149 /// dump - dump the final overriders. 150 void dump() { 151 VisitedVirtualBasesSetTy VisitedVirtualBases; 152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), 153 VisitedVirtualBases); 154 } 155 156 }; 157 158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, 159 CharUnits MostDerivedClassOffset, 160 const CXXRecordDecl *LayoutClass) 161 : MostDerivedClass(MostDerivedClass), 162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), 163 Context(MostDerivedClass->getASTContext()), 164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { 165 166 // Compute base offsets. 167 SubobjectOffsetMapTy SubobjectOffsets; 168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets; 169 SubobjectCountMapTy SubobjectCounts; 170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 171 /*IsVirtual=*/false, 172 MostDerivedClassOffset, 173 SubobjectOffsets, SubobjectLayoutClassOffsets, 174 SubobjectCounts); 175 176 // Get the final overriders. 177 CXXFinalOverriderMap FinalOverriders; 178 MostDerivedClass->getFinalOverriders(FinalOverriders); 179 180 for (const auto &Overrider : FinalOverriders) { 181 const CXXMethodDecl *MD = Overrider.first; 182 const OverridingMethods &Methods = Overrider.second; 183 184 for (const auto &M : Methods) { 185 unsigned SubobjectNumber = M.first; 186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), 187 SubobjectNumber)) && 188 "Did not find subobject offset!"); 189 190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), 191 SubobjectNumber)]; 192 193 assert(M.second.size() == 1 && "Final overrider is not unique!"); 194 const UniqueVirtualMethod &Method = M.second.front(); 195 196 const CXXRecordDecl *OverriderRD = Method.Method->getParent(); 197 assert(SubobjectLayoutClassOffsets.count( 198 std::make_pair(OverriderRD, Method.Subobject)) 199 && "Did not find subobject offset!"); 200 CharUnits OverriderOffset = 201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, 202 Method.Subobject)]; 203 204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; 205 assert(!Overrider.Method && "Overrider should not exist yet!"); 206 207 Overrider.Offset = OverriderOffset; 208 Overrider.Method = Method.Method; 209 Overrider.VirtualBase = Method.InVirtualSubobject; 210 } 211 } 212 213 #if DUMP_OVERRIDERS 214 // And dump them (for now). 215 dump(); 216 #endif 217 } 218 219 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 220 const CXXRecordDecl *DerivedRD, 221 const CXXBasePath &Path) { 222 CharUnits NonVirtualOffset = CharUnits::Zero(); 223 224 unsigned NonVirtualStart = 0; 225 const CXXRecordDecl *VirtualBase = nullptr; 226 227 // First, look for the virtual base class. 228 for (int I = Path.size(), E = 0; I != E; --I) { 229 const CXXBasePathElement &Element = Path[I - 1]; 230 231 if (Element.Base->isVirtual()) { 232 NonVirtualStart = I; 233 QualType VBaseType = Element.Base->getType(); 234 VirtualBase = VBaseType->getAsCXXRecordDecl(); 235 break; 236 } 237 } 238 239 // Now compute the non-virtual offset. 240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { 241 const CXXBasePathElement &Element = Path[I]; 242 243 // Check the base class offset. 244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); 245 246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); 247 248 NonVirtualOffset += Layout.getBaseClassOffset(Base); 249 } 250 251 // FIXME: This should probably use CharUnits or something. Maybe we should 252 // even change the base offsets in ASTRecordLayout to be specified in 253 // CharUnits. 254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); 255 256 } 257 258 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 259 const CXXRecordDecl *BaseRD, 260 const CXXRecordDecl *DerivedRD) { 261 CXXBasePaths Paths(/*FindAmbiguities=*/false, 262 /*RecordPaths=*/true, /*DetectVirtual=*/false); 263 264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 265 llvm_unreachable("Class must be derived from the passed in base class!"); 266 267 return ComputeBaseOffset(Context, DerivedRD, Paths.front()); 268 } 269 270 static BaseOffset 271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context, 272 const CXXMethodDecl *DerivedMD, 273 const CXXMethodDecl *BaseMD) { 274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); 275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); 276 277 // Canonicalize the return types. 278 CanQualType CanDerivedReturnType = 279 Context.getCanonicalType(DerivedFT->getReturnType()); 280 CanQualType CanBaseReturnType = 281 Context.getCanonicalType(BaseFT->getReturnType()); 282 283 assert(CanDerivedReturnType->getTypeClass() == 284 CanBaseReturnType->getTypeClass() && 285 "Types must have same type class!"); 286 287 if (CanDerivedReturnType == CanBaseReturnType) { 288 // No adjustment needed. 289 return BaseOffset(); 290 } 291 292 if (isa<ReferenceType>(CanDerivedReturnType)) { 293 CanDerivedReturnType = 294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); 295 CanBaseReturnType = 296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); 297 } else if (isa<PointerType>(CanDerivedReturnType)) { 298 CanDerivedReturnType = 299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); 300 CanBaseReturnType = 301 CanBaseReturnType->getAs<PointerType>()->getPointeeType(); 302 } else { 303 llvm_unreachable("Unexpected return type!"); 304 } 305 306 // We need to compare unqualified types here; consider 307 // const T *Base::foo(); 308 // T *Derived::foo(); 309 if (CanDerivedReturnType.getUnqualifiedType() == 310 CanBaseReturnType.getUnqualifiedType()) { 311 // No adjustment needed. 312 return BaseOffset(); 313 } 314 315 const CXXRecordDecl *DerivedRD = 316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); 317 318 const CXXRecordDecl *BaseRD = 319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); 320 321 return ComputeBaseOffset(Context, BaseRD, DerivedRD); 322 } 323 324 void 325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 326 CharUnits OffsetInLayoutClass, 327 SubobjectOffsetMapTy &SubobjectOffsets, 328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 329 SubobjectCountMapTy &SubobjectCounts) { 330 const CXXRecordDecl *RD = Base.getBase(); 331 332 unsigned SubobjectNumber = 0; 333 if (!IsVirtual) 334 SubobjectNumber = ++SubobjectCounts[RD]; 335 336 // Set up the subobject to offset mapping. 337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) 338 && "Subobject offset already exists!"); 339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) 340 && "Subobject offset already exists!"); 341 342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); 343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = 344 OffsetInLayoutClass; 345 346 // Traverse our bases. 347 for (const auto &B : RD->bases()) { 348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 349 350 CharUnits BaseOffset; 351 CharUnits BaseOffsetInLayoutClass; 352 if (B.isVirtual()) { 353 // Check if we've visited this virtual base before. 354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) 355 continue; 356 357 const ASTRecordLayout &LayoutClassLayout = 358 Context.getASTRecordLayout(LayoutClass); 359 360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 361 BaseOffsetInLayoutClass = 362 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 363 } else { 364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); 366 367 BaseOffset = Base.getBaseOffset() + Offset; 368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; 369 } 370 371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), 372 B.isVirtual(), BaseOffsetInLayoutClass, 373 SubobjectOffsets, SubobjectLayoutClassOffsets, 374 SubobjectCounts); 375 } 376 } 377 378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, 379 VisitedVirtualBasesSetTy &VisitedVirtualBases) { 380 const CXXRecordDecl *RD = Base.getBase(); 381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 382 383 for (const auto &B : RD->bases()) { 384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 385 386 // Ignore bases that don't have any virtual member functions. 387 if (!BaseDecl->isPolymorphic()) 388 continue; 389 390 CharUnits BaseOffset; 391 if (B.isVirtual()) { 392 if (!VisitedVirtualBases.insert(BaseDecl).second) { 393 // We've visited this base before. 394 continue; 395 } 396 397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 398 } else { 399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); 400 } 401 402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); 403 } 404 405 Out << "Final overriders for ("; 406 RD->printQualifiedName(Out); 407 Out << ", "; 408 Out << Base.getBaseOffset().getQuantity() << ")\n"; 409 410 // Now dump the overriders for this base subobject. 411 for (const auto *MD : RD->methods()) { 412 if (!VTableContextBase::hasVtableSlot(MD)) 413 continue; 414 MD = MD->getCanonicalDecl(); 415 416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); 417 418 Out << " "; 419 MD->printQualifiedName(Out); 420 Out << " - ("; 421 Overrider.Method->printQualifiedName(Out); 422 Out << ", " << Overrider.Offset.getQuantity() << ')'; 423 424 BaseOffset Offset; 425 if (!Overrider.Method->isPureVirtual()) 426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 427 428 if (!Offset.isEmpty()) { 429 Out << " [ret-adj: "; 430 if (Offset.VirtualBase) { 431 Offset.VirtualBase->printQualifiedName(Out); 432 Out << " vbase, "; 433 } 434 435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; 436 } 437 438 Out << "\n"; 439 } 440 } 441 442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. 443 struct VCallOffsetMap { 444 445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; 446 447 /// Offsets - Keeps track of methods and their offsets. 448 // FIXME: This should be a real map and not a vector. 449 SmallVector<MethodAndOffsetPairTy, 16> Offsets; 450 451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions 452 /// can share the same vcall offset. 453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 454 const CXXMethodDecl *RHS); 455 456 public: 457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the 458 /// add was successful, or false if there was already a member function with 459 /// the same signature in the map. 460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); 461 462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the 463 /// vtable address point) for the given virtual member function. 464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); 465 466 // empty - Return whether the offset map is empty or not. 467 bool empty() const { return Offsets.empty(); } 468 }; 469 470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, 471 const CXXMethodDecl *RHS) { 472 const FunctionProtoType *LT = 473 cast<FunctionProtoType>(LHS->getType().getCanonicalType()); 474 const FunctionProtoType *RT = 475 cast<FunctionProtoType>(RHS->getType().getCanonicalType()); 476 477 // Fast-path matches in the canonical types. 478 if (LT == RT) return true; 479 480 // Force the signatures to match. We can't rely on the overrides 481 // list here because there isn't necessarily an inheritance 482 // relationship between the two methods. 483 if (LT->getMethodQuals() != RT->getMethodQuals()) 484 return false; 485 return LT->getParamTypes() == RT->getParamTypes(); 486 } 487 488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 489 const CXXMethodDecl *RHS) { 490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!"); 491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!"); 492 493 // A destructor can share a vcall offset with another destructor. 494 if (isa<CXXDestructorDecl>(LHS)) 495 return isa<CXXDestructorDecl>(RHS); 496 497 // FIXME: We need to check more things here. 498 499 // The methods must have the same name. 500 DeclarationName LHSName = LHS->getDeclName(); 501 DeclarationName RHSName = RHS->getDeclName(); 502 if (LHSName != RHSName) 503 return false; 504 505 // And the same signatures. 506 return HasSameVirtualSignature(LHS, RHS); 507 } 508 509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, 510 CharUnits OffsetOffset) { 511 // Check if we can reuse an offset. 512 for (const auto &OffsetPair : Offsets) { 513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 514 return false; 515 } 516 517 // Add the offset. 518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); 519 return true; 520 } 521 522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { 523 // Look for an offset. 524 for (const auto &OffsetPair : Offsets) { 525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 526 return OffsetPair.second; 527 } 528 529 llvm_unreachable("Should always find a vcall offset offset!"); 530 } 531 532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. 533 class VCallAndVBaseOffsetBuilder { 534 public: 535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 536 VBaseOffsetOffsetsMapTy; 537 538 private: 539 const ItaniumVTableContext &VTables; 540 541 /// MostDerivedClass - The most derived class for which we're building vcall 542 /// and vbase offsets. 543 const CXXRecordDecl *MostDerivedClass; 544 545 /// LayoutClass - The class we're using for layout information. Will be 546 /// different than the most derived class if we're building a construction 547 /// vtable. 548 const CXXRecordDecl *LayoutClass; 549 550 /// Context - The ASTContext which we will use for layout information. 551 ASTContext &Context; 552 553 /// Components - vcall and vbase offset components 554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; 555 VTableComponentVectorTy Components; 556 557 /// VisitedVirtualBases - Visited virtual bases. 558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 559 560 /// VCallOffsets - Keeps track of vcall offsets. 561 VCallOffsetMap VCallOffsets; 562 563 564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, 565 /// relative to the address point. 566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 567 568 /// FinalOverriders - The final overriders of the most derived class. 569 /// (Can be null when we're not building a vtable of the most derived class). 570 const FinalOverriders *Overriders; 571 572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the 573 /// given base subobject. 574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, 575 CharUnits RealBaseOffset); 576 577 /// AddVCallOffsets - Add vcall offsets for the given base subobject. 578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); 579 580 /// AddVBaseOffsets - Add vbase offsets for the given class. 581 void AddVBaseOffsets(const CXXRecordDecl *Base, 582 CharUnits OffsetInLayoutClass); 583 584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in 585 /// chars, relative to the vtable address point. 586 CharUnits getCurrentOffsetOffset() const; 587 588 public: 589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, 590 const CXXRecordDecl *MostDerivedClass, 591 const CXXRecordDecl *LayoutClass, 592 const FinalOverriders *Overriders, 593 BaseSubobject Base, bool BaseIsVirtual, 594 CharUnits OffsetInLayoutClass) 595 : VTables(VTables), MostDerivedClass(MostDerivedClass), 596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 597 Overriders(Overriders) { 598 599 // Add vcall and vbase offsets. 600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); 601 } 602 603 /// Methods for iterating over the components. 604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; 605 const_iterator components_begin() const { return Components.rbegin(); } 606 const_iterator components_end() const { return Components.rend(); } 607 608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } 609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 610 return VBaseOffsetOffsets; 611 } 612 }; 613 614 void 615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, 616 bool BaseIsVirtual, 617 CharUnits RealBaseOffset) { 618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); 619 620 // Itanium C++ ABI 2.5.2: 621 // ..in classes sharing a virtual table with a primary base class, the vcall 622 // and vbase offsets added by the derived class all come before the vcall 623 // and vbase offsets required by the base class, so that the latter may be 624 // laid out as required by the base class without regard to additions from 625 // the derived class(es). 626 627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll 628 // emit them for the primary base first). 629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 631 632 CharUnits PrimaryBaseOffset; 633 634 // Get the base offset of the primary base. 635 if (PrimaryBaseIsVirtual) { 636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 637 "Primary vbase should have a zero offset!"); 638 639 const ASTRecordLayout &MostDerivedClassLayout = 640 Context.getASTRecordLayout(MostDerivedClass); 641 642 PrimaryBaseOffset = 643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 644 } else { 645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 646 "Primary base should have a zero offset!"); 647 648 PrimaryBaseOffset = Base.getBaseOffset(); 649 } 650 651 AddVCallAndVBaseOffsets( 652 BaseSubobject(PrimaryBase,PrimaryBaseOffset), 653 PrimaryBaseIsVirtual, RealBaseOffset); 654 } 655 656 AddVBaseOffsets(Base.getBase(), RealBaseOffset); 657 658 // We only want to add vcall offsets for virtual bases. 659 if (BaseIsVirtual) 660 AddVCallOffsets(Base, RealBaseOffset); 661 } 662 663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { 664 // OffsetIndex is the index of this vcall or vbase offset, relative to the 665 // vtable address point. (We subtract 3 to account for the information just 666 // above the address point, the RTTI info, the offset to top, and the 667 // vcall offset itself). 668 size_t NumComponentsAboveAddrPoint = 3; 669 if (Context.getLangOpts().OmitVTableRTTI) 670 NumComponentsAboveAddrPoint--; 671 int64_t OffsetIndex = 672 -(int64_t)(NumComponentsAboveAddrPoint + Components.size()); 673 674 // Under the relative ABI, the offset widths are 32-bit ints instead of 675 // pointer widths. 676 CharUnits OffsetWidth = Context.toCharUnitsFromBits( 677 VTables.isRelativeLayout() 678 ? 32 679 : Context.getTargetInfo().getPointerWidth(LangAS::Default)); 680 CharUnits OffsetOffset = OffsetWidth * OffsetIndex; 681 682 return OffsetOffset; 683 } 684 685 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, 686 CharUnits VBaseOffset) { 687 const CXXRecordDecl *RD = Base.getBase(); 688 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 689 690 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 691 692 // Handle the primary base first. 693 // We only want to add vcall offsets if the base is non-virtual; a virtual 694 // primary base will have its vcall and vbase offsets emitted already. 695 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { 696 // Get the base offset of the primary base. 697 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 698 "Primary base should have a zero offset!"); 699 700 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), 701 VBaseOffset); 702 } 703 704 // Add the vcall offsets. 705 for (const auto *MD : RD->methods()) { 706 if (!VTableContextBase::hasVtableSlot(MD)) 707 continue; 708 MD = MD->getCanonicalDecl(); 709 710 CharUnits OffsetOffset = getCurrentOffsetOffset(); 711 712 // Don't add a vcall offset if we already have one for this member function 713 // signature. 714 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) 715 continue; 716 717 CharUnits Offset = CharUnits::Zero(); 718 719 if (Overriders) { 720 // Get the final overrider. 721 FinalOverriders::OverriderInfo Overrider = 722 Overriders->getOverrider(MD, Base.getBaseOffset()); 723 724 /// The vcall offset is the offset from the virtual base to the object 725 /// where the function was overridden. 726 Offset = Overrider.Offset - VBaseOffset; 727 } 728 729 Components.push_back( 730 VTableComponent::MakeVCallOffset(Offset)); 731 } 732 733 // And iterate over all non-virtual bases (ignoring the primary base). 734 for (const auto &B : RD->bases()) { 735 if (B.isVirtual()) 736 continue; 737 738 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 739 if (BaseDecl == PrimaryBase) 740 continue; 741 742 // Get the base offset of this base. 743 CharUnits BaseOffset = Base.getBaseOffset() + 744 Layout.getBaseClassOffset(BaseDecl); 745 746 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), 747 VBaseOffset); 748 } 749 } 750 751 void 752 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, 753 CharUnits OffsetInLayoutClass) { 754 const ASTRecordLayout &LayoutClassLayout = 755 Context.getASTRecordLayout(LayoutClass); 756 757 // Add vbase offsets. 758 for (const auto &B : RD->bases()) { 759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 760 761 // Check if this is a virtual base that we haven't visited before. 762 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { 763 CharUnits Offset = 764 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; 765 766 // Add the vbase offset offset. 767 assert(!VBaseOffsetOffsets.count(BaseDecl) && 768 "vbase offset offset already exists!"); 769 770 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); 771 VBaseOffsetOffsets.insert( 772 std::make_pair(BaseDecl, VBaseOffsetOffset)); 773 774 Components.push_back( 775 VTableComponent::MakeVBaseOffset(Offset)); 776 } 777 778 // Check the base class looking for more vbase offsets. 779 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); 780 } 781 } 782 783 /// ItaniumVTableBuilder - Class for building vtable layout information. 784 class ItaniumVTableBuilder { 785 public: 786 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect 787 /// primary bases. 788 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> 789 PrimaryBasesSetVectorTy; 790 791 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 792 VBaseOffsetOffsetsMapTy; 793 794 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; 795 796 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 797 798 private: 799 /// VTables - Global vtable information. 800 ItaniumVTableContext &VTables; 801 802 /// MostDerivedClass - The most derived class for which we're building this 803 /// vtable. 804 const CXXRecordDecl *MostDerivedClass; 805 806 /// MostDerivedClassOffset - If we're building a construction vtable, this 807 /// holds the offset from the layout class to the most derived class. 808 const CharUnits MostDerivedClassOffset; 809 810 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual 811 /// base. (This only makes sense when building a construction vtable). 812 bool MostDerivedClassIsVirtual; 813 814 /// LayoutClass - The class we're using for layout information. Will be 815 /// different than the most derived class if we're building a construction 816 /// vtable. 817 const CXXRecordDecl *LayoutClass; 818 819 /// Context - The ASTContext which we will use for layout information. 820 ASTContext &Context; 821 822 /// FinalOverriders - The final overriders of the most derived class. 823 const FinalOverriders Overriders; 824 825 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual 826 /// bases in this vtable. 827 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; 828 829 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for 830 /// the most derived class. 831 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 832 833 /// Components - The components of the vtable being built. 834 SmallVector<VTableComponent, 64> Components; 835 836 /// AddressPoints - Address points for the vtable being built. 837 AddressPointsMapTy AddressPoints; 838 839 /// MethodInfo - Contains information about a method in a vtable. 840 /// (Used for computing 'this' pointer adjustment thunks. 841 struct MethodInfo { 842 /// BaseOffset - The base offset of this method. 843 const CharUnits BaseOffset; 844 845 /// BaseOffsetInLayoutClass - The base offset in the layout class of this 846 /// method. 847 const CharUnits BaseOffsetInLayoutClass; 848 849 /// VTableIndex - The index in the vtable that this method has. 850 /// (For destructors, this is the index of the complete destructor). 851 const uint64_t VTableIndex; 852 853 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, 854 uint64_t VTableIndex) 855 : BaseOffset(BaseOffset), 856 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), 857 VTableIndex(VTableIndex) { } 858 859 MethodInfo() 860 : BaseOffset(CharUnits::Zero()), 861 BaseOffsetInLayoutClass(CharUnits::Zero()), 862 VTableIndex(0) { } 863 864 MethodInfo(MethodInfo const&) = default; 865 }; 866 867 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 868 869 /// MethodInfoMap - The information for all methods in the vtable we're 870 /// currently building. 871 MethodInfoMapTy MethodInfoMap; 872 873 /// MethodVTableIndices - Contains the index (relative to the vtable address 874 /// point) where the function pointer for a virtual function is stored. 875 MethodVTableIndicesTy MethodVTableIndices; 876 877 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 878 879 /// VTableThunks - The thunks by vtable index in the vtable currently being 880 /// built. 881 VTableThunksMapTy VTableThunks; 882 883 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 884 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 885 886 /// Thunks - A map that contains all the thunks needed for all methods in the 887 /// most derived class for which the vtable is currently being built. 888 ThunksMapTy Thunks; 889 890 /// AddThunk - Add a thunk for the given method. 891 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); 892 893 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the 894 /// part of the vtable we're currently building. 895 void ComputeThisAdjustments(); 896 897 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 898 899 /// PrimaryVirtualBases - All known virtual bases who are a primary base of 900 /// some other base. 901 VisitedVirtualBasesSetTy PrimaryVirtualBases; 902 903 /// ComputeReturnAdjustment - Compute the return adjustment given a return 904 /// adjustment base offset. 905 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); 906 907 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting 908 /// the 'this' pointer from the base subobject to the derived subobject. 909 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, 910 BaseSubobject Derived) const; 911 912 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the 913 /// given virtual member function, its offset in the layout class and its 914 /// final overrider. 915 ThisAdjustment 916 ComputeThisAdjustment(const CXXMethodDecl *MD, 917 CharUnits BaseOffsetInLayoutClass, 918 FinalOverriders::OverriderInfo Overrider); 919 920 /// AddMethod - Add a single virtual member function to the vtable 921 /// components vector. 922 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); 923 924 /// IsOverriderUsed - Returns whether the overrider will ever be used in this 925 /// part of the vtable. 926 /// 927 /// Itanium C++ ABI 2.5.2: 928 /// 929 /// struct A { virtual void f(); }; 930 /// struct B : virtual public A { int i; }; 931 /// struct C : virtual public A { int j; }; 932 /// struct D : public B, public C {}; 933 /// 934 /// When B and C are declared, A is a primary base in each case, so although 935 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this 936 /// adjustment is required and no thunk is generated. However, inside D 937 /// objects, A is no longer a primary base of C, so if we allowed calls to 938 /// C::f() to use the copy of A's vtable in the C subobject, we would need 939 /// to adjust this from C* to B::A*, which would require a third-party 940 /// thunk. Since we require that a call to C::f() first convert to A*, 941 /// C-in-D's copy of A's vtable is never referenced, so this is not 942 /// necessary. 943 bool IsOverriderUsed(const CXXMethodDecl *Overrider, 944 CharUnits BaseOffsetInLayoutClass, 945 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 946 CharUnits FirstBaseOffsetInLayoutClass) const; 947 948 949 /// AddMethods - Add the methods of this base subobject and all its 950 /// primary bases to the vtable components vector. 951 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 952 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 953 CharUnits FirstBaseOffsetInLayoutClass, 954 PrimaryBasesSetVectorTy &PrimaryBases); 955 956 // LayoutVTable - Layout the vtable for the given base class, including its 957 // secondary vtables and any vtables for virtual bases. 958 void LayoutVTable(); 959 960 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the 961 /// given base subobject, as well as all its secondary vtables. 962 /// 963 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 964 /// or a direct or indirect base of a virtual base. 965 /// 966 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual 967 /// in the layout class. 968 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, 969 bool BaseIsMorallyVirtual, 970 bool BaseIsVirtualInLayoutClass, 971 CharUnits OffsetInLayoutClass); 972 973 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base 974 /// subobject. 975 /// 976 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 977 /// or a direct or indirect base of a virtual base. 978 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, 979 CharUnits OffsetInLayoutClass); 980 981 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this 982 /// class hierarchy. 983 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, 984 CharUnits OffsetInLayoutClass, 985 VisitedVirtualBasesSetTy &VBases); 986 987 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the 988 /// given base (excluding any primary bases). 989 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, 990 VisitedVirtualBasesSetTy &VBases); 991 992 /// isBuildingConstructionVTable - Return whether this vtable builder is 993 /// building a construction vtable. 994 bool isBuildingConstructorVTable() const { 995 return MostDerivedClass != LayoutClass; 996 } 997 998 public: 999 /// Component indices of the first component of each of the vtables in the 1000 /// vtable group. 1001 SmallVector<size_t, 4> VTableIndices; 1002 1003 ItaniumVTableBuilder(ItaniumVTableContext &VTables, 1004 const CXXRecordDecl *MostDerivedClass, 1005 CharUnits MostDerivedClassOffset, 1006 bool MostDerivedClassIsVirtual, 1007 const CXXRecordDecl *LayoutClass) 1008 : VTables(VTables), MostDerivedClass(MostDerivedClass), 1009 MostDerivedClassOffset(MostDerivedClassOffset), 1010 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), 1011 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 1012 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { 1013 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); 1014 1015 LayoutVTable(); 1016 1017 if (Context.getLangOpts().DumpVTableLayouts) 1018 dumpLayout(llvm::outs()); 1019 } 1020 1021 uint64_t getNumThunks() const { 1022 return Thunks.size(); 1023 } 1024 1025 ThunksMapTy::const_iterator thunks_begin() const { 1026 return Thunks.begin(); 1027 } 1028 1029 ThunksMapTy::const_iterator thunks_end() const { 1030 return Thunks.end(); 1031 } 1032 1033 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 1034 return VBaseOffsetOffsets; 1035 } 1036 1037 const AddressPointsMapTy &getAddressPoints() const { 1038 return AddressPoints; 1039 } 1040 1041 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { 1042 return MethodVTableIndices.begin(); 1043 } 1044 1045 MethodVTableIndicesTy::const_iterator vtable_indices_end() const { 1046 return MethodVTableIndices.end(); 1047 } 1048 1049 ArrayRef<VTableComponent> vtable_components() const { return Components; } 1050 1051 AddressPointsMapTy::const_iterator address_points_begin() const { 1052 return AddressPoints.begin(); 1053 } 1054 1055 AddressPointsMapTy::const_iterator address_points_end() const { 1056 return AddressPoints.end(); 1057 } 1058 1059 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 1060 return VTableThunks.begin(); 1061 } 1062 1063 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 1064 return VTableThunks.end(); 1065 } 1066 1067 /// dumpLayout - Dump the vtable layout. 1068 void dumpLayout(raw_ostream&); 1069 }; 1070 1071 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, 1072 const ThunkInfo &Thunk) { 1073 assert(!isBuildingConstructorVTable() && 1074 "Can't add thunks for construction vtable"); 1075 1076 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; 1077 1078 // Check if we have this thunk already. 1079 if (llvm::is_contained(ThunksVector, Thunk)) 1080 return; 1081 1082 ThunksVector.push_back(Thunk); 1083 } 1084 1085 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; 1086 1087 /// Visit all the methods overridden by the given method recursively, 1088 /// in a depth-first pre-order. The Visitor's visitor method returns a bool 1089 /// indicating whether to continue the recursion for the given overridden 1090 /// method (i.e. returning false stops the iteration). 1091 template <class VisitorTy> 1092 static void 1093 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { 1094 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!"); 1095 1096 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1097 if (!Visitor(OverriddenMD)) 1098 continue; 1099 visitAllOverriddenMethods(OverriddenMD, Visitor); 1100 } 1101 } 1102 1103 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all 1104 /// the overridden methods that the function decl overrides. 1105 static void 1106 ComputeAllOverriddenMethods(const CXXMethodDecl *MD, 1107 OverriddenMethodsSetTy& OverriddenMethods) { 1108 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { 1109 // Don't recurse on this method if we've already collected it. 1110 return OverriddenMethods.insert(MD).second; 1111 }; 1112 visitAllOverriddenMethods(MD, OverriddenMethodsCollector); 1113 } 1114 1115 void ItaniumVTableBuilder::ComputeThisAdjustments() { 1116 // Now go through the method info map and see if any of the methods need 1117 // 'this' pointer adjustments. 1118 for (const auto &MI : MethodInfoMap) { 1119 const CXXMethodDecl *MD = MI.first; 1120 const MethodInfo &MethodInfo = MI.second; 1121 1122 // Ignore adjustments for unused function pointers. 1123 uint64_t VTableIndex = MethodInfo.VTableIndex; 1124 if (Components[VTableIndex].getKind() == 1125 VTableComponent::CK_UnusedFunctionPointer) 1126 continue; 1127 1128 // Get the final overrider for this method. 1129 FinalOverriders::OverriderInfo Overrider = 1130 Overriders.getOverrider(MD, MethodInfo.BaseOffset); 1131 1132 // Check if we need an adjustment at all. 1133 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { 1134 // When a return thunk is needed by a derived class that overrides a 1135 // virtual base, gcc uses a virtual 'this' adjustment as well. 1136 // While the thunk itself might be needed by vtables in subclasses or 1137 // in construction vtables, there doesn't seem to be a reason for using 1138 // the thunk in this vtable. Still, we do so to match gcc. 1139 if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) 1140 continue; 1141 } 1142 1143 ThisAdjustment ThisAdjustment = 1144 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); 1145 1146 if (ThisAdjustment.isEmpty()) 1147 continue; 1148 1149 // Add it. 1150 VTableThunks[VTableIndex].This = ThisAdjustment; 1151 1152 if (isa<CXXDestructorDecl>(MD)) { 1153 // Add an adjustment for the deleting destructor as well. 1154 VTableThunks[VTableIndex + 1].This = ThisAdjustment; 1155 } 1156 } 1157 1158 /// Clear the method info map. 1159 MethodInfoMap.clear(); 1160 1161 if (isBuildingConstructorVTable()) { 1162 // We don't need to store thunk information for construction vtables. 1163 return; 1164 } 1165 1166 for (const auto &TI : VTableThunks) { 1167 const VTableComponent &Component = Components[TI.first]; 1168 const ThunkInfo &Thunk = TI.second; 1169 const CXXMethodDecl *MD; 1170 1171 switch (Component.getKind()) { 1172 default: 1173 llvm_unreachable("Unexpected vtable component kind!"); 1174 case VTableComponent::CK_FunctionPointer: 1175 MD = Component.getFunctionDecl(); 1176 break; 1177 case VTableComponent::CK_CompleteDtorPointer: 1178 MD = Component.getDestructorDecl(); 1179 break; 1180 case VTableComponent::CK_DeletingDtorPointer: 1181 // We've already added the thunk when we saw the complete dtor pointer. 1182 continue; 1183 } 1184 1185 if (MD->getParent() == MostDerivedClass) 1186 AddThunk(MD, Thunk); 1187 } 1188 } 1189 1190 ReturnAdjustment 1191 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { 1192 ReturnAdjustment Adjustment; 1193 1194 if (!Offset.isEmpty()) { 1195 if (Offset.VirtualBase) { 1196 // Get the virtual base offset offset. 1197 if (Offset.DerivedClass == MostDerivedClass) { 1198 // We can get the offset offset directly from our map. 1199 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1200 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); 1201 } else { 1202 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1203 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, 1204 Offset.VirtualBase).getQuantity(); 1205 } 1206 } 1207 1208 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1209 } 1210 1211 return Adjustment; 1212 } 1213 1214 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( 1215 BaseSubobject Base, BaseSubobject Derived) const { 1216 const CXXRecordDecl *BaseRD = Base.getBase(); 1217 const CXXRecordDecl *DerivedRD = Derived.getBase(); 1218 1219 CXXBasePaths Paths(/*FindAmbiguities=*/true, 1220 /*RecordPaths=*/true, /*DetectVirtual=*/true); 1221 1222 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 1223 llvm_unreachable("Class must be derived from the passed in base class!"); 1224 1225 // We have to go through all the paths, and see which one leads us to the 1226 // right base subobject. 1227 for (const CXXBasePath &Path : Paths) { 1228 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); 1229 1230 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; 1231 1232 if (Offset.VirtualBase) { 1233 // If we have a virtual base class, the non-virtual offset is relative 1234 // to the virtual base class offset. 1235 const ASTRecordLayout &LayoutClassLayout = 1236 Context.getASTRecordLayout(LayoutClass); 1237 1238 /// Get the virtual base offset, relative to the most derived class 1239 /// layout. 1240 OffsetToBaseSubobject += 1241 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); 1242 } else { 1243 // Otherwise, the non-virtual offset is relative to the derived class 1244 // offset. 1245 OffsetToBaseSubobject += Derived.getBaseOffset(); 1246 } 1247 1248 // Check if this path gives us the right base subobject. 1249 if (OffsetToBaseSubobject == Base.getBaseOffset()) { 1250 // Since we're going from the base class _to_ the derived class, we'll 1251 // invert the non-virtual offset here. 1252 Offset.NonVirtualOffset = -Offset.NonVirtualOffset; 1253 return Offset; 1254 } 1255 } 1256 1257 return BaseOffset(); 1258 } 1259 1260 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( 1261 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, 1262 FinalOverriders::OverriderInfo Overrider) { 1263 // Ignore adjustments for pure virtual member functions. 1264 if (Overrider.Method->isPureVirtual()) 1265 return ThisAdjustment(); 1266 1267 BaseSubobject OverriddenBaseSubobject(MD->getParent(), 1268 BaseOffsetInLayoutClass); 1269 1270 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), 1271 Overrider.Offset); 1272 1273 // Compute the adjustment offset. 1274 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, 1275 OverriderBaseSubobject); 1276 if (Offset.isEmpty()) 1277 return ThisAdjustment(); 1278 1279 ThisAdjustment Adjustment; 1280 1281 if (Offset.VirtualBase) { 1282 // Get the vcall offset map for this virtual base. 1283 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; 1284 1285 if (VCallOffsets.empty()) { 1286 // We don't have vcall offsets for this virtual base, go ahead and 1287 // build them. 1288 VCallAndVBaseOffsetBuilder Builder( 1289 VTables, MostDerivedClass, MostDerivedClass, 1290 /*Overriders=*/nullptr, 1291 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), 1292 /*BaseIsVirtual=*/true, 1293 /*OffsetInLayoutClass=*/ 1294 CharUnits::Zero()); 1295 1296 VCallOffsets = Builder.getVCallOffsets(); 1297 } 1298 1299 Adjustment.Virtual.Itanium.VCallOffsetOffset = 1300 VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); 1301 } 1302 1303 // Set the non-virtual part of the adjustment. 1304 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1305 1306 return Adjustment; 1307 } 1308 1309 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, 1310 ReturnAdjustment ReturnAdjustment) { 1311 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1312 assert(ReturnAdjustment.isEmpty() && 1313 "Destructor can't have return adjustment!"); 1314 1315 // Add both the complete destructor and the deleting destructor. 1316 Components.push_back(VTableComponent::MakeCompleteDtor(DD)); 1317 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 1318 } else { 1319 // Add the return adjustment if necessary. 1320 if (!ReturnAdjustment.isEmpty()) 1321 VTableThunks[Components.size()].Return = ReturnAdjustment; 1322 1323 // Add the function. 1324 Components.push_back(VTableComponent::MakeFunction(MD)); 1325 } 1326 } 1327 1328 /// OverridesIndirectMethodInBase - Return whether the given member function 1329 /// overrides any methods in the set of given bases. 1330 /// Unlike OverridesMethodInBase, this checks "overriders of overriders". 1331 /// For example, if we have: 1332 /// 1333 /// struct A { virtual void f(); } 1334 /// struct B : A { virtual void f(); } 1335 /// struct C : B { virtual void f(); } 1336 /// 1337 /// OverridesIndirectMethodInBase will return true if given C::f as the method 1338 /// and { A } as the set of bases. 1339 static bool OverridesIndirectMethodInBases( 1340 const CXXMethodDecl *MD, 1341 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { 1342 if (Bases.count(MD->getParent())) 1343 return true; 1344 1345 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1346 // Check "indirect overriders". 1347 if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) 1348 return true; 1349 } 1350 1351 return false; 1352 } 1353 1354 bool ItaniumVTableBuilder::IsOverriderUsed( 1355 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, 1356 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1357 CharUnits FirstBaseOffsetInLayoutClass) const { 1358 // If the base and the first base in the primary base chain have the same 1359 // offsets, then this overrider will be used. 1360 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) 1361 return true; 1362 1363 // We know now that Base (or a direct or indirect base of it) is a primary 1364 // base in part of the class hierarchy, but not a primary base in the most 1365 // derived class. 1366 1367 // If the overrider is the first base in the primary base chain, we know 1368 // that the overrider will be used. 1369 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) 1370 return true; 1371 1372 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; 1373 1374 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; 1375 PrimaryBases.insert(RD); 1376 1377 // Now traverse the base chain, starting with the first base, until we find 1378 // the base that is no longer a primary base. 1379 while (true) { 1380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1381 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1382 1383 if (!PrimaryBase) 1384 break; 1385 1386 if (Layout.isPrimaryBaseVirtual()) { 1387 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1388 "Primary base should always be at offset 0!"); 1389 1390 const ASTRecordLayout &LayoutClassLayout = 1391 Context.getASTRecordLayout(LayoutClass); 1392 1393 // Now check if this is the primary base that is not a primary base in the 1394 // most derived class. 1395 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1396 FirstBaseOffsetInLayoutClass) { 1397 // We found it, stop walking the chain. 1398 break; 1399 } 1400 } else { 1401 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1402 "Primary base should always be at offset 0!"); 1403 } 1404 1405 if (!PrimaryBases.insert(PrimaryBase)) 1406 llvm_unreachable("Found a duplicate primary base!"); 1407 1408 RD = PrimaryBase; 1409 } 1410 1411 // If the final overrider is an override of one of the primary bases, 1412 // then we know that it will be used. 1413 return OverridesIndirectMethodInBases(Overrider, PrimaryBases); 1414 } 1415 1416 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; 1417 1418 /// FindNearestOverriddenMethod - Given a method, returns the overridden method 1419 /// from the nearest base. Returns null if no method was found. 1420 /// The Bases are expected to be sorted in a base-to-derived order. 1421 static const CXXMethodDecl * 1422 FindNearestOverriddenMethod(const CXXMethodDecl *MD, 1423 BasesSetVectorTy &Bases) { 1424 OverriddenMethodsSetTy OverriddenMethods; 1425 ComputeAllOverriddenMethods(MD, OverriddenMethods); 1426 1427 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) { 1428 // Now check the overridden methods. 1429 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { 1430 // We found our overridden method. 1431 if (OverriddenMD->getParent() == PrimaryBase) 1432 return OverriddenMD; 1433 } 1434 } 1435 1436 return nullptr; 1437 } 1438 1439 void ItaniumVTableBuilder::AddMethods( 1440 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 1441 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1442 CharUnits FirstBaseOffsetInLayoutClass, 1443 PrimaryBasesSetVectorTy &PrimaryBases) { 1444 // Itanium C++ ABI 2.5.2: 1445 // The order of the virtual function pointers in a virtual table is the 1446 // order of declaration of the corresponding member functions in the class. 1447 // 1448 // There is an entry for any virtual function declared in a class, 1449 // whether it is a new function or overrides a base class function, 1450 // unless it overrides a function from the primary base, and conversion 1451 // between their return types does not require an adjustment. 1452 1453 const CXXRecordDecl *RD = Base.getBase(); 1454 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1455 1456 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1457 CharUnits PrimaryBaseOffset; 1458 CharUnits PrimaryBaseOffsetInLayoutClass; 1459 if (Layout.isPrimaryBaseVirtual()) { 1460 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1461 "Primary vbase should have a zero offset!"); 1462 1463 const ASTRecordLayout &MostDerivedClassLayout = 1464 Context.getASTRecordLayout(MostDerivedClass); 1465 1466 PrimaryBaseOffset = 1467 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 1468 1469 const ASTRecordLayout &LayoutClassLayout = 1470 Context.getASTRecordLayout(LayoutClass); 1471 1472 PrimaryBaseOffsetInLayoutClass = 1473 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1474 } else { 1475 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1476 "Primary base should have a zero offset!"); 1477 1478 PrimaryBaseOffset = Base.getBaseOffset(); 1479 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; 1480 } 1481 1482 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), 1483 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, 1484 FirstBaseOffsetInLayoutClass, PrimaryBases); 1485 1486 if (!PrimaryBases.insert(PrimaryBase)) 1487 llvm_unreachable("Found a duplicate primary base!"); 1488 } 1489 1490 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; 1491 NewVirtualFunctionsTy NewVirtualFunctions; 1492 1493 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; 1494 1495 // Now go through all virtual member functions and add them. 1496 for (const auto *MD : RD->methods()) { 1497 if (!ItaniumVTableContext::hasVtableSlot(MD)) 1498 continue; 1499 MD = MD->getCanonicalDecl(); 1500 1501 // Get the final overrider. 1502 FinalOverriders::OverriderInfo Overrider = 1503 Overriders.getOverrider(MD, Base.getBaseOffset()); 1504 1505 // Check if this virtual member function overrides a method in a primary 1506 // base. If this is the case, and the return type doesn't require adjustment 1507 // then we can just use the member function from the primary base. 1508 if (const CXXMethodDecl *OverriddenMD = 1509 FindNearestOverriddenMethod(MD, PrimaryBases)) { 1510 if (ComputeReturnAdjustmentBaseOffset(Context, MD, 1511 OverriddenMD).isEmpty()) { 1512 // Replace the method info of the overridden method with our own 1513 // method. 1514 assert(MethodInfoMap.count(OverriddenMD) && 1515 "Did not find the overridden method!"); 1516 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; 1517 1518 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1519 OverriddenMethodInfo.VTableIndex); 1520 1521 assert(!MethodInfoMap.count(MD) && 1522 "Should not have method info for this method yet!"); 1523 1524 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1525 MethodInfoMap.erase(OverriddenMD); 1526 1527 // If the overridden method exists in a virtual base class or a direct 1528 // or indirect base class of a virtual base class, we need to emit a 1529 // thunk if we ever have a class hierarchy where the base class is not 1530 // a primary base in the complete object. 1531 if (!isBuildingConstructorVTable() && OverriddenMD != MD) { 1532 // Compute the this adjustment. 1533 ThisAdjustment ThisAdjustment = 1534 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, 1535 Overrider); 1536 1537 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && 1538 Overrider.Method->getParent() == MostDerivedClass) { 1539 1540 // There's no return adjustment from OverriddenMD and MD, 1541 // but that doesn't mean there isn't one between MD and 1542 // the final overrider. 1543 BaseOffset ReturnAdjustmentOffset = 1544 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 1545 ReturnAdjustment ReturnAdjustment = 1546 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1547 1548 // This is a virtual thunk for the most derived class, add it. 1549 AddThunk(Overrider.Method, 1550 ThunkInfo(ThisAdjustment, ReturnAdjustment)); 1551 } 1552 } 1553 1554 continue; 1555 } 1556 } 1557 1558 if (MD->isImplicit()) 1559 NewImplicitVirtualFunctions.push_back(MD); 1560 else 1561 NewVirtualFunctions.push_back(MD); 1562 } 1563 1564 std::stable_sort( 1565 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(), 1566 [](const CXXMethodDecl *A, const CXXMethodDecl *B) { 1567 if (A == B) 1568 return false; 1569 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) 1570 return A->isCopyAssignmentOperator(); 1571 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) 1572 return A->isMoveAssignmentOperator(); 1573 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B)) 1574 return isa<CXXDestructorDecl>(A); 1575 assert(A->getOverloadedOperator() == OO_EqualEqual && 1576 B->getOverloadedOperator() == OO_EqualEqual && 1577 "unexpected or duplicate implicit virtual function"); 1578 // We rely on Sema to have declared the operator== members in the 1579 // same order as the corresponding operator<=> members. 1580 return false; 1581 }); 1582 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(), 1583 NewImplicitVirtualFunctions.end()); 1584 1585 for (const CXXMethodDecl *MD : NewVirtualFunctions) { 1586 // Get the final overrider. 1587 FinalOverriders::OverriderInfo Overrider = 1588 Overriders.getOverrider(MD, Base.getBaseOffset()); 1589 1590 // Insert the method info for this method. 1591 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1592 Components.size()); 1593 1594 assert(!MethodInfoMap.count(MD) && 1595 "Should not have method info for this method yet!"); 1596 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1597 1598 // Check if this overrider is going to be used. 1599 const CXXMethodDecl *OverriderMD = Overrider.Method; 1600 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, 1601 FirstBaseInPrimaryBaseChain, 1602 FirstBaseOffsetInLayoutClass)) { 1603 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); 1604 continue; 1605 } 1606 1607 // Check if this overrider needs a return adjustment. 1608 // We don't want to do this for pure virtual member functions. 1609 BaseOffset ReturnAdjustmentOffset; 1610 if (!OverriderMD->isPureVirtual()) { 1611 ReturnAdjustmentOffset = 1612 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); 1613 } 1614 1615 ReturnAdjustment ReturnAdjustment = 1616 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1617 1618 AddMethod(Overrider.Method, ReturnAdjustment); 1619 } 1620 } 1621 1622 void ItaniumVTableBuilder::LayoutVTable() { 1623 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, 1624 CharUnits::Zero()), 1625 /*BaseIsMorallyVirtual=*/false, 1626 MostDerivedClassIsVirtual, 1627 MostDerivedClassOffset); 1628 1629 VisitedVirtualBasesSetTy VBases; 1630 1631 // Determine the primary virtual bases. 1632 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, 1633 VBases); 1634 VBases.clear(); 1635 1636 LayoutVTablesForVirtualBases(MostDerivedClass, VBases); 1637 1638 // -fapple-kext adds an extra entry at end of vtbl. 1639 bool IsAppleKext = Context.getLangOpts().AppleKext; 1640 if (IsAppleKext) 1641 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); 1642 } 1643 1644 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( 1645 BaseSubobject Base, bool BaseIsMorallyVirtual, 1646 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { 1647 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); 1648 1649 unsigned VTableIndex = Components.size(); 1650 VTableIndices.push_back(VTableIndex); 1651 1652 // Add vcall and vbase offsets for this vtable. 1653 VCallAndVBaseOffsetBuilder Builder( 1654 VTables, MostDerivedClass, LayoutClass, &Overriders, Base, 1655 BaseIsVirtualInLayoutClass, OffsetInLayoutClass); 1656 Components.append(Builder.components_begin(), Builder.components_end()); 1657 1658 // Check if we need to add these vcall offsets. 1659 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { 1660 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; 1661 1662 if (VCallOffsets.empty()) 1663 VCallOffsets = Builder.getVCallOffsets(); 1664 } 1665 1666 // If we're laying out the most derived class we want to keep track of the 1667 // virtual base class offset offsets. 1668 if (Base.getBase() == MostDerivedClass) 1669 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); 1670 1671 // Add the offset to top. 1672 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; 1673 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); 1674 1675 // Next, add the RTTI. 1676 if (!Context.getLangOpts().OmitVTableRTTI) 1677 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 1678 1679 uint64_t AddressPoint = Components.size(); 1680 1681 // Now go through all virtual member functions and add them. 1682 PrimaryBasesSetVectorTy PrimaryBases; 1683 AddMethods(Base, OffsetInLayoutClass, 1684 Base.getBase(), OffsetInLayoutClass, 1685 PrimaryBases); 1686 1687 const CXXRecordDecl *RD = Base.getBase(); 1688 if (RD == MostDerivedClass) { 1689 assert(MethodVTableIndices.empty()); 1690 for (const auto &I : MethodInfoMap) { 1691 const CXXMethodDecl *MD = I.first; 1692 const MethodInfo &MI = I.second; 1693 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1694 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] 1695 = MI.VTableIndex - AddressPoint; 1696 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] 1697 = MI.VTableIndex + 1 - AddressPoint; 1698 } else { 1699 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; 1700 } 1701 } 1702 } 1703 1704 // Compute 'this' pointer adjustments. 1705 ComputeThisAdjustments(); 1706 1707 // Add all address points. 1708 while (true) { 1709 AddressPoints.insert( 1710 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass), 1711 VTableLayout::AddressPointLocation{ 1712 unsigned(VTableIndices.size() - 1), 1713 unsigned(AddressPoint - VTableIndex)})); 1714 1715 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1716 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1717 1718 if (!PrimaryBase) 1719 break; 1720 1721 if (Layout.isPrimaryBaseVirtual()) { 1722 // Check if this virtual primary base is a primary base in the layout 1723 // class. If it's not, we don't want to add it. 1724 const ASTRecordLayout &LayoutClassLayout = 1725 Context.getASTRecordLayout(LayoutClass); 1726 1727 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1728 OffsetInLayoutClass) { 1729 // We don't want to add this class (or any of its primary bases). 1730 break; 1731 } 1732 } 1733 1734 RD = PrimaryBase; 1735 } 1736 1737 // Layout secondary vtables. 1738 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); 1739 } 1740 1741 void 1742 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, 1743 bool BaseIsMorallyVirtual, 1744 CharUnits OffsetInLayoutClass) { 1745 // Itanium C++ ABI 2.5.2: 1746 // Following the primary virtual table of a derived class are secondary 1747 // virtual tables for each of its proper base classes, except any primary 1748 // base(s) with which it shares its primary virtual table. 1749 1750 const CXXRecordDecl *RD = Base.getBase(); 1751 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1752 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1753 1754 for (const auto &B : RD->bases()) { 1755 // Ignore virtual bases, we'll emit them later. 1756 if (B.isVirtual()) 1757 continue; 1758 1759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1760 1761 // Ignore bases that don't have a vtable. 1762 if (!BaseDecl->isDynamicClass()) 1763 continue; 1764 1765 if (isBuildingConstructorVTable()) { 1766 // Itanium C++ ABI 2.6.4: 1767 // Some of the base class subobjects may not need construction virtual 1768 // tables, which will therefore not be present in the construction 1769 // virtual table group, even though the subobject virtual tables are 1770 // present in the main virtual table group for the complete object. 1771 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) 1772 continue; 1773 } 1774 1775 // Get the base offset of this base. 1776 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); 1777 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; 1778 1779 CharUnits BaseOffsetInLayoutClass = 1780 OffsetInLayoutClass + RelativeBaseOffset; 1781 1782 // Don't emit a secondary vtable for a primary base. We might however want 1783 // to emit secondary vtables for other bases of this base. 1784 if (BaseDecl == PrimaryBase) { 1785 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), 1786 BaseIsMorallyVirtual, BaseOffsetInLayoutClass); 1787 continue; 1788 } 1789 1790 // Layout the primary vtable (and any secondary vtables) for this base. 1791 LayoutPrimaryAndSecondaryVTables( 1792 BaseSubobject(BaseDecl, BaseOffset), 1793 BaseIsMorallyVirtual, 1794 /*BaseIsVirtualInLayoutClass=*/false, 1795 BaseOffsetInLayoutClass); 1796 } 1797 } 1798 1799 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( 1800 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, 1801 VisitedVirtualBasesSetTy &VBases) { 1802 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1803 1804 // Check if this base has a primary base. 1805 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1806 1807 // Check if it's virtual. 1808 if (Layout.isPrimaryBaseVirtual()) { 1809 bool IsPrimaryVirtualBase = true; 1810 1811 if (isBuildingConstructorVTable()) { 1812 // Check if the base is actually a primary base in the class we use for 1813 // layout. 1814 const ASTRecordLayout &LayoutClassLayout = 1815 Context.getASTRecordLayout(LayoutClass); 1816 1817 CharUnits PrimaryBaseOffsetInLayoutClass = 1818 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1819 1820 // We know that the base is not a primary base in the layout class if 1821 // the base offsets are different. 1822 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) 1823 IsPrimaryVirtualBase = false; 1824 } 1825 1826 if (IsPrimaryVirtualBase) 1827 PrimaryVirtualBases.insert(PrimaryBase); 1828 } 1829 } 1830 1831 // Traverse bases, looking for more primary virtual bases. 1832 for (const auto &B : RD->bases()) { 1833 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1834 1835 CharUnits BaseOffsetInLayoutClass; 1836 1837 if (B.isVirtual()) { 1838 if (!VBases.insert(BaseDecl).second) 1839 continue; 1840 1841 const ASTRecordLayout &LayoutClassLayout = 1842 Context.getASTRecordLayout(LayoutClass); 1843 1844 BaseOffsetInLayoutClass = 1845 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1846 } else { 1847 BaseOffsetInLayoutClass = 1848 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); 1849 } 1850 1851 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); 1852 } 1853 } 1854 1855 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( 1856 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { 1857 // Itanium C++ ABI 2.5.2: 1858 // Then come the virtual base virtual tables, also in inheritance graph 1859 // order, and again excluding primary bases (which share virtual tables with 1860 // the classes for which they are primary). 1861 for (const auto &B : RD->bases()) { 1862 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1863 1864 // Check if this base needs a vtable. (If it's virtual, not a primary base 1865 // of some other class, and we haven't visited it before). 1866 if (B.isVirtual() && BaseDecl->isDynamicClass() && 1867 !PrimaryVirtualBases.count(BaseDecl) && 1868 VBases.insert(BaseDecl).second) { 1869 const ASTRecordLayout &MostDerivedClassLayout = 1870 Context.getASTRecordLayout(MostDerivedClass); 1871 CharUnits BaseOffset = 1872 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 1873 1874 const ASTRecordLayout &LayoutClassLayout = 1875 Context.getASTRecordLayout(LayoutClass); 1876 CharUnits BaseOffsetInLayoutClass = 1877 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1878 1879 LayoutPrimaryAndSecondaryVTables( 1880 BaseSubobject(BaseDecl, BaseOffset), 1881 /*BaseIsMorallyVirtual=*/true, 1882 /*BaseIsVirtualInLayoutClass=*/true, 1883 BaseOffsetInLayoutClass); 1884 } 1885 1886 // We only need to check the base for virtual base vtables if it actually 1887 // has virtual bases. 1888 if (BaseDecl->getNumVBases()) 1889 LayoutVTablesForVirtualBases(BaseDecl, VBases); 1890 } 1891 } 1892 1893 /// dumpLayout - Dump the vtable layout. 1894 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { 1895 // FIXME: write more tests that actually use the dumpLayout output to prevent 1896 // ItaniumVTableBuilder regressions. 1897 1898 if (isBuildingConstructorVTable()) { 1899 Out << "Construction vtable for ('"; 1900 MostDerivedClass->printQualifiedName(Out); 1901 Out << "', "; 1902 Out << MostDerivedClassOffset.getQuantity() << ") in '"; 1903 LayoutClass->printQualifiedName(Out); 1904 } else { 1905 Out << "Vtable for '"; 1906 MostDerivedClass->printQualifiedName(Out); 1907 } 1908 Out << "' (" << Components.size() << " entries).\n"; 1909 1910 // Iterate through the address points and insert them into a new map where 1911 // they are keyed by the index and not the base object. 1912 // Since an address point can be shared by multiple subobjects, we use an 1913 // STL multimap. 1914 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; 1915 for (const auto &AP : AddressPoints) { 1916 const BaseSubobject &Base = AP.first; 1917 uint64_t Index = 1918 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; 1919 1920 AddressPointsByIndex.insert(std::make_pair(Index, Base)); 1921 } 1922 1923 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 1924 uint64_t Index = I; 1925 1926 Out << llvm::format("%4d | ", I); 1927 1928 const VTableComponent &Component = Components[I]; 1929 1930 // Dump the component. 1931 switch (Component.getKind()) { 1932 1933 case VTableComponent::CK_VCallOffset: 1934 Out << "vcall_offset (" 1935 << Component.getVCallOffset().getQuantity() 1936 << ")"; 1937 break; 1938 1939 case VTableComponent::CK_VBaseOffset: 1940 Out << "vbase_offset (" 1941 << Component.getVBaseOffset().getQuantity() 1942 << ")"; 1943 break; 1944 1945 case VTableComponent::CK_OffsetToTop: 1946 Out << "offset_to_top (" 1947 << Component.getOffsetToTop().getQuantity() 1948 << ")"; 1949 break; 1950 1951 case VTableComponent::CK_RTTI: 1952 Component.getRTTIDecl()->printQualifiedName(Out); 1953 Out << " RTTI"; 1954 break; 1955 1956 case VTableComponent::CK_FunctionPointer: { 1957 const CXXMethodDecl *MD = Component.getFunctionDecl(); 1958 1959 std::string Str = PredefinedExpr::ComputeName( 1960 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 1961 Out << Str; 1962 if (MD->isPureVirtual()) 1963 Out << " [pure]"; 1964 1965 if (MD->isDeleted()) 1966 Out << " [deleted]"; 1967 1968 ThunkInfo Thunk = VTableThunks.lookup(I); 1969 if (!Thunk.isEmpty()) { 1970 // If this function pointer has a return adjustment, dump it. 1971 if (!Thunk.Return.isEmpty()) { 1972 Out << "\n [return adjustment: "; 1973 Out << Thunk.Return.NonVirtual << " non-virtual"; 1974 1975 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 1976 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 1977 Out << " vbase offset offset"; 1978 } 1979 1980 Out << ']'; 1981 } 1982 1983 // If this function pointer has a 'this' pointer adjustment, dump it. 1984 if (!Thunk.This.isEmpty()) { 1985 Out << "\n [this adjustment: "; 1986 Out << Thunk.This.NonVirtual << " non-virtual"; 1987 1988 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 1989 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 1990 Out << " vcall offset offset"; 1991 } 1992 1993 Out << ']'; 1994 } 1995 } 1996 1997 break; 1998 } 1999 2000 case VTableComponent::CK_CompleteDtorPointer: 2001 case VTableComponent::CK_DeletingDtorPointer: { 2002 bool IsComplete = 2003 Component.getKind() == VTableComponent::CK_CompleteDtorPointer; 2004 2005 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 2006 2007 DD->printQualifiedName(Out); 2008 if (IsComplete) 2009 Out << "() [complete]"; 2010 else 2011 Out << "() [deleting]"; 2012 2013 if (DD->isPureVirtual()) 2014 Out << " [pure]"; 2015 2016 ThunkInfo Thunk = VTableThunks.lookup(I); 2017 if (!Thunk.isEmpty()) { 2018 // If this destructor has a 'this' pointer adjustment, dump it. 2019 if (!Thunk.This.isEmpty()) { 2020 Out << "\n [this adjustment: "; 2021 Out << Thunk.This.NonVirtual << " non-virtual"; 2022 2023 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2024 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2025 Out << " vcall offset offset"; 2026 } 2027 2028 Out << ']'; 2029 } 2030 } 2031 2032 break; 2033 } 2034 2035 case VTableComponent::CK_UnusedFunctionPointer: { 2036 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); 2037 2038 std::string Str = PredefinedExpr::ComputeName( 2039 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2040 Out << "[unused] " << Str; 2041 if (MD->isPureVirtual()) 2042 Out << " [pure]"; 2043 } 2044 2045 } 2046 2047 Out << '\n'; 2048 2049 // Dump the next address point. 2050 uint64_t NextIndex = Index + 1; 2051 if (AddressPointsByIndex.count(NextIndex)) { 2052 if (AddressPointsByIndex.count(NextIndex) == 1) { 2053 const BaseSubobject &Base = 2054 AddressPointsByIndex.find(NextIndex)->second; 2055 2056 Out << " -- ("; 2057 Base.getBase()->printQualifiedName(Out); 2058 Out << ", " << Base.getBaseOffset().getQuantity(); 2059 Out << ") vtable address --\n"; 2060 } else { 2061 CharUnits BaseOffset = 2062 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); 2063 2064 // We store the class names in a set to get a stable order. 2065 std::set<std::string> ClassNames; 2066 for (const auto &I : 2067 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { 2068 assert(I.second.getBaseOffset() == BaseOffset && 2069 "Invalid base offset!"); 2070 const CXXRecordDecl *RD = I.second.getBase(); 2071 ClassNames.insert(RD->getQualifiedNameAsString()); 2072 } 2073 2074 for (const std::string &Name : ClassNames) { 2075 Out << " -- (" << Name; 2076 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; 2077 } 2078 } 2079 } 2080 } 2081 2082 Out << '\n'; 2083 2084 if (isBuildingConstructorVTable()) 2085 return; 2086 2087 if (MostDerivedClass->getNumVBases()) { 2088 // We store the virtual base class names and their offsets in a map to get 2089 // a stable order. 2090 2091 std::map<std::string, CharUnits> ClassNamesAndOffsets; 2092 for (const auto &I : VBaseOffsetOffsets) { 2093 std::string ClassName = I.first->getQualifiedNameAsString(); 2094 CharUnits OffsetOffset = I.second; 2095 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); 2096 } 2097 2098 Out << "Virtual base offset offsets for '"; 2099 MostDerivedClass->printQualifiedName(Out); 2100 Out << "' ("; 2101 Out << ClassNamesAndOffsets.size(); 2102 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; 2103 2104 for (const auto &I : ClassNamesAndOffsets) 2105 Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; 2106 2107 Out << "\n"; 2108 } 2109 2110 if (!Thunks.empty()) { 2111 // We store the method names in a map to get a stable order. 2112 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 2113 2114 for (const auto &I : Thunks) { 2115 const CXXMethodDecl *MD = I.first; 2116 std::string MethodName = PredefinedExpr::ComputeName( 2117 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2118 2119 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 2120 } 2121 2122 for (const auto &I : MethodNamesAndDecls) { 2123 const std::string &MethodName = I.first; 2124 const CXXMethodDecl *MD = I.second; 2125 2126 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 2127 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 2128 assert(LHS.Method == nullptr && RHS.Method == nullptr); 2129 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 2130 }); 2131 2132 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 2133 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 2134 2135 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 2136 const ThunkInfo &Thunk = ThunksVector[I]; 2137 2138 Out << llvm::format("%4d | ", I); 2139 2140 // If this function pointer has a return pointer adjustment, dump it. 2141 if (!Thunk.Return.isEmpty()) { 2142 Out << "return adjustment: " << Thunk.Return.NonVirtual; 2143 Out << " non-virtual"; 2144 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2145 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2146 Out << " vbase offset offset"; 2147 } 2148 2149 if (!Thunk.This.isEmpty()) 2150 Out << "\n "; 2151 } 2152 2153 // If this function pointer has a 'this' pointer adjustment, dump it. 2154 if (!Thunk.This.isEmpty()) { 2155 Out << "this adjustment: "; 2156 Out << Thunk.This.NonVirtual << " non-virtual"; 2157 2158 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2159 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2160 Out << " vcall offset offset"; 2161 } 2162 } 2163 2164 Out << '\n'; 2165 } 2166 2167 Out << '\n'; 2168 } 2169 } 2170 2171 // Compute the vtable indices for all the member functions. 2172 // Store them in a map keyed by the index so we'll get a sorted table. 2173 std::map<uint64_t, std::string> IndicesMap; 2174 2175 for (const auto *MD : MostDerivedClass->methods()) { 2176 // We only want virtual member functions. 2177 if (!ItaniumVTableContext::hasVtableSlot(MD)) 2178 continue; 2179 MD = MD->getCanonicalDecl(); 2180 2181 std::string MethodName = PredefinedExpr::ComputeName( 2182 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2183 2184 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2185 GlobalDecl GD(DD, Dtor_Complete); 2186 assert(MethodVTableIndices.count(GD)); 2187 uint64_t VTableIndex = MethodVTableIndices[GD]; 2188 IndicesMap[VTableIndex] = MethodName + " [complete]"; 2189 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; 2190 } else { 2191 assert(MethodVTableIndices.count(MD)); 2192 IndicesMap[MethodVTableIndices[MD]] = MethodName; 2193 } 2194 } 2195 2196 // Print the vtable indices for all the member functions. 2197 if (!IndicesMap.empty()) { 2198 Out << "VTable indices for '"; 2199 MostDerivedClass->printQualifiedName(Out); 2200 Out << "' (" << IndicesMap.size() << " entries).\n"; 2201 2202 for (const auto &I : IndicesMap) { 2203 uint64_t VTableIndex = I.first; 2204 const std::string &MethodName = I.second; 2205 2206 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName 2207 << '\n'; 2208 } 2209 } 2210 2211 Out << '\n'; 2212 } 2213 } 2214 2215 static VTableLayout::AddressPointsIndexMapTy 2216 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, 2217 unsigned numVTables) { 2218 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); 2219 2220 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { 2221 const auto &addressPointLoc = it->second; 2222 unsigned vtableIndex = addressPointLoc.VTableIndex; 2223 unsigned addressPoint = addressPointLoc.AddressPointIndex; 2224 if (indexMap[vtableIndex]) { 2225 // Multiple BaseSubobjects can map to the same AddressPointLocation, but 2226 // every vtable index should have a unique address point. 2227 assert(indexMap[vtableIndex] == addressPoint && 2228 "Every vtable index should have a unique address point. Found a " 2229 "vtable that has two different address points."); 2230 } else { 2231 indexMap[vtableIndex] = addressPoint; 2232 } 2233 } 2234 2235 // Note that by this point, not all the address may be initialized if the 2236 // AddressPoints map is empty. This is ok if the map isn't needed. See 2237 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an 2238 // emprt map. 2239 return indexMap; 2240 } 2241 2242 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, 2243 ArrayRef<VTableComponent> VTableComponents, 2244 ArrayRef<VTableThunkTy> VTableThunks, 2245 const AddressPointsMapTy &AddressPoints) 2246 : VTableComponents(VTableComponents), VTableThunks(VTableThunks), 2247 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( 2248 AddressPoints, VTableIndices.size())) { 2249 if (VTableIndices.size() <= 1) 2250 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); 2251 else 2252 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); 2253 2254 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS, 2255 const VTableLayout::VTableThunkTy &RHS) { 2256 assert((LHS.first != RHS.first || LHS.second == RHS.second) && 2257 "Different thunks should have unique indices!"); 2258 return LHS.first < RHS.first; 2259 }); 2260 } 2261 2262 VTableLayout::~VTableLayout() { } 2263 2264 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { 2265 return MD->isVirtual() && !MD->isImmediateFunction(); 2266 } 2267 2268 ItaniumVTableContext::ItaniumVTableContext( 2269 ASTContext &Context, VTableComponentLayout ComponentLayout) 2270 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} 2271 2272 ItaniumVTableContext::~ItaniumVTableContext() {} 2273 2274 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { 2275 GD = GD.getCanonicalDecl(); 2276 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); 2277 if (I != MethodVTableIndices.end()) 2278 return I->second; 2279 2280 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 2281 2282 computeVTableRelatedInformation(RD); 2283 2284 I = MethodVTableIndices.find(GD); 2285 assert(I != MethodVTableIndices.end() && "Did not find index!"); 2286 return I->second; 2287 } 2288 2289 CharUnits 2290 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 2291 const CXXRecordDecl *VBase) { 2292 ClassPairTy ClassPair(RD, VBase); 2293 2294 VirtualBaseClassOffsetOffsetsMapTy::iterator I = 2295 VirtualBaseClassOffsetOffsets.find(ClassPair); 2296 if (I != VirtualBaseClassOffsetOffsets.end()) 2297 return I->second; 2298 2299 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, 2300 BaseSubobject(RD, CharUnits::Zero()), 2301 /*BaseIsVirtual=*/false, 2302 /*OffsetInLayoutClass=*/CharUnits::Zero()); 2303 2304 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2305 // Insert all types. 2306 ClassPairTy ClassPair(RD, I.first); 2307 2308 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2309 } 2310 2311 I = VirtualBaseClassOffsetOffsets.find(ClassPair); 2312 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); 2313 2314 return I->second; 2315 } 2316 2317 static std::unique_ptr<VTableLayout> 2318 CreateVTableLayout(const ItaniumVTableBuilder &Builder) { 2319 SmallVector<VTableLayout::VTableThunkTy, 1> 2320 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 2321 2322 return std::make_unique<VTableLayout>( 2323 Builder.VTableIndices, Builder.vtable_components(), VTableThunks, 2324 Builder.getAddressPoints()); 2325 } 2326 2327 void 2328 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { 2329 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; 2330 2331 // Check if we've computed this information before. 2332 if (Entry) 2333 return; 2334 2335 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), 2336 /*MostDerivedClassIsVirtual=*/false, RD); 2337 Entry = CreateVTableLayout(Builder); 2338 2339 MethodVTableIndices.insert(Builder.vtable_indices_begin(), 2340 Builder.vtable_indices_end()); 2341 2342 // Add the known thunks. 2343 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 2344 2345 // If we don't have the vbase information for this class, insert it. 2346 // getVirtualBaseOffsetOffset will compute it separately without computing 2347 // the rest of the vtable related information. 2348 if (!RD->getNumVBases()) 2349 return; 2350 2351 const CXXRecordDecl *VBase = 2352 RD->vbases_begin()->getType()->getAsCXXRecordDecl(); 2353 2354 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) 2355 return; 2356 2357 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2358 // Insert all types. 2359 ClassPairTy ClassPair(RD, I.first); 2360 2361 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2362 } 2363 } 2364 2365 std::unique_ptr<VTableLayout> 2366 ItaniumVTableContext::createConstructionVTableLayout( 2367 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 2368 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { 2369 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, 2370 MostDerivedClassIsVirtual, LayoutClass); 2371 return CreateVTableLayout(Builder); 2372 } 2373 2374 namespace { 2375 2376 // Vtables in the Microsoft ABI are different from the Itanium ABI. 2377 // 2378 // The main differences are: 2379 // 1. Separate vftable and vbtable. 2380 // 2381 // 2. Each subobject with a vfptr gets its own vftable rather than an address 2382 // point in a single vtable shared between all the subobjects. 2383 // Each vftable is represented by a separate section and virtual calls 2384 // must be done using the vftable which has a slot for the function to be 2385 // called. 2386 // 2387 // 3. Virtual method definitions expect their 'this' parameter to point to the 2388 // first vfptr whose table provides a compatible overridden method. In many 2389 // cases, this permits the original vf-table entry to directly call 2390 // the method instead of passing through a thunk. 2391 // See example before VFTableBuilder::ComputeThisOffset below. 2392 // 2393 // A compatible overridden method is one which does not have a non-trivial 2394 // covariant-return adjustment. 2395 // 2396 // The first vfptr is the one with the lowest offset in the complete-object 2397 // layout of the defining class, and the method definition will subtract 2398 // that constant offset from the parameter value to get the real 'this' 2399 // value. Therefore, if the offset isn't really constant (e.g. if a virtual 2400 // function defined in a virtual base is overridden in a more derived 2401 // virtual base and these bases have a reverse order in the complete 2402 // object), the vf-table may require a this-adjustment thunk. 2403 // 2404 // 4. vftables do not contain new entries for overrides that merely require 2405 // this-adjustment. Together with #3, this keeps vf-tables smaller and 2406 // eliminates the need for this-adjustment thunks in many cases, at the cost 2407 // of often requiring redundant work to adjust the "this" pointer. 2408 // 2409 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. 2410 // Vtordisps are emitted into the class layout if a class has 2411 // a) a user-defined ctor/dtor 2412 // and 2413 // b) a method overriding a method in a virtual base. 2414 // 2415 // To get a better understanding of this code, 2416 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp 2417 2418 class VFTableBuilder { 2419 public: 2420 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 2421 MethodVFTableLocationsTy; 2422 2423 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> 2424 method_locations_range; 2425 2426 private: 2427 /// VTables - Global vtable information. 2428 MicrosoftVTableContext &VTables; 2429 2430 /// Context - The ASTContext which we will use for layout information. 2431 ASTContext &Context; 2432 2433 /// MostDerivedClass - The most derived class for which we're building this 2434 /// vtable. 2435 const CXXRecordDecl *MostDerivedClass; 2436 2437 const ASTRecordLayout &MostDerivedClassLayout; 2438 2439 const VPtrInfo &WhichVFPtr; 2440 2441 /// FinalOverriders - The final overriders of the most derived class. 2442 const FinalOverriders Overriders; 2443 2444 /// Components - The components of the vftable being built. 2445 SmallVector<VTableComponent, 64> Components; 2446 2447 MethodVFTableLocationsTy MethodVFTableLocations; 2448 2449 /// Does this class have an RTTI component? 2450 bool HasRTTIComponent = false; 2451 2452 /// MethodInfo - Contains information about a method in a vtable. 2453 /// (Used for computing 'this' pointer adjustment thunks. 2454 struct MethodInfo { 2455 /// VBTableIndex - The nonzero index in the vbtable that 2456 /// this method's base has, or zero. 2457 const uint64_t VBTableIndex; 2458 2459 /// VFTableIndex - The index in the vftable that this method has. 2460 const uint64_t VFTableIndex; 2461 2462 /// Shadowed - Indicates if this vftable slot is shadowed by 2463 /// a slot for a covariant-return override. If so, it shouldn't be printed 2464 /// or used for vcalls in the most derived class. 2465 bool Shadowed; 2466 2467 /// UsesExtraSlot - Indicates if this vftable slot was created because 2468 /// any of the overridden slots required a return adjusting thunk. 2469 bool UsesExtraSlot; 2470 2471 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, 2472 bool UsesExtraSlot = false) 2473 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), 2474 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} 2475 2476 MethodInfo() 2477 : VBTableIndex(0), VFTableIndex(0), Shadowed(false), 2478 UsesExtraSlot(false) {} 2479 }; 2480 2481 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 2482 2483 /// MethodInfoMap - The information for all methods in the vftable we're 2484 /// currently building. 2485 MethodInfoMapTy MethodInfoMap; 2486 2487 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 2488 2489 /// VTableThunks - The thunks by vftable index in the vftable currently being 2490 /// built. 2491 VTableThunksMapTy VTableThunks; 2492 2493 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 2494 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 2495 2496 /// Thunks - A map that contains all the thunks needed for all methods in the 2497 /// most derived class for which the vftable is currently being built. 2498 ThunksMapTy Thunks; 2499 2500 /// AddThunk - Add a thunk for the given method. 2501 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { 2502 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; 2503 2504 // Check if we have this thunk already. 2505 if (llvm::is_contained(ThunksVector, Thunk)) 2506 return; 2507 2508 ThunksVector.push_back(Thunk); 2509 } 2510 2511 /// ComputeThisOffset - Returns the 'this' argument offset for the given 2512 /// method, relative to the beginning of the MostDerivedClass. 2513 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); 2514 2515 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, 2516 CharUnits ThisOffset, ThisAdjustment &TA); 2517 2518 /// AddMethod - Add a single virtual member function to the vftable 2519 /// components vector. 2520 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { 2521 if (!TI.isEmpty()) { 2522 VTableThunks[Components.size()] = TI; 2523 AddThunk(MD, TI); 2524 } 2525 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2526 assert(TI.Return.isEmpty() && 2527 "Destructor can't have return adjustment!"); 2528 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 2529 } else { 2530 Components.push_back(VTableComponent::MakeFunction(MD)); 2531 } 2532 } 2533 2534 /// AddMethods - Add the methods of this base subobject and the relevant 2535 /// subbases to the vftable we're currently laying out. 2536 void AddMethods(BaseSubobject Base, unsigned BaseDepth, 2537 const CXXRecordDecl *LastVBase, 2538 BasesSetVectorTy &VisitedBases); 2539 2540 void LayoutVFTable() { 2541 // RTTI data goes before all other entries. 2542 if (HasRTTIComponent) 2543 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 2544 2545 BasesSetVectorTy VisitedBases; 2546 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, 2547 VisitedBases); 2548 // Note that it is possible for the vftable to contain only an RTTI 2549 // pointer, if all virtual functions are constewval. 2550 assert(!Components.empty() && "vftable can't be empty"); 2551 2552 assert(MethodVFTableLocations.empty()); 2553 for (const auto &I : MethodInfoMap) { 2554 const CXXMethodDecl *MD = I.first; 2555 const MethodInfo &MI = I.second; 2556 assert(MD == MD->getCanonicalDecl()); 2557 2558 // Skip the methods that the MostDerivedClass didn't override 2559 // and the entries shadowed by return adjusting thunks. 2560 if (MD->getParent() != MostDerivedClass || MI.Shadowed) 2561 continue; 2562 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), 2563 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); 2564 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2565 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; 2566 } else { 2567 MethodVFTableLocations[MD] = Loc; 2568 } 2569 } 2570 } 2571 2572 public: 2573 VFTableBuilder(MicrosoftVTableContext &VTables, 2574 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) 2575 : VTables(VTables), 2576 Context(MostDerivedClass->getASTContext()), 2577 MostDerivedClass(MostDerivedClass), 2578 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), 2579 WhichVFPtr(Which), 2580 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { 2581 // Provide the RTTI component if RTTIData is enabled. If the vftable would 2582 // be available externally, we should not provide the RTTI componenent. It 2583 // is currently impossible to get available externally vftables with either 2584 // dllimport or extern template instantiations, but eventually we may add a 2585 // flag to support additional devirtualization that needs this. 2586 if (Context.getLangOpts().RTTIData) 2587 HasRTTIComponent = true; 2588 2589 LayoutVFTable(); 2590 2591 if (Context.getLangOpts().DumpVTableLayouts) 2592 dumpLayout(llvm::outs()); 2593 } 2594 2595 uint64_t getNumThunks() const { return Thunks.size(); } 2596 2597 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } 2598 2599 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } 2600 2601 method_locations_range vtable_locations() const { 2602 return method_locations_range(MethodVFTableLocations.begin(), 2603 MethodVFTableLocations.end()); 2604 } 2605 2606 ArrayRef<VTableComponent> vtable_components() const { return Components; } 2607 2608 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 2609 return VTableThunks.begin(); 2610 } 2611 2612 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 2613 return VTableThunks.end(); 2614 } 2615 2616 void dumpLayout(raw_ostream &); 2617 }; 2618 2619 } // end namespace 2620 2621 // Let's study one class hierarchy as an example: 2622 // struct A { 2623 // virtual void f(); 2624 // int x; 2625 // }; 2626 // 2627 // struct B : virtual A { 2628 // virtual void f(); 2629 // }; 2630 // 2631 // Record layouts: 2632 // struct A: 2633 // 0 | (A vftable pointer) 2634 // 4 | int x 2635 // 2636 // struct B: 2637 // 0 | (B vbtable pointer) 2638 // 4 | struct A (virtual base) 2639 // 4 | (A vftable pointer) 2640 // 8 | int x 2641 // 2642 // Let's assume we have a pointer to the A part of an object of dynamic type B: 2643 // B b; 2644 // A *a = (A*)&b; 2645 // a->f(); 2646 // 2647 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects 2648 // "this" parameter to point at the A subobject, which is B+4. 2649 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, 2650 // performed as a *static* adjustment. 2651 // 2652 // Interesting thing happens when we alter the relative placement of A and B 2653 // subobjects in a class: 2654 // struct C : virtual B { }; 2655 // 2656 // C c; 2657 // A *a = (A*)&c; 2658 // a->f(); 2659 // 2660 // Respective record layout is: 2661 // 0 | (C vbtable pointer) 2662 // 4 | struct A (virtual base) 2663 // 4 | (A vftable pointer) 2664 // 8 | int x 2665 // 12 | struct B (virtual base) 2666 // 12 | (B vbtable pointer) 2667 // 2668 // The final overrider of f() in class C is still B::f(), so B+4 should be 2669 // passed as "this" to that code. However, "a" points at B-8, so the respective 2670 // vftable entry should hold a thunk that adds 12 to the "this" argument before 2671 // performing a tail call to B::f(). 2672 // 2673 // With this example in mind, we can now calculate the 'this' argument offset 2674 // for the given method, relative to the beginning of the MostDerivedClass. 2675 CharUnits 2676 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { 2677 BasesSetVectorTy Bases; 2678 2679 { 2680 // Find the set of least derived bases that define the given method. 2681 OverriddenMethodsSetTy VisitedOverriddenMethods; 2682 auto InitialOverriddenDefinitionCollector = [&]( 2683 const CXXMethodDecl *OverriddenMD) { 2684 if (OverriddenMD->size_overridden_methods() == 0) 2685 Bases.insert(OverriddenMD->getParent()); 2686 // Don't recurse on this method if we've already collected it. 2687 return VisitedOverriddenMethods.insert(OverriddenMD).second; 2688 }; 2689 visitAllOverriddenMethods(Overrider.Method, 2690 InitialOverriddenDefinitionCollector); 2691 } 2692 2693 // If there are no overrides then 'this' is located 2694 // in the base that defines the method. 2695 if (Bases.size() == 0) 2696 return Overrider.Offset; 2697 2698 CXXBasePaths Paths; 2699 Overrider.Method->getParent()->lookupInBases( 2700 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { 2701 return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); 2702 }, 2703 Paths); 2704 2705 // This will hold the smallest this offset among overridees of MD. 2706 // This implies that an offset of a non-virtual base will dominate an offset 2707 // of a virtual base to potentially reduce the number of thunks required 2708 // in the derived classes that inherit this method. 2709 CharUnits Ret; 2710 bool First = true; 2711 2712 const ASTRecordLayout &OverriderRDLayout = 2713 Context.getASTRecordLayout(Overrider.Method->getParent()); 2714 for (const CXXBasePath &Path : Paths) { 2715 CharUnits ThisOffset = Overrider.Offset; 2716 CharUnits LastVBaseOffset; 2717 2718 // For each path from the overrider to the parents of the overridden 2719 // methods, traverse the path, calculating the this offset in the most 2720 // derived class. 2721 for (const CXXBasePathElement &Element : Path) { 2722 QualType CurTy = Element.Base->getType(); 2723 const CXXRecordDecl *PrevRD = Element.Class, 2724 *CurRD = CurTy->getAsCXXRecordDecl(); 2725 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); 2726 2727 if (Element.Base->isVirtual()) { 2728 // The interesting things begin when you have virtual inheritance. 2729 // The final overrider will use a static adjustment equal to the offset 2730 // of the vbase in the final overrider class. 2731 // For example, if the final overrider is in a vbase B of the most 2732 // derived class and it overrides a method of the B's own vbase A, 2733 // it uses A* as "this". In its prologue, it can cast A* to B* with 2734 // a static offset. This offset is used regardless of the actual 2735 // offset of A from B in the most derived class, requiring an 2736 // this-adjusting thunk in the vftable if A and B are laid out 2737 // differently in the most derived class. 2738 LastVBaseOffset = ThisOffset = 2739 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); 2740 } else { 2741 ThisOffset += Layout.getBaseClassOffset(CurRD); 2742 } 2743 } 2744 2745 if (isa<CXXDestructorDecl>(Overrider.Method)) { 2746 if (LastVBaseOffset.isZero()) { 2747 // If a "Base" class has at least one non-virtual base with a virtual 2748 // destructor, the "Base" virtual destructor will take the address 2749 // of the "Base" subobject as the "this" argument. 2750 ThisOffset = Overrider.Offset; 2751 } else { 2752 // A virtual destructor of a virtual base takes the address of the 2753 // virtual base subobject as the "this" argument. 2754 ThisOffset = LastVBaseOffset; 2755 } 2756 } 2757 2758 if (Ret > ThisOffset || First) { 2759 First = false; 2760 Ret = ThisOffset; 2761 } 2762 } 2763 2764 assert(!First && "Method not found in the given subobject?"); 2765 return Ret; 2766 } 2767 2768 // Things are getting even more complex when the "this" adjustment has to 2769 // use a dynamic offset instead of a static one, or even two dynamic offsets. 2770 // This is sometimes required when a virtual call happens in the middle of 2771 // a non-most-derived class construction or destruction. 2772 // 2773 // Let's take a look at the following example: 2774 // struct A { 2775 // virtual void f(); 2776 // }; 2777 // 2778 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. 2779 // 2780 // struct B : virtual A { 2781 // virtual void f(); 2782 // B() { 2783 // foo(this); 2784 // } 2785 // }; 2786 // 2787 // struct C : virtual B { 2788 // virtual void f(); 2789 // }; 2790 // 2791 // Record layouts for these classes are: 2792 // struct A 2793 // 0 | (A vftable pointer) 2794 // 2795 // struct B 2796 // 0 | (B vbtable pointer) 2797 // 4 | (vtordisp for vbase A) 2798 // 8 | struct A (virtual base) 2799 // 8 | (A vftable pointer) 2800 // 2801 // struct C 2802 // 0 | (C vbtable pointer) 2803 // 4 | (vtordisp for vbase A) 2804 // 8 | struct A (virtual base) // A precedes B! 2805 // 8 | (A vftable pointer) 2806 // 12 | struct B (virtual base) 2807 // 12 | (B vbtable pointer) 2808 // 2809 // When one creates an object of type C, the C constructor: 2810 // - initializes all the vbptrs, then 2811 // - calls the A subobject constructor 2812 // (initializes A's vfptr with an address of A vftable), then 2813 // - calls the B subobject constructor 2814 // (initializes A's vfptr with an address of B vftable and vtordisp for A), 2815 // that in turn calls foo(), then 2816 // - initializes A's vfptr with an address of C vftable and zeroes out the 2817 // vtordisp 2818 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable 2819 // without vtordisp thunks? 2820 // FIXME: how are vtordisp handled in the presence of nooverride/final? 2821 // 2822 // When foo() is called, an object with a layout of class C has a vftable 2823 // referencing B::f() that assumes a B layout, so the "this" adjustments are 2824 // incorrect, unless an extra adjustment is done. This adjustment is called 2825 // "vtordisp adjustment". Vtordisp basically holds the difference between the 2826 // actual location of a vbase in the layout class and the location assumed by 2827 // the vftable of the class being constructed/destructed. Vtordisp is only 2828 // needed if "this" escapes a 2829 // structor (or we can't prove otherwise). 2830 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an 2831 // estimation of a dynamic adjustment] 2832 // 2833 // foo() gets a pointer to the A vbase and doesn't know anything about B or C, 2834 // so it just passes that pointer as "this" in a virtual call. 2835 // If there was no vtordisp, that would just dispatch to B::f(). 2836 // However, B::f() assumes B+8 is passed as "this", 2837 // yet the pointer foo() passes along is B-4 (i.e. C+8). 2838 // An extra adjustment is needed, so we emit a thunk into the B vftable. 2839 // This vtordisp thunk subtracts the value of vtordisp 2840 // from the "this" argument (-12) before making a tailcall to B::f(). 2841 // 2842 // Let's consider an even more complex example: 2843 // struct D : virtual B, virtual C { 2844 // D() { 2845 // foo(this); 2846 // } 2847 // }; 2848 // 2849 // struct D 2850 // 0 | (D vbtable pointer) 2851 // 4 | (vtordisp for vbase A) 2852 // 8 | struct A (virtual base) // A precedes both B and C! 2853 // 8 | (A vftable pointer) 2854 // 12 | struct B (virtual base) // B precedes C! 2855 // 12 | (B vbtable pointer) 2856 // 16 | struct C (virtual base) 2857 // 16 | (C vbtable pointer) 2858 // 2859 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall 2860 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() 2861 // passes along A, which is C-8. The A vtordisp holds 2862 // "D.vbptr[index_of_A] - offset_of_A_in_D" 2863 // and we statically know offset_of_A_in_D, so can get a pointer to D. 2864 // When we know it, we can make an extra vbtable lookup to locate the C vbase 2865 // and one extra static adjustment to calculate the expected value of C+8. 2866 void VFTableBuilder::CalculateVtordispAdjustment( 2867 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, 2868 ThisAdjustment &TA) { 2869 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = 2870 MostDerivedClassLayout.getVBaseOffsetsMap(); 2871 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = 2872 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); 2873 assert(VBaseMapEntry != VBaseMap.end()); 2874 2875 // If there's no vtordisp or the final overrider is defined in the same vbase 2876 // as the initial declaration, we don't need any vtordisp adjustment. 2877 if (!VBaseMapEntry->second.hasVtorDisp() || 2878 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) 2879 return; 2880 2881 // OK, now we know we need to use a vtordisp thunk. 2882 // The implicit vtordisp field is located right before the vbase. 2883 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; 2884 TA.Virtual.Microsoft.VtordispOffset = 2885 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; 2886 2887 // A simple vtordisp thunk will suffice if the final overrider is defined 2888 // in either the most derived class or its non-virtual base. 2889 if (Overrider.Method->getParent() == MostDerivedClass || 2890 !Overrider.VirtualBase) 2891 return; 2892 2893 // Otherwise, we need to do use the dynamic offset of the final overrider 2894 // in order to get "this" adjustment right. 2895 TA.Virtual.Microsoft.VBPtrOffset = 2896 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - 2897 MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); 2898 TA.Virtual.Microsoft.VBOffsetOffset = 2899 Context.getTypeSizeInChars(Context.IntTy).getQuantity() * 2900 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); 2901 2902 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); 2903 } 2904 2905 static void GroupNewVirtualOverloads( 2906 const CXXRecordDecl *RD, 2907 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { 2908 // Put the virtual methods into VirtualMethods in the proper order: 2909 // 1) Group overloads by declaration name. New groups are added to the 2910 // vftable in the order of their first declarations in this class 2911 // (including overrides, non-virtual methods and any other named decl that 2912 // might be nested within the class). 2913 // 2) In each group, new overloads appear in the reverse order of declaration. 2914 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; 2915 SmallVector<MethodGroup, 10> Groups; 2916 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; 2917 VisitedGroupIndicesTy VisitedGroupIndices; 2918 for (const auto *D : RD->decls()) { 2919 const auto *ND = dyn_cast<NamedDecl>(D); 2920 if (!ND) 2921 continue; 2922 VisitedGroupIndicesTy::iterator J; 2923 bool Inserted; 2924 std::tie(J, Inserted) = VisitedGroupIndices.insert( 2925 std::make_pair(ND->getDeclName(), Groups.size())); 2926 if (Inserted) 2927 Groups.push_back(MethodGroup()); 2928 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 2929 if (MicrosoftVTableContext::hasVtableSlot(MD)) 2930 Groups[J->second].push_back(MD->getCanonicalDecl()); 2931 } 2932 2933 for (const MethodGroup &Group : Groups) 2934 VirtualMethods.append(Group.rbegin(), Group.rend()); 2935 } 2936 2937 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { 2938 for (const auto &B : RD->bases()) { 2939 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) 2940 return true; 2941 } 2942 return false; 2943 } 2944 2945 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, 2946 const CXXRecordDecl *LastVBase, 2947 BasesSetVectorTy &VisitedBases) { 2948 const CXXRecordDecl *RD = Base.getBase(); 2949 if (!RD->isPolymorphic()) 2950 return; 2951 2952 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2953 2954 // See if this class expands a vftable of the base we look at, which is either 2955 // the one defined by the vfptr base path or the primary base of the current 2956 // class. 2957 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; 2958 CharUnits NextBaseOffset; 2959 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { 2960 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; 2961 if (isDirectVBase(NextBase, RD)) { 2962 NextLastVBase = NextBase; 2963 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); 2964 } else { 2965 NextBaseOffset = 2966 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); 2967 } 2968 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 2969 assert(!Layout.isPrimaryBaseVirtual() && 2970 "No primary virtual bases in this ABI"); 2971 NextBase = PrimaryBase; 2972 NextBaseOffset = Base.getBaseOffset(); 2973 } 2974 2975 if (NextBase) { 2976 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, 2977 NextLastVBase, VisitedBases); 2978 if (!VisitedBases.insert(NextBase)) 2979 llvm_unreachable("Found a duplicate primary base!"); 2980 } 2981 2982 SmallVector<const CXXMethodDecl*, 10> VirtualMethods; 2983 // Put virtual methods in the proper order. 2984 GroupNewVirtualOverloads(RD, VirtualMethods); 2985 2986 // Now go through all virtual member functions and add them to the current 2987 // vftable. This is done by 2988 // - replacing overridden methods in their existing slots, as long as they 2989 // don't require return adjustment; calculating This adjustment if needed. 2990 // - adding new slots for methods of the current base not present in any 2991 // sub-bases; 2992 // - adding new slots for methods that require Return adjustment. 2993 // We keep track of the methods visited in the sub-bases in MethodInfoMap. 2994 for (const CXXMethodDecl *MD : VirtualMethods) { 2995 FinalOverriders::OverriderInfo FinalOverrider = 2996 Overriders.getOverrider(MD, Base.getBaseOffset()); 2997 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; 2998 const CXXMethodDecl *OverriddenMD = 2999 FindNearestOverriddenMethod(MD, VisitedBases); 3000 3001 ThisAdjustment ThisAdjustmentOffset; 3002 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; 3003 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); 3004 ThisAdjustmentOffset.NonVirtual = 3005 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); 3006 if ((OverriddenMD || FinalOverriderMD != MD) && 3007 WhichVFPtr.getVBaseWithVPtr()) 3008 CalculateVtordispAdjustment(FinalOverrider, ThisOffset, 3009 ThisAdjustmentOffset); 3010 3011 unsigned VBIndex = 3012 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; 3013 3014 if (OverriddenMD) { 3015 // If MD overrides anything in this vftable, we need to update the 3016 // entries. 3017 MethodInfoMapTy::iterator OverriddenMDIterator = 3018 MethodInfoMap.find(OverriddenMD); 3019 3020 // If the overridden method went to a different vftable, skip it. 3021 if (OverriddenMDIterator == MethodInfoMap.end()) 3022 continue; 3023 3024 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; 3025 3026 VBIndex = OverriddenMethodInfo.VBTableIndex; 3027 3028 // Let's check if the overrider requires any return adjustments. 3029 // We must create a new slot if the MD's return type is not trivially 3030 // convertible to the OverriddenMD's one. 3031 // Once a chain of method overrides adds a return adjusting vftable slot, 3032 // all subsequent overrides will also use an extra method slot. 3033 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( 3034 Context, MD, OverriddenMD).isEmpty() || 3035 OverriddenMethodInfo.UsesExtraSlot; 3036 3037 if (!ReturnAdjustingThunk) { 3038 // No return adjustment needed - just replace the overridden method info 3039 // with the current info. 3040 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); 3041 MethodInfoMap.erase(OverriddenMDIterator); 3042 3043 assert(!MethodInfoMap.count(MD) && 3044 "Should not have method info for this method yet!"); 3045 MethodInfoMap.insert(std::make_pair(MD, MI)); 3046 continue; 3047 } 3048 3049 // In case we need a return adjustment, we'll add a new slot for 3050 // the overrider. Mark the overridden method as shadowed by the new slot. 3051 OverriddenMethodInfo.Shadowed = true; 3052 3053 // Force a special name mangling for a return-adjusting thunk 3054 // unless the method is the final overrider without this adjustment. 3055 ForceReturnAdjustmentMangling = 3056 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); 3057 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || 3058 MD->size_overridden_methods()) { 3059 // Skip methods that don't belong to the vftable of the current class, 3060 // e.g. each method that wasn't seen in any of the visited sub-bases 3061 // but overrides multiple methods of other sub-bases. 3062 continue; 3063 } 3064 3065 // If we got here, MD is a method not seen in any of the sub-bases or 3066 // it requires return adjustment. Insert the method info for this method. 3067 MethodInfo MI(VBIndex, 3068 HasRTTIComponent ? Components.size() - 1 : Components.size(), 3069 ReturnAdjustingThunk); 3070 3071 assert(!MethodInfoMap.count(MD) && 3072 "Should not have method info for this method yet!"); 3073 MethodInfoMap.insert(std::make_pair(MD, MI)); 3074 3075 // Check if this overrider needs a return adjustment. 3076 // We don't want to do this for pure virtual member functions. 3077 BaseOffset ReturnAdjustmentOffset; 3078 ReturnAdjustment ReturnAdjustment; 3079 if (!FinalOverriderMD->isPureVirtual()) { 3080 ReturnAdjustmentOffset = 3081 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); 3082 } 3083 if (!ReturnAdjustmentOffset.isEmpty()) { 3084 ForceReturnAdjustmentMangling = true; 3085 ReturnAdjustment.NonVirtual = 3086 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); 3087 if (ReturnAdjustmentOffset.VirtualBase) { 3088 const ASTRecordLayout &DerivedLayout = 3089 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); 3090 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = 3091 DerivedLayout.getVBPtrOffset().getQuantity(); 3092 ReturnAdjustment.Virtual.Microsoft.VBIndex = 3093 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, 3094 ReturnAdjustmentOffset.VirtualBase); 3095 } 3096 } 3097 3098 AddMethod(FinalOverriderMD, 3099 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, 3100 ForceReturnAdjustmentMangling ? MD : nullptr)); 3101 } 3102 } 3103 3104 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { 3105 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) { 3106 Out << "'"; 3107 Elem->printQualifiedName(Out); 3108 Out << "' in "; 3109 } 3110 } 3111 3112 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, 3113 bool ContinueFirstLine) { 3114 const ReturnAdjustment &R = TI.Return; 3115 bool Multiline = false; 3116 const char *LinePrefix = "\n "; 3117 if (!R.isEmpty() || TI.Method) { 3118 if (!ContinueFirstLine) 3119 Out << LinePrefix; 3120 Out << "[return adjustment (to type '" 3121 << TI.Method->getReturnType().getCanonicalType() << "'): "; 3122 if (R.Virtual.Microsoft.VBPtrOffset) 3123 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; 3124 if (R.Virtual.Microsoft.VBIndex) 3125 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; 3126 Out << R.NonVirtual << " non-virtual]"; 3127 Multiline = true; 3128 } 3129 3130 const ThisAdjustment &T = TI.This; 3131 if (!T.isEmpty()) { 3132 if (Multiline || !ContinueFirstLine) 3133 Out << LinePrefix; 3134 Out << "[this adjustment: "; 3135 if (!TI.This.Virtual.isEmpty()) { 3136 assert(T.Virtual.Microsoft.VtordispOffset < 0); 3137 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; 3138 if (T.Virtual.Microsoft.VBPtrOffset) { 3139 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset 3140 << " to the left,"; 3141 assert(T.Virtual.Microsoft.VBOffsetOffset > 0); 3142 Out << LinePrefix << " vboffset at " 3143 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; 3144 } 3145 } 3146 Out << T.NonVirtual << " non-virtual]"; 3147 } 3148 } 3149 3150 void VFTableBuilder::dumpLayout(raw_ostream &Out) { 3151 Out << "VFTable for "; 3152 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out); 3153 Out << "'"; 3154 MostDerivedClass->printQualifiedName(Out); 3155 Out << "' (" << Components.size() 3156 << (Components.size() == 1 ? " entry" : " entries") << ").\n"; 3157 3158 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 3159 Out << llvm::format("%4d | ", I); 3160 3161 const VTableComponent &Component = Components[I]; 3162 3163 // Dump the component. 3164 switch (Component.getKind()) { 3165 case VTableComponent::CK_RTTI: 3166 Component.getRTTIDecl()->printQualifiedName(Out); 3167 Out << " RTTI"; 3168 break; 3169 3170 case VTableComponent::CK_FunctionPointer: { 3171 const CXXMethodDecl *MD = Component.getFunctionDecl(); 3172 3173 // FIXME: Figure out how to print the real thunk type, since they can 3174 // differ in the return type. 3175 std::string Str = PredefinedExpr::ComputeName( 3176 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 3177 Out << Str; 3178 if (MD->isPureVirtual()) 3179 Out << " [pure]"; 3180 3181 if (MD->isDeleted()) 3182 Out << " [deleted]"; 3183 3184 ThunkInfo Thunk = VTableThunks.lookup(I); 3185 if (!Thunk.isEmpty()) 3186 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3187 3188 break; 3189 } 3190 3191 case VTableComponent::CK_DeletingDtorPointer: { 3192 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 3193 3194 DD->printQualifiedName(Out); 3195 Out << "() [scalar deleting]"; 3196 3197 if (DD->isPureVirtual()) 3198 Out << " [pure]"; 3199 3200 ThunkInfo Thunk = VTableThunks.lookup(I); 3201 if (!Thunk.isEmpty()) { 3202 assert(Thunk.Return.isEmpty() && 3203 "No return adjustment needed for destructors!"); 3204 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3205 } 3206 3207 break; 3208 } 3209 3210 default: 3211 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3212 unsigned DiagID = Diags.getCustomDiagID( 3213 DiagnosticsEngine::Error, 3214 "Unexpected vftable component type %0 for component number %1"); 3215 Diags.Report(MostDerivedClass->getLocation(), DiagID) 3216 << I << Component.getKind(); 3217 } 3218 3219 Out << '\n'; 3220 } 3221 3222 Out << '\n'; 3223 3224 if (!Thunks.empty()) { 3225 // We store the method names in a map to get a stable order. 3226 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 3227 3228 for (const auto &I : Thunks) { 3229 const CXXMethodDecl *MD = I.first; 3230 std::string MethodName = PredefinedExpr::ComputeName( 3231 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 3232 3233 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 3234 } 3235 3236 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { 3237 const std::string &MethodName = MethodNameAndDecl.first; 3238 const CXXMethodDecl *MD = MethodNameAndDecl.second; 3239 3240 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 3241 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS, 3242 const ThunkInfo &RHS) { 3243 // Keep different thunks with the same adjustments in the order they 3244 // were put into the vector. 3245 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 3246 }); 3247 3248 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 3249 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 3250 3251 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 3252 const ThunkInfo &Thunk = ThunksVector[I]; 3253 3254 Out << llvm::format("%4d | ", I); 3255 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); 3256 Out << '\n'; 3257 } 3258 3259 Out << '\n'; 3260 } 3261 } 3262 3263 Out.flush(); 3264 } 3265 3266 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, 3267 ArrayRef<const CXXRecordDecl *> B) { 3268 for (const CXXRecordDecl *Decl : B) { 3269 if (A.count(Decl)) 3270 return true; 3271 } 3272 return false; 3273 } 3274 3275 static bool rebucketPaths(VPtrInfoVector &Paths); 3276 3277 /// Produces MSVC-compatible vbtable data. The symbols produced by this 3278 /// algorithm match those produced by MSVC 2012 and newer, which is different 3279 /// from MSVC 2010. 3280 /// 3281 /// MSVC 2012 appears to minimize the vbtable names using the following 3282 /// algorithm. First, walk the class hierarchy in the usual order, depth first, 3283 /// left to right, to find all of the subobjects which contain a vbptr field. 3284 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each 3285 /// record with a vbptr creates an initially empty path. 3286 /// 3287 /// To combine paths from child nodes, the paths are compared to check for 3288 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of 3289 /// components in the same order. Each group of ambiguous paths is extended by 3290 /// appending the class of the base from which it came. If the current class 3291 /// node produced an ambiguous path, its path is extended with the current class. 3292 /// After extending paths, MSVC again checks for ambiguity, and extends any 3293 /// ambiguous path which wasn't already extended. Because each node yields an 3294 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once 3295 /// to produce an unambiguous set of paths. 3296 /// 3297 /// TODO: Presumably vftables use the same algorithm. 3298 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, 3299 const CXXRecordDecl *RD, 3300 VPtrInfoVector &Paths) { 3301 assert(Paths.empty()); 3302 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3303 3304 // Base case: this subobject has its own vptr. 3305 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) 3306 Paths.push_back(std::make_unique<VPtrInfo>(RD)); 3307 3308 // Recursive case: get all the vbtables from our bases and remove anything 3309 // that shares a virtual base. 3310 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; 3311 for (const auto &B : RD->bases()) { 3312 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 3313 if (B.isVirtual() && VBasesSeen.count(Base)) 3314 continue; 3315 3316 if (!Base->isDynamicClass()) 3317 continue; 3318 3319 const VPtrInfoVector &BasePaths = 3320 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); 3321 3322 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { 3323 // Don't include the path if it goes through a virtual base that we've 3324 // already included. 3325 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) 3326 continue; 3327 3328 // Copy the path and adjust it as necessary. 3329 auto P = std::make_unique<VPtrInfo>(*BaseInfo); 3330 3331 // We mangle Base into the path if the path would've been ambiguous and it 3332 // wasn't already extended with Base. 3333 if (P->MangledPath.empty() || P->MangledPath.back() != Base) 3334 P->NextBaseToMangle = Base; 3335 3336 // Keep track of which vtable the derived class is going to extend with 3337 // new methods or bases. We append to either the vftable of our primary 3338 // base, or the first non-virtual base that has a vbtable. 3339 if (P->ObjectWithVPtr == Base && 3340 Base == (ForVBTables ? Layout.getBaseSharingVBPtr() 3341 : Layout.getPrimaryBase())) 3342 P->ObjectWithVPtr = RD; 3343 3344 // Keep track of the full adjustment from the MDC to this vtable. The 3345 // adjustment is captured by an optional vbase and a non-virtual offset. 3346 if (B.isVirtual()) 3347 P->ContainingVBases.push_back(Base); 3348 else if (P->ContainingVBases.empty()) 3349 P->NonVirtualOffset += Layout.getBaseClassOffset(Base); 3350 3351 // Update the full offset in the MDC. 3352 P->FullOffsetInMDC = P->NonVirtualOffset; 3353 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) 3354 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); 3355 3356 Paths.push_back(std::move(P)); 3357 } 3358 3359 if (B.isVirtual()) 3360 VBasesSeen.insert(Base); 3361 3362 // After visiting any direct base, we've transitively visited all of its 3363 // morally virtual bases. 3364 for (const auto &VB : Base->vbases()) 3365 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); 3366 } 3367 3368 // Sort the paths into buckets, and if any of them are ambiguous, extend all 3369 // paths in ambiguous buckets. 3370 bool Changed = true; 3371 while (Changed) 3372 Changed = rebucketPaths(Paths); 3373 } 3374 3375 static bool extendPath(VPtrInfo &P) { 3376 if (P.NextBaseToMangle) { 3377 P.MangledPath.push_back(P.NextBaseToMangle); 3378 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. 3379 return true; 3380 } 3381 return false; 3382 } 3383 3384 static bool rebucketPaths(VPtrInfoVector &Paths) { 3385 // What we're essentially doing here is bucketing together ambiguous paths. 3386 // Any bucket with more than one path in it gets extended by NextBase, which 3387 // is usually the direct base of the inherited the vbptr. This code uses a 3388 // sorted vector to implement a multiset to form the buckets. Note that the 3389 // ordering is based on pointers, but it doesn't change our output order. The 3390 // current algorithm is designed to match MSVC 2012's names. 3391 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted( 3392 llvm::make_pointee_range(Paths)); 3393 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) { 3394 return LHS.MangledPath < RHS.MangledPath; 3395 }); 3396 bool Changed = false; 3397 for (size_t I = 0, E = PathsSorted.size(); I != E;) { 3398 // Scan forward to find the end of the bucket. 3399 size_t BucketStart = I; 3400 do { 3401 ++I; 3402 } while (I != E && 3403 PathsSorted[BucketStart].get().MangledPath == 3404 PathsSorted[I].get().MangledPath); 3405 3406 // If this bucket has multiple paths, extend them all. 3407 if (I - BucketStart > 1) { 3408 for (size_t II = BucketStart; II != I; ++II) 3409 Changed |= extendPath(PathsSorted[II]); 3410 assert(Changed && "no paths were extended to fix ambiguity"); 3411 } 3412 } 3413 return Changed; 3414 } 3415 3416 MicrosoftVTableContext::~MicrosoftVTableContext() {} 3417 3418 namespace { 3419 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, 3420 llvm::DenseSet<BaseSubobject>> FullPathTy; 3421 } 3422 3423 // This recursive function finds all paths from a subobject centered at 3424 // (RD, Offset) to the subobject located at IntroducingObject. 3425 static void findPathsToSubobject(ASTContext &Context, 3426 const ASTRecordLayout &MostDerivedLayout, 3427 const CXXRecordDecl *RD, CharUnits Offset, 3428 BaseSubobject IntroducingObject, 3429 FullPathTy &FullPath, 3430 std::list<FullPathTy> &Paths) { 3431 if (BaseSubobject(RD, Offset) == IntroducingObject) { 3432 Paths.push_back(FullPath); 3433 return; 3434 } 3435 3436 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3437 3438 for (const CXXBaseSpecifier &BS : RD->bases()) { 3439 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); 3440 CharUnits NewOffset = BS.isVirtual() 3441 ? MostDerivedLayout.getVBaseClassOffset(Base) 3442 : Offset + Layout.getBaseClassOffset(Base); 3443 FullPath.insert(BaseSubobject(Base, NewOffset)); 3444 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, 3445 IntroducingObject, FullPath, Paths); 3446 FullPath.pop_back(); 3447 } 3448 } 3449 3450 // Return the paths which are not subsets of other paths. 3451 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { 3452 FullPaths.remove_if([&](const FullPathTy &SpecificPath) { 3453 for (const FullPathTy &OtherPath : FullPaths) { 3454 if (&SpecificPath == &OtherPath) 3455 continue; 3456 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) { 3457 return OtherPath.contains(BSO); 3458 })) { 3459 return true; 3460 } 3461 } 3462 return false; 3463 }); 3464 } 3465 3466 static CharUnits getOffsetOfFullPath(ASTContext &Context, 3467 const CXXRecordDecl *RD, 3468 const FullPathTy &FullPath) { 3469 const ASTRecordLayout &MostDerivedLayout = 3470 Context.getASTRecordLayout(RD); 3471 CharUnits Offset = CharUnits::fromQuantity(-1); 3472 for (const BaseSubobject &BSO : FullPath) { 3473 const CXXRecordDecl *Base = BSO.getBase(); 3474 // The first entry in the path is always the most derived record, skip it. 3475 if (Base == RD) { 3476 assert(Offset.getQuantity() == -1); 3477 Offset = CharUnits::Zero(); 3478 continue; 3479 } 3480 assert(Offset.getQuantity() != -1); 3481 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3482 // While we know which base has to be traversed, we don't know if that base 3483 // was a virtual base. 3484 const CXXBaseSpecifier *BaseBS = std::find_if( 3485 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { 3486 return BS.getType()->getAsCXXRecordDecl() == Base; 3487 }); 3488 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) 3489 : Offset + Layout.getBaseClassOffset(Base); 3490 RD = Base; 3491 } 3492 return Offset; 3493 } 3494 3495 // We want to select the path which introduces the most covariant overrides. If 3496 // two paths introduce overrides which the other path doesn't contain, issue a 3497 // diagnostic. 3498 static const FullPathTy *selectBestPath(ASTContext &Context, 3499 const CXXRecordDecl *RD, 3500 const VPtrInfo &Info, 3501 std::list<FullPathTy> &FullPaths) { 3502 // Handle some easy cases first. 3503 if (FullPaths.empty()) 3504 return nullptr; 3505 if (FullPaths.size() == 1) 3506 return &FullPaths.front(); 3507 3508 const FullPathTy *BestPath = nullptr; 3509 typedef std::set<const CXXMethodDecl *> OverriderSetTy; 3510 OverriderSetTy LastOverrides; 3511 for (const FullPathTy &SpecificPath : FullPaths) { 3512 assert(!SpecificPath.empty()); 3513 OverriderSetTy CurrentOverrides; 3514 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); 3515 // Find the distance from the start of the path to the subobject with the 3516 // VPtr. 3517 CharUnits BaseOffset = 3518 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); 3519 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); 3520 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { 3521 if (!MicrosoftVTableContext::hasVtableSlot(MD)) 3522 continue; 3523 FinalOverriders::OverriderInfo OI = 3524 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); 3525 const CXXMethodDecl *OverridingMethod = OI.Method; 3526 // Only overriders which have a return adjustment introduce problematic 3527 // thunks. 3528 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) 3529 .isEmpty()) 3530 continue; 3531 // It's possible that the overrider isn't in this path. If so, skip it 3532 // because this path didn't introduce it. 3533 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); 3534 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) { 3535 return BSO.getBase() == OverridingParent; 3536 })) 3537 continue; 3538 CurrentOverrides.insert(OverridingMethod); 3539 } 3540 OverriderSetTy NewOverrides = 3541 llvm::set_difference(CurrentOverrides, LastOverrides); 3542 if (NewOverrides.empty()) 3543 continue; 3544 OverriderSetTy MissingOverrides = 3545 llvm::set_difference(LastOverrides, CurrentOverrides); 3546 if (MissingOverrides.empty()) { 3547 // This path is a strict improvement over the last path, let's use it. 3548 BestPath = &SpecificPath; 3549 std::swap(CurrentOverrides, LastOverrides); 3550 } else { 3551 // This path introduces an overrider with a conflicting covariant thunk. 3552 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3553 const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); 3554 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); 3555 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) 3556 << RD; 3557 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) 3558 << CovariantMD; 3559 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) 3560 << ConflictMD; 3561 } 3562 } 3563 // Go with the path that introduced the most covariant overrides. If there is 3564 // no such path, pick the first path. 3565 return BestPath ? BestPath : &FullPaths.front(); 3566 } 3567 3568 static void computeFullPathsForVFTables(ASTContext &Context, 3569 const CXXRecordDecl *RD, 3570 VPtrInfoVector &Paths) { 3571 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); 3572 FullPathTy FullPath; 3573 std::list<FullPathTy> FullPaths; 3574 for (const std::unique_ptr<VPtrInfo>& Info : Paths) { 3575 findPathsToSubobject( 3576 Context, MostDerivedLayout, RD, CharUnits::Zero(), 3577 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, 3578 FullPaths); 3579 FullPath.clear(); 3580 removeRedundantPaths(FullPaths); 3581 Info->PathToIntroducingObject.clear(); 3582 if (const FullPathTy *BestPath = 3583 selectBestPath(Context, RD, *Info, FullPaths)) 3584 for (const BaseSubobject &BSO : *BestPath) 3585 Info->PathToIntroducingObject.push_back(BSO.getBase()); 3586 FullPaths.clear(); 3587 } 3588 } 3589 3590 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, 3591 const MethodVFTableLocation &LHS, 3592 const MethodVFTableLocation &RHS) { 3593 CharUnits L = LHS.VFPtrOffset; 3594 CharUnits R = RHS.VFPtrOffset; 3595 if (LHS.VBase) 3596 L += Layout.getVBaseClassOffset(LHS.VBase); 3597 if (RHS.VBase) 3598 R += Layout.getVBaseClassOffset(RHS.VBase); 3599 return L < R; 3600 } 3601 3602 void MicrosoftVTableContext::computeVTableRelatedInformation( 3603 const CXXRecordDecl *RD) { 3604 assert(RD->isDynamicClass()); 3605 3606 // Check if we've computed this information before. 3607 if (VFPtrLocations.count(RD)) 3608 return; 3609 3610 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; 3611 3612 { 3613 auto VFPtrs = std::make_unique<VPtrInfoVector>(); 3614 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); 3615 computeFullPathsForVFTables(Context, RD, *VFPtrs); 3616 VFPtrLocations[RD] = std::move(VFPtrs); 3617 } 3618 3619 MethodVFTableLocationsTy NewMethodLocations; 3620 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { 3621 VFTableBuilder Builder(*this, RD, *VFPtr); 3622 3623 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); 3624 assert(VFTableLayouts.count(id) == 0); 3625 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( 3626 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 3627 VFTableLayouts[id] = std::make_unique<VTableLayout>( 3628 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks, 3629 EmptyAddressPointsMap); 3630 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 3631 3632 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3633 for (const auto &Loc : Builder.vtable_locations()) { 3634 auto Insert = NewMethodLocations.insert(Loc); 3635 if (!Insert.second) { 3636 const MethodVFTableLocation &NewLoc = Loc.second; 3637 MethodVFTableLocation &OldLoc = Insert.first->second; 3638 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc)) 3639 OldLoc = NewLoc; 3640 } 3641 } 3642 } 3643 3644 MethodVFTableLocations.insert(NewMethodLocations.begin(), 3645 NewMethodLocations.end()); 3646 if (Context.getLangOpts().DumpVTableLayouts) 3647 dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); 3648 } 3649 3650 void MicrosoftVTableContext::dumpMethodLocations( 3651 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, 3652 raw_ostream &Out) { 3653 // Compute the vtable indices for all the member functions. 3654 // Store them in a map keyed by the location so we'll get a sorted table. 3655 std::map<MethodVFTableLocation, std::string> IndicesMap; 3656 bool HasNonzeroOffset = false; 3657 3658 for (const auto &I : NewMethods) { 3659 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); 3660 assert(hasVtableSlot(MD)); 3661 3662 std::string MethodName = PredefinedExpr::ComputeName( 3663 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 3664 3665 if (isa<CXXDestructorDecl>(MD)) { 3666 IndicesMap[I.second] = MethodName + " [scalar deleting]"; 3667 } else { 3668 IndicesMap[I.second] = MethodName; 3669 } 3670 3671 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) 3672 HasNonzeroOffset = true; 3673 } 3674 3675 // Print the vtable indices for all the member functions. 3676 if (!IndicesMap.empty()) { 3677 Out << "VFTable indices for "; 3678 Out << "'"; 3679 RD->printQualifiedName(Out); 3680 Out << "' (" << IndicesMap.size() 3681 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; 3682 3683 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); 3684 uint64_t LastVBIndex = 0; 3685 for (const auto &I : IndicesMap) { 3686 CharUnits VFPtrOffset = I.first.VFPtrOffset; 3687 uint64_t VBIndex = I.first.VBTableIndex; 3688 if (HasNonzeroOffset && 3689 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { 3690 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); 3691 Out << " -- accessible via "; 3692 if (VBIndex) 3693 Out << "vbtable index " << VBIndex << ", "; 3694 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; 3695 LastVFPtrOffset = VFPtrOffset; 3696 LastVBIndex = VBIndex; 3697 } 3698 3699 uint64_t VTableIndex = I.first.Index; 3700 const std::string &MethodName = I.second; 3701 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; 3702 } 3703 Out << '\n'; 3704 } 3705 3706 Out.flush(); 3707 } 3708 3709 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( 3710 const CXXRecordDecl *RD) { 3711 VirtualBaseInfo *VBI; 3712 3713 { 3714 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, 3715 // as it may be modified and rehashed under us. 3716 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; 3717 if (Entry) 3718 return *Entry; 3719 Entry = std::make_unique<VirtualBaseInfo>(); 3720 VBI = Entry.get(); 3721 } 3722 3723 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); 3724 3725 // First, see if the Derived class shared the vbptr with a non-virtual base. 3726 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3727 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { 3728 // If the Derived class shares the vbptr with a non-virtual base, the shared 3729 // virtual bases come first so that the layout is the same. 3730 const VirtualBaseInfo &BaseInfo = 3731 computeVBTableRelatedInformation(VBPtrBase); 3732 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(), 3733 BaseInfo.VBTableIndices.end()); 3734 } 3735 3736 // New vbases are added to the end of the vbtable. 3737 // Skip the self entry and vbases visited in the non-virtual base, if any. 3738 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); 3739 for (const auto &VB : RD->vbases()) { 3740 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); 3741 if (!VBI->VBTableIndices.count(CurVBase)) 3742 VBI->VBTableIndices[CurVBase] = VBTableIndex++; 3743 } 3744 3745 return *VBI; 3746 } 3747 3748 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, 3749 const CXXRecordDecl *VBase) { 3750 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived); 3751 assert(VBInfo.VBTableIndices.count(VBase)); 3752 return VBInfo.VBTableIndices.find(VBase)->second; 3753 } 3754 3755 const VPtrInfoVector & 3756 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { 3757 return computeVBTableRelatedInformation(RD).VBPtrPaths; 3758 } 3759 3760 const VPtrInfoVector & 3761 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { 3762 computeVTableRelatedInformation(RD); 3763 3764 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); 3765 return *VFPtrLocations[RD]; 3766 } 3767 3768 const VTableLayout & 3769 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, 3770 CharUnits VFPtrOffset) { 3771 computeVTableRelatedInformation(RD); 3772 3773 VFTableIdTy id(RD, VFPtrOffset); 3774 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); 3775 return *VFTableLayouts[id]; 3776 } 3777 3778 MethodVFTableLocation 3779 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { 3780 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && 3781 "Only use this method for virtual methods or dtors"); 3782 if (isa<CXXDestructorDecl>(GD.getDecl())) 3783 assert(GD.getDtorType() == Dtor_Deleting); 3784 3785 GD = GD.getCanonicalDecl(); 3786 3787 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); 3788 if (I != MethodVFTableLocations.end()) 3789 return I->second; 3790 3791 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 3792 3793 computeVTableRelatedInformation(RD); 3794 3795 I = MethodVFTableLocations.find(GD); 3796 assert(I != MethodVFTableLocations.end() && "Did not find index!"); 3797 return I->second; 3798 } 3799