1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with generation of the layout of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/VTableBuilder.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 29 #define DUMP_OVERRIDERS 0 30 31 namespace { 32 33 /// BaseOffset - Represents an offset from a derived class to a direct or 34 /// indirect base class. 35 struct BaseOffset { 36 /// DerivedClass - The derived class. 37 const CXXRecordDecl *DerivedClass; 38 39 /// VirtualBase - If the path from the derived class to the base class 40 /// involves virtual base classes, this holds the declaration of the last 41 /// virtual base in this path (i.e. closest to the base class). 42 const CXXRecordDecl *VirtualBase; 43 44 /// NonVirtualOffset - The offset from the derived class to the base class. 45 /// (Or the offset from the virtual base class to the base class, if the 46 /// path from the derived class to the base class involves a virtual base 47 /// class. 48 CharUnits NonVirtualOffset; 49 50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), 51 NonVirtualOffset(CharUnits::Zero()) { } 52 BaseOffset(const CXXRecordDecl *DerivedClass, 53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) 54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase), 55 NonVirtualOffset(NonVirtualOffset) { } 56 57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } 58 }; 59 60 /// FinalOverriders - Contains the final overrider member functions for all 61 /// member functions in the base subobjects of a class. 62 class FinalOverriders { 63 public: 64 /// OverriderInfo - Information about a final overrider. 65 struct OverriderInfo { 66 /// Method - The method decl of the overrider. 67 const CXXMethodDecl *Method; 68 69 /// VirtualBase - The virtual base class subobject of this overrider. 70 /// Note that this records the closest derived virtual base class subobject. 71 const CXXRecordDecl *VirtualBase; 72 73 /// Offset - the base offset of the overrider's parent in the layout class. 74 CharUnits Offset; 75 76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr), 77 Offset(CharUnits::Zero()) { } 78 }; 79 80 private: 81 /// MostDerivedClass - The most derived class for which the final overriders 82 /// are stored. 83 const CXXRecordDecl *MostDerivedClass; 84 85 /// MostDerivedClassOffset - If we're building final overriders for a 86 /// construction vtable, this holds the offset from the layout class to the 87 /// most derived class. 88 const CharUnits MostDerivedClassOffset; 89 90 /// LayoutClass - The class we're using for layout information. Will be 91 /// different than the most derived class if the final overriders are for a 92 /// construction vtable. 93 const CXXRecordDecl *LayoutClass; 94 95 ASTContext &Context; 96 97 /// MostDerivedClassLayout - the AST record layout of the most derived class. 98 const ASTRecordLayout &MostDerivedClassLayout; 99 100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function 101 /// in a base subobject. 102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; 103 104 typedef llvm::DenseMap<MethodBaseOffsetPairTy, 105 OverriderInfo> OverridersMapTy; 106 107 /// OverridersMap - The final overriders for all virtual member functions of 108 /// all the base subobjects of the most derived class. 109 OverridersMapTy OverridersMap; 110 111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented 112 /// as a record decl and a subobject number) and its offsets in the most 113 /// derived class as well as the layout class. 114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, 115 CharUnits> SubobjectOffsetMapTy; 116 117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; 118 119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the 120 /// given base. 121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 122 CharUnits OffsetInLayoutClass, 123 SubobjectOffsetMapTy &SubobjectOffsets, 124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 125 SubobjectCountMapTy &SubobjectCounts); 126 127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 128 129 /// dump - dump the final overriders for a base subobject, and all its direct 130 /// and indirect base subobjects. 131 void dump(raw_ostream &Out, BaseSubobject Base, 132 VisitedVirtualBasesSetTy& VisitedVirtualBases); 133 134 public: 135 FinalOverriders(const CXXRecordDecl *MostDerivedClass, 136 CharUnits MostDerivedClassOffset, 137 const CXXRecordDecl *LayoutClass); 138 139 /// getOverrider - Get the final overrider for the given method declaration in 140 /// the subobject with the given base offset. 141 OverriderInfo getOverrider(const CXXMethodDecl *MD, 142 CharUnits BaseOffset) const { 143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && 144 "Did not find overrider!"); 145 146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); 147 } 148 149 /// dump - dump the final overriders. 150 void dump() { 151 VisitedVirtualBasesSetTy VisitedVirtualBases; 152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), 153 VisitedVirtualBases); 154 } 155 156 }; 157 158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, 159 CharUnits MostDerivedClassOffset, 160 const CXXRecordDecl *LayoutClass) 161 : MostDerivedClass(MostDerivedClass), 162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), 163 Context(MostDerivedClass->getASTContext()), 164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { 165 166 // Compute base offsets. 167 SubobjectOffsetMapTy SubobjectOffsets; 168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets; 169 SubobjectCountMapTy SubobjectCounts; 170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 171 /*IsVirtual=*/false, 172 MostDerivedClassOffset, 173 SubobjectOffsets, SubobjectLayoutClassOffsets, 174 SubobjectCounts); 175 176 // Get the final overriders. 177 CXXFinalOverriderMap FinalOverriders; 178 MostDerivedClass->getFinalOverriders(FinalOverriders); 179 180 for (const auto &Overrider : FinalOverriders) { 181 const CXXMethodDecl *MD = Overrider.first; 182 const OverridingMethods &Methods = Overrider.second; 183 184 for (const auto &M : Methods) { 185 unsigned SubobjectNumber = M.first; 186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), 187 SubobjectNumber)) && 188 "Did not find subobject offset!"); 189 190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), 191 SubobjectNumber)]; 192 193 assert(M.second.size() == 1 && "Final overrider is not unique!"); 194 const UniqueVirtualMethod &Method = M.second.front(); 195 196 const CXXRecordDecl *OverriderRD = Method.Method->getParent(); 197 assert(SubobjectLayoutClassOffsets.count( 198 std::make_pair(OverriderRD, Method.Subobject)) 199 && "Did not find subobject offset!"); 200 CharUnits OverriderOffset = 201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, 202 Method.Subobject)]; 203 204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; 205 assert(!Overrider.Method && "Overrider should not exist yet!"); 206 207 Overrider.Offset = OverriderOffset; 208 Overrider.Method = Method.Method; 209 Overrider.VirtualBase = Method.InVirtualSubobject; 210 } 211 } 212 213 #if DUMP_OVERRIDERS 214 // And dump them (for now). 215 dump(); 216 #endif 217 } 218 219 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 220 const CXXRecordDecl *DerivedRD, 221 const CXXBasePath &Path) { 222 CharUnits NonVirtualOffset = CharUnits::Zero(); 223 224 unsigned NonVirtualStart = 0; 225 const CXXRecordDecl *VirtualBase = nullptr; 226 227 // First, look for the virtual base class. 228 for (int I = Path.size(), E = 0; I != E; --I) { 229 const CXXBasePathElement &Element = Path[I - 1]; 230 231 if (Element.Base->isVirtual()) { 232 NonVirtualStart = I; 233 QualType VBaseType = Element.Base->getType(); 234 VirtualBase = VBaseType->getAsCXXRecordDecl(); 235 break; 236 } 237 } 238 239 // Now compute the non-virtual offset. 240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { 241 const CXXBasePathElement &Element = Path[I]; 242 243 // Check the base class offset. 244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); 245 246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); 247 248 NonVirtualOffset += Layout.getBaseClassOffset(Base); 249 } 250 251 // FIXME: This should probably use CharUnits or something. Maybe we should 252 // even change the base offsets in ASTRecordLayout to be specified in 253 // CharUnits. 254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); 255 256 } 257 258 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 259 const CXXRecordDecl *BaseRD, 260 const CXXRecordDecl *DerivedRD) { 261 CXXBasePaths Paths(/*FindAmbiguities=*/false, 262 /*RecordPaths=*/true, /*DetectVirtual=*/false); 263 264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 265 llvm_unreachable("Class must be derived from the passed in base class!"); 266 267 return ComputeBaseOffset(Context, DerivedRD, Paths.front()); 268 } 269 270 static BaseOffset 271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context, 272 const CXXMethodDecl *DerivedMD, 273 const CXXMethodDecl *BaseMD) { 274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); 275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); 276 277 // Canonicalize the return types. 278 CanQualType CanDerivedReturnType = 279 Context.getCanonicalType(DerivedFT->getReturnType()); 280 CanQualType CanBaseReturnType = 281 Context.getCanonicalType(BaseFT->getReturnType()); 282 283 assert(CanDerivedReturnType->getTypeClass() == 284 CanBaseReturnType->getTypeClass() && 285 "Types must have same type class!"); 286 287 if (CanDerivedReturnType == CanBaseReturnType) { 288 // No adjustment needed. 289 return BaseOffset(); 290 } 291 292 if (isa<ReferenceType>(CanDerivedReturnType)) { 293 CanDerivedReturnType = 294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); 295 CanBaseReturnType = 296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); 297 } else if (isa<PointerType>(CanDerivedReturnType)) { 298 CanDerivedReturnType = 299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); 300 CanBaseReturnType = 301 CanBaseReturnType->getAs<PointerType>()->getPointeeType(); 302 } else { 303 llvm_unreachable("Unexpected return type!"); 304 } 305 306 // We need to compare unqualified types here; consider 307 // const T *Base::foo(); 308 // T *Derived::foo(); 309 if (CanDerivedReturnType.getUnqualifiedType() == 310 CanBaseReturnType.getUnqualifiedType()) { 311 // No adjustment needed. 312 return BaseOffset(); 313 } 314 315 const CXXRecordDecl *DerivedRD = 316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); 317 318 const CXXRecordDecl *BaseRD = 319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); 320 321 return ComputeBaseOffset(Context, BaseRD, DerivedRD); 322 } 323 324 void 325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 326 CharUnits OffsetInLayoutClass, 327 SubobjectOffsetMapTy &SubobjectOffsets, 328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 329 SubobjectCountMapTy &SubobjectCounts) { 330 const CXXRecordDecl *RD = Base.getBase(); 331 332 unsigned SubobjectNumber = 0; 333 if (!IsVirtual) 334 SubobjectNumber = ++SubobjectCounts[RD]; 335 336 // Set up the subobject to offset mapping. 337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) 338 && "Subobject offset already exists!"); 339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) 340 && "Subobject offset already exists!"); 341 342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); 343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = 344 OffsetInLayoutClass; 345 346 // Traverse our bases. 347 for (const auto &B : RD->bases()) { 348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 349 350 CharUnits BaseOffset; 351 CharUnits BaseOffsetInLayoutClass; 352 if (B.isVirtual()) { 353 // Check if we've visited this virtual base before. 354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) 355 continue; 356 357 const ASTRecordLayout &LayoutClassLayout = 358 Context.getASTRecordLayout(LayoutClass); 359 360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 361 BaseOffsetInLayoutClass = 362 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 363 } else { 364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); 366 367 BaseOffset = Base.getBaseOffset() + Offset; 368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; 369 } 370 371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), 372 B.isVirtual(), BaseOffsetInLayoutClass, 373 SubobjectOffsets, SubobjectLayoutClassOffsets, 374 SubobjectCounts); 375 } 376 } 377 378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, 379 VisitedVirtualBasesSetTy &VisitedVirtualBases) { 380 const CXXRecordDecl *RD = Base.getBase(); 381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 382 383 for (const auto &B : RD->bases()) { 384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 385 386 // Ignore bases that don't have any virtual member functions. 387 if (!BaseDecl->isPolymorphic()) 388 continue; 389 390 CharUnits BaseOffset; 391 if (B.isVirtual()) { 392 if (!VisitedVirtualBases.insert(BaseDecl).second) { 393 // We've visited this base before. 394 continue; 395 } 396 397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 398 } else { 399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); 400 } 401 402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); 403 } 404 405 Out << "Final overriders for ("; 406 RD->printQualifiedName(Out); 407 Out << ", "; 408 Out << Base.getBaseOffset().getQuantity() << ")\n"; 409 410 // Now dump the overriders for this base subobject. 411 for (const auto *MD : RD->methods()) { 412 if (!VTableContextBase::hasVtableSlot(MD)) 413 continue; 414 MD = MD->getCanonicalDecl(); 415 416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); 417 418 Out << " "; 419 MD->printQualifiedName(Out); 420 Out << " - ("; 421 Overrider.Method->printQualifiedName(Out); 422 Out << ", " << Overrider.Offset.getQuantity() << ')'; 423 424 BaseOffset Offset; 425 if (!Overrider.Method->isPure()) 426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 427 428 if (!Offset.isEmpty()) { 429 Out << " [ret-adj: "; 430 if (Offset.VirtualBase) { 431 Offset.VirtualBase->printQualifiedName(Out); 432 Out << " vbase, "; 433 } 434 435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; 436 } 437 438 Out << "\n"; 439 } 440 } 441 442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. 443 struct VCallOffsetMap { 444 445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; 446 447 /// Offsets - Keeps track of methods and their offsets. 448 // FIXME: This should be a real map and not a vector. 449 SmallVector<MethodAndOffsetPairTy, 16> Offsets; 450 451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions 452 /// can share the same vcall offset. 453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 454 const CXXMethodDecl *RHS); 455 456 public: 457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the 458 /// add was successful, or false if there was already a member function with 459 /// the same signature in the map. 460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); 461 462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the 463 /// vtable address point) for the given virtual member function. 464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); 465 466 // empty - Return whether the offset map is empty or not. 467 bool empty() const { return Offsets.empty(); } 468 }; 469 470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, 471 const CXXMethodDecl *RHS) { 472 const FunctionProtoType *LT = 473 cast<FunctionProtoType>(LHS->getType().getCanonicalType()); 474 const FunctionProtoType *RT = 475 cast<FunctionProtoType>(RHS->getType().getCanonicalType()); 476 477 // Fast-path matches in the canonical types. 478 if (LT == RT) return true; 479 480 // Force the signatures to match. We can't rely on the overrides 481 // list here because there isn't necessarily an inheritance 482 // relationship between the two methods. 483 if (LT->getMethodQuals() != RT->getMethodQuals()) 484 return false; 485 return LT->getParamTypes() == RT->getParamTypes(); 486 } 487 488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 489 const CXXMethodDecl *RHS) { 490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!"); 491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!"); 492 493 // A destructor can share a vcall offset with another destructor. 494 if (isa<CXXDestructorDecl>(LHS)) 495 return isa<CXXDestructorDecl>(RHS); 496 497 // FIXME: We need to check more things here. 498 499 // The methods must have the same name. 500 DeclarationName LHSName = LHS->getDeclName(); 501 DeclarationName RHSName = RHS->getDeclName(); 502 if (LHSName != RHSName) 503 return false; 504 505 // And the same signatures. 506 return HasSameVirtualSignature(LHS, RHS); 507 } 508 509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, 510 CharUnits OffsetOffset) { 511 // Check if we can reuse an offset. 512 for (const auto &OffsetPair : Offsets) { 513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 514 return false; 515 } 516 517 // Add the offset. 518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); 519 return true; 520 } 521 522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { 523 // Look for an offset. 524 for (const auto &OffsetPair : Offsets) { 525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 526 return OffsetPair.second; 527 } 528 529 llvm_unreachable("Should always find a vcall offset offset!"); 530 } 531 532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. 533 class VCallAndVBaseOffsetBuilder { 534 public: 535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 536 VBaseOffsetOffsetsMapTy; 537 538 private: 539 const ItaniumVTableContext &VTables; 540 541 /// MostDerivedClass - The most derived class for which we're building vcall 542 /// and vbase offsets. 543 const CXXRecordDecl *MostDerivedClass; 544 545 /// LayoutClass - The class we're using for layout information. Will be 546 /// different than the most derived class if we're building a construction 547 /// vtable. 548 const CXXRecordDecl *LayoutClass; 549 550 /// Context - The ASTContext which we will use for layout information. 551 ASTContext &Context; 552 553 /// Components - vcall and vbase offset components 554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; 555 VTableComponentVectorTy Components; 556 557 /// VisitedVirtualBases - Visited virtual bases. 558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 559 560 /// VCallOffsets - Keeps track of vcall offsets. 561 VCallOffsetMap VCallOffsets; 562 563 564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, 565 /// relative to the address point. 566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 567 568 /// FinalOverriders - The final overriders of the most derived class. 569 /// (Can be null when we're not building a vtable of the most derived class). 570 const FinalOverriders *Overriders; 571 572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the 573 /// given base subobject. 574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, 575 CharUnits RealBaseOffset); 576 577 /// AddVCallOffsets - Add vcall offsets for the given base subobject. 578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); 579 580 /// AddVBaseOffsets - Add vbase offsets for the given class. 581 void AddVBaseOffsets(const CXXRecordDecl *Base, 582 CharUnits OffsetInLayoutClass); 583 584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in 585 /// chars, relative to the vtable address point. 586 CharUnits getCurrentOffsetOffset() const; 587 588 public: 589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, 590 const CXXRecordDecl *MostDerivedClass, 591 const CXXRecordDecl *LayoutClass, 592 const FinalOverriders *Overriders, 593 BaseSubobject Base, bool BaseIsVirtual, 594 CharUnits OffsetInLayoutClass) 595 : VTables(VTables), MostDerivedClass(MostDerivedClass), 596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 597 Overriders(Overriders) { 598 599 // Add vcall and vbase offsets. 600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); 601 } 602 603 /// Methods for iterating over the components. 604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; 605 const_iterator components_begin() const { return Components.rbegin(); } 606 const_iterator components_end() const { return Components.rend(); } 607 608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } 609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 610 return VBaseOffsetOffsets; 611 } 612 }; 613 614 void 615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, 616 bool BaseIsVirtual, 617 CharUnits RealBaseOffset) { 618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); 619 620 // Itanium C++ ABI 2.5.2: 621 // ..in classes sharing a virtual table with a primary base class, the vcall 622 // and vbase offsets added by the derived class all come before the vcall 623 // and vbase offsets required by the base class, so that the latter may be 624 // laid out as required by the base class without regard to additions from 625 // the derived class(es). 626 627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll 628 // emit them for the primary base first). 629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 631 632 CharUnits PrimaryBaseOffset; 633 634 // Get the base offset of the primary base. 635 if (PrimaryBaseIsVirtual) { 636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 637 "Primary vbase should have a zero offset!"); 638 639 const ASTRecordLayout &MostDerivedClassLayout = 640 Context.getASTRecordLayout(MostDerivedClass); 641 642 PrimaryBaseOffset = 643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 644 } else { 645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 646 "Primary base should have a zero offset!"); 647 648 PrimaryBaseOffset = Base.getBaseOffset(); 649 } 650 651 AddVCallAndVBaseOffsets( 652 BaseSubobject(PrimaryBase,PrimaryBaseOffset), 653 PrimaryBaseIsVirtual, RealBaseOffset); 654 } 655 656 AddVBaseOffsets(Base.getBase(), RealBaseOffset); 657 658 // We only want to add vcall offsets for virtual bases. 659 if (BaseIsVirtual) 660 AddVCallOffsets(Base, RealBaseOffset); 661 } 662 663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { 664 // OffsetIndex is the index of this vcall or vbase offset, relative to the 665 // vtable address point. (We subtract 3 to account for the information just 666 // above the address point, the RTTI info, the offset to top, and the 667 // vcall offset itself). 668 int64_t OffsetIndex = -(int64_t)(3 + Components.size()); 669 670 // Under the relative ABI, the offset widths are 32-bit ints instead of 671 // pointer widths. 672 CharUnits OffsetWidth = Context.toCharUnitsFromBits( 673 VTables.isRelativeLayout() 674 ? 32 675 : Context.getTargetInfo().getPointerWidth(LangAS::Default)); 676 CharUnits OffsetOffset = OffsetWidth * OffsetIndex; 677 678 return OffsetOffset; 679 } 680 681 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, 682 CharUnits VBaseOffset) { 683 const CXXRecordDecl *RD = Base.getBase(); 684 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 685 686 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 687 688 // Handle the primary base first. 689 // We only want to add vcall offsets if the base is non-virtual; a virtual 690 // primary base will have its vcall and vbase offsets emitted already. 691 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { 692 // Get the base offset of the primary base. 693 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 694 "Primary base should have a zero offset!"); 695 696 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), 697 VBaseOffset); 698 } 699 700 // Add the vcall offsets. 701 for (const auto *MD : RD->methods()) { 702 if (!VTableContextBase::hasVtableSlot(MD)) 703 continue; 704 MD = MD->getCanonicalDecl(); 705 706 CharUnits OffsetOffset = getCurrentOffsetOffset(); 707 708 // Don't add a vcall offset if we already have one for this member function 709 // signature. 710 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) 711 continue; 712 713 CharUnits Offset = CharUnits::Zero(); 714 715 if (Overriders) { 716 // Get the final overrider. 717 FinalOverriders::OverriderInfo Overrider = 718 Overriders->getOverrider(MD, Base.getBaseOffset()); 719 720 /// The vcall offset is the offset from the virtual base to the object 721 /// where the function was overridden. 722 Offset = Overrider.Offset - VBaseOffset; 723 } 724 725 Components.push_back( 726 VTableComponent::MakeVCallOffset(Offset)); 727 } 728 729 // And iterate over all non-virtual bases (ignoring the primary base). 730 for (const auto &B : RD->bases()) { 731 if (B.isVirtual()) 732 continue; 733 734 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 735 if (BaseDecl == PrimaryBase) 736 continue; 737 738 // Get the base offset of this base. 739 CharUnits BaseOffset = Base.getBaseOffset() + 740 Layout.getBaseClassOffset(BaseDecl); 741 742 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), 743 VBaseOffset); 744 } 745 } 746 747 void 748 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, 749 CharUnits OffsetInLayoutClass) { 750 const ASTRecordLayout &LayoutClassLayout = 751 Context.getASTRecordLayout(LayoutClass); 752 753 // Add vbase offsets. 754 for (const auto &B : RD->bases()) { 755 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 756 757 // Check if this is a virtual base that we haven't visited before. 758 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { 759 CharUnits Offset = 760 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; 761 762 // Add the vbase offset offset. 763 assert(!VBaseOffsetOffsets.count(BaseDecl) && 764 "vbase offset offset already exists!"); 765 766 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); 767 VBaseOffsetOffsets.insert( 768 std::make_pair(BaseDecl, VBaseOffsetOffset)); 769 770 Components.push_back( 771 VTableComponent::MakeVBaseOffset(Offset)); 772 } 773 774 // Check the base class looking for more vbase offsets. 775 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); 776 } 777 } 778 779 /// ItaniumVTableBuilder - Class for building vtable layout information. 780 class ItaniumVTableBuilder { 781 public: 782 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect 783 /// primary bases. 784 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> 785 PrimaryBasesSetVectorTy; 786 787 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 788 VBaseOffsetOffsetsMapTy; 789 790 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; 791 792 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 793 794 private: 795 /// VTables - Global vtable information. 796 ItaniumVTableContext &VTables; 797 798 /// MostDerivedClass - The most derived class for which we're building this 799 /// vtable. 800 const CXXRecordDecl *MostDerivedClass; 801 802 /// MostDerivedClassOffset - If we're building a construction vtable, this 803 /// holds the offset from the layout class to the most derived class. 804 const CharUnits MostDerivedClassOffset; 805 806 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual 807 /// base. (This only makes sense when building a construction vtable). 808 bool MostDerivedClassIsVirtual; 809 810 /// LayoutClass - The class we're using for layout information. Will be 811 /// different than the most derived class if we're building a construction 812 /// vtable. 813 const CXXRecordDecl *LayoutClass; 814 815 /// Context - The ASTContext which we will use for layout information. 816 ASTContext &Context; 817 818 /// FinalOverriders - The final overriders of the most derived class. 819 const FinalOverriders Overriders; 820 821 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual 822 /// bases in this vtable. 823 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; 824 825 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for 826 /// the most derived class. 827 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 828 829 /// Components - The components of the vtable being built. 830 SmallVector<VTableComponent, 64> Components; 831 832 /// AddressPoints - Address points for the vtable being built. 833 AddressPointsMapTy AddressPoints; 834 835 /// MethodInfo - Contains information about a method in a vtable. 836 /// (Used for computing 'this' pointer adjustment thunks. 837 struct MethodInfo { 838 /// BaseOffset - The base offset of this method. 839 const CharUnits BaseOffset; 840 841 /// BaseOffsetInLayoutClass - The base offset in the layout class of this 842 /// method. 843 const CharUnits BaseOffsetInLayoutClass; 844 845 /// VTableIndex - The index in the vtable that this method has. 846 /// (For destructors, this is the index of the complete destructor). 847 const uint64_t VTableIndex; 848 849 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, 850 uint64_t VTableIndex) 851 : BaseOffset(BaseOffset), 852 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), 853 VTableIndex(VTableIndex) { } 854 855 MethodInfo() 856 : BaseOffset(CharUnits::Zero()), 857 BaseOffsetInLayoutClass(CharUnits::Zero()), 858 VTableIndex(0) { } 859 860 MethodInfo(MethodInfo const&) = default; 861 }; 862 863 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 864 865 /// MethodInfoMap - The information for all methods in the vtable we're 866 /// currently building. 867 MethodInfoMapTy MethodInfoMap; 868 869 /// MethodVTableIndices - Contains the index (relative to the vtable address 870 /// point) where the function pointer for a virtual function is stored. 871 MethodVTableIndicesTy MethodVTableIndices; 872 873 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 874 875 /// VTableThunks - The thunks by vtable index in the vtable currently being 876 /// built. 877 VTableThunksMapTy VTableThunks; 878 879 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 880 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 881 882 /// Thunks - A map that contains all the thunks needed for all methods in the 883 /// most derived class for which the vtable is currently being built. 884 ThunksMapTy Thunks; 885 886 /// AddThunk - Add a thunk for the given method. 887 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); 888 889 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the 890 /// part of the vtable we're currently building. 891 void ComputeThisAdjustments(); 892 893 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 894 895 /// PrimaryVirtualBases - All known virtual bases who are a primary base of 896 /// some other base. 897 VisitedVirtualBasesSetTy PrimaryVirtualBases; 898 899 /// ComputeReturnAdjustment - Compute the return adjustment given a return 900 /// adjustment base offset. 901 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); 902 903 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting 904 /// the 'this' pointer from the base subobject to the derived subobject. 905 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, 906 BaseSubobject Derived) const; 907 908 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the 909 /// given virtual member function, its offset in the layout class and its 910 /// final overrider. 911 ThisAdjustment 912 ComputeThisAdjustment(const CXXMethodDecl *MD, 913 CharUnits BaseOffsetInLayoutClass, 914 FinalOverriders::OverriderInfo Overrider); 915 916 /// AddMethod - Add a single virtual member function to the vtable 917 /// components vector. 918 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); 919 920 /// IsOverriderUsed - Returns whether the overrider will ever be used in this 921 /// part of the vtable. 922 /// 923 /// Itanium C++ ABI 2.5.2: 924 /// 925 /// struct A { virtual void f(); }; 926 /// struct B : virtual public A { int i; }; 927 /// struct C : virtual public A { int j; }; 928 /// struct D : public B, public C {}; 929 /// 930 /// When B and C are declared, A is a primary base in each case, so although 931 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this 932 /// adjustment is required and no thunk is generated. However, inside D 933 /// objects, A is no longer a primary base of C, so if we allowed calls to 934 /// C::f() to use the copy of A's vtable in the C subobject, we would need 935 /// to adjust this from C* to B::A*, which would require a third-party 936 /// thunk. Since we require that a call to C::f() first convert to A*, 937 /// C-in-D's copy of A's vtable is never referenced, so this is not 938 /// necessary. 939 bool IsOverriderUsed(const CXXMethodDecl *Overrider, 940 CharUnits BaseOffsetInLayoutClass, 941 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 942 CharUnits FirstBaseOffsetInLayoutClass) const; 943 944 945 /// AddMethods - Add the methods of this base subobject and all its 946 /// primary bases to the vtable components vector. 947 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 948 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 949 CharUnits FirstBaseOffsetInLayoutClass, 950 PrimaryBasesSetVectorTy &PrimaryBases); 951 952 // LayoutVTable - Layout the vtable for the given base class, including its 953 // secondary vtables and any vtables for virtual bases. 954 void LayoutVTable(); 955 956 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the 957 /// given base subobject, as well as all its secondary vtables. 958 /// 959 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 960 /// or a direct or indirect base of a virtual base. 961 /// 962 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual 963 /// in the layout class. 964 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, 965 bool BaseIsMorallyVirtual, 966 bool BaseIsVirtualInLayoutClass, 967 CharUnits OffsetInLayoutClass); 968 969 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base 970 /// subobject. 971 /// 972 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 973 /// or a direct or indirect base of a virtual base. 974 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, 975 CharUnits OffsetInLayoutClass); 976 977 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this 978 /// class hierarchy. 979 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, 980 CharUnits OffsetInLayoutClass, 981 VisitedVirtualBasesSetTy &VBases); 982 983 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the 984 /// given base (excluding any primary bases). 985 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, 986 VisitedVirtualBasesSetTy &VBases); 987 988 /// isBuildingConstructionVTable - Return whether this vtable builder is 989 /// building a construction vtable. 990 bool isBuildingConstructorVTable() const { 991 return MostDerivedClass != LayoutClass; 992 } 993 994 public: 995 /// Component indices of the first component of each of the vtables in the 996 /// vtable group. 997 SmallVector<size_t, 4> VTableIndices; 998 999 ItaniumVTableBuilder(ItaniumVTableContext &VTables, 1000 const CXXRecordDecl *MostDerivedClass, 1001 CharUnits MostDerivedClassOffset, 1002 bool MostDerivedClassIsVirtual, 1003 const CXXRecordDecl *LayoutClass) 1004 : VTables(VTables), MostDerivedClass(MostDerivedClass), 1005 MostDerivedClassOffset(MostDerivedClassOffset), 1006 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), 1007 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 1008 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { 1009 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); 1010 1011 LayoutVTable(); 1012 1013 if (Context.getLangOpts().DumpVTableLayouts) 1014 dumpLayout(llvm::outs()); 1015 } 1016 1017 uint64_t getNumThunks() const { 1018 return Thunks.size(); 1019 } 1020 1021 ThunksMapTy::const_iterator thunks_begin() const { 1022 return Thunks.begin(); 1023 } 1024 1025 ThunksMapTy::const_iterator thunks_end() const { 1026 return Thunks.end(); 1027 } 1028 1029 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 1030 return VBaseOffsetOffsets; 1031 } 1032 1033 const AddressPointsMapTy &getAddressPoints() const { 1034 return AddressPoints; 1035 } 1036 1037 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { 1038 return MethodVTableIndices.begin(); 1039 } 1040 1041 MethodVTableIndicesTy::const_iterator vtable_indices_end() const { 1042 return MethodVTableIndices.end(); 1043 } 1044 1045 ArrayRef<VTableComponent> vtable_components() const { return Components; } 1046 1047 AddressPointsMapTy::const_iterator address_points_begin() const { 1048 return AddressPoints.begin(); 1049 } 1050 1051 AddressPointsMapTy::const_iterator address_points_end() const { 1052 return AddressPoints.end(); 1053 } 1054 1055 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 1056 return VTableThunks.begin(); 1057 } 1058 1059 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 1060 return VTableThunks.end(); 1061 } 1062 1063 /// dumpLayout - Dump the vtable layout. 1064 void dumpLayout(raw_ostream&); 1065 }; 1066 1067 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, 1068 const ThunkInfo &Thunk) { 1069 assert(!isBuildingConstructorVTable() && 1070 "Can't add thunks for construction vtable"); 1071 1072 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; 1073 1074 // Check if we have this thunk already. 1075 if (llvm::is_contained(ThunksVector, Thunk)) 1076 return; 1077 1078 ThunksVector.push_back(Thunk); 1079 } 1080 1081 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; 1082 1083 /// Visit all the methods overridden by the given method recursively, 1084 /// in a depth-first pre-order. The Visitor's visitor method returns a bool 1085 /// indicating whether to continue the recursion for the given overridden 1086 /// method (i.e. returning false stops the iteration). 1087 template <class VisitorTy> 1088 static void 1089 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { 1090 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!"); 1091 1092 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1093 if (!Visitor(OverriddenMD)) 1094 continue; 1095 visitAllOverriddenMethods(OverriddenMD, Visitor); 1096 } 1097 } 1098 1099 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all 1100 /// the overridden methods that the function decl overrides. 1101 static void 1102 ComputeAllOverriddenMethods(const CXXMethodDecl *MD, 1103 OverriddenMethodsSetTy& OverriddenMethods) { 1104 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { 1105 // Don't recurse on this method if we've already collected it. 1106 return OverriddenMethods.insert(MD).second; 1107 }; 1108 visitAllOverriddenMethods(MD, OverriddenMethodsCollector); 1109 } 1110 1111 void ItaniumVTableBuilder::ComputeThisAdjustments() { 1112 // Now go through the method info map and see if any of the methods need 1113 // 'this' pointer adjustments. 1114 for (const auto &MI : MethodInfoMap) { 1115 const CXXMethodDecl *MD = MI.first; 1116 const MethodInfo &MethodInfo = MI.second; 1117 1118 // Ignore adjustments for unused function pointers. 1119 uint64_t VTableIndex = MethodInfo.VTableIndex; 1120 if (Components[VTableIndex].getKind() == 1121 VTableComponent::CK_UnusedFunctionPointer) 1122 continue; 1123 1124 // Get the final overrider for this method. 1125 FinalOverriders::OverriderInfo Overrider = 1126 Overriders.getOverrider(MD, MethodInfo.BaseOffset); 1127 1128 // Check if we need an adjustment at all. 1129 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { 1130 // When a return thunk is needed by a derived class that overrides a 1131 // virtual base, gcc uses a virtual 'this' adjustment as well. 1132 // While the thunk itself might be needed by vtables in subclasses or 1133 // in construction vtables, there doesn't seem to be a reason for using 1134 // the thunk in this vtable. Still, we do so to match gcc. 1135 if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) 1136 continue; 1137 } 1138 1139 ThisAdjustment ThisAdjustment = 1140 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); 1141 1142 if (ThisAdjustment.isEmpty()) 1143 continue; 1144 1145 // Add it. 1146 VTableThunks[VTableIndex].This = ThisAdjustment; 1147 1148 if (isa<CXXDestructorDecl>(MD)) { 1149 // Add an adjustment for the deleting destructor as well. 1150 VTableThunks[VTableIndex + 1].This = ThisAdjustment; 1151 } 1152 } 1153 1154 /// Clear the method info map. 1155 MethodInfoMap.clear(); 1156 1157 if (isBuildingConstructorVTable()) { 1158 // We don't need to store thunk information for construction vtables. 1159 return; 1160 } 1161 1162 for (const auto &TI : VTableThunks) { 1163 const VTableComponent &Component = Components[TI.first]; 1164 const ThunkInfo &Thunk = TI.second; 1165 const CXXMethodDecl *MD; 1166 1167 switch (Component.getKind()) { 1168 default: 1169 llvm_unreachable("Unexpected vtable component kind!"); 1170 case VTableComponent::CK_FunctionPointer: 1171 MD = Component.getFunctionDecl(); 1172 break; 1173 case VTableComponent::CK_CompleteDtorPointer: 1174 MD = Component.getDestructorDecl(); 1175 break; 1176 case VTableComponent::CK_DeletingDtorPointer: 1177 // We've already added the thunk when we saw the complete dtor pointer. 1178 continue; 1179 } 1180 1181 if (MD->getParent() == MostDerivedClass) 1182 AddThunk(MD, Thunk); 1183 } 1184 } 1185 1186 ReturnAdjustment 1187 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { 1188 ReturnAdjustment Adjustment; 1189 1190 if (!Offset.isEmpty()) { 1191 if (Offset.VirtualBase) { 1192 // Get the virtual base offset offset. 1193 if (Offset.DerivedClass == MostDerivedClass) { 1194 // We can get the offset offset directly from our map. 1195 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1196 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); 1197 } else { 1198 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1199 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, 1200 Offset.VirtualBase).getQuantity(); 1201 } 1202 } 1203 1204 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1205 } 1206 1207 return Adjustment; 1208 } 1209 1210 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( 1211 BaseSubobject Base, BaseSubobject Derived) const { 1212 const CXXRecordDecl *BaseRD = Base.getBase(); 1213 const CXXRecordDecl *DerivedRD = Derived.getBase(); 1214 1215 CXXBasePaths Paths(/*FindAmbiguities=*/true, 1216 /*RecordPaths=*/true, /*DetectVirtual=*/true); 1217 1218 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 1219 llvm_unreachable("Class must be derived from the passed in base class!"); 1220 1221 // We have to go through all the paths, and see which one leads us to the 1222 // right base subobject. 1223 for (const CXXBasePath &Path : Paths) { 1224 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); 1225 1226 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; 1227 1228 if (Offset.VirtualBase) { 1229 // If we have a virtual base class, the non-virtual offset is relative 1230 // to the virtual base class offset. 1231 const ASTRecordLayout &LayoutClassLayout = 1232 Context.getASTRecordLayout(LayoutClass); 1233 1234 /// Get the virtual base offset, relative to the most derived class 1235 /// layout. 1236 OffsetToBaseSubobject += 1237 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); 1238 } else { 1239 // Otherwise, the non-virtual offset is relative to the derived class 1240 // offset. 1241 OffsetToBaseSubobject += Derived.getBaseOffset(); 1242 } 1243 1244 // Check if this path gives us the right base subobject. 1245 if (OffsetToBaseSubobject == Base.getBaseOffset()) { 1246 // Since we're going from the base class _to_ the derived class, we'll 1247 // invert the non-virtual offset here. 1248 Offset.NonVirtualOffset = -Offset.NonVirtualOffset; 1249 return Offset; 1250 } 1251 } 1252 1253 return BaseOffset(); 1254 } 1255 1256 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( 1257 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, 1258 FinalOverriders::OverriderInfo Overrider) { 1259 // Ignore adjustments for pure virtual member functions. 1260 if (Overrider.Method->isPure()) 1261 return ThisAdjustment(); 1262 1263 BaseSubobject OverriddenBaseSubobject(MD->getParent(), 1264 BaseOffsetInLayoutClass); 1265 1266 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), 1267 Overrider.Offset); 1268 1269 // Compute the adjustment offset. 1270 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, 1271 OverriderBaseSubobject); 1272 if (Offset.isEmpty()) 1273 return ThisAdjustment(); 1274 1275 ThisAdjustment Adjustment; 1276 1277 if (Offset.VirtualBase) { 1278 // Get the vcall offset map for this virtual base. 1279 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; 1280 1281 if (VCallOffsets.empty()) { 1282 // We don't have vcall offsets for this virtual base, go ahead and 1283 // build them. 1284 VCallAndVBaseOffsetBuilder Builder( 1285 VTables, MostDerivedClass, MostDerivedClass, 1286 /*Overriders=*/nullptr, 1287 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), 1288 /*BaseIsVirtual=*/true, 1289 /*OffsetInLayoutClass=*/ 1290 CharUnits::Zero()); 1291 1292 VCallOffsets = Builder.getVCallOffsets(); 1293 } 1294 1295 Adjustment.Virtual.Itanium.VCallOffsetOffset = 1296 VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); 1297 } 1298 1299 // Set the non-virtual part of the adjustment. 1300 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1301 1302 return Adjustment; 1303 } 1304 1305 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, 1306 ReturnAdjustment ReturnAdjustment) { 1307 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1308 assert(ReturnAdjustment.isEmpty() && 1309 "Destructor can't have return adjustment!"); 1310 1311 // Add both the complete destructor and the deleting destructor. 1312 Components.push_back(VTableComponent::MakeCompleteDtor(DD)); 1313 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 1314 } else { 1315 // Add the return adjustment if necessary. 1316 if (!ReturnAdjustment.isEmpty()) 1317 VTableThunks[Components.size()].Return = ReturnAdjustment; 1318 1319 // Add the function. 1320 Components.push_back(VTableComponent::MakeFunction(MD)); 1321 } 1322 } 1323 1324 /// OverridesIndirectMethodInBase - Return whether the given member function 1325 /// overrides any methods in the set of given bases. 1326 /// Unlike OverridesMethodInBase, this checks "overriders of overriders". 1327 /// For example, if we have: 1328 /// 1329 /// struct A { virtual void f(); } 1330 /// struct B : A { virtual void f(); } 1331 /// struct C : B { virtual void f(); } 1332 /// 1333 /// OverridesIndirectMethodInBase will return true if given C::f as the method 1334 /// and { A } as the set of bases. 1335 static bool OverridesIndirectMethodInBases( 1336 const CXXMethodDecl *MD, 1337 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { 1338 if (Bases.count(MD->getParent())) 1339 return true; 1340 1341 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1342 // Check "indirect overriders". 1343 if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) 1344 return true; 1345 } 1346 1347 return false; 1348 } 1349 1350 bool ItaniumVTableBuilder::IsOverriderUsed( 1351 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, 1352 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1353 CharUnits FirstBaseOffsetInLayoutClass) const { 1354 // If the base and the first base in the primary base chain have the same 1355 // offsets, then this overrider will be used. 1356 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) 1357 return true; 1358 1359 // We know now that Base (or a direct or indirect base of it) is a primary 1360 // base in part of the class hierarchy, but not a primary base in the most 1361 // derived class. 1362 1363 // If the overrider is the first base in the primary base chain, we know 1364 // that the overrider will be used. 1365 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) 1366 return true; 1367 1368 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; 1369 1370 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; 1371 PrimaryBases.insert(RD); 1372 1373 // Now traverse the base chain, starting with the first base, until we find 1374 // the base that is no longer a primary base. 1375 while (true) { 1376 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1377 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1378 1379 if (!PrimaryBase) 1380 break; 1381 1382 if (Layout.isPrimaryBaseVirtual()) { 1383 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1384 "Primary base should always be at offset 0!"); 1385 1386 const ASTRecordLayout &LayoutClassLayout = 1387 Context.getASTRecordLayout(LayoutClass); 1388 1389 // Now check if this is the primary base that is not a primary base in the 1390 // most derived class. 1391 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1392 FirstBaseOffsetInLayoutClass) { 1393 // We found it, stop walking the chain. 1394 break; 1395 } 1396 } else { 1397 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1398 "Primary base should always be at offset 0!"); 1399 } 1400 1401 if (!PrimaryBases.insert(PrimaryBase)) 1402 llvm_unreachable("Found a duplicate primary base!"); 1403 1404 RD = PrimaryBase; 1405 } 1406 1407 // If the final overrider is an override of one of the primary bases, 1408 // then we know that it will be used. 1409 return OverridesIndirectMethodInBases(Overrider, PrimaryBases); 1410 } 1411 1412 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; 1413 1414 /// FindNearestOverriddenMethod - Given a method, returns the overridden method 1415 /// from the nearest base. Returns null if no method was found. 1416 /// The Bases are expected to be sorted in a base-to-derived order. 1417 static const CXXMethodDecl * 1418 FindNearestOverriddenMethod(const CXXMethodDecl *MD, 1419 BasesSetVectorTy &Bases) { 1420 OverriddenMethodsSetTy OverriddenMethods; 1421 ComputeAllOverriddenMethods(MD, OverriddenMethods); 1422 1423 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) { 1424 // Now check the overridden methods. 1425 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { 1426 // We found our overridden method. 1427 if (OverriddenMD->getParent() == PrimaryBase) 1428 return OverriddenMD; 1429 } 1430 } 1431 1432 return nullptr; 1433 } 1434 1435 void ItaniumVTableBuilder::AddMethods( 1436 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 1437 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1438 CharUnits FirstBaseOffsetInLayoutClass, 1439 PrimaryBasesSetVectorTy &PrimaryBases) { 1440 // Itanium C++ ABI 2.5.2: 1441 // The order of the virtual function pointers in a virtual table is the 1442 // order of declaration of the corresponding member functions in the class. 1443 // 1444 // There is an entry for any virtual function declared in a class, 1445 // whether it is a new function or overrides a base class function, 1446 // unless it overrides a function from the primary base, and conversion 1447 // between their return types does not require an adjustment. 1448 1449 const CXXRecordDecl *RD = Base.getBase(); 1450 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1451 1452 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1453 CharUnits PrimaryBaseOffset; 1454 CharUnits PrimaryBaseOffsetInLayoutClass; 1455 if (Layout.isPrimaryBaseVirtual()) { 1456 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1457 "Primary vbase should have a zero offset!"); 1458 1459 const ASTRecordLayout &MostDerivedClassLayout = 1460 Context.getASTRecordLayout(MostDerivedClass); 1461 1462 PrimaryBaseOffset = 1463 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 1464 1465 const ASTRecordLayout &LayoutClassLayout = 1466 Context.getASTRecordLayout(LayoutClass); 1467 1468 PrimaryBaseOffsetInLayoutClass = 1469 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1470 } else { 1471 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1472 "Primary base should have a zero offset!"); 1473 1474 PrimaryBaseOffset = Base.getBaseOffset(); 1475 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; 1476 } 1477 1478 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), 1479 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, 1480 FirstBaseOffsetInLayoutClass, PrimaryBases); 1481 1482 if (!PrimaryBases.insert(PrimaryBase)) 1483 llvm_unreachable("Found a duplicate primary base!"); 1484 } 1485 1486 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; 1487 NewVirtualFunctionsTy NewVirtualFunctions; 1488 1489 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; 1490 1491 // Now go through all virtual member functions and add them. 1492 for (const auto *MD : RD->methods()) { 1493 if (!ItaniumVTableContext::hasVtableSlot(MD)) 1494 continue; 1495 MD = MD->getCanonicalDecl(); 1496 1497 // Get the final overrider. 1498 FinalOverriders::OverriderInfo Overrider = 1499 Overriders.getOverrider(MD, Base.getBaseOffset()); 1500 1501 // Check if this virtual member function overrides a method in a primary 1502 // base. If this is the case, and the return type doesn't require adjustment 1503 // then we can just use the member function from the primary base. 1504 if (const CXXMethodDecl *OverriddenMD = 1505 FindNearestOverriddenMethod(MD, PrimaryBases)) { 1506 if (ComputeReturnAdjustmentBaseOffset(Context, MD, 1507 OverriddenMD).isEmpty()) { 1508 // Replace the method info of the overridden method with our own 1509 // method. 1510 assert(MethodInfoMap.count(OverriddenMD) && 1511 "Did not find the overridden method!"); 1512 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; 1513 1514 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1515 OverriddenMethodInfo.VTableIndex); 1516 1517 assert(!MethodInfoMap.count(MD) && 1518 "Should not have method info for this method yet!"); 1519 1520 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1521 MethodInfoMap.erase(OverriddenMD); 1522 1523 // If the overridden method exists in a virtual base class or a direct 1524 // or indirect base class of a virtual base class, we need to emit a 1525 // thunk if we ever have a class hierarchy where the base class is not 1526 // a primary base in the complete object. 1527 if (!isBuildingConstructorVTable() && OverriddenMD != MD) { 1528 // Compute the this adjustment. 1529 ThisAdjustment ThisAdjustment = 1530 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, 1531 Overrider); 1532 1533 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && 1534 Overrider.Method->getParent() == MostDerivedClass) { 1535 1536 // There's no return adjustment from OverriddenMD and MD, 1537 // but that doesn't mean there isn't one between MD and 1538 // the final overrider. 1539 BaseOffset ReturnAdjustmentOffset = 1540 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 1541 ReturnAdjustment ReturnAdjustment = 1542 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1543 1544 // This is a virtual thunk for the most derived class, add it. 1545 AddThunk(Overrider.Method, 1546 ThunkInfo(ThisAdjustment, ReturnAdjustment)); 1547 } 1548 } 1549 1550 continue; 1551 } 1552 } 1553 1554 if (MD->isImplicit()) 1555 NewImplicitVirtualFunctions.push_back(MD); 1556 else 1557 NewVirtualFunctions.push_back(MD); 1558 } 1559 1560 std::stable_sort( 1561 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(), 1562 [](const CXXMethodDecl *A, const CXXMethodDecl *B) { 1563 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) 1564 return A->isCopyAssignmentOperator(); 1565 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) 1566 return A->isMoveAssignmentOperator(); 1567 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B)) 1568 return isa<CXXDestructorDecl>(A); 1569 assert(A->getOverloadedOperator() == OO_EqualEqual && 1570 B->getOverloadedOperator() == OO_EqualEqual && 1571 "unexpected or duplicate implicit virtual function"); 1572 // We rely on Sema to have declared the operator== members in the 1573 // same order as the corresponding operator<=> members. 1574 return false; 1575 }); 1576 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(), 1577 NewImplicitVirtualFunctions.end()); 1578 1579 for (const CXXMethodDecl *MD : NewVirtualFunctions) { 1580 // Get the final overrider. 1581 FinalOverriders::OverriderInfo Overrider = 1582 Overriders.getOverrider(MD, Base.getBaseOffset()); 1583 1584 // Insert the method info for this method. 1585 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1586 Components.size()); 1587 1588 assert(!MethodInfoMap.count(MD) && 1589 "Should not have method info for this method yet!"); 1590 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1591 1592 // Check if this overrider is going to be used. 1593 const CXXMethodDecl *OverriderMD = Overrider.Method; 1594 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, 1595 FirstBaseInPrimaryBaseChain, 1596 FirstBaseOffsetInLayoutClass)) { 1597 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); 1598 continue; 1599 } 1600 1601 // Check if this overrider needs a return adjustment. 1602 // We don't want to do this for pure virtual member functions. 1603 BaseOffset ReturnAdjustmentOffset; 1604 if (!OverriderMD->isPure()) { 1605 ReturnAdjustmentOffset = 1606 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); 1607 } 1608 1609 ReturnAdjustment ReturnAdjustment = 1610 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1611 1612 AddMethod(Overrider.Method, ReturnAdjustment); 1613 } 1614 } 1615 1616 void ItaniumVTableBuilder::LayoutVTable() { 1617 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, 1618 CharUnits::Zero()), 1619 /*BaseIsMorallyVirtual=*/false, 1620 MostDerivedClassIsVirtual, 1621 MostDerivedClassOffset); 1622 1623 VisitedVirtualBasesSetTy VBases; 1624 1625 // Determine the primary virtual bases. 1626 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, 1627 VBases); 1628 VBases.clear(); 1629 1630 LayoutVTablesForVirtualBases(MostDerivedClass, VBases); 1631 1632 // -fapple-kext adds an extra entry at end of vtbl. 1633 bool IsAppleKext = Context.getLangOpts().AppleKext; 1634 if (IsAppleKext) 1635 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); 1636 } 1637 1638 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( 1639 BaseSubobject Base, bool BaseIsMorallyVirtual, 1640 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { 1641 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); 1642 1643 unsigned VTableIndex = Components.size(); 1644 VTableIndices.push_back(VTableIndex); 1645 1646 // Add vcall and vbase offsets for this vtable. 1647 VCallAndVBaseOffsetBuilder Builder( 1648 VTables, MostDerivedClass, LayoutClass, &Overriders, Base, 1649 BaseIsVirtualInLayoutClass, OffsetInLayoutClass); 1650 Components.append(Builder.components_begin(), Builder.components_end()); 1651 1652 // Check if we need to add these vcall offsets. 1653 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { 1654 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; 1655 1656 if (VCallOffsets.empty()) 1657 VCallOffsets = Builder.getVCallOffsets(); 1658 } 1659 1660 // If we're laying out the most derived class we want to keep track of the 1661 // virtual base class offset offsets. 1662 if (Base.getBase() == MostDerivedClass) 1663 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); 1664 1665 // Add the offset to top. 1666 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; 1667 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); 1668 1669 // Next, add the RTTI. 1670 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 1671 1672 uint64_t AddressPoint = Components.size(); 1673 1674 // Now go through all virtual member functions and add them. 1675 PrimaryBasesSetVectorTy PrimaryBases; 1676 AddMethods(Base, OffsetInLayoutClass, 1677 Base.getBase(), OffsetInLayoutClass, 1678 PrimaryBases); 1679 1680 const CXXRecordDecl *RD = Base.getBase(); 1681 if (RD == MostDerivedClass) { 1682 assert(MethodVTableIndices.empty()); 1683 for (const auto &I : MethodInfoMap) { 1684 const CXXMethodDecl *MD = I.first; 1685 const MethodInfo &MI = I.second; 1686 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1687 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] 1688 = MI.VTableIndex - AddressPoint; 1689 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] 1690 = MI.VTableIndex + 1 - AddressPoint; 1691 } else { 1692 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; 1693 } 1694 } 1695 } 1696 1697 // Compute 'this' pointer adjustments. 1698 ComputeThisAdjustments(); 1699 1700 // Add all address points. 1701 while (true) { 1702 AddressPoints.insert( 1703 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass), 1704 VTableLayout::AddressPointLocation{ 1705 unsigned(VTableIndices.size() - 1), 1706 unsigned(AddressPoint - VTableIndex)})); 1707 1708 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1709 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1710 1711 if (!PrimaryBase) 1712 break; 1713 1714 if (Layout.isPrimaryBaseVirtual()) { 1715 // Check if this virtual primary base is a primary base in the layout 1716 // class. If it's not, we don't want to add it. 1717 const ASTRecordLayout &LayoutClassLayout = 1718 Context.getASTRecordLayout(LayoutClass); 1719 1720 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1721 OffsetInLayoutClass) { 1722 // We don't want to add this class (or any of its primary bases). 1723 break; 1724 } 1725 } 1726 1727 RD = PrimaryBase; 1728 } 1729 1730 // Layout secondary vtables. 1731 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); 1732 } 1733 1734 void 1735 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, 1736 bool BaseIsMorallyVirtual, 1737 CharUnits OffsetInLayoutClass) { 1738 // Itanium C++ ABI 2.5.2: 1739 // Following the primary virtual table of a derived class are secondary 1740 // virtual tables for each of its proper base classes, except any primary 1741 // base(s) with which it shares its primary virtual table. 1742 1743 const CXXRecordDecl *RD = Base.getBase(); 1744 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1745 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1746 1747 for (const auto &B : RD->bases()) { 1748 // Ignore virtual bases, we'll emit them later. 1749 if (B.isVirtual()) 1750 continue; 1751 1752 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1753 1754 // Ignore bases that don't have a vtable. 1755 if (!BaseDecl->isDynamicClass()) 1756 continue; 1757 1758 if (isBuildingConstructorVTable()) { 1759 // Itanium C++ ABI 2.6.4: 1760 // Some of the base class subobjects may not need construction virtual 1761 // tables, which will therefore not be present in the construction 1762 // virtual table group, even though the subobject virtual tables are 1763 // present in the main virtual table group for the complete object. 1764 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) 1765 continue; 1766 } 1767 1768 // Get the base offset of this base. 1769 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); 1770 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; 1771 1772 CharUnits BaseOffsetInLayoutClass = 1773 OffsetInLayoutClass + RelativeBaseOffset; 1774 1775 // Don't emit a secondary vtable for a primary base. We might however want 1776 // to emit secondary vtables for other bases of this base. 1777 if (BaseDecl == PrimaryBase) { 1778 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), 1779 BaseIsMorallyVirtual, BaseOffsetInLayoutClass); 1780 continue; 1781 } 1782 1783 // Layout the primary vtable (and any secondary vtables) for this base. 1784 LayoutPrimaryAndSecondaryVTables( 1785 BaseSubobject(BaseDecl, BaseOffset), 1786 BaseIsMorallyVirtual, 1787 /*BaseIsVirtualInLayoutClass=*/false, 1788 BaseOffsetInLayoutClass); 1789 } 1790 } 1791 1792 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( 1793 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, 1794 VisitedVirtualBasesSetTy &VBases) { 1795 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1796 1797 // Check if this base has a primary base. 1798 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1799 1800 // Check if it's virtual. 1801 if (Layout.isPrimaryBaseVirtual()) { 1802 bool IsPrimaryVirtualBase = true; 1803 1804 if (isBuildingConstructorVTable()) { 1805 // Check if the base is actually a primary base in the class we use for 1806 // layout. 1807 const ASTRecordLayout &LayoutClassLayout = 1808 Context.getASTRecordLayout(LayoutClass); 1809 1810 CharUnits PrimaryBaseOffsetInLayoutClass = 1811 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1812 1813 // We know that the base is not a primary base in the layout class if 1814 // the base offsets are different. 1815 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) 1816 IsPrimaryVirtualBase = false; 1817 } 1818 1819 if (IsPrimaryVirtualBase) 1820 PrimaryVirtualBases.insert(PrimaryBase); 1821 } 1822 } 1823 1824 // Traverse bases, looking for more primary virtual bases. 1825 for (const auto &B : RD->bases()) { 1826 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1827 1828 CharUnits BaseOffsetInLayoutClass; 1829 1830 if (B.isVirtual()) { 1831 if (!VBases.insert(BaseDecl).second) 1832 continue; 1833 1834 const ASTRecordLayout &LayoutClassLayout = 1835 Context.getASTRecordLayout(LayoutClass); 1836 1837 BaseOffsetInLayoutClass = 1838 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1839 } else { 1840 BaseOffsetInLayoutClass = 1841 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); 1842 } 1843 1844 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); 1845 } 1846 } 1847 1848 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( 1849 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { 1850 // Itanium C++ ABI 2.5.2: 1851 // Then come the virtual base virtual tables, also in inheritance graph 1852 // order, and again excluding primary bases (which share virtual tables with 1853 // the classes for which they are primary). 1854 for (const auto &B : RD->bases()) { 1855 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1856 1857 // Check if this base needs a vtable. (If it's virtual, not a primary base 1858 // of some other class, and we haven't visited it before). 1859 if (B.isVirtual() && BaseDecl->isDynamicClass() && 1860 !PrimaryVirtualBases.count(BaseDecl) && 1861 VBases.insert(BaseDecl).second) { 1862 const ASTRecordLayout &MostDerivedClassLayout = 1863 Context.getASTRecordLayout(MostDerivedClass); 1864 CharUnits BaseOffset = 1865 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 1866 1867 const ASTRecordLayout &LayoutClassLayout = 1868 Context.getASTRecordLayout(LayoutClass); 1869 CharUnits BaseOffsetInLayoutClass = 1870 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1871 1872 LayoutPrimaryAndSecondaryVTables( 1873 BaseSubobject(BaseDecl, BaseOffset), 1874 /*BaseIsMorallyVirtual=*/true, 1875 /*BaseIsVirtualInLayoutClass=*/true, 1876 BaseOffsetInLayoutClass); 1877 } 1878 1879 // We only need to check the base for virtual base vtables if it actually 1880 // has virtual bases. 1881 if (BaseDecl->getNumVBases()) 1882 LayoutVTablesForVirtualBases(BaseDecl, VBases); 1883 } 1884 } 1885 1886 /// dumpLayout - Dump the vtable layout. 1887 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { 1888 // FIXME: write more tests that actually use the dumpLayout output to prevent 1889 // ItaniumVTableBuilder regressions. 1890 1891 if (isBuildingConstructorVTable()) { 1892 Out << "Construction vtable for ('"; 1893 MostDerivedClass->printQualifiedName(Out); 1894 Out << "', "; 1895 Out << MostDerivedClassOffset.getQuantity() << ") in '"; 1896 LayoutClass->printQualifiedName(Out); 1897 } else { 1898 Out << "Vtable for '"; 1899 MostDerivedClass->printQualifiedName(Out); 1900 } 1901 Out << "' (" << Components.size() << " entries).\n"; 1902 1903 // Iterate through the address points and insert them into a new map where 1904 // they are keyed by the index and not the base object. 1905 // Since an address point can be shared by multiple subobjects, we use an 1906 // STL multimap. 1907 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; 1908 for (const auto &AP : AddressPoints) { 1909 const BaseSubobject &Base = AP.first; 1910 uint64_t Index = 1911 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; 1912 1913 AddressPointsByIndex.insert(std::make_pair(Index, Base)); 1914 } 1915 1916 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 1917 uint64_t Index = I; 1918 1919 Out << llvm::format("%4d | ", I); 1920 1921 const VTableComponent &Component = Components[I]; 1922 1923 // Dump the component. 1924 switch (Component.getKind()) { 1925 1926 case VTableComponent::CK_VCallOffset: 1927 Out << "vcall_offset (" 1928 << Component.getVCallOffset().getQuantity() 1929 << ")"; 1930 break; 1931 1932 case VTableComponent::CK_VBaseOffset: 1933 Out << "vbase_offset (" 1934 << Component.getVBaseOffset().getQuantity() 1935 << ")"; 1936 break; 1937 1938 case VTableComponent::CK_OffsetToTop: 1939 Out << "offset_to_top (" 1940 << Component.getOffsetToTop().getQuantity() 1941 << ")"; 1942 break; 1943 1944 case VTableComponent::CK_RTTI: 1945 Component.getRTTIDecl()->printQualifiedName(Out); 1946 Out << " RTTI"; 1947 break; 1948 1949 case VTableComponent::CK_FunctionPointer: { 1950 const CXXMethodDecl *MD = Component.getFunctionDecl(); 1951 1952 std::string Str = 1953 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 1954 MD); 1955 Out << Str; 1956 if (MD->isPure()) 1957 Out << " [pure]"; 1958 1959 if (MD->isDeleted()) 1960 Out << " [deleted]"; 1961 1962 ThunkInfo Thunk = VTableThunks.lookup(I); 1963 if (!Thunk.isEmpty()) { 1964 // If this function pointer has a return adjustment, dump it. 1965 if (!Thunk.Return.isEmpty()) { 1966 Out << "\n [return adjustment: "; 1967 Out << Thunk.Return.NonVirtual << " non-virtual"; 1968 1969 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 1970 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 1971 Out << " vbase offset offset"; 1972 } 1973 1974 Out << ']'; 1975 } 1976 1977 // If this function pointer has a 'this' pointer adjustment, dump it. 1978 if (!Thunk.This.isEmpty()) { 1979 Out << "\n [this adjustment: "; 1980 Out << Thunk.This.NonVirtual << " non-virtual"; 1981 1982 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 1983 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 1984 Out << " vcall offset offset"; 1985 } 1986 1987 Out << ']'; 1988 } 1989 } 1990 1991 break; 1992 } 1993 1994 case VTableComponent::CK_CompleteDtorPointer: 1995 case VTableComponent::CK_DeletingDtorPointer: { 1996 bool IsComplete = 1997 Component.getKind() == VTableComponent::CK_CompleteDtorPointer; 1998 1999 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 2000 2001 DD->printQualifiedName(Out); 2002 if (IsComplete) 2003 Out << "() [complete]"; 2004 else 2005 Out << "() [deleting]"; 2006 2007 if (DD->isPure()) 2008 Out << " [pure]"; 2009 2010 ThunkInfo Thunk = VTableThunks.lookup(I); 2011 if (!Thunk.isEmpty()) { 2012 // If this destructor has a 'this' pointer adjustment, dump it. 2013 if (!Thunk.This.isEmpty()) { 2014 Out << "\n [this adjustment: "; 2015 Out << Thunk.This.NonVirtual << " non-virtual"; 2016 2017 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2018 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2019 Out << " vcall offset offset"; 2020 } 2021 2022 Out << ']'; 2023 } 2024 } 2025 2026 break; 2027 } 2028 2029 case VTableComponent::CK_UnusedFunctionPointer: { 2030 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); 2031 2032 std::string Str = 2033 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2034 MD); 2035 Out << "[unused] " << Str; 2036 if (MD->isPure()) 2037 Out << " [pure]"; 2038 } 2039 2040 } 2041 2042 Out << '\n'; 2043 2044 // Dump the next address point. 2045 uint64_t NextIndex = Index + 1; 2046 if (AddressPointsByIndex.count(NextIndex)) { 2047 if (AddressPointsByIndex.count(NextIndex) == 1) { 2048 const BaseSubobject &Base = 2049 AddressPointsByIndex.find(NextIndex)->second; 2050 2051 Out << " -- ("; 2052 Base.getBase()->printQualifiedName(Out); 2053 Out << ", " << Base.getBaseOffset().getQuantity(); 2054 Out << ") vtable address --\n"; 2055 } else { 2056 CharUnits BaseOffset = 2057 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); 2058 2059 // We store the class names in a set to get a stable order. 2060 std::set<std::string> ClassNames; 2061 for (const auto &I : 2062 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { 2063 assert(I.second.getBaseOffset() == BaseOffset && 2064 "Invalid base offset!"); 2065 const CXXRecordDecl *RD = I.second.getBase(); 2066 ClassNames.insert(RD->getQualifiedNameAsString()); 2067 } 2068 2069 for (const std::string &Name : ClassNames) { 2070 Out << " -- (" << Name; 2071 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; 2072 } 2073 } 2074 } 2075 } 2076 2077 Out << '\n'; 2078 2079 if (isBuildingConstructorVTable()) 2080 return; 2081 2082 if (MostDerivedClass->getNumVBases()) { 2083 // We store the virtual base class names and their offsets in a map to get 2084 // a stable order. 2085 2086 std::map<std::string, CharUnits> ClassNamesAndOffsets; 2087 for (const auto &I : VBaseOffsetOffsets) { 2088 std::string ClassName = I.first->getQualifiedNameAsString(); 2089 CharUnits OffsetOffset = I.second; 2090 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); 2091 } 2092 2093 Out << "Virtual base offset offsets for '"; 2094 MostDerivedClass->printQualifiedName(Out); 2095 Out << "' ("; 2096 Out << ClassNamesAndOffsets.size(); 2097 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; 2098 2099 for (const auto &I : ClassNamesAndOffsets) 2100 Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; 2101 2102 Out << "\n"; 2103 } 2104 2105 if (!Thunks.empty()) { 2106 // We store the method names in a map to get a stable order. 2107 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 2108 2109 for (const auto &I : Thunks) { 2110 const CXXMethodDecl *MD = I.first; 2111 std::string MethodName = 2112 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2113 MD); 2114 2115 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 2116 } 2117 2118 for (const auto &I : MethodNamesAndDecls) { 2119 const std::string &MethodName = I.first; 2120 const CXXMethodDecl *MD = I.second; 2121 2122 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 2123 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 2124 assert(LHS.Method == nullptr && RHS.Method == nullptr); 2125 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 2126 }); 2127 2128 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 2129 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 2130 2131 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 2132 const ThunkInfo &Thunk = ThunksVector[I]; 2133 2134 Out << llvm::format("%4d | ", I); 2135 2136 // If this function pointer has a return pointer adjustment, dump it. 2137 if (!Thunk.Return.isEmpty()) { 2138 Out << "return adjustment: " << Thunk.Return.NonVirtual; 2139 Out << " non-virtual"; 2140 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2141 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2142 Out << " vbase offset offset"; 2143 } 2144 2145 if (!Thunk.This.isEmpty()) 2146 Out << "\n "; 2147 } 2148 2149 // If this function pointer has a 'this' pointer adjustment, dump it. 2150 if (!Thunk.This.isEmpty()) { 2151 Out << "this adjustment: "; 2152 Out << Thunk.This.NonVirtual << " non-virtual"; 2153 2154 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2155 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2156 Out << " vcall offset offset"; 2157 } 2158 } 2159 2160 Out << '\n'; 2161 } 2162 2163 Out << '\n'; 2164 } 2165 } 2166 2167 // Compute the vtable indices for all the member functions. 2168 // Store them in a map keyed by the index so we'll get a sorted table. 2169 std::map<uint64_t, std::string> IndicesMap; 2170 2171 for (const auto *MD : MostDerivedClass->methods()) { 2172 // We only want virtual member functions. 2173 if (!ItaniumVTableContext::hasVtableSlot(MD)) 2174 continue; 2175 MD = MD->getCanonicalDecl(); 2176 2177 std::string MethodName = 2178 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2179 MD); 2180 2181 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2182 GlobalDecl GD(DD, Dtor_Complete); 2183 assert(MethodVTableIndices.count(GD)); 2184 uint64_t VTableIndex = MethodVTableIndices[GD]; 2185 IndicesMap[VTableIndex] = MethodName + " [complete]"; 2186 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; 2187 } else { 2188 assert(MethodVTableIndices.count(MD)); 2189 IndicesMap[MethodVTableIndices[MD]] = MethodName; 2190 } 2191 } 2192 2193 // Print the vtable indices for all the member functions. 2194 if (!IndicesMap.empty()) { 2195 Out << "VTable indices for '"; 2196 MostDerivedClass->printQualifiedName(Out); 2197 Out << "' (" << IndicesMap.size() << " entries).\n"; 2198 2199 for (const auto &I : IndicesMap) { 2200 uint64_t VTableIndex = I.first; 2201 const std::string &MethodName = I.second; 2202 2203 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName 2204 << '\n'; 2205 } 2206 } 2207 2208 Out << '\n'; 2209 } 2210 } 2211 2212 static VTableLayout::AddressPointsIndexMapTy 2213 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, 2214 unsigned numVTables) { 2215 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); 2216 2217 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { 2218 const auto &addressPointLoc = it->second; 2219 unsigned vtableIndex = addressPointLoc.VTableIndex; 2220 unsigned addressPoint = addressPointLoc.AddressPointIndex; 2221 if (indexMap[vtableIndex]) { 2222 // Multiple BaseSubobjects can map to the same AddressPointLocation, but 2223 // every vtable index should have a unique address point. 2224 assert(indexMap[vtableIndex] == addressPoint && 2225 "Every vtable index should have a unique address point. Found a " 2226 "vtable that has two different address points."); 2227 } else { 2228 indexMap[vtableIndex] = addressPoint; 2229 } 2230 } 2231 2232 // Note that by this point, not all the address may be initialized if the 2233 // AddressPoints map is empty. This is ok if the map isn't needed. See 2234 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an 2235 // emprt map. 2236 return indexMap; 2237 } 2238 2239 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, 2240 ArrayRef<VTableComponent> VTableComponents, 2241 ArrayRef<VTableThunkTy> VTableThunks, 2242 const AddressPointsMapTy &AddressPoints) 2243 : VTableComponents(VTableComponents), VTableThunks(VTableThunks), 2244 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( 2245 AddressPoints, VTableIndices.size())) { 2246 if (VTableIndices.size() <= 1) 2247 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); 2248 else 2249 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); 2250 2251 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS, 2252 const VTableLayout::VTableThunkTy &RHS) { 2253 assert((LHS.first != RHS.first || LHS.second == RHS.second) && 2254 "Different thunks should have unique indices!"); 2255 return LHS.first < RHS.first; 2256 }); 2257 } 2258 2259 VTableLayout::~VTableLayout() { } 2260 2261 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { 2262 return MD->isVirtual() && !MD->isImmediateFunction(); 2263 } 2264 2265 ItaniumVTableContext::ItaniumVTableContext( 2266 ASTContext &Context, VTableComponentLayout ComponentLayout) 2267 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} 2268 2269 ItaniumVTableContext::~ItaniumVTableContext() {} 2270 2271 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { 2272 GD = GD.getCanonicalDecl(); 2273 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); 2274 if (I != MethodVTableIndices.end()) 2275 return I->second; 2276 2277 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 2278 2279 computeVTableRelatedInformation(RD); 2280 2281 I = MethodVTableIndices.find(GD); 2282 assert(I != MethodVTableIndices.end() && "Did not find index!"); 2283 return I->second; 2284 } 2285 2286 CharUnits 2287 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 2288 const CXXRecordDecl *VBase) { 2289 ClassPairTy ClassPair(RD, VBase); 2290 2291 VirtualBaseClassOffsetOffsetsMapTy::iterator I = 2292 VirtualBaseClassOffsetOffsets.find(ClassPair); 2293 if (I != VirtualBaseClassOffsetOffsets.end()) 2294 return I->second; 2295 2296 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, 2297 BaseSubobject(RD, CharUnits::Zero()), 2298 /*BaseIsVirtual=*/false, 2299 /*OffsetInLayoutClass=*/CharUnits::Zero()); 2300 2301 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2302 // Insert all types. 2303 ClassPairTy ClassPair(RD, I.first); 2304 2305 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2306 } 2307 2308 I = VirtualBaseClassOffsetOffsets.find(ClassPair); 2309 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); 2310 2311 return I->second; 2312 } 2313 2314 static std::unique_ptr<VTableLayout> 2315 CreateVTableLayout(const ItaniumVTableBuilder &Builder) { 2316 SmallVector<VTableLayout::VTableThunkTy, 1> 2317 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 2318 2319 return std::make_unique<VTableLayout>( 2320 Builder.VTableIndices, Builder.vtable_components(), VTableThunks, 2321 Builder.getAddressPoints()); 2322 } 2323 2324 void 2325 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { 2326 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; 2327 2328 // Check if we've computed this information before. 2329 if (Entry) 2330 return; 2331 2332 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), 2333 /*MostDerivedClassIsVirtual=*/false, RD); 2334 Entry = CreateVTableLayout(Builder); 2335 2336 MethodVTableIndices.insert(Builder.vtable_indices_begin(), 2337 Builder.vtable_indices_end()); 2338 2339 // Add the known thunks. 2340 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 2341 2342 // If we don't have the vbase information for this class, insert it. 2343 // getVirtualBaseOffsetOffset will compute it separately without computing 2344 // the rest of the vtable related information. 2345 if (!RD->getNumVBases()) 2346 return; 2347 2348 const CXXRecordDecl *VBase = 2349 RD->vbases_begin()->getType()->getAsCXXRecordDecl(); 2350 2351 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) 2352 return; 2353 2354 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2355 // Insert all types. 2356 ClassPairTy ClassPair(RD, I.first); 2357 2358 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2359 } 2360 } 2361 2362 std::unique_ptr<VTableLayout> 2363 ItaniumVTableContext::createConstructionVTableLayout( 2364 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 2365 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { 2366 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, 2367 MostDerivedClassIsVirtual, LayoutClass); 2368 return CreateVTableLayout(Builder); 2369 } 2370 2371 namespace { 2372 2373 // Vtables in the Microsoft ABI are different from the Itanium ABI. 2374 // 2375 // The main differences are: 2376 // 1. Separate vftable and vbtable. 2377 // 2378 // 2. Each subobject with a vfptr gets its own vftable rather than an address 2379 // point in a single vtable shared between all the subobjects. 2380 // Each vftable is represented by a separate section and virtual calls 2381 // must be done using the vftable which has a slot for the function to be 2382 // called. 2383 // 2384 // 3. Virtual method definitions expect their 'this' parameter to point to the 2385 // first vfptr whose table provides a compatible overridden method. In many 2386 // cases, this permits the original vf-table entry to directly call 2387 // the method instead of passing through a thunk. 2388 // See example before VFTableBuilder::ComputeThisOffset below. 2389 // 2390 // A compatible overridden method is one which does not have a non-trivial 2391 // covariant-return adjustment. 2392 // 2393 // The first vfptr is the one with the lowest offset in the complete-object 2394 // layout of the defining class, and the method definition will subtract 2395 // that constant offset from the parameter value to get the real 'this' 2396 // value. Therefore, if the offset isn't really constant (e.g. if a virtual 2397 // function defined in a virtual base is overridden in a more derived 2398 // virtual base and these bases have a reverse order in the complete 2399 // object), the vf-table may require a this-adjustment thunk. 2400 // 2401 // 4. vftables do not contain new entries for overrides that merely require 2402 // this-adjustment. Together with #3, this keeps vf-tables smaller and 2403 // eliminates the need for this-adjustment thunks in many cases, at the cost 2404 // of often requiring redundant work to adjust the "this" pointer. 2405 // 2406 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. 2407 // Vtordisps are emitted into the class layout if a class has 2408 // a) a user-defined ctor/dtor 2409 // and 2410 // b) a method overriding a method in a virtual base. 2411 // 2412 // To get a better understanding of this code, 2413 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp 2414 2415 class VFTableBuilder { 2416 public: 2417 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 2418 MethodVFTableLocationsTy; 2419 2420 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> 2421 method_locations_range; 2422 2423 private: 2424 /// VTables - Global vtable information. 2425 MicrosoftVTableContext &VTables; 2426 2427 /// Context - The ASTContext which we will use for layout information. 2428 ASTContext &Context; 2429 2430 /// MostDerivedClass - The most derived class for which we're building this 2431 /// vtable. 2432 const CXXRecordDecl *MostDerivedClass; 2433 2434 const ASTRecordLayout &MostDerivedClassLayout; 2435 2436 const VPtrInfo &WhichVFPtr; 2437 2438 /// FinalOverriders - The final overriders of the most derived class. 2439 const FinalOverriders Overriders; 2440 2441 /// Components - The components of the vftable being built. 2442 SmallVector<VTableComponent, 64> Components; 2443 2444 MethodVFTableLocationsTy MethodVFTableLocations; 2445 2446 /// Does this class have an RTTI component? 2447 bool HasRTTIComponent = false; 2448 2449 /// MethodInfo - Contains information about a method in a vtable. 2450 /// (Used for computing 'this' pointer adjustment thunks. 2451 struct MethodInfo { 2452 /// VBTableIndex - The nonzero index in the vbtable that 2453 /// this method's base has, or zero. 2454 const uint64_t VBTableIndex; 2455 2456 /// VFTableIndex - The index in the vftable that this method has. 2457 const uint64_t VFTableIndex; 2458 2459 /// Shadowed - Indicates if this vftable slot is shadowed by 2460 /// a slot for a covariant-return override. If so, it shouldn't be printed 2461 /// or used for vcalls in the most derived class. 2462 bool Shadowed; 2463 2464 /// UsesExtraSlot - Indicates if this vftable slot was created because 2465 /// any of the overridden slots required a return adjusting thunk. 2466 bool UsesExtraSlot; 2467 2468 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, 2469 bool UsesExtraSlot = false) 2470 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), 2471 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} 2472 2473 MethodInfo() 2474 : VBTableIndex(0), VFTableIndex(0), Shadowed(false), 2475 UsesExtraSlot(false) {} 2476 }; 2477 2478 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 2479 2480 /// MethodInfoMap - The information for all methods in the vftable we're 2481 /// currently building. 2482 MethodInfoMapTy MethodInfoMap; 2483 2484 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 2485 2486 /// VTableThunks - The thunks by vftable index in the vftable currently being 2487 /// built. 2488 VTableThunksMapTy VTableThunks; 2489 2490 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 2491 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 2492 2493 /// Thunks - A map that contains all the thunks needed for all methods in the 2494 /// most derived class for which the vftable is currently being built. 2495 ThunksMapTy Thunks; 2496 2497 /// AddThunk - Add a thunk for the given method. 2498 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { 2499 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; 2500 2501 // Check if we have this thunk already. 2502 if (llvm::is_contained(ThunksVector, Thunk)) 2503 return; 2504 2505 ThunksVector.push_back(Thunk); 2506 } 2507 2508 /// ComputeThisOffset - Returns the 'this' argument offset for the given 2509 /// method, relative to the beginning of the MostDerivedClass. 2510 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); 2511 2512 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, 2513 CharUnits ThisOffset, ThisAdjustment &TA); 2514 2515 /// AddMethod - Add a single virtual member function to the vftable 2516 /// components vector. 2517 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { 2518 if (!TI.isEmpty()) { 2519 VTableThunks[Components.size()] = TI; 2520 AddThunk(MD, TI); 2521 } 2522 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2523 assert(TI.Return.isEmpty() && 2524 "Destructor can't have return adjustment!"); 2525 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 2526 } else { 2527 Components.push_back(VTableComponent::MakeFunction(MD)); 2528 } 2529 } 2530 2531 /// AddMethods - Add the methods of this base subobject and the relevant 2532 /// subbases to the vftable we're currently laying out. 2533 void AddMethods(BaseSubobject Base, unsigned BaseDepth, 2534 const CXXRecordDecl *LastVBase, 2535 BasesSetVectorTy &VisitedBases); 2536 2537 void LayoutVFTable() { 2538 // RTTI data goes before all other entries. 2539 if (HasRTTIComponent) 2540 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 2541 2542 BasesSetVectorTy VisitedBases; 2543 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, 2544 VisitedBases); 2545 // Note that it is possible for the vftable to contain only an RTTI 2546 // pointer, if all virtual functions are constewval. 2547 assert(!Components.empty() && "vftable can't be empty"); 2548 2549 assert(MethodVFTableLocations.empty()); 2550 for (const auto &I : MethodInfoMap) { 2551 const CXXMethodDecl *MD = I.first; 2552 const MethodInfo &MI = I.second; 2553 assert(MD == MD->getCanonicalDecl()); 2554 2555 // Skip the methods that the MostDerivedClass didn't override 2556 // and the entries shadowed by return adjusting thunks. 2557 if (MD->getParent() != MostDerivedClass || MI.Shadowed) 2558 continue; 2559 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), 2560 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); 2561 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2562 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; 2563 } else { 2564 MethodVFTableLocations[MD] = Loc; 2565 } 2566 } 2567 } 2568 2569 public: 2570 VFTableBuilder(MicrosoftVTableContext &VTables, 2571 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) 2572 : VTables(VTables), 2573 Context(MostDerivedClass->getASTContext()), 2574 MostDerivedClass(MostDerivedClass), 2575 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), 2576 WhichVFPtr(Which), 2577 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { 2578 // Provide the RTTI component if RTTIData is enabled. If the vftable would 2579 // be available externally, we should not provide the RTTI componenent. It 2580 // is currently impossible to get available externally vftables with either 2581 // dllimport or extern template instantiations, but eventually we may add a 2582 // flag to support additional devirtualization that needs this. 2583 if (Context.getLangOpts().RTTIData) 2584 HasRTTIComponent = true; 2585 2586 LayoutVFTable(); 2587 2588 if (Context.getLangOpts().DumpVTableLayouts) 2589 dumpLayout(llvm::outs()); 2590 } 2591 2592 uint64_t getNumThunks() const { return Thunks.size(); } 2593 2594 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } 2595 2596 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } 2597 2598 method_locations_range vtable_locations() const { 2599 return method_locations_range(MethodVFTableLocations.begin(), 2600 MethodVFTableLocations.end()); 2601 } 2602 2603 ArrayRef<VTableComponent> vtable_components() const { return Components; } 2604 2605 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 2606 return VTableThunks.begin(); 2607 } 2608 2609 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 2610 return VTableThunks.end(); 2611 } 2612 2613 void dumpLayout(raw_ostream &); 2614 }; 2615 2616 } // end namespace 2617 2618 // Let's study one class hierarchy as an example: 2619 // struct A { 2620 // virtual void f(); 2621 // int x; 2622 // }; 2623 // 2624 // struct B : virtual A { 2625 // virtual void f(); 2626 // }; 2627 // 2628 // Record layouts: 2629 // struct A: 2630 // 0 | (A vftable pointer) 2631 // 4 | int x 2632 // 2633 // struct B: 2634 // 0 | (B vbtable pointer) 2635 // 4 | struct A (virtual base) 2636 // 4 | (A vftable pointer) 2637 // 8 | int x 2638 // 2639 // Let's assume we have a pointer to the A part of an object of dynamic type B: 2640 // B b; 2641 // A *a = (A*)&b; 2642 // a->f(); 2643 // 2644 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects 2645 // "this" parameter to point at the A subobject, which is B+4. 2646 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, 2647 // performed as a *static* adjustment. 2648 // 2649 // Interesting thing happens when we alter the relative placement of A and B 2650 // subobjects in a class: 2651 // struct C : virtual B { }; 2652 // 2653 // C c; 2654 // A *a = (A*)&c; 2655 // a->f(); 2656 // 2657 // Respective record layout is: 2658 // 0 | (C vbtable pointer) 2659 // 4 | struct A (virtual base) 2660 // 4 | (A vftable pointer) 2661 // 8 | int x 2662 // 12 | struct B (virtual base) 2663 // 12 | (B vbtable pointer) 2664 // 2665 // The final overrider of f() in class C is still B::f(), so B+4 should be 2666 // passed as "this" to that code. However, "a" points at B-8, so the respective 2667 // vftable entry should hold a thunk that adds 12 to the "this" argument before 2668 // performing a tail call to B::f(). 2669 // 2670 // With this example in mind, we can now calculate the 'this' argument offset 2671 // for the given method, relative to the beginning of the MostDerivedClass. 2672 CharUnits 2673 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { 2674 BasesSetVectorTy Bases; 2675 2676 { 2677 // Find the set of least derived bases that define the given method. 2678 OverriddenMethodsSetTy VisitedOverriddenMethods; 2679 auto InitialOverriddenDefinitionCollector = [&]( 2680 const CXXMethodDecl *OverriddenMD) { 2681 if (OverriddenMD->size_overridden_methods() == 0) 2682 Bases.insert(OverriddenMD->getParent()); 2683 // Don't recurse on this method if we've already collected it. 2684 return VisitedOverriddenMethods.insert(OverriddenMD).second; 2685 }; 2686 visitAllOverriddenMethods(Overrider.Method, 2687 InitialOverriddenDefinitionCollector); 2688 } 2689 2690 // If there are no overrides then 'this' is located 2691 // in the base that defines the method. 2692 if (Bases.size() == 0) 2693 return Overrider.Offset; 2694 2695 CXXBasePaths Paths; 2696 Overrider.Method->getParent()->lookupInBases( 2697 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { 2698 return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); 2699 }, 2700 Paths); 2701 2702 // This will hold the smallest this offset among overridees of MD. 2703 // This implies that an offset of a non-virtual base will dominate an offset 2704 // of a virtual base to potentially reduce the number of thunks required 2705 // in the derived classes that inherit this method. 2706 CharUnits Ret; 2707 bool First = true; 2708 2709 const ASTRecordLayout &OverriderRDLayout = 2710 Context.getASTRecordLayout(Overrider.Method->getParent()); 2711 for (const CXXBasePath &Path : Paths) { 2712 CharUnits ThisOffset = Overrider.Offset; 2713 CharUnits LastVBaseOffset; 2714 2715 // For each path from the overrider to the parents of the overridden 2716 // methods, traverse the path, calculating the this offset in the most 2717 // derived class. 2718 for (const CXXBasePathElement &Element : Path) { 2719 QualType CurTy = Element.Base->getType(); 2720 const CXXRecordDecl *PrevRD = Element.Class, 2721 *CurRD = CurTy->getAsCXXRecordDecl(); 2722 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); 2723 2724 if (Element.Base->isVirtual()) { 2725 // The interesting things begin when you have virtual inheritance. 2726 // The final overrider will use a static adjustment equal to the offset 2727 // of the vbase in the final overrider class. 2728 // For example, if the final overrider is in a vbase B of the most 2729 // derived class and it overrides a method of the B's own vbase A, 2730 // it uses A* as "this". In its prologue, it can cast A* to B* with 2731 // a static offset. This offset is used regardless of the actual 2732 // offset of A from B in the most derived class, requiring an 2733 // this-adjusting thunk in the vftable if A and B are laid out 2734 // differently in the most derived class. 2735 LastVBaseOffset = ThisOffset = 2736 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); 2737 } else { 2738 ThisOffset += Layout.getBaseClassOffset(CurRD); 2739 } 2740 } 2741 2742 if (isa<CXXDestructorDecl>(Overrider.Method)) { 2743 if (LastVBaseOffset.isZero()) { 2744 // If a "Base" class has at least one non-virtual base with a virtual 2745 // destructor, the "Base" virtual destructor will take the address 2746 // of the "Base" subobject as the "this" argument. 2747 ThisOffset = Overrider.Offset; 2748 } else { 2749 // A virtual destructor of a virtual base takes the address of the 2750 // virtual base subobject as the "this" argument. 2751 ThisOffset = LastVBaseOffset; 2752 } 2753 } 2754 2755 if (Ret > ThisOffset || First) { 2756 First = false; 2757 Ret = ThisOffset; 2758 } 2759 } 2760 2761 assert(!First && "Method not found in the given subobject?"); 2762 return Ret; 2763 } 2764 2765 // Things are getting even more complex when the "this" adjustment has to 2766 // use a dynamic offset instead of a static one, or even two dynamic offsets. 2767 // This is sometimes required when a virtual call happens in the middle of 2768 // a non-most-derived class construction or destruction. 2769 // 2770 // Let's take a look at the following example: 2771 // struct A { 2772 // virtual void f(); 2773 // }; 2774 // 2775 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. 2776 // 2777 // struct B : virtual A { 2778 // virtual void f(); 2779 // B() { 2780 // foo(this); 2781 // } 2782 // }; 2783 // 2784 // struct C : virtual B { 2785 // virtual void f(); 2786 // }; 2787 // 2788 // Record layouts for these classes are: 2789 // struct A 2790 // 0 | (A vftable pointer) 2791 // 2792 // struct B 2793 // 0 | (B vbtable pointer) 2794 // 4 | (vtordisp for vbase A) 2795 // 8 | struct A (virtual base) 2796 // 8 | (A vftable pointer) 2797 // 2798 // struct C 2799 // 0 | (C vbtable pointer) 2800 // 4 | (vtordisp for vbase A) 2801 // 8 | struct A (virtual base) // A precedes B! 2802 // 8 | (A vftable pointer) 2803 // 12 | struct B (virtual base) 2804 // 12 | (B vbtable pointer) 2805 // 2806 // When one creates an object of type C, the C constructor: 2807 // - initializes all the vbptrs, then 2808 // - calls the A subobject constructor 2809 // (initializes A's vfptr with an address of A vftable), then 2810 // - calls the B subobject constructor 2811 // (initializes A's vfptr with an address of B vftable and vtordisp for A), 2812 // that in turn calls foo(), then 2813 // - initializes A's vfptr with an address of C vftable and zeroes out the 2814 // vtordisp 2815 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable 2816 // without vtordisp thunks? 2817 // FIXME: how are vtordisp handled in the presence of nooverride/final? 2818 // 2819 // When foo() is called, an object with a layout of class C has a vftable 2820 // referencing B::f() that assumes a B layout, so the "this" adjustments are 2821 // incorrect, unless an extra adjustment is done. This adjustment is called 2822 // "vtordisp adjustment". Vtordisp basically holds the difference between the 2823 // actual location of a vbase in the layout class and the location assumed by 2824 // the vftable of the class being constructed/destructed. Vtordisp is only 2825 // needed if "this" escapes a 2826 // structor (or we can't prove otherwise). 2827 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an 2828 // estimation of a dynamic adjustment] 2829 // 2830 // foo() gets a pointer to the A vbase and doesn't know anything about B or C, 2831 // so it just passes that pointer as "this" in a virtual call. 2832 // If there was no vtordisp, that would just dispatch to B::f(). 2833 // However, B::f() assumes B+8 is passed as "this", 2834 // yet the pointer foo() passes along is B-4 (i.e. C+8). 2835 // An extra adjustment is needed, so we emit a thunk into the B vftable. 2836 // This vtordisp thunk subtracts the value of vtordisp 2837 // from the "this" argument (-12) before making a tailcall to B::f(). 2838 // 2839 // Let's consider an even more complex example: 2840 // struct D : virtual B, virtual C { 2841 // D() { 2842 // foo(this); 2843 // } 2844 // }; 2845 // 2846 // struct D 2847 // 0 | (D vbtable pointer) 2848 // 4 | (vtordisp for vbase A) 2849 // 8 | struct A (virtual base) // A precedes both B and C! 2850 // 8 | (A vftable pointer) 2851 // 12 | struct B (virtual base) // B precedes C! 2852 // 12 | (B vbtable pointer) 2853 // 16 | struct C (virtual base) 2854 // 16 | (C vbtable pointer) 2855 // 2856 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall 2857 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() 2858 // passes along A, which is C-8. The A vtordisp holds 2859 // "D.vbptr[index_of_A] - offset_of_A_in_D" 2860 // and we statically know offset_of_A_in_D, so can get a pointer to D. 2861 // When we know it, we can make an extra vbtable lookup to locate the C vbase 2862 // and one extra static adjustment to calculate the expected value of C+8. 2863 void VFTableBuilder::CalculateVtordispAdjustment( 2864 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, 2865 ThisAdjustment &TA) { 2866 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = 2867 MostDerivedClassLayout.getVBaseOffsetsMap(); 2868 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = 2869 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); 2870 assert(VBaseMapEntry != VBaseMap.end()); 2871 2872 // If there's no vtordisp or the final overrider is defined in the same vbase 2873 // as the initial declaration, we don't need any vtordisp adjustment. 2874 if (!VBaseMapEntry->second.hasVtorDisp() || 2875 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) 2876 return; 2877 2878 // OK, now we know we need to use a vtordisp thunk. 2879 // The implicit vtordisp field is located right before the vbase. 2880 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; 2881 TA.Virtual.Microsoft.VtordispOffset = 2882 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; 2883 2884 // A simple vtordisp thunk will suffice if the final overrider is defined 2885 // in either the most derived class or its non-virtual base. 2886 if (Overrider.Method->getParent() == MostDerivedClass || 2887 !Overrider.VirtualBase) 2888 return; 2889 2890 // Otherwise, we need to do use the dynamic offset of the final overrider 2891 // in order to get "this" adjustment right. 2892 TA.Virtual.Microsoft.VBPtrOffset = 2893 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - 2894 MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); 2895 TA.Virtual.Microsoft.VBOffsetOffset = 2896 Context.getTypeSizeInChars(Context.IntTy).getQuantity() * 2897 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); 2898 2899 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); 2900 } 2901 2902 static void GroupNewVirtualOverloads( 2903 const CXXRecordDecl *RD, 2904 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { 2905 // Put the virtual methods into VirtualMethods in the proper order: 2906 // 1) Group overloads by declaration name. New groups are added to the 2907 // vftable in the order of their first declarations in this class 2908 // (including overrides, non-virtual methods and any other named decl that 2909 // might be nested within the class). 2910 // 2) In each group, new overloads appear in the reverse order of declaration. 2911 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; 2912 SmallVector<MethodGroup, 10> Groups; 2913 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; 2914 VisitedGroupIndicesTy VisitedGroupIndices; 2915 for (const auto *D : RD->decls()) { 2916 const auto *ND = dyn_cast<NamedDecl>(D); 2917 if (!ND) 2918 continue; 2919 VisitedGroupIndicesTy::iterator J; 2920 bool Inserted; 2921 std::tie(J, Inserted) = VisitedGroupIndices.insert( 2922 std::make_pair(ND->getDeclName(), Groups.size())); 2923 if (Inserted) 2924 Groups.push_back(MethodGroup()); 2925 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 2926 if (MicrosoftVTableContext::hasVtableSlot(MD)) 2927 Groups[J->second].push_back(MD->getCanonicalDecl()); 2928 } 2929 2930 for (const MethodGroup &Group : Groups) 2931 VirtualMethods.append(Group.rbegin(), Group.rend()); 2932 } 2933 2934 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { 2935 for (const auto &B : RD->bases()) { 2936 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) 2937 return true; 2938 } 2939 return false; 2940 } 2941 2942 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, 2943 const CXXRecordDecl *LastVBase, 2944 BasesSetVectorTy &VisitedBases) { 2945 const CXXRecordDecl *RD = Base.getBase(); 2946 if (!RD->isPolymorphic()) 2947 return; 2948 2949 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2950 2951 // See if this class expands a vftable of the base we look at, which is either 2952 // the one defined by the vfptr base path or the primary base of the current 2953 // class. 2954 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; 2955 CharUnits NextBaseOffset; 2956 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { 2957 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; 2958 if (isDirectVBase(NextBase, RD)) { 2959 NextLastVBase = NextBase; 2960 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); 2961 } else { 2962 NextBaseOffset = 2963 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); 2964 } 2965 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 2966 assert(!Layout.isPrimaryBaseVirtual() && 2967 "No primary virtual bases in this ABI"); 2968 NextBase = PrimaryBase; 2969 NextBaseOffset = Base.getBaseOffset(); 2970 } 2971 2972 if (NextBase) { 2973 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, 2974 NextLastVBase, VisitedBases); 2975 if (!VisitedBases.insert(NextBase)) 2976 llvm_unreachable("Found a duplicate primary base!"); 2977 } 2978 2979 SmallVector<const CXXMethodDecl*, 10> VirtualMethods; 2980 // Put virtual methods in the proper order. 2981 GroupNewVirtualOverloads(RD, VirtualMethods); 2982 2983 // Now go through all virtual member functions and add them to the current 2984 // vftable. This is done by 2985 // - replacing overridden methods in their existing slots, as long as they 2986 // don't require return adjustment; calculating This adjustment if needed. 2987 // - adding new slots for methods of the current base not present in any 2988 // sub-bases; 2989 // - adding new slots for methods that require Return adjustment. 2990 // We keep track of the methods visited in the sub-bases in MethodInfoMap. 2991 for (const CXXMethodDecl *MD : VirtualMethods) { 2992 FinalOverriders::OverriderInfo FinalOverrider = 2993 Overriders.getOverrider(MD, Base.getBaseOffset()); 2994 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; 2995 const CXXMethodDecl *OverriddenMD = 2996 FindNearestOverriddenMethod(MD, VisitedBases); 2997 2998 ThisAdjustment ThisAdjustmentOffset; 2999 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; 3000 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); 3001 ThisAdjustmentOffset.NonVirtual = 3002 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); 3003 if ((OverriddenMD || FinalOverriderMD != MD) && 3004 WhichVFPtr.getVBaseWithVPtr()) 3005 CalculateVtordispAdjustment(FinalOverrider, ThisOffset, 3006 ThisAdjustmentOffset); 3007 3008 unsigned VBIndex = 3009 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; 3010 3011 if (OverriddenMD) { 3012 // If MD overrides anything in this vftable, we need to update the 3013 // entries. 3014 MethodInfoMapTy::iterator OverriddenMDIterator = 3015 MethodInfoMap.find(OverriddenMD); 3016 3017 // If the overridden method went to a different vftable, skip it. 3018 if (OverriddenMDIterator == MethodInfoMap.end()) 3019 continue; 3020 3021 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; 3022 3023 VBIndex = OverriddenMethodInfo.VBTableIndex; 3024 3025 // Let's check if the overrider requires any return adjustments. 3026 // We must create a new slot if the MD's return type is not trivially 3027 // convertible to the OverriddenMD's one. 3028 // Once a chain of method overrides adds a return adjusting vftable slot, 3029 // all subsequent overrides will also use an extra method slot. 3030 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( 3031 Context, MD, OverriddenMD).isEmpty() || 3032 OverriddenMethodInfo.UsesExtraSlot; 3033 3034 if (!ReturnAdjustingThunk) { 3035 // No return adjustment needed - just replace the overridden method info 3036 // with the current info. 3037 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); 3038 MethodInfoMap.erase(OverriddenMDIterator); 3039 3040 assert(!MethodInfoMap.count(MD) && 3041 "Should not have method info for this method yet!"); 3042 MethodInfoMap.insert(std::make_pair(MD, MI)); 3043 continue; 3044 } 3045 3046 // In case we need a return adjustment, we'll add a new slot for 3047 // the overrider. Mark the overridden method as shadowed by the new slot. 3048 OverriddenMethodInfo.Shadowed = true; 3049 3050 // Force a special name mangling for a return-adjusting thunk 3051 // unless the method is the final overrider without this adjustment. 3052 ForceReturnAdjustmentMangling = 3053 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); 3054 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || 3055 MD->size_overridden_methods()) { 3056 // Skip methods that don't belong to the vftable of the current class, 3057 // e.g. each method that wasn't seen in any of the visited sub-bases 3058 // but overrides multiple methods of other sub-bases. 3059 continue; 3060 } 3061 3062 // If we got here, MD is a method not seen in any of the sub-bases or 3063 // it requires return adjustment. Insert the method info for this method. 3064 MethodInfo MI(VBIndex, 3065 HasRTTIComponent ? Components.size() - 1 : Components.size(), 3066 ReturnAdjustingThunk); 3067 3068 assert(!MethodInfoMap.count(MD) && 3069 "Should not have method info for this method yet!"); 3070 MethodInfoMap.insert(std::make_pair(MD, MI)); 3071 3072 // Check if this overrider needs a return adjustment. 3073 // We don't want to do this for pure virtual member functions. 3074 BaseOffset ReturnAdjustmentOffset; 3075 ReturnAdjustment ReturnAdjustment; 3076 if (!FinalOverriderMD->isPure()) { 3077 ReturnAdjustmentOffset = 3078 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); 3079 } 3080 if (!ReturnAdjustmentOffset.isEmpty()) { 3081 ForceReturnAdjustmentMangling = true; 3082 ReturnAdjustment.NonVirtual = 3083 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); 3084 if (ReturnAdjustmentOffset.VirtualBase) { 3085 const ASTRecordLayout &DerivedLayout = 3086 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); 3087 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = 3088 DerivedLayout.getVBPtrOffset().getQuantity(); 3089 ReturnAdjustment.Virtual.Microsoft.VBIndex = 3090 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, 3091 ReturnAdjustmentOffset.VirtualBase); 3092 } 3093 } 3094 3095 AddMethod(FinalOverriderMD, 3096 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, 3097 ForceReturnAdjustmentMangling ? MD : nullptr)); 3098 } 3099 } 3100 3101 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { 3102 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) { 3103 Out << "'"; 3104 Elem->printQualifiedName(Out); 3105 Out << "' in "; 3106 } 3107 } 3108 3109 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, 3110 bool ContinueFirstLine) { 3111 const ReturnAdjustment &R = TI.Return; 3112 bool Multiline = false; 3113 const char *LinePrefix = "\n "; 3114 if (!R.isEmpty() || TI.Method) { 3115 if (!ContinueFirstLine) 3116 Out << LinePrefix; 3117 Out << "[return adjustment (to type '" 3118 << TI.Method->getReturnType().getCanonicalType() << "'): "; 3119 if (R.Virtual.Microsoft.VBPtrOffset) 3120 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; 3121 if (R.Virtual.Microsoft.VBIndex) 3122 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; 3123 Out << R.NonVirtual << " non-virtual]"; 3124 Multiline = true; 3125 } 3126 3127 const ThisAdjustment &T = TI.This; 3128 if (!T.isEmpty()) { 3129 if (Multiline || !ContinueFirstLine) 3130 Out << LinePrefix; 3131 Out << "[this adjustment: "; 3132 if (!TI.This.Virtual.isEmpty()) { 3133 assert(T.Virtual.Microsoft.VtordispOffset < 0); 3134 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; 3135 if (T.Virtual.Microsoft.VBPtrOffset) { 3136 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset 3137 << " to the left,"; 3138 assert(T.Virtual.Microsoft.VBOffsetOffset > 0); 3139 Out << LinePrefix << " vboffset at " 3140 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; 3141 } 3142 } 3143 Out << T.NonVirtual << " non-virtual]"; 3144 } 3145 } 3146 3147 void VFTableBuilder::dumpLayout(raw_ostream &Out) { 3148 Out << "VFTable for "; 3149 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out); 3150 Out << "'"; 3151 MostDerivedClass->printQualifiedName(Out); 3152 Out << "' (" << Components.size() 3153 << (Components.size() == 1 ? " entry" : " entries") << ").\n"; 3154 3155 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 3156 Out << llvm::format("%4d | ", I); 3157 3158 const VTableComponent &Component = Components[I]; 3159 3160 // Dump the component. 3161 switch (Component.getKind()) { 3162 case VTableComponent::CK_RTTI: 3163 Component.getRTTIDecl()->printQualifiedName(Out); 3164 Out << " RTTI"; 3165 break; 3166 3167 case VTableComponent::CK_FunctionPointer: { 3168 const CXXMethodDecl *MD = Component.getFunctionDecl(); 3169 3170 // FIXME: Figure out how to print the real thunk type, since they can 3171 // differ in the return type. 3172 std::string Str = PredefinedExpr::ComputeName( 3173 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3174 Out << Str; 3175 if (MD->isPure()) 3176 Out << " [pure]"; 3177 3178 if (MD->isDeleted()) 3179 Out << " [deleted]"; 3180 3181 ThunkInfo Thunk = VTableThunks.lookup(I); 3182 if (!Thunk.isEmpty()) 3183 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3184 3185 break; 3186 } 3187 3188 case VTableComponent::CK_DeletingDtorPointer: { 3189 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 3190 3191 DD->printQualifiedName(Out); 3192 Out << "() [scalar deleting]"; 3193 3194 if (DD->isPure()) 3195 Out << " [pure]"; 3196 3197 ThunkInfo Thunk = VTableThunks.lookup(I); 3198 if (!Thunk.isEmpty()) { 3199 assert(Thunk.Return.isEmpty() && 3200 "No return adjustment needed for destructors!"); 3201 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3202 } 3203 3204 break; 3205 } 3206 3207 default: 3208 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3209 unsigned DiagID = Diags.getCustomDiagID( 3210 DiagnosticsEngine::Error, 3211 "Unexpected vftable component type %0 for component number %1"); 3212 Diags.Report(MostDerivedClass->getLocation(), DiagID) 3213 << I << Component.getKind(); 3214 } 3215 3216 Out << '\n'; 3217 } 3218 3219 Out << '\n'; 3220 3221 if (!Thunks.empty()) { 3222 // We store the method names in a map to get a stable order. 3223 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 3224 3225 for (const auto &I : Thunks) { 3226 const CXXMethodDecl *MD = I.first; 3227 std::string MethodName = PredefinedExpr::ComputeName( 3228 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3229 3230 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 3231 } 3232 3233 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { 3234 const std::string &MethodName = MethodNameAndDecl.first; 3235 const CXXMethodDecl *MD = MethodNameAndDecl.second; 3236 3237 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 3238 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS, 3239 const ThunkInfo &RHS) { 3240 // Keep different thunks with the same adjustments in the order they 3241 // were put into the vector. 3242 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 3243 }); 3244 3245 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 3246 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 3247 3248 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 3249 const ThunkInfo &Thunk = ThunksVector[I]; 3250 3251 Out << llvm::format("%4d | ", I); 3252 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); 3253 Out << '\n'; 3254 } 3255 3256 Out << '\n'; 3257 } 3258 } 3259 3260 Out.flush(); 3261 } 3262 3263 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, 3264 ArrayRef<const CXXRecordDecl *> B) { 3265 for (const CXXRecordDecl *Decl : B) { 3266 if (A.count(Decl)) 3267 return true; 3268 } 3269 return false; 3270 } 3271 3272 static bool rebucketPaths(VPtrInfoVector &Paths); 3273 3274 /// Produces MSVC-compatible vbtable data. The symbols produced by this 3275 /// algorithm match those produced by MSVC 2012 and newer, which is different 3276 /// from MSVC 2010. 3277 /// 3278 /// MSVC 2012 appears to minimize the vbtable names using the following 3279 /// algorithm. First, walk the class hierarchy in the usual order, depth first, 3280 /// left to right, to find all of the subobjects which contain a vbptr field. 3281 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each 3282 /// record with a vbptr creates an initially empty path. 3283 /// 3284 /// To combine paths from child nodes, the paths are compared to check for 3285 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of 3286 /// components in the same order. Each group of ambiguous paths is extended by 3287 /// appending the class of the base from which it came. If the current class 3288 /// node produced an ambiguous path, its path is extended with the current class. 3289 /// After extending paths, MSVC again checks for ambiguity, and extends any 3290 /// ambiguous path which wasn't already extended. Because each node yields an 3291 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once 3292 /// to produce an unambiguous set of paths. 3293 /// 3294 /// TODO: Presumably vftables use the same algorithm. 3295 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, 3296 const CXXRecordDecl *RD, 3297 VPtrInfoVector &Paths) { 3298 assert(Paths.empty()); 3299 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3300 3301 // Base case: this subobject has its own vptr. 3302 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) 3303 Paths.push_back(std::make_unique<VPtrInfo>(RD)); 3304 3305 // Recursive case: get all the vbtables from our bases and remove anything 3306 // that shares a virtual base. 3307 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; 3308 for (const auto &B : RD->bases()) { 3309 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 3310 if (B.isVirtual() && VBasesSeen.count(Base)) 3311 continue; 3312 3313 if (!Base->isDynamicClass()) 3314 continue; 3315 3316 const VPtrInfoVector &BasePaths = 3317 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); 3318 3319 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { 3320 // Don't include the path if it goes through a virtual base that we've 3321 // already included. 3322 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) 3323 continue; 3324 3325 // Copy the path and adjust it as necessary. 3326 auto P = std::make_unique<VPtrInfo>(*BaseInfo); 3327 3328 // We mangle Base into the path if the path would've been ambiguous and it 3329 // wasn't already extended with Base. 3330 if (P->MangledPath.empty() || P->MangledPath.back() != Base) 3331 P->NextBaseToMangle = Base; 3332 3333 // Keep track of which vtable the derived class is going to extend with 3334 // new methods or bases. We append to either the vftable of our primary 3335 // base, or the first non-virtual base that has a vbtable. 3336 if (P->ObjectWithVPtr == Base && 3337 Base == (ForVBTables ? Layout.getBaseSharingVBPtr() 3338 : Layout.getPrimaryBase())) 3339 P->ObjectWithVPtr = RD; 3340 3341 // Keep track of the full adjustment from the MDC to this vtable. The 3342 // adjustment is captured by an optional vbase and a non-virtual offset. 3343 if (B.isVirtual()) 3344 P->ContainingVBases.push_back(Base); 3345 else if (P->ContainingVBases.empty()) 3346 P->NonVirtualOffset += Layout.getBaseClassOffset(Base); 3347 3348 // Update the full offset in the MDC. 3349 P->FullOffsetInMDC = P->NonVirtualOffset; 3350 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) 3351 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); 3352 3353 Paths.push_back(std::move(P)); 3354 } 3355 3356 if (B.isVirtual()) 3357 VBasesSeen.insert(Base); 3358 3359 // After visiting any direct base, we've transitively visited all of its 3360 // morally virtual bases. 3361 for (const auto &VB : Base->vbases()) 3362 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); 3363 } 3364 3365 // Sort the paths into buckets, and if any of them are ambiguous, extend all 3366 // paths in ambiguous buckets. 3367 bool Changed = true; 3368 while (Changed) 3369 Changed = rebucketPaths(Paths); 3370 } 3371 3372 static bool extendPath(VPtrInfo &P) { 3373 if (P.NextBaseToMangle) { 3374 P.MangledPath.push_back(P.NextBaseToMangle); 3375 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. 3376 return true; 3377 } 3378 return false; 3379 } 3380 3381 static bool rebucketPaths(VPtrInfoVector &Paths) { 3382 // What we're essentially doing here is bucketing together ambiguous paths. 3383 // Any bucket with more than one path in it gets extended by NextBase, which 3384 // is usually the direct base of the inherited the vbptr. This code uses a 3385 // sorted vector to implement a multiset to form the buckets. Note that the 3386 // ordering is based on pointers, but it doesn't change our output order. The 3387 // current algorithm is designed to match MSVC 2012's names. 3388 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted( 3389 llvm::make_pointee_range(Paths)); 3390 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) { 3391 return LHS.MangledPath < RHS.MangledPath; 3392 }); 3393 bool Changed = false; 3394 for (size_t I = 0, E = PathsSorted.size(); I != E;) { 3395 // Scan forward to find the end of the bucket. 3396 size_t BucketStart = I; 3397 do { 3398 ++I; 3399 } while (I != E && 3400 PathsSorted[BucketStart].get().MangledPath == 3401 PathsSorted[I].get().MangledPath); 3402 3403 // If this bucket has multiple paths, extend them all. 3404 if (I - BucketStart > 1) { 3405 for (size_t II = BucketStart; II != I; ++II) 3406 Changed |= extendPath(PathsSorted[II]); 3407 assert(Changed && "no paths were extended to fix ambiguity"); 3408 } 3409 } 3410 return Changed; 3411 } 3412 3413 MicrosoftVTableContext::~MicrosoftVTableContext() {} 3414 3415 namespace { 3416 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, 3417 llvm::DenseSet<BaseSubobject>> FullPathTy; 3418 } 3419 3420 // This recursive function finds all paths from a subobject centered at 3421 // (RD, Offset) to the subobject located at IntroducingObject. 3422 static void findPathsToSubobject(ASTContext &Context, 3423 const ASTRecordLayout &MostDerivedLayout, 3424 const CXXRecordDecl *RD, CharUnits Offset, 3425 BaseSubobject IntroducingObject, 3426 FullPathTy &FullPath, 3427 std::list<FullPathTy> &Paths) { 3428 if (BaseSubobject(RD, Offset) == IntroducingObject) { 3429 Paths.push_back(FullPath); 3430 return; 3431 } 3432 3433 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3434 3435 for (const CXXBaseSpecifier &BS : RD->bases()) { 3436 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); 3437 CharUnits NewOffset = BS.isVirtual() 3438 ? MostDerivedLayout.getVBaseClassOffset(Base) 3439 : Offset + Layout.getBaseClassOffset(Base); 3440 FullPath.insert(BaseSubobject(Base, NewOffset)); 3441 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, 3442 IntroducingObject, FullPath, Paths); 3443 FullPath.pop_back(); 3444 } 3445 } 3446 3447 // Return the paths which are not subsets of other paths. 3448 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { 3449 FullPaths.remove_if([&](const FullPathTy &SpecificPath) { 3450 for (const FullPathTy &OtherPath : FullPaths) { 3451 if (&SpecificPath == &OtherPath) 3452 continue; 3453 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) { 3454 return OtherPath.contains(BSO); 3455 })) { 3456 return true; 3457 } 3458 } 3459 return false; 3460 }); 3461 } 3462 3463 static CharUnits getOffsetOfFullPath(ASTContext &Context, 3464 const CXXRecordDecl *RD, 3465 const FullPathTy &FullPath) { 3466 const ASTRecordLayout &MostDerivedLayout = 3467 Context.getASTRecordLayout(RD); 3468 CharUnits Offset = CharUnits::fromQuantity(-1); 3469 for (const BaseSubobject &BSO : FullPath) { 3470 const CXXRecordDecl *Base = BSO.getBase(); 3471 // The first entry in the path is always the most derived record, skip it. 3472 if (Base == RD) { 3473 assert(Offset.getQuantity() == -1); 3474 Offset = CharUnits::Zero(); 3475 continue; 3476 } 3477 assert(Offset.getQuantity() != -1); 3478 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3479 // While we know which base has to be traversed, we don't know if that base 3480 // was a virtual base. 3481 const CXXBaseSpecifier *BaseBS = std::find_if( 3482 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { 3483 return BS.getType()->getAsCXXRecordDecl() == Base; 3484 }); 3485 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) 3486 : Offset + Layout.getBaseClassOffset(Base); 3487 RD = Base; 3488 } 3489 return Offset; 3490 } 3491 3492 // We want to select the path which introduces the most covariant overrides. If 3493 // two paths introduce overrides which the other path doesn't contain, issue a 3494 // diagnostic. 3495 static const FullPathTy *selectBestPath(ASTContext &Context, 3496 const CXXRecordDecl *RD, 3497 const VPtrInfo &Info, 3498 std::list<FullPathTy> &FullPaths) { 3499 // Handle some easy cases first. 3500 if (FullPaths.empty()) 3501 return nullptr; 3502 if (FullPaths.size() == 1) 3503 return &FullPaths.front(); 3504 3505 const FullPathTy *BestPath = nullptr; 3506 typedef std::set<const CXXMethodDecl *> OverriderSetTy; 3507 OverriderSetTy LastOverrides; 3508 for (const FullPathTy &SpecificPath : FullPaths) { 3509 assert(!SpecificPath.empty()); 3510 OverriderSetTy CurrentOverrides; 3511 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); 3512 // Find the distance from the start of the path to the subobject with the 3513 // VPtr. 3514 CharUnits BaseOffset = 3515 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); 3516 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); 3517 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { 3518 if (!MicrosoftVTableContext::hasVtableSlot(MD)) 3519 continue; 3520 FinalOverriders::OverriderInfo OI = 3521 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); 3522 const CXXMethodDecl *OverridingMethod = OI.Method; 3523 // Only overriders which have a return adjustment introduce problematic 3524 // thunks. 3525 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) 3526 .isEmpty()) 3527 continue; 3528 // It's possible that the overrider isn't in this path. If so, skip it 3529 // because this path didn't introduce it. 3530 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); 3531 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) { 3532 return BSO.getBase() == OverridingParent; 3533 })) 3534 continue; 3535 CurrentOverrides.insert(OverridingMethod); 3536 } 3537 OverriderSetTy NewOverrides = 3538 llvm::set_difference(CurrentOverrides, LastOverrides); 3539 if (NewOverrides.empty()) 3540 continue; 3541 OverriderSetTy MissingOverrides = 3542 llvm::set_difference(LastOverrides, CurrentOverrides); 3543 if (MissingOverrides.empty()) { 3544 // This path is a strict improvement over the last path, let's use it. 3545 BestPath = &SpecificPath; 3546 std::swap(CurrentOverrides, LastOverrides); 3547 } else { 3548 // This path introduces an overrider with a conflicting covariant thunk. 3549 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3550 const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); 3551 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); 3552 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) 3553 << RD; 3554 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) 3555 << CovariantMD; 3556 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) 3557 << ConflictMD; 3558 } 3559 } 3560 // Go with the path that introduced the most covariant overrides. If there is 3561 // no such path, pick the first path. 3562 return BestPath ? BestPath : &FullPaths.front(); 3563 } 3564 3565 static void computeFullPathsForVFTables(ASTContext &Context, 3566 const CXXRecordDecl *RD, 3567 VPtrInfoVector &Paths) { 3568 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); 3569 FullPathTy FullPath; 3570 std::list<FullPathTy> FullPaths; 3571 for (const std::unique_ptr<VPtrInfo>& Info : Paths) { 3572 findPathsToSubobject( 3573 Context, MostDerivedLayout, RD, CharUnits::Zero(), 3574 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, 3575 FullPaths); 3576 FullPath.clear(); 3577 removeRedundantPaths(FullPaths); 3578 Info->PathToIntroducingObject.clear(); 3579 if (const FullPathTy *BestPath = 3580 selectBestPath(Context, RD, *Info, FullPaths)) 3581 for (const BaseSubobject &BSO : *BestPath) 3582 Info->PathToIntroducingObject.push_back(BSO.getBase()); 3583 FullPaths.clear(); 3584 } 3585 } 3586 3587 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, 3588 const MethodVFTableLocation &LHS, 3589 const MethodVFTableLocation &RHS) { 3590 CharUnits L = LHS.VFPtrOffset; 3591 CharUnits R = RHS.VFPtrOffset; 3592 if (LHS.VBase) 3593 L += Layout.getVBaseClassOffset(LHS.VBase); 3594 if (RHS.VBase) 3595 R += Layout.getVBaseClassOffset(RHS.VBase); 3596 return L < R; 3597 } 3598 3599 void MicrosoftVTableContext::computeVTableRelatedInformation( 3600 const CXXRecordDecl *RD) { 3601 assert(RD->isDynamicClass()); 3602 3603 // Check if we've computed this information before. 3604 if (VFPtrLocations.count(RD)) 3605 return; 3606 3607 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; 3608 3609 { 3610 auto VFPtrs = std::make_unique<VPtrInfoVector>(); 3611 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); 3612 computeFullPathsForVFTables(Context, RD, *VFPtrs); 3613 VFPtrLocations[RD] = std::move(VFPtrs); 3614 } 3615 3616 MethodVFTableLocationsTy NewMethodLocations; 3617 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { 3618 VFTableBuilder Builder(*this, RD, *VFPtr); 3619 3620 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); 3621 assert(VFTableLayouts.count(id) == 0); 3622 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( 3623 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 3624 VFTableLayouts[id] = std::make_unique<VTableLayout>( 3625 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks, 3626 EmptyAddressPointsMap); 3627 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 3628 3629 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3630 for (const auto &Loc : Builder.vtable_locations()) { 3631 auto Insert = NewMethodLocations.insert(Loc); 3632 if (!Insert.second) { 3633 const MethodVFTableLocation &NewLoc = Loc.second; 3634 MethodVFTableLocation &OldLoc = Insert.first->second; 3635 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc)) 3636 OldLoc = NewLoc; 3637 } 3638 } 3639 } 3640 3641 MethodVFTableLocations.insert(NewMethodLocations.begin(), 3642 NewMethodLocations.end()); 3643 if (Context.getLangOpts().DumpVTableLayouts) 3644 dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); 3645 } 3646 3647 void MicrosoftVTableContext::dumpMethodLocations( 3648 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, 3649 raw_ostream &Out) { 3650 // Compute the vtable indices for all the member functions. 3651 // Store them in a map keyed by the location so we'll get a sorted table. 3652 std::map<MethodVFTableLocation, std::string> IndicesMap; 3653 bool HasNonzeroOffset = false; 3654 3655 for (const auto &I : NewMethods) { 3656 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); 3657 assert(hasVtableSlot(MD)); 3658 3659 std::string MethodName = PredefinedExpr::ComputeName( 3660 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3661 3662 if (isa<CXXDestructorDecl>(MD)) { 3663 IndicesMap[I.second] = MethodName + " [scalar deleting]"; 3664 } else { 3665 IndicesMap[I.second] = MethodName; 3666 } 3667 3668 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) 3669 HasNonzeroOffset = true; 3670 } 3671 3672 // Print the vtable indices for all the member functions. 3673 if (!IndicesMap.empty()) { 3674 Out << "VFTable indices for "; 3675 Out << "'"; 3676 RD->printQualifiedName(Out); 3677 Out << "' (" << IndicesMap.size() 3678 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; 3679 3680 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); 3681 uint64_t LastVBIndex = 0; 3682 for (const auto &I : IndicesMap) { 3683 CharUnits VFPtrOffset = I.first.VFPtrOffset; 3684 uint64_t VBIndex = I.first.VBTableIndex; 3685 if (HasNonzeroOffset && 3686 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { 3687 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); 3688 Out << " -- accessible via "; 3689 if (VBIndex) 3690 Out << "vbtable index " << VBIndex << ", "; 3691 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; 3692 LastVFPtrOffset = VFPtrOffset; 3693 LastVBIndex = VBIndex; 3694 } 3695 3696 uint64_t VTableIndex = I.first.Index; 3697 const std::string &MethodName = I.second; 3698 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; 3699 } 3700 Out << '\n'; 3701 } 3702 3703 Out.flush(); 3704 } 3705 3706 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( 3707 const CXXRecordDecl *RD) { 3708 VirtualBaseInfo *VBI; 3709 3710 { 3711 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, 3712 // as it may be modified and rehashed under us. 3713 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; 3714 if (Entry) 3715 return *Entry; 3716 Entry = std::make_unique<VirtualBaseInfo>(); 3717 VBI = Entry.get(); 3718 } 3719 3720 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); 3721 3722 // First, see if the Derived class shared the vbptr with a non-virtual base. 3723 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3724 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { 3725 // If the Derived class shares the vbptr with a non-virtual base, the shared 3726 // virtual bases come first so that the layout is the same. 3727 const VirtualBaseInfo &BaseInfo = 3728 computeVBTableRelatedInformation(VBPtrBase); 3729 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(), 3730 BaseInfo.VBTableIndices.end()); 3731 } 3732 3733 // New vbases are added to the end of the vbtable. 3734 // Skip the self entry and vbases visited in the non-virtual base, if any. 3735 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); 3736 for (const auto &VB : RD->vbases()) { 3737 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); 3738 if (!VBI->VBTableIndices.count(CurVBase)) 3739 VBI->VBTableIndices[CurVBase] = VBTableIndex++; 3740 } 3741 3742 return *VBI; 3743 } 3744 3745 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, 3746 const CXXRecordDecl *VBase) { 3747 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived); 3748 assert(VBInfo.VBTableIndices.count(VBase)); 3749 return VBInfo.VBTableIndices.find(VBase)->second; 3750 } 3751 3752 const VPtrInfoVector & 3753 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { 3754 return computeVBTableRelatedInformation(RD).VBPtrPaths; 3755 } 3756 3757 const VPtrInfoVector & 3758 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { 3759 computeVTableRelatedInformation(RD); 3760 3761 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); 3762 return *VFPtrLocations[RD]; 3763 } 3764 3765 const VTableLayout & 3766 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, 3767 CharUnits VFPtrOffset) { 3768 computeVTableRelatedInformation(RD); 3769 3770 VFTableIdTy id(RD, VFPtrOffset); 3771 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); 3772 return *VFTableLayouts[id]; 3773 } 3774 3775 MethodVFTableLocation 3776 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { 3777 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && 3778 "Only use this method for virtual methods or dtors"); 3779 if (isa<CXXDestructorDecl>(GD.getDecl())) 3780 assert(GD.getDtorType() == Dtor_Deleting); 3781 3782 GD = GD.getCanonicalDecl(); 3783 3784 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); 3785 if (I != MethodVFTableLocations.end()) 3786 return I->second; 3787 3788 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 3789 3790 computeVTableRelatedInformation(RD); 3791 3792 I = MethodVFTableLocations.find(GD); 3793 assert(I != MethodVFTableLocations.end() && "Did not find index!"); 3794 return I->second; 3795 } 3796