xref: /freebsd/contrib/llvm-project/clang/lib/AST/VTableBuilder.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
26 
27 using namespace clang;
28 
29 #define DUMP_OVERRIDERS 0
30 
31 namespace {
32 
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36   /// DerivedClass - The derived class.
37   const CXXRecordDecl *DerivedClass;
38 
39   /// VirtualBase - If the path from the derived class to the base class
40   /// involves virtual base classes, this holds the declaration of the last
41   /// virtual base in this path (i.e. closest to the base class).
42   const CXXRecordDecl *VirtualBase;
43 
44   /// NonVirtualOffset - The offset from the derived class to the base class.
45   /// (Or the offset from the virtual base class to the base class, if the
46   /// path from the derived class to the base class involves a virtual base
47   /// class.
48   CharUnits NonVirtualOffset;
49 
50   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51                  NonVirtualOffset(CharUnits::Zero()) { }
52   BaseOffset(const CXXRecordDecl *DerivedClass,
53              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55     NonVirtualOffset(NonVirtualOffset) { }
56 
57   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58 };
59 
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64   /// OverriderInfo - Information about a final overrider.
65   struct OverriderInfo {
66     /// Method - The method decl of the overrider.
67     const CXXMethodDecl *Method;
68 
69     /// VirtualBase - The virtual base class subobject of this overrider.
70     /// Note that this records the closest derived virtual base class subobject.
71     const CXXRecordDecl *VirtualBase;
72 
73     /// Offset - the base offset of the overrider's parent in the layout class.
74     CharUnits Offset;
75 
76     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77                       Offset(CharUnits::Zero()) { }
78   };
79 
80 private:
81   /// MostDerivedClass - The most derived class for which the final overriders
82   /// are stored.
83   const CXXRecordDecl *MostDerivedClass;
84 
85   /// MostDerivedClassOffset - If we're building final overriders for a
86   /// construction vtable, this holds the offset from the layout class to the
87   /// most derived class.
88   const CharUnits MostDerivedClassOffset;
89 
90   /// LayoutClass - The class we're using for layout information. Will be
91   /// different than the most derived class if the final overriders are for a
92   /// construction vtable.
93   const CXXRecordDecl *LayoutClass;
94 
95   ASTContext &Context;
96 
97   /// MostDerivedClassLayout - the AST record layout of the most derived class.
98   const ASTRecordLayout &MostDerivedClassLayout;
99 
100   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101   /// in a base subobject.
102   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103 
104   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105                          OverriderInfo> OverridersMapTy;
106 
107   /// OverridersMap - The final overriders for all virtual member functions of
108   /// all the base subobjects of the most derived class.
109   OverridersMapTy OverridersMap;
110 
111   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112   /// as a record decl and a subobject number) and its offsets in the most
113   /// derived class as well as the layout class.
114   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115                          CharUnits> SubobjectOffsetMapTy;
116 
117   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118 
119   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120   /// given base.
121   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122                           CharUnits OffsetInLayoutClass,
123                           SubobjectOffsetMapTy &SubobjectOffsets,
124                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125                           SubobjectCountMapTy &SubobjectCounts);
126 
127   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128 
129   /// dump - dump the final overriders for a base subobject, and all its direct
130   /// and indirect base subobjects.
131   void dump(raw_ostream &Out, BaseSubobject Base,
132             VisitedVirtualBasesSetTy& VisitedVirtualBases);
133 
134 public:
135   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136                   CharUnits MostDerivedClassOffset,
137                   const CXXRecordDecl *LayoutClass);
138 
139   /// getOverrider - Get the final overrider for the given method declaration in
140   /// the subobject with the given base offset.
141   OverriderInfo getOverrider(const CXXMethodDecl *MD,
142                              CharUnits BaseOffset) const {
143     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144            "Did not find overrider!");
145 
146     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147   }
148 
149   /// dump - dump the final overriders.
150   void dump() {
151     VisitedVirtualBasesSetTy VisitedVirtualBases;
152     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153          VisitedVirtualBases);
154   }
155 
156 };
157 
158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159                                  CharUnits MostDerivedClassOffset,
160                                  const CXXRecordDecl *LayoutClass)
161   : MostDerivedClass(MostDerivedClass),
162   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163   Context(MostDerivedClass->getASTContext()),
164   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165 
166   // Compute base offsets.
167   SubobjectOffsetMapTy SubobjectOffsets;
168   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169   SubobjectCountMapTy SubobjectCounts;
170   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171                      /*IsVirtual=*/false,
172                      MostDerivedClassOffset,
173                      SubobjectOffsets, SubobjectLayoutClassOffsets,
174                      SubobjectCounts);
175 
176   // Get the final overriders.
177   CXXFinalOverriderMap FinalOverriders;
178   MostDerivedClass->getFinalOverriders(FinalOverriders);
179 
180   for (const auto &Overrider : FinalOverriders) {
181     const CXXMethodDecl *MD = Overrider.first;
182     const OverridingMethods &Methods = Overrider.second;
183 
184     for (const auto &M : Methods) {
185       unsigned SubobjectNumber = M.first;
186       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187                                                    SubobjectNumber)) &&
188              "Did not find subobject offset!");
189 
190       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191                                                             SubobjectNumber)];
192 
193       assert(M.second.size() == 1 && "Final overrider is not unique!");
194       const UniqueVirtualMethod &Method = M.second.front();
195 
196       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197       assert(SubobjectLayoutClassOffsets.count(
198              std::make_pair(OverriderRD, Method.Subobject))
199              && "Did not find subobject offset!");
200       CharUnits OverriderOffset =
201         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202                                                    Method.Subobject)];
203 
204       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205       assert(!Overrider.Method && "Overrider should not exist yet!");
206 
207       Overrider.Offset = OverriderOffset;
208       Overrider.Method = Method.Method;
209       Overrider.VirtualBase = Method.InVirtualSubobject;
210     }
211   }
212 
213 #if DUMP_OVERRIDERS
214   // And dump them (for now).
215   dump();
216 #endif
217 }
218 
219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220                                     const CXXRecordDecl *DerivedRD,
221                                     const CXXBasePath &Path) {
222   CharUnits NonVirtualOffset = CharUnits::Zero();
223 
224   unsigned NonVirtualStart = 0;
225   const CXXRecordDecl *VirtualBase = nullptr;
226 
227   // First, look for the virtual base class.
228   for (int I = Path.size(), E = 0; I != E; --I) {
229     const CXXBasePathElement &Element = Path[I - 1];
230 
231     if (Element.Base->isVirtual()) {
232       NonVirtualStart = I;
233       QualType VBaseType = Element.Base->getType();
234       VirtualBase = VBaseType->getAsCXXRecordDecl();
235       break;
236     }
237   }
238 
239   // Now compute the non-virtual offset.
240   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241     const CXXBasePathElement &Element = Path[I];
242 
243     // Check the base class offset.
244     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245 
246     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247 
248     NonVirtualOffset += Layout.getBaseClassOffset(Base);
249   }
250 
251   // FIXME: This should probably use CharUnits or something. Maybe we should
252   // even change the base offsets in ASTRecordLayout to be specified in
253   // CharUnits.
254   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255 
256 }
257 
258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259                                     const CXXRecordDecl *BaseRD,
260                                     const CXXRecordDecl *DerivedRD) {
261   CXXBasePaths Paths(/*FindAmbiguities=*/false,
262                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
263 
264   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265     llvm_unreachable("Class must be derived from the passed in base class!");
266 
267   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269 
270 static BaseOffset
271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272                                   const CXXMethodDecl *DerivedMD,
273                                   const CXXMethodDecl *BaseMD) {
274   const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275   const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276 
277   // Canonicalize the return types.
278   CanQualType CanDerivedReturnType =
279       Context.getCanonicalType(DerivedFT->getReturnType());
280   CanQualType CanBaseReturnType =
281       Context.getCanonicalType(BaseFT->getReturnType());
282 
283   assert(CanDerivedReturnType->getTypeClass() ==
284          CanBaseReturnType->getTypeClass() &&
285          "Types must have same type class!");
286 
287   if (CanDerivedReturnType == CanBaseReturnType) {
288     // No adjustment needed.
289     return BaseOffset();
290   }
291 
292   if (isa<ReferenceType>(CanDerivedReturnType)) {
293     CanDerivedReturnType =
294       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295     CanBaseReturnType =
296       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297   } else if (isa<PointerType>(CanDerivedReturnType)) {
298     CanDerivedReturnType =
299       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300     CanBaseReturnType =
301       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302   } else {
303     llvm_unreachable("Unexpected return type!");
304   }
305 
306   // We need to compare unqualified types here; consider
307   //   const T *Base::foo();
308   //   T *Derived::foo();
309   if (CanDerivedReturnType.getUnqualifiedType() ==
310       CanBaseReturnType.getUnqualifiedType()) {
311     // No adjustment needed.
312     return BaseOffset();
313   }
314 
315   const CXXRecordDecl *DerivedRD =
316     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317 
318   const CXXRecordDecl *BaseRD =
319     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320 
321   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323 
324 void
325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326                               CharUnits OffsetInLayoutClass,
327                               SubobjectOffsetMapTy &SubobjectOffsets,
328                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329                               SubobjectCountMapTy &SubobjectCounts) {
330   const CXXRecordDecl *RD = Base.getBase();
331 
332   unsigned SubobjectNumber = 0;
333   if (!IsVirtual)
334     SubobjectNumber = ++SubobjectCounts[RD];
335 
336   // Set up the subobject to offset mapping.
337   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338          && "Subobject offset already exists!");
339   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340          && "Subobject offset already exists!");
341 
342   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344     OffsetInLayoutClass;
345 
346   // Traverse our bases.
347   for (const auto &B : RD->bases()) {
348     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349 
350     CharUnits BaseOffset;
351     CharUnits BaseOffsetInLayoutClass;
352     if (B.isVirtual()) {
353       // Check if we've visited this virtual base before.
354       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355         continue;
356 
357       const ASTRecordLayout &LayoutClassLayout =
358         Context.getASTRecordLayout(LayoutClass);
359 
360       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361       BaseOffsetInLayoutClass =
362         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363     } else {
364       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366 
367       BaseOffset = Base.getBaseOffset() + Offset;
368       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369     }
370 
371     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372                        B.isVirtual(), BaseOffsetInLayoutClass,
373                        SubobjectOffsets, SubobjectLayoutClassOffsets,
374                        SubobjectCounts);
375   }
376 }
377 
378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380   const CXXRecordDecl *RD = Base.getBase();
381   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382 
383   for (const auto &B : RD->bases()) {
384     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385 
386     // Ignore bases that don't have any virtual member functions.
387     if (!BaseDecl->isPolymorphic())
388       continue;
389 
390     CharUnits BaseOffset;
391     if (B.isVirtual()) {
392       if (!VisitedVirtualBases.insert(BaseDecl).second) {
393         // We've visited this base before.
394         continue;
395       }
396 
397       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398     } else {
399       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400     }
401 
402     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403   }
404 
405   Out << "Final overriders for (";
406   RD->printQualifiedName(Out);
407   Out << ", ";
408   Out << Base.getBaseOffset().getQuantity() << ")\n";
409 
410   // Now dump the overriders for this base subobject.
411   for (const auto *MD : RD->methods()) {
412     if (!VTableContextBase::hasVtableSlot(MD))
413       continue;
414     MD = MD->getCanonicalDecl();
415 
416     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417 
418     Out << "  ";
419     MD->printQualifiedName(Out);
420     Out << " - (";
421     Overrider.Method->printQualifiedName(Out);
422     Out << ", " << Overrider.Offset.getQuantity() << ')';
423 
424     BaseOffset Offset;
425     if (!Overrider.Method->isPureVirtual())
426       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427 
428     if (!Offset.isEmpty()) {
429       Out << " [ret-adj: ";
430       if (Offset.VirtualBase) {
431         Offset.VirtualBase->printQualifiedName(Out);
432         Out << " vbase, ";
433       }
434 
435       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436     }
437 
438     Out << "\n";
439   }
440 }
441 
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
444 
445   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446 
447   /// Offsets - Keeps track of methods and their offsets.
448   // FIXME: This should be a real map and not a vector.
449   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450 
451   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452   /// can share the same vcall offset.
453   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454                                          const CXXMethodDecl *RHS);
455 
456 public:
457   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458   /// add was successful, or false if there was already a member function with
459   /// the same signature in the map.
460   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461 
462   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463   /// vtable address point) for the given virtual member function.
464   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465 
466   // empty - Return whether the offset map is empty or not.
467   bool empty() const { return Offsets.empty(); }
468 };
469 
470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471                                     const CXXMethodDecl *RHS) {
472   const FunctionProtoType *LT =
473     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474   const FunctionProtoType *RT =
475     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476 
477   // Fast-path matches in the canonical types.
478   if (LT == RT) return true;
479 
480   // Force the signatures to match.  We can't rely on the overrides
481   // list here because there isn't necessarily an inheritance
482   // relationship between the two methods.
483   if (LT->getMethodQuals() != RT->getMethodQuals())
484     return false;
485   return LT->getParamTypes() == RT->getParamTypes();
486 }
487 
488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489                                                 const CXXMethodDecl *RHS) {
490   assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491   assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492 
493   // A destructor can share a vcall offset with another destructor.
494   if (isa<CXXDestructorDecl>(LHS))
495     return isa<CXXDestructorDecl>(RHS);
496 
497   // FIXME: We need to check more things here.
498 
499   // The methods must have the same name.
500   DeclarationName LHSName = LHS->getDeclName();
501   DeclarationName RHSName = RHS->getDeclName();
502   if (LHSName != RHSName)
503     return false;
504 
505   // And the same signatures.
506   return HasSameVirtualSignature(LHS, RHS);
507 }
508 
509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510                                     CharUnits OffsetOffset) {
511   // Check if we can reuse an offset.
512   for (const auto &OffsetPair : Offsets) {
513     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514       return false;
515   }
516 
517   // Add the offset.
518   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519   return true;
520 }
521 
522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523   // Look for an offset.
524   for (const auto &OffsetPair : Offsets) {
525     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526       return OffsetPair.second;
527   }
528 
529   llvm_unreachable("Should always find a vcall offset offset!");
530 }
531 
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536     VBaseOffsetOffsetsMapTy;
537 
538 private:
539   const ItaniumVTableContext &VTables;
540 
541   /// MostDerivedClass - The most derived class for which we're building vcall
542   /// and vbase offsets.
543   const CXXRecordDecl *MostDerivedClass;
544 
545   /// LayoutClass - The class we're using for layout information. Will be
546   /// different than the most derived class if we're building a construction
547   /// vtable.
548   const CXXRecordDecl *LayoutClass;
549 
550   /// Context - The ASTContext which we will use for layout information.
551   ASTContext &Context;
552 
553   /// Components - vcall and vbase offset components
554   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555   VTableComponentVectorTy Components;
556 
557   /// VisitedVirtualBases - Visited virtual bases.
558   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559 
560   /// VCallOffsets - Keeps track of vcall offsets.
561   VCallOffsetMap VCallOffsets;
562 
563 
564   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565   /// relative to the address point.
566   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567 
568   /// FinalOverriders - The final overriders of the most derived class.
569   /// (Can be null when we're not building a vtable of the most derived class).
570   const FinalOverriders *Overriders;
571 
572   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573   /// given base subobject.
574   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575                                CharUnits RealBaseOffset);
576 
577   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579 
580   /// AddVBaseOffsets - Add vbase offsets for the given class.
581   void AddVBaseOffsets(const CXXRecordDecl *Base,
582                        CharUnits OffsetInLayoutClass);
583 
584   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585   /// chars, relative to the vtable address point.
586   CharUnits getCurrentOffsetOffset() const;
587 
588 public:
589   VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590                              const CXXRecordDecl *MostDerivedClass,
591                              const CXXRecordDecl *LayoutClass,
592                              const FinalOverriders *Overriders,
593                              BaseSubobject Base, bool BaseIsVirtual,
594                              CharUnits OffsetInLayoutClass)
595       : VTables(VTables), MostDerivedClass(MostDerivedClass),
596         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597         Overriders(Overriders) {
598 
599     // Add vcall and vbase offsets.
600     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
601   }
602 
603   /// Methods for iterating over the components.
604   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
605   const_iterator components_begin() const { return Components.rbegin(); }
606   const_iterator components_end() const { return Components.rend(); }
607 
608   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
609   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610     return VBaseOffsetOffsets;
611   }
612 };
613 
614 void
615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616                                                     bool BaseIsVirtual,
617                                                     CharUnits RealBaseOffset) {
618   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619 
620   // Itanium C++ ABI 2.5.2:
621   //   ..in classes sharing a virtual table with a primary base class, the vcall
622   //   and vbase offsets added by the derived class all come before the vcall
623   //   and vbase offsets required by the base class, so that the latter may be
624   //   laid out as required by the base class without regard to additions from
625   //   the derived class(es).
626 
627   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628   // emit them for the primary base first).
629   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631 
632     CharUnits PrimaryBaseOffset;
633 
634     // Get the base offset of the primary base.
635     if (PrimaryBaseIsVirtual) {
636       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637              "Primary vbase should have a zero offset!");
638 
639       const ASTRecordLayout &MostDerivedClassLayout =
640         Context.getASTRecordLayout(MostDerivedClass);
641 
642       PrimaryBaseOffset =
643         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644     } else {
645       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646              "Primary base should have a zero offset!");
647 
648       PrimaryBaseOffset = Base.getBaseOffset();
649     }
650 
651     AddVCallAndVBaseOffsets(
652       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653       PrimaryBaseIsVirtual, RealBaseOffset);
654   }
655 
656   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
657 
658   // We only want to add vcall offsets for virtual bases.
659   if (BaseIsVirtual)
660     AddVCallOffsets(Base, RealBaseOffset);
661 }
662 
663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664   // OffsetIndex is the index of this vcall or vbase offset, relative to the
665   // vtable address point. (We subtract 3 to account for the information just
666   // above the address point, the RTTI info, the offset to top, and the
667   // vcall offset itself).
668   size_t NumComponentsAboveAddrPoint = 3;
669   if (Context.getLangOpts().OmitVTableRTTI)
670     NumComponentsAboveAddrPoint--;
671   int64_t OffsetIndex =
672       -(int64_t)(NumComponentsAboveAddrPoint + Components.size());
673 
674   // Under the relative ABI, the offset widths are 32-bit ints instead of
675   // pointer widths.
676   CharUnits OffsetWidth = Context.toCharUnitsFromBits(
677       VTables.isRelativeLayout()
678           ? 32
679           : Context.getTargetInfo().getPointerWidth(LangAS::Default));
680   CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
681 
682   return OffsetOffset;
683 }
684 
685 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
686                                                  CharUnits VBaseOffset) {
687   const CXXRecordDecl *RD = Base.getBase();
688   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
689 
690   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
691 
692   // Handle the primary base first.
693   // We only want to add vcall offsets if the base is non-virtual; a virtual
694   // primary base will have its vcall and vbase offsets emitted already.
695   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
696     // Get the base offset of the primary base.
697     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
698            "Primary base should have a zero offset!");
699 
700     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
701                     VBaseOffset);
702   }
703 
704   // Add the vcall offsets.
705   for (const auto *MD : RD->methods()) {
706     if (!VTableContextBase::hasVtableSlot(MD))
707       continue;
708     MD = MD->getCanonicalDecl();
709 
710     CharUnits OffsetOffset = getCurrentOffsetOffset();
711 
712     // Don't add a vcall offset if we already have one for this member function
713     // signature.
714     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
715       continue;
716 
717     CharUnits Offset = CharUnits::Zero();
718 
719     if (Overriders) {
720       // Get the final overrider.
721       FinalOverriders::OverriderInfo Overrider =
722         Overriders->getOverrider(MD, Base.getBaseOffset());
723 
724       /// The vcall offset is the offset from the virtual base to the object
725       /// where the function was overridden.
726       Offset = Overrider.Offset - VBaseOffset;
727     }
728 
729     Components.push_back(
730       VTableComponent::MakeVCallOffset(Offset));
731   }
732 
733   // And iterate over all non-virtual bases (ignoring the primary base).
734   for (const auto &B : RD->bases()) {
735     if (B.isVirtual())
736       continue;
737 
738     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
739     if (BaseDecl == PrimaryBase)
740       continue;
741 
742     // Get the base offset of this base.
743     CharUnits BaseOffset = Base.getBaseOffset() +
744       Layout.getBaseClassOffset(BaseDecl);
745 
746     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
747                     VBaseOffset);
748   }
749 }
750 
751 void
752 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
753                                             CharUnits OffsetInLayoutClass) {
754   const ASTRecordLayout &LayoutClassLayout =
755     Context.getASTRecordLayout(LayoutClass);
756 
757   // Add vbase offsets.
758   for (const auto &B : RD->bases()) {
759     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
760 
761     // Check if this is a virtual base that we haven't visited before.
762     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
763       CharUnits Offset =
764         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
765 
766       // Add the vbase offset offset.
767       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
768              "vbase offset offset already exists!");
769 
770       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
771       VBaseOffsetOffsets.insert(
772           std::make_pair(BaseDecl, VBaseOffsetOffset));
773 
774       Components.push_back(
775           VTableComponent::MakeVBaseOffset(Offset));
776     }
777 
778     // Check the base class looking for more vbase offsets.
779     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
780   }
781 }
782 
783 /// ItaniumVTableBuilder - Class for building vtable layout information.
784 class ItaniumVTableBuilder {
785 public:
786   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
787   /// primary bases.
788   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
789     PrimaryBasesSetVectorTy;
790 
791   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
792     VBaseOffsetOffsetsMapTy;
793 
794   typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
795 
796   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
797 
798 private:
799   /// VTables - Global vtable information.
800   ItaniumVTableContext &VTables;
801 
802   /// MostDerivedClass - The most derived class for which we're building this
803   /// vtable.
804   const CXXRecordDecl *MostDerivedClass;
805 
806   /// MostDerivedClassOffset - If we're building a construction vtable, this
807   /// holds the offset from the layout class to the most derived class.
808   const CharUnits MostDerivedClassOffset;
809 
810   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
811   /// base. (This only makes sense when building a construction vtable).
812   bool MostDerivedClassIsVirtual;
813 
814   /// LayoutClass - The class we're using for layout information. Will be
815   /// different than the most derived class if we're building a construction
816   /// vtable.
817   const CXXRecordDecl *LayoutClass;
818 
819   /// Context - The ASTContext which we will use for layout information.
820   ASTContext &Context;
821 
822   /// FinalOverriders - The final overriders of the most derived class.
823   const FinalOverriders Overriders;
824 
825   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
826   /// bases in this vtable.
827   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
828 
829   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
830   /// the most derived class.
831   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
832 
833   /// Components - The components of the vtable being built.
834   SmallVector<VTableComponent, 64> Components;
835 
836   /// AddressPoints - Address points for the vtable being built.
837   AddressPointsMapTy AddressPoints;
838 
839   /// MethodInfo - Contains information about a method in a vtable.
840   /// (Used for computing 'this' pointer adjustment thunks.
841   struct MethodInfo {
842     /// BaseOffset - The base offset of this method.
843     const CharUnits BaseOffset;
844 
845     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
846     /// method.
847     const CharUnits BaseOffsetInLayoutClass;
848 
849     /// VTableIndex - The index in the vtable that this method has.
850     /// (For destructors, this is the index of the complete destructor).
851     const uint64_t VTableIndex;
852 
853     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
854                uint64_t VTableIndex)
855       : BaseOffset(BaseOffset),
856       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
857       VTableIndex(VTableIndex) { }
858 
859     MethodInfo()
860       : BaseOffset(CharUnits::Zero()),
861       BaseOffsetInLayoutClass(CharUnits::Zero()),
862       VTableIndex(0) { }
863 
864     MethodInfo(MethodInfo const&) = default;
865   };
866 
867   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
868 
869   /// MethodInfoMap - The information for all methods in the vtable we're
870   /// currently building.
871   MethodInfoMapTy MethodInfoMap;
872 
873   /// MethodVTableIndices - Contains the index (relative to the vtable address
874   /// point) where the function pointer for a virtual function is stored.
875   MethodVTableIndicesTy MethodVTableIndices;
876 
877   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
878 
879   /// VTableThunks - The thunks by vtable index in the vtable currently being
880   /// built.
881   VTableThunksMapTy VTableThunks;
882 
883   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
884   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
885 
886   /// Thunks - A map that contains all the thunks needed for all methods in the
887   /// most derived class for which the vtable is currently being built.
888   ThunksMapTy Thunks;
889 
890   /// AddThunk - Add a thunk for the given method.
891   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
892 
893   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
894   /// part of the vtable we're currently building.
895   void ComputeThisAdjustments();
896 
897   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
898 
899   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
900   /// some other base.
901   VisitedVirtualBasesSetTy PrimaryVirtualBases;
902 
903   /// ComputeReturnAdjustment - Compute the return adjustment given a return
904   /// adjustment base offset.
905   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
906 
907   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
908   /// the 'this' pointer from the base subobject to the derived subobject.
909   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
910                                              BaseSubobject Derived) const;
911 
912   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
913   /// given virtual member function, its offset in the layout class and its
914   /// final overrider.
915   ThisAdjustment
916   ComputeThisAdjustment(const CXXMethodDecl *MD,
917                         CharUnits BaseOffsetInLayoutClass,
918                         FinalOverriders::OverriderInfo Overrider);
919 
920   /// AddMethod - Add a single virtual member function to the vtable
921   /// components vector.
922   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
923 
924   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
925   /// part of the vtable.
926   ///
927   /// Itanium C++ ABI 2.5.2:
928   ///
929   ///   struct A { virtual void f(); };
930   ///   struct B : virtual public A { int i; };
931   ///   struct C : virtual public A { int j; };
932   ///   struct D : public B, public C {};
933   ///
934   ///   When B and C are declared, A is a primary base in each case, so although
935   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
936   ///   adjustment is required and no thunk is generated. However, inside D
937   ///   objects, A is no longer a primary base of C, so if we allowed calls to
938   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
939   ///   to adjust this from C* to B::A*, which would require a third-party
940   ///   thunk. Since we require that a call to C::f() first convert to A*,
941   ///   C-in-D's copy of A's vtable is never referenced, so this is not
942   ///   necessary.
943   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
944                        CharUnits BaseOffsetInLayoutClass,
945                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
946                        CharUnits FirstBaseOffsetInLayoutClass) const;
947 
948 
949   /// AddMethods - Add the methods of this base subobject and all its
950   /// primary bases to the vtable components vector.
951   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
952                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
953                   CharUnits FirstBaseOffsetInLayoutClass,
954                   PrimaryBasesSetVectorTy &PrimaryBases);
955 
956   // LayoutVTable - Layout the vtable for the given base class, including its
957   // secondary vtables and any vtables for virtual bases.
958   void LayoutVTable();
959 
960   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
961   /// given base subobject, as well as all its secondary vtables.
962   ///
963   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
964   /// or a direct or indirect base of a virtual base.
965   ///
966   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
967   /// in the layout class.
968   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
969                                         bool BaseIsMorallyVirtual,
970                                         bool BaseIsVirtualInLayoutClass,
971                                         CharUnits OffsetInLayoutClass);
972 
973   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
974   /// subobject.
975   ///
976   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
977   /// or a direct or indirect base of a virtual base.
978   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
979                               CharUnits OffsetInLayoutClass);
980 
981   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
982   /// class hierarchy.
983   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
984                                     CharUnits OffsetInLayoutClass,
985                                     VisitedVirtualBasesSetTy &VBases);
986 
987   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
988   /// given base (excluding any primary bases).
989   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
990                                     VisitedVirtualBasesSetTy &VBases);
991 
992   /// isBuildingConstructionVTable - Return whether this vtable builder is
993   /// building a construction vtable.
994   bool isBuildingConstructorVTable() const {
995     return MostDerivedClass != LayoutClass;
996   }
997 
998 public:
999   /// Component indices of the first component of each of the vtables in the
1000   /// vtable group.
1001   SmallVector<size_t, 4> VTableIndices;
1002 
1003   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1004                        const CXXRecordDecl *MostDerivedClass,
1005                        CharUnits MostDerivedClassOffset,
1006                        bool MostDerivedClassIsVirtual,
1007                        const CXXRecordDecl *LayoutClass)
1008       : VTables(VTables), MostDerivedClass(MostDerivedClass),
1009         MostDerivedClassOffset(MostDerivedClassOffset),
1010         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1011         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1012         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1013     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1014 
1015     LayoutVTable();
1016 
1017     if (Context.getLangOpts().DumpVTableLayouts)
1018       dumpLayout(llvm::outs());
1019   }
1020 
1021   uint64_t getNumThunks() const {
1022     return Thunks.size();
1023   }
1024 
1025   ThunksMapTy::const_iterator thunks_begin() const {
1026     return Thunks.begin();
1027   }
1028 
1029   ThunksMapTy::const_iterator thunks_end() const {
1030     return Thunks.end();
1031   }
1032 
1033   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1034     return VBaseOffsetOffsets;
1035   }
1036 
1037   const AddressPointsMapTy &getAddressPoints() const {
1038     return AddressPoints;
1039   }
1040 
1041   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1042     return MethodVTableIndices.begin();
1043   }
1044 
1045   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1046     return MethodVTableIndices.end();
1047   }
1048 
1049   ArrayRef<VTableComponent> vtable_components() const { return Components; }
1050 
1051   AddressPointsMapTy::const_iterator address_points_begin() const {
1052     return AddressPoints.begin();
1053   }
1054 
1055   AddressPointsMapTy::const_iterator address_points_end() const {
1056     return AddressPoints.end();
1057   }
1058 
1059   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1060     return VTableThunks.begin();
1061   }
1062 
1063   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1064     return VTableThunks.end();
1065   }
1066 
1067   /// dumpLayout - Dump the vtable layout.
1068   void dumpLayout(raw_ostream&);
1069 };
1070 
1071 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1072                                     const ThunkInfo &Thunk) {
1073   assert(!isBuildingConstructorVTable() &&
1074          "Can't add thunks for construction vtable");
1075 
1076   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1077 
1078   // Check if we have this thunk already.
1079   if (llvm::is_contained(ThunksVector, Thunk))
1080     return;
1081 
1082   ThunksVector.push_back(Thunk);
1083 }
1084 
1085 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1086 
1087 /// Visit all the methods overridden by the given method recursively,
1088 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1089 /// indicating whether to continue the recursion for the given overridden
1090 /// method (i.e. returning false stops the iteration).
1091 template <class VisitorTy>
1092 static void
1093 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1094   assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1095 
1096   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1097     if (!Visitor(OverriddenMD))
1098       continue;
1099     visitAllOverriddenMethods(OverriddenMD, Visitor);
1100   }
1101 }
1102 
1103 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1104 /// the overridden methods that the function decl overrides.
1105 static void
1106 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1107                             OverriddenMethodsSetTy& OverriddenMethods) {
1108   auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1109     // Don't recurse on this method if we've already collected it.
1110     return OverriddenMethods.insert(MD).second;
1111   };
1112   visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1113 }
1114 
1115 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1116   // Now go through the method info map and see if any of the methods need
1117   // 'this' pointer adjustments.
1118   for (const auto &MI : MethodInfoMap) {
1119     const CXXMethodDecl *MD = MI.first;
1120     const MethodInfo &MethodInfo = MI.second;
1121 
1122     // Ignore adjustments for unused function pointers.
1123     uint64_t VTableIndex = MethodInfo.VTableIndex;
1124     if (Components[VTableIndex].getKind() ==
1125         VTableComponent::CK_UnusedFunctionPointer)
1126       continue;
1127 
1128     // Get the final overrider for this method.
1129     FinalOverriders::OverriderInfo Overrider =
1130       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1131 
1132     // Check if we need an adjustment at all.
1133     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1134       // When a return thunk is needed by a derived class that overrides a
1135       // virtual base, gcc uses a virtual 'this' adjustment as well.
1136       // While the thunk itself might be needed by vtables in subclasses or
1137       // in construction vtables, there doesn't seem to be a reason for using
1138       // the thunk in this vtable. Still, we do so to match gcc.
1139       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1140         continue;
1141     }
1142 
1143     ThisAdjustment ThisAdjustment =
1144       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1145 
1146     if (ThisAdjustment.isEmpty())
1147       continue;
1148 
1149     // Add it.
1150     auto SetThisAdjustmentThunk = [&](uint64_t Idx) {
1151       // If a this pointer adjustment is required, record the method that
1152       // created the vtable entry. MD is not necessarily the method that
1153       // created the entry since derived classes overwrite base class
1154       // information in MethodInfoMap, hence findOriginalMethodInMap is called
1155       // here.
1156       //
1157       // For example, in the following class hierarchy, if MD = D1::m and
1158       // Overrider = D2:m, the original method that created the entry is B0:m,
1159       // which is what findOriginalMethodInMap(MD) returns:
1160       //
1161       // struct B0 { int a; virtual void m(); };
1162       // struct D0 : B0 { int a; void m() override; };
1163       // struct D1 : B0 { int a; void m() override; };
1164       // struct D2 : D0, D1 { int a; void m() override; };
1165       //
1166       // We need to record the method because we cannot
1167       // call findOriginalMethod to find the method that created the entry if
1168       // the method in the entry requires adjustment.
1169       //
1170       // Do not set ThunkInfo::Method if Idx is already in VTableThunks. This
1171       // can happen when covariant return adjustment is required too.
1172       if (!VTableThunks.count(Idx)) {
1173         const CXXMethodDecl *Method = VTables.findOriginalMethodInMap(MD);
1174         VTableThunks[Idx].Method = Method;
1175         VTableThunks[Idx].ThisType = Method->getThisType().getTypePtr();
1176       }
1177       VTableThunks[Idx].This = ThisAdjustment;
1178     };
1179 
1180     SetThisAdjustmentThunk(VTableIndex);
1181 
1182     if (isa<CXXDestructorDecl>(MD)) {
1183       // Add an adjustment for the deleting destructor as well.
1184       SetThisAdjustmentThunk(VTableIndex + 1);
1185     }
1186   }
1187 
1188   /// Clear the method info map.
1189   MethodInfoMap.clear();
1190 
1191   if (isBuildingConstructorVTable()) {
1192     // We don't need to store thunk information for construction vtables.
1193     return;
1194   }
1195 
1196   for (const auto &TI : VTableThunks) {
1197     const VTableComponent &Component = Components[TI.first];
1198     const ThunkInfo &Thunk = TI.second;
1199     const CXXMethodDecl *MD;
1200 
1201     switch (Component.getKind()) {
1202     default:
1203       llvm_unreachable("Unexpected vtable component kind!");
1204     case VTableComponent::CK_FunctionPointer:
1205       MD = Component.getFunctionDecl();
1206       break;
1207     case VTableComponent::CK_CompleteDtorPointer:
1208       MD = Component.getDestructorDecl();
1209       break;
1210     case VTableComponent::CK_DeletingDtorPointer:
1211       // We've already added the thunk when we saw the complete dtor pointer.
1212       continue;
1213     }
1214 
1215     if (MD->getParent() == MostDerivedClass)
1216       AddThunk(MD, Thunk);
1217   }
1218 }
1219 
1220 ReturnAdjustment
1221 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1222   ReturnAdjustment Adjustment;
1223 
1224   if (!Offset.isEmpty()) {
1225     if (Offset.VirtualBase) {
1226       // Get the virtual base offset offset.
1227       if (Offset.DerivedClass == MostDerivedClass) {
1228         // We can get the offset offset directly from our map.
1229         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1230           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1231       } else {
1232         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1233           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1234                                              Offset.VirtualBase).getQuantity();
1235       }
1236     }
1237 
1238     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1239   }
1240 
1241   return Adjustment;
1242 }
1243 
1244 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1245     BaseSubobject Base, BaseSubobject Derived) const {
1246   const CXXRecordDecl *BaseRD = Base.getBase();
1247   const CXXRecordDecl *DerivedRD = Derived.getBase();
1248 
1249   CXXBasePaths Paths(/*FindAmbiguities=*/true,
1250                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
1251 
1252   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1253     llvm_unreachable("Class must be derived from the passed in base class!");
1254 
1255   // We have to go through all the paths, and see which one leads us to the
1256   // right base subobject.
1257   for (const CXXBasePath &Path : Paths) {
1258     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1259 
1260     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1261 
1262     if (Offset.VirtualBase) {
1263       // If we have a virtual base class, the non-virtual offset is relative
1264       // to the virtual base class offset.
1265       const ASTRecordLayout &LayoutClassLayout =
1266         Context.getASTRecordLayout(LayoutClass);
1267 
1268       /// Get the virtual base offset, relative to the most derived class
1269       /// layout.
1270       OffsetToBaseSubobject +=
1271         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1272     } else {
1273       // Otherwise, the non-virtual offset is relative to the derived class
1274       // offset.
1275       OffsetToBaseSubobject += Derived.getBaseOffset();
1276     }
1277 
1278     // Check if this path gives us the right base subobject.
1279     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1280       // Since we're going from the base class _to_ the derived class, we'll
1281       // invert the non-virtual offset here.
1282       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1283       return Offset;
1284     }
1285   }
1286 
1287   return BaseOffset();
1288 }
1289 
1290 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1291     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1292     FinalOverriders::OverriderInfo Overrider) {
1293   // Ignore adjustments for pure virtual member functions.
1294   if (Overrider.Method->isPureVirtual())
1295     return ThisAdjustment();
1296 
1297   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1298                                         BaseOffsetInLayoutClass);
1299 
1300   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1301                                        Overrider.Offset);
1302 
1303   // Compute the adjustment offset.
1304   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1305                                                       OverriderBaseSubobject);
1306   if (Offset.isEmpty())
1307     return ThisAdjustment();
1308 
1309   ThisAdjustment Adjustment;
1310 
1311   if (Offset.VirtualBase) {
1312     // Get the vcall offset map for this virtual base.
1313     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1314 
1315     if (VCallOffsets.empty()) {
1316       // We don't have vcall offsets for this virtual base, go ahead and
1317       // build them.
1318       VCallAndVBaseOffsetBuilder Builder(
1319           VTables, MostDerivedClass, MostDerivedClass,
1320           /*Overriders=*/nullptr,
1321           BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1322           /*BaseIsVirtual=*/true,
1323           /*OffsetInLayoutClass=*/
1324           CharUnits::Zero());
1325 
1326       VCallOffsets = Builder.getVCallOffsets();
1327     }
1328 
1329     Adjustment.Virtual.Itanium.VCallOffsetOffset =
1330       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1331   }
1332 
1333   // Set the non-virtual part of the adjustment.
1334   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1335 
1336   return Adjustment;
1337 }
1338 
1339 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1340                                      ReturnAdjustment ReturnAdjustment) {
1341   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1342     assert(ReturnAdjustment.isEmpty() &&
1343            "Destructor can't have return adjustment!");
1344 
1345     // Add both the complete destructor and the deleting destructor.
1346     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1347     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1348   } else {
1349     // Add the return adjustment if necessary.
1350     if (!ReturnAdjustment.isEmpty())
1351       VTableThunks[Components.size()].Return = ReturnAdjustment;
1352 
1353     // Add the function.
1354     Components.push_back(VTableComponent::MakeFunction(MD));
1355   }
1356 }
1357 
1358 /// OverridesIndirectMethodInBase - Return whether the given member function
1359 /// overrides any methods in the set of given bases.
1360 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1361 /// For example, if we have:
1362 ///
1363 /// struct A { virtual void f(); }
1364 /// struct B : A { virtual void f(); }
1365 /// struct C : B { virtual void f(); }
1366 ///
1367 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1368 /// and { A } as the set of bases.
1369 static bool OverridesIndirectMethodInBases(
1370     const CXXMethodDecl *MD,
1371     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1372   if (Bases.count(MD->getParent()))
1373     return true;
1374 
1375   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1376     // Check "indirect overriders".
1377     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1378       return true;
1379   }
1380 
1381   return false;
1382 }
1383 
1384 bool ItaniumVTableBuilder::IsOverriderUsed(
1385     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1386     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1387     CharUnits FirstBaseOffsetInLayoutClass) const {
1388   // If the base and the first base in the primary base chain have the same
1389   // offsets, then this overrider will be used.
1390   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1391    return true;
1392 
1393   // We know now that Base (or a direct or indirect base of it) is a primary
1394   // base in part of the class hierarchy, but not a primary base in the most
1395   // derived class.
1396 
1397   // If the overrider is the first base in the primary base chain, we know
1398   // that the overrider will be used.
1399   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1400     return true;
1401 
1402   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1403 
1404   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1405   PrimaryBases.insert(RD);
1406 
1407   // Now traverse the base chain, starting with the first base, until we find
1408   // the base that is no longer a primary base.
1409   while (true) {
1410     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1411     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1412 
1413     if (!PrimaryBase)
1414       break;
1415 
1416     if (Layout.isPrimaryBaseVirtual()) {
1417       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1418              "Primary base should always be at offset 0!");
1419 
1420       const ASTRecordLayout &LayoutClassLayout =
1421         Context.getASTRecordLayout(LayoutClass);
1422 
1423       // Now check if this is the primary base that is not a primary base in the
1424       // most derived class.
1425       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1426           FirstBaseOffsetInLayoutClass) {
1427         // We found it, stop walking the chain.
1428         break;
1429       }
1430     } else {
1431       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1432              "Primary base should always be at offset 0!");
1433     }
1434 
1435     if (!PrimaryBases.insert(PrimaryBase))
1436       llvm_unreachable("Found a duplicate primary base!");
1437 
1438     RD = PrimaryBase;
1439   }
1440 
1441   // If the final overrider is an override of one of the primary bases,
1442   // then we know that it will be used.
1443   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1444 }
1445 
1446 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1447 
1448 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1449 /// from the nearest base. Returns null if no method was found.
1450 /// The Bases are expected to be sorted in a base-to-derived order.
1451 static const CXXMethodDecl *
1452 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1453                             BasesSetVectorTy &Bases) {
1454   OverriddenMethodsSetTy OverriddenMethods;
1455   ComputeAllOverriddenMethods(MD, OverriddenMethods);
1456 
1457   for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1458     // Now check the overridden methods.
1459     for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1460       // We found our overridden method.
1461       if (OverriddenMD->getParent() == PrimaryBase)
1462         return OverriddenMD;
1463     }
1464   }
1465 
1466   return nullptr;
1467 }
1468 
1469 void ItaniumVTableBuilder::AddMethods(
1470     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1471     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1472     CharUnits FirstBaseOffsetInLayoutClass,
1473     PrimaryBasesSetVectorTy &PrimaryBases) {
1474   // Itanium C++ ABI 2.5.2:
1475   //   The order of the virtual function pointers in a virtual table is the
1476   //   order of declaration of the corresponding member functions in the class.
1477   //
1478   //   There is an entry for any virtual function declared in a class,
1479   //   whether it is a new function or overrides a base class function,
1480   //   unless it overrides a function from the primary base, and conversion
1481   //   between their return types does not require an adjustment.
1482 
1483   const CXXRecordDecl *RD = Base.getBase();
1484   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1485 
1486   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1487     CharUnits PrimaryBaseOffset;
1488     CharUnits PrimaryBaseOffsetInLayoutClass;
1489     if (Layout.isPrimaryBaseVirtual()) {
1490       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1491              "Primary vbase should have a zero offset!");
1492 
1493       const ASTRecordLayout &MostDerivedClassLayout =
1494         Context.getASTRecordLayout(MostDerivedClass);
1495 
1496       PrimaryBaseOffset =
1497         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1498 
1499       const ASTRecordLayout &LayoutClassLayout =
1500         Context.getASTRecordLayout(LayoutClass);
1501 
1502       PrimaryBaseOffsetInLayoutClass =
1503         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1504     } else {
1505       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1506              "Primary base should have a zero offset!");
1507 
1508       PrimaryBaseOffset = Base.getBaseOffset();
1509       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1510     }
1511 
1512     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1513                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1514                FirstBaseOffsetInLayoutClass, PrimaryBases);
1515 
1516     if (!PrimaryBases.insert(PrimaryBase))
1517       llvm_unreachable("Found a duplicate primary base!");
1518   }
1519 
1520   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1521   NewVirtualFunctionsTy NewVirtualFunctions;
1522 
1523   llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1524 
1525   // Now go through all virtual member functions and add them.
1526   for (const auto *MD : RD->methods()) {
1527     if (!ItaniumVTableContext::hasVtableSlot(MD))
1528       continue;
1529     MD = MD->getCanonicalDecl();
1530 
1531     // Get the final overrider.
1532     FinalOverriders::OverriderInfo Overrider =
1533       Overriders.getOverrider(MD, Base.getBaseOffset());
1534 
1535     // Check if this virtual member function overrides a method in a primary
1536     // base. If this is the case, and the return type doesn't require adjustment
1537     // then we can just use the member function from the primary base.
1538     if (const CXXMethodDecl *OverriddenMD =
1539           FindNearestOverriddenMethod(MD, PrimaryBases)) {
1540       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1541                                             OverriddenMD).isEmpty()) {
1542         VTables.setOriginalMethod(MD, OverriddenMD);
1543 
1544         // Replace the method info of the overridden method with our own
1545         // method.
1546         assert(MethodInfoMap.count(OverriddenMD) &&
1547                "Did not find the overridden method!");
1548         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1549 
1550         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1551                               OverriddenMethodInfo.VTableIndex);
1552 
1553         assert(!MethodInfoMap.count(MD) &&
1554                "Should not have method info for this method yet!");
1555 
1556         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1557         MethodInfoMap.erase(OverriddenMD);
1558 
1559         // If the overridden method exists in a virtual base class or a direct
1560         // or indirect base class of a virtual base class, we need to emit a
1561         // thunk if we ever have a class hierarchy where the base class is not
1562         // a primary base in the complete object.
1563         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1564           // Compute the this adjustment.
1565           ThisAdjustment ThisAdjustment =
1566             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1567                                   Overrider);
1568 
1569           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1570               Overrider.Method->getParent() == MostDerivedClass) {
1571 
1572             // There's no return adjustment from OverriddenMD and MD,
1573             // but that doesn't mean there isn't one between MD and
1574             // the final overrider.
1575             BaseOffset ReturnAdjustmentOffset =
1576               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1577             ReturnAdjustment ReturnAdjustment =
1578               ComputeReturnAdjustment(ReturnAdjustmentOffset);
1579 
1580             // This is a virtual thunk for the most derived class, add it.
1581             AddThunk(Overrider.Method,
1582                      ThunkInfo(ThisAdjustment, ReturnAdjustment,
1583                                OverriddenMD->getThisType().getTypePtr()));
1584           }
1585         }
1586 
1587         continue;
1588       }
1589     }
1590 
1591     if (MD->isImplicit())
1592       NewImplicitVirtualFunctions.push_back(MD);
1593     else
1594       NewVirtualFunctions.push_back(MD);
1595   }
1596 
1597   std::stable_sort(
1598       NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1599       [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1600         if (A == B)
1601           return false;
1602         if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1603           return A->isCopyAssignmentOperator();
1604         if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1605           return A->isMoveAssignmentOperator();
1606         if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1607           return isa<CXXDestructorDecl>(A);
1608         assert(A->getOverloadedOperator() == OO_EqualEqual &&
1609                B->getOverloadedOperator() == OO_EqualEqual &&
1610                "unexpected or duplicate implicit virtual function");
1611         // We rely on Sema to have declared the operator== members in the
1612         // same order as the corresponding operator<=> members.
1613         return false;
1614       });
1615   NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1616                              NewImplicitVirtualFunctions.end());
1617 
1618   for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1619     // Get the final overrider.
1620     FinalOverriders::OverriderInfo Overrider =
1621       Overriders.getOverrider(MD, Base.getBaseOffset());
1622 
1623     // Insert the method info for this method.
1624     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1625                           Components.size());
1626 
1627     assert(!MethodInfoMap.count(MD) &&
1628            "Should not have method info for this method yet!");
1629     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1630 
1631     // Check if this overrider is going to be used.
1632     const CXXMethodDecl *OverriderMD = Overrider.Method;
1633     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1634                          FirstBaseInPrimaryBaseChain,
1635                          FirstBaseOffsetInLayoutClass)) {
1636       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1637       continue;
1638     }
1639 
1640     // Check if this overrider needs a return adjustment.
1641     // We don't want to do this for pure virtual member functions.
1642     BaseOffset ReturnAdjustmentOffset;
1643     if (!OverriderMD->isPureVirtual()) {
1644       ReturnAdjustmentOffset =
1645         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1646     }
1647 
1648     ReturnAdjustment ReturnAdjustment =
1649       ComputeReturnAdjustment(ReturnAdjustmentOffset);
1650 
1651     // If a return adjustment is required, record the method that created the
1652     // vtable entry. We need to record the method because we cannot call
1653     // findOriginalMethod to find the method that created the entry if the
1654     // method in the entry requires adjustment.
1655     if (!ReturnAdjustment.isEmpty()) {
1656       VTableThunks[Components.size()].Method = MD;
1657       VTableThunks[Components.size()].ThisType = MD->getThisType().getTypePtr();
1658     }
1659 
1660     AddMethod(Overrider.Method, ReturnAdjustment);
1661   }
1662 }
1663 
1664 void ItaniumVTableBuilder::LayoutVTable() {
1665   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1666                                                  CharUnits::Zero()),
1667                                    /*BaseIsMorallyVirtual=*/false,
1668                                    MostDerivedClassIsVirtual,
1669                                    MostDerivedClassOffset);
1670 
1671   VisitedVirtualBasesSetTy VBases;
1672 
1673   // Determine the primary virtual bases.
1674   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1675                                VBases);
1676   VBases.clear();
1677 
1678   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1679 
1680   // -fapple-kext adds an extra entry at end of vtbl.
1681   bool IsAppleKext = Context.getLangOpts().AppleKext;
1682   if (IsAppleKext)
1683     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1684 }
1685 
1686 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1687     BaseSubobject Base, bool BaseIsMorallyVirtual,
1688     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1689   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1690 
1691   unsigned VTableIndex = Components.size();
1692   VTableIndices.push_back(VTableIndex);
1693 
1694   // Add vcall and vbase offsets for this vtable.
1695   VCallAndVBaseOffsetBuilder Builder(
1696       VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1697       BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1698   Components.append(Builder.components_begin(), Builder.components_end());
1699 
1700   // Check if we need to add these vcall offsets.
1701   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1702     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1703 
1704     if (VCallOffsets.empty())
1705       VCallOffsets = Builder.getVCallOffsets();
1706   }
1707 
1708   // If we're laying out the most derived class we want to keep track of the
1709   // virtual base class offset offsets.
1710   if (Base.getBase() == MostDerivedClass)
1711     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1712 
1713   // Add the offset to top.
1714   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1715   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1716 
1717   // Next, add the RTTI.
1718   if (!Context.getLangOpts().OmitVTableRTTI)
1719     Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1720 
1721   uint64_t AddressPoint = Components.size();
1722 
1723   // Now go through all virtual member functions and add them.
1724   PrimaryBasesSetVectorTy PrimaryBases;
1725   AddMethods(Base, OffsetInLayoutClass,
1726              Base.getBase(), OffsetInLayoutClass,
1727              PrimaryBases);
1728 
1729   const CXXRecordDecl *RD = Base.getBase();
1730   if (RD == MostDerivedClass) {
1731     assert(MethodVTableIndices.empty());
1732     for (const auto &I : MethodInfoMap) {
1733       const CXXMethodDecl *MD = I.first;
1734       const MethodInfo &MI = I.second;
1735       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1736         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1737             = MI.VTableIndex - AddressPoint;
1738         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1739             = MI.VTableIndex + 1 - AddressPoint;
1740       } else {
1741         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1742       }
1743     }
1744   }
1745 
1746   // Compute 'this' pointer adjustments.
1747   ComputeThisAdjustments();
1748 
1749   // Add all address points.
1750   while (true) {
1751     AddressPoints.insert(
1752         std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1753                        VTableLayout::AddressPointLocation{
1754                            unsigned(VTableIndices.size() - 1),
1755                            unsigned(AddressPoint - VTableIndex)}));
1756 
1757     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1758     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1759 
1760     if (!PrimaryBase)
1761       break;
1762 
1763     if (Layout.isPrimaryBaseVirtual()) {
1764       // Check if this virtual primary base is a primary base in the layout
1765       // class. If it's not, we don't want to add it.
1766       const ASTRecordLayout &LayoutClassLayout =
1767         Context.getASTRecordLayout(LayoutClass);
1768 
1769       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1770           OffsetInLayoutClass) {
1771         // We don't want to add this class (or any of its primary bases).
1772         break;
1773       }
1774     }
1775 
1776     RD = PrimaryBase;
1777   }
1778 
1779   // Layout secondary vtables.
1780   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1781 }
1782 
1783 void
1784 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1785                                              bool BaseIsMorallyVirtual,
1786                                              CharUnits OffsetInLayoutClass) {
1787   // Itanium C++ ABI 2.5.2:
1788   //   Following the primary virtual table of a derived class are secondary
1789   //   virtual tables for each of its proper base classes, except any primary
1790   //   base(s) with which it shares its primary virtual table.
1791 
1792   const CXXRecordDecl *RD = Base.getBase();
1793   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1794   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1795 
1796   for (const auto &B : RD->bases()) {
1797     // Ignore virtual bases, we'll emit them later.
1798     if (B.isVirtual())
1799       continue;
1800 
1801     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1802 
1803     // Ignore bases that don't have a vtable.
1804     if (!BaseDecl->isDynamicClass())
1805       continue;
1806 
1807     if (isBuildingConstructorVTable()) {
1808       // Itanium C++ ABI 2.6.4:
1809       //   Some of the base class subobjects may not need construction virtual
1810       //   tables, which will therefore not be present in the construction
1811       //   virtual table group, even though the subobject virtual tables are
1812       //   present in the main virtual table group for the complete object.
1813       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1814         continue;
1815     }
1816 
1817     // Get the base offset of this base.
1818     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1819     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1820 
1821     CharUnits BaseOffsetInLayoutClass =
1822       OffsetInLayoutClass + RelativeBaseOffset;
1823 
1824     // Don't emit a secondary vtable for a primary base. We might however want
1825     // to emit secondary vtables for other bases of this base.
1826     if (BaseDecl == PrimaryBase) {
1827       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1828                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1829       continue;
1830     }
1831 
1832     // Layout the primary vtable (and any secondary vtables) for this base.
1833     LayoutPrimaryAndSecondaryVTables(
1834       BaseSubobject(BaseDecl, BaseOffset),
1835       BaseIsMorallyVirtual,
1836       /*BaseIsVirtualInLayoutClass=*/false,
1837       BaseOffsetInLayoutClass);
1838   }
1839 }
1840 
1841 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1842     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1843     VisitedVirtualBasesSetTy &VBases) {
1844   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1845 
1846   // Check if this base has a primary base.
1847   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1848 
1849     // Check if it's virtual.
1850     if (Layout.isPrimaryBaseVirtual()) {
1851       bool IsPrimaryVirtualBase = true;
1852 
1853       if (isBuildingConstructorVTable()) {
1854         // Check if the base is actually a primary base in the class we use for
1855         // layout.
1856         const ASTRecordLayout &LayoutClassLayout =
1857           Context.getASTRecordLayout(LayoutClass);
1858 
1859         CharUnits PrimaryBaseOffsetInLayoutClass =
1860           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1861 
1862         // We know that the base is not a primary base in the layout class if
1863         // the base offsets are different.
1864         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1865           IsPrimaryVirtualBase = false;
1866       }
1867 
1868       if (IsPrimaryVirtualBase)
1869         PrimaryVirtualBases.insert(PrimaryBase);
1870     }
1871   }
1872 
1873   // Traverse bases, looking for more primary virtual bases.
1874   for (const auto &B : RD->bases()) {
1875     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1876 
1877     CharUnits BaseOffsetInLayoutClass;
1878 
1879     if (B.isVirtual()) {
1880       if (!VBases.insert(BaseDecl).second)
1881         continue;
1882 
1883       const ASTRecordLayout &LayoutClassLayout =
1884         Context.getASTRecordLayout(LayoutClass);
1885 
1886       BaseOffsetInLayoutClass =
1887         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1888     } else {
1889       BaseOffsetInLayoutClass =
1890         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1891     }
1892 
1893     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1894   }
1895 }
1896 
1897 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1898     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1899   // Itanium C++ ABI 2.5.2:
1900   //   Then come the virtual base virtual tables, also in inheritance graph
1901   //   order, and again excluding primary bases (which share virtual tables with
1902   //   the classes for which they are primary).
1903   for (const auto &B : RD->bases()) {
1904     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1905 
1906     // Check if this base needs a vtable. (If it's virtual, not a primary base
1907     // of some other class, and we haven't visited it before).
1908     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1909         !PrimaryVirtualBases.count(BaseDecl) &&
1910         VBases.insert(BaseDecl).second) {
1911       const ASTRecordLayout &MostDerivedClassLayout =
1912         Context.getASTRecordLayout(MostDerivedClass);
1913       CharUnits BaseOffset =
1914         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1915 
1916       const ASTRecordLayout &LayoutClassLayout =
1917         Context.getASTRecordLayout(LayoutClass);
1918       CharUnits BaseOffsetInLayoutClass =
1919         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1920 
1921       LayoutPrimaryAndSecondaryVTables(
1922         BaseSubobject(BaseDecl, BaseOffset),
1923         /*BaseIsMorallyVirtual=*/true,
1924         /*BaseIsVirtualInLayoutClass=*/true,
1925         BaseOffsetInLayoutClass);
1926     }
1927 
1928     // We only need to check the base for virtual base vtables if it actually
1929     // has virtual bases.
1930     if (BaseDecl->getNumVBases())
1931       LayoutVTablesForVirtualBases(BaseDecl, VBases);
1932   }
1933 }
1934 
1935 static void printThunkMethod(const ThunkInfo &Info, raw_ostream &Out) {
1936   if (!Info.Method)
1937     return;
1938   std::string Str = PredefinedExpr::ComputeName(
1939       PredefinedIdentKind::PrettyFunctionNoVirtual, Info.Method);
1940   Out << " method: " << Str;
1941 }
1942 
1943 /// dumpLayout - Dump the vtable layout.
1944 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1945   // FIXME: write more tests that actually use the dumpLayout output to prevent
1946   // ItaniumVTableBuilder regressions.
1947 
1948   Out << "Original map\n";
1949 
1950   for (const auto &P : VTables.getOriginalMethodMap()) {
1951     std::string Str0 =
1952         PredefinedExpr::ComputeName(PredefinedIdentKind::PrettyFunctionNoVirtual,
1953                                     P.first);
1954     std::string Str1 =
1955         PredefinedExpr::ComputeName(PredefinedIdentKind::PrettyFunctionNoVirtual,
1956                                     P.second);
1957     Out << " " << Str0 << " -> " << Str1 << "\n";
1958   }
1959 
1960   if (isBuildingConstructorVTable()) {
1961     Out << "Construction vtable for ('";
1962     MostDerivedClass->printQualifiedName(Out);
1963     Out << "', ";
1964     Out << MostDerivedClassOffset.getQuantity() << ") in '";
1965     LayoutClass->printQualifiedName(Out);
1966   } else {
1967     Out << "Vtable for '";
1968     MostDerivedClass->printQualifiedName(Out);
1969   }
1970   Out << "' (" << Components.size() << " entries).\n";
1971 
1972   // Iterate through the address points and insert them into a new map where
1973   // they are keyed by the index and not the base object.
1974   // Since an address point can be shared by multiple subobjects, we use an
1975   // STL multimap.
1976   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1977   for (const auto &AP : AddressPoints) {
1978     const BaseSubobject &Base = AP.first;
1979     uint64_t Index =
1980         VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1981 
1982     AddressPointsByIndex.insert(std::make_pair(Index, Base));
1983   }
1984 
1985   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1986     uint64_t Index = I;
1987 
1988     Out << llvm::format("%4d | ", I);
1989 
1990     const VTableComponent &Component = Components[I];
1991 
1992     // Dump the component.
1993     switch (Component.getKind()) {
1994 
1995     case VTableComponent::CK_VCallOffset:
1996       Out << "vcall_offset ("
1997           << Component.getVCallOffset().getQuantity()
1998           << ")";
1999       break;
2000 
2001     case VTableComponent::CK_VBaseOffset:
2002       Out << "vbase_offset ("
2003           << Component.getVBaseOffset().getQuantity()
2004           << ")";
2005       break;
2006 
2007     case VTableComponent::CK_OffsetToTop:
2008       Out << "offset_to_top ("
2009           << Component.getOffsetToTop().getQuantity()
2010           << ")";
2011       break;
2012 
2013     case VTableComponent::CK_RTTI:
2014       Component.getRTTIDecl()->printQualifiedName(Out);
2015       Out << " RTTI";
2016       break;
2017 
2018     case VTableComponent::CK_FunctionPointer: {
2019       const CXXMethodDecl *MD = Component.getFunctionDecl();
2020 
2021       std::string Str = PredefinedExpr::ComputeName(
2022           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2023       Out << Str;
2024       if (MD->isPureVirtual())
2025         Out << " [pure]";
2026 
2027       if (MD->isDeleted())
2028         Out << " [deleted]";
2029 
2030       ThunkInfo Thunk = VTableThunks.lookup(I);
2031       if (!Thunk.isEmpty()) {
2032         // If this function pointer has a return adjustment, dump it.
2033         if (!Thunk.Return.isEmpty()) {
2034           Out << "\n       [return adjustment: ";
2035           Out << Thunk.Return.NonVirtual << " non-virtual";
2036 
2037           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2038             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2039             Out << " vbase offset offset";
2040           }
2041 
2042           Out << ']';
2043           printThunkMethod(Thunk, Out);
2044         }
2045 
2046         // If this function pointer has a 'this' pointer adjustment, dump it.
2047         if (!Thunk.This.isEmpty()) {
2048           Out << "\n       [this adjustment: ";
2049           Out << Thunk.This.NonVirtual << " non-virtual";
2050 
2051           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2052             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2053             Out << " vcall offset offset";
2054           }
2055 
2056           Out << ']';
2057           printThunkMethod(Thunk, Out);
2058         }
2059       }
2060 
2061       break;
2062     }
2063 
2064     case VTableComponent::CK_CompleteDtorPointer:
2065     case VTableComponent::CK_DeletingDtorPointer: {
2066       bool IsComplete =
2067         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2068 
2069       const CXXDestructorDecl *DD = Component.getDestructorDecl();
2070 
2071       DD->printQualifiedName(Out);
2072       if (IsComplete)
2073         Out << "() [complete]";
2074       else
2075         Out << "() [deleting]";
2076 
2077       if (DD->isPureVirtual())
2078         Out << " [pure]";
2079 
2080       ThunkInfo Thunk = VTableThunks.lookup(I);
2081       if (!Thunk.isEmpty()) {
2082         // If this destructor has a 'this' pointer adjustment, dump it.
2083         if (!Thunk.This.isEmpty()) {
2084           Out << "\n       [this adjustment: ";
2085           Out << Thunk.This.NonVirtual << " non-virtual";
2086 
2087           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2088             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2089             Out << " vcall offset offset";
2090           }
2091 
2092           Out << ']';
2093         }
2094         printThunkMethod(Thunk, Out);
2095       }
2096 
2097       break;
2098     }
2099 
2100     case VTableComponent::CK_UnusedFunctionPointer: {
2101       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2102 
2103       std::string Str = PredefinedExpr::ComputeName(
2104           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2105       Out << "[unused] " << Str;
2106       if (MD->isPureVirtual())
2107         Out << " [pure]";
2108     }
2109 
2110     }
2111 
2112     Out << '\n';
2113 
2114     // Dump the next address point.
2115     uint64_t NextIndex = Index + 1;
2116     if (AddressPointsByIndex.count(NextIndex)) {
2117       if (AddressPointsByIndex.count(NextIndex) == 1) {
2118         const BaseSubobject &Base =
2119           AddressPointsByIndex.find(NextIndex)->second;
2120 
2121         Out << "       -- (";
2122         Base.getBase()->printQualifiedName(Out);
2123         Out << ", " << Base.getBaseOffset().getQuantity();
2124         Out << ") vtable address --\n";
2125       } else {
2126         CharUnits BaseOffset =
2127           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2128 
2129         // We store the class names in a set to get a stable order.
2130         std::set<std::string> ClassNames;
2131         for (const auto &I :
2132              llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2133           assert(I.second.getBaseOffset() == BaseOffset &&
2134                  "Invalid base offset!");
2135           const CXXRecordDecl *RD = I.second.getBase();
2136           ClassNames.insert(RD->getQualifiedNameAsString());
2137         }
2138 
2139         for (const std::string &Name : ClassNames) {
2140           Out << "       -- (" << Name;
2141           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2142         }
2143       }
2144     }
2145   }
2146 
2147   Out << '\n';
2148 
2149   if (isBuildingConstructorVTable())
2150     return;
2151 
2152   if (MostDerivedClass->getNumVBases()) {
2153     // We store the virtual base class names and their offsets in a map to get
2154     // a stable order.
2155 
2156     std::map<std::string, CharUnits> ClassNamesAndOffsets;
2157     for (const auto &I : VBaseOffsetOffsets) {
2158       std::string ClassName = I.first->getQualifiedNameAsString();
2159       CharUnits OffsetOffset = I.second;
2160       ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2161     }
2162 
2163     Out << "Virtual base offset offsets for '";
2164     MostDerivedClass->printQualifiedName(Out);
2165     Out << "' (";
2166     Out << ClassNamesAndOffsets.size();
2167     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2168 
2169     for (const auto &I : ClassNamesAndOffsets)
2170       Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2171 
2172     Out << "\n";
2173   }
2174 
2175   if (!Thunks.empty()) {
2176     // We store the method names in a map to get a stable order.
2177     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2178 
2179     for (const auto &I : Thunks) {
2180       const CXXMethodDecl *MD = I.first;
2181       std::string MethodName = PredefinedExpr::ComputeName(
2182           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2183 
2184       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2185     }
2186 
2187     for (const auto &I : MethodNamesAndDecls) {
2188       const std::string &MethodName = I.first;
2189       const CXXMethodDecl *MD = I.second;
2190 
2191       ThunkInfoVectorTy ThunksVector = Thunks[MD];
2192       llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2193         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2194       });
2195 
2196       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2197       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2198 
2199       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2200         const ThunkInfo &Thunk = ThunksVector[I];
2201 
2202         Out << llvm::format("%4d | ", I);
2203 
2204         // If this function pointer has a return pointer adjustment, dump it.
2205         if (!Thunk.Return.isEmpty()) {
2206           Out << "return adjustment: " << Thunk.Return.NonVirtual;
2207           Out << " non-virtual";
2208           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2209             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2210             Out << " vbase offset offset";
2211           }
2212 
2213           if (!Thunk.This.isEmpty())
2214             Out << "\n       ";
2215         }
2216 
2217         // If this function pointer has a 'this' pointer adjustment, dump it.
2218         if (!Thunk.This.isEmpty()) {
2219           Out << "this adjustment: ";
2220           Out << Thunk.This.NonVirtual << " non-virtual";
2221 
2222           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2223             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2224             Out << " vcall offset offset";
2225           }
2226         }
2227 
2228         Out << '\n';
2229       }
2230 
2231       Out << '\n';
2232     }
2233   }
2234 
2235   // Compute the vtable indices for all the member functions.
2236   // Store them in a map keyed by the index so we'll get a sorted table.
2237   std::map<uint64_t, std::string> IndicesMap;
2238 
2239   for (const auto *MD : MostDerivedClass->methods()) {
2240     // We only want virtual member functions.
2241     if (!ItaniumVTableContext::hasVtableSlot(MD))
2242       continue;
2243     MD = MD->getCanonicalDecl();
2244 
2245     std::string MethodName = PredefinedExpr::ComputeName(
2246         PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2247 
2248     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2249       GlobalDecl GD(DD, Dtor_Complete);
2250       assert(MethodVTableIndices.count(GD));
2251       uint64_t VTableIndex = MethodVTableIndices[GD];
2252       IndicesMap[VTableIndex] = MethodName + " [complete]";
2253       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2254     } else {
2255       assert(MethodVTableIndices.count(MD));
2256       IndicesMap[MethodVTableIndices[MD]] = MethodName;
2257     }
2258   }
2259 
2260   // Print the vtable indices for all the member functions.
2261   if (!IndicesMap.empty()) {
2262     Out << "VTable indices for '";
2263     MostDerivedClass->printQualifiedName(Out);
2264     Out << "' (" << IndicesMap.size() << " entries).\n";
2265 
2266     for (const auto &I : IndicesMap) {
2267       uint64_t VTableIndex = I.first;
2268       const std::string &MethodName = I.second;
2269 
2270       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2271           << '\n';
2272     }
2273   }
2274 
2275   Out << '\n';
2276 }
2277 }
2278 
2279 static VTableLayout::AddressPointsIndexMapTy
2280 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2281                         unsigned numVTables) {
2282   VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2283 
2284   for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2285     const auto &addressPointLoc = it->second;
2286     unsigned vtableIndex = addressPointLoc.VTableIndex;
2287     unsigned addressPoint = addressPointLoc.AddressPointIndex;
2288     if (indexMap[vtableIndex]) {
2289       // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2290       // every vtable index should have a unique address point.
2291       assert(indexMap[vtableIndex] == addressPoint &&
2292              "Every vtable index should have a unique address point. Found a "
2293              "vtable that has two different address points.");
2294     } else {
2295       indexMap[vtableIndex] = addressPoint;
2296     }
2297   }
2298 
2299   // Note that by this point, not all the address may be initialized if the
2300   // AddressPoints map is empty. This is ok if the map isn't needed. See
2301   // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2302   // emprt map.
2303   return indexMap;
2304 }
2305 
2306 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2307                            ArrayRef<VTableComponent> VTableComponents,
2308                            ArrayRef<VTableThunkTy> VTableThunks,
2309                            const AddressPointsMapTy &AddressPoints)
2310     : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2311       AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2312                                         AddressPoints, VTableIndices.size())) {
2313   if (VTableIndices.size() <= 1)
2314     assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2315   else
2316     this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2317 
2318   llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2319                                     const VTableLayout::VTableThunkTy &RHS) {
2320     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2321            "Different thunks should have unique indices!");
2322     return LHS.first < RHS.first;
2323   });
2324 }
2325 
2326 VTableLayout::~VTableLayout() { }
2327 
2328 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2329   return MD->isVirtual() && !MD->isImmediateFunction();
2330 }
2331 
2332 ItaniumVTableContext::ItaniumVTableContext(
2333     ASTContext &Context, VTableComponentLayout ComponentLayout)
2334     : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2335 
2336 ItaniumVTableContext::~ItaniumVTableContext() {}
2337 
2338 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2339   GD = GD.getCanonicalDecl();
2340   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2341   if (I != MethodVTableIndices.end())
2342     return I->second;
2343 
2344   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2345 
2346   computeVTableRelatedInformation(RD);
2347 
2348   I = MethodVTableIndices.find(GD);
2349   assert(I != MethodVTableIndices.end() && "Did not find index!");
2350   return I->second;
2351 }
2352 
2353 CharUnits
2354 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2355                                                  const CXXRecordDecl *VBase) {
2356   ClassPairTy ClassPair(RD, VBase);
2357 
2358   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2359     VirtualBaseClassOffsetOffsets.find(ClassPair);
2360   if (I != VirtualBaseClassOffsetOffsets.end())
2361     return I->second;
2362 
2363   VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2364                                      BaseSubobject(RD, CharUnits::Zero()),
2365                                      /*BaseIsVirtual=*/false,
2366                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
2367 
2368   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2369     // Insert all types.
2370     ClassPairTy ClassPair(RD, I.first);
2371 
2372     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2373   }
2374 
2375   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2376   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2377 
2378   return I->second;
2379 }
2380 
2381 GlobalDecl ItaniumVTableContext::findOriginalMethod(GlobalDecl GD) {
2382   const auto *MD = cast<CXXMethodDecl>(GD.getDecl());
2383   computeVTableRelatedInformation(MD->getParent());
2384   const CXXMethodDecl *OriginalMD = findOriginalMethodInMap(MD);
2385 
2386   if (const auto *DD = dyn_cast<CXXDestructorDecl>(OriginalMD))
2387     return GlobalDecl(DD, GD.getDtorType());
2388   return OriginalMD;
2389 }
2390 
2391 const CXXMethodDecl *
2392 ItaniumVTableContext::findOriginalMethodInMap(const CXXMethodDecl *MD) const {
2393   // Traverse the chain of virtual methods until we find the method that added
2394   // the v-table slot.
2395   while (true) {
2396     auto I = OriginalMethodMap.find(MD);
2397 
2398     // MD doesn't exist in OriginalMethodMap, so it must be the method we are
2399     // looking for.
2400     if (I == OriginalMethodMap.end())
2401       break;
2402 
2403     // Set MD to the overridden method.
2404     MD = I->second;
2405   }
2406 
2407   return MD;
2408 }
2409 
2410 static std::unique_ptr<VTableLayout>
2411 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2412   SmallVector<VTableLayout::VTableThunkTy, 1>
2413     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2414 
2415   return std::make_unique<VTableLayout>(
2416       Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2417       Builder.getAddressPoints());
2418 }
2419 
2420 void
2421 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2422   std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2423 
2424   // Check if we've computed this information before.
2425   if (Entry)
2426     return;
2427 
2428   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2429                                /*MostDerivedClassIsVirtual=*/false, RD);
2430   Entry = CreateVTableLayout(Builder);
2431 
2432   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2433                              Builder.vtable_indices_end());
2434 
2435   // Add the known thunks.
2436   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2437 
2438   // If we don't have the vbase information for this class, insert it.
2439   // getVirtualBaseOffsetOffset will compute it separately without computing
2440   // the rest of the vtable related information.
2441   if (!RD->getNumVBases())
2442     return;
2443 
2444   const CXXRecordDecl *VBase =
2445     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2446 
2447   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2448     return;
2449 
2450   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2451     // Insert all types.
2452     ClassPairTy ClassPair(RD, I.first);
2453 
2454     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2455   }
2456 }
2457 
2458 std::unique_ptr<VTableLayout>
2459 ItaniumVTableContext::createConstructionVTableLayout(
2460     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2461     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2462   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2463                                MostDerivedClassIsVirtual, LayoutClass);
2464   return CreateVTableLayout(Builder);
2465 }
2466 
2467 namespace {
2468 
2469 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2470 //
2471 // The main differences are:
2472 //  1. Separate vftable and vbtable.
2473 //
2474 //  2. Each subobject with a vfptr gets its own vftable rather than an address
2475 //     point in a single vtable shared between all the subobjects.
2476 //     Each vftable is represented by a separate section and virtual calls
2477 //     must be done using the vftable which has a slot for the function to be
2478 //     called.
2479 //
2480 //  3. Virtual method definitions expect their 'this' parameter to point to the
2481 //     first vfptr whose table provides a compatible overridden method.  In many
2482 //     cases, this permits the original vf-table entry to directly call
2483 //     the method instead of passing through a thunk.
2484 //     See example before VFTableBuilder::ComputeThisOffset below.
2485 //
2486 //     A compatible overridden method is one which does not have a non-trivial
2487 //     covariant-return adjustment.
2488 //
2489 //     The first vfptr is the one with the lowest offset in the complete-object
2490 //     layout of the defining class, and the method definition will subtract
2491 //     that constant offset from the parameter value to get the real 'this'
2492 //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2493 //     function defined in a virtual base is overridden in a more derived
2494 //     virtual base and these bases have a reverse order in the complete
2495 //     object), the vf-table may require a this-adjustment thunk.
2496 //
2497 //  4. vftables do not contain new entries for overrides that merely require
2498 //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2499 //     eliminates the need for this-adjustment thunks in many cases, at the cost
2500 //     of often requiring redundant work to adjust the "this" pointer.
2501 //
2502 //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2503 //     Vtordisps are emitted into the class layout if a class has
2504 //      a) a user-defined ctor/dtor
2505 //     and
2506 //      b) a method overriding a method in a virtual base.
2507 //
2508 //  To get a better understanding of this code,
2509 //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2510 
2511 class VFTableBuilder {
2512 public:
2513   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2514     MethodVFTableLocationsTy;
2515 
2516   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2517     method_locations_range;
2518 
2519 private:
2520   /// VTables - Global vtable information.
2521   MicrosoftVTableContext &VTables;
2522 
2523   /// Context - The ASTContext which we will use for layout information.
2524   ASTContext &Context;
2525 
2526   /// MostDerivedClass - The most derived class for which we're building this
2527   /// vtable.
2528   const CXXRecordDecl *MostDerivedClass;
2529 
2530   const ASTRecordLayout &MostDerivedClassLayout;
2531 
2532   const VPtrInfo &WhichVFPtr;
2533 
2534   /// FinalOverriders - The final overriders of the most derived class.
2535   const FinalOverriders Overriders;
2536 
2537   /// Components - The components of the vftable being built.
2538   SmallVector<VTableComponent, 64> Components;
2539 
2540   MethodVFTableLocationsTy MethodVFTableLocations;
2541 
2542   /// Does this class have an RTTI component?
2543   bool HasRTTIComponent = false;
2544 
2545   /// MethodInfo - Contains information about a method in a vtable.
2546   /// (Used for computing 'this' pointer adjustment thunks.
2547   struct MethodInfo {
2548     /// VBTableIndex - The nonzero index in the vbtable that
2549     /// this method's base has, or zero.
2550     const uint64_t VBTableIndex;
2551 
2552     /// VFTableIndex - The index in the vftable that this method has.
2553     const uint64_t VFTableIndex;
2554 
2555     /// Shadowed - Indicates if this vftable slot is shadowed by
2556     /// a slot for a covariant-return override. If so, it shouldn't be printed
2557     /// or used for vcalls in the most derived class.
2558     bool Shadowed;
2559 
2560     /// UsesExtraSlot - Indicates if this vftable slot was created because
2561     /// any of the overridden slots required a return adjusting thunk.
2562     bool UsesExtraSlot;
2563 
2564     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2565                bool UsesExtraSlot = false)
2566         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2567           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2568 
2569     MethodInfo()
2570         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2571           UsesExtraSlot(false) {}
2572   };
2573 
2574   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2575 
2576   /// MethodInfoMap - The information for all methods in the vftable we're
2577   /// currently building.
2578   MethodInfoMapTy MethodInfoMap;
2579 
2580   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2581 
2582   /// VTableThunks - The thunks by vftable index in the vftable currently being
2583   /// built.
2584   VTableThunksMapTy VTableThunks;
2585 
2586   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2587   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2588 
2589   /// Thunks - A map that contains all the thunks needed for all methods in the
2590   /// most derived class for which the vftable is currently being built.
2591   ThunksMapTy Thunks;
2592 
2593   /// AddThunk - Add a thunk for the given method.
2594   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2595     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2596 
2597     // Check if we have this thunk already.
2598     if (llvm::is_contained(ThunksVector, Thunk))
2599       return;
2600 
2601     ThunksVector.push_back(Thunk);
2602   }
2603 
2604   /// ComputeThisOffset - Returns the 'this' argument offset for the given
2605   /// method, relative to the beginning of the MostDerivedClass.
2606   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2607 
2608   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2609                                    CharUnits ThisOffset, ThisAdjustment &TA);
2610 
2611   /// AddMethod - Add a single virtual member function to the vftable
2612   /// components vector.
2613   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2614     if (!TI.isEmpty()) {
2615       VTableThunks[Components.size()] = TI;
2616       AddThunk(MD, TI);
2617     }
2618     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2619       assert(TI.Return.isEmpty() &&
2620              "Destructor can't have return adjustment!");
2621       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2622     } else {
2623       Components.push_back(VTableComponent::MakeFunction(MD));
2624     }
2625   }
2626 
2627   /// AddMethods - Add the methods of this base subobject and the relevant
2628   /// subbases to the vftable we're currently laying out.
2629   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2630                   const CXXRecordDecl *LastVBase,
2631                   BasesSetVectorTy &VisitedBases);
2632 
2633   void LayoutVFTable() {
2634     // RTTI data goes before all other entries.
2635     if (HasRTTIComponent)
2636       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2637 
2638     BasesSetVectorTy VisitedBases;
2639     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2640                VisitedBases);
2641     // Note that it is possible for the vftable to contain only an RTTI
2642     // pointer, if all virtual functions are constewval.
2643     assert(!Components.empty() && "vftable can't be empty");
2644 
2645     assert(MethodVFTableLocations.empty());
2646     for (const auto &I : MethodInfoMap) {
2647       const CXXMethodDecl *MD = I.first;
2648       const MethodInfo &MI = I.second;
2649       assert(MD == MD->getCanonicalDecl());
2650 
2651       // Skip the methods that the MostDerivedClass didn't override
2652       // and the entries shadowed by return adjusting thunks.
2653       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2654         continue;
2655       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2656                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2657       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2658         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2659       } else {
2660         MethodVFTableLocations[MD] = Loc;
2661       }
2662     }
2663   }
2664 
2665 public:
2666   VFTableBuilder(MicrosoftVTableContext &VTables,
2667                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2668       : VTables(VTables),
2669         Context(MostDerivedClass->getASTContext()),
2670         MostDerivedClass(MostDerivedClass),
2671         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2672         WhichVFPtr(Which),
2673         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2674     // Provide the RTTI component if RTTIData is enabled. If the vftable would
2675     // be available externally, we should not provide the RTTI componenent. It
2676     // is currently impossible to get available externally vftables with either
2677     // dllimport or extern template instantiations, but eventually we may add a
2678     // flag to support additional devirtualization that needs this.
2679     if (Context.getLangOpts().RTTIData)
2680       HasRTTIComponent = true;
2681 
2682     LayoutVFTable();
2683 
2684     if (Context.getLangOpts().DumpVTableLayouts)
2685       dumpLayout(llvm::outs());
2686   }
2687 
2688   uint64_t getNumThunks() const { return Thunks.size(); }
2689 
2690   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2691 
2692   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2693 
2694   method_locations_range vtable_locations() const {
2695     return method_locations_range(MethodVFTableLocations.begin(),
2696                                   MethodVFTableLocations.end());
2697   }
2698 
2699   ArrayRef<VTableComponent> vtable_components() const { return Components; }
2700 
2701   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2702     return VTableThunks.begin();
2703   }
2704 
2705   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2706     return VTableThunks.end();
2707   }
2708 
2709   void dumpLayout(raw_ostream &);
2710 };
2711 
2712 } // end namespace
2713 
2714 // Let's study one class hierarchy as an example:
2715 //   struct A {
2716 //     virtual void f();
2717 //     int x;
2718 //   };
2719 //
2720 //   struct B : virtual A {
2721 //     virtual void f();
2722 //   };
2723 //
2724 // Record layouts:
2725 //   struct A:
2726 //   0 |   (A vftable pointer)
2727 //   4 |   int x
2728 //
2729 //   struct B:
2730 //   0 |   (B vbtable pointer)
2731 //   4 |   struct A (virtual base)
2732 //   4 |     (A vftable pointer)
2733 //   8 |     int x
2734 //
2735 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2736 //   B b;
2737 //   A *a = (A*)&b;
2738 //   a->f();
2739 //
2740 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2741 // "this" parameter to point at the A subobject, which is B+4.
2742 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2743 // performed as a *static* adjustment.
2744 //
2745 // Interesting thing happens when we alter the relative placement of A and B
2746 // subobjects in a class:
2747 //   struct C : virtual B { };
2748 //
2749 //   C c;
2750 //   A *a = (A*)&c;
2751 //   a->f();
2752 //
2753 // Respective record layout is:
2754 //   0 |   (C vbtable pointer)
2755 //   4 |   struct A (virtual base)
2756 //   4 |     (A vftable pointer)
2757 //   8 |     int x
2758 //  12 |   struct B (virtual base)
2759 //  12 |     (B vbtable pointer)
2760 //
2761 // The final overrider of f() in class C is still B::f(), so B+4 should be
2762 // passed as "this" to that code.  However, "a" points at B-8, so the respective
2763 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2764 // performing a tail call to B::f().
2765 //
2766 // With this example in mind, we can now calculate the 'this' argument offset
2767 // for the given method, relative to the beginning of the MostDerivedClass.
2768 CharUnits
2769 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2770   BasesSetVectorTy Bases;
2771 
2772   {
2773     // Find the set of least derived bases that define the given method.
2774     OverriddenMethodsSetTy VisitedOverriddenMethods;
2775     auto InitialOverriddenDefinitionCollector = [&](
2776         const CXXMethodDecl *OverriddenMD) {
2777       if (OverriddenMD->size_overridden_methods() == 0)
2778         Bases.insert(OverriddenMD->getParent());
2779       // Don't recurse on this method if we've already collected it.
2780       return VisitedOverriddenMethods.insert(OverriddenMD).second;
2781     };
2782     visitAllOverriddenMethods(Overrider.Method,
2783                               InitialOverriddenDefinitionCollector);
2784   }
2785 
2786   // If there are no overrides then 'this' is located
2787   // in the base that defines the method.
2788   if (Bases.size() == 0)
2789     return Overrider.Offset;
2790 
2791   CXXBasePaths Paths;
2792   Overrider.Method->getParent()->lookupInBases(
2793       [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2794         return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2795       },
2796       Paths);
2797 
2798   // This will hold the smallest this offset among overridees of MD.
2799   // This implies that an offset of a non-virtual base will dominate an offset
2800   // of a virtual base to potentially reduce the number of thunks required
2801   // in the derived classes that inherit this method.
2802   CharUnits Ret;
2803   bool First = true;
2804 
2805   const ASTRecordLayout &OverriderRDLayout =
2806       Context.getASTRecordLayout(Overrider.Method->getParent());
2807   for (const CXXBasePath &Path : Paths) {
2808     CharUnits ThisOffset = Overrider.Offset;
2809     CharUnits LastVBaseOffset;
2810 
2811     // For each path from the overrider to the parents of the overridden
2812     // methods, traverse the path, calculating the this offset in the most
2813     // derived class.
2814     for (const CXXBasePathElement &Element : Path) {
2815       QualType CurTy = Element.Base->getType();
2816       const CXXRecordDecl *PrevRD = Element.Class,
2817                           *CurRD = CurTy->getAsCXXRecordDecl();
2818       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2819 
2820       if (Element.Base->isVirtual()) {
2821         // The interesting things begin when you have virtual inheritance.
2822         // The final overrider will use a static adjustment equal to the offset
2823         // of the vbase in the final overrider class.
2824         // For example, if the final overrider is in a vbase B of the most
2825         // derived class and it overrides a method of the B's own vbase A,
2826         // it uses A* as "this".  In its prologue, it can cast A* to B* with
2827         // a static offset.  This offset is used regardless of the actual
2828         // offset of A from B in the most derived class, requiring an
2829         // this-adjusting thunk in the vftable if A and B are laid out
2830         // differently in the most derived class.
2831         LastVBaseOffset = ThisOffset =
2832             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2833       } else {
2834         ThisOffset += Layout.getBaseClassOffset(CurRD);
2835       }
2836     }
2837 
2838     if (isa<CXXDestructorDecl>(Overrider.Method)) {
2839       if (LastVBaseOffset.isZero()) {
2840         // If a "Base" class has at least one non-virtual base with a virtual
2841         // destructor, the "Base" virtual destructor will take the address
2842         // of the "Base" subobject as the "this" argument.
2843         ThisOffset = Overrider.Offset;
2844       } else {
2845         // A virtual destructor of a virtual base takes the address of the
2846         // virtual base subobject as the "this" argument.
2847         ThisOffset = LastVBaseOffset;
2848       }
2849     }
2850 
2851     if (Ret > ThisOffset || First) {
2852       First = false;
2853       Ret = ThisOffset;
2854     }
2855   }
2856 
2857   assert(!First && "Method not found in the given subobject?");
2858   return Ret;
2859 }
2860 
2861 // Things are getting even more complex when the "this" adjustment has to
2862 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2863 // This is sometimes required when a virtual call happens in the middle of
2864 // a non-most-derived class construction or destruction.
2865 //
2866 // Let's take a look at the following example:
2867 //   struct A {
2868 //     virtual void f();
2869 //   };
2870 //
2871 //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2872 //
2873 //   struct B : virtual A {
2874 //     virtual void f();
2875 //     B() {
2876 //       foo(this);
2877 //     }
2878 //   };
2879 //
2880 //   struct C : virtual B {
2881 //     virtual void f();
2882 //   };
2883 //
2884 // Record layouts for these classes are:
2885 //   struct A
2886 //   0 |   (A vftable pointer)
2887 //
2888 //   struct B
2889 //   0 |   (B vbtable pointer)
2890 //   4 |   (vtordisp for vbase A)
2891 //   8 |   struct A (virtual base)
2892 //   8 |     (A vftable pointer)
2893 //
2894 //   struct C
2895 //   0 |   (C vbtable pointer)
2896 //   4 |   (vtordisp for vbase A)
2897 //   8 |   struct A (virtual base)  // A precedes B!
2898 //   8 |     (A vftable pointer)
2899 //  12 |   struct B (virtual base)
2900 //  12 |     (B vbtable pointer)
2901 //
2902 // When one creates an object of type C, the C constructor:
2903 // - initializes all the vbptrs, then
2904 // - calls the A subobject constructor
2905 //   (initializes A's vfptr with an address of A vftable), then
2906 // - calls the B subobject constructor
2907 //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2908 //   that in turn calls foo(), then
2909 // - initializes A's vfptr with an address of C vftable and zeroes out the
2910 //   vtordisp
2911 //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2912 //   without vtordisp thunks?
2913 //   FIXME: how are vtordisp handled in the presence of nooverride/final?
2914 //
2915 // When foo() is called, an object with a layout of class C has a vftable
2916 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2917 // incorrect, unless an extra adjustment is done.  This adjustment is called
2918 // "vtordisp adjustment".  Vtordisp basically holds the difference between the
2919 // actual location of a vbase in the layout class and the location assumed by
2920 // the vftable of the class being constructed/destructed.  Vtordisp is only
2921 // needed if "this" escapes a
2922 // structor (or we can't prove otherwise).
2923 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2924 // estimation of a dynamic adjustment]
2925 //
2926 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2927 // so it just passes that pointer as "this" in a virtual call.
2928 // If there was no vtordisp, that would just dispatch to B::f().
2929 // However, B::f() assumes B+8 is passed as "this",
2930 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2931 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2932 // This vtordisp thunk subtracts the value of vtordisp
2933 // from the "this" argument (-12) before making a tailcall to B::f().
2934 //
2935 // Let's consider an even more complex example:
2936 //   struct D : virtual B, virtual C {
2937 //     D() {
2938 //       foo(this);
2939 //     }
2940 //   };
2941 //
2942 //   struct D
2943 //   0 |   (D vbtable pointer)
2944 //   4 |   (vtordisp for vbase A)
2945 //   8 |   struct A (virtual base)  // A precedes both B and C!
2946 //   8 |     (A vftable pointer)
2947 //  12 |   struct B (virtual base)  // B precedes C!
2948 //  12 |     (B vbtable pointer)
2949 //  16 |   struct C (virtual base)
2950 //  16 |     (C vbtable pointer)
2951 //
2952 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2953 // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2954 // passes along A, which is C-8.  The A vtordisp holds
2955 //   "D.vbptr[index_of_A] - offset_of_A_in_D"
2956 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2957 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2958 // and one extra static adjustment to calculate the expected value of C+8.
2959 void VFTableBuilder::CalculateVtordispAdjustment(
2960     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2961     ThisAdjustment &TA) {
2962   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2963       MostDerivedClassLayout.getVBaseOffsetsMap();
2964   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2965       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2966   assert(VBaseMapEntry != VBaseMap.end());
2967 
2968   // If there's no vtordisp or the final overrider is defined in the same vbase
2969   // as the initial declaration, we don't need any vtordisp adjustment.
2970   if (!VBaseMapEntry->second.hasVtorDisp() ||
2971       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2972     return;
2973 
2974   // OK, now we know we need to use a vtordisp thunk.
2975   // The implicit vtordisp field is located right before the vbase.
2976   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2977   TA.Virtual.Microsoft.VtordispOffset =
2978       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2979 
2980   // A simple vtordisp thunk will suffice if the final overrider is defined
2981   // in either the most derived class or its non-virtual base.
2982   if (Overrider.Method->getParent() == MostDerivedClass ||
2983       !Overrider.VirtualBase)
2984     return;
2985 
2986   // Otherwise, we need to do use the dynamic offset of the final overrider
2987   // in order to get "this" adjustment right.
2988   TA.Virtual.Microsoft.VBPtrOffset =
2989       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2990        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2991   TA.Virtual.Microsoft.VBOffsetOffset =
2992       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2993       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2994 
2995   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2996 }
2997 
2998 static void GroupNewVirtualOverloads(
2999     const CXXRecordDecl *RD,
3000     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
3001   // Put the virtual methods into VirtualMethods in the proper order:
3002   // 1) Group overloads by declaration name. New groups are added to the
3003   //    vftable in the order of their first declarations in this class
3004   //    (including overrides, non-virtual methods and any other named decl that
3005   //    might be nested within the class).
3006   // 2) In each group, new overloads appear in the reverse order of declaration.
3007   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
3008   SmallVector<MethodGroup, 10> Groups;
3009   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
3010   VisitedGroupIndicesTy VisitedGroupIndices;
3011   for (const auto *D : RD->decls()) {
3012     const auto *ND = dyn_cast<NamedDecl>(D);
3013     if (!ND)
3014       continue;
3015     VisitedGroupIndicesTy::iterator J;
3016     bool Inserted;
3017     std::tie(J, Inserted) = VisitedGroupIndices.insert(
3018         std::make_pair(ND->getDeclName(), Groups.size()));
3019     if (Inserted)
3020       Groups.push_back(MethodGroup());
3021     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
3022       if (MicrosoftVTableContext::hasVtableSlot(MD))
3023         Groups[J->second].push_back(MD->getCanonicalDecl());
3024   }
3025 
3026   for (const MethodGroup &Group : Groups)
3027     VirtualMethods.append(Group.rbegin(), Group.rend());
3028 }
3029 
3030 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
3031   for (const auto &B : RD->bases()) {
3032     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
3033       return true;
3034   }
3035   return false;
3036 }
3037 
3038 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
3039                                 const CXXRecordDecl *LastVBase,
3040                                 BasesSetVectorTy &VisitedBases) {
3041   const CXXRecordDecl *RD = Base.getBase();
3042   if (!RD->isPolymorphic())
3043     return;
3044 
3045   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3046 
3047   // See if this class expands a vftable of the base we look at, which is either
3048   // the one defined by the vfptr base path or the primary base of the current
3049   // class.
3050   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
3051   CharUnits NextBaseOffset;
3052   if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
3053     NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
3054     if (isDirectVBase(NextBase, RD)) {
3055       NextLastVBase = NextBase;
3056       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
3057     } else {
3058       NextBaseOffset =
3059           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
3060     }
3061   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
3062     assert(!Layout.isPrimaryBaseVirtual() &&
3063            "No primary virtual bases in this ABI");
3064     NextBase = PrimaryBase;
3065     NextBaseOffset = Base.getBaseOffset();
3066   }
3067 
3068   if (NextBase) {
3069     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
3070                NextLastVBase, VisitedBases);
3071     if (!VisitedBases.insert(NextBase))
3072       llvm_unreachable("Found a duplicate primary base!");
3073   }
3074 
3075   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
3076   // Put virtual methods in the proper order.
3077   GroupNewVirtualOverloads(RD, VirtualMethods);
3078 
3079   // Now go through all virtual member functions and add them to the current
3080   // vftable. This is done by
3081   //  - replacing overridden methods in their existing slots, as long as they
3082   //    don't require return adjustment; calculating This adjustment if needed.
3083   //  - adding new slots for methods of the current base not present in any
3084   //    sub-bases;
3085   //  - adding new slots for methods that require Return adjustment.
3086   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
3087   for (const CXXMethodDecl *MD : VirtualMethods) {
3088     FinalOverriders::OverriderInfo FinalOverrider =
3089         Overriders.getOverrider(MD, Base.getBaseOffset());
3090     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
3091     const CXXMethodDecl *OverriddenMD =
3092         FindNearestOverriddenMethod(MD, VisitedBases);
3093 
3094     ThisAdjustment ThisAdjustmentOffset;
3095     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3096     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3097     ThisAdjustmentOffset.NonVirtual =
3098         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3099     if ((OverriddenMD || FinalOverriderMD != MD) &&
3100         WhichVFPtr.getVBaseWithVPtr())
3101       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3102                                   ThisAdjustmentOffset);
3103 
3104     unsigned VBIndex =
3105         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3106 
3107     if (OverriddenMD) {
3108       // If MD overrides anything in this vftable, we need to update the
3109       // entries.
3110       MethodInfoMapTy::iterator OverriddenMDIterator =
3111           MethodInfoMap.find(OverriddenMD);
3112 
3113       // If the overridden method went to a different vftable, skip it.
3114       if (OverriddenMDIterator == MethodInfoMap.end())
3115         continue;
3116 
3117       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3118 
3119       VBIndex = OverriddenMethodInfo.VBTableIndex;
3120 
3121       // Let's check if the overrider requires any return adjustments.
3122       // We must create a new slot if the MD's return type is not trivially
3123       // convertible to the OverriddenMD's one.
3124       // Once a chain of method overrides adds a return adjusting vftable slot,
3125       // all subsequent overrides will also use an extra method slot.
3126       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3127                                   Context, MD, OverriddenMD).isEmpty() ||
3128                              OverriddenMethodInfo.UsesExtraSlot;
3129 
3130       if (!ReturnAdjustingThunk) {
3131         // No return adjustment needed - just replace the overridden method info
3132         // with the current info.
3133         MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3134         MethodInfoMap.erase(OverriddenMDIterator);
3135 
3136         assert(!MethodInfoMap.count(MD) &&
3137                "Should not have method info for this method yet!");
3138         MethodInfoMap.insert(std::make_pair(MD, MI));
3139         continue;
3140       }
3141 
3142       // In case we need a return adjustment, we'll add a new slot for
3143       // the overrider. Mark the overridden method as shadowed by the new slot.
3144       OverriddenMethodInfo.Shadowed = true;
3145 
3146       // Force a special name mangling for a return-adjusting thunk
3147       // unless the method is the final overrider without this adjustment.
3148       ForceReturnAdjustmentMangling =
3149           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3150     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3151                MD->size_overridden_methods()) {
3152       // Skip methods that don't belong to the vftable of the current class,
3153       // e.g. each method that wasn't seen in any of the visited sub-bases
3154       // but overrides multiple methods of other sub-bases.
3155       continue;
3156     }
3157 
3158     // If we got here, MD is a method not seen in any of the sub-bases or
3159     // it requires return adjustment. Insert the method info for this method.
3160     MethodInfo MI(VBIndex,
3161                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
3162                   ReturnAdjustingThunk);
3163 
3164     assert(!MethodInfoMap.count(MD) &&
3165            "Should not have method info for this method yet!");
3166     MethodInfoMap.insert(std::make_pair(MD, MI));
3167 
3168     // Check if this overrider needs a return adjustment.
3169     // We don't want to do this for pure virtual member functions.
3170     BaseOffset ReturnAdjustmentOffset;
3171     ReturnAdjustment ReturnAdjustment;
3172     if (!FinalOverriderMD->isPureVirtual()) {
3173       ReturnAdjustmentOffset =
3174           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3175     }
3176     if (!ReturnAdjustmentOffset.isEmpty()) {
3177       ForceReturnAdjustmentMangling = true;
3178       ReturnAdjustment.NonVirtual =
3179           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3180       if (ReturnAdjustmentOffset.VirtualBase) {
3181         const ASTRecordLayout &DerivedLayout =
3182             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3183         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3184             DerivedLayout.getVBPtrOffset().getQuantity();
3185         ReturnAdjustment.Virtual.Microsoft.VBIndex =
3186             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3187                                     ReturnAdjustmentOffset.VirtualBase);
3188       }
3189     }
3190     auto ThisType = (OverriddenMD ? OverriddenMD : MD)->getThisType().getTypePtr();
3191     AddMethod(FinalOverriderMD,
3192               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, ThisType,
3193                         ForceReturnAdjustmentMangling ? MD : nullptr));
3194   }
3195 }
3196 
3197 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3198   for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3199     Out << "'";
3200     Elem->printQualifiedName(Out);
3201     Out << "' in ";
3202   }
3203 }
3204 
3205 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3206                                          bool ContinueFirstLine) {
3207   const ReturnAdjustment &R = TI.Return;
3208   bool Multiline = false;
3209   const char *LinePrefix = "\n       ";
3210   if (!R.isEmpty() || TI.Method) {
3211     if (!ContinueFirstLine)
3212       Out << LinePrefix;
3213     Out << "[return adjustment (to type '"
3214         << TI.Method->getReturnType().getCanonicalType() << "'): ";
3215     if (R.Virtual.Microsoft.VBPtrOffset)
3216       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3217     if (R.Virtual.Microsoft.VBIndex)
3218       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3219     Out << R.NonVirtual << " non-virtual]";
3220     Multiline = true;
3221   }
3222 
3223   const ThisAdjustment &T = TI.This;
3224   if (!T.isEmpty()) {
3225     if (Multiline || !ContinueFirstLine)
3226       Out << LinePrefix;
3227     Out << "[this adjustment: ";
3228     if (!TI.This.Virtual.isEmpty()) {
3229       assert(T.Virtual.Microsoft.VtordispOffset < 0);
3230       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3231       if (T.Virtual.Microsoft.VBPtrOffset) {
3232         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3233             << " to the left,";
3234         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3235         Out << LinePrefix << " vboffset at "
3236             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3237       }
3238     }
3239     Out << T.NonVirtual << " non-virtual]";
3240   }
3241 }
3242 
3243 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3244   Out << "VFTable for ";
3245   PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3246   Out << "'";
3247   MostDerivedClass->printQualifiedName(Out);
3248   Out << "' (" << Components.size()
3249       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3250 
3251   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3252     Out << llvm::format("%4d | ", I);
3253 
3254     const VTableComponent &Component = Components[I];
3255 
3256     // Dump the component.
3257     switch (Component.getKind()) {
3258     case VTableComponent::CK_RTTI:
3259       Component.getRTTIDecl()->printQualifiedName(Out);
3260       Out << " RTTI";
3261       break;
3262 
3263     case VTableComponent::CK_FunctionPointer: {
3264       const CXXMethodDecl *MD = Component.getFunctionDecl();
3265 
3266       // FIXME: Figure out how to print the real thunk type, since they can
3267       // differ in the return type.
3268       std::string Str = PredefinedExpr::ComputeName(
3269           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3270       Out << Str;
3271       if (MD->isPureVirtual())
3272         Out << " [pure]";
3273 
3274       if (MD->isDeleted())
3275         Out << " [deleted]";
3276 
3277       ThunkInfo Thunk = VTableThunks.lookup(I);
3278       if (!Thunk.isEmpty())
3279         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3280 
3281       break;
3282     }
3283 
3284     case VTableComponent::CK_DeletingDtorPointer: {
3285       const CXXDestructorDecl *DD = Component.getDestructorDecl();
3286 
3287       DD->printQualifiedName(Out);
3288       Out << "() [scalar deleting]";
3289 
3290       if (DD->isPureVirtual())
3291         Out << " [pure]";
3292 
3293       ThunkInfo Thunk = VTableThunks.lookup(I);
3294       if (!Thunk.isEmpty()) {
3295         assert(Thunk.Return.isEmpty() &&
3296                "No return adjustment needed for destructors!");
3297         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3298       }
3299 
3300       break;
3301     }
3302 
3303     default:
3304       DiagnosticsEngine &Diags = Context.getDiagnostics();
3305       unsigned DiagID = Diags.getCustomDiagID(
3306           DiagnosticsEngine::Error,
3307           "Unexpected vftable component type %0 for component number %1");
3308       Diags.Report(MostDerivedClass->getLocation(), DiagID)
3309           << I << Component.getKind();
3310     }
3311 
3312     Out << '\n';
3313   }
3314 
3315   Out << '\n';
3316 
3317   if (!Thunks.empty()) {
3318     // We store the method names in a map to get a stable order.
3319     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3320 
3321     for (const auto &I : Thunks) {
3322       const CXXMethodDecl *MD = I.first;
3323       std::string MethodName = PredefinedExpr::ComputeName(
3324           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3325 
3326       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3327     }
3328 
3329     for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3330       const std::string &MethodName = MethodNameAndDecl.first;
3331       const CXXMethodDecl *MD = MethodNameAndDecl.second;
3332 
3333       ThunkInfoVectorTy ThunksVector = Thunks[MD];
3334       llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3335                                          const ThunkInfo &RHS) {
3336         // Keep different thunks with the same adjustments in the order they
3337         // were put into the vector.
3338         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3339       });
3340 
3341       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3342       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3343 
3344       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3345         const ThunkInfo &Thunk = ThunksVector[I];
3346 
3347         Out << llvm::format("%4d | ", I);
3348         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3349         Out << '\n';
3350       }
3351 
3352       Out << '\n';
3353     }
3354   }
3355 
3356   Out.flush();
3357 }
3358 
3359 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3360                           ArrayRef<const CXXRecordDecl *> B) {
3361   for (const CXXRecordDecl *Decl : B) {
3362     if (A.count(Decl))
3363       return true;
3364   }
3365   return false;
3366 }
3367 
3368 static bool rebucketPaths(VPtrInfoVector &Paths);
3369 
3370 /// Produces MSVC-compatible vbtable data.  The symbols produced by this
3371 /// algorithm match those produced by MSVC 2012 and newer, which is different
3372 /// from MSVC 2010.
3373 ///
3374 /// MSVC 2012 appears to minimize the vbtable names using the following
3375 /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3376 /// left to right, to find all of the subobjects which contain a vbptr field.
3377 /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3378 /// record with a vbptr creates an initially empty path.
3379 ///
3380 /// To combine paths from child nodes, the paths are compared to check for
3381 /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3382 /// components in the same order.  Each group of ambiguous paths is extended by
3383 /// appending the class of the base from which it came.  If the current class
3384 /// node produced an ambiguous path, its path is extended with the current class.
3385 /// After extending paths, MSVC again checks for ambiguity, and extends any
3386 /// ambiguous path which wasn't already extended.  Because each node yields an
3387 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3388 /// to produce an unambiguous set of paths.
3389 ///
3390 /// TODO: Presumably vftables use the same algorithm.
3391 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3392                                                 const CXXRecordDecl *RD,
3393                                                 VPtrInfoVector &Paths) {
3394   assert(Paths.empty());
3395   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3396 
3397   // Base case: this subobject has its own vptr.
3398   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3399     Paths.push_back(std::make_unique<VPtrInfo>(RD));
3400 
3401   // Recursive case: get all the vbtables from our bases and remove anything
3402   // that shares a virtual base.
3403   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3404   for (const auto &B : RD->bases()) {
3405     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3406     if (B.isVirtual() && VBasesSeen.count(Base))
3407       continue;
3408 
3409     if (!Base->isDynamicClass())
3410       continue;
3411 
3412     const VPtrInfoVector &BasePaths =
3413         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3414 
3415     for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3416       // Don't include the path if it goes through a virtual base that we've
3417       // already included.
3418       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3419         continue;
3420 
3421       // Copy the path and adjust it as necessary.
3422       auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3423 
3424       // We mangle Base into the path if the path would've been ambiguous and it
3425       // wasn't already extended with Base.
3426       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3427         P->NextBaseToMangle = Base;
3428 
3429       // Keep track of which vtable the derived class is going to extend with
3430       // new methods or bases.  We append to either the vftable of our primary
3431       // base, or the first non-virtual base that has a vbtable.
3432       if (P->ObjectWithVPtr == Base &&
3433           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3434                                : Layout.getPrimaryBase()))
3435         P->ObjectWithVPtr = RD;
3436 
3437       // Keep track of the full adjustment from the MDC to this vtable.  The
3438       // adjustment is captured by an optional vbase and a non-virtual offset.
3439       if (B.isVirtual())
3440         P->ContainingVBases.push_back(Base);
3441       else if (P->ContainingVBases.empty())
3442         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3443 
3444       // Update the full offset in the MDC.
3445       P->FullOffsetInMDC = P->NonVirtualOffset;
3446       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3447         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3448 
3449       Paths.push_back(std::move(P));
3450     }
3451 
3452     if (B.isVirtual())
3453       VBasesSeen.insert(Base);
3454 
3455     // After visiting any direct base, we've transitively visited all of its
3456     // morally virtual bases.
3457     for (const auto &VB : Base->vbases())
3458       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3459   }
3460 
3461   // Sort the paths into buckets, and if any of them are ambiguous, extend all
3462   // paths in ambiguous buckets.
3463   bool Changed = true;
3464   while (Changed)
3465     Changed = rebucketPaths(Paths);
3466 }
3467 
3468 static bool extendPath(VPtrInfo &P) {
3469   if (P.NextBaseToMangle) {
3470     P.MangledPath.push_back(P.NextBaseToMangle);
3471     P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3472     return true;
3473   }
3474   return false;
3475 }
3476 
3477 static bool rebucketPaths(VPtrInfoVector &Paths) {
3478   // What we're essentially doing here is bucketing together ambiguous paths.
3479   // Any bucket with more than one path in it gets extended by NextBase, which
3480   // is usually the direct base of the inherited the vbptr.  This code uses a
3481   // sorted vector to implement a multiset to form the buckets.  Note that the
3482   // ordering is based on pointers, but it doesn't change our output order.  The
3483   // current algorithm is designed to match MSVC 2012's names.
3484   llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3485       llvm::make_pointee_range(Paths));
3486   llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3487     return LHS.MangledPath < RHS.MangledPath;
3488   });
3489   bool Changed = false;
3490   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3491     // Scan forward to find the end of the bucket.
3492     size_t BucketStart = I;
3493     do {
3494       ++I;
3495     } while (I != E &&
3496              PathsSorted[BucketStart].get().MangledPath ==
3497                  PathsSorted[I].get().MangledPath);
3498 
3499     // If this bucket has multiple paths, extend them all.
3500     if (I - BucketStart > 1) {
3501       for (size_t II = BucketStart; II != I; ++II)
3502         Changed |= extendPath(PathsSorted[II]);
3503       assert(Changed && "no paths were extended to fix ambiguity");
3504     }
3505   }
3506   return Changed;
3507 }
3508 
3509 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3510 
3511 namespace {
3512 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3513                         llvm::DenseSet<BaseSubobject>> FullPathTy;
3514 }
3515 
3516 // This recursive function finds all paths from a subobject centered at
3517 // (RD, Offset) to the subobject located at IntroducingObject.
3518 static void findPathsToSubobject(ASTContext &Context,
3519                                  const ASTRecordLayout &MostDerivedLayout,
3520                                  const CXXRecordDecl *RD, CharUnits Offset,
3521                                  BaseSubobject IntroducingObject,
3522                                  FullPathTy &FullPath,
3523                                  std::list<FullPathTy> &Paths) {
3524   if (BaseSubobject(RD, Offset) == IntroducingObject) {
3525     Paths.push_back(FullPath);
3526     return;
3527   }
3528 
3529   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3530 
3531   for (const CXXBaseSpecifier &BS : RD->bases()) {
3532     const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3533     CharUnits NewOffset = BS.isVirtual()
3534                               ? MostDerivedLayout.getVBaseClassOffset(Base)
3535                               : Offset + Layout.getBaseClassOffset(Base);
3536     FullPath.insert(BaseSubobject(Base, NewOffset));
3537     findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3538                          IntroducingObject, FullPath, Paths);
3539     FullPath.pop_back();
3540   }
3541 }
3542 
3543 // Return the paths which are not subsets of other paths.
3544 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3545   FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3546     for (const FullPathTy &OtherPath : FullPaths) {
3547       if (&SpecificPath == &OtherPath)
3548         continue;
3549       if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3550             return OtherPath.contains(BSO);
3551           })) {
3552         return true;
3553       }
3554     }
3555     return false;
3556   });
3557 }
3558 
3559 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3560                                      const CXXRecordDecl *RD,
3561                                      const FullPathTy &FullPath) {
3562   const ASTRecordLayout &MostDerivedLayout =
3563       Context.getASTRecordLayout(RD);
3564   CharUnits Offset = CharUnits::fromQuantity(-1);
3565   for (const BaseSubobject &BSO : FullPath) {
3566     const CXXRecordDecl *Base = BSO.getBase();
3567     // The first entry in the path is always the most derived record, skip it.
3568     if (Base == RD) {
3569       assert(Offset.getQuantity() == -1);
3570       Offset = CharUnits::Zero();
3571       continue;
3572     }
3573     assert(Offset.getQuantity() != -1);
3574     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3575     // While we know which base has to be traversed, we don't know if that base
3576     // was a virtual base.
3577     const CXXBaseSpecifier *BaseBS = std::find_if(
3578         RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3579           return BS.getType()->getAsCXXRecordDecl() == Base;
3580         });
3581     Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3582                                  : Offset + Layout.getBaseClassOffset(Base);
3583     RD = Base;
3584   }
3585   return Offset;
3586 }
3587 
3588 // We want to select the path which introduces the most covariant overrides.  If
3589 // two paths introduce overrides which the other path doesn't contain, issue a
3590 // diagnostic.
3591 static const FullPathTy *selectBestPath(ASTContext &Context,
3592                                         const CXXRecordDecl *RD,
3593                                         const VPtrInfo &Info,
3594                                         std::list<FullPathTy> &FullPaths) {
3595   // Handle some easy cases first.
3596   if (FullPaths.empty())
3597     return nullptr;
3598   if (FullPaths.size() == 1)
3599     return &FullPaths.front();
3600 
3601   const FullPathTy *BestPath = nullptr;
3602   typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3603   OverriderSetTy LastOverrides;
3604   for (const FullPathTy &SpecificPath : FullPaths) {
3605     assert(!SpecificPath.empty());
3606     OverriderSetTy CurrentOverrides;
3607     const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3608     // Find the distance from the start of the path to the subobject with the
3609     // VPtr.
3610     CharUnits BaseOffset =
3611         getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3612     FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3613     for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3614       if (!MicrosoftVTableContext::hasVtableSlot(MD))
3615         continue;
3616       FinalOverriders::OverriderInfo OI =
3617           Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3618       const CXXMethodDecl *OverridingMethod = OI.Method;
3619       // Only overriders which have a return adjustment introduce problematic
3620       // thunks.
3621       if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3622               .isEmpty())
3623         continue;
3624       // It's possible that the overrider isn't in this path.  If so, skip it
3625       // because this path didn't introduce it.
3626       const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3627       if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3628             return BSO.getBase() == OverridingParent;
3629           }))
3630         continue;
3631       CurrentOverrides.insert(OverridingMethod);
3632     }
3633     OverriderSetTy NewOverrides =
3634         llvm::set_difference(CurrentOverrides, LastOverrides);
3635     if (NewOverrides.empty())
3636       continue;
3637     OverriderSetTy MissingOverrides =
3638         llvm::set_difference(LastOverrides, CurrentOverrides);
3639     if (MissingOverrides.empty()) {
3640       // This path is a strict improvement over the last path, let's use it.
3641       BestPath = &SpecificPath;
3642       std::swap(CurrentOverrides, LastOverrides);
3643     } else {
3644       // This path introduces an overrider with a conflicting covariant thunk.
3645       DiagnosticsEngine &Diags = Context.getDiagnostics();
3646       const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3647       const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3648       Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3649           << RD;
3650       Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3651           << CovariantMD;
3652       Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3653           << ConflictMD;
3654     }
3655   }
3656   // Go with the path that introduced the most covariant overrides.  If there is
3657   // no such path, pick the first path.
3658   return BestPath ? BestPath : &FullPaths.front();
3659 }
3660 
3661 static void computeFullPathsForVFTables(ASTContext &Context,
3662                                         const CXXRecordDecl *RD,
3663                                         VPtrInfoVector &Paths) {
3664   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3665   FullPathTy FullPath;
3666   std::list<FullPathTy> FullPaths;
3667   for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3668     findPathsToSubobject(
3669         Context, MostDerivedLayout, RD, CharUnits::Zero(),
3670         BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3671         FullPaths);
3672     FullPath.clear();
3673     removeRedundantPaths(FullPaths);
3674     Info->PathToIntroducingObject.clear();
3675     if (const FullPathTy *BestPath =
3676             selectBestPath(Context, RD, *Info, FullPaths))
3677       for (const BaseSubobject &BSO : *BestPath)
3678         Info->PathToIntroducingObject.push_back(BSO.getBase());
3679     FullPaths.clear();
3680   }
3681 }
3682 
3683 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3684                                 const MethodVFTableLocation &LHS,
3685                                 const MethodVFTableLocation &RHS) {
3686   CharUnits L = LHS.VFPtrOffset;
3687   CharUnits R = RHS.VFPtrOffset;
3688   if (LHS.VBase)
3689     L += Layout.getVBaseClassOffset(LHS.VBase);
3690   if (RHS.VBase)
3691     R += Layout.getVBaseClassOffset(RHS.VBase);
3692   return L < R;
3693 }
3694 
3695 void MicrosoftVTableContext::computeVTableRelatedInformation(
3696     const CXXRecordDecl *RD) {
3697   assert(RD->isDynamicClass());
3698 
3699   // Check if we've computed this information before.
3700   if (VFPtrLocations.count(RD))
3701     return;
3702 
3703   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3704 
3705   {
3706     auto VFPtrs = std::make_unique<VPtrInfoVector>();
3707     computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3708     computeFullPathsForVFTables(Context, RD, *VFPtrs);
3709     VFPtrLocations[RD] = std::move(VFPtrs);
3710   }
3711 
3712   MethodVFTableLocationsTy NewMethodLocations;
3713   for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3714     VFTableBuilder Builder(*this, RD, *VFPtr);
3715 
3716     VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3717     assert(VFTableLayouts.count(id) == 0);
3718     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3719         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3720     VFTableLayouts[id] = std::make_unique<VTableLayout>(
3721         ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3722         EmptyAddressPointsMap);
3723     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3724 
3725     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3726     for (const auto &Loc : Builder.vtable_locations()) {
3727       auto Insert = NewMethodLocations.insert(Loc);
3728       if (!Insert.second) {
3729         const MethodVFTableLocation &NewLoc = Loc.second;
3730         MethodVFTableLocation &OldLoc = Insert.first->second;
3731         if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3732           OldLoc = NewLoc;
3733       }
3734     }
3735   }
3736 
3737   MethodVFTableLocations.insert(NewMethodLocations.begin(),
3738                                 NewMethodLocations.end());
3739   if (Context.getLangOpts().DumpVTableLayouts)
3740     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3741 }
3742 
3743 void MicrosoftVTableContext::dumpMethodLocations(
3744     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3745     raw_ostream &Out) {
3746   // Compute the vtable indices for all the member functions.
3747   // Store them in a map keyed by the location so we'll get a sorted table.
3748   std::map<MethodVFTableLocation, std::string> IndicesMap;
3749   bool HasNonzeroOffset = false;
3750 
3751   for (const auto &I : NewMethods) {
3752     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3753     assert(hasVtableSlot(MD));
3754 
3755     std::string MethodName = PredefinedExpr::ComputeName(
3756         PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3757 
3758     if (isa<CXXDestructorDecl>(MD)) {
3759       IndicesMap[I.second] = MethodName + " [scalar deleting]";
3760     } else {
3761       IndicesMap[I.second] = MethodName;
3762     }
3763 
3764     if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3765       HasNonzeroOffset = true;
3766   }
3767 
3768   // Print the vtable indices for all the member functions.
3769   if (!IndicesMap.empty()) {
3770     Out << "VFTable indices for ";
3771     Out << "'";
3772     RD->printQualifiedName(Out);
3773     Out << "' (" << IndicesMap.size()
3774         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3775 
3776     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3777     uint64_t LastVBIndex = 0;
3778     for (const auto &I : IndicesMap) {
3779       CharUnits VFPtrOffset = I.first.VFPtrOffset;
3780       uint64_t VBIndex = I.first.VBTableIndex;
3781       if (HasNonzeroOffset &&
3782           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3783         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3784         Out << " -- accessible via ";
3785         if (VBIndex)
3786           Out << "vbtable index " << VBIndex << ", ";
3787         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3788         LastVFPtrOffset = VFPtrOffset;
3789         LastVBIndex = VBIndex;
3790       }
3791 
3792       uint64_t VTableIndex = I.first.Index;
3793       const std::string &MethodName = I.second;
3794       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3795     }
3796     Out << '\n';
3797   }
3798 
3799   Out.flush();
3800 }
3801 
3802 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3803     const CXXRecordDecl *RD) {
3804   VirtualBaseInfo *VBI;
3805 
3806   {
3807     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3808     // as it may be modified and rehashed under us.
3809     std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3810     if (Entry)
3811       return *Entry;
3812     Entry = std::make_unique<VirtualBaseInfo>();
3813     VBI = Entry.get();
3814   }
3815 
3816   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3817 
3818   // First, see if the Derived class shared the vbptr with a non-virtual base.
3819   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3820   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3821     // If the Derived class shares the vbptr with a non-virtual base, the shared
3822     // virtual bases come first so that the layout is the same.
3823     const VirtualBaseInfo &BaseInfo =
3824         computeVBTableRelatedInformation(VBPtrBase);
3825     VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3826                                BaseInfo.VBTableIndices.end());
3827   }
3828 
3829   // New vbases are added to the end of the vbtable.
3830   // Skip the self entry and vbases visited in the non-virtual base, if any.
3831   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3832   for (const auto &VB : RD->vbases()) {
3833     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3834     if (!VBI->VBTableIndices.count(CurVBase))
3835       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3836   }
3837 
3838   return *VBI;
3839 }
3840 
3841 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3842                                                  const CXXRecordDecl *VBase) {
3843   const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3844   assert(VBInfo.VBTableIndices.count(VBase));
3845   return VBInfo.VBTableIndices.find(VBase)->second;
3846 }
3847 
3848 const VPtrInfoVector &
3849 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3850   return computeVBTableRelatedInformation(RD).VBPtrPaths;
3851 }
3852 
3853 const VPtrInfoVector &
3854 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3855   computeVTableRelatedInformation(RD);
3856 
3857   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3858   return *VFPtrLocations[RD];
3859 }
3860 
3861 const VTableLayout &
3862 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3863                                          CharUnits VFPtrOffset) {
3864   computeVTableRelatedInformation(RD);
3865 
3866   VFTableIdTy id(RD, VFPtrOffset);
3867   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3868   return *VFTableLayouts[id];
3869 }
3870 
3871 MethodVFTableLocation
3872 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3873   assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3874          "Only use this method for virtual methods or dtors");
3875   if (isa<CXXDestructorDecl>(GD.getDecl()))
3876     assert(GD.getDtorType() == Dtor_Deleting);
3877 
3878   GD = GD.getCanonicalDecl();
3879 
3880   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3881   if (I != MethodVFTableLocations.end())
3882     return I->second;
3883 
3884   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3885 
3886   computeVTableRelatedInformation(RD);
3887 
3888   I = MethodVFTableLocations.find(GD);
3889   assert(I != MethodVFTableLocations.end() && "Did not find index!");
3890   return I->second;
3891 }
3892