xref: /freebsd/contrib/llvm-project/clang/lib/AST/VTableBuilder.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
26 
27 using namespace clang;
28 
29 #define DUMP_OVERRIDERS 0
30 
31 namespace {
32 
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36   /// DerivedClass - The derived class.
37   const CXXRecordDecl *DerivedClass;
38 
39   /// VirtualBase - If the path from the derived class to the base class
40   /// involves virtual base classes, this holds the declaration of the last
41   /// virtual base in this path (i.e. closest to the base class).
42   const CXXRecordDecl *VirtualBase;
43 
44   /// NonVirtualOffset - The offset from the derived class to the base class.
45   /// (Or the offset from the virtual base class to the base class, if the
46   /// path from the derived class to the base class involves a virtual base
47   /// class.
48   CharUnits NonVirtualOffset;
49 
50   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51                  NonVirtualOffset(CharUnits::Zero()) { }
52   BaseOffset(const CXXRecordDecl *DerivedClass,
53              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55     NonVirtualOffset(NonVirtualOffset) { }
56 
57   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58 };
59 
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64   /// OverriderInfo - Information about a final overrider.
65   struct OverriderInfo {
66     /// Method - The method decl of the overrider.
67     const CXXMethodDecl *Method;
68 
69     /// VirtualBase - The virtual base class subobject of this overrider.
70     /// Note that this records the closest derived virtual base class subobject.
71     const CXXRecordDecl *VirtualBase;
72 
73     /// Offset - the base offset of the overrider's parent in the layout class.
74     CharUnits Offset;
75 
76     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77                       Offset(CharUnits::Zero()) { }
78   };
79 
80 private:
81   /// MostDerivedClass - The most derived class for which the final overriders
82   /// are stored.
83   const CXXRecordDecl *MostDerivedClass;
84 
85   /// MostDerivedClassOffset - If we're building final overriders for a
86   /// construction vtable, this holds the offset from the layout class to the
87   /// most derived class.
88   const CharUnits MostDerivedClassOffset;
89 
90   /// LayoutClass - The class we're using for layout information. Will be
91   /// different than the most derived class if the final overriders are for a
92   /// construction vtable.
93   const CXXRecordDecl *LayoutClass;
94 
95   ASTContext &Context;
96 
97   /// MostDerivedClassLayout - the AST record layout of the most derived class.
98   const ASTRecordLayout &MostDerivedClassLayout;
99 
100   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101   /// in a base subobject.
102   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103 
104   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105                          OverriderInfo> OverridersMapTy;
106 
107   /// OverridersMap - The final overriders for all virtual member functions of
108   /// all the base subobjects of the most derived class.
109   OverridersMapTy OverridersMap;
110 
111   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112   /// as a record decl and a subobject number) and its offsets in the most
113   /// derived class as well as the layout class.
114   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115                          CharUnits> SubobjectOffsetMapTy;
116 
117   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118 
119   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120   /// given base.
121   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122                           CharUnits OffsetInLayoutClass,
123                           SubobjectOffsetMapTy &SubobjectOffsets,
124                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125                           SubobjectCountMapTy &SubobjectCounts);
126 
127   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128 
129   /// dump - dump the final overriders for a base subobject, and all its direct
130   /// and indirect base subobjects.
131   void dump(raw_ostream &Out, BaseSubobject Base,
132             VisitedVirtualBasesSetTy& VisitedVirtualBases);
133 
134 public:
135   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136                   CharUnits MostDerivedClassOffset,
137                   const CXXRecordDecl *LayoutClass);
138 
139   /// getOverrider - Get the final overrider for the given method declaration in
140   /// the subobject with the given base offset.
141   OverriderInfo getOverrider(const CXXMethodDecl *MD,
142                              CharUnits BaseOffset) const {
143     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144            "Did not find overrider!");
145 
146     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147   }
148 
149   /// dump - dump the final overriders.
150   void dump() {
151     VisitedVirtualBasesSetTy VisitedVirtualBases;
152     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153          VisitedVirtualBases);
154   }
155 
156 };
157 
158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159                                  CharUnits MostDerivedClassOffset,
160                                  const CXXRecordDecl *LayoutClass)
161   : MostDerivedClass(MostDerivedClass),
162   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163   Context(MostDerivedClass->getASTContext()),
164   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165 
166   // Compute base offsets.
167   SubobjectOffsetMapTy SubobjectOffsets;
168   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169   SubobjectCountMapTy SubobjectCounts;
170   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171                      /*IsVirtual=*/false,
172                      MostDerivedClassOffset,
173                      SubobjectOffsets, SubobjectLayoutClassOffsets,
174                      SubobjectCounts);
175 
176   // Get the final overriders.
177   CXXFinalOverriderMap FinalOverriders;
178   MostDerivedClass->getFinalOverriders(FinalOverriders);
179 
180   for (const auto &Overrider : FinalOverriders) {
181     const CXXMethodDecl *MD = Overrider.first;
182     const OverridingMethods &Methods = Overrider.second;
183 
184     for (const auto &M : Methods) {
185       unsigned SubobjectNumber = M.first;
186       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187                                                    SubobjectNumber)) &&
188              "Did not find subobject offset!");
189 
190       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191                                                             SubobjectNumber)];
192 
193       assert(M.second.size() == 1 && "Final overrider is not unique!");
194       const UniqueVirtualMethod &Method = M.second.front();
195 
196       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197       assert(SubobjectLayoutClassOffsets.count(
198              std::make_pair(OverriderRD, Method.Subobject))
199              && "Did not find subobject offset!");
200       CharUnits OverriderOffset =
201         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202                                                    Method.Subobject)];
203 
204       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205       assert(!Overrider.Method && "Overrider should not exist yet!");
206 
207       Overrider.Offset = OverriderOffset;
208       Overrider.Method = Method.Method;
209       Overrider.VirtualBase = Method.InVirtualSubobject;
210     }
211   }
212 
213 #if DUMP_OVERRIDERS
214   // And dump them (for now).
215   dump();
216 #endif
217 }
218 
219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220                                     const CXXRecordDecl *DerivedRD,
221                                     const CXXBasePath &Path) {
222   CharUnits NonVirtualOffset = CharUnits::Zero();
223 
224   unsigned NonVirtualStart = 0;
225   const CXXRecordDecl *VirtualBase = nullptr;
226 
227   // First, look for the virtual base class.
228   for (int I = Path.size(), E = 0; I != E; --I) {
229     const CXXBasePathElement &Element = Path[I - 1];
230 
231     if (Element.Base->isVirtual()) {
232       NonVirtualStart = I;
233       QualType VBaseType = Element.Base->getType();
234       VirtualBase = VBaseType->getAsCXXRecordDecl();
235       break;
236     }
237   }
238 
239   // Now compute the non-virtual offset.
240   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241     const CXXBasePathElement &Element = Path[I];
242 
243     // Check the base class offset.
244     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245 
246     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247 
248     NonVirtualOffset += Layout.getBaseClassOffset(Base);
249   }
250 
251   // FIXME: This should probably use CharUnits or something. Maybe we should
252   // even change the base offsets in ASTRecordLayout to be specified in
253   // CharUnits.
254   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255 
256 }
257 
258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259                                     const CXXRecordDecl *BaseRD,
260                                     const CXXRecordDecl *DerivedRD) {
261   CXXBasePaths Paths(/*FindAmbiguities=*/false,
262                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
263 
264   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265     llvm_unreachable("Class must be derived from the passed in base class!");
266 
267   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269 
270 static BaseOffset
271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272                                   const CXXMethodDecl *DerivedMD,
273                                   const CXXMethodDecl *BaseMD) {
274   const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275   const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276 
277   // Canonicalize the return types.
278   CanQualType CanDerivedReturnType =
279       Context.getCanonicalType(DerivedFT->getReturnType());
280   CanQualType CanBaseReturnType =
281       Context.getCanonicalType(BaseFT->getReturnType());
282 
283   assert(CanDerivedReturnType->getTypeClass() ==
284          CanBaseReturnType->getTypeClass() &&
285          "Types must have same type class!");
286 
287   if (CanDerivedReturnType == CanBaseReturnType) {
288     // No adjustment needed.
289     return BaseOffset();
290   }
291 
292   if (isa<ReferenceType>(CanDerivedReturnType)) {
293     CanDerivedReturnType =
294       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295     CanBaseReturnType =
296       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297   } else if (isa<PointerType>(CanDerivedReturnType)) {
298     CanDerivedReturnType =
299       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300     CanBaseReturnType =
301       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302   } else {
303     llvm_unreachable("Unexpected return type!");
304   }
305 
306   // We need to compare unqualified types here; consider
307   //   const T *Base::foo();
308   //   T *Derived::foo();
309   if (CanDerivedReturnType.getUnqualifiedType() ==
310       CanBaseReturnType.getUnqualifiedType()) {
311     // No adjustment needed.
312     return BaseOffset();
313   }
314 
315   const CXXRecordDecl *DerivedRD =
316     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317 
318   const CXXRecordDecl *BaseRD =
319     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320 
321   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323 
324 void
325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326                               CharUnits OffsetInLayoutClass,
327                               SubobjectOffsetMapTy &SubobjectOffsets,
328                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329                               SubobjectCountMapTy &SubobjectCounts) {
330   const CXXRecordDecl *RD = Base.getBase();
331 
332   unsigned SubobjectNumber = 0;
333   if (!IsVirtual)
334     SubobjectNumber = ++SubobjectCounts[RD];
335 
336   // Set up the subobject to offset mapping.
337   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338          && "Subobject offset already exists!");
339   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340          && "Subobject offset already exists!");
341 
342   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344     OffsetInLayoutClass;
345 
346   // Traverse our bases.
347   for (const auto &B : RD->bases()) {
348     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349 
350     CharUnits BaseOffset;
351     CharUnits BaseOffsetInLayoutClass;
352     if (B.isVirtual()) {
353       // Check if we've visited this virtual base before.
354       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355         continue;
356 
357       const ASTRecordLayout &LayoutClassLayout =
358         Context.getASTRecordLayout(LayoutClass);
359 
360       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361       BaseOffsetInLayoutClass =
362         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363     } else {
364       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366 
367       BaseOffset = Base.getBaseOffset() + Offset;
368       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369     }
370 
371     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372                        B.isVirtual(), BaseOffsetInLayoutClass,
373                        SubobjectOffsets, SubobjectLayoutClassOffsets,
374                        SubobjectCounts);
375   }
376 }
377 
378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380   const CXXRecordDecl *RD = Base.getBase();
381   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382 
383   for (const auto &B : RD->bases()) {
384     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385 
386     // Ignore bases that don't have any virtual member functions.
387     if (!BaseDecl->isPolymorphic())
388       continue;
389 
390     CharUnits BaseOffset;
391     if (B.isVirtual()) {
392       if (!VisitedVirtualBases.insert(BaseDecl).second) {
393         // We've visited this base before.
394         continue;
395       }
396 
397       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398     } else {
399       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400     }
401 
402     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403   }
404 
405   Out << "Final overriders for (";
406   RD->printQualifiedName(Out);
407   Out << ", ";
408   Out << Base.getBaseOffset().getQuantity() << ")\n";
409 
410   // Now dump the overriders for this base subobject.
411   for (const auto *MD : RD->methods()) {
412     if (!VTableContextBase::hasVtableSlot(MD))
413       continue;
414     MD = MD->getCanonicalDecl();
415 
416     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417 
418     Out << "  ";
419     MD->printQualifiedName(Out);
420     Out << " - (";
421     Overrider.Method->printQualifiedName(Out);
422     Out << ", " << Overrider.Offset.getQuantity() << ')';
423 
424     BaseOffset Offset;
425     if (!Overrider.Method->isPureVirtual())
426       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427 
428     if (!Offset.isEmpty()) {
429       Out << " [ret-adj: ";
430       if (Offset.VirtualBase) {
431         Offset.VirtualBase->printQualifiedName(Out);
432         Out << " vbase, ";
433       }
434 
435       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436     }
437 
438     Out << "\n";
439   }
440 }
441 
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
444 
445   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446 
447   /// Offsets - Keeps track of methods and their offsets.
448   // FIXME: This should be a real map and not a vector.
449   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450 
451   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452   /// can share the same vcall offset.
453   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454                                          const CXXMethodDecl *RHS);
455 
456 public:
457   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458   /// add was successful, or false if there was already a member function with
459   /// the same signature in the map.
460   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461 
462   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463   /// vtable address point) for the given virtual member function.
464   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465 
466   // empty - Return whether the offset map is empty or not.
467   bool empty() const { return Offsets.empty(); }
468 };
469 
470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471                                     const CXXMethodDecl *RHS) {
472   const FunctionProtoType *LT =
473     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474   const FunctionProtoType *RT =
475     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476 
477   // Fast-path matches in the canonical types.
478   if (LT == RT) return true;
479 
480   // Force the signatures to match.  We can't rely on the overrides
481   // list here because there isn't necessarily an inheritance
482   // relationship between the two methods.
483   if (LT->getMethodQuals() != RT->getMethodQuals())
484     return false;
485   return LT->getParamTypes() == RT->getParamTypes();
486 }
487 
488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489                                                 const CXXMethodDecl *RHS) {
490   assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491   assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492 
493   // A destructor can share a vcall offset with another destructor.
494   if (isa<CXXDestructorDecl>(LHS))
495     return isa<CXXDestructorDecl>(RHS);
496 
497   // FIXME: We need to check more things here.
498 
499   // The methods must have the same name.
500   DeclarationName LHSName = LHS->getDeclName();
501   DeclarationName RHSName = RHS->getDeclName();
502   if (LHSName != RHSName)
503     return false;
504 
505   // And the same signatures.
506   return HasSameVirtualSignature(LHS, RHS);
507 }
508 
509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510                                     CharUnits OffsetOffset) {
511   // Check if we can reuse an offset.
512   for (const auto &OffsetPair : Offsets) {
513     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514       return false;
515   }
516 
517   // Add the offset.
518   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519   return true;
520 }
521 
522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523   // Look for an offset.
524   for (const auto &OffsetPair : Offsets) {
525     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526       return OffsetPair.second;
527   }
528 
529   llvm_unreachable("Should always find a vcall offset offset!");
530 }
531 
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536     VBaseOffsetOffsetsMapTy;
537 
538 private:
539   const ItaniumVTableContext &VTables;
540 
541   /// MostDerivedClass - The most derived class for which we're building vcall
542   /// and vbase offsets.
543   const CXXRecordDecl *MostDerivedClass;
544 
545   /// LayoutClass - The class we're using for layout information. Will be
546   /// different than the most derived class if we're building a construction
547   /// vtable.
548   const CXXRecordDecl *LayoutClass;
549 
550   /// Context - The ASTContext which we will use for layout information.
551   ASTContext &Context;
552 
553   /// Components - vcall and vbase offset components
554   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555   VTableComponentVectorTy Components;
556 
557   /// VisitedVirtualBases - Visited virtual bases.
558   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559 
560   /// VCallOffsets - Keeps track of vcall offsets.
561   VCallOffsetMap VCallOffsets;
562 
563 
564   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565   /// relative to the address point.
566   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567 
568   /// FinalOverriders - The final overriders of the most derived class.
569   /// (Can be null when we're not building a vtable of the most derived class).
570   const FinalOverriders *Overriders;
571 
572   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573   /// given base subobject.
574   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575                                CharUnits RealBaseOffset);
576 
577   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579 
580   /// AddVBaseOffsets - Add vbase offsets for the given class.
581   void AddVBaseOffsets(const CXXRecordDecl *Base,
582                        CharUnits OffsetInLayoutClass);
583 
584   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585   /// chars, relative to the vtable address point.
586   CharUnits getCurrentOffsetOffset() const;
587 
588 public:
589   VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590                              const CXXRecordDecl *MostDerivedClass,
591                              const CXXRecordDecl *LayoutClass,
592                              const FinalOverriders *Overriders,
593                              BaseSubobject Base, bool BaseIsVirtual,
594                              CharUnits OffsetInLayoutClass)
595       : VTables(VTables), MostDerivedClass(MostDerivedClass),
596         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597         Overriders(Overriders) {
598 
599     // Add vcall and vbase offsets.
600     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
601   }
602 
603   /// Methods for iterating over the components.
604   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
605   const_iterator components_begin() const { return Components.rbegin(); }
606   const_iterator components_end() const { return Components.rend(); }
607 
608   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
609   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610     return VBaseOffsetOffsets;
611   }
612 };
613 
614 void
615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616                                                     bool BaseIsVirtual,
617                                                     CharUnits RealBaseOffset) {
618   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619 
620   // Itanium C++ ABI 2.5.2:
621   //   ..in classes sharing a virtual table with a primary base class, the vcall
622   //   and vbase offsets added by the derived class all come before the vcall
623   //   and vbase offsets required by the base class, so that the latter may be
624   //   laid out as required by the base class without regard to additions from
625   //   the derived class(es).
626 
627   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628   // emit them for the primary base first).
629   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631 
632     CharUnits PrimaryBaseOffset;
633 
634     // Get the base offset of the primary base.
635     if (PrimaryBaseIsVirtual) {
636       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637              "Primary vbase should have a zero offset!");
638 
639       const ASTRecordLayout &MostDerivedClassLayout =
640         Context.getASTRecordLayout(MostDerivedClass);
641 
642       PrimaryBaseOffset =
643         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644     } else {
645       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646              "Primary base should have a zero offset!");
647 
648       PrimaryBaseOffset = Base.getBaseOffset();
649     }
650 
651     AddVCallAndVBaseOffsets(
652       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653       PrimaryBaseIsVirtual, RealBaseOffset);
654   }
655 
656   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
657 
658   // We only want to add vcall offsets for virtual bases.
659   if (BaseIsVirtual)
660     AddVCallOffsets(Base, RealBaseOffset);
661 }
662 
663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664   // OffsetIndex is the index of this vcall or vbase offset, relative to the
665   // vtable address point. (We subtract 3 to account for the information just
666   // above the address point, the RTTI info, the offset to top, and the
667   // vcall offset itself).
668   size_t NumComponentsAboveAddrPoint = 3;
669   if (Context.getLangOpts().OmitVTableRTTI)
670     NumComponentsAboveAddrPoint--;
671   int64_t OffsetIndex =
672       -(int64_t)(NumComponentsAboveAddrPoint + Components.size());
673 
674   // Under the relative ABI, the offset widths are 32-bit ints instead of
675   // pointer widths.
676   CharUnits OffsetWidth = Context.toCharUnitsFromBits(
677       VTables.isRelativeLayout()
678           ? 32
679           : Context.getTargetInfo().getPointerWidth(LangAS::Default));
680   CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
681 
682   return OffsetOffset;
683 }
684 
685 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
686                                                  CharUnits VBaseOffset) {
687   const CXXRecordDecl *RD = Base.getBase();
688   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
689 
690   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
691 
692   // Handle the primary base first.
693   // We only want to add vcall offsets if the base is non-virtual; a virtual
694   // primary base will have its vcall and vbase offsets emitted already.
695   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
696     // Get the base offset of the primary base.
697     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
698            "Primary base should have a zero offset!");
699 
700     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
701                     VBaseOffset);
702   }
703 
704   // Add the vcall offsets.
705   for (const auto *MD : RD->methods()) {
706     if (!VTableContextBase::hasVtableSlot(MD))
707       continue;
708     MD = MD->getCanonicalDecl();
709 
710     CharUnits OffsetOffset = getCurrentOffsetOffset();
711 
712     // Don't add a vcall offset if we already have one for this member function
713     // signature.
714     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
715       continue;
716 
717     CharUnits Offset = CharUnits::Zero();
718 
719     if (Overriders) {
720       // Get the final overrider.
721       FinalOverriders::OverriderInfo Overrider =
722         Overriders->getOverrider(MD, Base.getBaseOffset());
723 
724       /// The vcall offset is the offset from the virtual base to the object
725       /// where the function was overridden.
726       Offset = Overrider.Offset - VBaseOffset;
727     }
728 
729     Components.push_back(
730       VTableComponent::MakeVCallOffset(Offset));
731   }
732 
733   // And iterate over all non-virtual bases (ignoring the primary base).
734   for (const auto &B : RD->bases()) {
735     if (B.isVirtual())
736       continue;
737 
738     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
739     if (BaseDecl == PrimaryBase)
740       continue;
741 
742     // Get the base offset of this base.
743     CharUnits BaseOffset = Base.getBaseOffset() +
744       Layout.getBaseClassOffset(BaseDecl);
745 
746     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
747                     VBaseOffset);
748   }
749 }
750 
751 void
752 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
753                                             CharUnits OffsetInLayoutClass) {
754   const ASTRecordLayout &LayoutClassLayout =
755     Context.getASTRecordLayout(LayoutClass);
756 
757   // Add vbase offsets.
758   for (const auto &B : RD->bases()) {
759     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
760 
761     // Check if this is a virtual base that we haven't visited before.
762     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
763       CharUnits Offset =
764         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
765 
766       // Add the vbase offset offset.
767       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
768              "vbase offset offset already exists!");
769 
770       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
771       VBaseOffsetOffsets.insert(
772           std::make_pair(BaseDecl, VBaseOffsetOffset));
773 
774       Components.push_back(
775           VTableComponent::MakeVBaseOffset(Offset));
776     }
777 
778     // Check the base class looking for more vbase offsets.
779     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
780   }
781 }
782 
783 /// ItaniumVTableBuilder - Class for building vtable layout information.
784 class ItaniumVTableBuilder {
785 public:
786   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
787   /// primary bases.
788   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
789     PrimaryBasesSetVectorTy;
790 
791   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
792     VBaseOffsetOffsetsMapTy;
793 
794   typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
795 
796   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
797 
798 private:
799   /// VTables - Global vtable information.
800   ItaniumVTableContext &VTables;
801 
802   /// MostDerivedClass - The most derived class for which we're building this
803   /// vtable.
804   const CXXRecordDecl *MostDerivedClass;
805 
806   /// MostDerivedClassOffset - If we're building a construction vtable, this
807   /// holds the offset from the layout class to the most derived class.
808   const CharUnits MostDerivedClassOffset;
809 
810   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
811   /// base. (This only makes sense when building a construction vtable).
812   bool MostDerivedClassIsVirtual;
813 
814   /// LayoutClass - The class we're using for layout information. Will be
815   /// different than the most derived class if we're building a construction
816   /// vtable.
817   const CXXRecordDecl *LayoutClass;
818 
819   /// Context - The ASTContext which we will use for layout information.
820   ASTContext &Context;
821 
822   /// FinalOverriders - The final overriders of the most derived class.
823   const FinalOverriders Overriders;
824 
825   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
826   /// bases in this vtable.
827   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
828 
829   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
830   /// the most derived class.
831   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
832 
833   /// Components - The components of the vtable being built.
834   SmallVector<VTableComponent, 64> Components;
835 
836   /// AddressPoints - Address points for the vtable being built.
837   AddressPointsMapTy AddressPoints;
838 
839   /// MethodInfo - Contains information about a method in a vtable.
840   /// (Used for computing 'this' pointer adjustment thunks.
841   struct MethodInfo {
842     /// BaseOffset - The base offset of this method.
843     const CharUnits BaseOffset;
844 
845     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
846     /// method.
847     const CharUnits BaseOffsetInLayoutClass;
848 
849     /// VTableIndex - The index in the vtable that this method has.
850     /// (For destructors, this is the index of the complete destructor).
851     const uint64_t VTableIndex;
852 
853     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
854                uint64_t VTableIndex)
855       : BaseOffset(BaseOffset),
856       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
857       VTableIndex(VTableIndex) { }
858 
859     MethodInfo()
860       : BaseOffset(CharUnits::Zero()),
861       BaseOffsetInLayoutClass(CharUnits::Zero()),
862       VTableIndex(0) { }
863 
864     MethodInfo(MethodInfo const&) = default;
865   };
866 
867   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
868 
869   /// MethodInfoMap - The information for all methods in the vtable we're
870   /// currently building.
871   MethodInfoMapTy MethodInfoMap;
872 
873   /// MethodVTableIndices - Contains the index (relative to the vtable address
874   /// point) where the function pointer for a virtual function is stored.
875   MethodVTableIndicesTy MethodVTableIndices;
876 
877   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
878 
879   /// VTableThunks - The thunks by vtable index in the vtable currently being
880   /// built.
881   VTableThunksMapTy VTableThunks;
882 
883   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
884   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
885 
886   /// Thunks - A map that contains all the thunks needed for all methods in the
887   /// most derived class for which the vtable is currently being built.
888   ThunksMapTy Thunks;
889 
890   /// AddThunk - Add a thunk for the given method.
891   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
892 
893   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
894   /// part of the vtable we're currently building.
895   void ComputeThisAdjustments();
896 
897   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
898 
899   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
900   /// some other base.
901   VisitedVirtualBasesSetTy PrimaryVirtualBases;
902 
903   /// ComputeReturnAdjustment - Compute the return adjustment given a return
904   /// adjustment base offset.
905   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
906 
907   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
908   /// the 'this' pointer from the base subobject to the derived subobject.
909   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
910                                              BaseSubobject Derived) const;
911 
912   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
913   /// given virtual member function, its offset in the layout class and its
914   /// final overrider.
915   ThisAdjustment
916   ComputeThisAdjustment(const CXXMethodDecl *MD,
917                         CharUnits BaseOffsetInLayoutClass,
918                         FinalOverriders::OverriderInfo Overrider);
919 
920   /// AddMethod - Add a single virtual member function to the vtable
921   /// components vector.
922   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
923 
924   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
925   /// part of the vtable.
926   ///
927   /// Itanium C++ ABI 2.5.2:
928   ///
929   ///   struct A { virtual void f(); };
930   ///   struct B : virtual public A { int i; };
931   ///   struct C : virtual public A { int j; };
932   ///   struct D : public B, public C {};
933   ///
934   ///   When B and C are declared, A is a primary base in each case, so although
935   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
936   ///   adjustment is required and no thunk is generated. However, inside D
937   ///   objects, A is no longer a primary base of C, so if we allowed calls to
938   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
939   ///   to adjust this from C* to B::A*, which would require a third-party
940   ///   thunk. Since we require that a call to C::f() first convert to A*,
941   ///   C-in-D's copy of A's vtable is never referenced, so this is not
942   ///   necessary.
943   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
944                        CharUnits BaseOffsetInLayoutClass,
945                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
946                        CharUnits FirstBaseOffsetInLayoutClass) const;
947 
948 
949   /// AddMethods - Add the methods of this base subobject and all its
950   /// primary bases to the vtable components vector.
951   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
952                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
953                   CharUnits FirstBaseOffsetInLayoutClass,
954                   PrimaryBasesSetVectorTy &PrimaryBases);
955 
956   // LayoutVTable - Layout the vtable for the given base class, including its
957   // secondary vtables and any vtables for virtual bases.
958   void LayoutVTable();
959 
960   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
961   /// given base subobject, as well as all its secondary vtables.
962   ///
963   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
964   /// or a direct or indirect base of a virtual base.
965   ///
966   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
967   /// in the layout class.
968   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
969                                         bool BaseIsMorallyVirtual,
970                                         bool BaseIsVirtualInLayoutClass,
971                                         CharUnits OffsetInLayoutClass);
972 
973   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
974   /// subobject.
975   ///
976   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
977   /// or a direct or indirect base of a virtual base.
978   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
979                               CharUnits OffsetInLayoutClass);
980 
981   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
982   /// class hierarchy.
983   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
984                                     CharUnits OffsetInLayoutClass,
985                                     VisitedVirtualBasesSetTy &VBases);
986 
987   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
988   /// given base (excluding any primary bases).
989   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
990                                     VisitedVirtualBasesSetTy &VBases);
991 
992   /// isBuildingConstructionVTable - Return whether this vtable builder is
993   /// building a construction vtable.
994   bool isBuildingConstructorVTable() const {
995     return MostDerivedClass != LayoutClass;
996   }
997 
998 public:
999   /// Component indices of the first component of each of the vtables in the
1000   /// vtable group.
1001   SmallVector<size_t, 4> VTableIndices;
1002 
1003   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1004                        const CXXRecordDecl *MostDerivedClass,
1005                        CharUnits MostDerivedClassOffset,
1006                        bool MostDerivedClassIsVirtual,
1007                        const CXXRecordDecl *LayoutClass)
1008       : VTables(VTables), MostDerivedClass(MostDerivedClass),
1009         MostDerivedClassOffset(MostDerivedClassOffset),
1010         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1011         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1012         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1013     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1014 
1015     LayoutVTable();
1016 
1017     if (Context.getLangOpts().DumpVTableLayouts)
1018       dumpLayout(llvm::outs());
1019   }
1020 
1021   uint64_t getNumThunks() const {
1022     return Thunks.size();
1023   }
1024 
1025   ThunksMapTy::const_iterator thunks_begin() const {
1026     return Thunks.begin();
1027   }
1028 
1029   ThunksMapTy::const_iterator thunks_end() const {
1030     return Thunks.end();
1031   }
1032 
1033   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1034     return VBaseOffsetOffsets;
1035   }
1036 
1037   const AddressPointsMapTy &getAddressPoints() const {
1038     return AddressPoints;
1039   }
1040 
1041   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1042     return MethodVTableIndices.begin();
1043   }
1044 
1045   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1046     return MethodVTableIndices.end();
1047   }
1048 
1049   ArrayRef<VTableComponent> vtable_components() const { return Components; }
1050 
1051   AddressPointsMapTy::const_iterator address_points_begin() const {
1052     return AddressPoints.begin();
1053   }
1054 
1055   AddressPointsMapTy::const_iterator address_points_end() const {
1056     return AddressPoints.end();
1057   }
1058 
1059   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1060     return VTableThunks.begin();
1061   }
1062 
1063   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1064     return VTableThunks.end();
1065   }
1066 
1067   /// dumpLayout - Dump the vtable layout.
1068   void dumpLayout(raw_ostream&);
1069 };
1070 
1071 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1072                                     const ThunkInfo &Thunk) {
1073   assert(!isBuildingConstructorVTable() &&
1074          "Can't add thunks for construction vtable");
1075 
1076   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1077 
1078   // Check if we have this thunk already.
1079   if (llvm::is_contained(ThunksVector, Thunk))
1080     return;
1081 
1082   ThunksVector.push_back(Thunk);
1083 }
1084 
1085 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1086 
1087 /// Visit all the methods overridden by the given method recursively,
1088 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1089 /// indicating whether to continue the recursion for the given overridden
1090 /// method (i.e. returning false stops the iteration).
1091 template <class VisitorTy>
1092 static void
1093 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1094   assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1095 
1096   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1097     if (!Visitor(OverriddenMD))
1098       continue;
1099     visitAllOverriddenMethods(OverriddenMD, Visitor);
1100   }
1101 }
1102 
1103 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1104 /// the overridden methods that the function decl overrides.
1105 static void
1106 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1107                             OverriddenMethodsSetTy& OverriddenMethods) {
1108   auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1109     // Don't recurse on this method if we've already collected it.
1110     return OverriddenMethods.insert(MD).second;
1111   };
1112   visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1113 }
1114 
1115 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1116   // Now go through the method info map and see if any of the methods need
1117   // 'this' pointer adjustments.
1118   for (const auto &MI : MethodInfoMap) {
1119     const CXXMethodDecl *MD = MI.first;
1120     const MethodInfo &MethodInfo = MI.second;
1121 
1122     // Ignore adjustments for unused function pointers.
1123     uint64_t VTableIndex = MethodInfo.VTableIndex;
1124     if (Components[VTableIndex].getKind() ==
1125         VTableComponent::CK_UnusedFunctionPointer)
1126       continue;
1127 
1128     // Get the final overrider for this method.
1129     FinalOverriders::OverriderInfo Overrider =
1130       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1131 
1132     // Check if we need an adjustment at all.
1133     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1134       // When a return thunk is needed by a derived class that overrides a
1135       // virtual base, gcc uses a virtual 'this' adjustment as well.
1136       // While the thunk itself might be needed by vtables in subclasses or
1137       // in construction vtables, there doesn't seem to be a reason for using
1138       // the thunk in this vtable. Still, we do so to match gcc.
1139       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1140         continue;
1141     }
1142 
1143     ThisAdjustment ThisAdjustment =
1144       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1145 
1146     if (ThisAdjustment.isEmpty())
1147       continue;
1148 
1149     // Add it.
1150     VTableThunks[VTableIndex].This = ThisAdjustment;
1151 
1152     if (isa<CXXDestructorDecl>(MD)) {
1153       // Add an adjustment for the deleting destructor as well.
1154       VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1155     }
1156   }
1157 
1158   /// Clear the method info map.
1159   MethodInfoMap.clear();
1160 
1161   if (isBuildingConstructorVTable()) {
1162     // We don't need to store thunk information for construction vtables.
1163     return;
1164   }
1165 
1166   for (const auto &TI : VTableThunks) {
1167     const VTableComponent &Component = Components[TI.first];
1168     const ThunkInfo &Thunk = TI.second;
1169     const CXXMethodDecl *MD;
1170 
1171     switch (Component.getKind()) {
1172     default:
1173       llvm_unreachable("Unexpected vtable component kind!");
1174     case VTableComponent::CK_FunctionPointer:
1175       MD = Component.getFunctionDecl();
1176       break;
1177     case VTableComponent::CK_CompleteDtorPointer:
1178       MD = Component.getDestructorDecl();
1179       break;
1180     case VTableComponent::CK_DeletingDtorPointer:
1181       // We've already added the thunk when we saw the complete dtor pointer.
1182       continue;
1183     }
1184 
1185     if (MD->getParent() == MostDerivedClass)
1186       AddThunk(MD, Thunk);
1187   }
1188 }
1189 
1190 ReturnAdjustment
1191 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1192   ReturnAdjustment Adjustment;
1193 
1194   if (!Offset.isEmpty()) {
1195     if (Offset.VirtualBase) {
1196       // Get the virtual base offset offset.
1197       if (Offset.DerivedClass == MostDerivedClass) {
1198         // We can get the offset offset directly from our map.
1199         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1200           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1201       } else {
1202         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1203           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1204                                              Offset.VirtualBase).getQuantity();
1205       }
1206     }
1207 
1208     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1209   }
1210 
1211   return Adjustment;
1212 }
1213 
1214 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1215     BaseSubobject Base, BaseSubobject Derived) const {
1216   const CXXRecordDecl *BaseRD = Base.getBase();
1217   const CXXRecordDecl *DerivedRD = Derived.getBase();
1218 
1219   CXXBasePaths Paths(/*FindAmbiguities=*/true,
1220                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
1221 
1222   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1223     llvm_unreachable("Class must be derived from the passed in base class!");
1224 
1225   // We have to go through all the paths, and see which one leads us to the
1226   // right base subobject.
1227   for (const CXXBasePath &Path : Paths) {
1228     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1229 
1230     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1231 
1232     if (Offset.VirtualBase) {
1233       // If we have a virtual base class, the non-virtual offset is relative
1234       // to the virtual base class offset.
1235       const ASTRecordLayout &LayoutClassLayout =
1236         Context.getASTRecordLayout(LayoutClass);
1237 
1238       /// Get the virtual base offset, relative to the most derived class
1239       /// layout.
1240       OffsetToBaseSubobject +=
1241         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1242     } else {
1243       // Otherwise, the non-virtual offset is relative to the derived class
1244       // offset.
1245       OffsetToBaseSubobject += Derived.getBaseOffset();
1246     }
1247 
1248     // Check if this path gives us the right base subobject.
1249     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1250       // Since we're going from the base class _to_ the derived class, we'll
1251       // invert the non-virtual offset here.
1252       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1253       return Offset;
1254     }
1255   }
1256 
1257   return BaseOffset();
1258 }
1259 
1260 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1261     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1262     FinalOverriders::OverriderInfo Overrider) {
1263   // Ignore adjustments for pure virtual member functions.
1264   if (Overrider.Method->isPureVirtual())
1265     return ThisAdjustment();
1266 
1267   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1268                                         BaseOffsetInLayoutClass);
1269 
1270   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1271                                        Overrider.Offset);
1272 
1273   // Compute the adjustment offset.
1274   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1275                                                       OverriderBaseSubobject);
1276   if (Offset.isEmpty())
1277     return ThisAdjustment();
1278 
1279   ThisAdjustment Adjustment;
1280 
1281   if (Offset.VirtualBase) {
1282     // Get the vcall offset map for this virtual base.
1283     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1284 
1285     if (VCallOffsets.empty()) {
1286       // We don't have vcall offsets for this virtual base, go ahead and
1287       // build them.
1288       VCallAndVBaseOffsetBuilder Builder(
1289           VTables, MostDerivedClass, MostDerivedClass,
1290           /*Overriders=*/nullptr,
1291           BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1292           /*BaseIsVirtual=*/true,
1293           /*OffsetInLayoutClass=*/
1294           CharUnits::Zero());
1295 
1296       VCallOffsets = Builder.getVCallOffsets();
1297     }
1298 
1299     Adjustment.Virtual.Itanium.VCallOffsetOffset =
1300       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1301   }
1302 
1303   // Set the non-virtual part of the adjustment.
1304   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1305 
1306   return Adjustment;
1307 }
1308 
1309 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1310                                      ReturnAdjustment ReturnAdjustment) {
1311   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1312     assert(ReturnAdjustment.isEmpty() &&
1313            "Destructor can't have return adjustment!");
1314 
1315     // Add both the complete destructor and the deleting destructor.
1316     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1317     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1318   } else {
1319     // Add the return adjustment if necessary.
1320     if (!ReturnAdjustment.isEmpty())
1321       VTableThunks[Components.size()].Return = ReturnAdjustment;
1322 
1323     // Add the function.
1324     Components.push_back(VTableComponent::MakeFunction(MD));
1325   }
1326 }
1327 
1328 /// OverridesIndirectMethodInBase - Return whether the given member function
1329 /// overrides any methods in the set of given bases.
1330 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1331 /// For example, if we have:
1332 ///
1333 /// struct A { virtual void f(); }
1334 /// struct B : A { virtual void f(); }
1335 /// struct C : B { virtual void f(); }
1336 ///
1337 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1338 /// and { A } as the set of bases.
1339 static bool OverridesIndirectMethodInBases(
1340     const CXXMethodDecl *MD,
1341     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1342   if (Bases.count(MD->getParent()))
1343     return true;
1344 
1345   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1346     // Check "indirect overriders".
1347     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1348       return true;
1349   }
1350 
1351   return false;
1352 }
1353 
1354 bool ItaniumVTableBuilder::IsOverriderUsed(
1355     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1356     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1357     CharUnits FirstBaseOffsetInLayoutClass) const {
1358   // If the base and the first base in the primary base chain have the same
1359   // offsets, then this overrider will be used.
1360   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1361    return true;
1362 
1363   // We know now that Base (or a direct or indirect base of it) is a primary
1364   // base in part of the class hierarchy, but not a primary base in the most
1365   // derived class.
1366 
1367   // If the overrider is the first base in the primary base chain, we know
1368   // that the overrider will be used.
1369   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1370     return true;
1371 
1372   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1373 
1374   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1375   PrimaryBases.insert(RD);
1376 
1377   // Now traverse the base chain, starting with the first base, until we find
1378   // the base that is no longer a primary base.
1379   while (true) {
1380     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1381     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1382 
1383     if (!PrimaryBase)
1384       break;
1385 
1386     if (Layout.isPrimaryBaseVirtual()) {
1387       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1388              "Primary base should always be at offset 0!");
1389 
1390       const ASTRecordLayout &LayoutClassLayout =
1391         Context.getASTRecordLayout(LayoutClass);
1392 
1393       // Now check if this is the primary base that is not a primary base in the
1394       // most derived class.
1395       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1396           FirstBaseOffsetInLayoutClass) {
1397         // We found it, stop walking the chain.
1398         break;
1399       }
1400     } else {
1401       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1402              "Primary base should always be at offset 0!");
1403     }
1404 
1405     if (!PrimaryBases.insert(PrimaryBase))
1406       llvm_unreachable("Found a duplicate primary base!");
1407 
1408     RD = PrimaryBase;
1409   }
1410 
1411   // If the final overrider is an override of one of the primary bases,
1412   // then we know that it will be used.
1413   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1414 }
1415 
1416 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1417 
1418 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1419 /// from the nearest base. Returns null if no method was found.
1420 /// The Bases are expected to be sorted in a base-to-derived order.
1421 static const CXXMethodDecl *
1422 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1423                             BasesSetVectorTy &Bases) {
1424   OverriddenMethodsSetTy OverriddenMethods;
1425   ComputeAllOverriddenMethods(MD, OverriddenMethods);
1426 
1427   for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1428     // Now check the overridden methods.
1429     for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1430       // We found our overridden method.
1431       if (OverriddenMD->getParent() == PrimaryBase)
1432         return OverriddenMD;
1433     }
1434   }
1435 
1436   return nullptr;
1437 }
1438 
1439 void ItaniumVTableBuilder::AddMethods(
1440     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1441     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1442     CharUnits FirstBaseOffsetInLayoutClass,
1443     PrimaryBasesSetVectorTy &PrimaryBases) {
1444   // Itanium C++ ABI 2.5.2:
1445   //   The order of the virtual function pointers in a virtual table is the
1446   //   order of declaration of the corresponding member functions in the class.
1447   //
1448   //   There is an entry for any virtual function declared in a class,
1449   //   whether it is a new function or overrides a base class function,
1450   //   unless it overrides a function from the primary base, and conversion
1451   //   between their return types does not require an adjustment.
1452 
1453   const CXXRecordDecl *RD = Base.getBase();
1454   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1455 
1456   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1457     CharUnits PrimaryBaseOffset;
1458     CharUnits PrimaryBaseOffsetInLayoutClass;
1459     if (Layout.isPrimaryBaseVirtual()) {
1460       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1461              "Primary vbase should have a zero offset!");
1462 
1463       const ASTRecordLayout &MostDerivedClassLayout =
1464         Context.getASTRecordLayout(MostDerivedClass);
1465 
1466       PrimaryBaseOffset =
1467         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1468 
1469       const ASTRecordLayout &LayoutClassLayout =
1470         Context.getASTRecordLayout(LayoutClass);
1471 
1472       PrimaryBaseOffsetInLayoutClass =
1473         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1474     } else {
1475       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1476              "Primary base should have a zero offset!");
1477 
1478       PrimaryBaseOffset = Base.getBaseOffset();
1479       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1480     }
1481 
1482     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1483                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1484                FirstBaseOffsetInLayoutClass, PrimaryBases);
1485 
1486     if (!PrimaryBases.insert(PrimaryBase))
1487       llvm_unreachable("Found a duplicate primary base!");
1488   }
1489 
1490   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1491   NewVirtualFunctionsTy NewVirtualFunctions;
1492 
1493   llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1494 
1495   // Now go through all virtual member functions and add them.
1496   for (const auto *MD : RD->methods()) {
1497     if (!ItaniumVTableContext::hasVtableSlot(MD))
1498       continue;
1499     MD = MD->getCanonicalDecl();
1500 
1501     // Get the final overrider.
1502     FinalOverriders::OverriderInfo Overrider =
1503       Overriders.getOverrider(MD, Base.getBaseOffset());
1504 
1505     // Check if this virtual member function overrides a method in a primary
1506     // base. If this is the case, and the return type doesn't require adjustment
1507     // then we can just use the member function from the primary base.
1508     if (const CXXMethodDecl *OverriddenMD =
1509           FindNearestOverriddenMethod(MD, PrimaryBases)) {
1510       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1511                                             OverriddenMD).isEmpty()) {
1512         // Replace the method info of the overridden method with our own
1513         // method.
1514         assert(MethodInfoMap.count(OverriddenMD) &&
1515                "Did not find the overridden method!");
1516         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1517 
1518         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1519                               OverriddenMethodInfo.VTableIndex);
1520 
1521         assert(!MethodInfoMap.count(MD) &&
1522                "Should not have method info for this method yet!");
1523 
1524         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1525         MethodInfoMap.erase(OverriddenMD);
1526 
1527         // If the overridden method exists in a virtual base class or a direct
1528         // or indirect base class of a virtual base class, we need to emit a
1529         // thunk if we ever have a class hierarchy where the base class is not
1530         // a primary base in the complete object.
1531         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1532           // Compute the this adjustment.
1533           ThisAdjustment ThisAdjustment =
1534             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1535                                   Overrider);
1536 
1537           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1538               Overrider.Method->getParent() == MostDerivedClass) {
1539 
1540             // There's no return adjustment from OverriddenMD and MD,
1541             // but that doesn't mean there isn't one between MD and
1542             // the final overrider.
1543             BaseOffset ReturnAdjustmentOffset =
1544               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1545             ReturnAdjustment ReturnAdjustment =
1546               ComputeReturnAdjustment(ReturnAdjustmentOffset);
1547 
1548             // This is a virtual thunk for the most derived class, add it.
1549             AddThunk(Overrider.Method,
1550                      ThunkInfo(ThisAdjustment, ReturnAdjustment));
1551           }
1552         }
1553 
1554         continue;
1555       }
1556     }
1557 
1558     if (MD->isImplicit())
1559       NewImplicitVirtualFunctions.push_back(MD);
1560     else
1561       NewVirtualFunctions.push_back(MD);
1562   }
1563 
1564   std::stable_sort(
1565       NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1566       [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1567         if (A == B)
1568           return false;
1569         if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1570           return A->isCopyAssignmentOperator();
1571         if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1572           return A->isMoveAssignmentOperator();
1573         if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1574           return isa<CXXDestructorDecl>(A);
1575         assert(A->getOverloadedOperator() == OO_EqualEqual &&
1576                B->getOverloadedOperator() == OO_EqualEqual &&
1577                "unexpected or duplicate implicit virtual function");
1578         // We rely on Sema to have declared the operator== members in the
1579         // same order as the corresponding operator<=> members.
1580         return false;
1581       });
1582   NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1583                              NewImplicitVirtualFunctions.end());
1584 
1585   for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1586     // Get the final overrider.
1587     FinalOverriders::OverriderInfo Overrider =
1588       Overriders.getOverrider(MD, Base.getBaseOffset());
1589 
1590     // Insert the method info for this method.
1591     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1592                           Components.size());
1593 
1594     assert(!MethodInfoMap.count(MD) &&
1595            "Should not have method info for this method yet!");
1596     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1597 
1598     // Check if this overrider is going to be used.
1599     const CXXMethodDecl *OverriderMD = Overrider.Method;
1600     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1601                          FirstBaseInPrimaryBaseChain,
1602                          FirstBaseOffsetInLayoutClass)) {
1603       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1604       continue;
1605     }
1606 
1607     // Check if this overrider needs a return adjustment.
1608     // We don't want to do this for pure virtual member functions.
1609     BaseOffset ReturnAdjustmentOffset;
1610     if (!OverriderMD->isPureVirtual()) {
1611       ReturnAdjustmentOffset =
1612         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1613     }
1614 
1615     ReturnAdjustment ReturnAdjustment =
1616       ComputeReturnAdjustment(ReturnAdjustmentOffset);
1617 
1618     AddMethod(Overrider.Method, ReturnAdjustment);
1619   }
1620 }
1621 
1622 void ItaniumVTableBuilder::LayoutVTable() {
1623   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1624                                                  CharUnits::Zero()),
1625                                    /*BaseIsMorallyVirtual=*/false,
1626                                    MostDerivedClassIsVirtual,
1627                                    MostDerivedClassOffset);
1628 
1629   VisitedVirtualBasesSetTy VBases;
1630 
1631   // Determine the primary virtual bases.
1632   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1633                                VBases);
1634   VBases.clear();
1635 
1636   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1637 
1638   // -fapple-kext adds an extra entry at end of vtbl.
1639   bool IsAppleKext = Context.getLangOpts().AppleKext;
1640   if (IsAppleKext)
1641     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1642 }
1643 
1644 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1645     BaseSubobject Base, bool BaseIsMorallyVirtual,
1646     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1647   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1648 
1649   unsigned VTableIndex = Components.size();
1650   VTableIndices.push_back(VTableIndex);
1651 
1652   // Add vcall and vbase offsets for this vtable.
1653   VCallAndVBaseOffsetBuilder Builder(
1654       VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1655       BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1656   Components.append(Builder.components_begin(), Builder.components_end());
1657 
1658   // Check if we need to add these vcall offsets.
1659   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1660     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1661 
1662     if (VCallOffsets.empty())
1663       VCallOffsets = Builder.getVCallOffsets();
1664   }
1665 
1666   // If we're laying out the most derived class we want to keep track of the
1667   // virtual base class offset offsets.
1668   if (Base.getBase() == MostDerivedClass)
1669     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1670 
1671   // Add the offset to top.
1672   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1673   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1674 
1675   // Next, add the RTTI.
1676   if (!Context.getLangOpts().OmitVTableRTTI)
1677     Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1678 
1679   uint64_t AddressPoint = Components.size();
1680 
1681   // Now go through all virtual member functions and add them.
1682   PrimaryBasesSetVectorTy PrimaryBases;
1683   AddMethods(Base, OffsetInLayoutClass,
1684              Base.getBase(), OffsetInLayoutClass,
1685              PrimaryBases);
1686 
1687   const CXXRecordDecl *RD = Base.getBase();
1688   if (RD == MostDerivedClass) {
1689     assert(MethodVTableIndices.empty());
1690     for (const auto &I : MethodInfoMap) {
1691       const CXXMethodDecl *MD = I.first;
1692       const MethodInfo &MI = I.second;
1693       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1694         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1695             = MI.VTableIndex - AddressPoint;
1696         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1697             = MI.VTableIndex + 1 - AddressPoint;
1698       } else {
1699         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1700       }
1701     }
1702   }
1703 
1704   // Compute 'this' pointer adjustments.
1705   ComputeThisAdjustments();
1706 
1707   // Add all address points.
1708   while (true) {
1709     AddressPoints.insert(
1710         std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1711                        VTableLayout::AddressPointLocation{
1712                            unsigned(VTableIndices.size() - 1),
1713                            unsigned(AddressPoint - VTableIndex)}));
1714 
1715     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1716     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1717 
1718     if (!PrimaryBase)
1719       break;
1720 
1721     if (Layout.isPrimaryBaseVirtual()) {
1722       // Check if this virtual primary base is a primary base in the layout
1723       // class. If it's not, we don't want to add it.
1724       const ASTRecordLayout &LayoutClassLayout =
1725         Context.getASTRecordLayout(LayoutClass);
1726 
1727       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1728           OffsetInLayoutClass) {
1729         // We don't want to add this class (or any of its primary bases).
1730         break;
1731       }
1732     }
1733 
1734     RD = PrimaryBase;
1735   }
1736 
1737   // Layout secondary vtables.
1738   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1739 }
1740 
1741 void
1742 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1743                                              bool BaseIsMorallyVirtual,
1744                                              CharUnits OffsetInLayoutClass) {
1745   // Itanium C++ ABI 2.5.2:
1746   //   Following the primary virtual table of a derived class are secondary
1747   //   virtual tables for each of its proper base classes, except any primary
1748   //   base(s) with which it shares its primary virtual table.
1749 
1750   const CXXRecordDecl *RD = Base.getBase();
1751   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1752   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1753 
1754   for (const auto &B : RD->bases()) {
1755     // Ignore virtual bases, we'll emit them later.
1756     if (B.isVirtual())
1757       continue;
1758 
1759     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1760 
1761     // Ignore bases that don't have a vtable.
1762     if (!BaseDecl->isDynamicClass())
1763       continue;
1764 
1765     if (isBuildingConstructorVTable()) {
1766       // Itanium C++ ABI 2.6.4:
1767       //   Some of the base class subobjects may not need construction virtual
1768       //   tables, which will therefore not be present in the construction
1769       //   virtual table group, even though the subobject virtual tables are
1770       //   present in the main virtual table group for the complete object.
1771       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1772         continue;
1773     }
1774 
1775     // Get the base offset of this base.
1776     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1777     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1778 
1779     CharUnits BaseOffsetInLayoutClass =
1780       OffsetInLayoutClass + RelativeBaseOffset;
1781 
1782     // Don't emit a secondary vtable for a primary base. We might however want
1783     // to emit secondary vtables for other bases of this base.
1784     if (BaseDecl == PrimaryBase) {
1785       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1786                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1787       continue;
1788     }
1789 
1790     // Layout the primary vtable (and any secondary vtables) for this base.
1791     LayoutPrimaryAndSecondaryVTables(
1792       BaseSubobject(BaseDecl, BaseOffset),
1793       BaseIsMorallyVirtual,
1794       /*BaseIsVirtualInLayoutClass=*/false,
1795       BaseOffsetInLayoutClass);
1796   }
1797 }
1798 
1799 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1800     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1801     VisitedVirtualBasesSetTy &VBases) {
1802   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1803 
1804   // Check if this base has a primary base.
1805   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1806 
1807     // Check if it's virtual.
1808     if (Layout.isPrimaryBaseVirtual()) {
1809       bool IsPrimaryVirtualBase = true;
1810 
1811       if (isBuildingConstructorVTable()) {
1812         // Check if the base is actually a primary base in the class we use for
1813         // layout.
1814         const ASTRecordLayout &LayoutClassLayout =
1815           Context.getASTRecordLayout(LayoutClass);
1816 
1817         CharUnits PrimaryBaseOffsetInLayoutClass =
1818           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1819 
1820         // We know that the base is not a primary base in the layout class if
1821         // the base offsets are different.
1822         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1823           IsPrimaryVirtualBase = false;
1824       }
1825 
1826       if (IsPrimaryVirtualBase)
1827         PrimaryVirtualBases.insert(PrimaryBase);
1828     }
1829   }
1830 
1831   // Traverse bases, looking for more primary virtual bases.
1832   for (const auto &B : RD->bases()) {
1833     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1834 
1835     CharUnits BaseOffsetInLayoutClass;
1836 
1837     if (B.isVirtual()) {
1838       if (!VBases.insert(BaseDecl).second)
1839         continue;
1840 
1841       const ASTRecordLayout &LayoutClassLayout =
1842         Context.getASTRecordLayout(LayoutClass);
1843 
1844       BaseOffsetInLayoutClass =
1845         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1846     } else {
1847       BaseOffsetInLayoutClass =
1848         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1849     }
1850 
1851     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1852   }
1853 }
1854 
1855 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1856     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1857   // Itanium C++ ABI 2.5.2:
1858   //   Then come the virtual base virtual tables, also in inheritance graph
1859   //   order, and again excluding primary bases (which share virtual tables with
1860   //   the classes for which they are primary).
1861   for (const auto &B : RD->bases()) {
1862     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1863 
1864     // Check if this base needs a vtable. (If it's virtual, not a primary base
1865     // of some other class, and we haven't visited it before).
1866     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1867         !PrimaryVirtualBases.count(BaseDecl) &&
1868         VBases.insert(BaseDecl).second) {
1869       const ASTRecordLayout &MostDerivedClassLayout =
1870         Context.getASTRecordLayout(MostDerivedClass);
1871       CharUnits BaseOffset =
1872         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1873 
1874       const ASTRecordLayout &LayoutClassLayout =
1875         Context.getASTRecordLayout(LayoutClass);
1876       CharUnits BaseOffsetInLayoutClass =
1877         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1878 
1879       LayoutPrimaryAndSecondaryVTables(
1880         BaseSubobject(BaseDecl, BaseOffset),
1881         /*BaseIsMorallyVirtual=*/true,
1882         /*BaseIsVirtualInLayoutClass=*/true,
1883         BaseOffsetInLayoutClass);
1884     }
1885 
1886     // We only need to check the base for virtual base vtables if it actually
1887     // has virtual bases.
1888     if (BaseDecl->getNumVBases())
1889       LayoutVTablesForVirtualBases(BaseDecl, VBases);
1890   }
1891 }
1892 
1893 /// dumpLayout - Dump the vtable layout.
1894 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1895   // FIXME: write more tests that actually use the dumpLayout output to prevent
1896   // ItaniumVTableBuilder regressions.
1897 
1898   if (isBuildingConstructorVTable()) {
1899     Out << "Construction vtable for ('";
1900     MostDerivedClass->printQualifiedName(Out);
1901     Out << "', ";
1902     Out << MostDerivedClassOffset.getQuantity() << ") in '";
1903     LayoutClass->printQualifiedName(Out);
1904   } else {
1905     Out << "Vtable for '";
1906     MostDerivedClass->printQualifiedName(Out);
1907   }
1908   Out << "' (" << Components.size() << " entries).\n";
1909 
1910   // Iterate through the address points and insert them into a new map where
1911   // they are keyed by the index and not the base object.
1912   // Since an address point can be shared by multiple subobjects, we use an
1913   // STL multimap.
1914   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1915   for (const auto &AP : AddressPoints) {
1916     const BaseSubobject &Base = AP.first;
1917     uint64_t Index =
1918         VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1919 
1920     AddressPointsByIndex.insert(std::make_pair(Index, Base));
1921   }
1922 
1923   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1924     uint64_t Index = I;
1925 
1926     Out << llvm::format("%4d | ", I);
1927 
1928     const VTableComponent &Component = Components[I];
1929 
1930     // Dump the component.
1931     switch (Component.getKind()) {
1932 
1933     case VTableComponent::CK_VCallOffset:
1934       Out << "vcall_offset ("
1935           << Component.getVCallOffset().getQuantity()
1936           << ")";
1937       break;
1938 
1939     case VTableComponent::CK_VBaseOffset:
1940       Out << "vbase_offset ("
1941           << Component.getVBaseOffset().getQuantity()
1942           << ")";
1943       break;
1944 
1945     case VTableComponent::CK_OffsetToTop:
1946       Out << "offset_to_top ("
1947           << Component.getOffsetToTop().getQuantity()
1948           << ")";
1949       break;
1950 
1951     case VTableComponent::CK_RTTI:
1952       Component.getRTTIDecl()->printQualifiedName(Out);
1953       Out << " RTTI";
1954       break;
1955 
1956     case VTableComponent::CK_FunctionPointer: {
1957       const CXXMethodDecl *MD = Component.getFunctionDecl();
1958 
1959       std::string Str = PredefinedExpr::ComputeName(
1960           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
1961       Out << Str;
1962       if (MD->isPureVirtual())
1963         Out << " [pure]";
1964 
1965       if (MD->isDeleted())
1966         Out << " [deleted]";
1967 
1968       ThunkInfo Thunk = VTableThunks.lookup(I);
1969       if (!Thunk.isEmpty()) {
1970         // If this function pointer has a return adjustment, dump it.
1971         if (!Thunk.Return.isEmpty()) {
1972           Out << "\n       [return adjustment: ";
1973           Out << Thunk.Return.NonVirtual << " non-virtual";
1974 
1975           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1976             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1977             Out << " vbase offset offset";
1978           }
1979 
1980           Out << ']';
1981         }
1982 
1983         // If this function pointer has a 'this' pointer adjustment, dump it.
1984         if (!Thunk.This.isEmpty()) {
1985           Out << "\n       [this adjustment: ";
1986           Out << Thunk.This.NonVirtual << " non-virtual";
1987 
1988           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1989             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1990             Out << " vcall offset offset";
1991           }
1992 
1993           Out << ']';
1994         }
1995       }
1996 
1997       break;
1998     }
1999 
2000     case VTableComponent::CK_CompleteDtorPointer:
2001     case VTableComponent::CK_DeletingDtorPointer: {
2002       bool IsComplete =
2003         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2004 
2005       const CXXDestructorDecl *DD = Component.getDestructorDecl();
2006 
2007       DD->printQualifiedName(Out);
2008       if (IsComplete)
2009         Out << "() [complete]";
2010       else
2011         Out << "() [deleting]";
2012 
2013       if (DD->isPureVirtual())
2014         Out << " [pure]";
2015 
2016       ThunkInfo Thunk = VTableThunks.lookup(I);
2017       if (!Thunk.isEmpty()) {
2018         // If this destructor has a 'this' pointer adjustment, dump it.
2019         if (!Thunk.This.isEmpty()) {
2020           Out << "\n       [this adjustment: ";
2021           Out << Thunk.This.NonVirtual << " non-virtual";
2022 
2023           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2024             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2025             Out << " vcall offset offset";
2026           }
2027 
2028           Out << ']';
2029         }
2030       }
2031 
2032       break;
2033     }
2034 
2035     case VTableComponent::CK_UnusedFunctionPointer: {
2036       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2037 
2038       std::string Str = PredefinedExpr::ComputeName(
2039           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2040       Out << "[unused] " << Str;
2041       if (MD->isPureVirtual())
2042         Out << " [pure]";
2043     }
2044 
2045     }
2046 
2047     Out << '\n';
2048 
2049     // Dump the next address point.
2050     uint64_t NextIndex = Index + 1;
2051     if (AddressPointsByIndex.count(NextIndex)) {
2052       if (AddressPointsByIndex.count(NextIndex) == 1) {
2053         const BaseSubobject &Base =
2054           AddressPointsByIndex.find(NextIndex)->second;
2055 
2056         Out << "       -- (";
2057         Base.getBase()->printQualifiedName(Out);
2058         Out << ", " << Base.getBaseOffset().getQuantity();
2059         Out << ") vtable address --\n";
2060       } else {
2061         CharUnits BaseOffset =
2062           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2063 
2064         // We store the class names in a set to get a stable order.
2065         std::set<std::string> ClassNames;
2066         for (const auto &I :
2067              llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2068           assert(I.second.getBaseOffset() == BaseOffset &&
2069                  "Invalid base offset!");
2070           const CXXRecordDecl *RD = I.second.getBase();
2071           ClassNames.insert(RD->getQualifiedNameAsString());
2072         }
2073 
2074         for (const std::string &Name : ClassNames) {
2075           Out << "       -- (" << Name;
2076           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2077         }
2078       }
2079     }
2080   }
2081 
2082   Out << '\n';
2083 
2084   if (isBuildingConstructorVTable())
2085     return;
2086 
2087   if (MostDerivedClass->getNumVBases()) {
2088     // We store the virtual base class names and their offsets in a map to get
2089     // a stable order.
2090 
2091     std::map<std::string, CharUnits> ClassNamesAndOffsets;
2092     for (const auto &I : VBaseOffsetOffsets) {
2093       std::string ClassName = I.first->getQualifiedNameAsString();
2094       CharUnits OffsetOffset = I.second;
2095       ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2096     }
2097 
2098     Out << "Virtual base offset offsets for '";
2099     MostDerivedClass->printQualifiedName(Out);
2100     Out << "' (";
2101     Out << ClassNamesAndOffsets.size();
2102     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2103 
2104     for (const auto &I : ClassNamesAndOffsets)
2105       Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2106 
2107     Out << "\n";
2108   }
2109 
2110   if (!Thunks.empty()) {
2111     // We store the method names in a map to get a stable order.
2112     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2113 
2114     for (const auto &I : Thunks) {
2115       const CXXMethodDecl *MD = I.first;
2116       std::string MethodName = PredefinedExpr::ComputeName(
2117           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2118 
2119       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2120     }
2121 
2122     for (const auto &I : MethodNamesAndDecls) {
2123       const std::string &MethodName = I.first;
2124       const CXXMethodDecl *MD = I.second;
2125 
2126       ThunkInfoVectorTy ThunksVector = Thunks[MD];
2127       llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2128         assert(LHS.Method == nullptr && RHS.Method == nullptr);
2129         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2130       });
2131 
2132       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2133       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2134 
2135       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2136         const ThunkInfo &Thunk = ThunksVector[I];
2137 
2138         Out << llvm::format("%4d | ", I);
2139 
2140         // If this function pointer has a return pointer adjustment, dump it.
2141         if (!Thunk.Return.isEmpty()) {
2142           Out << "return adjustment: " << Thunk.Return.NonVirtual;
2143           Out << " non-virtual";
2144           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2145             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2146             Out << " vbase offset offset";
2147           }
2148 
2149           if (!Thunk.This.isEmpty())
2150             Out << "\n       ";
2151         }
2152 
2153         // If this function pointer has a 'this' pointer adjustment, dump it.
2154         if (!Thunk.This.isEmpty()) {
2155           Out << "this adjustment: ";
2156           Out << Thunk.This.NonVirtual << " non-virtual";
2157 
2158           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2159             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2160             Out << " vcall offset offset";
2161           }
2162         }
2163 
2164         Out << '\n';
2165       }
2166 
2167       Out << '\n';
2168     }
2169   }
2170 
2171   // Compute the vtable indices for all the member functions.
2172   // Store them in a map keyed by the index so we'll get a sorted table.
2173   std::map<uint64_t, std::string> IndicesMap;
2174 
2175   for (const auto *MD : MostDerivedClass->methods()) {
2176     // We only want virtual member functions.
2177     if (!ItaniumVTableContext::hasVtableSlot(MD))
2178       continue;
2179     MD = MD->getCanonicalDecl();
2180 
2181     std::string MethodName = PredefinedExpr::ComputeName(
2182         PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2183 
2184     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2185       GlobalDecl GD(DD, Dtor_Complete);
2186       assert(MethodVTableIndices.count(GD));
2187       uint64_t VTableIndex = MethodVTableIndices[GD];
2188       IndicesMap[VTableIndex] = MethodName + " [complete]";
2189       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2190     } else {
2191       assert(MethodVTableIndices.count(MD));
2192       IndicesMap[MethodVTableIndices[MD]] = MethodName;
2193     }
2194   }
2195 
2196   // Print the vtable indices for all the member functions.
2197   if (!IndicesMap.empty()) {
2198     Out << "VTable indices for '";
2199     MostDerivedClass->printQualifiedName(Out);
2200     Out << "' (" << IndicesMap.size() << " entries).\n";
2201 
2202     for (const auto &I : IndicesMap) {
2203       uint64_t VTableIndex = I.first;
2204       const std::string &MethodName = I.second;
2205 
2206       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2207           << '\n';
2208     }
2209   }
2210 
2211   Out << '\n';
2212 }
2213 }
2214 
2215 static VTableLayout::AddressPointsIndexMapTy
2216 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2217                         unsigned numVTables) {
2218   VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2219 
2220   for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2221     const auto &addressPointLoc = it->second;
2222     unsigned vtableIndex = addressPointLoc.VTableIndex;
2223     unsigned addressPoint = addressPointLoc.AddressPointIndex;
2224     if (indexMap[vtableIndex]) {
2225       // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2226       // every vtable index should have a unique address point.
2227       assert(indexMap[vtableIndex] == addressPoint &&
2228              "Every vtable index should have a unique address point. Found a "
2229              "vtable that has two different address points.");
2230     } else {
2231       indexMap[vtableIndex] = addressPoint;
2232     }
2233   }
2234 
2235   // Note that by this point, not all the address may be initialized if the
2236   // AddressPoints map is empty. This is ok if the map isn't needed. See
2237   // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2238   // emprt map.
2239   return indexMap;
2240 }
2241 
2242 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2243                            ArrayRef<VTableComponent> VTableComponents,
2244                            ArrayRef<VTableThunkTy> VTableThunks,
2245                            const AddressPointsMapTy &AddressPoints)
2246     : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2247       AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2248                                         AddressPoints, VTableIndices.size())) {
2249   if (VTableIndices.size() <= 1)
2250     assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2251   else
2252     this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2253 
2254   llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2255                                     const VTableLayout::VTableThunkTy &RHS) {
2256     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2257            "Different thunks should have unique indices!");
2258     return LHS.first < RHS.first;
2259   });
2260 }
2261 
2262 VTableLayout::~VTableLayout() { }
2263 
2264 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2265   return MD->isVirtual() && !MD->isImmediateFunction();
2266 }
2267 
2268 ItaniumVTableContext::ItaniumVTableContext(
2269     ASTContext &Context, VTableComponentLayout ComponentLayout)
2270     : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2271 
2272 ItaniumVTableContext::~ItaniumVTableContext() {}
2273 
2274 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2275   GD = GD.getCanonicalDecl();
2276   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2277   if (I != MethodVTableIndices.end())
2278     return I->second;
2279 
2280   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2281 
2282   computeVTableRelatedInformation(RD);
2283 
2284   I = MethodVTableIndices.find(GD);
2285   assert(I != MethodVTableIndices.end() && "Did not find index!");
2286   return I->second;
2287 }
2288 
2289 CharUnits
2290 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2291                                                  const CXXRecordDecl *VBase) {
2292   ClassPairTy ClassPair(RD, VBase);
2293 
2294   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2295     VirtualBaseClassOffsetOffsets.find(ClassPair);
2296   if (I != VirtualBaseClassOffsetOffsets.end())
2297     return I->second;
2298 
2299   VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2300                                      BaseSubobject(RD, CharUnits::Zero()),
2301                                      /*BaseIsVirtual=*/false,
2302                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
2303 
2304   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2305     // Insert all types.
2306     ClassPairTy ClassPair(RD, I.first);
2307 
2308     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2309   }
2310 
2311   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2312   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2313 
2314   return I->second;
2315 }
2316 
2317 static std::unique_ptr<VTableLayout>
2318 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2319   SmallVector<VTableLayout::VTableThunkTy, 1>
2320     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2321 
2322   return std::make_unique<VTableLayout>(
2323       Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2324       Builder.getAddressPoints());
2325 }
2326 
2327 void
2328 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2329   std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2330 
2331   // Check if we've computed this information before.
2332   if (Entry)
2333     return;
2334 
2335   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2336                                /*MostDerivedClassIsVirtual=*/false, RD);
2337   Entry = CreateVTableLayout(Builder);
2338 
2339   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2340                              Builder.vtable_indices_end());
2341 
2342   // Add the known thunks.
2343   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2344 
2345   // If we don't have the vbase information for this class, insert it.
2346   // getVirtualBaseOffsetOffset will compute it separately without computing
2347   // the rest of the vtable related information.
2348   if (!RD->getNumVBases())
2349     return;
2350 
2351   const CXXRecordDecl *VBase =
2352     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2353 
2354   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2355     return;
2356 
2357   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2358     // Insert all types.
2359     ClassPairTy ClassPair(RD, I.first);
2360 
2361     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2362   }
2363 }
2364 
2365 std::unique_ptr<VTableLayout>
2366 ItaniumVTableContext::createConstructionVTableLayout(
2367     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2368     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2369   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2370                                MostDerivedClassIsVirtual, LayoutClass);
2371   return CreateVTableLayout(Builder);
2372 }
2373 
2374 namespace {
2375 
2376 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2377 //
2378 // The main differences are:
2379 //  1. Separate vftable and vbtable.
2380 //
2381 //  2. Each subobject with a vfptr gets its own vftable rather than an address
2382 //     point in a single vtable shared between all the subobjects.
2383 //     Each vftable is represented by a separate section and virtual calls
2384 //     must be done using the vftable which has a slot for the function to be
2385 //     called.
2386 //
2387 //  3. Virtual method definitions expect their 'this' parameter to point to the
2388 //     first vfptr whose table provides a compatible overridden method.  In many
2389 //     cases, this permits the original vf-table entry to directly call
2390 //     the method instead of passing through a thunk.
2391 //     See example before VFTableBuilder::ComputeThisOffset below.
2392 //
2393 //     A compatible overridden method is one which does not have a non-trivial
2394 //     covariant-return adjustment.
2395 //
2396 //     The first vfptr is the one with the lowest offset in the complete-object
2397 //     layout of the defining class, and the method definition will subtract
2398 //     that constant offset from the parameter value to get the real 'this'
2399 //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2400 //     function defined in a virtual base is overridden in a more derived
2401 //     virtual base and these bases have a reverse order in the complete
2402 //     object), the vf-table may require a this-adjustment thunk.
2403 //
2404 //  4. vftables do not contain new entries for overrides that merely require
2405 //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2406 //     eliminates the need for this-adjustment thunks in many cases, at the cost
2407 //     of often requiring redundant work to adjust the "this" pointer.
2408 //
2409 //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2410 //     Vtordisps are emitted into the class layout if a class has
2411 //      a) a user-defined ctor/dtor
2412 //     and
2413 //      b) a method overriding a method in a virtual base.
2414 //
2415 //  To get a better understanding of this code,
2416 //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2417 
2418 class VFTableBuilder {
2419 public:
2420   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2421     MethodVFTableLocationsTy;
2422 
2423   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2424     method_locations_range;
2425 
2426 private:
2427   /// VTables - Global vtable information.
2428   MicrosoftVTableContext &VTables;
2429 
2430   /// Context - The ASTContext which we will use for layout information.
2431   ASTContext &Context;
2432 
2433   /// MostDerivedClass - The most derived class for which we're building this
2434   /// vtable.
2435   const CXXRecordDecl *MostDerivedClass;
2436 
2437   const ASTRecordLayout &MostDerivedClassLayout;
2438 
2439   const VPtrInfo &WhichVFPtr;
2440 
2441   /// FinalOverriders - The final overriders of the most derived class.
2442   const FinalOverriders Overriders;
2443 
2444   /// Components - The components of the vftable being built.
2445   SmallVector<VTableComponent, 64> Components;
2446 
2447   MethodVFTableLocationsTy MethodVFTableLocations;
2448 
2449   /// Does this class have an RTTI component?
2450   bool HasRTTIComponent = false;
2451 
2452   /// MethodInfo - Contains information about a method in a vtable.
2453   /// (Used for computing 'this' pointer adjustment thunks.
2454   struct MethodInfo {
2455     /// VBTableIndex - The nonzero index in the vbtable that
2456     /// this method's base has, or zero.
2457     const uint64_t VBTableIndex;
2458 
2459     /// VFTableIndex - The index in the vftable that this method has.
2460     const uint64_t VFTableIndex;
2461 
2462     /// Shadowed - Indicates if this vftable slot is shadowed by
2463     /// a slot for a covariant-return override. If so, it shouldn't be printed
2464     /// or used for vcalls in the most derived class.
2465     bool Shadowed;
2466 
2467     /// UsesExtraSlot - Indicates if this vftable slot was created because
2468     /// any of the overridden slots required a return adjusting thunk.
2469     bool UsesExtraSlot;
2470 
2471     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2472                bool UsesExtraSlot = false)
2473         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2474           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2475 
2476     MethodInfo()
2477         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2478           UsesExtraSlot(false) {}
2479   };
2480 
2481   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2482 
2483   /// MethodInfoMap - The information for all methods in the vftable we're
2484   /// currently building.
2485   MethodInfoMapTy MethodInfoMap;
2486 
2487   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2488 
2489   /// VTableThunks - The thunks by vftable index in the vftable currently being
2490   /// built.
2491   VTableThunksMapTy VTableThunks;
2492 
2493   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2494   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2495 
2496   /// Thunks - A map that contains all the thunks needed for all methods in the
2497   /// most derived class for which the vftable is currently being built.
2498   ThunksMapTy Thunks;
2499 
2500   /// AddThunk - Add a thunk for the given method.
2501   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2502     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2503 
2504     // Check if we have this thunk already.
2505     if (llvm::is_contained(ThunksVector, Thunk))
2506       return;
2507 
2508     ThunksVector.push_back(Thunk);
2509   }
2510 
2511   /// ComputeThisOffset - Returns the 'this' argument offset for the given
2512   /// method, relative to the beginning of the MostDerivedClass.
2513   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2514 
2515   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2516                                    CharUnits ThisOffset, ThisAdjustment &TA);
2517 
2518   /// AddMethod - Add a single virtual member function to the vftable
2519   /// components vector.
2520   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2521     if (!TI.isEmpty()) {
2522       VTableThunks[Components.size()] = TI;
2523       AddThunk(MD, TI);
2524     }
2525     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2526       assert(TI.Return.isEmpty() &&
2527              "Destructor can't have return adjustment!");
2528       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2529     } else {
2530       Components.push_back(VTableComponent::MakeFunction(MD));
2531     }
2532   }
2533 
2534   /// AddMethods - Add the methods of this base subobject and the relevant
2535   /// subbases to the vftable we're currently laying out.
2536   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2537                   const CXXRecordDecl *LastVBase,
2538                   BasesSetVectorTy &VisitedBases);
2539 
2540   void LayoutVFTable() {
2541     // RTTI data goes before all other entries.
2542     if (HasRTTIComponent)
2543       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2544 
2545     BasesSetVectorTy VisitedBases;
2546     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2547                VisitedBases);
2548     // Note that it is possible for the vftable to contain only an RTTI
2549     // pointer, if all virtual functions are constewval.
2550     assert(!Components.empty() && "vftable can't be empty");
2551 
2552     assert(MethodVFTableLocations.empty());
2553     for (const auto &I : MethodInfoMap) {
2554       const CXXMethodDecl *MD = I.first;
2555       const MethodInfo &MI = I.second;
2556       assert(MD == MD->getCanonicalDecl());
2557 
2558       // Skip the methods that the MostDerivedClass didn't override
2559       // and the entries shadowed by return adjusting thunks.
2560       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2561         continue;
2562       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2563                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2564       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2565         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2566       } else {
2567         MethodVFTableLocations[MD] = Loc;
2568       }
2569     }
2570   }
2571 
2572 public:
2573   VFTableBuilder(MicrosoftVTableContext &VTables,
2574                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2575       : VTables(VTables),
2576         Context(MostDerivedClass->getASTContext()),
2577         MostDerivedClass(MostDerivedClass),
2578         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2579         WhichVFPtr(Which),
2580         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2581     // Provide the RTTI component if RTTIData is enabled. If the vftable would
2582     // be available externally, we should not provide the RTTI componenent. It
2583     // is currently impossible to get available externally vftables with either
2584     // dllimport or extern template instantiations, but eventually we may add a
2585     // flag to support additional devirtualization that needs this.
2586     if (Context.getLangOpts().RTTIData)
2587       HasRTTIComponent = true;
2588 
2589     LayoutVFTable();
2590 
2591     if (Context.getLangOpts().DumpVTableLayouts)
2592       dumpLayout(llvm::outs());
2593   }
2594 
2595   uint64_t getNumThunks() const { return Thunks.size(); }
2596 
2597   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2598 
2599   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2600 
2601   method_locations_range vtable_locations() const {
2602     return method_locations_range(MethodVFTableLocations.begin(),
2603                                   MethodVFTableLocations.end());
2604   }
2605 
2606   ArrayRef<VTableComponent> vtable_components() const { return Components; }
2607 
2608   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2609     return VTableThunks.begin();
2610   }
2611 
2612   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2613     return VTableThunks.end();
2614   }
2615 
2616   void dumpLayout(raw_ostream &);
2617 };
2618 
2619 } // end namespace
2620 
2621 // Let's study one class hierarchy as an example:
2622 //   struct A {
2623 //     virtual void f();
2624 //     int x;
2625 //   };
2626 //
2627 //   struct B : virtual A {
2628 //     virtual void f();
2629 //   };
2630 //
2631 // Record layouts:
2632 //   struct A:
2633 //   0 |   (A vftable pointer)
2634 //   4 |   int x
2635 //
2636 //   struct B:
2637 //   0 |   (B vbtable pointer)
2638 //   4 |   struct A (virtual base)
2639 //   4 |     (A vftable pointer)
2640 //   8 |     int x
2641 //
2642 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2643 //   B b;
2644 //   A *a = (A*)&b;
2645 //   a->f();
2646 //
2647 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2648 // "this" parameter to point at the A subobject, which is B+4.
2649 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2650 // performed as a *static* adjustment.
2651 //
2652 // Interesting thing happens when we alter the relative placement of A and B
2653 // subobjects in a class:
2654 //   struct C : virtual B { };
2655 //
2656 //   C c;
2657 //   A *a = (A*)&c;
2658 //   a->f();
2659 //
2660 // Respective record layout is:
2661 //   0 |   (C vbtable pointer)
2662 //   4 |   struct A (virtual base)
2663 //   4 |     (A vftable pointer)
2664 //   8 |     int x
2665 //  12 |   struct B (virtual base)
2666 //  12 |     (B vbtable pointer)
2667 //
2668 // The final overrider of f() in class C is still B::f(), so B+4 should be
2669 // passed as "this" to that code.  However, "a" points at B-8, so the respective
2670 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2671 // performing a tail call to B::f().
2672 //
2673 // With this example in mind, we can now calculate the 'this' argument offset
2674 // for the given method, relative to the beginning of the MostDerivedClass.
2675 CharUnits
2676 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2677   BasesSetVectorTy Bases;
2678 
2679   {
2680     // Find the set of least derived bases that define the given method.
2681     OverriddenMethodsSetTy VisitedOverriddenMethods;
2682     auto InitialOverriddenDefinitionCollector = [&](
2683         const CXXMethodDecl *OverriddenMD) {
2684       if (OverriddenMD->size_overridden_methods() == 0)
2685         Bases.insert(OverriddenMD->getParent());
2686       // Don't recurse on this method if we've already collected it.
2687       return VisitedOverriddenMethods.insert(OverriddenMD).second;
2688     };
2689     visitAllOverriddenMethods(Overrider.Method,
2690                               InitialOverriddenDefinitionCollector);
2691   }
2692 
2693   // If there are no overrides then 'this' is located
2694   // in the base that defines the method.
2695   if (Bases.size() == 0)
2696     return Overrider.Offset;
2697 
2698   CXXBasePaths Paths;
2699   Overrider.Method->getParent()->lookupInBases(
2700       [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2701         return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2702       },
2703       Paths);
2704 
2705   // This will hold the smallest this offset among overridees of MD.
2706   // This implies that an offset of a non-virtual base will dominate an offset
2707   // of a virtual base to potentially reduce the number of thunks required
2708   // in the derived classes that inherit this method.
2709   CharUnits Ret;
2710   bool First = true;
2711 
2712   const ASTRecordLayout &OverriderRDLayout =
2713       Context.getASTRecordLayout(Overrider.Method->getParent());
2714   for (const CXXBasePath &Path : Paths) {
2715     CharUnits ThisOffset = Overrider.Offset;
2716     CharUnits LastVBaseOffset;
2717 
2718     // For each path from the overrider to the parents of the overridden
2719     // methods, traverse the path, calculating the this offset in the most
2720     // derived class.
2721     for (const CXXBasePathElement &Element : Path) {
2722       QualType CurTy = Element.Base->getType();
2723       const CXXRecordDecl *PrevRD = Element.Class,
2724                           *CurRD = CurTy->getAsCXXRecordDecl();
2725       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2726 
2727       if (Element.Base->isVirtual()) {
2728         // The interesting things begin when you have virtual inheritance.
2729         // The final overrider will use a static adjustment equal to the offset
2730         // of the vbase in the final overrider class.
2731         // For example, if the final overrider is in a vbase B of the most
2732         // derived class and it overrides a method of the B's own vbase A,
2733         // it uses A* as "this".  In its prologue, it can cast A* to B* with
2734         // a static offset.  This offset is used regardless of the actual
2735         // offset of A from B in the most derived class, requiring an
2736         // this-adjusting thunk in the vftable if A and B are laid out
2737         // differently in the most derived class.
2738         LastVBaseOffset = ThisOffset =
2739             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2740       } else {
2741         ThisOffset += Layout.getBaseClassOffset(CurRD);
2742       }
2743     }
2744 
2745     if (isa<CXXDestructorDecl>(Overrider.Method)) {
2746       if (LastVBaseOffset.isZero()) {
2747         // If a "Base" class has at least one non-virtual base with a virtual
2748         // destructor, the "Base" virtual destructor will take the address
2749         // of the "Base" subobject as the "this" argument.
2750         ThisOffset = Overrider.Offset;
2751       } else {
2752         // A virtual destructor of a virtual base takes the address of the
2753         // virtual base subobject as the "this" argument.
2754         ThisOffset = LastVBaseOffset;
2755       }
2756     }
2757 
2758     if (Ret > ThisOffset || First) {
2759       First = false;
2760       Ret = ThisOffset;
2761     }
2762   }
2763 
2764   assert(!First && "Method not found in the given subobject?");
2765   return Ret;
2766 }
2767 
2768 // Things are getting even more complex when the "this" adjustment has to
2769 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2770 // This is sometimes required when a virtual call happens in the middle of
2771 // a non-most-derived class construction or destruction.
2772 //
2773 // Let's take a look at the following example:
2774 //   struct A {
2775 //     virtual void f();
2776 //   };
2777 //
2778 //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2779 //
2780 //   struct B : virtual A {
2781 //     virtual void f();
2782 //     B() {
2783 //       foo(this);
2784 //     }
2785 //   };
2786 //
2787 //   struct C : virtual B {
2788 //     virtual void f();
2789 //   };
2790 //
2791 // Record layouts for these classes are:
2792 //   struct A
2793 //   0 |   (A vftable pointer)
2794 //
2795 //   struct B
2796 //   0 |   (B vbtable pointer)
2797 //   4 |   (vtordisp for vbase A)
2798 //   8 |   struct A (virtual base)
2799 //   8 |     (A vftable pointer)
2800 //
2801 //   struct C
2802 //   0 |   (C vbtable pointer)
2803 //   4 |   (vtordisp for vbase A)
2804 //   8 |   struct A (virtual base)  // A precedes B!
2805 //   8 |     (A vftable pointer)
2806 //  12 |   struct B (virtual base)
2807 //  12 |     (B vbtable pointer)
2808 //
2809 // When one creates an object of type C, the C constructor:
2810 // - initializes all the vbptrs, then
2811 // - calls the A subobject constructor
2812 //   (initializes A's vfptr with an address of A vftable), then
2813 // - calls the B subobject constructor
2814 //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2815 //   that in turn calls foo(), then
2816 // - initializes A's vfptr with an address of C vftable and zeroes out the
2817 //   vtordisp
2818 //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2819 //   without vtordisp thunks?
2820 //   FIXME: how are vtordisp handled in the presence of nooverride/final?
2821 //
2822 // When foo() is called, an object with a layout of class C has a vftable
2823 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2824 // incorrect, unless an extra adjustment is done.  This adjustment is called
2825 // "vtordisp adjustment".  Vtordisp basically holds the difference between the
2826 // actual location of a vbase in the layout class and the location assumed by
2827 // the vftable of the class being constructed/destructed.  Vtordisp is only
2828 // needed if "this" escapes a
2829 // structor (or we can't prove otherwise).
2830 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2831 // estimation of a dynamic adjustment]
2832 //
2833 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2834 // so it just passes that pointer as "this" in a virtual call.
2835 // If there was no vtordisp, that would just dispatch to B::f().
2836 // However, B::f() assumes B+8 is passed as "this",
2837 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2838 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2839 // This vtordisp thunk subtracts the value of vtordisp
2840 // from the "this" argument (-12) before making a tailcall to B::f().
2841 //
2842 // Let's consider an even more complex example:
2843 //   struct D : virtual B, virtual C {
2844 //     D() {
2845 //       foo(this);
2846 //     }
2847 //   };
2848 //
2849 //   struct D
2850 //   0 |   (D vbtable pointer)
2851 //   4 |   (vtordisp for vbase A)
2852 //   8 |   struct A (virtual base)  // A precedes both B and C!
2853 //   8 |     (A vftable pointer)
2854 //  12 |   struct B (virtual base)  // B precedes C!
2855 //  12 |     (B vbtable pointer)
2856 //  16 |   struct C (virtual base)
2857 //  16 |     (C vbtable pointer)
2858 //
2859 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2860 // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2861 // passes along A, which is C-8.  The A vtordisp holds
2862 //   "D.vbptr[index_of_A] - offset_of_A_in_D"
2863 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2864 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2865 // and one extra static adjustment to calculate the expected value of C+8.
2866 void VFTableBuilder::CalculateVtordispAdjustment(
2867     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2868     ThisAdjustment &TA) {
2869   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2870       MostDerivedClassLayout.getVBaseOffsetsMap();
2871   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2872       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2873   assert(VBaseMapEntry != VBaseMap.end());
2874 
2875   // If there's no vtordisp or the final overrider is defined in the same vbase
2876   // as the initial declaration, we don't need any vtordisp adjustment.
2877   if (!VBaseMapEntry->second.hasVtorDisp() ||
2878       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2879     return;
2880 
2881   // OK, now we know we need to use a vtordisp thunk.
2882   // The implicit vtordisp field is located right before the vbase.
2883   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2884   TA.Virtual.Microsoft.VtordispOffset =
2885       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2886 
2887   // A simple vtordisp thunk will suffice if the final overrider is defined
2888   // in either the most derived class or its non-virtual base.
2889   if (Overrider.Method->getParent() == MostDerivedClass ||
2890       !Overrider.VirtualBase)
2891     return;
2892 
2893   // Otherwise, we need to do use the dynamic offset of the final overrider
2894   // in order to get "this" adjustment right.
2895   TA.Virtual.Microsoft.VBPtrOffset =
2896       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2897        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2898   TA.Virtual.Microsoft.VBOffsetOffset =
2899       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2900       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2901 
2902   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2903 }
2904 
2905 static void GroupNewVirtualOverloads(
2906     const CXXRecordDecl *RD,
2907     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2908   // Put the virtual methods into VirtualMethods in the proper order:
2909   // 1) Group overloads by declaration name. New groups are added to the
2910   //    vftable in the order of their first declarations in this class
2911   //    (including overrides, non-virtual methods and any other named decl that
2912   //    might be nested within the class).
2913   // 2) In each group, new overloads appear in the reverse order of declaration.
2914   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2915   SmallVector<MethodGroup, 10> Groups;
2916   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2917   VisitedGroupIndicesTy VisitedGroupIndices;
2918   for (const auto *D : RD->decls()) {
2919     const auto *ND = dyn_cast<NamedDecl>(D);
2920     if (!ND)
2921       continue;
2922     VisitedGroupIndicesTy::iterator J;
2923     bool Inserted;
2924     std::tie(J, Inserted) = VisitedGroupIndices.insert(
2925         std::make_pair(ND->getDeclName(), Groups.size()));
2926     if (Inserted)
2927       Groups.push_back(MethodGroup());
2928     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2929       if (MicrosoftVTableContext::hasVtableSlot(MD))
2930         Groups[J->second].push_back(MD->getCanonicalDecl());
2931   }
2932 
2933   for (const MethodGroup &Group : Groups)
2934     VirtualMethods.append(Group.rbegin(), Group.rend());
2935 }
2936 
2937 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2938   for (const auto &B : RD->bases()) {
2939     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2940       return true;
2941   }
2942   return false;
2943 }
2944 
2945 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2946                                 const CXXRecordDecl *LastVBase,
2947                                 BasesSetVectorTy &VisitedBases) {
2948   const CXXRecordDecl *RD = Base.getBase();
2949   if (!RD->isPolymorphic())
2950     return;
2951 
2952   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2953 
2954   // See if this class expands a vftable of the base we look at, which is either
2955   // the one defined by the vfptr base path or the primary base of the current
2956   // class.
2957   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2958   CharUnits NextBaseOffset;
2959   if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2960     NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2961     if (isDirectVBase(NextBase, RD)) {
2962       NextLastVBase = NextBase;
2963       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2964     } else {
2965       NextBaseOffset =
2966           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2967     }
2968   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2969     assert(!Layout.isPrimaryBaseVirtual() &&
2970            "No primary virtual bases in this ABI");
2971     NextBase = PrimaryBase;
2972     NextBaseOffset = Base.getBaseOffset();
2973   }
2974 
2975   if (NextBase) {
2976     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2977                NextLastVBase, VisitedBases);
2978     if (!VisitedBases.insert(NextBase))
2979       llvm_unreachable("Found a duplicate primary base!");
2980   }
2981 
2982   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2983   // Put virtual methods in the proper order.
2984   GroupNewVirtualOverloads(RD, VirtualMethods);
2985 
2986   // Now go through all virtual member functions and add them to the current
2987   // vftable. This is done by
2988   //  - replacing overridden methods in their existing slots, as long as they
2989   //    don't require return adjustment; calculating This adjustment if needed.
2990   //  - adding new slots for methods of the current base not present in any
2991   //    sub-bases;
2992   //  - adding new slots for methods that require Return adjustment.
2993   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2994   for (const CXXMethodDecl *MD : VirtualMethods) {
2995     FinalOverriders::OverriderInfo FinalOverrider =
2996         Overriders.getOverrider(MD, Base.getBaseOffset());
2997     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2998     const CXXMethodDecl *OverriddenMD =
2999         FindNearestOverriddenMethod(MD, VisitedBases);
3000 
3001     ThisAdjustment ThisAdjustmentOffset;
3002     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3003     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3004     ThisAdjustmentOffset.NonVirtual =
3005         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3006     if ((OverriddenMD || FinalOverriderMD != MD) &&
3007         WhichVFPtr.getVBaseWithVPtr())
3008       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3009                                   ThisAdjustmentOffset);
3010 
3011     unsigned VBIndex =
3012         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3013 
3014     if (OverriddenMD) {
3015       // If MD overrides anything in this vftable, we need to update the
3016       // entries.
3017       MethodInfoMapTy::iterator OverriddenMDIterator =
3018           MethodInfoMap.find(OverriddenMD);
3019 
3020       // If the overridden method went to a different vftable, skip it.
3021       if (OverriddenMDIterator == MethodInfoMap.end())
3022         continue;
3023 
3024       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3025 
3026       VBIndex = OverriddenMethodInfo.VBTableIndex;
3027 
3028       // Let's check if the overrider requires any return adjustments.
3029       // We must create a new slot if the MD's return type is not trivially
3030       // convertible to the OverriddenMD's one.
3031       // Once a chain of method overrides adds a return adjusting vftable slot,
3032       // all subsequent overrides will also use an extra method slot.
3033       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3034                                   Context, MD, OverriddenMD).isEmpty() ||
3035                              OverriddenMethodInfo.UsesExtraSlot;
3036 
3037       if (!ReturnAdjustingThunk) {
3038         // No return adjustment needed - just replace the overridden method info
3039         // with the current info.
3040         MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3041         MethodInfoMap.erase(OverriddenMDIterator);
3042 
3043         assert(!MethodInfoMap.count(MD) &&
3044                "Should not have method info for this method yet!");
3045         MethodInfoMap.insert(std::make_pair(MD, MI));
3046         continue;
3047       }
3048 
3049       // In case we need a return adjustment, we'll add a new slot for
3050       // the overrider. Mark the overridden method as shadowed by the new slot.
3051       OverriddenMethodInfo.Shadowed = true;
3052 
3053       // Force a special name mangling for a return-adjusting thunk
3054       // unless the method is the final overrider without this adjustment.
3055       ForceReturnAdjustmentMangling =
3056           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3057     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3058                MD->size_overridden_methods()) {
3059       // Skip methods that don't belong to the vftable of the current class,
3060       // e.g. each method that wasn't seen in any of the visited sub-bases
3061       // but overrides multiple methods of other sub-bases.
3062       continue;
3063     }
3064 
3065     // If we got here, MD is a method not seen in any of the sub-bases or
3066     // it requires return adjustment. Insert the method info for this method.
3067     MethodInfo MI(VBIndex,
3068                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
3069                   ReturnAdjustingThunk);
3070 
3071     assert(!MethodInfoMap.count(MD) &&
3072            "Should not have method info for this method yet!");
3073     MethodInfoMap.insert(std::make_pair(MD, MI));
3074 
3075     // Check if this overrider needs a return adjustment.
3076     // We don't want to do this for pure virtual member functions.
3077     BaseOffset ReturnAdjustmentOffset;
3078     ReturnAdjustment ReturnAdjustment;
3079     if (!FinalOverriderMD->isPureVirtual()) {
3080       ReturnAdjustmentOffset =
3081           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3082     }
3083     if (!ReturnAdjustmentOffset.isEmpty()) {
3084       ForceReturnAdjustmentMangling = true;
3085       ReturnAdjustment.NonVirtual =
3086           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3087       if (ReturnAdjustmentOffset.VirtualBase) {
3088         const ASTRecordLayout &DerivedLayout =
3089             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3090         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3091             DerivedLayout.getVBPtrOffset().getQuantity();
3092         ReturnAdjustment.Virtual.Microsoft.VBIndex =
3093             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3094                                     ReturnAdjustmentOffset.VirtualBase);
3095       }
3096     }
3097 
3098     AddMethod(FinalOverriderMD,
3099               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3100                         ForceReturnAdjustmentMangling ? MD : nullptr));
3101   }
3102 }
3103 
3104 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3105   for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3106     Out << "'";
3107     Elem->printQualifiedName(Out);
3108     Out << "' in ";
3109   }
3110 }
3111 
3112 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3113                                          bool ContinueFirstLine) {
3114   const ReturnAdjustment &R = TI.Return;
3115   bool Multiline = false;
3116   const char *LinePrefix = "\n       ";
3117   if (!R.isEmpty() || TI.Method) {
3118     if (!ContinueFirstLine)
3119       Out << LinePrefix;
3120     Out << "[return adjustment (to type '"
3121         << TI.Method->getReturnType().getCanonicalType() << "'): ";
3122     if (R.Virtual.Microsoft.VBPtrOffset)
3123       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3124     if (R.Virtual.Microsoft.VBIndex)
3125       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3126     Out << R.NonVirtual << " non-virtual]";
3127     Multiline = true;
3128   }
3129 
3130   const ThisAdjustment &T = TI.This;
3131   if (!T.isEmpty()) {
3132     if (Multiline || !ContinueFirstLine)
3133       Out << LinePrefix;
3134     Out << "[this adjustment: ";
3135     if (!TI.This.Virtual.isEmpty()) {
3136       assert(T.Virtual.Microsoft.VtordispOffset < 0);
3137       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3138       if (T.Virtual.Microsoft.VBPtrOffset) {
3139         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3140             << " to the left,";
3141         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3142         Out << LinePrefix << " vboffset at "
3143             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3144       }
3145     }
3146     Out << T.NonVirtual << " non-virtual]";
3147   }
3148 }
3149 
3150 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3151   Out << "VFTable for ";
3152   PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3153   Out << "'";
3154   MostDerivedClass->printQualifiedName(Out);
3155   Out << "' (" << Components.size()
3156       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3157 
3158   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3159     Out << llvm::format("%4d | ", I);
3160 
3161     const VTableComponent &Component = Components[I];
3162 
3163     // Dump the component.
3164     switch (Component.getKind()) {
3165     case VTableComponent::CK_RTTI:
3166       Component.getRTTIDecl()->printQualifiedName(Out);
3167       Out << " RTTI";
3168       break;
3169 
3170     case VTableComponent::CK_FunctionPointer: {
3171       const CXXMethodDecl *MD = Component.getFunctionDecl();
3172 
3173       // FIXME: Figure out how to print the real thunk type, since they can
3174       // differ in the return type.
3175       std::string Str = PredefinedExpr::ComputeName(
3176           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3177       Out << Str;
3178       if (MD->isPureVirtual())
3179         Out << " [pure]";
3180 
3181       if (MD->isDeleted())
3182         Out << " [deleted]";
3183 
3184       ThunkInfo Thunk = VTableThunks.lookup(I);
3185       if (!Thunk.isEmpty())
3186         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3187 
3188       break;
3189     }
3190 
3191     case VTableComponent::CK_DeletingDtorPointer: {
3192       const CXXDestructorDecl *DD = Component.getDestructorDecl();
3193 
3194       DD->printQualifiedName(Out);
3195       Out << "() [scalar deleting]";
3196 
3197       if (DD->isPureVirtual())
3198         Out << " [pure]";
3199 
3200       ThunkInfo Thunk = VTableThunks.lookup(I);
3201       if (!Thunk.isEmpty()) {
3202         assert(Thunk.Return.isEmpty() &&
3203                "No return adjustment needed for destructors!");
3204         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3205       }
3206 
3207       break;
3208     }
3209 
3210     default:
3211       DiagnosticsEngine &Diags = Context.getDiagnostics();
3212       unsigned DiagID = Diags.getCustomDiagID(
3213           DiagnosticsEngine::Error,
3214           "Unexpected vftable component type %0 for component number %1");
3215       Diags.Report(MostDerivedClass->getLocation(), DiagID)
3216           << I << Component.getKind();
3217     }
3218 
3219     Out << '\n';
3220   }
3221 
3222   Out << '\n';
3223 
3224   if (!Thunks.empty()) {
3225     // We store the method names in a map to get a stable order.
3226     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3227 
3228     for (const auto &I : Thunks) {
3229       const CXXMethodDecl *MD = I.first;
3230       std::string MethodName = PredefinedExpr::ComputeName(
3231           PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3232 
3233       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3234     }
3235 
3236     for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3237       const std::string &MethodName = MethodNameAndDecl.first;
3238       const CXXMethodDecl *MD = MethodNameAndDecl.second;
3239 
3240       ThunkInfoVectorTy ThunksVector = Thunks[MD];
3241       llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3242                                          const ThunkInfo &RHS) {
3243         // Keep different thunks with the same adjustments in the order they
3244         // were put into the vector.
3245         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3246       });
3247 
3248       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3249       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3250 
3251       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3252         const ThunkInfo &Thunk = ThunksVector[I];
3253 
3254         Out << llvm::format("%4d | ", I);
3255         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3256         Out << '\n';
3257       }
3258 
3259       Out << '\n';
3260     }
3261   }
3262 
3263   Out.flush();
3264 }
3265 
3266 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3267                           ArrayRef<const CXXRecordDecl *> B) {
3268   for (const CXXRecordDecl *Decl : B) {
3269     if (A.count(Decl))
3270       return true;
3271   }
3272   return false;
3273 }
3274 
3275 static bool rebucketPaths(VPtrInfoVector &Paths);
3276 
3277 /// Produces MSVC-compatible vbtable data.  The symbols produced by this
3278 /// algorithm match those produced by MSVC 2012 and newer, which is different
3279 /// from MSVC 2010.
3280 ///
3281 /// MSVC 2012 appears to minimize the vbtable names using the following
3282 /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3283 /// left to right, to find all of the subobjects which contain a vbptr field.
3284 /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3285 /// record with a vbptr creates an initially empty path.
3286 ///
3287 /// To combine paths from child nodes, the paths are compared to check for
3288 /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3289 /// components in the same order.  Each group of ambiguous paths is extended by
3290 /// appending the class of the base from which it came.  If the current class
3291 /// node produced an ambiguous path, its path is extended with the current class.
3292 /// After extending paths, MSVC again checks for ambiguity, and extends any
3293 /// ambiguous path which wasn't already extended.  Because each node yields an
3294 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3295 /// to produce an unambiguous set of paths.
3296 ///
3297 /// TODO: Presumably vftables use the same algorithm.
3298 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3299                                                 const CXXRecordDecl *RD,
3300                                                 VPtrInfoVector &Paths) {
3301   assert(Paths.empty());
3302   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3303 
3304   // Base case: this subobject has its own vptr.
3305   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3306     Paths.push_back(std::make_unique<VPtrInfo>(RD));
3307 
3308   // Recursive case: get all the vbtables from our bases and remove anything
3309   // that shares a virtual base.
3310   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3311   for (const auto &B : RD->bases()) {
3312     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3313     if (B.isVirtual() && VBasesSeen.count(Base))
3314       continue;
3315 
3316     if (!Base->isDynamicClass())
3317       continue;
3318 
3319     const VPtrInfoVector &BasePaths =
3320         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3321 
3322     for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3323       // Don't include the path if it goes through a virtual base that we've
3324       // already included.
3325       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3326         continue;
3327 
3328       // Copy the path and adjust it as necessary.
3329       auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3330 
3331       // We mangle Base into the path if the path would've been ambiguous and it
3332       // wasn't already extended with Base.
3333       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3334         P->NextBaseToMangle = Base;
3335 
3336       // Keep track of which vtable the derived class is going to extend with
3337       // new methods or bases.  We append to either the vftable of our primary
3338       // base, or the first non-virtual base that has a vbtable.
3339       if (P->ObjectWithVPtr == Base &&
3340           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3341                                : Layout.getPrimaryBase()))
3342         P->ObjectWithVPtr = RD;
3343 
3344       // Keep track of the full adjustment from the MDC to this vtable.  The
3345       // adjustment is captured by an optional vbase and a non-virtual offset.
3346       if (B.isVirtual())
3347         P->ContainingVBases.push_back(Base);
3348       else if (P->ContainingVBases.empty())
3349         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3350 
3351       // Update the full offset in the MDC.
3352       P->FullOffsetInMDC = P->NonVirtualOffset;
3353       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3354         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3355 
3356       Paths.push_back(std::move(P));
3357     }
3358 
3359     if (B.isVirtual())
3360       VBasesSeen.insert(Base);
3361 
3362     // After visiting any direct base, we've transitively visited all of its
3363     // morally virtual bases.
3364     for (const auto &VB : Base->vbases())
3365       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3366   }
3367 
3368   // Sort the paths into buckets, and if any of them are ambiguous, extend all
3369   // paths in ambiguous buckets.
3370   bool Changed = true;
3371   while (Changed)
3372     Changed = rebucketPaths(Paths);
3373 }
3374 
3375 static bool extendPath(VPtrInfo &P) {
3376   if (P.NextBaseToMangle) {
3377     P.MangledPath.push_back(P.NextBaseToMangle);
3378     P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3379     return true;
3380   }
3381   return false;
3382 }
3383 
3384 static bool rebucketPaths(VPtrInfoVector &Paths) {
3385   // What we're essentially doing here is bucketing together ambiguous paths.
3386   // Any bucket with more than one path in it gets extended by NextBase, which
3387   // is usually the direct base of the inherited the vbptr.  This code uses a
3388   // sorted vector to implement a multiset to form the buckets.  Note that the
3389   // ordering is based on pointers, but it doesn't change our output order.  The
3390   // current algorithm is designed to match MSVC 2012's names.
3391   llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3392       llvm::make_pointee_range(Paths));
3393   llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3394     return LHS.MangledPath < RHS.MangledPath;
3395   });
3396   bool Changed = false;
3397   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3398     // Scan forward to find the end of the bucket.
3399     size_t BucketStart = I;
3400     do {
3401       ++I;
3402     } while (I != E &&
3403              PathsSorted[BucketStart].get().MangledPath ==
3404                  PathsSorted[I].get().MangledPath);
3405 
3406     // If this bucket has multiple paths, extend them all.
3407     if (I - BucketStart > 1) {
3408       for (size_t II = BucketStart; II != I; ++II)
3409         Changed |= extendPath(PathsSorted[II]);
3410       assert(Changed && "no paths were extended to fix ambiguity");
3411     }
3412   }
3413   return Changed;
3414 }
3415 
3416 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3417 
3418 namespace {
3419 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3420                         llvm::DenseSet<BaseSubobject>> FullPathTy;
3421 }
3422 
3423 // This recursive function finds all paths from a subobject centered at
3424 // (RD, Offset) to the subobject located at IntroducingObject.
3425 static void findPathsToSubobject(ASTContext &Context,
3426                                  const ASTRecordLayout &MostDerivedLayout,
3427                                  const CXXRecordDecl *RD, CharUnits Offset,
3428                                  BaseSubobject IntroducingObject,
3429                                  FullPathTy &FullPath,
3430                                  std::list<FullPathTy> &Paths) {
3431   if (BaseSubobject(RD, Offset) == IntroducingObject) {
3432     Paths.push_back(FullPath);
3433     return;
3434   }
3435 
3436   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3437 
3438   for (const CXXBaseSpecifier &BS : RD->bases()) {
3439     const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3440     CharUnits NewOffset = BS.isVirtual()
3441                               ? MostDerivedLayout.getVBaseClassOffset(Base)
3442                               : Offset + Layout.getBaseClassOffset(Base);
3443     FullPath.insert(BaseSubobject(Base, NewOffset));
3444     findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3445                          IntroducingObject, FullPath, Paths);
3446     FullPath.pop_back();
3447   }
3448 }
3449 
3450 // Return the paths which are not subsets of other paths.
3451 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3452   FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3453     for (const FullPathTy &OtherPath : FullPaths) {
3454       if (&SpecificPath == &OtherPath)
3455         continue;
3456       if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3457             return OtherPath.contains(BSO);
3458           })) {
3459         return true;
3460       }
3461     }
3462     return false;
3463   });
3464 }
3465 
3466 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3467                                      const CXXRecordDecl *RD,
3468                                      const FullPathTy &FullPath) {
3469   const ASTRecordLayout &MostDerivedLayout =
3470       Context.getASTRecordLayout(RD);
3471   CharUnits Offset = CharUnits::fromQuantity(-1);
3472   for (const BaseSubobject &BSO : FullPath) {
3473     const CXXRecordDecl *Base = BSO.getBase();
3474     // The first entry in the path is always the most derived record, skip it.
3475     if (Base == RD) {
3476       assert(Offset.getQuantity() == -1);
3477       Offset = CharUnits::Zero();
3478       continue;
3479     }
3480     assert(Offset.getQuantity() != -1);
3481     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3482     // While we know which base has to be traversed, we don't know if that base
3483     // was a virtual base.
3484     const CXXBaseSpecifier *BaseBS = std::find_if(
3485         RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3486           return BS.getType()->getAsCXXRecordDecl() == Base;
3487         });
3488     Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3489                                  : Offset + Layout.getBaseClassOffset(Base);
3490     RD = Base;
3491   }
3492   return Offset;
3493 }
3494 
3495 // We want to select the path which introduces the most covariant overrides.  If
3496 // two paths introduce overrides which the other path doesn't contain, issue a
3497 // diagnostic.
3498 static const FullPathTy *selectBestPath(ASTContext &Context,
3499                                         const CXXRecordDecl *RD,
3500                                         const VPtrInfo &Info,
3501                                         std::list<FullPathTy> &FullPaths) {
3502   // Handle some easy cases first.
3503   if (FullPaths.empty())
3504     return nullptr;
3505   if (FullPaths.size() == 1)
3506     return &FullPaths.front();
3507 
3508   const FullPathTy *BestPath = nullptr;
3509   typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3510   OverriderSetTy LastOverrides;
3511   for (const FullPathTy &SpecificPath : FullPaths) {
3512     assert(!SpecificPath.empty());
3513     OverriderSetTy CurrentOverrides;
3514     const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3515     // Find the distance from the start of the path to the subobject with the
3516     // VPtr.
3517     CharUnits BaseOffset =
3518         getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3519     FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3520     for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3521       if (!MicrosoftVTableContext::hasVtableSlot(MD))
3522         continue;
3523       FinalOverriders::OverriderInfo OI =
3524           Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3525       const CXXMethodDecl *OverridingMethod = OI.Method;
3526       // Only overriders which have a return adjustment introduce problematic
3527       // thunks.
3528       if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3529               .isEmpty())
3530         continue;
3531       // It's possible that the overrider isn't in this path.  If so, skip it
3532       // because this path didn't introduce it.
3533       const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3534       if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3535             return BSO.getBase() == OverridingParent;
3536           }))
3537         continue;
3538       CurrentOverrides.insert(OverridingMethod);
3539     }
3540     OverriderSetTy NewOverrides =
3541         llvm::set_difference(CurrentOverrides, LastOverrides);
3542     if (NewOverrides.empty())
3543       continue;
3544     OverriderSetTy MissingOverrides =
3545         llvm::set_difference(LastOverrides, CurrentOverrides);
3546     if (MissingOverrides.empty()) {
3547       // This path is a strict improvement over the last path, let's use it.
3548       BestPath = &SpecificPath;
3549       std::swap(CurrentOverrides, LastOverrides);
3550     } else {
3551       // This path introduces an overrider with a conflicting covariant thunk.
3552       DiagnosticsEngine &Diags = Context.getDiagnostics();
3553       const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3554       const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3555       Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3556           << RD;
3557       Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3558           << CovariantMD;
3559       Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3560           << ConflictMD;
3561     }
3562   }
3563   // Go with the path that introduced the most covariant overrides.  If there is
3564   // no such path, pick the first path.
3565   return BestPath ? BestPath : &FullPaths.front();
3566 }
3567 
3568 static void computeFullPathsForVFTables(ASTContext &Context,
3569                                         const CXXRecordDecl *RD,
3570                                         VPtrInfoVector &Paths) {
3571   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3572   FullPathTy FullPath;
3573   std::list<FullPathTy> FullPaths;
3574   for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3575     findPathsToSubobject(
3576         Context, MostDerivedLayout, RD, CharUnits::Zero(),
3577         BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3578         FullPaths);
3579     FullPath.clear();
3580     removeRedundantPaths(FullPaths);
3581     Info->PathToIntroducingObject.clear();
3582     if (const FullPathTy *BestPath =
3583             selectBestPath(Context, RD, *Info, FullPaths))
3584       for (const BaseSubobject &BSO : *BestPath)
3585         Info->PathToIntroducingObject.push_back(BSO.getBase());
3586     FullPaths.clear();
3587   }
3588 }
3589 
3590 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3591                                 const MethodVFTableLocation &LHS,
3592                                 const MethodVFTableLocation &RHS) {
3593   CharUnits L = LHS.VFPtrOffset;
3594   CharUnits R = RHS.VFPtrOffset;
3595   if (LHS.VBase)
3596     L += Layout.getVBaseClassOffset(LHS.VBase);
3597   if (RHS.VBase)
3598     R += Layout.getVBaseClassOffset(RHS.VBase);
3599   return L < R;
3600 }
3601 
3602 void MicrosoftVTableContext::computeVTableRelatedInformation(
3603     const CXXRecordDecl *RD) {
3604   assert(RD->isDynamicClass());
3605 
3606   // Check if we've computed this information before.
3607   if (VFPtrLocations.count(RD))
3608     return;
3609 
3610   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3611 
3612   {
3613     auto VFPtrs = std::make_unique<VPtrInfoVector>();
3614     computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3615     computeFullPathsForVFTables(Context, RD, *VFPtrs);
3616     VFPtrLocations[RD] = std::move(VFPtrs);
3617   }
3618 
3619   MethodVFTableLocationsTy NewMethodLocations;
3620   for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3621     VFTableBuilder Builder(*this, RD, *VFPtr);
3622 
3623     VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3624     assert(VFTableLayouts.count(id) == 0);
3625     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3626         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3627     VFTableLayouts[id] = std::make_unique<VTableLayout>(
3628         ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3629         EmptyAddressPointsMap);
3630     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3631 
3632     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3633     for (const auto &Loc : Builder.vtable_locations()) {
3634       auto Insert = NewMethodLocations.insert(Loc);
3635       if (!Insert.second) {
3636         const MethodVFTableLocation &NewLoc = Loc.second;
3637         MethodVFTableLocation &OldLoc = Insert.first->second;
3638         if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3639           OldLoc = NewLoc;
3640       }
3641     }
3642   }
3643 
3644   MethodVFTableLocations.insert(NewMethodLocations.begin(),
3645                                 NewMethodLocations.end());
3646   if (Context.getLangOpts().DumpVTableLayouts)
3647     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3648 }
3649 
3650 void MicrosoftVTableContext::dumpMethodLocations(
3651     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3652     raw_ostream &Out) {
3653   // Compute the vtable indices for all the member functions.
3654   // Store them in a map keyed by the location so we'll get a sorted table.
3655   std::map<MethodVFTableLocation, std::string> IndicesMap;
3656   bool HasNonzeroOffset = false;
3657 
3658   for (const auto &I : NewMethods) {
3659     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3660     assert(hasVtableSlot(MD));
3661 
3662     std::string MethodName = PredefinedExpr::ComputeName(
3663         PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3664 
3665     if (isa<CXXDestructorDecl>(MD)) {
3666       IndicesMap[I.second] = MethodName + " [scalar deleting]";
3667     } else {
3668       IndicesMap[I.second] = MethodName;
3669     }
3670 
3671     if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3672       HasNonzeroOffset = true;
3673   }
3674 
3675   // Print the vtable indices for all the member functions.
3676   if (!IndicesMap.empty()) {
3677     Out << "VFTable indices for ";
3678     Out << "'";
3679     RD->printQualifiedName(Out);
3680     Out << "' (" << IndicesMap.size()
3681         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3682 
3683     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3684     uint64_t LastVBIndex = 0;
3685     for (const auto &I : IndicesMap) {
3686       CharUnits VFPtrOffset = I.first.VFPtrOffset;
3687       uint64_t VBIndex = I.first.VBTableIndex;
3688       if (HasNonzeroOffset &&
3689           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3690         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3691         Out << " -- accessible via ";
3692         if (VBIndex)
3693           Out << "vbtable index " << VBIndex << ", ";
3694         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3695         LastVFPtrOffset = VFPtrOffset;
3696         LastVBIndex = VBIndex;
3697       }
3698 
3699       uint64_t VTableIndex = I.first.Index;
3700       const std::string &MethodName = I.second;
3701       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3702     }
3703     Out << '\n';
3704   }
3705 
3706   Out.flush();
3707 }
3708 
3709 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3710     const CXXRecordDecl *RD) {
3711   VirtualBaseInfo *VBI;
3712 
3713   {
3714     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3715     // as it may be modified and rehashed under us.
3716     std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3717     if (Entry)
3718       return *Entry;
3719     Entry = std::make_unique<VirtualBaseInfo>();
3720     VBI = Entry.get();
3721   }
3722 
3723   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3724 
3725   // First, see if the Derived class shared the vbptr with a non-virtual base.
3726   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3727   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3728     // If the Derived class shares the vbptr with a non-virtual base, the shared
3729     // virtual bases come first so that the layout is the same.
3730     const VirtualBaseInfo &BaseInfo =
3731         computeVBTableRelatedInformation(VBPtrBase);
3732     VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3733                                BaseInfo.VBTableIndices.end());
3734   }
3735 
3736   // New vbases are added to the end of the vbtable.
3737   // Skip the self entry and vbases visited in the non-virtual base, if any.
3738   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3739   for (const auto &VB : RD->vbases()) {
3740     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3741     if (!VBI->VBTableIndices.count(CurVBase))
3742       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3743   }
3744 
3745   return *VBI;
3746 }
3747 
3748 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3749                                                  const CXXRecordDecl *VBase) {
3750   const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3751   assert(VBInfo.VBTableIndices.count(VBase));
3752   return VBInfo.VBTableIndices.find(VBase)->second;
3753 }
3754 
3755 const VPtrInfoVector &
3756 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3757   return computeVBTableRelatedInformation(RD).VBPtrPaths;
3758 }
3759 
3760 const VPtrInfoVector &
3761 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3762   computeVTableRelatedInformation(RD);
3763 
3764   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3765   return *VFPtrLocations[RD];
3766 }
3767 
3768 const VTableLayout &
3769 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3770                                          CharUnits VFPtrOffset) {
3771   computeVTableRelatedInformation(RD);
3772 
3773   VFTableIdTy id(RD, VFPtrOffset);
3774   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3775   return *VFTableLayouts[id];
3776 }
3777 
3778 MethodVFTableLocation
3779 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3780   assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3781          "Only use this method for virtual methods or dtors");
3782   if (isa<CXXDestructorDecl>(GD.getDecl()))
3783     assert(GD.getDtorType() == Dtor_Deleting);
3784 
3785   GD = GD.getCanonicalDecl();
3786 
3787   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3788   if (I != MethodVFTableLocations.end())
3789     return I->second;
3790 
3791   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3792 
3793   computeVTableRelatedInformation(RD);
3794 
3795   I = MethodVFTableLocations.find(GD);
3796   assert(I != MethodVFTableLocations.end() && "Did not find index!");
3797   return I->second;
3798 }
3799