1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with generation of the layout of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/VTableBuilder.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <algorithm> 24 #include <cstdio> 25 26 using namespace clang; 27 28 #define DUMP_OVERRIDERS 0 29 30 namespace { 31 32 /// BaseOffset - Represents an offset from a derived class to a direct or 33 /// indirect base class. 34 struct BaseOffset { 35 /// DerivedClass - The derived class. 36 const CXXRecordDecl *DerivedClass; 37 38 /// VirtualBase - If the path from the derived class to the base class 39 /// involves virtual base classes, this holds the declaration of the last 40 /// virtual base in this path (i.e. closest to the base class). 41 const CXXRecordDecl *VirtualBase; 42 43 /// NonVirtualOffset - The offset from the derived class to the base class. 44 /// (Or the offset from the virtual base class to the base class, if the 45 /// path from the derived class to the base class involves a virtual base 46 /// class. 47 CharUnits NonVirtualOffset; 48 49 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), 50 NonVirtualOffset(CharUnits::Zero()) { } 51 BaseOffset(const CXXRecordDecl *DerivedClass, 52 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) 53 : DerivedClass(DerivedClass), VirtualBase(VirtualBase), 54 NonVirtualOffset(NonVirtualOffset) { } 55 56 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } 57 }; 58 59 /// FinalOverriders - Contains the final overrider member functions for all 60 /// member functions in the base subobjects of a class. 61 class FinalOverriders { 62 public: 63 /// OverriderInfo - Information about a final overrider. 64 struct OverriderInfo { 65 /// Method - The method decl of the overrider. 66 const CXXMethodDecl *Method; 67 68 /// VirtualBase - The virtual base class subobject of this overrider. 69 /// Note that this records the closest derived virtual base class subobject. 70 const CXXRecordDecl *VirtualBase; 71 72 /// Offset - the base offset of the overrider's parent in the layout class. 73 CharUnits Offset; 74 75 OverriderInfo() : Method(nullptr), VirtualBase(nullptr), 76 Offset(CharUnits::Zero()) { } 77 }; 78 79 private: 80 /// MostDerivedClass - The most derived class for which the final overriders 81 /// are stored. 82 const CXXRecordDecl *MostDerivedClass; 83 84 /// MostDerivedClassOffset - If we're building final overriders for a 85 /// construction vtable, this holds the offset from the layout class to the 86 /// most derived class. 87 const CharUnits MostDerivedClassOffset; 88 89 /// LayoutClass - The class we're using for layout information. Will be 90 /// different than the most derived class if the final overriders are for a 91 /// construction vtable. 92 const CXXRecordDecl *LayoutClass; 93 94 ASTContext &Context; 95 96 /// MostDerivedClassLayout - the AST record layout of the most derived class. 97 const ASTRecordLayout &MostDerivedClassLayout; 98 99 /// MethodBaseOffsetPairTy - Uniquely identifies a member function 100 /// in a base subobject. 101 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; 102 103 typedef llvm::DenseMap<MethodBaseOffsetPairTy, 104 OverriderInfo> OverridersMapTy; 105 106 /// OverridersMap - The final overriders for all virtual member functions of 107 /// all the base subobjects of the most derived class. 108 OverridersMapTy OverridersMap; 109 110 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented 111 /// as a record decl and a subobject number) and its offsets in the most 112 /// derived class as well as the layout class. 113 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, 114 CharUnits> SubobjectOffsetMapTy; 115 116 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; 117 118 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the 119 /// given base. 120 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 121 CharUnits OffsetInLayoutClass, 122 SubobjectOffsetMapTy &SubobjectOffsets, 123 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 124 SubobjectCountMapTy &SubobjectCounts); 125 126 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 127 128 /// dump - dump the final overriders for a base subobject, and all its direct 129 /// and indirect base subobjects. 130 void dump(raw_ostream &Out, BaseSubobject Base, 131 VisitedVirtualBasesSetTy& VisitedVirtualBases); 132 133 public: 134 FinalOverriders(const CXXRecordDecl *MostDerivedClass, 135 CharUnits MostDerivedClassOffset, 136 const CXXRecordDecl *LayoutClass); 137 138 /// getOverrider - Get the final overrider for the given method declaration in 139 /// the subobject with the given base offset. 140 OverriderInfo getOverrider(const CXXMethodDecl *MD, 141 CharUnits BaseOffset) const { 142 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && 143 "Did not find overrider!"); 144 145 return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); 146 } 147 148 /// dump - dump the final overriders. 149 void dump() { 150 VisitedVirtualBasesSetTy VisitedVirtualBases; 151 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), 152 VisitedVirtualBases); 153 } 154 155 }; 156 157 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, 158 CharUnits MostDerivedClassOffset, 159 const CXXRecordDecl *LayoutClass) 160 : MostDerivedClass(MostDerivedClass), 161 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), 162 Context(MostDerivedClass->getASTContext()), 163 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { 164 165 // Compute base offsets. 166 SubobjectOffsetMapTy SubobjectOffsets; 167 SubobjectOffsetMapTy SubobjectLayoutClassOffsets; 168 SubobjectCountMapTy SubobjectCounts; 169 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 170 /*IsVirtual=*/false, 171 MostDerivedClassOffset, 172 SubobjectOffsets, SubobjectLayoutClassOffsets, 173 SubobjectCounts); 174 175 // Get the final overriders. 176 CXXFinalOverriderMap FinalOverriders; 177 MostDerivedClass->getFinalOverriders(FinalOverriders); 178 179 for (const auto &Overrider : FinalOverriders) { 180 const CXXMethodDecl *MD = Overrider.first; 181 const OverridingMethods &Methods = Overrider.second; 182 183 for (const auto &M : Methods) { 184 unsigned SubobjectNumber = M.first; 185 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), 186 SubobjectNumber)) && 187 "Did not find subobject offset!"); 188 189 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), 190 SubobjectNumber)]; 191 192 assert(M.second.size() == 1 && "Final overrider is not unique!"); 193 const UniqueVirtualMethod &Method = M.second.front(); 194 195 const CXXRecordDecl *OverriderRD = Method.Method->getParent(); 196 assert(SubobjectLayoutClassOffsets.count( 197 std::make_pair(OverriderRD, Method.Subobject)) 198 && "Did not find subobject offset!"); 199 CharUnits OverriderOffset = 200 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, 201 Method.Subobject)]; 202 203 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; 204 assert(!Overrider.Method && "Overrider should not exist yet!"); 205 206 Overrider.Offset = OverriderOffset; 207 Overrider.Method = Method.Method; 208 Overrider.VirtualBase = Method.InVirtualSubobject; 209 } 210 } 211 212 #if DUMP_OVERRIDERS 213 // And dump them (for now). 214 dump(); 215 #endif 216 } 217 218 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 219 const CXXRecordDecl *DerivedRD, 220 const CXXBasePath &Path) { 221 CharUnits NonVirtualOffset = CharUnits::Zero(); 222 223 unsigned NonVirtualStart = 0; 224 const CXXRecordDecl *VirtualBase = nullptr; 225 226 // First, look for the virtual base class. 227 for (int I = Path.size(), E = 0; I != E; --I) { 228 const CXXBasePathElement &Element = Path[I - 1]; 229 230 if (Element.Base->isVirtual()) { 231 NonVirtualStart = I; 232 QualType VBaseType = Element.Base->getType(); 233 VirtualBase = VBaseType->getAsCXXRecordDecl(); 234 break; 235 } 236 } 237 238 // Now compute the non-virtual offset. 239 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { 240 const CXXBasePathElement &Element = Path[I]; 241 242 // Check the base class offset. 243 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); 244 245 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); 246 247 NonVirtualOffset += Layout.getBaseClassOffset(Base); 248 } 249 250 // FIXME: This should probably use CharUnits or something. Maybe we should 251 // even change the base offsets in ASTRecordLayout to be specified in 252 // CharUnits. 253 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); 254 255 } 256 257 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 258 const CXXRecordDecl *BaseRD, 259 const CXXRecordDecl *DerivedRD) { 260 CXXBasePaths Paths(/*FindAmbiguities=*/false, 261 /*RecordPaths=*/true, /*DetectVirtual=*/false); 262 263 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 264 llvm_unreachable("Class must be derived from the passed in base class!"); 265 266 return ComputeBaseOffset(Context, DerivedRD, Paths.front()); 267 } 268 269 static BaseOffset 270 ComputeReturnAdjustmentBaseOffset(ASTContext &Context, 271 const CXXMethodDecl *DerivedMD, 272 const CXXMethodDecl *BaseMD) { 273 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); 274 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); 275 276 // Canonicalize the return types. 277 CanQualType CanDerivedReturnType = 278 Context.getCanonicalType(DerivedFT->getReturnType()); 279 CanQualType CanBaseReturnType = 280 Context.getCanonicalType(BaseFT->getReturnType()); 281 282 assert(CanDerivedReturnType->getTypeClass() == 283 CanBaseReturnType->getTypeClass() && 284 "Types must have same type class!"); 285 286 if (CanDerivedReturnType == CanBaseReturnType) { 287 // No adjustment needed. 288 return BaseOffset(); 289 } 290 291 if (isa<ReferenceType>(CanDerivedReturnType)) { 292 CanDerivedReturnType = 293 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); 294 CanBaseReturnType = 295 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); 296 } else if (isa<PointerType>(CanDerivedReturnType)) { 297 CanDerivedReturnType = 298 CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); 299 CanBaseReturnType = 300 CanBaseReturnType->getAs<PointerType>()->getPointeeType(); 301 } else { 302 llvm_unreachable("Unexpected return type!"); 303 } 304 305 // We need to compare unqualified types here; consider 306 // const T *Base::foo(); 307 // T *Derived::foo(); 308 if (CanDerivedReturnType.getUnqualifiedType() == 309 CanBaseReturnType.getUnqualifiedType()) { 310 // No adjustment needed. 311 return BaseOffset(); 312 } 313 314 const CXXRecordDecl *DerivedRD = 315 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); 316 317 const CXXRecordDecl *BaseRD = 318 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); 319 320 return ComputeBaseOffset(Context, BaseRD, DerivedRD); 321 } 322 323 void 324 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 325 CharUnits OffsetInLayoutClass, 326 SubobjectOffsetMapTy &SubobjectOffsets, 327 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 328 SubobjectCountMapTy &SubobjectCounts) { 329 const CXXRecordDecl *RD = Base.getBase(); 330 331 unsigned SubobjectNumber = 0; 332 if (!IsVirtual) 333 SubobjectNumber = ++SubobjectCounts[RD]; 334 335 // Set up the subobject to offset mapping. 336 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) 337 && "Subobject offset already exists!"); 338 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) 339 && "Subobject offset already exists!"); 340 341 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); 342 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = 343 OffsetInLayoutClass; 344 345 // Traverse our bases. 346 for (const auto &B : RD->bases()) { 347 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 348 349 CharUnits BaseOffset; 350 CharUnits BaseOffsetInLayoutClass; 351 if (B.isVirtual()) { 352 // Check if we've visited this virtual base before. 353 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) 354 continue; 355 356 const ASTRecordLayout &LayoutClassLayout = 357 Context.getASTRecordLayout(LayoutClass); 358 359 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 360 BaseOffsetInLayoutClass = 361 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 362 } else { 363 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 364 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); 365 366 BaseOffset = Base.getBaseOffset() + Offset; 367 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; 368 } 369 370 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), 371 B.isVirtual(), BaseOffsetInLayoutClass, 372 SubobjectOffsets, SubobjectLayoutClassOffsets, 373 SubobjectCounts); 374 } 375 } 376 377 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, 378 VisitedVirtualBasesSetTy &VisitedVirtualBases) { 379 const CXXRecordDecl *RD = Base.getBase(); 380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 381 382 for (const auto &B : RD->bases()) { 383 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 384 385 // Ignore bases that don't have any virtual member functions. 386 if (!BaseDecl->isPolymorphic()) 387 continue; 388 389 CharUnits BaseOffset; 390 if (B.isVirtual()) { 391 if (!VisitedVirtualBases.insert(BaseDecl).second) { 392 // We've visited this base before. 393 continue; 394 } 395 396 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 397 } else { 398 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); 399 } 400 401 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); 402 } 403 404 Out << "Final overriders for ("; 405 RD->printQualifiedName(Out); 406 Out << ", "; 407 Out << Base.getBaseOffset().getQuantity() << ")\n"; 408 409 // Now dump the overriders for this base subobject. 410 for (const auto *MD : RD->methods()) { 411 if (!MD->isVirtual()) 412 continue; 413 MD = MD->getCanonicalDecl(); 414 415 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); 416 417 Out << " "; 418 MD->printQualifiedName(Out); 419 Out << " - ("; 420 Overrider.Method->printQualifiedName(Out); 421 Out << ", " << Overrider.Offset.getQuantity() << ')'; 422 423 BaseOffset Offset; 424 if (!Overrider.Method->isPure()) 425 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 426 427 if (!Offset.isEmpty()) { 428 Out << " [ret-adj: "; 429 if (Offset.VirtualBase) { 430 Offset.VirtualBase->printQualifiedName(Out); 431 Out << " vbase, "; 432 } 433 434 Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; 435 } 436 437 Out << "\n"; 438 } 439 } 440 441 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. 442 struct VCallOffsetMap { 443 444 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; 445 446 /// Offsets - Keeps track of methods and their offsets. 447 // FIXME: This should be a real map and not a vector. 448 SmallVector<MethodAndOffsetPairTy, 16> Offsets; 449 450 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions 451 /// can share the same vcall offset. 452 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 453 const CXXMethodDecl *RHS); 454 455 public: 456 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the 457 /// add was successful, or false if there was already a member function with 458 /// the same signature in the map. 459 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); 460 461 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the 462 /// vtable address point) for the given virtual member function. 463 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); 464 465 // empty - Return whether the offset map is empty or not. 466 bool empty() const { return Offsets.empty(); } 467 }; 468 469 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, 470 const CXXMethodDecl *RHS) { 471 const FunctionProtoType *LT = 472 cast<FunctionProtoType>(LHS->getType().getCanonicalType()); 473 const FunctionProtoType *RT = 474 cast<FunctionProtoType>(RHS->getType().getCanonicalType()); 475 476 // Fast-path matches in the canonical types. 477 if (LT == RT) return true; 478 479 // Force the signatures to match. We can't rely on the overrides 480 // list here because there isn't necessarily an inheritance 481 // relationship between the two methods. 482 if (LT->getMethodQuals() != RT->getMethodQuals()) 483 return false; 484 return LT->getParamTypes() == RT->getParamTypes(); 485 } 486 487 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 488 const CXXMethodDecl *RHS) { 489 assert(LHS->isVirtual() && "LHS must be virtual!"); 490 assert(RHS->isVirtual() && "LHS must be virtual!"); 491 492 // A destructor can share a vcall offset with another destructor. 493 if (isa<CXXDestructorDecl>(LHS)) 494 return isa<CXXDestructorDecl>(RHS); 495 496 // FIXME: We need to check more things here. 497 498 // The methods must have the same name. 499 DeclarationName LHSName = LHS->getDeclName(); 500 DeclarationName RHSName = RHS->getDeclName(); 501 if (LHSName != RHSName) 502 return false; 503 504 // And the same signatures. 505 return HasSameVirtualSignature(LHS, RHS); 506 } 507 508 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, 509 CharUnits OffsetOffset) { 510 // Check if we can reuse an offset. 511 for (const auto &OffsetPair : Offsets) { 512 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 513 return false; 514 } 515 516 // Add the offset. 517 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); 518 return true; 519 } 520 521 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { 522 // Look for an offset. 523 for (const auto &OffsetPair : Offsets) { 524 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 525 return OffsetPair.second; 526 } 527 528 llvm_unreachable("Should always find a vcall offset offset!"); 529 } 530 531 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. 532 class VCallAndVBaseOffsetBuilder { 533 public: 534 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 535 VBaseOffsetOffsetsMapTy; 536 537 private: 538 /// MostDerivedClass - The most derived class for which we're building vcall 539 /// and vbase offsets. 540 const CXXRecordDecl *MostDerivedClass; 541 542 /// LayoutClass - The class we're using for layout information. Will be 543 /// different than the most derived class if we're building a construction 544 /// vtable. 545 const CXXRecordDecl *LayoutClass; 546 547 /// Context - The ASTContext which we will use for layout information. 548 ASTContext &Context; 549 550 /// Components - vcall and vbase offset components 551 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; 552 VTableComponentVectorTy Components; 553 554 /// VisitedVirtualBases - Visited virtual bases. 555 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 556 557 /// VCallOffsets - Keeps track of vcall offsets. 558 VCallOffsetMap VCallOffsets; 559 560 561 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, 562 /// relative to the address point. 563 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 564 565 /// FinalOverriders - The final overriders of the most derived class. 566 /// (Can be null when we're not building a vtable of the most derived class). 567 const FinalOverriders *Overriders; 568 569 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the 570 /// given base subobject. 571 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, 572 CharUnits RealBaseOffset); 573 574 /// AddVCallOffsets - Add vcall offsets for the given base subobject. 575 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); 576 577 /// AddVBaseOffsets - Add vbase offsets for the given class. 578 void AddVBaseOffsets(const CXXRecordDecl *Base, 579 CharUnits OffsetInLayoutClass); 580 581 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in 582 /// chars, relative to the vtable address point. 583 CharUnits getCurrentOffsetOffset() const; 584 585 public: 586 VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass, 587 const CXXRecordDecl *LayoutClass, 588 const FinalOverriders *Overriders, 589 BaseSubobject Base, bool BaseIsVirtual, 590 CharUnits OffsetInLayoutClass) 591 : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass), 592 Context(MostDerivedClass->getASTContext()), Overriders(Overriders) { 593 594 // Add vcall and vbase offsets. 595 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); 596 } 597 598 /// Methods for iterating over the components. 599 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; 600 const_iterator components_begin() const { return Components.rbegin(); } 601 const_iterator components_end() const { return Components.rend(); } 602 603 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } 604 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 605 return VBaseOffsetOffsets; 606 } 607 }; 608 609 void 610 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, 611 bool BaseIsVirtual, 612 CharUnits RealBaseOffset) { 613 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); 614 615 // Itanium C++ ABI 2.5.2: 616 // ..in classes sharing a virtual table with a primary base class, the vcall 617 // and vbase offsets added by the derived class all come before the vcall 618 // and vbase offsets required by the base class, so that the latter may be 619 // laid out as required by the base class without regard to additions from 620 // the derived class(es). 621 622 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll 623 // emit them for the primary base first). 624 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 625 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 626 627 CharUnits PrimaryBaseOffset; 628 629 // Get the base offset of the primary base. 630 if (PrimaryBaseIsVirtual) { 631 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 632 "Primary vbase should have a zero offset!"); 633 634 const ASTRecordLayout &MostDerivedClassLayout = 635 Context.getASTRecordLayout(MostDerivedClass); 636 637 PrimaryBaseOffset = 638 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 639 } else { 640 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 641 "Primary base should have a zero offset!"); 642 643 PrimaryBaseOffset = Base.getBaseOffset(); 644 } 645 646 AddVCallAndVBaseOffsets( 647 BaseSubobject(PrimaryBase,PrimaryBaseOffset), 648 PrimaryBaseIsVirtual, RealBaseOffset); 649 } 650 651 AddVBaseOffsets(Base.getBase(), RealBaseOffset); 652 653 // We only want to add vcall offsets for virtual bases. 654 if (BaseIsVirtual) 655 AddVCallOffsets(Base, RealBaseOffset); 656 } 657 658 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { 659 // OffsetIndex is the index of this vcall or vbase offset, relative to the 660 // vtable address point. (We subtract 3 to account for the information just 661 // above the address point, the RTTI info, the offset to top, and the 662 // vcall offset itself). 663 int64_t OffsetIndex = -(int64_t)(3 + Components.size()); 664 665 CharUnits PointerWidth = 666 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 667 CharUnits OffsetOffset = PointerWidth * OffsetIndex; 668 return OffsetOffset; 669 } 670 671 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, 672 CharUnits VBaseOffset) { 673 const CXXRecordDecl *RD = Base.getBase(); 674 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 675 676 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 677 678 // Handle the primary base first. 679 // We only want to add vcall offsets if the base is non-virtual; a virtual 680 // primary base will have its vcall and vbase offsets emitted already. 681 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { 682 // Get the base offset of the primary base. 683 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 684 "Primary base should have a zero offset!"); 685 686 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), 687 VBaseOffset); 688 } 689 690 // Add the vcall offsets. 691 for (const auto *MD : RD->methods()) { 692 if (!MD->isVirtual()) 693 continue; 694 MD = MD->getCanonicalDecl(); 695 696 CharUnits OffsetOffset = getCurrentOffsetOffset(); 697 698 // Don't add a vcall offset if we already have one for this member function 699 // signature. 700 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) 701 continue; 702 703 CharUnits Offset = CharUnits::Zero(); 704 705 if (Overriders) { 706 // Get the final overrider. 707 FinalOverriders::OverriderInfo Overrider = 708 Overriders->getOverrider(MD, Base.getBaseOffset()); 709 710 /// The vcall offset is the offset from the virtual base to the object 711 /// where the function was overridden. 712 Offset = Overrider.Offset - VBaseOffset; 713 } 714 715 Components.push_back( 716 VTableComponent::MakeVCallOffset(Offset)); 717 } 718 719 // And iterate over all non-virtual bases (ignoring the primary base). 720 for (const auto &B : RD->bases()) { 721 if (B.isVirtual()) 722 continue; 723 724 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 725 if (BaseDecl == PrimaryBase) 726 continue; 727 728 // Get the base offset of this base. 729 CharUnits BaseOffset = Base.getBaseOffset() + 730 Layout.getBaseClassOffset(BaseDecl); 731 732 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), 733 VBaseOffset); 734 } 735 } 736 737 void 738 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, 739 CharUnits OffsetInLayoutClass) { 740 const ASTRecordLayout &LayoutClassLayout = 741 Context.getASTRecordLayout(LayoutClass); 742 743 // Add vbase offsets. 744 for (const auto &B : RD->bases()) { 745 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 746 747 // Check if this is a virtual base that we haven't visited before. 748 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { 749 CharUnits Offset = 750 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; 751 752 // Add the vbase offset offset. 753 assert(!VBaseOffsetOffsets.count(BaseDecl) && 754 "vbase offset offset already exists!"); 755 756 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); 757 VBaseOffsetOffsets.insert( 758 std::make_pair(BaseDecl, VBaseOffsetOffset)); 759 760 Components.push_back( 761 VTableComponent::MakeVBaseOffset(Offset)); 762 } 763 764 // Check the base class looking for more vbase offsets. 765 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); 766 } 767 } 768 769 /// ItaniumVTableBuilder - Class for building vtable layout information. 770 class ItaniumVTableBuilder { 771 public: 772 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect 773 /// primary bases. 774 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> 775 PrimaryBasesSetVectorTy; 776 777 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 778 VBaseOffsetOffsetsMapTy; 779 780 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; 781 782 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 783 784 private: 785 /// VTables - Global vtable information. 786 ItaniumVTableContext &VTables; 787 788 /// MostDerivedClass - The most derived class for which we're building this 789 /// vtable. 790 const CXXRecordDecl *MostDerivedClass; 791 792 /// MostDerivedClassOffset - If we're building a construction vtable, this 793 /// holds the offset from the layout class to the most derived class. 794 const CharUnits MostDerivedClassOffset; 795 796 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual 797 /// base. (This only makes sense when building a construction vtable). 798 bool MostDerivedClassIsVirtual; 799 800 /// LayoutClass - The class we're using for layout information. Will be 801 /// different than the most derived class if we're building a construction 802 /// vtable. 803 const CXXRecordDecl *LayoutClass; 804 805 /// Context - The ASTContext which we will use for layout information. 806 ASTContext &Context; 807 808 /// FinalOverriders - The final overriders of the most derived class. 809 const FinalOverriders Overriders; 810 811 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual 812 /// bases in this vtable. 813 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; 814 815 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for 816 /// the most derived class. 817 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 818 819 /// Components - The components of the vtable being built. 820 SmallVector<VTableComponent, 64> Components; 821 822 /// AddressPoints - Address points for the vtable being built. 823 AddressPointsMapTy AddressPoints; 824 825 /// MethodInfo - Contains information about a method in a vtable. 826 /// (Used for computing 'this' pointer adjustment thunks. 827 struct MethodInfo { 828 /// BaseOffset - The base offset of this method. 829 const CharUnits BaseOffset; 830 831 /// BaseOffsetInLayoutClass - The base offset in the layout class of this 832 /// method. 833 const CharUnits BaseOffsetInLayoutClass; 834 835 /// VTableIndex - The index in the vtable that this method has. 836 /// (For destructors, this is the index of the complete destructor). 837 const uint64_t VTableIndex; 838 839 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, 840 uint64_t VTableIndex) 841 : BaseOffset(BaseOffset), 842 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), 843 VTableIndex(VTableIndex) { } 844 845 MethodInfo() 846 : BaseOffset(CharUnits::Zero()), 847 BaseOffsetInLayoutClass(CharUnits::Zero()), 848 VTableIndex(0) { } 849 850 MethodInfo(MethodInfo const&) = default; 851 }; 852 853 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 854 855 /// MethodInfoMap - The information for all methods in the vtable we're 856 /// currently building. 857 MethodInfoMapTy MethodInfoMap; 858 859 /// MethodVTableIndices - Contains the index (relative to the vtable address 860 /// point) where the function pointer for a virtual function is stored. 861 MethodVTableIndicesTy MethodVTableIndices; 862 863 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 864 865 /// VTableThunks - The thunks by vtable index in the vtable currently being 866 /// built. 867 VTableThunksMapTy VTableThunks; 868 869 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 870 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 871 872 /// Thunks - A map that contains all the thunks needed for all methods in the 873 /// most derived class for which the vtable is currently being built. 874 ThunksMapTy Thunks; 875 876 /// AddThunk - Add a thunk for the given method. 877 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); 878 879 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the 880 /// part of the vtable we're currently building. 881 void ComputeThisAdjustments(); 882 883 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 884 885 /// PrimaryVirtualBases - All known virtual bases who are a primary base of 886 /// some other base. 887 VisitedVirtualBasesSetTy PrimaryVirtualBases; 888 889 /// ComputeReturnAdjustment - Compute the return adjustment given a return 890 /// adjustment base offset. 891 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); 892 893 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting 894 /// the 'this' pointer from the base subobject to the derived subobject. 895 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, 896 BaseSubobject Derived) const; 897 898 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the 899 /// given virtual member function, its offset in the layout class and its 900 /// final overrider. 901 ThisAdjustment 902 ComputeThisAdjustment(const CXXMethodDecl *MD, 903 CharUnits BaseOffsetInLayoutClass, 904 FinalOverriders::OverriderInfo Overrider); 905 906 /// AddMethod - Add a single virtual member function to the vtable 907 /// components vector. 908 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); 909 910 /// IsOverriderUsed - Returns whether the overrider will ever be used in this 911 /// part of the vtable. 912 /// 913 /// Itanium C++ ABI 2.5.2: 914 /// 915 /// struct A { virtual void f(); }; 916 /// struct B : virtual public A { int i; }; 917 /// struct C : virtual public A { int j; }; 918 /// struct D : public B, public C {}; 919 /// 920 /// When B and C are declared, A is a primary base in each case, so although 921 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this 922 /// adjustment is required and no thunk is generated. However, inside D 923 /// objects, A is no longer a primary base of C, so if we allowed calls to 924 /// C::f() to use the copy of A's vtable in the C subobject, we would need 925 /// to adjust this from C* to B::A*, which would require a third-party 926 /// thunk. Since we require that a call to C::f() first convert to A*, 927 /// C-in-D's copy of A's vtable is never referenced, so this is not 928 /// necessary. 929 bool IsOverriderUsed(const CXXMethodDecl *Overrider, 930 CharUnits BaseOffsetInLayoutClass, 931 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 932 CharUnits FirstBaseOffsetInLayoutClass) const; 933 934 935 /// AddMethods - Add the methods of this base subobject and all its 936 /// primary bases to the vtable components vector. 937 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 938 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 939 CharUnits FirstBaseOffsetInLayoutClass, 940 PrimaryBasesSetVectorTy &PrimaryBases); 941 942 // LayoutVTable - Layout the vtable for the given base class, including its 943 // secondary vtables and any vtables for virtual bases. 944 void LayoutVTable(); 945 946 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the 947 /// given base subobject, as well as all its secondary vtables. 948 /// 949 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 950 /// or a direct or indirect base of a virtual base. 951 /// 952 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual 953 /// in the layout class. 954 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, 955 bool BaseIsMorallyVirtual, 956 bool BaseIsVirtualInLayoutClass, 957 CharUnits OffsetInLayoutClass); 958 959 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base 960 /// subobject. 961 /// 962 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 963 /// or a direct or indirect base of a virtual base. 964 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, 965 CharUnits OffsetInLayoutClass); 966 967 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this 968 /// class hierarchy. 969 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, 970 CharUnits OffsetInLayoutClass, 971 VisitedVirtualBasesSetTy &VBases); 972 973 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the 974 /// given base (excluding any primary bases). 975 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, 976 VisitedVirtualBasesSetTy &VBases); 977 978 /// isBuildingConstructionVTable - Return whether this vtable builder is 979 /// building a construction vtable. 980 bool isBuildingConstructorVTable() const { 981 return MostDerivedClass != LayoutClass; 982 } 983 984 public: 985 /// Component indices of the first component of each of the vtables in the 986 /// vtable group. 987 SmallVector<size_t, 4> VTableIndices; 988 989 ItaniumVTableBuilder(ItaniumVTableContext &VTables, 990 const CXXRecordDecl *MostDerivedClass, 991 CharUnits MostDerivedClassOffset, 992 bool MostDerivedClassIsVirtual, 993 const CXXRecordDecl *LayoutClass) 994 : VTables(VTables), MostDerivedClass(MostDerivedClass), 995 MostDerivedClassOffset(MostDerivedClassOffset), 996 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), 997 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 998 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { 999 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); 1000 1001 LayoutVTable(); 1002 1003 if (Context.getLangOpts().DumpVTableLayouts) 1004 dumpLayout(llvm::outs()); 1005 } 1006 1007 uint64_t getNumThunks() const { 1008 return Thunks.size(); 1009 } 1010 1011 ThunksMapTy::const_iterator thunks_begin() const { 1012 return Thunks.begin(); 1013 } 1014 1015 ThunksMapTy::const_iterator thunks_end() const { 1016 return Thunks.end(); 1017 } 1018 1019 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 1020 return VBaseOffsetOffsets; 1021 } 1022 1023 const AddressPointsMapTy &getAddressPoints() const { 1024 return AddressPoints; 1025 } 1026 1027 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { 1028 return MethodVTableIndices.begin(); 1029 } 1030 1031 MethodVTableIndicesTy::const_iterator vtable_indices_end() const { 1032 return MethodVTableIndices.end(); 1033 } 1034 1035 ArrayRef<VTableComponent> vtable_components() const { return Components; } 1036 1037 AddressPointsMapTy::const_iterator address_points_begin() const { 1038 return AddressPoints.begin(); 1039 } 1040 1041 AddressPointsMapTy::const_iterator address_points_end() const { 1042 return AddressPoints.end(); 1043 } 1044 1045 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 1046 return VTableThunks.begin(); 1047 } 1048 1049 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 1050 return VTableThunks.end(); 1051 } 1052 1053 /// dumpLayout - Dump the vtable layout. 1054 void dumpLayout(raw_ostream&); 1055 }; 1056 1057 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, 1058 const ThunkInfo &Thunk) { 1059 assert(!isBuildingConstructorVTable() && 1060 "Can't add thunks for construction vtable"); 1061 1062 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; 1063 1064 // Check if we have this thunk already. 1065 if (llvm::find(ThunksVector, Thunk) != ThunksVector.end()) 1066 return; 1067 1068 ThunksVector.push_back(Thunk); 1069 } 1070 1071 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; 1072 1073 /// Visit all the methods overridden by the given method recursively, 1074 /// in a depth-first pre-order. The Visitor's visitor method returns a bool 1075 /// indicating whether to continue the recursion for the given overridden 1076 /// method (i.e. returning false stops the iteration). 1077 template <class VisitorTy> 1078 static void 1079 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { 1080 assert(MD->isVirtual() && "Method is not virtual!"); 1081 1082 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1083 if (!Visitor(OverriddenMD)) 1084 continue; 1085 visitAllOverriddenMethods(OverriddenMD, Visitor); 1086 } 1087 } 1088 1089 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all 1090 /// the overridden methods that the function decl overrides. 1091 static void 1092 ComputeAllOverriddenMethods(const CXXMethodDecl *MD, 1093 OverriddenMethodsSetTy& OverriddenMethods) { 1094 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { 1095 // Don't recurse on this method if we've already collected it. 1096 return OverriddenMethods.insert(MD).second; 1097 }; 1098 visitAllOverriddenMethods(MD, OverriddenMethodsCollector); 1099 } 1100 1101 void ItaniumVTableBuilder::ComputeThisAdjustments() { 1102 // Now go through the method info map and see if any of the methods need 1103 // 'this' pointer adjustments. 1104 for (const auto &MI : MethodInfoMap) { 1105 const CXXMethodDecl *MD = MI.first; 1106 const MethodInfo &MethodInfo = MI.second; 1107 1108 // Ignore adjustments for unused function pointers. 1109 uint64_t VTableIndex = MethodInfo.VTableIndex; 1110 if (Components[VTableIndex].getKind() == 1111 VTableComponent::CK_UnusedFunctionPointer) 1112 continue; 1113 1114 // Get the final overrider for this method. 1115 FinalOverriders::OverriderInfo Overrider = 1116 Overriders.getOverrider(MD, MethodInfo.BaseOffset); 1117 1118 // Check if we need an adjustment at all. 1119 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { 1120 // When a return thunk is needed by a derived class that overrides a 1121 // virtual base, gcc uses a virtual 'this' adjustment as well. 1122 // While the thunk itself might be needed by vtables in subclasses or 1123 // in construction vtables, there doesn't seem to be a reason for using 1124 // the thunk in this vtable. Still, we do so to match gcc. 1125 if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) 1126 continue; 1127 } 1128 1129 ThisAdjustment ThisAdjustment = 1130 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); 1131 1132 if (ThisAdjustment.isEmpty()) 1133 continue; 1134 1135 // Add it. 1136 VTableThunks[VTableIndex].This = ThisAdjustment; 1137 1138 if (isa<CXXDestructorDecl>(MD)) { 1139 // Add an adjustment for the deleting destructor as well. 1140 VTableThunks[VTableIndex + 1].This = ThisAdjustment; 1141 } 1142 } 1143 1144 /// Clear the method info map. 1145 MethodInfoMap.clear(); 1146 1147 if (isBuildingConstructorVTable()) { 1148 // We don't need to store thunk information for construction vtables. 1149 return; 1150 } 1151 1152 for (const auto &TI : VTableThunks) { 1153 const VTableComponent &Component = Components[TI.first]; 1154 const ThunkInfo &Thunk = TI.second; 1155 const CXXMethodDecl *MD; 1156 1157 switch (Component.getKind()) { 1158 default: 1159 llvm_unreachable("Unexpected vtable component kind!"); 1160 case VTableComponent::CK_FunctionPointer: 1161 MD = Component.getFunctionDecl(); 1162 break; 1163 case VTableComponent::CK_CompleteDtorPointer: 1164 MD = Component.getDestructorDecl(); 1165 break; 1166 case VTableComponent::CK_DeletingDtorPointer: 1167 // We've already added the thunk when we saw the complete dtor pointer. 1168 continue; 1169 } 1170 1171 if (MD->getParent() == MostDerivedClass) 1172 AddThunk(MD, Thunk); 1173 } 1174 } 1175 1176 ReturnAdjustment 1177 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { 1178 ReturnAdjustment Adjustment; 1179 1180 if (!Offset.isEmpty()) { 1181 if (Offset.VirtualBase) { 1182 // Get the virtual base offset offset. 1183 if (Offset.DerivedClass == MostDerivedClass) { 1184 // We can get the offset offset directly from our map. 1185 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1186 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); 1187 } else { 1188 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1189 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, 1190 Offset.VirtualBase).getQuantity(); 1191 } 1192 } 1193 1194 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1195 } 1196 1197 return Adjustment; 1198 } 1199 1200 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( 1201 BaseSubobject Base, BaseSubobject Derived) const { 1202 const CXXRecordDecl *BaseRD = Base.getBase(); 1203 const CXXRecordDecl *DerivedRD = Derived.getBase(); 1204 1205 CXXBasePaths Paths(/*FindAmbiguities=*/true, 1206 /*RecordPaths=*/true, /*DetectVirtual=*/true); 1207 1208 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 1209 llvm_unreachable("Class must be derived from the passed in base class!"); 1210 1211 // We have to go through all the paths, and see which one leads us to the 1212 // right base subobject. 1213 for (const CXXBasePath &Path : Paths) { 1214 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); 1215 1216 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; 1217 1218 if (Offset.VirtualBase) { 1219 // If we have a virtual base class, the non-virtual offset is relative 1220 // to the virtual base class offset. 1221 const ASTRecordLayout &LayoutClassLayout = 1222 Context.getASTRecordLayout(LayoutClass); 1223 1224 /// Get the virtual base offset, relative to the most derived class 1225 /// layout. 1226 OffsetToBaseSubobject += 1227 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); 1228 } else { 1229 // Otherwise, the non-virtual offset is relative to the derived class 1230 // offset. 1231 OffsetToBaseSubobject += Derived.getBaseOffset(); 1232 } 1233 1234 // Check if this path gives us the right base subobject. 1235 if (OffsetToBaseSubobject == Base.getBaseOffset()) { 1236 // Since we're going from the base class _to_ the derived class, we'll 1237 // invert the non-virtual offset here. 1238 Offset.NonVirtualOffset = -Offset.NonVirtualOffset; 1239 return Offset; 1240 } 1241 } 1242 1243 return BaseOffset(); 1244 } 1245 1246 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( 1247 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, 1248 FinalOverriders::OverriderInfo Overrider) { 1249 // Ignore adjustments for pure virtual member functions. 1250 if (Overrider.Method->isPure()) 1251 return ThisAdjustment(); 1252 1253 BaseSubobject OverriddenBaseSubobject(MD->getParent(), 1254 BaseOffsetInLayoutClass); 1255 1256 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), 1257 Overrider.Offset); 1258 1259 // Compute the adjustment offset. 1260 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, 1261 OverriderBaseSubobject); 1262 if (Offset.isEmpty()) 1263 return ThisAdjustment(); 1264 1265 ThisAdjustment Adjustment; 1266 1267 if (Offset.VirtualBase) { 1268 // Get the vcall offset map for this virtual base. 1269 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; 1270 1271 if (VCallOffsets.empty()) { 1272 // We don't have vcall offsets for this virtual base, go ahead and 1273 // build them. 1274 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass, 1275 /*Overriders=*/nullptr, 1276 BaseSubobject(Offset.VirtualBase, 1277 CharUnits::Zero()), 1278 /*BaseIsVirtual=*/true, 1279 /*OffsetInLayoutClass=*/ 1280 CharUnits::Zero()); 1281 1282 VCallOffsets = Builder.getVCallOffsets(); 1283 } 1284 1285 Adjustment.Virtual.Itanium.VCallOffsetOffset = 1286 VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); 1287 } 1288 1289 // Set the non-virtual part of the adjustment. 1290 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1291 1292 return Adjustment; 1293 } 1294 1295 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, 1296 ReturnAdjustment ReturnAdjustment) { 1297 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1298 assert(ReturnAdjustment.isEmpty() && 1299 "Destructor can't have return adjustment!"); 1300 1301 // Add both the complete destructor and the deleting destructor. 1302 Components.push_back(VTableComponent::MakeCompleteDtor(DD)); 1303 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 1304 } else { 1305 // Add the return adjustment if necessary. 1306 if (!ReturnAdjustment.isEmpty()) 1307 VTableThunks[Components.size()].Return = ReturnAdjustment; 1308 1309 // Add the function. 1310 Components.push_back(VTableComponent::MakeFunction(MD)); 1311 } 1312 } 1313 1314 /// OverridesIndirectMethodInBase - Return whether the given member function 1315 /// overrides any methods in the set of given bases. 1316 /// Unlike OverridesMethodInBase, this checks "overriders of overriders". 1317 /// For example, if we have: 1318 /// 1319 /// struct A { virtual void f(); } 1320 /// struct B : A { virtual void f(); } 1321 /// struct C : B { virtual void f(); } 1322 /// 1323 /// OverridesIndirectMethodInBase will return true if given C::f as the method 1324 /// and { A } as the set of bases. 1325 static bool OverridesIndirectMethodInBases( 1326 const CXXMethodDecl *MD, 1327 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { 1328 if (Bases.count(MD->getParent())) 1329 return true; 1330 1331 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1332 // Check "indirect overriders". 1333 if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) 1334 return true; 1335 } 1336 1337 return false; 1338 } 1339 1340 bool ItaniumVTableBuilder::IsOverriderUsed( 1341 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, 1342 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1343 CharUnits FirstBaseOffsetInLayoutClass) const { 1344 // If the base and the first base in the primary base chain have the same 1345 // offsets, then this overrider will be used. 1346 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) 1347 return true; 1348 1349 // We know now that Base (or a direct or indirect base of it) is a primary 1350 // base in part of the class hierarchy, but not a primary base in the most 1351 // derived class. 1352 1353 // If the overrider is the first base in the primary base chain, we know 1354 // that the overrider will be used. 1355 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) 1356 return true; 1357 1358 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; 1359 1360 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; 1361 PrimaryBases.insert(RD); 1362 1363 // Now traverse the base chain, starting with the first base, until we find 1364 // the base that is no longer a primary base. 1365 while (true) { 1366 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1367 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1368 1369 if (!PrimaryBase) 1370 break; 1371 1372 if (Layout.isPrimaryBaseVirtual()) { 1373 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1374 "Primary base should always be at offset 0!"); 1375 1376 const ASTRecordLayout &LayoutClassLayout = 1377 Context.getASTRecordLayout(LayoutClass); 1378 1379 // Now check if this is the primary base that is not a primary base in the 1380 // most derived class. 1381 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1382 FirstBaseOffsetInLayoutClass) { 1383 // We found it, stop walking the chain. 1384 break; 1385 } 1386 } else { 1387 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1388 "Primary base should always be at offset 0!"); 1389 } 1390 1391 if (!PrimaryBases.insert(PrimaryBase)) 1392 llvm_unreachable("Found a duplicate primary base!"); 1393 1394 RD = PrimaryBase; 1395 } 1396 1397 // If the final overrider is an override of one of the primary bases, 1398 // then we know that it will be used. 1399 return OverridesIndirectMethodInBases(Overrider, PrimaryBases); 1400 } 1401 1402 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; 1403 1404 /// FindNearestOverriddenMethod - Given a method, returns the overridden method 1405 /// from the nearest base. Returns null if no method was found. 1406 /// The Bases are expected to be sorted in a base-to-derived order. 1407 static const CXXMethodDecl * 1408 FindNearestOverriddenMethod(const CXXMethodDecl *MD, 1409 BasesSetVectorTy &Bases) { 1410 OverriddenMethodsSetTy OverriddenMethods; 1411 ComputeAllOverriddenMethods(MD, OverriddenMethods); 1412 1413 for (const CXXRecordDecl *PrimaryBase : 1414 llvm::make_range(Bases.rbegin(), Bases.rend())) { 1415 // Now check the overridden methods. 1416 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { 1417 // We found our overridden method. 1418 if (OverriddenMD->getParent() == PrimaryBase) 1419 return OverriddenMD; 1420 } 1421 } 1422 1423 return nullptr; 1424 } 1425 1426 void ItaniumVTableBuilder::AddMethods( 1427 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 1428 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1429 CharUnits FirstBaseOffsetInLayoutClass, 1430 PrimaryBasesSetVectorTy &PrimaryBases) { 1431 // Itanium C++ ABI 2.5.2: 1432 // The order of the virtual function pointers in a virtual table is the 1433 // order of declaration of the corresponding member functions in the class. 1434 // 1435 // There is an entry for any virtual function declared in a class, 1436 // whether it is a new function or overrides a base class function, 1437 // unless it overrides a function from the primary base, and conversion 1438 // between their return types does not require an adjustment. 1439 1440 const CXXRecordDecl *RD = Base.getBase(); 1441 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1442 1443 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1444 CharUnits PrimaryBaseOffset; 1445 CharUnits PrimaryBaseOffsetInLayoutClass; 1446 if (Layout.isPrimaryBaseVirtual()) { 1447 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1448 "Primary vbase should have a zero offset!"); 1449 1450 const ASTRecordLayout &MostDerivedClassLayout = 1451 Context.getASTRecordLayout(MostDerivedClass); 1452 1453 PrimaryBaseOffset = 1454 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 1455 1456 const ASTRecordLayout &LayoutClassLayout = 1457 Context.getASTRecordLayout(LayoutClass); 1458 1459 PrimaryBaseOffsetInLayoutClass = 1460 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1461 } else { 1462 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1463 "Primary base should have a zero offset!"); 1464 1465 PrimaryBaseOffset = Base.getBaseOffset(); 1466 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; 1467 } 1468 1469 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), 1470 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, 1471 FirstBaseOffsetInLayoutClass, PrimaryBases); 1472 1473 if (!PrimaryBases.insert(PrimaryBase)) 1474 llvm_unreachable("Found a duplicate primary base!"); 1475 } 1476 1477 const CXXDestructorDecl *ImplicitVirtualDtor = nullptr; 1478 1479 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; 1480 NewVirtualFunctionsTy NewVirtualFunctions; 1481 1482 // Now go through all virtual member functions and add them. 1483 for (const auto *MD : RD->methods()) { 1484 if (!MD->isVirtual()) 1485 continue; 1486 MD = MD->getCanonicalDecl(); 1487 1488 // Get the final overrider. 1489 FinalOverriders::OverriderInfo Overrider = 1490 Overriders.getOverrider(MD, Base.getBaseOffset()); 1491 1492 // Check if this virtual member function overrides a method in a primary 1493 // base. If this is the case, and the return type doesn't require adjustment 1494 // then we can just use the member function from the primary base. 1495 if (const CXXMethodDecl *OverriddenMD = 1496 FindNearestOverriddenMethod(MD, PrimaryBases)) { 1497 if (ComputeReturnAdjustmentBaseOffset(Context, MD, 1498 OverriddenMD).isEmpty()) { 1499 // Replace the method info of the overridden method with our own 1500 // method. 1501 assert(MethodInfoMap.count(OverriddenMD) && 1502 "Did not find the overridden method!"); 1503 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; 1504 1505 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1506 OverriddenMethodInfo.VTableIndex); 1507 1508 assert(!MethodInfoMap.count(MD) && 1509 "Should not have method info for this method yet!"); 1510 1511 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1512 MethodInfoMap.erase(OverriddenMD); 1513 1514 // If the overridden method exists in a virtual base class or a direct 1515 // or indirect base class of a virtual base class, we need to emit a 1516 // thunk if we ever have a class hierarchy where the base class is not 1517 // a primary base in the complete object. 1518 if (!isBuildingConstructorVTable() && OverriddenMD != MD) { 1519 // Compute the this adjustment. 1520 ThisAdjustment ThisAdjustment = 1521 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, 1522 Overrider); 1523 1524 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && 1525 Overrider.Method->getParent() == MostDerivedClass) { 1526 1527 // There's no return adjustment from OverriddenMD and MD, 1528 // but that doesn't mean there isn't one between MD and 1529 // the final overrider. 1530 BaseOffset ReturnAdjustmentOffset = 1531 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 1532 ReturnAdjustment ReturnAdjustment = 1533 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1534 1535 // This is a virtual thunk for the most derived class, add it. 1536 AddThunk(Overrider.Method, 1537 ThunkInfo(ThisAdjustment, ReturnAdjustment)); 1538 } 1539 } 1540 1541 continue; 1542 } 1543 } 1544 1545 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1546 if (MD->isImplicit()) { 1547 // Itanium C++ ABI 2.5.2: 1548 // If a class has an implicitly-defined virtual destructor, 1549 // its entries come after the declared virtual function pointers. 1550 1551 assert(!ImplicitVirtualDtor && 1552 "Did already see an implicit virtual dtor!"); 1553 ImplicitVirtualDtor = DD; 1554 continue; 1555 } 1556 } 1557 1558 NewVirtualFunctions.push_back(MD); 1559 } 1560 1561 if (ImplicitVirtualDtor) 1562 NewVirtualFunctions.push_back(ImplicitVirtualDtor); 1563 1564 for (const CXXMethodDecl *MD : NewVirtualFunctions) { 1565 // Get the final overrider. 1566 FinalOverriders::OverriderInfo Overrider = 1567 Overriders.getOverrider(MD, Base.getBaseOffset()); 1568 1569 // Insert the method info for this method. 1570 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1571 Components.size()); 1572 1573 assert(!MethodInfoMap.count(MD) && 1574 "Should not have method info for this method yet!"); 1575 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1576 1577 // Check if this overrider is going to be used. 1578 const CXXMethodDecl *OverriderMD = Overrider.Method; 1579 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, 1580 FirstBaseInPrimaryBaseChain, 1581 FirstBaseOffsetInLayoutClass)) { 1582 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); 1583 continue; 1584 } 1585 1586 // Check if this overrider needs a return adjustment. 1587 // We don't want to do this for pure virtual member functions. 1588 BaseOffset ReturnAdjustmentOffset; 1589 if (!OverriderMD->isPure()) { 1590 ReturnAdjustmentOffset = 1591 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); 1592 } 1593 1594 ReturnAdjustment ReturnAdjustment = 1595 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1596 1597 AddMethod(Overrider.Method, ReturnAdjustment); 1598 } 1599 } 1600 1601 void ItaniumVTableBuilder::LayoutVTable() { 1602 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, 1603 CharUnits::Zero()), 1604 /*BaseIsMorallyVirtual=*/false, 1605 MostDerivedClassIsVirtual, 1606 MostDerivedClassOffset); 1607 1608 VisitedVirtualBasesSetTy VBases; 1609 1610 // Determine the primary virtual bases. 1611 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, 1612 VBases); 1613 VBases.clear(); 1614 1615 LayoutVTablesForVirtualBases(MostDerivedClass, VBases); 1616 1617 // -fapple-kext adds an extra entry at end of vtbl. 1618 bool IsAppleKext = Context.getLangOpts().AppleKext; 1619 if (IsAppleKext) 1620 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); 1621 } 1622 1623 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( 1624 BaseSubobject Base, bool BaseIsMorallyVirtual, 1625 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { 1626 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); 1627 1628 unsigned VTableIndex = Components.size(); 1629 VTableIndices.push_back(VTableIndex); 1630 1631 // Add vcall and vbase offsets for this vtable. 1632 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders, 1633 Base, BaseIsVirtualInLayoutClass, 1634 OffsetInLayoutClass); 1635 Components.append(Builder.components_begin(), Builder.components_end()); 1636 1637 // Check if we need to add these vcall offsets. 1638 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { 1639 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; 1640 1641 if (VCallOffsets.empty()) 1642 VCallOffsets = Builder.getVCallOffsets(); 1643 } 1644 1645 // If we're laying out the most derived class we want to keep track of the 1646 // virtual base class offset offsets. 1647 if (Base.getBase() == MostDerivedClass) 1648 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); 1649 1650 // Add the offset to top. 1651 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; 1652 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); 1653 1654 // Next, add the RTTI. 1655 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 1656 1657 uint64_t AddressPoint = Components.size(); 1658 1659 // Now go through all virtual member functions and add them. 1660 PrimaryBasesSetVectorTy PrimaryBases; 1661 AddMethods(Base, OffsetInLayoutClass, 1662 Base.getBase(), OffsetInLayoutClass, 1663 PrimaryBases); 1664 1665 const CXXRecordDecl *RD = Base.getBase(); 1666 if (RD == MostDerivedClass) { 1667 assert(MethodVTableIndices.empty()); 1668 for (const auto &I : MethodInfoMap) { 1669 const CXXMethodDecl *MD = I.first; 1670 const MethodInfo &MI = I.second; 1671 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1672 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] 1673 = MI.VTableIndex - AddressPoint; 1674 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] 1675 = MI.VTableIndex + 1 - AddressPoint; 1676 } else { 1677 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; 1678 } 1679 } 1680 } 1681 1682 // Compute 'this' pointer adjustments. 1683 ComputeThisAdjustments(); 1684 1685 // Add all address points. 1686 while (true) { 1687 AddressPoints.insert( 1688 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass), 1689 VTableLayout::AddressPointLocation{ 1690 unsigned(VTableIndices.size() - 1), 1691 unsigned(AddressPoint - VTableIndex)})); 1692 1693 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1694 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1695 1696 if (!PrimaryBase) 1697 break; 1698 1699 if (Layout.isPrimaryBaseVirtual()) { 1700 // Check if this virtual primary base is a primary base in the layout 1701 // class. If it's not, we don't want to add it. 1702 const ASTRecordLayout &LayoutClassLayout = 1703 Context.getASTRecordLayout(LayoutClass); 1704 1705 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1706 OffsetInLayoutClass) { 1707 // We don't want to add this class (or any of its primary bases). 1708 break; 1709 } 1710 } 1711 1712 RD = PrimaryBase; 1713 } 1714 1715 // Layout secondary vtables. 1716 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); 1717 } 1718 1719 void 1720 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, 1721 bool BaseIsMorallyVirtual, 1722 CharUnits OffsetInLayoutClass) { 1723 // Itanium C++ ABI 2.5.2: 1724 // Following the primary virtual table of a derived class are secondary 1725 // virtual tables for each of its proper base classes, except any primary 1726 // base(s) with which it shares its primary virtual table. 1727 1728 const CXXRecordDecl *RD = Base.getBase(); 1729 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1730 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1731 1732 for (const auto &B : RD->bases()) { 1733 // Ignore virtual bases, we'll emit them later. 1734 if (B.isVirtual()) 1735 continue; 1736 1737 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1738 1739 // Ignore bases that don't have a vtable. 1740 if (!BaseDecl->isDynamicClass()) 1741 continue; 1742 1743 if (isBuildingConstructorVTable()) { 1744 // Itanium C++ ABI 2.6.4: 1745 // Some of the base class subobjects may not need construction virtual 1746 // tables, which will therefore not be present in the construction 1747 // virtual table group, even though the subobject virtual tables are 1748 // present in the main virtual table group for the complete object. 1749 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) 1750 continue; 1751 } 1752 1753 // Get the base offset of this base. 1754 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); 1755 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; 1756 1757 CharUnits BaseOffsetInLayoutClass = 1758 OffsetInLayoutClass + RelativeBaseOffset; 1759 1760 // Don't emit a secondary vtable for a primary base. We might however want 1761 // to emit secondary vtables for other bases of this base. 1762 if (BaseDecl == PrimaryBase) { 1763 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), 1764 BaseIsMorallyVirtual, BaseOffsetInLayoutClass); 1765 continue; 1766 } 1767 1768 // Layout the primary vtable (and any secondary vtables) for this base. 1769 LayoutPrimaryAndSecondaryVTables( 1770 BaseSubobject(BaseDecl, BaseOffset), 1771 BaseIsMorallyVirtual, 1772 /*BaseIsVirtualInLayoutClass=*/false, 1773 BaseOffsetInLayoutClass); 1774 } 1775 } 1776 1777 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( 1778 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, 1779 VisitedVirtualBasesSetTy &VBases) { 1780 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1781 1782 // Check if this base has a primary base. 1783 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1784 1785 // Check if it's virtual. 1786 if (Layout.isPrimaryBaseVirtual()) { 1787 bool IsPrimaryVirtualBase = true; 1788 1789 if (isBuildingConstructorVTable()) { 1790 // Check if the base is actually a primary base in the class we use for 1791 // layout. 1792 const ASTRecordLayout &LayoutClassLayout = 1793 Context.getASTRecordLayout(LayoutClass); 1794 1795 CharUnits PrimaryBaseOffsetInLayoutClass = 1796 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1797 1798 // We know that the base is not a primary base in the layout class if 1799 // the base offsets are different. 1800 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) 1801 IsPrimaryVirtualBase = false; 1802 } 1803 1804 if (IsPrimaryVirtualBase) 1805 PrimaryVirtualBases.insert(PrimaryBase); 1806 } 1807 } 1808 1809 // Traverse bases, looking for more primary virtual bases. 1810 for (const auto &B : RD->bases()) { 1811 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1812 1813 CharUnits BaseOffsetInLayoutClass; 1814 1815 if (B.isVirtual()) { 1816 if (!VBases.insert(BaseDecl).second) 1817 continue; 1818 1819 const ASTRecordLayout &LayoutClassLayout = 1820 Context.getASTRecordLayout(LayoutClass); 1821 1822 BaseOffsetInLayoutClass = 1823 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1824 } else { 1825 BaseOffsetInLayoutClass = 1826 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); 1827 } 1828 1829 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); 1830 } 1831 } 1832 1833 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( 1834 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { 1835 // Itanium C++ ABI 2.5.2: 1836 // Then come the virtual base virtual tables, also in inheritance graph 1837 // order, and again excluding primary bases (which share virtual tables with 1838 // the classes for which they are primary). 1839 for (const auto &B : RD->bases()) { 1840 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1841 1842 // Check if this base needs a vtable. (If it's virtual, not a primary base 1843 // of some other class, and we haven't visited it before). 1844 if (B.isVirtual() && BaseDecl->isDynamicClass() && 1845 !PrimaryVirtualBases.count(BaseDecl) && 1846 VBases.insert(BaseDecl).second) { 1847 const ASTRecordLayout &MostDerivedClassLayout = 1848 Context.getASTRecordLayout(MostDerivedClass); 1849 CharUnits BaseOffset = 1850 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 1851 1852 const ASTRecordLayout &LayoutClassLayout = 1853 Context.getASTRecordLayout(LayoutClass); 1854 CharUnits BaseOffsetInLayoutClass = 1855 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1856 1857 LayoutPrimaryAndSecondaryVTables( 1858 BaseSubobject(BaseDecl, BaseOffset), 1859 /*BaseIsMorallyVirtual=*/true, 1860 /*BaseIsVirtualInLayoutClass=*/true, 1861 BaseOffsetInLayoutClass); 1862 } 1863 1864 // We only need to check the base for virtual base vtables if it actually 1865 // has virtual bases. 1866 if (BaseDecl->getNumVBases()) 1867 LayoutVTablesForVirtualBases(BaseDecl, VBases); 1868 } 1869 } 1870 1871 /// dumpLayout - Dump the vtable layout. 1872 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { 1873 // FIXME: write more tests that actually use the dumpLayout output to prevent 1874 // ItaniumVTableBuilder regressions. 1875 1876 if (isBuildingConstructorVTable()) { 1877 Out << "Construction vtable for ('"; 1878 MostDerivedClass->printQualifiedName(Out); 1879 Out << "', "; 1880 Out << MostDerivedClassOffset.getQuantity() << ") in '"; 1881 LayoutClass->printQualifiedName(Out); 1882 } else { 1883 Out << "Vtable for '"; 1884 MostDerivedClass->printQualifiedName(Out); 1885 } 1886 Out << "' (" << Components.size() << " entries).\n"; 1887 1888 // Iterate through the address points and insert them into a new map where 1889 // they are keyed by the index and not the base object. 1890 // Since an address point can be shared by multiple subobjects, we use an 1891 // STL multimap. 1892 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; 1893 for (const auto &AP : AddressPoints) { 1894 const BaseSubobject &Base = AP.first; 1895 uint64_t Index = 1896 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; 1897 1898 AddressPointsByIndex.insert(std::make_pair(Index, Base)); 1899 } 1900 1901 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 1902 uint64_t Index = I; 1903 1904 Out << llvm::format("%4d | ", I); 1905 1906 const VTableComponent &Component = Components[I]; 1907 1908 // Dump the component. 1909 switch (Component.getKind()) { 1910 1911 case VTableComponent::CK_VCallOffset: 1912 Out << "vcall_offset (" 1913 << Component.getVCallOffset().getQuantity() 1914 << ")"; 1915 break; 1916 1917 case VTableComponent::CK_VBaseOffset: 1918 Out << "vbase_offset (" 1919 << Component.getVBaseOffset().getQuantity() 1920 << ")"; 1921 break; 1922 1923 case VTableComponent::CK_OffsetToTop: 1924 Out << "offset_to_top (" 1925 << Component.getOffsetToTop().getQuantity() 1926 << ")"; 1927 break; 1928 1929 case VTableComponent::CK_RTTI: 1930 Component.getRTTIDecl()->printQualifiedName(Out); 1931 Out << " RTTI"; 1932 break; 1933 1934 case VTableComponent::CK_FunctionPointer: { 1935 const CXXMethodDecl *MD = Component.getFunctionDecl(); 1936 1937 std::string Str = 1938 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 1939 MD); 1940 Out << Str; 1941 if (MD->isPure()) 1942 Out << " [pure]"; 1943 1944 if (MD->isDeleted()) 1945 Out << " [deleted]"; 1946 1947 ThunkInfo Thunk = VTableThunks.lookup(I); 1948 if (!Thunk.isEmpty()) { 1949 // If this function pointer has a return adjustment, dump it. 1950 if (!Thunk.Return.isEmpty()) { 1951 Out << "\n [return adjustment: "; 1952 Out << Thunk.Return.NonVirtual << " non-virtual"; 1953 1954 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 1955 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 1956 Out << " vbase offset offset"; 1957 } 1958 1959 Out << ']'; 1960 } 1961 1962 // If this function pointer has a 'this' pointer adjustment, dump it. 1963 if (!Thunk.This.isEmpty()) { 1964 Out << "\n [this adjustment: "; 1965 Out << Thunk.This.NonVirtual << " non-virtual"; 1966 1967 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 1968 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 1969 Out << " vcall offset offset"; 1970 } 1971 1972 Out << ']'; 1973 } 1974 } 1975 1976 break; 1977 } 1978 1979 case VTableComponent::CK_CompleteDtorPointer: 1980 case VTableComponent::CK_DeletingDtorPointer: { 1981 bool IsComplete = 1982 Component.getKind() == VTableComponent::CK_CompleteDtorPointer; 1983 1984 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 1985 1986 DD->printQualifiedName(Out); 1987 if (IsComplete) 1988 Out << "() [complete]"; 1989 else 1990 Out << "() [deleting]"; 1991 1992 if (DD->isPure()) 1993 Out << " [pure]"; 1994 1995 ThunkInfo Thunk = VTableThunks.lookup(I); 1996 if (!Thunk.isEmpty()) { 1997 // If this destructor has a 'this' pointer adjustment, dump it. 1998 if (!Thunk.This.isEmpty()) { 1999 Out << "\n [this adjustment: "; 2000 Out << Thunk.This.NonVirtual << " non-virtual"; 2001 2002 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2003 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2004 Out << " vcall offset offset"; 2005 } 2006 2007 Out << ']'; 2008 } 2009 } 2010 2011 break; 2012 } 2013 2014 case VTableComponent::CK_UnusedFunctionPointer: { 2015 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); 2016 2017 std::string Str = 2018 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2019 MD); 2020 Out << "[unused] " << Str; 2021 if (MD->isPure()) 2022 Out << " [pure]"; 2023 } 2024 2025 } 2026 2027 Out << '\n'; 2028 2029 // Dump the next address point. 2030 uint64_t NextIndex = Index + 1; 2031 if (AddressPointsByIndex.count(NextIndex)) { 2032 if (AddressPointsByIndex.count(NextIndex) == 1) { 2033 const BaseSubobject &Base = 2034 AddressPointsByIndex.find(NextIndex)->second; 2035 2036 Out << " -- ("; 2037 Base.getBase()->printQualifiedName(Out); 2038 Out << ", " << Base.getBaseOffset().getQuantity(); 2039 Out << ") vtable address --\n"; 2040 } else { 2041 CharUnits BaseOffset = 2042 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); 2043 2044 // We store the class names in a set to get a stable order. 2045 std::set<std::string> ClassNames; 2046 for (const auto &I : 2047 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { 2048 assert(I.second.getBaseOffset() == BaseOffset && 2049 "Invalid base offset!"); 2050 const CXXRecordDecl *RD = I.second.getBase(); 2051 ClassNames.insert(RD->getQualifiedNameAsString()); 2052 } 2053 2054 for (const std::string &Name : ClassNames) { 2055 Out << " -- (" << Name; 2056 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; 2057 } 2058 } 2059 } 2060 } 2061 2062 Out << '\n'; 2063 2064 if (isBuildingConstructorVTable()) 2065 return; 2066 2067 if (MostDerivedClass->getNumVBases()) { 2068 // We store the virtual base class names and their offsets in a map to get 2069 // a stable order. 2070 2071 std::map<std::string, CharUnits> ClassNamesAndOffsets; 2072 for (const auto &I : VBaseOffsetOffsets) { 2073 std::string ClassName = I.first->getQualifiedNameAsString(); 2074 CharUnits OffsetOffset = I.second; 2075 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); 2076 } 2077 2078 Out << "Virtual base offset offsets for '"; 2079 MostDerivedClass->printQualifiedName(Out); 2080 Out << "' ("; 2081 Out << ClassNamesAndOffsets.size(); 2082 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; 2083 2084 for (const auto &I : ClassNamesAndOffsets) 2085 Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; 2086 2087 Out << "\n"; 2088 } 2089 2090 if (!Thunks.empty()) { 2091 // We store the method names in a map to get a stable order. 2092 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 2093 2094 for (const auto &I : Thunks) { 2095 const CXXMethodDecl *MD = I.first; 2096 std::string MethodName = 2097 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2098 MD); 2099 2100 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 2101 } 2102 2103 for (const auto &I : MethodNamesAndDecls) { 2104 const std::string &MethodName = I.first; 2105 const CXXMethodDecl *MD = I.second; 2106 2107 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 2108 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 2109 assert(LHS.Method == nullptr && RHS.Method == nullptr); 2110 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 2111 }); 2112 2113 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 2114 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 2115 2116 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 2117 const ThunkInfo &Thunk = ThunksVector[I]; 2118 2119 Out << llvm::format("%4d | ", I); 2120 2121 // If this function pointer has a return pointer adjustment, dump it. 2122 if (!Thunk.Return.isEmpty()) { 2123 Out << "return adjustment: " << Thunk.Return.NonVirtual; 2124 Out << " non-virtual"; 2125 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2126 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2127 Out << " vbase offset offset"; 2128 } 2129 2130 if (!Thunk.This.isEmpty()) 2131 Out << "\n "; 2132 } 2133 2134 // If this function pointer has a 'this' pointer adjustment, dump it. 2135 if (!Thunk.This.isEmpty()) { 2136 Out << "this adjustment: "; 2137 Out << Thunk.This.NonVirtual << " non-virtual"; 2138 2139 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2140 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2141 Out << " vcall offset offset"; 2142 } 2143 } 2144 2145 Out << '\n'; 2146 } 2147 2148 Out << '\n'; 2149 } 2150 } 2151 2152 // Compute the vtable indices for all the member functions. 2153 // Store them in a map keyed by the index so we'll get a sorted table. 2154 std::map<uint64_t, std::string> IndicesMap; 2155 2156 for (const auto *MD : MostDerivedClass->methods()) { 2157 // We only want virtual member functions. 2158 if (!MD->isVirtual()) 2159 continue; 2160 MD = MD->getCanonicalDecl(); 2161 2162 std::string MethodName = 2163 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2164 MD); 2165 2166 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2167 GlobalDecl GD(DD, Dtor_Complete); 2168 assert(MethodVTableIndices.count(GD)); 2169 uint64_t VTableIndex = MethodVTableIndices[GD]; 2170 IndicesMap[VTableIndex] = MethodName + " [complete]"; 2171 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; 2172 } else { 2173 assert(MethodVTableIndices.count(MD)); 2174 IndicesMap[MethodVTableIndices[MD]] = MethodName; 2175 } 2176 } 2177 2178 // Print the vtable indices for all the member functions. 2179 if (!IndicesMap.empty()) { 2180 Out << "VTable indices for '"; 2181 MostDerivedClass->printQualifiedName(Out); 2182 Out << "' (" << IndicesMap.size() << " entries).\n"; 2183 2184 for (const auto &I : IndicesMap) { 2185 uint64_t VTableIndex = I.first; 2186 const std::string &MethodName = I.second; 2187 2188 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName 2189 << '\n'; 2190 } 2191 } 2192 2193 Out << '\n'; 2194 } 2195 } 2196 2197 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, 2198 ArrayRef<VTableComponent> VTableComponents, 2199 ArrayRef<VTableThunkTy> VTableThunks, 2200 const AddressPointsMapTy &AddressPoints) 2201 : VTableComponents(VTableComponents), VTableThunks(VTableThunks), 2202 AddressPoints(AddressPoints) { 2203 if (VTableIndices.size() <= 1) 2204 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); 2205 else 2206 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); 2207 2208 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS, 2209 const VTableLayout::VTableThunkTy &RHS) { 2210 assert((LHS.first != RHS.first || LHS.second == RHS.second) && 2211 "Different thunks should have unique indices!"); 2212 return LHS.first < RHS.first; 2213 }); 2214 } 2215 2216 VTableLayout::~VTableLayout() { } 2217 2218 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context) 2219 : VTableContextBase(/*MS=*/false) {} 2220 2221 ItaniumVTableContext::~ItaniumVTableContext() {} 2222 2223 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { 2224 GD = GD.getCanonicalDecl(); 2225 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); 2226 if (I != MethodVTableIndices.end()) 2227 return I->second; 2228 2229 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 2230 2231 computeVTableRelatedInformation(RD); 2232 2233 I = MethodVTableIndices.find(GD); 2234 assert(I != MethodVTableIndices.end() && "Did not find index!"); 2235 return I->second; 2236 } 2237 2238 CharUnits 2239 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 2240 const CXXRecordDecl *VBase) { 2241 ClassPairTy ClassPair(RD, VBase); 2242 2243 VirtualBaseClassOffsetOffsetsMapTy::iterator I = 2244 VirtualBaseClassOffsetOffsets.find(ClassPair); 2245 if (I != VirtualBaseClassOffsetOffsets.end()) 2246 return I->second; 2247 2248 VCallAndVBaseOffsetBuilder Builder(RD, RD, /*Overriders=*/nullptr, 2249 BaseSubobject(RD, CharUnits::Zero()), 2250 /*BaseIsVirtual=*/false, 2251 /*OffsetInLayoutClass=*/CharUnits::Zero()); 2252 2253 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2254 // Insert all types. 2255 ClassPairTy ClassPair(RD, I.first); 2256 2257 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2258 } 2259 2260 I = VirtualBaseClassOffsetOffsets.find(ClassPair); 2261 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); 2262 2263 return I->second; 2264 } 2265 2266 static std::unique_ptr<VTableLayout> 2267 CreateVTableLayout(const ItaniumVTableBuilder &Builder) { 2268 SmallVector<VTableLayout::VTableThunkTy, 1> 2269 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 2270 2271 return std::make_unique<VTableLayout>( 2272 Builder.VTableIndices, Builder.vtable_components(), VTableThunks, 2273 Builder.getAddressPoints()); 2274 } 2275 2276 void 2277 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { 2278 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; 2279 2280 // Check if we've computed this information before. 2281 if (Entry) 2282 return; 2283 2284 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), 2285 /*MostDerivedClassIsVirtual=*/0, RD); 2286 Entry = CreateVTableLayout(Builder); 2287 2288 MethodVTableIndices.insert(Builder.vtable_indices_begin(), 2289 Builder.vtable_indices_end()); 2290 2291 // Add the known thunks. 2292 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 2293 2294 // If we don't have the vbase information for this class, insert it. 2295 // getVirtualBaseOffsetOffset will compute it separately without computing 2296 // the rest of the vtable related information. 2297 if (!RD->getNumVBases()) 2298 return; 2299 2300 const CXXRecordDecl *VBase = 2301 RD->vbases_begin()->getType()->getAsCXXRecordDecl(); 2302 2303 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) 2304 return; 2305 2306 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2307 // Insert all types. 2308 ClassPairTy ClassPair(RD, I.first); 2309 2310 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2311 } 2312 } 2313 2314 std::unique_ptr<VTableLayout> 2315 ItaniumVTableContext::createConstructionVTableLayout( 2316 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 2317 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { 2318 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, 2319 MostDerivedClassIsVirtual, LayoutClass); 2320 return CreateVTableLayout(Builder); 2321 } 2322 2323 namespace { 2324 2325 // Vtables in the Microsoft ABI are different from the Itanium ABI. 2326 // 2327 // The main differences are: 2328 // 1. Separate vftable and vbtable. 2329 // 2330 // 2. Each subobject with a vfptr gets its own vftable rather than an address 2331 // point in a single vtable shared between all the subobjects. 2332 // Each vftable is represented by a separate section and virtual calls 2333 // must be done using the vftable which has a slot for the function to be 2334 // called. 2335 // 2336 // 3. Virtual method definitions expect their 'this' parameter to point to the 2337 // first vfptr whose table provides a compatible overridden method. In many 2338 // cases, this permits the original vf-table entry to directly call 2339 // the method instead of passing through a thunk. 2340 // See example before VFTableBuilder::ComputeThisOffset below. 2341 // 2342 // A compatible overridden method is one which does not have a non-trivial 2343 // covariant-return adjustment. 2344 // 2345 // The first vfptr is the one with the lowest offset in the complete-object 2346 // layout of the defining class, and the method definition will subtract 2347 // that constant offset from the parameter value to get the real 'this' 2348 // value. Therefore, if the offset isn't really constant (e.g. if a virtual 2349 // function defined in a virtual base is overridden in a more derived 2350 // virtual base and these bases have a reverse order in the complete 2351 // object), the vf-table may require a this-adjustment thunk. 2352 // 2353 // 4. vftables do not contain new entries for overrides that merely require 2354 // this-adjustment. Together with #3, this keeps vf-tables smaller and 2355 // eliminates the need for this-adjustment thunks in many cases, at the cost 2356 // of often requiring redundant work to adjust the "this" pointer. 2357 // 2358 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. 2359 // Vtordisps are emitted into the class layout if a class has 2360 // a) a user-defined ctor/dtor 2361 // and 2362 // b) a method overriding a method in a virtual base. 2363 // 2364 // To get a better understanding of this code, 2365 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp 2366 2367 class VFTableBuilder { 2368 public: 2369 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 2370 MethodVFTableLocationsTy; 2371 2372 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> 2373 method_locations_range; 2374 2375 private: 2376 /// VTables - Global vtable information. 2377 MicrosoftVTableContext &VTables; 2378 2379 /// Context - The ASTContext which we will use for layout information. 2380 ASTContext &Context; 2381 2382 /// MostDerivedClass - The most derived class for which we're building this 2383 /// vtable. 2384 const CXXRecordDecl *MostDerivedClass; 2385 2386 const ASTRecordLayout &MostDerivedClassLayout; 2387 2388 const VPtrInfo &WhichVFPtr; 2389 2390 /// FinalOverriders - The final overriders of the most derived class. 2391 const FinalOverriders Overriders; 2392 2393 /// Components - The components of the vftable being built. 2394 SmallVector<VTableComponent, 64> Components; 2395 2396 MethodVFTableLocationsTy MethodVFTableLocations; 2397 2398 /// Does this class have an RTTI component? 2399 bool HasRTTIComponent = false; 2400 2401 /// MethodInfo - Contains information about a method in a vtable. 2402 /// (Used for computing 'this' pointer adjustment thunks. 2403 struct MethodInfo { 2404 /// VBTableIndex - The nonzero index in the vbtable that 2405 /// this method's base has, or zero. 2406 const uint64_t VBTableIndex; 2407 2408 /// VFTableIndex - The index in the vftable that this method has. 2409 const uint64_t VFTableIndex; 2410 2411 /// Shadowed - Indicates if this vftable slot is shadowed by 2412 /// a slot for a covariant-return override. If so, it shouldn't be printed 2413 /// or used for vcalls in the most derived class. 2414 bool Shadowed; 2415 2416 /// UsesExtraSlot - Indicates if this vftable slot was created because 2417 /// any of the overridden slots required a return adjusting thunk. 2418 bool UsesExtraSlot; 2419 2420 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, 2421 bool UsesExtraSlot = false) 2422 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), 2423 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} 2424 2425 MethodInfo() 2426 : VBTableIndex(0), VFTableIndex(0), Shadowed(false), 2427 UsesExtraSlot(false) {} 2428 }; 2429 2430 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 2431 2432 /// MethodInfoMap - The information for all methods in the vftable we're 2433 /// currently building. 2434 MethodInfoMapTy MethodInfoMap; 2435 2436 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 2437 2438 /// VTableThunks - The thunks by vftable index in the vftable currently being 2439 /// built. 2440 VTableThunksMapTy VTableThunks; 2441 2442 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 2443 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 2444 2445 /// Thunks - A map that contains all the thunks needed for all methods in the 2446 /// most derived class for which the vftable is currently being built. 2447 ThunksMapTy Thunks; 2448 2449 /// AddThunk - Add a thunk for the given method. 2450 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { 2451 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; 2452 2453 // Check if we have this thunk already. 2454 if (llvm::find(ThunksVector, Thunk) != ThunksVector.end()) 2455 return; 2456 2457 ThunksVector.push_back(Thunk); 2458 } 2459 2460 /// ComputeThisOffset - Returns the 'this' argument offset for the given 2461 /// method, relative to the beginning of the MostDerivedClass. 2462 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); 2463 2464 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, 2465 CharUnits ThisOffset, ThisAdjustment &TA); 2466 2467 /// AddMethod - Add a single virtual member function to the vftable 2468 /// components vector. 2469 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { 2470 if (!TI.isEmpty()) { 2471 VTableThunks[Components.size()] = TI; 2472 AddThunk(MD, TI); 2473 } 2474 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2475 assert(TI.Return.isEmpty() && 2476 "Destructor can't have return adjustment!"); 2477 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 2478 } else { 2479 Components.push_back(VTableComponent::MakeFunction(MD)); 2480 } 2481 } 2482 2483 /// AddMethods - Add the methods of this base subobject and the relevant 2484 /// subbases to the vftable we're currently laying out. 2485 void AddMethods(BaseSubobject Base, unsigned BaseDepth, 2486 const CXXRecordDecl *LastVBase, 2487 BasesSetVectorTy &VisitedBases); 2488 2489 void LayoutVFTable() { 2490 // RTTI data goes before all other entries. 2491 if (HasRTTIComponent) 2492 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 2493 2494 BasesSetVectorTy VisitedBases; 2495 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, 2496 VisitedBases); 2497 assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) && 2498 "vftable can't be empty"); 2499 2500 assert(MethodVFTableLocations.empty()); 2501 for (const auto &I : MethodInfoMap) { 2502 const CXXMethodDecl *MD = I.first; 2503 const MethodInfo &MI = I.second; 2504 assert(MD == MD->getCanonicalDecl()); 2505 2506 // Skip the methods that the MostDerivedClass didn't override 2507 // and the entries shadowed by return adjusting thunks. 2508 if (MD->getParent() != MostDerivedClass || MI.Shadowed) 2509 continue; 2510 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), 2511 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); 2512 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2513 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; 2514 } else { 2515 MethodVFTableLocations[MD] = Loc; 2516 } 2517 } 2518 } 2519 2520 public: 2521 VFTableBuilder(MicrosoftVTableContext &VTables, 2522 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) 2523 : VTables(VTables), 2524 Context(MostDerivedClass->getASTContext()), 2525 MostDerivedClass(MostDerivedClass), 2526 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), 2527 WhichVFPtr(Which), 2528 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { 2529 // Provide the RTTI component if RTTIData is enabled. If the vftable would 2530 // be available externally, we should not provide the RTTI componenent. It 2531 // is currently impossible to get available externally vftables with either 2532 // dllimport or extern template instantiations, but eventually we may add a 2533 // flag to support additional devirtualization that needs this. 2534 if (Context.getLangOpts().RTTIData) 2535 HasRTTIComponent = true; 2536 2537 LayoutVFTable(); 2538 2539 if (Context.getLangOpts().DumpVTableLayouts) 2540 dumpLayout(llvm::outs()); 2541 } 2542 2543 uint64_t getNumThunks() const { return Thunks.size(); } 2544 2545 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } 2546 2547 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } 2548 2549 method_locations_range vtable_locations() const { 2550 return method_locations_range(MethodVFTableLocations.begin(), 2551 MethodVFTableLocations.end()); 2552 } 2553 2554 ArrayRef<VTableComponent> vtable_components() const { return Components; } 2555 2556 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 2557 return VTableThunks.begin(); 2558 } 2559 2560 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 2561 return VTableThunks.end(); 2562 } 2563 2564 void dumpLayout(raw_ostream &); 2565 }; 2566 2567 } // end namespace 2568 2569 // Let's study one class hierarchy as an example: 2570 // struct A { 2571 // virtual void f(); 2572 // int x; 2573 // }; 2574 // 2575 // struct B : virtual A { 2576 // virtual void f(); 2577 // }; 2578 // 2579 // Record layouts: 2580 // struct A: 2581 // 0 | (A vftable pointer) 2582 // 4 | int x 2583 // 2584 // struct B: 2585 // 0 | (B vbtable pointer) 2586 // 4 | struct A (virtual base) 2587 // 4 | (A vftable pointer) 2588 // 8 | int x 2589 // 2590 // Let's assume we have a pointer to the A part of an object of dynamic type B: 2591 // B b; 2592 // A *a = (A*)&b; 2593 // a->f(); 2594 // 2595 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects 2596 // "this" parameter to point at the A subobject, which is B+4. 2597 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, 2598 // performed as a *static* adjustment. 2599 // 2600 // Interesting thing happens when we alter the relative placement of A and B 2601 // subobjects in a class: 2602 // struct C : virtual B { }; 2603 // 2604 // C c; 2605 // A *a = (A*)&c; 2606 // a->f(); 2607 // 2608 // Respective record layout is: 2609 // 0 | (C vbtable pointer) 2610 // 4 | struct A (virtual base) 2611 // 4 | (A vftable pointer) 2612 // 8 | int x 2613 // 12 | struct B (virtual base) 2614 // 12 | (B vbtable pointer) 2615 // 2616 // The final overrider of f() in class C is still B::f(), so B+4 should be 2617 // passed as "this" to that code. However, "a" points at B-8, so the respective 2618 // vftable entry should hold a thunk that adds 12 to the "this" argument before 2619 // performing a tail call to B::f(). 2620 // 2621 // With this example in mind, we can now calculate the 'this' argument offset 2622 // for the given method, relative to the beginning of the MostDerivedClass. 2623 CharUnits 2624 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { 2625 BasesSetVectorTy Bases; 2626 2627 { 2628 // Find the set of least derived bases that define the given method. 2629 OverriddenMethodsSetTy VisitedOverriddenMethods; 2630 auto InitialOverriddenDefinitionCollector = [&]( 2631 const CXXMethodDecl *OverriddenMD) { 2632 if (OverriddenMD->size_overridden_methods() == 0) 2633 Bases.insert(OverriddenMD->getParent()); 2634 // Don't recurse on this method if we've already collected it. 2635 return VisitedOverriddenMethods.insert(OverriddenMD).second; 2636 }; 2637 visitAllOverriddenMethods(Overrider.Method, 2638 InitialOverriddenDefinitionCollector); 2639 } 2640 2641 // If there are no overrides then 'this' is located 2642 // in the base that defines the method. 2643 if (Bases.size() == 0) 2644 return Overrider.Offset; 2645 2646 CXXBasePaths Paths; 2647 Overrider.Method->getParent()->lookupInBases( 2648 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { 2649 return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); 2650 }, 2651 Paths); 2652 2653 // This will hold the smallest this offset among overridees of MD. 2654 // This implies that an offset of a non-virtual base will dominate an offset 2655 // of a virtual base to potentially reduce the number of thunks required 2656 // in the derived classes that inherit this method. 2657 CharUnits Ret; 2658 bool First = true; 2659 2660 const ASTRecordLayout &OverriderRDLayout = 2661 Context.getASTRecordLayout(Overrider.Method->getParent()); 2662 for (const CXXBasePath &Path : Paths) { 2663 CharUnits ThisOffset = Overrider.Offset; 2664 CharUnits LastVBaseOffset; 2665 2666 // For each path from the overrider to the parents of the overridden 2667 // methods, traverse the path, calculating the this offset in the most 2668 // derived class. 2669 for (const CXXBasePathElement &Element : Path) { 2670 QualType CurTy = Element.Base->getType(); 2671 const CXXRecordDecl *PrevRD = Element.Class, 2672 *CurRD = CurTy->getAsCXXRecordDecl(); 2673 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); 2674 2675 if (Element.Base->isVirtual()) { 2676 // The interesting things begin when you have virtual inheritance. 2677 // The final overrider will use a static adjustment equal to the offset 2678 // of the vbase in the final overrider class. 2679 // For example, if the final overrider is in a vbase B of the most 2680 // derived class and it overrides a method of the B's own vbase A, 2681 // it uses A* as "this". In its prologue, it can cast A* to B* with 2682 // a static offset. This offset is used regardless of the actual 2683 // offset of A from B in the most derived class, requiring an 2684 // this-adjusting thunk in the vftable if A and B are laid out 2685 // differently in the most derived class. 2686 LastVBaseOffset = ThisOffset = 2687 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); 2688 } else { 2689 ThisOffset += Layout.getBaseClassOffset(CurRD); 2690 } 2691 } 2692 2693 if (isa<CXXDestructorDecl>(Overrider.Method)) { 2694 if (LastVBaseOffset.isZero()) { 2695 // If a "Base" class has at least one non-virtual base with a virtual 2696 // destructor, the "Base" virtual destructor will take the address 2697 // of the "Base" subobject as the "this" argument. 2698 ThisOffset = Overrider.Offset; 2699 } else { 2700 // A virtual destructor of a virtual base takes the address of the 2701 // virtual base subobject as the "this" argument. 2702 ThisOffset = LastVBaseOffset; 2703 } 2704 } 2705 2706 if (Ret > ThisOffset || First) { 2707 First = false; 2708 Ret = ThisOffset; 2709 } 2710 } 2711 2712 assert(!First && "Method not found in the given subobject?"); 2713 return Ret; 2714 } 2715 2716 // Things are getting even more complex when the "this" adjustment has to 2717 // use a dynamic offset instead of a static one, or even two dynamic offsets. 2718 // This is sometimes required when a virtual call happens in the middle of 2719 // a non-most-derived class construction or destruction. 2720 // 2721 // Let's take a look at the following example: 2722 // struct A { 2723 // virtual void f(); 2724 // }; 2725 // 2726 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. 2727 // 2728 // struct B : virtual A { 2729 // virtual void f(); 2730 // B() { 2731 // foo(this); 2732 // } 2733 // }; 2734 // 2735 // struct C : virtual B { 2736 // virtual void f(); 2737 // }; 2738 // 2739 // Record layouts for these classes are: 2740 // struct A 2741 // 0 | (A vftable pointer) 2742 // 2743 // struct B 2744 // 0 | (B vbtable pointer) 2745 // 4 | (vtordisp for vbase A) 2746 // 8 | struct A (virtual base) 2747 // 8 | (A vftable pointer) 2748 // 2749 // struct C 2750 // 0 | (C vbtable pointer) 2751 // 4 | (vtordisp for vbase A) 2752 // 8 | struct A (virtual base) // A precedes B! 2753 // 8 | (A vftable pointer) 2754 // 12 | struct B (virtual base) 2755 // 12 | (B vbtable pointer) 2756 // 2757 // When one creates an object of type C, the C constructor: 2758 // - initializes all the vbptrs, then 2759 // - calls the A subobject constructor 2760 // (initializes A's vfptr with an address of A vftable), then 2761 // - calls the B subobject constructor 2762 // (initializes A's vfptr with an address of B vftable and vtordisp for A), 2763 // that in turn calls foo(), then 2764 // - initializes A's vfptr with an address of C vftable and zeroes out the 2765 // vtordisp 2766 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable 2767 // without vtordisp thunks? 2768 // FIXME: how are vtordisp handled in the presence of nooverride/final? 2769 // 2770 // When foo() is called, an object with a layout of class C has a vftable 2771 // referencing B::f() that assumes a B layout, so the "this" adjustments are 2772 // incorrect, unless an extra adjustment is done. This adjustment is called 2773 // "vtordisp adjustment". Vtordisp basically holds the difference between the 2774 // actual location of a vbase in the layout class and the location assumed by 2775 // the vftable of the class being constructed/destructed. Vtordisp is only 2776 // needed if "this" escapes a 2777 // structor (or we can't prove otherwise). 2778 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an 2779 // estimation of a dynamic adjustment] 2780 // 2781 // foo() gets a pointer to the A vbase and doesn't know anything about B or C, 2782 // so it just passes that pointer as "this" in a virtual call. 2783 // If there was no vtordisp, that would just dispatch to B::f(). 2784 // However, B::f() assumes B+8 is passed as "this", 2785 // yet the pointer foo() passes along is B-4 (i.e. C+8). 2786 // An extra adjustment is needed, so we emit a thunk into the B vftable. 2787 // This vtordisp thunk subtracts the value of vtordisp 2788 // from the "this" argument (-12) before making a tailcall to B::f(). 2789 // 2790 // Let's consider an even more complex example: 2791 // struct D : virtual B, virtual C { 2792 // D() { 2793 // foo(this); 2794 // } 2795 // }; 2796 // 2797 // struct D 2798 // 0 | (D vbtable pointer) 2799 // 4 | (vtordisp for vbase A) 2800 // 8 | struct A (virtual base) // A precedes both B and C! 2801 // 8 | (A vftable pointer) 2802 // 12 | struct B (virtual base) // B precedes C! 2803 // 12 | (B vbtable pointer) 2804 // 16 | struct C (virtual base) 2805 // 16 | (C vbtable pointer) 2806 // 2807 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall 2808 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() 2809 // passes along A, which is C-8. The A vtordisp holds 2810 // "D.vbptr[index_of_A] - offset_of_A_in_D" 2811 // and we statically know offset_of_A_in_D, so can get a pointer to D. 2812 // When we know it, we can make an extra vbtable lookup to locate the C vbase 2813 // and one extra static adjustment to calculate the expected value of C+8. 2814 void VFTableBuilder::CalculateVtordispAdjustment( 2815 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, 2816 ThisAdjustment &TA) { 2817 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = 2818 MostDerivedClassLayout.getVBaseOffsetsMap(); 2819 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = 2820 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); 2821 assert(VBaseMapEntry != VBaseMap.end()); 2822 2823 // If there's no vtordisp or the final overrider is defined in the same vbase 2824 // as the initial declaration, we don't need any vtordisp adjustment. 2825 if (!VBaseMapEntry->second.hasVtorDisp() || 2826 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) 2827 return; 2828 2829 // OK, now we know we need to use a vtordisp thunk. 2830 // The implicit vtordisp field is located right before the vbase. 2831 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; 2832 TA.Virtual.Microsoft.VtordispOffset = 2833 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; 2834 2835 // A simple vtordisp thunk will suffice if the final overrider is defined 2836 // in either the most derived class or its non-virtual base. 2837 if (Overrider.Method->getParent() == MostDerivedClass || 2838 !Overrider.VirtualBase) 2839 return; 2840 2841 // Otherwise, we need to do use the dynamic offset of the final overrider 2842 // in order to get "this" adjustment right. 2843 TA.Virtual.Microsoft.VBPtrOffset = 2844 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - 2845 MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); 2846 TA.Virtual.Microsoft.VBOffsetOffset = 2847 Context.getTypeSizeInChars(Context.IntTy).getQuantity() * 2848 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); 2849 2850 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); 2851 } 2852 2853 static void GroupNewVirtualOverloads( 2854 const CXXRecordDecl *RD, 2855 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { 2856 // Put the virtual methods into VirtualMethods in the proper order: 2857 // 1) Group overloads by declaration name. New groups are added to the 2858 // vftable in the order of their first declarations in this class 2859 // (including overrides, non-virtual methods and any other named decl that 2860 // might be nested within the class). 2861 // 2) In each group, new overloads appear in the reverse order of declaration. 2862 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; 2863 SmallVector<MethodGroup, 10> Groups; 2864 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; 2865 VisitedGroupIndicesTy VisitedGroupIndices; 2866 for (const auto *D : RD->decls()) { 2867 const auto *ND = dyn_cast<NamedDecl>(D); 2868 if (!ND) 2869 continue; 2870 VisitedGroupIndicesTy::iterator J; 2871 bool Inserted; 2872 std::tie(J, Inserted) = VisitedGroupIndices.insert( 2873 std::make_pair(ND->getDeclName(), Groups.size())); 2874 if (Inserted) 2875 Groups.push_back(MethodGroup()); 2876 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 2877 if (MD->isVirtual()) 2878 Groups[J->second].push_back(MD->getCanonicalDecl()); 2879 } 2880 2881 for (const MethodGroup &Group : Groups) 2882 VirtualMethods.append(Group.rbegin(), Group.rend()); 2883 } 2884 2885 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { 2886 for (const auto &B : RD->bases()) { 2887 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) 2888 return true; 2889 } 2890 return false; 2891 } 2892 2893 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, 2894 const CXXRecordDecl *LastVBase, 2895 BasesSetVectorTy &VisitedBases) { 2896 const CXXRecordDecl *RD = Base.getBase(); 2897 if (!RD->isPolymorphic()) 2898 return; 2899 2900 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2901 2902 // See if this class expands a vftable of the base we look at, which is either 2903 // the one defined by the vfptr base path or the primary base of the current 2904 // class. 2905 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; 2906 CharUnits NextBaseOffset; 2907 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { 2908 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; 2909 if (isDirectVBase(NextBase, RD)) { 2910 NextLastVBase = NextBase; 2911 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); 2912 } else { 2913 NextBaseOffset = 2914 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); 2915 } 2916 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 2917 assert(!Layout.isPrimaryBaseVirtual() && 2918 "No primary virtual bases in this ABI"); 2919 NextBase = PrimaryBase; 2920 NextBaseOffset = Base.getBaseOffset(); 2921 } 2922 2923 if (NextBase) { 2924 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, 2925 NextLastVBase, VisitedBases); 2926 if (!VisitedBases.insert(NextBase)) 2927 llvm_unreachable("Found a duplicate primary base!"); 2928 } 2929 2930 SmallVector<const CXXMethodDecl*, 10> VirtualMethods; 2931 // Put virtual methods in the proper order. 2932 GroupNewVirtualOverloads(RD, VirtualMethods); 2933 2934 // Now go through all virtual member functions and add them to the current 2935 // vftable. This is done by 2936 // - replacing overridden methods in their existing slots, as long as they 2937 // don't require return adjustment; calculating This adjustment if needed. 2938 // - adding new slots for methods of the current base not present in any 2939 // sub-bases; 2940 // - adding new slots for methods that require Return adjustment. 2941 // We keep track of the methods visited in the sub-bases in MethodInfoMap. 2942 for (const CXXMethodDecl *MD : VirtualMethods) { 2943 FinalOverriders::OverriderInfo FinalOverrider = 2944 Overriders.getOverrider(MD, Base.getBaseOffset()); 2945 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; 2946 const CXXMethodDecl *OverriddenMD = 2947 FindNearestOverriddenMethod(MD, VisitedBases); 2948 2949 ThisAdjustment ThisAdjustmentOffset; 2950 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; 2951 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); 2952 ThisAdjustmentOffset.NonVirtual = 2953 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); 2954 if ((OverriddenMD || FinalOverriderMD != MD) && 2955 WhichVFPtr.getVBaseWithVPtr()) 2956 CalculateVtordispAdjustment(FinalOverrider, ThisOffset, 2957 ThisAdjustmentOffset); 2958 2959 unsigned VBIndex = 2960 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; 2961 2962 if (OverriddenMD) { 2963 // If MD overrides anything in this vftable, we need to update the 2964 // entries. 2965 MethodInfoMapTy::iterator OverriddenMDIterator = 2966 MethodInfoMap.find(OverriddenMD); 2967 2968 // If the overridden method went to a different vftable, skip it. 2969 if (OverriddenMDIterator == MethodInfoMap.end()) 2970 continue; 2971 2972 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; 2973 2974 VBIndex = OverriddenMethodInfo.VBTableIndex; 2975 2976 // Let's check if the overrider requires any return adjustments. 2977 // We must create a new slot if the MD's return type is not trivially 2978 // convertible to the OverriddenMD's one. 2979 // Once a chain of method overrides adds a return adjusting vftable slot, 2980 // all subsequent overrides will also use an extra method slot. 2981 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( 2982 Context, MD, OverriddenMD).isEmpty() || 2983 OverriddenMethodInfo.UsesExtraSlot; 2984 2985 if (!ReturnAdjustingThunk) { 2986 // No return adjustment needed - just replace the overridden method info 2987 // with the current info. 2988 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); 2989 MethodInfoMap.erase(OverriddenMDIterator); 2990 2991 assert(!MethodInfoMap.count(MD) && 2992 "Should not have method info for this method yet!"); 2993 MethodInfoMap.insert(std::make_pair(MD, MI)); 2994 continue; 2995 } 2996 2997 // In case we need a return adjustment, we'll add a new slot for 2998 // the overrider. Mark the overridden method as shadowed by the new slot. 2999 OverriddenMethodInfo.Shadowed = true; 3000 3001 // Force a special name mangling for a return-adjusting thunk 3002 // unless the method is the final overrider without this adjustment. 3003 ForceReturnAdjustmentMangling = 3004 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); 3005 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || 3006 MD->size_overridden_methods()) { 3007 // Skip methods that don't belong to the vftable of the current class, 3008 // e.g. each method that wasn't seen in any of the visited sub-bases 3009 // but overrides multiple methods of other sub-bases. 3010 continue; 3011 } 3012 3013 // If we got here, MD is a method not seen in any of the sub-bases or 3014 // it requires return adjustment. Insert the method info for this method. 3015 MethodInfo MI(VBIndex, 3016 HasRTTIComponent ? Components.size() - 1 : Components.size(), 3017 ReturnAdjustingThunk); 3018 3019 assert(!MethodInfoMap.count(MD) && 3020 "Should not have method info for this method yet!"); 3021 MethodInfoMap.insert(std::make_pair(MD, MI)); 3022 3023 // Check if this overrider needs a return adjustment. 3024 // We don't want to do this for pure virtual member functions. 3025 BaseOffset ReturnAdjustmentOffset; 3026 ReturnAdjustment ReturnAdjustment; 3027 if (!FinalOverriderMD->isPure()) { 3028 ReturnAdjustmentOffset = 3029 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); 3030 } 3031 if (!ReturnAdjustmentOffset.isEmpty()) { 3032 ForceReturnAdjustmentMangling = true; 3033 ReturnAdjustment.NonVirtual = 3034 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); 3035 if (ReturnAdjustmentOffset.VirtualBase) { 3036 const ASTRecordLayout &DerivedLayout = 3037 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); 3038 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = 3039 DerivedLayout.getVBPtrOffset().getQuantity(); 3040 ReturnAdjustment.Virtual.Microsoft.VBIndex = 3041 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, 3042 ReturnAdjustmentOffset.VirtualBase); 3043 } 3044 } 3045 3046 AddMethod(FinalOverriderMD, 3047 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, 3048 ForceReturnAdjustmentMangling ? MD : nullptr)); 3049 } 3050 } 3051 3052 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { 3053 for (const CXXRecordDecl *Elem : 3054 llvm::make_range(Path.rbegin(), Path.rend())) { 3055 Out << "'"; 3056 Elem->printQualifiedName(Out); 3057 Out << "' in "; 3058 } 3059 } 3060 3061 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, 3062 bool ContinueFirstLine) { 3063 const ReturnAdjustment &R = TI.Return; 3064 bool Multiline = false; 3065 const char *LinePrefix = "\n "; 3066 if (!R.isEmpty() || TI.Method) { 3067 if (!ContinueFirstLine) 3068 Out << LinePrefix; 3069 Out << "[return adjustment (to type '" 3070 << TI.Method->getReturnType().getCanonicalType().getAsString() 3071 << "'): "; 3072 if (R.Virtual.Microsoft.VBPtrOffset) 3073 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; 3074 if (R.Virtual.Microsoft.VBIndex) 3075 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; 3076 Out << R.NonVirtual << " non-virtual]"; 3077 Multiline = true; 3078 } 3079 3080 const ThisAdjustment &T = TI.This; 3081 if (!T.isEmpty()) { 3082 if (Multiline || !ContinueFirstLine) 3083 Out << LinePrefix; 3084 Out << "[this adjustment: "; 3085 if (!TI.This.Virtual.isEmpty()) { 3086 assert(T.Virtual.Microsoft.VtordispOffset < 0); 3087 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; 3088 if (T.Virtual.Microsoft.VBPtrOffset) { 3089 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset 3090 << " to the left,"; 3091 assert(T.Virtual.Microsoft.VBOffsetOffset > 0); 3092 Out << LinePrefix << " vboffset at " 3093 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; 3094 } 3095 } 3096 Out << T.NonVirtual << " non-virtual]"; 3097 } 3098 } 3099 3100 void VFTableBuilder::dumpLayout(raw_ostream &Out) { 3101 Out << "VFTable for "; 3102 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out); 3103 Out << "'"; 3104 MostDerivedClass->printQualifiedName(Out); 3105 Out << "' (" << Components.size() 3106 << (Components.size() == 1 ? " entry" : " entries") << ").\n"; 3107 3108 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 3109 Out << llvm::format("%4d | ", I); 3110 3111 const VTableComponent &Component = Components[I]; 3112 3113 // Dump the component. 3114 switch (Component.getKind()) { 3115 case VTableComponent::CK_RTTI: 3116 Component.getRTTIDecl()->printQualifiedName(Out); 3117 Out << " RTTI"; 3118 break; 3119 3120 case VTableComponent::CK_FunctionPointer: { 3121 const CXXMethodDecl *MD = Component.getFunctionDecl(); 3122 3123 // FIXME: Figure out how to print the real thunk type, since they can 3124 // differ in the return type. 3125 std::string Str = PredefinedExpr::ComputeName( 3126 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3127 Out << Str; 3128 if (MD->isPure()) 3129 Out << " [pure]"; 3130 3131 if (MD->isDeleted()) 3132 Out << " [deleted]"; 3133 3134 ThunkInfo Thunk = VTableThunks.lookup(I); 3135 if (!Thunk.isEmpty()) 3136 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3137 3138 break; 3139 } 3140 3141 case VTableComponent::CK_DeletingDtorPointer: { 3142 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 3143 3144 DD->printQualifiedName(Out); 3145 Out << "() [scalar deleting]"; 3146 3147 if (DD->isPure()) 3148 Out << " [pure]"; 3149 3150 ThunkInfo Thunk = VTableThunks.lookup(I); 3151 if (!Thunk.isEmpty()) { 3152 assert(Thunk.Return.isEmpty() && 3153 "No return adjustment needed for destructors!"); 3154 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3155 } 3156 3157 break; 3158 } 3159 3160 default: 3161 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3162 unsigned DiagID = Diags.getCustomDiagID( 3163 DiagnosticsEngine::Error, 3164 "Unexpected vftable component type %0 for component number %1"); 3165 Diags.Report(MostDerivedClass->getLocation(), DiagID) 3166 << I << Component.getKind(); 3167 } 3168 3169 Out << '\n'; 3170 } 3171 3172 Out << '\n'; 3173 3174 if (!Thunks.empty()) { 3175 // We store the method names in a map to get a stable order. 3176 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 3177 3178 for (const auto &I : Thunks) { 3179 const CXXMethodDecl *MD = I.first; 3180 std::string MethodName = PredefinedExpr::ComputeName( 3181 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3182 3183 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 3184 } 3185 3186 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { 3187 const std::string &MethodName = MethodNameAndDecl.first; 3188 const CXXMethodDecl *MD = MethodNameAndDecl.second; 3189 3190 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 3191 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS, 3192 const ThunkInfo &RHS) { 3193 // Keep different thunks with the same adjustments in the order they 3194 // were put into the vector. 3195 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 3196 }); 3197 3198 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 3199 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 3200 3201 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 3202 const ThunkInfo &Thunk = ThunksVector[I]; 3203 3204 Out << llvm::format("%4d | ", I); 3205 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); 3206 Out << '\n'; 3207 } 3208 3209 Out << '\n'; 3210 } 3211 } 3212 3213 Out.flush(); 3214 } 3215 3216 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, 3217 ArrayRef<const CXXRecordDecl *> B) { 3218 for (const CXXRecordDecl *Decl : B) { 3219 if (A.count(Decl)) 3220 return true; 3221 } 3222 return false; 3223 } 3224 3225 static bool rebucketPaths(VPtrInfoVector &Paths); 3226 3227 /// Produces MSVC-compatible vbtable data. The symbols produced by this 3228 /// algorithm match those produced by MSVC 2012 and newer, which is different 3229 /// from MSVC 2010. 3230 /// 3231 /// MSVC 2012 appears to minimize the vbtable names using the following 3232 /// algorithm. First, walk the class hierarchy in the usual order, depth first, 3233 /// left to right, to find all of the subobjects which contain a vbptr field. 3234 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each 3235 /// record with a vbptr creates an initially empty path. 3236 /// 3237 /// To combine paths from child nodes, the paths are compared to check for 3238 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of 3239 /// components in the same order. Each group of ambiguous paths is extended by 3240 /// appending the class of the base from which it came. If the current class 3241 /// node produced an ambiguous path, its path is extended with the current class. 3242 /// After extending paths, MSVC again checks for ambiguity, and extends any 3243 /// ambiguous path which wasn't already extended. Because each node yields an 3244 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once 3245 /// to produce an unambiguous set of paths. 3246 /// 3247 /// TODO: Presumably vftables use the same algorithm. 3248 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, 3249 const CXXRecordDecl *RD, 3250 VPtrInfoVector &Paths) { 3251 assert(Paths.empty()); 3252 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3253 3254 // Base case: this subobject has its own vptr. 3255 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) 3256 Paths.push_back(std::make_unique<VPtrInfo>(RD)); 3257 3258 // Recursive case: get all the vbtables from our bases and remove anything 3259 // that shares a virtual base. 3260 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; 3261 for (const auto &B : RD->bases()) { 3262 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 3263 if (B.isVirtual() && VBasesSeen.count(Base)) 3264 continue; 3265 3266 if (!Base->isDynamicClass()) 3267 continue; 3268 3269 const VPtrInfoVector &BasePaths = 3270 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); 3271 3272 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { 3273 // Don't include the path if it goes through a virtual base that we've 3274 // already included. 3275 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) 3276 continue; 3277 3278 // Copy the path and adjust it as necessary. 3279 auto P = std::make_unique<VPtrInfo>(*BaseInfo); 3280 3281 // We mangle Base into the path if the path would've been ambiguous and it 3282 // wasn't already extended with Base. 3283 if (P->MangledPath.empty() || P->MangledPath.back() != Base) 3284 P->NextBaseToMangle = Base; 3285 3286 // Keep track of which vtable the derived class is going to extend with 3287 // new methods or bases. We append to either the vftable of our primary 3288 // base, or the first non-virtual base that has a vbtable. 3289 if (P->ObjectWithVPtr == Base && 3290 Base == (ForVBTables ? Layout.getBaseSharingVBPtr() 3291 : Layout.getPrimaryBase())) 3292 P->ObjectWithVPtr = RD; 3293 3294 // Keep track of the full adjustment from the MDC to this vtable. The 3295 // adjustment is captured by an optional vbase and a non-virtual offset. 3296 if (B.isVirtual()) 3297 P->ContainingVBases.push_back(Base); 3298 else if (P->ContainingVBases.empty()) 3299 P->NonVirtualOffset += Layout.getBaseClassOffset(Base); 3300 3301 // Update the full offset in the MDC. 3302 P->FullOffsetInMDC = P->NonVirtualOffset; 3303 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) 3304 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); 3305 3306 Paths.push_back(std::move(P)); 3307 } 3308 3309 if (B.isVirtual()) 3310 VBasesSeen.insert(Base); 3311 3312 // After visiting any direct base, we've transitively visited all of its 3313 // morally virtual bases. 3314 for (const auto &VB : Base->vbases()) 3315 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); 3316 } 3317 3318 // Sort the paths into buckets, and if any of them are ambiguous, extend all 3319 // paths in ambiguous buckets. 3320 bool Changed = true; 3321 while (Changed) 3322 Changed = rebucketPaths(Paths); 3323 } 3324 3325 static bool extendPath(VPtrInfo &P) { 3326 if (P.NextBaseToMangle) { 3327 P.MangledPath.push_back(P.NextBaseToMangle); 3328 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. 3329 return true; 3330 } 3331 return false; 3332 } 3333 3334 static bool rebucketPaths(VPtrInfoVector &Paths) { 3335 // What we're essentially doing here is bucketing together ambiguous paths. 3336 // Any bucket with more than one path in it gets extended by NextBase, which 3337 // is usually the direct base of the inherited the vbptr. This code uses a 3338 // sorted vector to implement a multiset to form the buckets. Note that the 3339 // ordering is based on pointers, but it doesn't change our output order. The 3340 // current algorithm is designed to match MSVC 2012's names. 3341 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted; 3342 PathsSorted.reserve(Paths.size()); 3343 for (auto& P : Paths) 3344 PathsSorted.push_back(*P); 3345 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) { 3346 return LHS.MangledPath < RHS.MangledPath; 3347 }); 3348 bool Changed = false; 3349 for (size_t I = 0, E = PathsSorted.size(); I != E;) { 3350 // Scan forward to find the end of the bucket. 3351 size_t BucketStart = I; 3352 do { 3353 ++I; 3354 } while (I != E && 3355 PathsSorted[BucketStart].get().MangledPath == 3356 PathsSorted[I].get().MangledPath); 3357 3358 // If this bucket has multiple paths, extend them all. 3359 if (I - BucketStart > 1) { 3360 for (size_t II = BucketStart; II != I; ++II) 3361 Changed |= extendPath(PathsSorted[II]); 3362 assert(Changed && "no paths were extended to fix ambiguity"); 3363 } 3364 } 3365 return Changed; 3366 } 3367 3368 MicrosoftVTableContext::~MicrosoftVTableContext() {} 3369 3370 namespace { 3371 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, 3372 llvm::DenseSet<BaseSubobject>> FullPathTy; 3373 } 3374 3375 // This recursive function finds all paths from a subobject centered at 3376 // (RD, Offset) to the subobject located at IntroducingObject. 3377 static void findPathsToSubobject(ASTContext &Context, 3378 const ASTRecordLayout &MostDerivedLayout, 3379 const CXXRecordDecl *RD, CharUnits Offset, 3380 BaseSubobject IntroducingObject, 3381 FullPathTy &FullPath, 3382 std::list<FullPathTy> &Paths) { 3383 if (BaseSubobject(RD, Offset) == IntroducingObject) { 3384 Paths.push_back(FullPath); 3385 return; 3386 } 3387 3388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3389 3390 for (const CXXBaseSpecifier &BS : RD->bases()) { 3391 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); 3392 CharUnits NewOffset = BS.isVirtual() 3393 ? MostDerivedLayout.getVBaseClassOffset(Base) 3394 : Offset + Layout.getBaseClassOffset(Base); 3395 FullPath.insert(BaseSubobject(Base, NewOffset)); 3396 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, 3397 IntroducingObject, FullPath, Paths); 3398 FullPath.pop_back(); 3399 } 3400 } 3401 3402 // Return the paths which are not subsets of other paths. 3403 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { 3404 FullPaths.remove_if([&](const FullPathTy &SpecificPath) { 3405 for (const FullPathTy &OtherPath : FullPaths) { 3406 if (&SpecificPath == &OtherPath) 3407 continue; 3408 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) { 3409 return OtherPath.count(BSO) != 0; 3410 })) { 3411 return true; 3412 } 3413 } 3414 return false; 3415 }); 3416 } 3417 3418 static CharUnits getOffsetOfFullPath(ASTContext &Context, 3419 const CXXRecordDecl *RD, 3420 const FullPathTy &FullPath) { 3421 const ASTRecordLayout &MostDerivedLayout = 3422 Context.getASTRecordLayout(RD); 3423 CharUnits Offset = CharUnits::fromQuantity(-1); 3424 for (const BaseSubobject &BSO : FullPath) { 3425 const CXXRecordDecl *Base = BSO.getBase(); 3426 // The first entry in the path is always the most derived record, skip it. 3427 if (Base == RD) { 3428 assert(Offset.getQuantity() == -1); 3429 Offset = CharUnits::Zero(); 3430 continue; 3431 } 3432 assert(Offset.getQuantity() != -1); 3433 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3434 // While we know which base has to be traversed, we don't know if that base 3435 // was a virtual base. 3436 const CXXBaseSpecifier *BaseBS = std::find_if( 3437 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { 3438 return BS.getType()->getAsCXXRecordDecl() == Base; 3439 }); 3440 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) 3441 : Offset + Layout.getBaseClassOffset(Base); 3442 RD = Base; 3443 } 3444 return Offset; 3445 } 3446 3447 // We want to select the path which introduces the most covariant overrides. If 3448 // two paths introduce overrides which the other path doesn't contain, issue a 3449 // diagnostic. 3450 static const FullPathTy *selectBestPath(ASTContext &Context, 3451 const CXXRecordDecl *RD, 3452 const VPtrInfo &Info, 3453 std::list<FullPathTy> &FullPaths) { 3454 // Handle some easy cases first. 3455 if (FullPaths.empty()) 3456 return nullptr; 3457 if (FullPaths.size() == 1) 3458 return &FullPaths.front(); 3459 3460 const FullPathTy *BestPath = nullptr; 3461 typedef std::set<const CXXMethodDecl *> OverriderSetTy; 3462 OverriderSetTy LastOverrides; 3463 for (const FullPathTy &SpecificPath : FullPaths) { 3464 assert(!SpecificPath.empty()); 3465 OverriderSetTy CurrentOverrides; 3466 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); 3467 // Find the distance from the start of the path to the subobject with the 3468 // VPtr. 3469 CharUnits BaseOffset = 3470 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); 3471 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); 3472 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { 3473 if (!MD->isVirtual()) 3474 continue; 3475 FinalOverriders::OverriderInfo OI = 3476 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); 3477 const CXXMethodDecl *OverridingMethod = OI.Method; 3478 // Only overriders which have a return adjustment introduce problematic 3479 // thunks. 3480 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) 3481 .isEmpty()) 3482 continue; 3483 // It's possible that the overrider isn't in this path. If so, skip it 3484 // because this path didn't introduce it. 3485 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); 3486 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) { 3487 return BSO.getBase() == OverridingParent; 3488 })) 3489 continue; 3490 CurrentOverrides.insert(OverridingMethod); 3491 } 3492 OverriderSetTy NewOverrides = 3493 llvm::set_difference(CurrentOverrides, LastOverrides); 3494 if (NewOverrides.empty()) 3495 continue; 3496 OverriderSetTy MissingOverrides = 3497 llvm::set_difference(LastOverrides, CurrentOverrides); 3498 if (MissingOverrides.empty()) { 3499 // This path is a strict improvement over the last path, let's use it. 3500 BestPath = &SpecificPath; 3501 std::swap(CurrentOverrides, LastOverrides); 3502 } else { 3503 // This path introduces an overrider with a conflicting covariant thunk. 3504 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3505 const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); 3506 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); 3507 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) 3508 << RD; 3509 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) 3510 << CovariantMD; 3511 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) 3512 << ConflictMD; 3513 } 3514 } 3515 // Go with the path that introduced the most covariant overrides. If there is 3516 // no such path, pick the first path. 3517 return BestPath ? BestPath : &FullPaths.front(); 3518 } 3519 3520 static void computeFullPathsForVFTables(ASTContext &Context, 3521 const CXXRecordDecl *RD, 3522 VPtrInfoVector &Paths) { 3523 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); 3524 FullPathTy FullPath; 3525 std::list<FullPathTy> FullPaths; 3526 for (const std::unique_ptr<VPtrInfo>& Info : Paths) { 3527 findPathsToSubobject( 3528 Context, MostDerivedLayout, RD, CharUnits::Zero(), 3529 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, 3530 FullPaths); 3531 FullPath.clear(); 3532 removeRedundantPaths(FullPaths); 3533 Info->PathToIntroducingObject.clear(); 3534 if (const FullPathTy *BestPath = 3535 selectBestPath(Context, RD, *Info, FullPaths)) 3536 for (const BaseSubobject &BSO : *BestPath) 3537 Info->PathToIntroducingObject.push_back(BSO.getBase()); 3538 FullPaths.clear(); 3539 } 3540 } 3541 3542 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, 3543 const MethodVFTableLocation &LHS, 3544 const MethodVFTableLocation &RHS) { 3545 CharUnits L = LHS.VFPtrOffset; 3546 CharUnits R = RHS.VFPtrOffset; 3547 if (LHS.VBase) 3548 L += Layout.getVBaseClassOffset(LHS.VBase); 3549 if (RHS.VBase) 3550 R += Layout.getVBaseClassOffset(RHS.VBase); 3551 return L < R; 3552 } 3553 3554 void MicrosoftVTableContext::computeVTableRelatedInformation( 3555 const CXXRecordDecl *RD) { 3556 assert(RD->isDynamicClass()); 3557 3558 // Check if we've computed this information before. 3559 if (VFPtrLocations.count(RD)) 3560 return; 3561 3562 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; 3563 3564 { 3565 auto VFPtrs = std::make_unique<VPtrInfoVector>(); 3566 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); 3567 computeFullPathsForVFTables(Context, RD, *VFPtrs); 3568 VFPtrLocations[RD] = std::move(VFPtrs); 3569 } 3570 3571 MethodVFTableLocationsTy NewMethodLocations; 3572 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { 3573 VFTableBuilder Builder(*this, RD, *VFPtr); 3574 3575 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); 3576 assert(VFTableLayouts.count(id) == 0); 3577 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( 3578 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 3579 VFTableLayouts[id] = std::make_unique<VTableLayout>( 3580 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks, 3581 EmptyAddressPointsMap); 3582 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 3583 3584 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3585 for (const auto &Loc : Builder.vtable_locations()) { 3586 auto Insert = NewMethodLocations.insert(Loc); 3587 if (!Insert.second) { 3588 const MethodVFTableLocation &NewLoc = Loc.second; 3589 MethodVFTableLocation &OldLoc = Insert.first->second; 3590 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc)) 3591 OldLoc = NewLoc; 3592 } 3593 } 3594 } 3595 3596 MethodVFTableLocations.insert(NewMethodLocations.begin(), 3597 NewMethodLocations.end()); 3598 if (Context.getLangOpts().DumpVTableLayouts) 3599 dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); 3600 } 3601 3602 void MicrosoftVTableContext::dumpMethodLocations( 3603 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, 3604 raw_ostream &Out) { 3605 // Compute the vtable indices for all the member functions. 3606 // Store them in a map keyed by the location so we'll get a sorted table. 3607 std::map<MethodVFTableLocation, std::string> IndicesMap; 3608 bool HasNonzeroOffset = false; 3609 3610 for (const auto &I : NewMethods) { 3611 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); 3612 assert(MD->isVirtual()); 3613 3614 std::string MethodName = PredefinedExpr::ComputeName( 3615 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3616 3617 if (isa<CXXDestructorDecl>(MD)) { 3618 IndicesMap[I.second] = MethodName + " [scalar deleting]"; 3619 } else { 3620 IndicesMap[I.second] = MethodName; 3621 } 3622 3623 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) 3624 HasNonzeroOffset = true; 3625 } 3626 3627 // Print the vtable indices for all the member functions. 3628 if (!IndicesMap.empty()) { 3629 Out << "VFTable indices for "; 3630 Out << "'"; 3631 RD->printQualifiedName(Out); 3632 Out << "' (" << IndicesMap.size() 3633 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; 3634 3635 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); 3636 uint64_t LastVBIndex = 0; 3637 for (const auto &I : IndicesMap) { 3638 CharUnits VFPtrOffset = I.first.VFPtrOffset; 3639 uint64_t VBIndex = I.first.VBTableIndex; 3640 if (HasNonzeroOffset && 3641 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { 3642 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); 3643 Out << " -- accessible via "; 3644 if (VBIndex) 3645 Out << "vbtable index " << VBIndex << ", "; 3646 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; 3647 LastVFPtrOffset = VFPtrOffset; 3648 LastVBIndex = VBIndex; 3649 } 3650 3651 uint64_t VTableIndex = I.first.Index; 3652 const std::string &MethodName = I.second; 3653 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; 3654 } 3655 Out << '\n'; 3656 } 3657 3658 Out.flush(); 3659 } 3660 3661 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( 3662 const CXXRecordDecl *RD) { 3663 VirtualBaseInfo *VBI; 3664 3665 { 3666 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, 3667 // as it may be modified and rehashed under us. 3668 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; 3669 if (Entry) 3670 return *Entry; 3671 Entry = std::make_unique<VirtualBaseInfo>(); 3672 VBI = Entry.get(); 3673 } 3674 3675 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); 3676 3677 // First, see if the Derived class shared the vbptr with a non-virtual base. 3678 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3679 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { 3680 // If the Derived class shares the vbptr with a non-virtual base, the shared 3681 // virtual bases come first so that the layout is the same. 3682 const VirtualBaseInfo &BaseInfo = 3683 computeVBTableRelatedInformation(VBPtrBase); 3684 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(), 3685 BaseInfo.VBTableIndices.end()); 3686 } 3687 3688 // New vbases are added to the end of the vbtable. 3689 // Skip the self entry and vbases visited in the non-virtual base, if any. 3690 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); 3691 for (const auto &VB : RD->vbases()) { 3692 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); 3693 if (!VBI->VBTableIndices.count(CurVBase)) 3694 VBI->VBTableIndices[CurVBase] = VBTableIndex++; 3695 } 3696 3697 return *VBI; 3698 } 3699 3700 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, 3701 const CXXRecordDecl *VBase) { 3702 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived); 3703 assert(VBInfo.VBTableIndices.count(VBase)); 3704 return VBInfo.VBTableIndices.find(VBase)->second; 3705 } 3706 3707 const VPtrInfoVector & 3708 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { 3709 return computeVBTableRelatedInformation(RD).VBPtrPaths; 3710 } 3711 3712 const VPtrInfoVector & 3713 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { 3714 computeVTableRelatedInformation(RD); 3715 3716 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); 3717 return *VFPtrLocations[RD]; 3718 } 3719 3720 const VTableLayout & 3721 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, 3722 CharUnits VFPtrOffset) { 3723 computeVTableRelatedInformation(RD); 3724 3725 VFTableIdTy id(RD, VFPtrOffset); 3726 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); 3727 return *VFTableLayouts[id]; 3728 } 3729 3730 MethodVFTableLocation 3731 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { 3732 assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() && 3733 "Only use this method for virtual methods or dtors"); 3734 if (isa<CXXDestructorDecl>(GD.getDecl())) 3735 assert(GD.getDtorType() == Dtor_Deleting); 3736 3737 GD = GD.getCanonicalDecl(); 3738 3739 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); 3740 if (I != MethodVFTableLocations.end()) 3741 return I->second; 3742 3743 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 3744 3745 computeVTableRelatedInformation(RD); 3746 3747 I = MethodVFTableLocations.find(GD); 3748 assert(I != MethodVFTableLocations.end() && "Did not find index!"); 3749 return I->second; 3750 } 3751