1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/RecordLayout.h" 10 #include "clang/AST/ASTContext.h" 11 #include "clang/AST/ASTDiagnostic.h" 12 #include "clang/AST/Attr.h" 13 #include "clang/AST/CXXInheritance.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclCXX.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/VTableBuilder.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/MathExtras.h" 23 24 using namespace clang; 25 26 namespace { 27 28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class. 29 /// For a class hierarchy like 30 /// 31 /// class A { }; 32 /// class B : A { }; 33 /// class C : A, B { }; 34 /// 35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo 36 /// instances, one for B and two for A. 37 /// 38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. 39 struct BaseSubobjectInfo { 40 /// Class - The class for this base info. 41 const CXXRecordDecl *Class; 42 43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not. 44 bool IsVirtual; 45 46 /// Bases - Information about the base subobjects. 47 SmallVector<BaseSubobjectInfo*, 4> Bases; 48 49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base 50 /// of this base info (if one exists). 51 BaseSubobjectInfo *PrimaryVirtualBaseInfo; 52 53 // FIXME: Document. 54 const BaseSubobjectInfo *Derived; 55 }; 56 57 /// Externally provided layout. Typically used when the AST source, such 58 /// as DWARF, lacks all the information that was available at compile time, such 59 /// as alignment attributes on fields and pragmas in effect. 60 struct ExternalLayout { 61 ExternalLayout() : Size(0), Align(0) {} 62 63 /// Overall record size in bits. 64 uint64_t Size; 65 66 /// Overall record alignment in bits. 67 uint64_t Align; 68 69 /// Record field offsets in bits. 70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; 71 72 /// Direct, non-virtual base offsets. 73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; 74 75 /// Virtual base offsets. 76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; 77 78 /// Get the offset of the given field. The external source must provide 79 /// entries for all fields in the record. 80 uint64_t getExternalFieldOffset(const FieldDecl *FD) { 81 assert(FieldOffsets.count(FD) && 82 "Field does not have an external offset"); 83 return FieldOffsets[FD]; 84 } 85 86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 87 auto Known = BaseOffsets.find(RD); 88 if (Known == BaseOffsets.end()) 89 return false; 90 BaseOffset = Known->second; 91 return true; 92 } 93 94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 95 auto Known = VirtualBaseOffsets.find(RD); 96 if (Known == VirtualBaseOffsets.end()) 97 return false; 98 BaseOffset = Known->second; 99 return true; 100 } 101 }; 102 103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different 104 /// offsets while laying out a C++ class. 105 class EmptySubobjectMap { 106 const ASTContext &Context; 107 uint64_t CharWidth; 108 109 /// Class - The class whose empty entries we're keeping track of. 110 const CXXRecordDecl *Class; 111 112 /// EmptyClassOffsets - A map from offsets to empty record decls. 113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; 114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; 115 EmptyClassOffsetsMapTy EmptyClassOffsets; 116 117 /// MaxEmptyClassOffset - The highest offset known to contain an empty 118 /// base subobject. 119 CharUnits MaxEmptyClassOffset; 120 121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or 122 /// member subobject that is empty. 123 void ComputeEmptySubobjectSizes(); 124 125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); 126 127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 128 CharUnits Offset, bool PlacingEmptyBase); 129 130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 131 const CXXRecordDecl *Class, CharUnits Offset, 132 bool PlacingOverlappingField); 133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, 134 bool PlacingOverlappingField); 135 136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty 137 /// subobjects beyond the given offset. 138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { 139 return Offset <= MaxEmptyClassOffset; 140 } 141 142 CharUnits 143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { 144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); 145 assert(FieldOffset % CharWidth == 0 && 146 "Field offset not at char boundary!"); 147 148 return Context.toCharUnitsFromBits(FieldOffset); 149 } 150 151 protected: 152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 153 CharUnits Offset) const; 154 155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 156 CharUnits Offset); 157 158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 159 const CXXRecordDecl *Class, 160 CharUnits Offset) const; 161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 162 CharUnits Offset) const; 163 164 public: 165 /// This holds the size of the largest empty subobject (either a base 166 /// or a member). Will be zero if the record being built doesn't contain 167 /// any empty classes. 168 CharUnits SizeOfLargestEmptySubobject; 169 170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) 171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { 172 ComputeEmptySubobjectSizes(); 173 } 174 175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed 176 /// at the given offset. 177 /// Returns false if placing the record will result in two components 178 /// (direct or indirect) of the same type having the same offset. 179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 180 CharUnits Offset); 181 182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given 183 /// offset. 184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); 185 }; 186 187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() { 188 // Check the bases. 189 for (const CXXBaseSpecifier &Base : Class->bases()) { 190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 191 192 CharUnits EmptySize; 193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 194 if (BaseDecl->isEmpty()) { 195 // If the class decl is empty, get its size. 196 EmptySize = Layout.getSize(); 197 } else { 198 // Otherwise, we get the largest empty subobject for the decl. 199 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 200 } 201 202 if (EmptySize > SizeOfLargestEmptySubobject) 203 SizeOfLargestEmptySubobject = EmptySize; 204 } 205 206 // Check the fields. 207 for (const FieldDecl *FD : Class->fields()) { 208 const RecordType *RT = 209 Context.getBaseElementType(FD->getType())->getAs<RecordType>(); 210 211 // We only care about record types. 212 if (!RT) 213 continue; 214 215 CharUnits EmptySize; 216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); 217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); 218 if (MemberDecl->isEmpty()) { 219 // If the class decl is empty, get its size. 220 EmptySize = Layout.getSize(); 221 } else { 222 // Otherwise, we get the largest empty subobject for the decl. 223 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 224 } 225 226 if (EmptySize > SizeOfLargestEmptySubobject) 227 SizeOfLargestEmptySubobject = EmptySize; 228 } 229 } 230 231 bool 232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 233 CharUnits Offset) const { 234 // We only need to check empty bases. 235 if (!RD->isEmpty()) 236 return true; 237 238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); 239 if (I == EmptyClassOffsets.end()) 240 return true; 241 242 const ClassVectorTy &Classes = I->second; 243 if (llvm::find(Classes, RD) == Classes.end()) 244 return true; 245 246 // There is already an empty class of the same type at this offset. 247 return false; 248 } 249 250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 251 CharUnits Offset) { 252 // We only care about empty bases. 253 if (!RD->isEmpty()) 254 return; 255 256 // If we have empty structures inside a union, we can assign both 257 // the same offset. Just avoid pushing them twice in the list. 258 ClassVectorTy &Classes = EmptyClassOffsets[Offset]; 259 if (llvm::is_contained(Classes, RD)) 260 return; 261 262 Classes.push_back(RD); 263 264 // Update the empty class offset. 265 if (Offset > MaxEmptyClassOffset) 266 MaxEmptyClassOffset = Offset; 267 } 268 269 bool 270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 271 CharUnits Offset) { 272 // We don't have to keep looking past the maximum offset that's known to 273 // contain an empty class. 274 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 275 return true; 276 277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) 278 return false; 279 280 // Traverse all non-virtual bases. 281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 282 for (const BaseSubobjectInfo *Base : Info->Bases) { 283 if (Base->IsVirtual) 284 continue; 285 286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 287 288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) 289 return false; 290 } 291 292 if (Info->PrimaryVirtualBaseInfo) { 293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 294 295 if (Info == PrimaryVirtualBaseInfo->Derived) { 296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) 297 return false; 298 } 299 } 300 301 // Traverse all member variables. 302 unsigned FieldNo = 0; 303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { 305 if (I->isBitField()) 306 continue; 307 308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) 310 return false; 311 } 312 313 return true; 314 } 315 316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 317 CharUnits Offset, 318 bool PlacingEmptyBase) { 319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { 320 // We know that the only empty subobjects that can conflict with empty 321 // subobject of non-empty bases, are empty bases that can be placed at 322 // offset zero. Because of this, we only need to keep track of empty base 323 // subobjects with offsets less than the size of the largest empty 324 // subobject for our class. 325 return; 326 } 327 328 AddSubobjectAtOffset(Info->Class, Offset); 329 330 // Traverse all non-virtual bases. 331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 332 for (const BaseSubobjectInfo *Base : Info->Bases) { 333 if (Base->IsVirtual) 334 continue; 335 336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); 338 } 339 340 if (Info->PrimaryVirtualBaseInfo) { 341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 342 343 if (Info == PrimaryVirtualBaseInfo->Derived) 344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, 345 PlacingEmptyBase); 346 } 347 348 // Traverse all member variables. 349 unsigned FieldNo = 0; 350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { 352 if (I->isBitField()) 353 continue; 354 355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase); 357 } 358 } 359 360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 361 CharUnits Offset) { 362 // If we know this class doesn't have any empty subobjects we don't need to 363 // bother checking. 364 if (SizeOfLargestEmptySubobject.isZero()) 365 return true; 366 367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) 368 return false; 369 370 // We are able to place the base at this offset. Make sure to update the 371 // empty base subobject map. 372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); 373 return true; 374 } 375 376 bool 377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 378 const CXXRecordDecl *Class, 379 CharUnits Offset) const { 380 // We don't have to keep looking past the maximum offset that's known to 381 // contain an empty class. 382 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 383 return true; 384 385 if (!CanPlaceSubobjectAtOffset(RD, Offset)) 386 return false; 387 388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 389 390 // Traverse all non-virtual bases. 391 for (const CXXBaseSpecifier &Base : RD->bases()) { 392 if (Base.isVirtual()) 393 continue; 394 395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 396 397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) 399 return false; 400 } 401 402 if (RD == Class) { 403 // This is the most derived class, traverse virtual bases as well. 404 for (const CXXBaseSpecifier &Base : RD->vbases()) { 405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 406 407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) 409 return false; 410 } 411 } 412 413 // Traverse all member variables. 414 unsigned FieldNo = 0; 415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 416 I != E; ++I, ++FieldNo) { 417 if (I->isBitField()) 418 continue; 419 420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 421 422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) 423 return false; 424 } 425 426 return true; 427 } 428 429 bool 430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 431 CharUnits Offset) const { 432 // We don't have to keep looking past the maximum offset that's known to 433 // contain an empty class. 434 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 435 return true; 436 437 QualType T = FD->getType(); 438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); 440 441 // If we have an array type we need to look at every element. 442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 443 QualType ElemTy = Context.getBaseElementType(AT); 444 const RecordType *RT = ElemTy->getAs<RecordType>(); 445 if (!RT) 446 return true; 447 448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 450 451 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 452 CharUnits ElementOffset = Offset; 453 for (uint64_t I = 0; I != NumElements; ++I) { 454 // We don't have to keep looking past the maximum offset that's known to 455 // contain an empty class. 456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) 457 return true; 458 459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) 460 return false; 461 462 ElementOffset += Layout.getSize(); 463 } 464 } 465 466 return true; 467 } 468 469 bool 470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, 471 CharUnits Offset) { 472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) 473 return false; 474 475 // We are able to place the member variable at this offset. 476 // Make sure to update the empty field subobject map. 477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); 478 return true; 479 } 480 481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects( 482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, 483 bool PlacingOverlappingField) { 484 // We know that the only empty subobjects that can conflict with empty 485 // field subobjects are subobjects of empty bases and potentially-overlapping 486 // fields that can be placed at offset zero. Because of this, we only need to 487 // keep track of empty field subobjects with offsets less than the size of 488 // the largest empty subobject for our class. 489 // 490 // (Proof: we will only consider placing a subobject at offset zero or at 491 // >= the current dsize. The only cases where the earlier subobject can be 492 // placed beyond the end of dsize is if it's an empty base or a 493 // potentially-overlapping field.) 494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) 495 return; 496 497 AddSubobjectAtOffset(RD, Offset); 498 499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 500 501 // Traverse all non-virtual bases. 502 for (const CXXBaseSpecifier &Base : RD->bases()) { 503 if (Base.isVirtual()) 504 continue; 505 506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 507 508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset, 510 PlacingOverlappingField); 511 } 512 513 if (RD == Class) { 514 // This is the most derived class, traverse virtual bases as well. 515 for (const CXXBaseSpecifier &Base : RD->vbases()) { 516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 517 518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset, 520 PlacingOverlappingField); 521 } 522 } 523 524 // Traverse all member variables. 525 unsigned FieldNo = 0; 526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 527 I != E; ++I, ++FieldNo) { 528 if (I->isBitField()) 529 continue; 530 531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 532 533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField); 534 } 535 } 536 537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects( 538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { 539 QualType T = FD->getType(); 540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField); 542 return; 543 } 544 545 // If we have an array type we need to update every element. 546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 547 QualType ElemTy = Context.getBaseElementType(AT); 548 const RecordType *RT = ElemTy->getAs<RecordType>(); 549 if (!RT) 550 return; 551 552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 554 555 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 556 CharUnits ElementOffset = Offset; 557 558 for (uint64_t I = 0; I != NumElements; ++I) { 559 // We know that the only empty subobjects that can conflict with empty 560 // field subobjects are subobjects of empty bases that can be placed at 561 // offset zero. Because of this, we only need to keep track of empty field 562 // subobjects with offsets less than the size of the largest empty 563 // subobject for our class. 564 if (!PlacingOverlappingField && 565 ElementOffset >= SizeOfLargestEmptySubobject) 566 return; 567 568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset, 569 PlacingOverlappingField); 570 ElementOffset += Layout.getSize(); 571 } 572 } 573 } 574 575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; 576 577 class ItaniumRecordLayoutBuilder { 578 protected: 579 // FIXME: Remove this and make the appropriate fields public. 580 friend class clang::ASTContext; 581 582 const ASTContext &Context; 583 584 EmptySubobjectMap *EmptySubobjects; 585 586 /// Size - The current size of the record layout. 587 uint64_t Size; 588 589 /// Alignment - The current alignment of the record layout. 590 CharUnits Alignment; 591 592 /// The alignment if attribute packed is not used. 593 CharUnits UnpackedAlignment; 594 595 /// \brief The maximum of the alignments of top-level members. 596 CharUnits UnadjustedAlignment; 597 598 SmallVector<uint64_t, 16> FieldOffsets; 599 600 /// Whether the external AST source has provided a layout for this 601 /// record. 602 unsigned UseExternalLayout : 1; 603 604 /// Whether we need to infer alignment, even when we have an 605 /// externally-provided layout. 606 unsigned InferAlignment : 1; 607 608 /// Packed - Whether the record is packed or not. 609 unsigned Packed : 1; 610 611 unsigned IsUnion : 1; 612 613 unsigned IsMac68kAlign : 1; 614 615 unsigned IsMsStruct : 1; 616 617 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, 618 /// this contains the number of bits in the last unit that can be used for 619 /// an adjacent bitfield if necessary. The unit in question is usually 620 /// a byte, but larger units are used if IsMsStruct. 621 unsigned char UnfilledBitsInLastUnit; 622 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type 623 /// of the previous field if it was a bitfield. 624 unsigned char LastBitfieldTypeSize; 625 626 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by 627 /// #pragma pack. 628 CharUnits MaxFieldAlignment; 629 630 /// DataSize - The data size of the record being laid out. 631 uint64_t DataSize; 632 633 CharUnits NonVirtualSize; 634 CharUnits NonVirtualAlignment; 635 636 /// If we've laid out a field but not included its tail padding in Size yet, 637 /// this is the size up to the end of that field. 638 CharUnits PaddedFieldSize; 639 640 /// PrimaryBase - the primary base class (if one exists) of the class 641 /// we're laying out. 642 const CXXRecordDecl *PrimaryBase; 643 644 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying 645 /// out is virtual. 646 bool PrimaryBaseIsVirtual; 647 648 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl 649 /// pointer, as opposed to inheriting one from a primary base class. 650 bool HasOwnVFPtr; 651 652 /// the flag of field offset changing due to packed attribute. 653 bool HasPackedField; 654 655 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 656 657 /// Bases - base classes and their offsets in the record. 658 BaseOffsetsMapTy Bases; 659 660 // VBases - virtual base classes and their offsets in the record. 661 ASTRecordLayout::VBaseOffsetsMapTy VBases; 662 663 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are 664 /// primary base classes for some other direct or indirect base class. 665 CXXIndirectPrimaryBaseSet IndirectPrimaryBases; 666 667 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in 668 /// inheritance graph order. Used for determining the primary base class. 669 const CXXRecordDecl *FirstNearlyEmptyVBase; 670 671 /// VisitedVirtualBases - A set of all the visited virtual bases, used to 672 /// avoid visiting virtual bases more than once. 673 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 674 675 /// Valid if UseExternalLayout is true. 676 ExternalLayout External; 677 678 ItaniumRecordLayoutBuilder(const ASTContext &Context, 679 EmptySubobjectMap *EmptySubobjects) 680 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), 681 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()), 682 UnadjustedAlignment(CharUnits::One()), 683 UseExternalLayout(false), InferAlignment(false), Packed(false), 684 IsUnion(false), IsMac68kAlign(false), IsMsStruct(false), 685 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0), 686 MaxFieldAlignment(CharUnits::Zero()), DataSize(0), 687 NonVirtualSize(CharUnits::Zero()), 688 NonVirtualAlignment(CharUnits::One()), 689 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), 690 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), 691 HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {} 692 693 void Layout(const RecordDecl *D); 694 void Layout(const CXXRecordDecl *D); 695 void Layout(const ObjCInterfaceDecl *D); 696 697 void LayoutFields(const RecordDecl *D); 698 void LayoutField(const FieldDecl *D, bool InsertExtraPadding); 699 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize, 700 bool FieldPacked, const FieldDecl *D); 701 void LayoutBitField(const FieldDecl *D); 702 703 TargetCXXABI getCXXABI() const { 704 return Context.getTargetInfo().getCXXABI(); 705 } 706 707 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. 708 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; 709 710 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> 711 BaseSubobjectInfoMapTy; 712 713 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases 714 /// of the class we're laying out to their base subobject info. 715 BaseSubobjectInfoMapTy VirtualBaseInfo; 716 717 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the 718 /// class we're laying out to their base subobject info. 719 BaseSubobjectInfoMapTy NonVirtualBaseInfo; 720 721 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the 722 /// bases of the given class. 723 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); 724 725 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a 726 /// single class and all of its base classes. 727 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 728 bool IsVirtual, 729 BaseSubobjectInfo *Derived); 730 731 /// DeterminePrimaryBase - Determine the primary base of the given class. 732 void DeterminePrimaryBase(const CXXRecordDecl *RD); 733 734 void SelectPrimaryVBase(const CXXRecordDecl *RD); 735 736 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); 737 738 /// LayoutNonVirtualBases - Determines the primary base class (if any) and 739 /// lays it out. Will then proceed to lay out all non-virtual base clasess. 740 void LayoutNonVirtualBases(const CXXRecordDecl *RD); 741 742 /// LayoutNonVirtualBase - Lays out a single non-virtual base. 743 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); 744 745 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 746 CharUnits Offset); 747 748 /// LayoutVirtualBases - Lays out all the virtual bases. 749 void LayoutVirtualBases(const CXXRecordDecl *RD, 750 const CXXRecordDecl *MostDerivedClass); 751 752 /// LayoutVirtualBase - Lays out a single virtual base. 753 void LayoutVirtualBase(const BaseSubobjectInfo *Base); 754 755 /// LayoutBase - Will lay out a base and return the offset where it was 756 /// placed, in chars. 757 CharUnits LayoutBase(const BaseSubobjectInfo *Base); 758 759 /// InitializeLayout - Initialize record layout for the given record decl. 760 void InitializeLayout(const Decl *D); 761 762 /// FinishLayout - Finalize record layout. Adjust record size based on the 763 /// alignment. 764 void FinishLayout(const NamedDecl *D); 765 766 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment); 767 void UpdateAlignment(CharUnits NewAlignment) { 768 UpdateAlignment(NewAlignment, NewAlignment); 769 } 770 771 /// Retrieve the externally-supplied field offset for the given 772 /// field. 773 /// 774 /// \param Field The field whose offset is being queried. 775 /// \param ComputedOffset The offset that we've computed for this field. 776 uint64_t updateExternalFieldOffset(const FieldDecl *Field, 777 uint64_t ComputedOffset); 778 779 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, 780 uint64_t UnpackedOffset, unsigned UnpackedAlign, 781 bool isPacked, const FieldDecl *D); 782 783 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); 784 785 CharUnits getSize() const { 786 assert(Size % Context.getCharWidth() == 0); 787 return Context.toCharUnitsFromBits(Size); 788 } 789 uint64_t getSizeInBits() const { return Size; } 790 791 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } 792 void setSize(uint64_t NewSize) { Size = NewSize; } 793 794 CharUnits getAligment() const { return Alignment; } 795 796 CharUnits getDataSize() const { 797 assert(DataSize % Context.getCharWidth() == 0); 798 return Context.toCharUnitsFromBits(DataSize); 799 } 800 uint64_t getDataSizeInBits() const { return DataSize; } 801 802 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } 803 void setDataSize(uint64_t NewSize) { DataSize = NewSize; } 804 805 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; 806 void operator=(const ItaniumRecordLayoutBuilder &) = delete; 807 }; 808 } // end anonymous namespace 809 810 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { 811 for (const auto &I : RD->bases()) { 812 assert(!I.getType()->isDependentType() && 813 "Cannot layout class with dependent bases."); 814 815 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 816 817 // Check if this is a nearly empty virtual base. 818 if (I.isVirtual() && Context.isNearlyEmpty(Base)) { 819 // If it's not an indirect primary base, then we've found our primary 820 // base. 821 if (!IndirectPrimaryBases.count(Base)) { 822 PrimaryBase = Base; 823 PrimaryBaseIsVirtual = true; 824 return; 825 } 826 827 // Is this the first nearly empty virtual base? 828 if (!FirstNearlyEmptyVBase) 829 FirstNearlyEmptyVBase = Base; 830 } 831 832 SelectPrimaryVBase(Base); 833 if (PrimaryBase) 834 return; 835 } 836 } 837 838 /// DeterminePrimaryBase - Determine the primary base of the given class. 839 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { 840 // If the class isn't dynamic, it won't have a primary base. 841 if (!RD->isDynamicClass()) 842 return; 843 844 // Compute all the primary virtual bases for all of our direct and 845 // indirect bases, and record all their primary virtual base classes. 846 RD->getIndirectPrimaryBases(IndirectPrimaryBases); 847 848 // If the record has a dynamic base class, attempt to choose a primary base 849 // class. It is the first (in direct base class order) non-virtual dynamic 850 // base class, if one exists. 851 for (const auto &I : RD->bases()) { 852 // Ignore virtual bases. 853 if (I.isVirtual()) 854 continue; 855 856 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 857 858 if (Base->isDynamicClass()) { 859 // We found it. 860 PrimaryBase = Base; 861 PrimaryBaseIsVirtual = false; 862 return; 863 } 864 } 865 866 // Under the Itanium ABI, if there is no non-virtual primary base class, 867 // try to compute the primary virtual base. The primary virtual base is 868 // the first nearly empty virtual base that is not an indirect primary 869 // virtual base class, if one exists. 870 if (RD->getNumVBases() != 0) { 871 SelectPrimaryVBase(RD); 872 if (PrimaryBase) 873 return; 874 } 875 876 // Otherwise, it is the first indirect primary base class, if one exists. 877 if (FirstNearlyEmptyVBase) { 878 PrimaryBase = FirstNearlyEmptyVBase; 879 PrimaryBaseIsVirtual = true; 880 return; 881 } 882 883 assert(!PrimaryBase && "Should not get here with a primary base!"); 884 } 885 886 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 887 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { 888 BaseSubobjectInfo *Info; 889 890 if (IsVirtual) { 891 // Check if we already have info about this virtual base. 892 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; 893 if (InfoSlot) { 894 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); 895 return InfoSlot; 896 } 897 898 // We don't, create it. 899 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 900 Info = InfoSlot; 901 } else { 902 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 903 } 904 905 Info->Class = RD; 906 Info->IsVirtual = IsVirtual; 907 Info->Derived = nullptr; 908 Info->PrimaryVirtualBaseInfo = nullptr; 909 910 const CXXRecordDecl *PrimaryVirtualBase = nullptr; 911 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; 912 913 // Check if this base has a primary virtual base. 914 if (RD->getNumVBases()) { 915 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 916 if (Layout.isPrimaryBaseVirtual()) { 917 // This base does have a primary virtual base. 918 PrimaryVirtualBase = Layout.getPrimaryBase(); 919 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); 920 921 // Now check if we have base subobject info about this primary base. 922 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 923 924 if (PrimaryVirtualBaseInfo) { 925 if (PrimaryVirtualBaseInfo->Derived) { 926 // We did have info about this primary base, and it turns out that it 927 // has already been claimed as a primary virtual base for another 928 // base. 929 PrimaryVirtualBase = nullptr; 930 } else { 931 // We can claim this base as our primary base. 932 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 933 PrimaryVirtualBaseInfo->Derived = Info; 934 } 935 } 936 } 937 } 938 939 // Now go through all direct bases. 940 for (const auto &I : RD->bases()) { 941 bool IsVirtual = I.isVirtual(); 942 943 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 944 945 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); 946 } 947 948 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { 949 // Traversing the bases must have created the base info for our primary 950 // virtual base. 951 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 952 assert(PrimaryVirtualBaseInfo && 953 "Did not create a primary virtual base!"); 954 955 // Claim the primary virtual base as our primary virtual base. 956 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 957 PrimaryVirtualBaseInfo->Derived = Info; 958 } 959 960 return Info; 961 } 962 963 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 964 const CXXRecordDecl *RD) { 965 for (const auto &I : RD->bases()) { 966 bool IsVirtual = I.isVirtual(); 967 968 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 969 970 // Compute the base subobject info for this base. 971 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 972 nullptr); 973 974 if (IsVirtual) { 975 // ComputeBaseInfo has already added this base for us. 976 assert(VirtualBaseInfo.count(BaseDecl) && 977 "Did not add virtual base!"); 978 } else { 979 // Add the base info to the map of non-virtual bases. 980 assert(!NonVirtualBaseInfo.count(BaseDecl) && 981 "Non-virtual base already exists!"); 982 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); 983 } 984 } 985 } 986 987 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( 988 CharUnits UnpackedBaseAlign) { 989 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; 990 991 // The maximum field alignment overrides base align. 992 if (!MaxFieldAlignment.isZero()) { 993 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 994 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); 995 } 996 997 // Round up the current record size to pointer alignment. 998 setSize(getSize().alignTo(BaseAlign)); 999 1000 // Update the alignment. 1001 UpdateAlignment(BaseAlign, UnpackedBaseAlign); 1002 } 1003 1004 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( 1005 const CXXRecordDecl *RD) { 1006 // Then, determine the primary base class. 1007 DeterminePrimaryBase(RD); 1008 1009 // Compute base subobject info. 1010 ComputeBaseSubobjectInfo(RD); 1011 1012 // If we have a primary base class, lay it out. 1013 if (PrimaryBase) { 1014 if (PrimaryBaseIsVirtual) { 1015 // If the primary virtual base was a primary virtual base of some other 1016 // base class we'll have to steal it. 1017 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); 1018 PrimaryBaseInfo->Derived = nullptr; 1019 1020 // We have a virtual primary base, insert it as an indirect primary base. 1021 IndirectPrimaryBases.insert(PrimaryBase); 1022 1023 assert(!VisitedVirtualBases.count(PrimaryBase) && 1024 "vbase already visited!"); 1025 VisitedVirtualBases.insert(PrimaryBase); 1026 1027 LayoutVirtualBase(PrimaryBaseInfo); 1028 } else { 1029 BaseSubobjectInfo *PrimaryBaseInfo = 1030 NonVirtualBaseInfo.lookup(PrimaryBase); 1031 assert(PrimaryBaseInfo && 1032 "Did not find base info for non-virtual primary base!"); 1033 1034 LayoutNonVirtualBase(PrimaryBaseInfo); 1035 } 1036 1037 // If this class needs a vtable/vf-table and didn't get one from a 1038 // primary base, add it in now. 1039 } else if (RD->isDynamicClass()) { 1040 assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); 1041 CharUnits PtrWidth = 1042 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1043 CharUnits PtrAlign = 1044 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); 1045 EnsureVTablePointerAlignment(PtrAlign); 1046 HasOwnVFPtr = true; 1047 setSize(getSize() + PtrWidth); 1048 setDataSize(getSize()); 1049 } 1050 1051 // Now lay out the non-virtual bases. 1052 for (const auto &I : RD->bases()) { 1053 1054 // Ignore virtual bases. 1055 if (I.isVirtual()) 1056 continue; 1057 1058 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 1059 1060 // Skip the primary base, because we've already laid it out. The 1061 // !PrimaryBaseIsVirtual check is required because we might have a 1062 // non-virtual base of the same type as a primary virtual base. 1063 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) 1064 continue; 1065 1066 // Lay out the base. 1067 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); 1068 assert(BaseInfo && "Did not find base info for non-virtual base!"); 1069 1070 LayoutNonVirtualBase(BaseInfo); 1071 } 1072 } 1073 1074 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( 1075 const BaseSubobjectInfo *Base) { 1076 // Layout the base. 1077 CharUnits Offset = LayoutBase(Base); 1078 1079 // Add its base class offset. 1080 assert(!Bases.count(Base->Class) && "base offset already exists!"); 1081 Bases.insert(std::make_pair(Base->Class, Offset)); 1082 1083 AddPrimaryVirtualBaseOffsets(Base, Offset); 1084 } 1085 1086 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( 1087 const BaseSubobjectInfo *Info, CharUnits Offset) { 1088 // This base isn't interesting, it has no virtual bases. 1089 if (!Info->Class->getNumVBases()) 1090 return; 1091 1092 // First, check if we have a virtual primary base to add offsets for. 1093 if (Info->PrimaryVirtualBaseInfo) { 1094 assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 1095 "Primary virtual base is not virtual!"); 1096 if (Info->PrimaryVirtualBaseInfo->Derived == Info) { 1097 // Add the offset. 1098 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 1099 "primary vbase offset already exists!"); 1100 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, 1101 ASTRecordLayout::VBaseInfo(Offset, false))); 1102 1103 // Traverse the primary virtual base. 1104 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); 1105 } 1106 } 1107 1108 // Now go through all direct non-virtual bases. 1109 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 1110 for (const BaseSubobjectInfo *Base : Info->Bases) { 1111 if (Base->IsVirtual) 1112 continue; 1113 1114 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 1115 AddPrimaryVirtualBaseOffsets(Base, BaseOffset); 1116 } 1117 } 1118 1119 void ItaniumRecordLayoutBuilder::LayoutVirtualBases( 1120 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { 1121 const CXXRecordDecl *PrimaryBase; 1122 bool PrimaryBaseIsVirtual; 1123 1124 if (MostDerivedClass == RD) { 1125 PrimaryBase = this->PrimaryBase; 1126 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; 1127 } else { 1128 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1129 PrimaryBase = Layout.getPrimaryBase(); 1130 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 1131 } 1132 1133 for (const CXXBaseSpecifier &Base : RD->bases()) { 1134 assert(!Base.getType()->isDependentType() && 1135 "Cannot layout class with dependent bases."); 1136 1137 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1138 1139 if (Base.isVirtual()) { 1140 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { 1141 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); 1142 1143 // Only lay out the virtual base if it's not an indirect primary base. 1144 if (!IndirectPrimaryBase) { 1145 // Only visit virtual bases once. 1146 if (!VisitedVirtualBases.insert(BaseDecl).second) 1147 continue; 1148 1149 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); 1150 assert(BaseInfo && "Did not find virtual base info!"); 1151 LayoutVirtualBase(BaseInfo); 1152 } 1153 } 1154 } 1155 1156 if (!BaseDecl->getNumVBases()) { 1157 // This base isn't interesting since it doesn't have any virtual bases. 1158 continue; 1159 } 1160 1161 LayoutVirtualBases(BaseDecl, MostDerivedClass); 1162 } 1163 } 1164 1165 void ItaniumRecordLayoutBuilder::LayoutVirtualBase( 1166 const BaseSubobjectInfo *Base) { 1167 assert(!Base->Derived && "Trying to lay out a primary virtual base!"); 1168 1169 // Layout the base. 1170 CharUnits Offset = LayoutBase(Base); 1171 1172 // Add its base class offset. 1173 assert(!VBases.count(Base->Class) && "vbase offset already exists!"); 1174 VBases.insert(std::make_pair(Base->Class, 1175 ASTRecordLayout::VBaseInfo(Offset, false))); 1176 1177 AddPrimaryVirtualBaseOffsets(Base, Offset); 1178 } 1179 1180 CharUnits 1181 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { 1182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); 1183 1184 1185 CharUnits Offset; 1186 1187 // Query the external layout to see if it provides an offset. 1188 bool HasExternalLayout = false; 1189 if (UseExternalLayout) { 1190 if (Base->IsVirtual) 1191 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); 1192 else 1193 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); 1194 } 1195 1196 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. 1197 // Per GCC's documentation, it only applies to non-static data members. 1198 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); 1199 CharUnits BaseAlign = 1200 (Packed && ((Context.getLangOpts().getClangABICompat() <= 1201 LangOptions::ClangABI::Ver6) || 1202 Context.getTargetInfo().getTriple().isPS4())) 1203 ? CharUnits::One() 1204 : UnpackedBaseAlign; 1205 1206 // If we have an empty base class, try to place it at offset 0. 1207 if (Base->Class->isEmpty() && 1208 (!HasExternalLayout || Offset == CharUnits::Zero()) && 1209 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { 1210 setSize(std::max(getSize(), Layout.getSize())); 1211 UpdateAlignment(BaseAlign, UnpackedBaseAlign); 1212 1213 return CharUnits::Zero(); 1214 } 1215 1216 // The maximum field alignment overrides base align. 1217 if (!MaxFieldAlignment.isZero()) { 1218 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 1219 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); 1220 } 1221 1222 if (!HasExternalLayout) { 1223 // Round up the current record size to the base's alignment boundary. 1224 Offset = getDataSize().alignTo(BaseAlign); 1225 1226 // Try to place the base. 1227 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) 1228 Offset += BaseAlign; 1229 } else { 1230 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); 1231 (void)Allowed; 1232 assert(Allowed && "Base subobject externally placed at overlapping offset"); 1233 1234 if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) { 1235 // The externally-supplied base offset is before the base offset we 1236 // computed. Assume that the structure is packed. 1237 Alignment = CharUnits::One(); 1238 InferAlignment = false; 1239 } 1240 } 1241 1242 if (!Base->Class->isEmpty()) { 1243 // Update the data size. 1244 setDataSize(Offset + Layout.getNonVirtualSize()); 1245 1246 setSize(std::max(getSize(), getDataSize())); 1247 } else 1248 setSize(std::max(getSize(), Offset + Layout.getSize())); 1249 1250 // Remember max struct/class alignment. 1251 UpdateAlignment(BaseAlign, UnpackedBaseAlign); 1252 1253 return Offset; 1254 } 1255 1256 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { 1257 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 1258 IsUnion = RD->isUnion(); 1259 IsMsStruct = RD->isMsStruct(Context); 1260 } 1261 1262 Packed = D->hasAttr<PackedAttr>(); 1263 1264 // Honor the default struct packing maximum alignment flag. 1265 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { 1266 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 1267 } 1268 1269 // mac68k alignment supersedes maximum field alignment and attribute aligned, 1270 // and forces all structures to have 2-byte alignment. The IBM docs on it 1271 // allude to additional (more complicated) semantics, especially with regard 1272 // to bit-fields, but gcc appears not to follow that. 1273 if (D->hasAttr<AlignMac68kAttr>()) { 1274 IsMac68kAlign = true; 1275 MaxFieldAlignment = CharUnits::fromQuantity(2); 1276 Alignment = CharUnits::fromQuantity(2); 1277 } else { 1278 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) 1279 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); 1280 1281 if (unsigned MaxAlign = D->getMaxAlignment()) 1282 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); 1283 } 1284 1285 // If there is an external AST source, ask it for the various offsets. 1286 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) 1287 if (ExternalASTSource *Source = Context.getExternalSource()) { 1288 UseExternalLayout = Source->layoutRecordType( 1289 RD, External.Size, External.Align, External.FieldOffsets, 1290 External.BaseOffsets, External.VirtualBaseOffsets); 1291 1292 // Update based on external alignment. 1293 if (UseExternalLayout) { 1294 if (External.Align > 0) { 1295 Alignment = Context.toCharUnitsFromBits(External.Align); 1296 } else { 1297 // The external source didn't have alignment information; infer it. 1298 InferAlignment = true; 1299 } 1300 } 1301 } 1302 } 1303 1304 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { 1305 InitializeLayout(D); 1306 LayoutFields(D); 1307 1308 // Finally, round the size of the total struct up to the alignment of the 1309 // struct itself. 1310 FinishLayout(D); 1311 } 1312 1313 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { 1314 InitializeLayout(RD); 1315 1316 // Lay out the vtable and the non-virtual bases. 1317 LayoutNonVirtualBases(RD); 1318 1319 LayoutFields(RD); 1320 1321 NonVirtualSize = Context.toCharUnitsFromBits( 1322 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); 1323 NonVirtualAlignment = Alignment; 1324 1325 // Lay out the virtual bases and add the primary virtual base offsets. 1326 LayoutVirtualBases(RD, RD); 1327 1328 // Finally, round the size of the total struct up to the alignment 1329 // of the struct itself. 1330 FinishLayout(RD); 1331 1332 #ifndef NDEBUG 1333 // Check that we have base offsets for all bases. 1334 for (const CXXBaseSpecifier &Base : RD->bases()) { 1335 if (Base.isVirtual()) 1336 continue; 1337 1338 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1339 1340 assert(Bases.count(BaseDecl) && "Did not find base offset!"); 1341 } 1342 1343 // And all virtual bases. 1344 for (const CXXBaseSpecifier &Base : RD->vbases()) { 1345 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1346 1347 assert(VBases.count(BaseDecl) && "Did not find base offset!"); 1348 } 1349 #endif 1350 } 1351 1352 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { 1353 if (ObjCInterfaceDecl *SD = D->getSuperClass()) { 1354 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); 1355 1356 UpdateAlignment(SL.getAlignment()); 1357 1358 // We start laying out ivars not at the end of the superclass 1359 // structure, but at the next byte following the last field. 1360 setDataSize(SL.getDataSize()); 1361 setSize(getDataSize()); 1362 } 1363 1364 InitializeLayout(D); 1365 // Layout each ivar sequentially. 1366 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; 1367 IVD = IVD->getNextIvar()) 1368 LayoutField(IVD, false); 1369 1370 // Finally, round the size of the total struct up to the alignment of the 1371 // struct itself. 1372 FinishLayout(D); 1373 } 1374 1375 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { 1376 // Layout each field, for now, just sequentially, respecting alignment. In 1377 // the future, this will need to be tweakable by targets. 1378 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); 1379 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); 1380 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { 1381 auto Next(I); 1382 ++Next; 1383 LayoutField(*I, 1384 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); 1385 } 1386 } 1387 1388 // Rounds the specified size to have it a multiple of the char size. 1389 static uint64_t 1390 roundUpSizeToCharAlignment(uint64_t Size, 1391 const ASTContext &Context) { 1392 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1393 return llvm::alignTo(Size, CharAlignment); 1394 } 1395 1396 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, 1397 uint64_t TypeSize, 1398 bool FieldPacked, 1399 const FieldDecl *D) { 1400 assert(Context.getLangOpts().CPlusPlus && 1401 "Can only have wide bit-fields in C++!"); 1402 1403 // Itanium C++ ABI 2.4: 1404 // If sizeof(T)*8 < n, let T' be the largest integral POD type with 1405 // sizeof(T')*8 <= n. 1406 1407 QualType IntegralPODTypes[] = { 1408 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, 1409 Context.UnsignedLongTy, Context.UnsignedLongLongTy 1410 }; 1411 1412 QualType Type; 1413 for (const QualType &QT : IntegralPODTypes) { 1414 uint64_t Size = Context.getTypeSize(QT); 1415 1416 if (Size > FieldSize) 1417 break; 1418 1419 Type = QT; 1420 } 1421 assert(!Type.isNull() && "Did not find a type!"); 1422 1423 CharUnits TypeAlign = Context.getTypeAlignInChars(Type); 1424 1425 // We're not going to use any of the unfilled bits in the last byte. 1426 UnfilledBitsInLastUnit = 0; 1427 LastBitfieldTypeSize = 0; 1428 1429 uint64_t FieldOffset; 1430 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1431 1432 if (IsUnion) { 1433 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, 1434 Context); 1435 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1436 FieldOffset = 0; 1437 } else { 1438 // The bitfield is allocated starting at the next offset aligned 1439 // appropriately for T', with length n bits. 1440 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); 1441 1442 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1443 1444 setDataSize( 1445 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); 1446 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1447 } 1448 1449 // Place this field at the current location. 1450 FieldOffsets.push_back(FieldOffset); 1451 1452 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, 1453 Context.toBits(TypeAlign), FieldPacked, D); 1454 1455 // Update the size. 1456 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1457 1458 // Remember max struct/class alignment. 1459 UpdateAlignment(TypeAlign); 1460 } 1461 1462 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { 1463 bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); 1464 uint64_t FieldSize = D->getBitWidthValue(Context); 1465 TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); 1466 uint64_t TypeSize = FieldInfo.Width; 1467 unsigned FieldAlign = FieldInfo.Align; 1468 1469 // UnfilledBitsInLastUnit is the difference between the end of the 1470 // last allocated bitfield (i.e. the first bit offset available for 1471 // bitfields) and the end of the current data size in bits (i.e. the 1472 // first bit offset available for non-bitfields). The current data 1473 // size in bits is always a multiple of the char size; additionally, 1474 // for ms_struct records it's also a multiple of the 1475 // LastBitfieldTypeSize (if set). 1476 1477 // The struct-layout algorithm is dictated by the platform ABI, 1478 // which in principle could use almost any rules it likes. In 1479 // practice, UNIXy targets tend to inherit the algorithm described 1480 // in the System V generic ABI. The basic bitfield layout rule in 1481 // System V is to place bitfields at the next available bit offset 1482 // where the entire bitfield would fit in an aligned storage unit of 1483 // the declared type; it's okay if an earlier or later non-bitfield 1484 // is allocated in the same storage unit. However, some targets 1485 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't 1486 // require this storage unit to be aligned, and therefore always put 1487 // the bitfield at the next available bit offset. 1488 1489 // ms_struct basically requests a complete replacement of the 1490 // platform ABI's struct-layout algorithm, with the high-level goal 1491 // of duplicating MSVC's layout. For non-bitfields, this follows 1492 // the standard algorithm. The basic bitfield layout rule is to 1493 // allocate an entire unit of the bitfield's declared type 1494 // (e.g. 'unsigned long'), then parcel it up among successive 1495 // bitfields whose declared types have the same size, making a new 1496 // unit as soon as the last can no longer store the whole value. 1497 // Since it completely replaces the platform ABI's algorithm, 1498 // settings like !useBitFieldTypeAlignment() do not apply. 1499 1500 // A zero-width bitfield forces the use of a new storage unit for 1501 // later bitfields. In general, this occurs by rounding up the 1502 // current size of the struct as if the algorithm were about to 1503 // place a non-bitfield of the field's formal type. Usually this 1504 // does not change the alignment of the struct itself, but it does 1505 // on some targets (those that useZeroLengthBitfieldAlignment(), 1506 // e.g. ARM). In ms_struct layout, zero-width bitfields are 1507 // ignored unless they follow a non-zero-width bitfield. 1508 1509 // A field alignment restriction (e.g. from #pragma pack) or 1510 // specification (e.g. from __attribute__((aligned))) changes the 1511 // formal alignment of the field. For System V, this alters the 1512 // required alignment of the notional storage unit that must contain 1513 // the bitfield. For ms_struct, this only affects the placement of 1514 // new storage units. In both cases, the effect of #pragma pack is 1515 // ignored on zero-width bitfields. 1516 1517 // On System V, a packed field (e.g. from #pragma pack or 1518 // __attribute__((packed))) always uses the next available bit 1519 // offset. 1520 1521 // In an ms_struct struct, the alignment of a fundamental type is 1522 // always equal to its size. This is necessary in order to mimic 1523 // the i386 alignment rules on targets which might not fully align 1524 // all types (e.g. Darwin PPC32, where alignof(long long) == 4). 1525 1526 // First, some simple bookkeeping to perform for ms_struct structs. 1527 if (IsMsStruct) { 1528 // The field alignment for integer types is always the size. 1529 FieldAlign = TypeSize; 1530 1531 // If the previous field was not a bitfield, or was a bitfield 1532 // with a different storage unit size, or if this field doesn't fit into 1533 // the current storage unit, we're done with that storage unit. 1534 if (LastBitfieldTypeSize != TypeSize || 1535 UnfilledBitsInLastUnit < FieldSize) { 1536 // Also, ignore zero-length bitfields after non-bitfields. 1537 if (!LastBitfieldTypeSize && !FieldSize) 1538 FieldAlign = 1; 1539 1540 UnfilledBitsInLastUnit = 0; 1541 LastBitfieldTypeSize = 0; 1542 } 1543 } 1544 1545 // If the field is wider than its declared type, it follows 1546 // different rules in all cases. 1547 if (FieldSize > TypeSize) { 1548 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D); 1549 return; 1550 } 1551 1552 // Compute the next available bit offset. 1553 uint64_t FieldOffset = 1554 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); 1555 1556 // Handle targets that don't honor bitfield type alignment. 1557 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { 1558 // Some such targets do honor it on zero-width bitfields. 1559 if (FieldSize == 0 && 1560 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { 1561 // The alignment to round up to is the max of the field's natural 1562 // alignment and a target-specific fixed value (sometimes zero). 1563 unsigned ZeroLengthBitfieldBoundary = 1564 Context.getTargetInfo().getZeroLengthBitfieldBoundary(); 1565 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); 1566 1567 // If that doesn't apply, just ignore the field alignment. 1568 } else { 1569 FieldAlign = 1; 1570 } 1571 } 1572 1573 // Remember the alignment we would have used if the field were not packed. 1574 unsigned UnpackedFieldAlign = FieldAlign; 1575 1576 // Ignore the field alignment if the field is packed unless it has zero-size. 1577 if (!IsMsStruct && FieldPacked && FieldSize != 0) 1578 FieldAlign = 1; 1579 1580 // But, if there's an 'aligned' attribute on the field, honor that. 1581 unsigned ExplicitFieldAlign = D->getMaxAlignment(); 1582 if (ExplicitFieldAlign) { 1583 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); 1584 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); 1585 } 1586 1587 // But, if there's a #pragma pack in play, that takes precedent over 1588 // even the 'aligned' attribute, for non-zero-width bitfields. 1589 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); 1590 if (!MaxFieldAlignment.isZero() && FieldSize) { 1591 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); 1592 if (FieldPacked) 1593 FieldAlign = UnpackedFieldAlign; 1594 else 1595 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); 1596 } 1597 1598 // But, ms_struct just ignores all of that in unions, even explicit 1599 // alignment attributes. 1600 if (IsMsStruct && IsUnion) { 1601 FieldAlign = UnpackedFieldAlign = 1; 1602 } 1603 1604 // For purposes of diagnostics, we're going to simultaneously 1605 // compute the field offsets that we would have used if we weren't 1606 // adding any alignment padding or if the field weren't packed. 1607 uint64_t UnpaddedFieldOffset = FieldOffset; 1608 uint64_t UnpackedFieldOffset = FieldOffset; 1609 1610 // Check if we need to add padding to fit the bitfield within an 1611 // allocation unit with the right size and alignment. The rules are 1612 // somewhat different here for ms_struct structs. 1613 if (IsMsStruct) { 1614 // If it's not a zero-width bitfield, and we can fit the bitfield 1615 // into the active storage unit (and we haven't already decided to 1616 // start a new storage unit), just do so, regardless of any other 1617 // other consideration. Otherwise, round up to the right alignment. 1618 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { 1619 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1620 UnpackedFieldOffset = 1621 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1622 UnfilledBitsInLastUnit = 0; 1623 } 1624 1625 } else { 1626 // #pragma pack, with any value, suppresses the insertion of padding. 1627 bool AllowPadding = MaxFieldAlignment.isZero(); 1628 1629 // Compute the real offset. 1630 if (FieldSize == 0 || 1631 (AllowPadding && 1632 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) { 1633 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1634 } else if (ExplicitFieldAlign && 1635 (MaxFieldAlignmentInBits == 0 || 1636 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1637 Context.getTargetInfo().useExplicitBitFieldAlignment()) { 1638 // TODO: figure it out what needs to be done on targets that don't honor 1639 // bit-field type alignment like ARM APCS ABI. 1640 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); 1641 } 1642 1643 // Repeat the computation for diagnostic purposes. 1644 if (FieldSize == 0 || 1645 (AllowPadding && 1646 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize)) 1647 UnpackedFieldOffset = 1648 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1649 else if (ExplicitFieldAlign && 1650 (MaxFieldAlignmentInBits == 0 || 1651 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1652 Context.getTargetInfo().useExplicitBitFieldAlignment()) 1653 UnpackedFieldOffset = 1654 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); 1655 } 1656 1657 // If we're using external layout, give the external layout a chance 1658 // to override this information. 1659 if (UseExternalLayout) 1660 FieldOffset = updateExternalFieldOffset(D, FieldOffset); 1661 1662 // Okay, place the bitfield at the calculated offset. 1663 FieldOffsets.push_back(FieldOffset); 1664 1665 // Bookkeeping: 1666 1667 // Anonymous members don't affect the overall record alignment, 1668 // except on targets where they do. 1669 if (!IsMsStruct && 1670 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && 1671 !D->getIdentifier()) 1672 FieldAlign = UnpackedFieldAlign = 1; 1673 1674 // Diagnose differences in layout due to padding or packing. 1675 if (!UseExternalLayout) 1676 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, 1677 UnpackedFieldAlign, FieldPacked, D); 1678 1679 // Update DataSize to include the last byte containing (part of) the bitfield. 1680 1681 // For unions, this is just a max operation, as usual. 1682 if (IsUnion) { 1683 // For ms_struct, allocate the entire storage unit --- unless this 1684 // is a zero-width bitfield, in which case just use a size of 1. 1685 uint64_t RoundedFieldSize; 1686 if (IsMsStruct) { 1687 RoundedFieldSize = 1688 (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth()); 1689 1690 // Otherwise, allocate just the number of bytes required to store 1691 // the bitfield. 1692 } else { 1693 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); 1694 } 1695 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1696 1697 // For non-zero-width bitfields in ms_struct structs, allocate a new 1698 // storage unit if necessary. 1699 } else if (IsMsStruct && FieldSize) { 1700 // We should have cleared UnfilledBitsInLastUnit in every case 1701 // where we changed storage units. 1702 if (!UnfilledBitsInLastUnit) { 1703 setDataSize(FieldOffset + TypeSize); 1704 UnfilledBitsInLastUnit = TypeSize; 1705 } 1706 UnfilledBitsInLastUnit -= FieldSize; 1707 LastBitfieldTypeSize = TypeSize; 1708 1709 // Otherwise, bump the data size up to include the bitfield, 1710 // including padding up to char alignment, and then remember how 1711 // bits we didn't use. 1712 } else { 1713 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1714 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1715 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); 1716 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1717 1718 // The only time we can get here for an ms_struct is if this is a 1719 // zero-width bitfield, which doesn't count as anything for the 1720 // purposes of unfilled bits. 1721 LastBitfieldTypeSize = 0; 1722 } 1723 1724 // Update the size. 1725 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1726 1727 // Remember max struct/class alignment. 1728 UnadjustedAlignment = 1729 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); 1730 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), 1731 Context.toCharUnitsFromBits(UnpackedFieldAlign)); 1732 } 1733 1734 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, 1735 bool InsertExtraPadding) { 1736 if (D->isBitField()) { 1737 LayoutBitField(D); 1738 return; 1739 } 1740 1741 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1742 1743 // Reset the unfilled bits. 1744 UnfilledBitsInLastUnit = 0; 1745 LastBitfieldTypeSize = 0; 1746 1747 auto *FieldClass = D->getType()->getAsCXXRecordDecl(); 1748 bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass; 1749 bool IsOverlappingEmptyField = PotentiallyOverlapping && FieldClass->isEmpty(); 1750 bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); 1751 1752 CharUnits FieldOffset = (IsUnion || IsOverlappingEmptyField) 1753 ? CharUnits::Zero() 1754 : getDataSize(); 1755 CharUnits FieldSize; 1756 CharUnits FieldAlign; 1757 // The amount of this class's dsize occupied by the field. 1758 // This is equal to FieldSize unless we're permitted to pack 1759 // into the field's tail padding. 1760 CharUnits EffectiveFieldSize; 1761 1762 if (D->getType()->isIncompleteArrayType()) { 1763 // This is a flexible array member; we can't directly 1764 // query getTypeInfo about these, so we figure it out here. 1765 // Flexible array members don't have any size, but they 1766 // have to be aligned appropriately for their element type. 1767 EffectiveFieldSize = FieldSize = CharUnits::Zero(); 1768 const ArrayType* ATy = Context.getAsArrayType(D->getType()); 1769 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType()); 1770 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) { 1771 unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType()); 1772 EffectiveFieldSize = FieldSize = 1773 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS)); 1774 FieldAlign = 1775 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS)); 1776 } else { 1777 std::pair<CharUnits, CharUnits> FieldInfo = 1778 Context.getTypeInfoInChars(D->getType()); 1779 EffectiveFieldSize = FieldSize = FieldInfo.first; 1780 FieldAlign = FieldInfo.second; 1781 1782 // A potentially-overlapping field occupies its dsize or nvsize, whichever 1783 // is larger. 1784 if (PotentiallyOverlapping) { 1785 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass); 1786 EffectiveFieldSize = 1787 std::max(Layout.getNonVirtualSize(), Layout.getDataSize()); 1788 } 1789 1790 if (IsMsStruct) { 1791 // If MS bitfield layout is required, figure out what type is being 1792 // laid out and align the field to the width of that type. 1793 1794 // Resolve all typedefs down to their base type and round up the field 1795 // alignment if necessary. 1796 QualType T = Context.getBaseElementType(D->getType()); 1797 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { 1798 CharUnits TypeSize = Context.getTypeSizeInChars(BTy); 1799 1800 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { 1801 assert( 1802 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && 1803 "Non PowerOf2 size in MSVC mode"); 1804 // Base types with sizes that aren't a power of two don't work 1805 // with the layout rules for MS structs. This isn't an issue in 1806 // MSVC itself since there are no such base data types there. 1807 // On e.g. x86_32 mingw and linux, long double is 12 bytes though. 1808 // Any structs involving that data type obviously can't be ABI 1809 // compatible with MSVC regardless of how it is laid out. 1810 1811 // Since ms_struct can be mass enabled (via a pragma or via the 1812 // -mms-bitfields command line parameter), this can trigger for 1813 // structs that don't actually need MSVC compatibility, so we 1814 // need to be able to sidestep the ms_struct layout for these types. 1815 1816 // Since the combination of -mms-bitfields together with structs 1817 // like max_align_t (which contains a long double) for mingw is 1818 // quite comon (and GCC handles it silently), just handle it 1819 // silently there. For other targets that have ms_struct enabled 1820 // (most probably via a pragma or attribute), trigger a diagnostic 1821 // that defaults to an error. 1822 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 1823 Diag(D->getLocation(), diag::warn_npot_ms_struct); 1824 } 1825 if (TypeSize > FieldAlign && 1826 llvm::isPowerOf2_64(TypeSize.getQuantity())) 1827 FieldAlign = TypeSize; 1828 } 1829 } 1830 } 1831 1832 // The align if the field is not packed. This is to check if the attribute 1833 // was unnecessary (-Wpacked). 1834 CharUnits UnpackedFieldAlign = FieldAlign; 1835 CharUnits UnpackedFieldOffset = FieldOffset; 1836 1837 if (FieldPacked) 1838 FieldAlign = CharUnits::One(); 1839 CharUnits MaxAlignmentInChars = 1840 Context.toCharUnitsFromBits(D->getMaxAlignment()); 1841 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars); 1842 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); 1843 1844 // The maximum field alignment overrides the aligned attribute. 1845 if (!MaxFieldAlignment.isZero()) { 1846 FieldAlign = std::min(FieldAlign, MaxFieldAlignment); 1847 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); 1848 } 1849 1850 // Round up the current record size to the field's alignment boundary. 1851 FieldOffset = FieldOffset.alignTo(FieldAlign); 1852 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); 1853 1854 if (UseExternalLayout) { 1855 FieldOffset = Context.toCharUnitsFromBits( 1856 updateExternalFieldOffset(D, Context.toBits(FieldOffset))); 1857 1858 if (!IsUnion && EmptySubobjects) { 1859 // Record the fact that we're placing a field at this offset. 1860 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); 1861 (void)Allowed; 1862 assert(Allowed && "Externally-placed field cannot be placed here"); 1863 } 1864 } else { 1865 if (!IsUnion && EmptySubobjects) { 1866 // Check if we can place the field at this offset. 1867 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { 1868 // We couldn't place the field at the offset. Try again at a new offset. 1869 // We try offset 0 (for an empty field) and then dsize(C) onwards. 1870 if (FieldOffset == CharUnits::Zero() && 1871 getDataSize() != CharUnits::Zero()) 1872 FieldOffset = getDataSize().alignTo(FieldAlign); 1873 else 1874 FieldOffset += FieldAlign; 1875 } 1876 } 1877 } 1878 1879 // Place this field at the current location. 1880 FieldOffsets.push_back(Context.toBits(FieldOffset)); 1881 1882 if (!UseExternalLayout) 1883 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, 1884 Context.toBits(UnpackedFieldOffset), 1885 Context.toBits(UnpackedFieldAlign), FieldPacked, D); 1886 1887 if (InsertExtraPadding) { 1888 CharUnits ASanAlignment = CharUnits::fromQuantity(8); 1889 CharUnits ExtraSizeForAsan = ASanAlignment; 1890 if (FieldSize % ASanAlignment) 1891 ExtraSizeForAsan += 1892 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); 1893 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; 1894 } 1895 1896 // Reserve space for this field. 1897 if (!IsOverlappingEmptyField) { 1898 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize); 1899 if (IsUnion) 1900 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits)); 1901 else 1902 setDataSize(FieldOffset + EffectiveFieldSize); 1903 1904 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize); 1905 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1906 } else { 1907 setSize(std::max(getSizeInBits(), 1908 (uint64_t)Context.toBits(FieldOffset + FieldSize))); 1909 } 1910 1911 // Remember max struct/class alignment. 1912 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); 1913 UpdateAlignment(FieldAlign, UnpackedFieldAlign); 1914 } 1915 1916 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { 1917 // In C++, records cannot be of size 0. 1918 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { 1919 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 1920 // Compatibility with gcc requires a class (pod or non-pod) 1921 // which is not empty but of size 0; such as having fields of 1922 // array of zero-length, remains of Size 0 1923 if (RD->isEmpty()) 1924 setSize(CharUnits::One()); 1925 } 1926 else 1927 setSize(CharUnits::One()); 1928 } 1929 1930 // If we have any remaining field tail padding, include that in the overall 1931 // size. 1932 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize))); 1933 1934 // Finally, round the size of the record up to the alignment of the 1935 // record itself. 1936 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; 1937 uint64_t UnpackedSizeInBits = 1938 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); 1939 uint64_t RoundedSize = 1940 llvm::alignTo(getSizeInBits(), Context.toBits(Alignment)); 1941 1942 if (UseExternalLayout) { 1943 // If we're inferring alignment, and the external size is smaller than 1944 // our size after we've rounded up to alignment, conservatively set the 1945 // alignment to 1. 1946 if (InferAlignment && External.Size < RoundedSize) { 1947 Alignment = CharUnits::One(); 1948 InferAlignment = false; 1949 } 1950 setSize(External.Size); 1951 return; 1952 } 1953 1954 // Set the size to the final size. 1955 setSize(RoundedSize); 1956 1957 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 1958 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 1959 // Warn if padding was introduced to the struct/class/union. 1960 if (getSizeInBits() > UnpaddedSize) { 1961 unsigned PadSize = getSizeInBits() - UnpaddedSize; 1962 bool InBits = true; 1963 if (PadSize % CharBitNum == 0) { 1964 PadSize = PadSize / CharBitNum; 1965 InBits = false; 1966 } 1967 Diag(RD->getLocation(), diag::warn_padded_struct_size) 1968 << Context.getTypeDeclType(RD) 1969 << PadSize 1970 << (InBits ? 1 : 0); // (byte|bit) 1971 } 1972 1973 // Warn if we packed it unnecessarily, when the unpacked alignment is not 1974 // greater than the one after packing, the size in bits doesn't change and 1975 // the offset of each field is identical. 1976 if (Packed && UnpackedAlignment <= Alignment && 1977 UnpackedSizeInBits == getSizeInBits() && !HasPackedField) 1978 Diag(D->getLocation(), diag::warn_unnecessary_packed) 1979 << Context.getTypeDeclType(RD); 1980 } 1981 } 1982 1983 void ItaniumRecordLayoutBuilder::UpdateAlignment( 1984 CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { 1985 // The alignment is not modified when using 'mac68k' alignment or when 1986 // we have an externally-supplied layout that also provides overall alignment. 1987 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) 1988 return; 1989 1990 if (NewAlignment > Alignment) { 1991 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && 1992 "Alignment not a power of 2"); 1993 Alignment = NewAlignment; 1994 } 1995 1996 if (UnpackedNewAlignment > UnpackedAlignment) { 1997 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && 1998 "Alignment not a power of 2"); 1999 UnpackedAlignment = UnpackedNewAlignment; 2000 } 2001 } 2002 2003 uint64_t 2004 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, 2005 uint64_t ComputedOffset) { 2006 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); 2007 2008 if (InferAlignment && ExternalFieldOffset < ComputedOffset) { 2009 // The externally-supplied field offset is before the field offset we 2010 // computed. Assume that the structure is packed. 2011 Alignment = CharUnits::One(); 2012 InferAlignment = false; 2013 } 2014 2015 // Use the externally-supplied field offset. 2016 return ExternalFieldOffset; 2017 } 2018 2019 /// Get diagnostic %select index for tag kind for 2020 /// field padding diagnostic message. 2021 /// WARNING: Indexes apply to particular diagnostics only! 2022 /// 2023 /// \returns diagnostic %select index. 2024 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { 2025 switch (Tag) { 2026 case TTK_Struct: return 0; 2027 case TTK_Interface: return 1; 2028 case TTK_Class: return 2; 2029 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); 2030 } 2031 } 2032 2033 void ItaniumRecordLayoutBuilder::CheckFieldPadding( 2034 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, 2035 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { 2036 // We let objc ivars without warning, objc interfaces generally are not used 2037 // for padding tricks. 2038 if (isa<ObjCIvarDecl>(D)) 2039 return; 2040 2041 // Don't warn about structs created without a SourceLocation. This can 2042 // be done by clients of the AST, such as codegen. 2043 if (D->getLocation().isInvalid()) 2044 return; 2045 2046 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 2047 2048 // Warn if padding was introduced to the struct/class. 2049 if (!IsUnion && Offset > UnpaddedOffset) { 2050 unsigned PadSize = Offset - UnpaddedOffset; 2051 bool InBits = true; 2052 if (PadSize % CharBitNum == 0) { 2053 PadSize = PadSize / CharBitNum; 2054 InBits = false; 2055 } 2056 if (D->getIdentifier()) 2057 Diag(D->getLocation(), diag::warn_padded_struct_field) 2058 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 2059 << Context.getTypeDeclType(D->getParent()) 2060 << PadSize 2061 << (InBits ? 1 : 0) // (byte|bit) 2062 << D->getIdentifier(); 2063 else 2064 Diag(D->getLocation(), diag::warn_padded_struct_anon_field) 2065 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 2066 << Context.getTypeDeclType(D->getParent()) 2067 << PadSize 2068 << (InBits ? 1 : 0); // (byte|bit) 2069 } 2070 if (isPacked && Offset != UnpackedOffset) { 2071 HasPackedField = true; 2072 } 2073 } 2074 2075 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, 2076 const CXXRecordDecl *RD) { 2077 // If a class isn't polymorphic it doesn't have a key function. 2078 if (!RD->isPolymorphic()) 2079 return nullptr; 2080 2081 // A class that is not externally visible doesn't have a key function. (Or 2082 // at least, there's no point to assigning a key function to such a class; 2083 // this doesn't affect the ABI.) 2084 if (!RD->isExternallyVisible()) 2085 return nullptr; 2086 2087 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. 2088 // Same behavior as GCC. 2089 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 2090 if (TSK == TSK_ImplicitInstantiation || 2091 TSK == TSK_ExplicitInstantiationDeclaration || 2092 TSK == TSK_ExplicitInstantiationDefinition) 2093 return nullptr; 2094 2095 bool allowInlineFunctions = 2096 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); 2097 2098 for (const CXXMethodDecl *MD : RD->methods()) { 2099 if (!MD->isVirtual()) 2100 continue; 2101 2102 if (MD->isPure()) 2103 continue; 2104 2105 // Ignore implicit member functions, they are always marked as inline, but 2106 // they don't have a body until they're defined. 2107 if (MD->isImplicit()) 2108 continue; 2109 2110 if (MD->isInlineSpecified() || MD->isConstexpr()) 2111 continue; 2112 2113 if (MD->hasInlineBody()) 2114 continue; 2115 2116 // Ignore inline deleted or defaulted functions. 2117 if (!MD->isUserProvided()) 2118 continue; 2119 2120 // In certain ABIs, ignore functions with out-of-line inline definitions. 2121 if (!allowInlineFunctions) { 2122 const FunctionDecl *Def; 2123 if (MD->hasBody(Def) && Def->isInlineSpecified()) 2124 continue; 2125 } 2126 2127 if (Context.getLangOpts().CUDA) { 2128 // While compiler may see key method in this TU, during CUDA 2129 // compilation we should ignore methods that are not accessible 2130 // on this side of compilation. 2131 if (Context.getLangOpts().CUDAIsDevice) { 2132 // In device mode ignore methods without __device__ attribute. 2133 if (!MD->hasAttr<CUDADeviceAttr>()) 2134 continue; 2135 } else { 2136 // In host mode ignore __device__-only methods. 2137 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) 2138 continue; 2139 } 2140 } 2141 2142 // If the key function is dllimport but the class isn't, then the class has 2143 // no key function. The DLL that exports the key function won't export the 2144 // vtable in this case. 2145 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>()) 2146 return nullptr; 2147 2148 // We found it. 2149 return MD; 2150 } 2151 2152 return nullptr; 2153 } 2154 2155 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, 2156 unsigned DiagID) { 2157 return Context.getDiagnostics().Report(Loc, DiagID); 2158 } 2159 2160 /// Does the target C++ ABI require us to skip over the tail-padding 2161 /// of the given class (considering it as a base class) when allocating 2162 /// objects? 2163 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { 2164 switch (ABI.getTailPaddingUseRules()) { 2165 case TargetCXXABI::AlwaysUseTailPadding: 2166 return false; 2167 2168 case TargetCXXABI::UseTailPaddingUnlessPOD03: 2169 // FIXME: To the extent that this is meant to cover the Itanium ABI 2170 // rules, we should implement the restrictions about over-sized 2171 // bitfields: 2172 // 2173 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : 2174 // In general, a type is considered a POD for the purposes of 2175 // layout if it is a POD type (in the sense of ISO C++ 2176 // [basic.types]). However, a POD-struct or POD-union (in the 2177 // sense of ISO C++ [class]) with a bitfield member whose 2178 // declared width is wider than the declared type of the 2179 // bitfield is not a POD for the purpose of layout. Similarly, 2180 // an array type is not a POD for the purpose of layout if the 2181 // element type of the array is not a POD for the purpose of 2182 // layout. 2183 // 2184 // Where references to the ISO C++ are made in this paragraph, 2185 // the Technical Corrigendum 1 version of the standard is 2186 // intended. 2187 return RD->isPOD(); 2188 2189 case TargetCXXABI::UseTailPaddingUnlessPOD11: 2190 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), 2191 // but with a lot of abstraction penalty stripped off. This does 2192 // assume that these properties are set correctly even in C++98 2193 // mode; fortunately, that is true because we want to assign 2194 // consistently semantics to the type-traits intrinsics (or at 2195 // least as many of them as possible). 2196 return RD->isTrivial() && RD->isCXX11StandardLayout(); 2197 } 2198 2199 llvm_unreachable("bad tail-padding use kind"); 2200 } 2201 2202 static bool isMsLayout(const ASTContext &Context) { 2203 return Context.getTargetInfo().getCXXABI().isMicrosoft(); 2204 } 2205 2206 // This section contains an implementation of struct layout that is, up to the 2207 // included tests, compatible with cl.exe (2013). The layout produced is 2208 // significantly different than those produced by the Itanium ABI. Here we note 2209 // the most important differences. 2210 // 2211 // * The alignment of bitfields in unions is ignored when computing the 2212 // alignment of the union. 2213 // * The existence of zero-width bitfield that occurs after anything other than 2214 // a non-zero length bitfield is ignored. 2215 // * There is no explicit primary base for the purposes of layout. All bases 2216 // with vfptrs are laid out first, followed by all bases without vfptrs. 2217 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual 2218 // function pointer) and a vbptr (virtual base pointer). They can each be 2219 // shared with a, non-virtual bases. These bases need not be the same. vfptrs 2220 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are 2221 // placed after the lexicographically last non-virtual base. This placement 2222 // is always before fields but can be in the middle of the non-virtual bases 2223 // due to the two-pass layout scheme for non-virtual-bases. 2224 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before 2225 // the virtual base and is used in conjunction with virtual overrides during 2226 // construction and destruction. This is always a 4 byte value and is used as 2227 // an alternative to constructor vtables. 2228 // * vtordisps are allocated in a block of memory with size and alignment equal 2229 // to the alignment of the completed structure (before applying __declspec( 2230 // align())). The vtordisp always occur at the end of the allocation block, 2231 // immediately prior to the virtual base. 2232 // * vfptrs are injected after all bases and fields have been laid out. In 2233 // order to guarantee proper alignment of all fields, the vfptr injection 2234 // pushes all bases and fields back by the alignment imposed by those bases 2235 // and fields. This can potentially add a significant amount of padding. 2236 // vfptrs are always injected at offset 0. 2237 // * vbptrs are injected after all bases and fields have been laid out. In 2238 // order to guarantee proper alignment of all fields, the vfptr injection 2239 // pushes all bases and fields back by the alignment imposed by those bases 2240 // and fields. This can potentially add a significant amount of padding. 2241 // vbptrs are injected immediately after the last non-virtual base as 2242 // lexicographically ordered in the code. If this site isn't pointer aligned 2243 // the vbptr is placed at the next properly aligned location. Enough padding 2244 // is added to guarantee a fit. 2245 // * The last zero sized non-virtual base can be placed at the end of the 2246 // struct (potentially aliasing another object), or may alias with the first 2247 // field, even if they are of the same type. 2248 // * The last zero size virtual base may be placed at the end of the struct 2249 // potentially aliasing another object. 2250 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding 2251 // between bases or vbases with specific properties. The criteria for 2252 // additional padding between two bases is that the first base is zero sized 2253 // or ends with a zero sized subobject and the second base is zero sized or 2254 // trails with a zero sized base or field (sharing of vfptrs can reorder the 2255 // layout of the so the leading base is not always the first one declared). 2256 // This rule does take into account fields that are not records, so padding 2257 // will occur even if the last field is, e.g. an int. The padding added for 2258 // bases is 1 byte. The padding added between vbases depends on the alignment 2259 // of the object but is at least 4 bytes (in both 32 and 64 bit modes). 2260 // * There is no concept of non-virtual alignment, non-virtual alignment and 2261 // alignment are always identical. 2262 // * There is a distinction between alignment and required alignment. 2263 // __declspec(align) changes the required alignment of a struct. This 2264 // alignment is _always_ obeyed, even in the presence of #pragma pack. A 2265 // record inherits required alignment from all of its fields and bases. 2266 // * __declspec(align) on bitfields has the effect of changing the bitfield's 2267 // alignment instead of its required alignment. This is the only known way 2268 // to make the alignment of a struct bigger than 8. Interestingly enough 2269 // this alignment is also immune to the effects of #pragma pack and can be 2270 // used to create structures with large alignment under #pragma pack. 2271 // However, because it does not impact required alignment, such a structure, 2272 // when used as a field or base, will not be aligned if #pragma pack is 2273 // still active at the time of use. 2274 // 2275 // Known incompatibilities: 2276 // * all: #pragma pack between fields in a record 2277 // * 2010 and back: If the last field in a record is a bitfield, every object 2278 // laid out after the record will have extra padding inserted before it. The 2279 // extra padding will have size equal to the size of the storage class of the 2280 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra 2281 // padding can be avoided by adding a 0 sized bitfield after the non-zero- 2282 // sized bitfield. 2283 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or 2284 // greater due to __declspec(align()) then a second layout phase occurs after 2285 // The locations of the vf and vb pointers are known. This layout phase 2286 // suffers from the "last field is a bitfield" bug in 2010 and results in 2287 // _every_ field getting padding put in front of it, potentially including the 2288 // vfptr, leaving the vfprt at a non-zero location which results in a fault if 2289 // anything tries to read the vftbl. The second layout phase also treats 2290 // bitfields as separate entities and gives them each storage rather than 2291 // packing them. Additionally, because this phase appears to perform a 2292 // (an unstable) sort on the members before laying them out and because merged 2293 // bitfields have the same address, the bitfields end up in whatever order 2294 // the sort left them in, a behavior we could never hope to replicate. 2295 2296 namespace { 2297 struct MicrosoftRecordLayoutBuilder { 2298 struct ElementInfo { 2299 CharUnits Size; 2300 CharUnits Alignment; 2301 }; 2302 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 2303 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {} 2304 private: 2305 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; 2306 void operator=(const MicrosoftRecordLayoutBuilder &) = delete; 2307 public: 2308 void layout(const RecordDecl *RD); 2309 void cxxLayout(const CXXRecordDecl *RD); 2310 /// Initializes size and alignment and honors some flags. 2311 void initializeLayout(const RecordDecl *RD); 2312 /// Initialized C++ layout, compute alignment and virtual alignment and 2313 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is 2314 /// laid out. 2315 void initializeCXXLayout(const CXXRecordDecl *RD); 2316 void layoutNonVirtualBases(const CXXRecordDecl *RD); 2317 void layoutNonVirtualBase(const CXXRecordDecl *RD, 2318 const CXXRecordDecl *BaseDecl, 2319 const ASTRecordLayout &BaseLayout, 2320 const ASTRecordLayout *&PreviousBaseLayout); 2321 void injectVFPtr(const CXXRecordDecl *RD); 2322 void injectVBPtr(const CXXRecordDecl *RD); 2323 /// Lays out the fields of the record. Also rounds size up to 2324 /// alignment. 2325 void layoutFields(const RecordDecl *RD); 2326 void layoutField(const FieldDecl *FD); 2327 void layoutBitField(const FieldDecl *FD); 2328 /// Lays out a single zero-width bit-field in the record and handles 2329 /// special cases associated with zero-width bit-fields. 2330 void layoutZeroWidthBitField(const FieldDecl *FD); 2331 void layoutVirtualBases(const CXXRecordDecl *RD); 2332 void finalizeLayout(const RecordDecl *RD); 2333 /// Gets the size and alignment of a base taking pragma pack and 2334 /// __declspec(align) into account. 2335 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); 2336 /// Gets the size and alignment of a field taking pragma pack and 2337 /// __declspec(align) into account. It also updates RequiredAlignment as a 2338 /// side effect because it is most convenient to do so here. 2339 ElementInfo getAdjustedElementInfo(const FieldDecl *FD); 2340 /// Places a field at an offset in CharUnits. 2341 void placeFieldAtOffset(CharUnits FieldOffset) { 2342 FieldOffsets.push_back(Context.toBits(FieldOffset)); 2343 } 2344 /// Places a bitfield at a bit offset. 2345 void placeFieldAtBitOffset(uint64_t FieldOffset) { 2346 FieldOffsets.push_back(FieldOffset); 2347 } 2348 /// Compute the set of virtual bases for which vtordisps are required. 2349 void computeVtorDispSet( 2350 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, 2351 const CXXRecordDecl *RD) const; 2352 const ASTContext &Context; 2353 /// The size of the record being laid out. 2354 CharUnits Size; 2355 /// The non-virtual size of the record layout. 2356 CharUnits NonVirtualSize; 2357 /// The data size of the record layout. 2358 CharUnits DataSize; 2359 /// The current alignment of the record layout. 2360 CharUnits Alignment; 2361 /// The maximum allowed field alignment. This is set by #pragma pack. 2362 CharUnits MaxFieldAlignment; 2363 /// The alignment that this record must obey. This is imposed by 2364 /// __declspec(align()) on the record itself or one of its fields or bases. 2365 CharUnits RequiredAlignment; 2366 /// The size of the allocation of the currently active bitfield. 2367 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield 2368 /// is true. 2369 CharUnits CurrentBitfieldSize; 2370 /// Offset to the virtual base table pointer (if one exists). 2371 CharUnits VBPtrOffset; 2372 /// Minimum record size possible. 2373 CharUnits MinEmptyStructSize; 2374 /// The size and alignment info of a pointer. 2375 ElementInfo PointerInfo; 2376 /// The primary base class (if one exists). 2377 const CXXRecordDecl *PrimaryBase; 2378 /// The class we share our vb-pointer with. 2379 const CXXRecordDecl *SharedVBPtrBase; 2380 /// The collection of field offsets. 2381 SmallVector<uint64_t, 16> FieldOffsets; 2382 /// Base classes and their offsets in the record. 2383 BaseOffsetsMapTy Bases; 2384 /// virtual base classes and their offsets in the record. 2385 ASTRecordLayout::VBaseOffsetsMapTy VBases; 2386 /// The number of remaining bits in our last bitfield allocation. 2387 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is 2388 /// true. 2389 unsigned RemainingBitsInField; 2390 bool IsUnion : 1; 2391 /// True if the last field laid out was a bitfield and was not 0 2392 /// width. 2393 bool LastFieldIsNonZeroWidthBitfield : 1; 2394 /// True if the class has its own vftable pointer. 2395 bool HasOwnVFPtr : 1; 2396 /// True if the class has a vbtable pointer. 2397 bool HasVBPtr : 1; 2398 /// True if the last sub-object within the type is zero sized or the 2399 /// object itself is zero sized. This *does not* count members that are not 2400 /// records. Only used for MS-ABI. 2401 bool EndsWithZeroSizedObject : 1; 2402 /// True if this class is zero sized or first base is zero sized or 2403 /// has this property. Only used for MS-ABI. 2404 bool LeadsWithZeroSizedBase : 1; 2405 2406 /// True if the external AST source provided a layout for this record. 2407 bool UseExternalLayout : 1; 2408 2409 /// The layout provided by the external AST source. Only active if 2410 /// UseExternalLayout is true. 2411 ExternalLayout External; 2412 }; 2413 } // namespace 2414 2415 MicrosoftRecordLayoutBuilder::ElementInfo 2416 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2417 const ASTRecordLayout &Layout) { 2418 ElementInfo Info; 2419 Info.Alignment = Layout.getAlignment(); 2420 // Respect pragma pack. 2421 if (!MaxFieldAlignment.isZero()) 2422 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2423 // Track zero-sized subobjects here where it's already available. 2424 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2425 // Respect required alignment, this is necessary because we may have adjusted 2426 // the alignment in the case of pragam pack. Note that the required alignment 2427 // doesn't actually apply to the struct alignment at this point. 2428 Alignment = std::max(Alignment, Info.Alignment); 2429 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); 2430 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); 2431 Info.Size = Layout.getNonVirtualSize(); 2432 return Info; 2433 } 2434 2435 MicrosoftRecordLayoutBuilder::ElementInfo 2436 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2437 const FieldDecl *FD) { 2438 // Get the alignment of the field type's natural alignment, ignore any 2439 // alignment attributes. 2440 ElementInfo Info; 2441 std::tie(Info.Size, Info.Alignment) = 2442 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); 2443 // Respect align attributes on the field. 2444 CharUnits FieldRequiredAlignment = 2445 Context.toCharUnitsFromBits(FD->getMaxAlignment()); 2446 // Respect align attributes on the type. 2447 if (Context.isAlignmentRequired(FD->getType())) 2448 FieldRequiredAlignment = std::max( 2449 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); 2450 // Respect attributes applied to subobjects of the field. 2451 if (FD->isBitField()) 2452 // For some reason __declspec align impacts alignment rather than required 2453 // alignment when it is applied to bitfields. 2454 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2455 else { 2456 if (auto RT = 2457 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 2458 auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); 2459 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2460 FieldRequiredAlignment = std::max(FieldRequiredAlignment, 2461 Layout.getRequiredAlignment()); 2462 } 2463 // Capture required alignment as a side-effect. 2464 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); 2465 } 2466 // Respect pragma pack, attribute pack and declspec align 2467 if (!MaxFieldAlignment.isZero()) 2468 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2469 if (FD->hasAttr<PackedAttr>()) 2470 Info.Alignment = CharUnits::One(); 2471 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2472 return Info; 2473 } 2474 2475 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { 2476 // For C record layout, zero-sized records always have size 4. 2477 MinEmptyStructSize = CharUnits::fromQuantity(4); 2478 initializeLayout(RD); 2479 layoutFields(RD); 2480 DataSize = Size = Size.alignTo(Alignment); 2481 RequiredAlignment = std::max( 2482 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2483 finalizeLayout(RD); 2484 } 2485 2486 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { 2487 // The C++ standard says that empty structs have size 1. 2488 MinEmptyStructSize = CharUnits::One(); 2489 initializeLayout(RD); 2490 initializeCXXLayout(RD); 2491 layoutNonVirtualBases(RD); 2492 layoutFields(RD); 2493 injectVBPtr(RD); 2494 injectVFPtr(RD); 2495 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) 2496 Alignment = std::max(Alignment, PointerInfo.Alignment); 2497 auto RoundingAlignment = Alignment; 2498 if (!MaxFieldAlignment.isZero()) 2499 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 2500 if (!UseExternalLayout) 2501 Size = Size.alignTo(RoundingAlignment); 2502 NonVirtualSize = Size; 2503 RequiredAlignment = std::max( 2504 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2505 layoutVirtualBases(RD); 2506 finalizeLayout(RD); 2507 } 2508 2509 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { 2510 IsUnion = RD->isUnion(); 2511 Size = CharUnits::Zero(); 2512 Alignment = CharUnits::One(); 2513 // In 64-bit mode we always perform an alignment step after laying out vbases. 2514 // In 32-bit mode we do not. The check to see if we need to perform alignment 2515 // checks the RequiredAlignment field and performs alignment if it isn't 0. 2516 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() 2517 ? CharUnits::One() 2518 : CharUnits::Zero(); 2519 // Compute the maximum field alignment. 2520 MaxFieldAlignment = CharUnits::Zero(); 2521 // Honor the default struct packing maximum alignment flag. 2522 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) 2523 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 2524 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger 2525 // than the pointer size. 2526 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ 2527 unsigned PackedAlignment = MFAA->getAlignment(); 2528 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0)) 2529 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); 2530 } 2531 // Packed attribute forces max field alignment to be 1. 2532 if (RD->hasAttr<PackedAttr>()) 2533 MaxFieldAlignment = CharUnits::One(); 2534 2535 // Try to respect the external layout if present. 2536 UseExternalLayout = false; 2537 if (ExternalASTSource *Source = Context.getExternalSource()) 2538 UseExternalLayout = Source->layoutRecordType( 2539 RD, External.Size, External.Align, External.FieldOffsets, 2540 External.BaseOffsets, External.VirtualBaseOffsets); 2541 } 2542 2543 void 2544 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { 2545 EndsWithZeroSizedObject = false; 2546 LeadsWithZeroSizedBase = false; 2547 HasOwnVFPtr = false; 2548 HasVBPtr = false; 2549 PrimaryBase = nullptr; 2550 SharedVBPtrBase = nullptr; 2551 // Calculate pointer size and alignment. These are used for vfptr and vbprt 2552 // injection. 2553 PointerInfo.Size = 2554 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 2555 PointerInfo.Alignment = 2556 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); 2557 // Respect pragma pack. 2558 if (!MaxFieldAlignment.isZero()) 2559 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); 2560 } 2561 2562 void 2563 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { 2564 // The MS-ABI lays out all bases that contain leading vfptrs before it lays 2565 // out any bases that do not contain vfptrs. We implement this as two passes 2566 // over the bases. This approach guarantees that the primary base is laid out 2567 // first. We use these passes to calculate some additional aggregated 2568 // information about the bases, such as required alignment and the presence of 2569 // zero sized members. 2570 const ASTRecordLayout *PreviousBaseLayout = nullptr; 2571 bool HasPolymorphicBaseClass = false; 2572 // Iterate through the bases and lay out the non-virtual ones. 2573 for (const CXXBaseSpecifier &Base : RD->bases()) { 2574 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2575 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); 2576 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2577 // Mark and skip virtual bases. 2578 if (Base.isVirtual()) { 2579 HasVBPtr = true; 2580 continue; 2581 } 2582 // Check for a base to share a VBPtr with. 2583 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { 2584 SharedVBPtrBase = BaseDecl; 2585 HasVBPtr = true; 2586 } 2587 // Only lay out bases with extendable VFPtrs on the first pass. 2588 if (!BaseLayout.hasExtendableVFPtr()) 2589 continue; 2590 // If we don't have a primary base, this one qualifies. 2591 if (!PrimaryBase) { 2592 PrimaryBase = BaseDecl; 2593 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2594 } 2595 // Lay out the base. 2596 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2597 } 2598 // Figure out if we need a fresh VFPtr for this class. 2599 if (RD->isPolymorphic()) { 2600 if (!HasPolymorphicBaseClass) 2601 // This class introduces polymorphism, so we need a vftable to store the 2602 // RTTI information. 2603 HasOwnVFPtr = true; 2604 else if (!PrimaryBase) { 2605 // We have a polymorphic base class but can't extend its vftable. Add a 2606 // new vfptr if we would use any vftable slots. 2607 for (CXXMethodDecl *M : RD->methods()) { 2608 if (MicrosoftVTableContext::hasVtableSlot(M) && 2609 M->size_overridden_methods() == 0) { 2610 HasOwnVFPtr = true; 2611 break; 2612 } 2613 } 2614 } 2615 } 2616 // If we don't have a primary base then we have a leading object that could 2617 // itself lead with a zero-sized object, something we track. 2618 bool CheckLeadingLayout = !PrimaryBase; 2619 // Iterate through the bases and lay out the non-virtual ones. 2620 for (const CXXBaseSpecifier &Base : RD->bases()) { 2621 if (Base.isVirtual()) 2622 continue; 2623 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2624 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2625 // Only lay out bases without extendable VFPtrs on the second pass. 2626 if (BaseLayout.hasExtendableVFPtr()) { 2627 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2628 continue; 2629 } 2630 // If this is the first layout, check to see if it leads with a zero sized 2631 // object. If it does, so do we. 2632 if (CheckLeadingLayout) { 2633 CheckLeadingLayout = false; 2634 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2635 } 2636 // Lay out the base. 2637 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2638 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2639 } 2640 // Set our VBPtroffset if we know it at this point. 2641 if (!HasVBPtr) 2642 VBPtrOffset = CharUnits::fromQuantity(-1); 2643 else if (SharedVBPtrBase) { 2644 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); 2645 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); 2646 } 2647 } 2648 2649 static bool recordUsesEBO(const RecordDecl *RD) { 2650 if (!isa<CXXRecordDecl>(RD)) 2651 return false; 2652 if (RD->hasAttr<EmptyBasesAttr>()) 2653 return true; 2654 if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) 2655 // TODO: Double check with the next version of MSVC. 2656 if (LVA->getVersion() <= LangOptions::MSVC2015) 2657 return false; 2658 // TODO: Some later version of MSVC will change the default behavior of the 2659 // compiler to enable EBO by default. When this happens, we will need an 2660 // additional isCompatibleWithMSVC check. 2661 return false; 2662 } 2663 2664 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( 2665 const CXXRecordDecl *RD, 2666 const CXXRecordDecl *BaseDecl, 2667 const ASTRecordLayout &BaseLayout, 2668 const ASTRecordLayout *&PreviousBaseLayout) { 2669 // Insert padding between two bases if the left first one is zero sized or 2670 // contains a zero sized subobject and the right is zero sized or one leads 2671 // with a zero sized base. 2672 bool MDCUsesEBO = recordUsesEBO(RD); 2673 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 2674 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) 2675 Size++; 2676 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 2677 CharUnits BaseOffset; 2678 2679 // Respect the external AST source base offset, if present. 2680 bool FoundBase = false; 2681 if (UseExternalLayout) { 2682 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); 2683 if (FoundBase) { 2684 assert(BaseOffset >= Size && "base offset already allocated"); 2685 Size = BaseOffset; 2686 } 2687 } 2688 2689 if (!FoundBase) { 2690 if (MDCUsesEBO && BaseDecl->isEmpty()) { 2691 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero()); 2692 BaseOffset = CharUnits::Zero(); 2693 } else { 2694 // Otherwise, lay the base out at the end of the MDC. 2695 BaseOffset = Size = Size.alignTo(Info.Alignment); 2696 } 2697 } 2698 Bases.insert(std::make_pair(BaseDecl, BaseOffset)); 2699 Size += BaseLayout.getNonVirtualSize(); 2700 PreviousBaseLayout = &BaseLayout; 2701 } 2702 2703 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { 2704 LastFieldIsNonZeroWidthBitfield = false; 2705 for (const FieldDecl *Field : RD->fields()) 2706 layoutField(Field); 2707 } 2708 2709 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { 2710 if (FD->isBitField()) { 2711 layoutBitField(FD); 2712 return; 2713 } 2714 LastFieldIsNonZeroWidthBitfield = false; 2715 ElementInfo Info = getAdjustedElementInfo(FD); 2716 Alignment = std::max(Alignment, Info.Alignment); 2717 CharUnits FieldOffset; 2718 if (UseExternalLayout) 2719 FieldOffset = 2720 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); 2721 else if (IsUnion) 2722 FieldOffset = CharUnits::Zero(); 2723 else 2724 FieldOffset = Size.alignTo(Info.Alignment); 2725 placeFieldAtOffset(FieldOffset); 2726 Size = std::max(Size, FieldOffset + Info.Size); 2727 } 2728 2729 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { 2730 unsigned Width = FD->getBitWidthValue(Context); 2731 if (Width == 0) { 2732 layoutZeroWidthBitField(FD); 2733 return; 2734 } 2735 ElementInfo Info = getAdjustedElementInfo(FD); 2736 // Clamp the bitfield to a containable size for the sake of being able 2737 // to lay them out. Sema will throw an error. 2738 if (Width > Context.toBits(Info.Size)) 2739 Width = Context.toBits(Info.Size); 2740 // Check to see if this bitfield fits into an existing allocation. Note: 2741 // MSVC refuses to pack bitfields of formal types with different sizes 2742 // into the same allocation. 2743 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && 2744 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { 2745 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); 2746 RemainingBitsInField -= Width; 2747 return; 2748 } 2749 LastFieldIsNonZeroWidthBitfield = true; 2750 CurrentBitfieldSize = Info.Size; 2751 if (UseExternalLayout) { 2752 auto FieldBitOffset = External.getExternalFieldOffset(FD); 2753 placeFieldAtBitOffset(FieldBitOffset); 2754 auto NewSize = Context.toCharUnitsFromBits( 2755 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) + 2756 Context.toBits(Info.Size)); 2757 Size = std::max(Size, NewSize); 2758 Alignment = std::max(Alignment, Info.Alignment); 2759 } else if (IsUnion) { 2760 placeFieldAtOffset(CharUnits::Zero()); 2761 Size = std::max(Size, Info.Size); 2762 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 2763 } else { 2764 // Allocate a new block of memory and place the bitfield in it. 2765 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 2766 placeFieldAtOffset(FieldOffset); 2767 Size = FieldOffset + Info.Size; 2768 Alignment = std::max(Alignment, Info.Alignment); 2769 RemainingBitsInField = Context.toBits(Info.Size) - Width; 2770 } 2771 } 2772 2773 void 2774 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { 2775 // Zero-width bitfields are ignored unless they follow a non-zero-width 2776 // bitfield. 2777 if (!LastFieldIsNonZeroWidthBitfield) { 2778 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); 2779 // TODO: Add a Sema warning that MS ignores alignment for zero 2780 // sized bitfields that occur after zero-size bitfields or non-bitfields. 2781 return; 2782 } 2783 LastFieldIsNonZeroWidthBitfield = false; 2784 ElementInfo Info = getAdjustedElementInfo(FD); 2785 if (IsUnion) { 2786 placeFieldAtOffset(CharUnits::Zero()); 2787 Size = std::max(Size, Info.Size); 2788 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 2789 } else { 2790 // Round up the current record size to the field's alignment boundary. 2791 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 2792 placeFieldAtOffset(FieldOffset); 2793 Size = FieldOffset; 2794 Alignment = std::max(Alignment, Info.Alignment); 2795 } 2796 } 2797 2798 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { 2799 if (!HasVBPtr || SharedVBPtrBase) 2800 return; 2801 // Inject the VBPointer at the injection site. 2802 CharUnits InjectionSite = VBPtrOffset; 2803 // But before we do, make sure it's properly aligned. 2804 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); 2805 // Determine where the first field should be laid out after the vbptr. 2806 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; 2807 // Shift everything after the vbptr down, unless we're using an external 2808 // layout. 2809 if (UseExternalLayout) { 2810 // It is possible that there were no fields or bases located after vbptr, 2811 // so the size was not adjusted before. 2812 if (Size < FieldStart) 2813 Size = FieldStart; 2814 return; 2815 } 2816 // Make sure that the amount we push the fields back by is a multiple of the 2817 // alignment. 2818 CharUnits Offset = (FieldStart - InjectionSite) 2819 .alignTo(std::max(RequiredAlignment, Alignment)); 2820 Size += Offset; 2821 for (uint64_t &FieldOffset : FieldOffsets) 2822 FieldOffset += Context.toBits(Offset); 2823 for (BaseOffsetsMapTy::value_type &Base : Bases) 2824 if (Base.second >= InjectionSite) 2825 Base.second += Offset; 2826 } 2827 2828 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { 2829 if (!HasOwnVFPtr) 2830 return; 2831 // Make sure that the amount we push the struct back by is a multiple of the 2832 // alignment. 2833 CharUnits Offset = 2834 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); 2835 // Push back the vbptr, but increase the size of the object and push back 2836 // regular fields by the offset only if not using external record layout. 2837 if (HasVBPtr) 2838 VBPtrOffset += Offset; 2839 2840 if (UseExternalLayout) { 2841 // The class may have no bases or fields, but still have a vfptr 2842 // (e.g. it's an interface class). The size was not correctly set before 2843 // in this case. 2844 if (FieldOffsets.empty() && Bases.empty()) 2845 Size += Offset; 2846 return; 2847 } 2848 2849 Size += Offset; 2850 2851 // If we're using an external layout, the fields offsets have already 2852 // accounted for this adjustment. 2853 for (uint64_t &FieldOffset : FieldOffsets) 2854 FieldOffset += Context.toBits(Offset); 2855 for (BaseOffsetsMapTy::value_type &Base : Bases) 2856 Base.second += Offset; 2857 } 2858 2859 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { 2860 if (!HasVBPtr) 2861 return; 2862 // Vtordisps are always 4 bytes (even in 64-bit mode) 2863 CharUnits VtorDispSize = CharUnits::fromQuantity(4); 2864 CharUnits VtorDispAlignment = VtorDispSize; 2865 // vtordisps respect pragma pack. 2866 if (!MaxFieldAlignment.isZero()) 2867 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); 2868 // The alignment of the vtordisp is at least the required alignment of the 2869 // entire record. This requirement may be present to support vtordisp 2870 // injection. 2871 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 2872 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 2873 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2874 RequiredAlignment = 2875 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); 2876 } 2877 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); 2878 // Compute the vtordisp set. 2879 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; 2880 computeVtorDispSet(HasVtorDispSet, RD); 2881 // Iterate through the virtual bases and lay them out. 2882 const ASTRecordLayout *PreviousBaseLayout = nullptr; 2883 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 2884 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 2885 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2886 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0; 2887 // Insert padding between two bases if the left first one is zero sized or 2888 // contains a zero sized subobject and the right is zero sized or one leads 2889 // with a zero sized base. The padding between virtual bases is 4 2890 // bytes (in both 32 and 64 bits modes) and always involves rounding up to 2891 // the required alignment, we don't know why. 2892 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 2893 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || 2894 HasVtordisp) { 2895 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; 2896 Alignment = std::max(VtorDispAlignment, Alignment); 2897 } 2898 // Insert the virtual base. 2899 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 2900 CharUnits BaseOffset; 2901 2902 // Respect the external AST source base offset, if present. 2903 if (UseExternalLayout) { 2904 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) 2905 BaseOffset = Size; 2906 } else 2907 BaseOffset = Size.alignTo(Info.Alignment); 2908 2909 assert(BaseOffset >= Size && "base offset already allocated"); 2910 2911 VBases.insert(std::make_pair(BaseDecl, 2912 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); 2913 Size = BaseOffset + BaseLayout.getNonVirtualSize(); 2914 PreviousBaseLayout = &BaseLayout; 2915 } 2916 } 2917 2918 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { 2919 // Respect required alignment. Note that in 32-bit mode Required alignment 2920 // may be 0 and cause size not to be updated. 2921 DataSize = Size; 2922 if (!RequiredAlignment.isZero()) { 2923 Alignment = std::max(Alignment, RequiredAlignment); 2924 auto RoundingAlignment = Alignment; 2925 if (!MaxFieldAlignment.isZero()) 2926 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 2927 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); 2928 Size = Size.alignTo(RoundingAlignment); 2929 } 2930 if (Size.isZero()) { 2931 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { 2932 EndsWithZeroSizedObject = true; 2933 LeadsWithZeroSizedBase = true; 2934 } 2935 // Zero-sized structures have size equal to their alignment if a 2936 // __declspec(align) came into play. 2937 if (RequiredAlignment >= MinEmptyStructSize) 2938 Size = Alignment; 2939 else 2940 Size = MinEmptyStructSize; 2941 } 2942 2943 if (UseExternalLayout) { 2944 Size = Context.toCharUnitsFromBits(External.Size); 2945 if (External.Align) 2946 Alignment = Context.toCharUnitsFromBits(External.Align); 2947 } 2948 } 2949 2950 // Recursively walks the non-virtual bases of a class and determines if any of 2951 // them are in the bases with overridden methods set. 2952 static bool 2953 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & 2954 BasesWithOverriddenMethods, 2955 const CXXRecordDecl *RD) { 2956 if (BasesWithOverriddenMethods.count(RD)) 2957 return true; 2958 // If any of a virtual bases non-virtual bases (recursively) requires a 2959 // vtordisp than so does this virtual base. 2960 for (const CXXBaseSpecifier &Base : RD->bases()) 2961 if (!Base.isVirtual() && 2962 RequiresVtordisp(BasesWithOverriddenMethods, 2963 Base.getType()->getAsCXXRecordDecl())) 2964 return true; 2965 return false; 2966 } 2967 2968 void MicrosoftRecordLayoutBuilder::computeVtorDispSet( 2969 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, 2970 const CXXRecordDecl *RD) const { 2971 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with 2972 // vftables. 2973 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { 2974 for (const CXXBaseSpecifier &Base : RD->vbases()) { 2975 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2976 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 2977 if (Layout.hasExtendableVFPtr()) 2978 HasVtordispSet.insert(BaseDecl); 2979 } 2980 return; 2981 } 2982 2983 // If any of our bases need a vtordisp for this type, so do we. Check our 2984 // direct bases for vtordisp requirements. 2985 for (const CXXBaseSpecifier &Base : RD->bases()) { 2986 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2987 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 2988 for (const auto &bi : Layout.getVBaseOffsetsMap()) 2989 if (bi.second.hasVtorDisp()) 2990 HasVtordispSet.insert(bi.first); 2991 } 2992 // We don't introduce any additional vtordisps if either: 2993 // * A user declared constructor or destructor aren't declared. 2994 // * #pragma vtordisp(0) or the /vd0 flag are in use. 2995 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || 2996 RD->getMSVtorDispMode() == MSVtorDispMode::Never) 2997 return; 2998 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's 2999 // possible for a partially constructed object with virtual base overrides to 3000 // escape a non-trivial constructor. 3001 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride); 3002 // Compute a set of base classes which define methods we override. A virtual 3003 // base in this set will require a vtordisp. A virtual base that transitively 3004 // contains one of these bases as a non-virtual base will also require a 3005 // vtordisp. 3006 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; 3007 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; 3008 // Seed the working set with our non-destructor, non-pure virtual methods. 3009 for (const CXXMethodDecl *MD : RD->methods()) 3010 if (MicrosoftVTableContext::hasVtableSlot(MD) && 3011 !isa<CXXDestructorDecl>(MD) && !MD->isPure()) 3012 Work.insert(MD); 3013 while (!Work.empty()) { 3014 const CXXMethodDecl *MD = *Work.begin(); 3015 auto MethodRange = MD->overridden_methods(); 3016 // If a virtual method has no-overrides it lives in its parent's vtable. 3017 if (MethodRange.begin() == MethodRange.end()) 3018 BasesWithOverriddenMethods.insert(MD->getParent()); 3019 else 3020 Work.insert(MethodRange.begin(), MethodRange.end()); 3021 // We've finished processing this element, remove it from the working set. 3022 Work.erase(MD); 3023 } 3024 // For each of our virtual bases, check if it is in the set of overridden 3025 // bases or if it transitively contains a non-virtual base that is. 3026 for (const CXXBaseSpecifier &Base : RD->vbases()) { 3027 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3028 if (!HasVtordispSet.count(BaseDecl) && 3029 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) 3030 HasVtordispSet.insert(BaseDecl); 3031 } 3032 } 3033 3034 /// getASTRecordLayout - Get or compute information about the layout of the 3035 /// specified record (struct/union/class), which indicates its size and field 3036 /// position information. 3037 const ASTRecordLayout & 3038 ASTContext::getASTRecordLayout(const RecordDecl *D) const { 3039 // These asserts test different things. A record has a definition 3040 // as soon as we begin to parse the definition. That definition is 3041 // not a complete definition (which is what isDefinition() tests) 3042 // until we *finish* parsing the definition. 3043 3044 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3045 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); 3046 3047 D = D->getDefinition(); 3048 assert(D && "Cannot get layout of forward declarations!"); 3049 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); 3050 assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); 3051 3052 // Look up this layout, if already laid out, return what we have. 3053 // Note that we can't save a reference to the entry because this function 3054 // is recursive. 3055 const ASTRecordLayout *Entry = ASTRecordLayouts[D]; 3056 if (Entry) return *Entry; 3057 3058 const ASTRecordLayout *NewEntry = nullptr; 3059 3060 if (isMsLayout(*this)) { 3061 MicrosoftRecordLayoutBuilder Builder(*this); 3062 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 3063 Builder.cxxLayout(RD); 3064 NewEntry = new (*this) ASTRecordLayout( 3065 *this, Builder.Size, Builder.Alignment, Builder.Alignment, 3066 Builder.RequiredAlignment, 3067 Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase, 3068 Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets, 3069 Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(), 3070 Builder.PrimaryBase, false, Builder.SharedVBPtrBase, 3071 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, 3072 Builder.Bases, Builder.VBases); 3073 } else { 3074 Builder.layout(D); 3075 NewEntry = new (*this) ASTRecordLayout( 3076 *this, Builder.Size, Builder.Alignment, Builder.Alignment, 3077 Builder.RequiredAlignment, 3078 Builder.Size, Builder.FieldOffsets); 3079 } 3080 } else { 3081 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 3082 EmptySubobjectMap EmptySubobjects(*this, RD); 3083 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); 3084 Builder.Layout(RD); 3085 3086 // In certain situations, we are allowed to lay out objects in the 3087 // tail-padding of base classes. This is ABI-dependent. 3088 // FIXME: this should be stored in the record layout. 3089 bool skipTailPadding = 3090 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); 3091 3092 // FIXME: This should be done in FinalizeLayout. 3093 CharUnits DataSize = 3094 skipTailPadding ? Builder.getSize() : Builder.getDataSize(); 3095 CharUnits NonVirtualSize = 3096 skipTailPadding ? DataSize : Builder.NonVirtualSize; 3097 NewEntry = new (*this) ASTRecordLayout( 3098 *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment, 3099 /*RequiredAlignment : used by MS-ABI)*/ 3100 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), 3101 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, 3102 NonVirtualSize, Builder.NonVirtualAlignment, 3103 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, 3104 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, 3105 Builder.VBases); 3106 } else { 3107 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3108 Builder.Layout(D); 3109 3110 NewEntry = new (*this) ASTRecordLayout( 3111 *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment, 3112 /*RequiredAlignment : used by MS-ABI)*/ 3113 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); 3114 } 3115 } 3116 3117 ASTRecordLayouts[D] = NewEntry; 3118 3119 if (getLangOpts().DumpRecordLayouts) { 3120 llvm::outs() << "\n*** Dumping AST Record Layout\n"; 3121 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); 3122 } 3123 3124 return *NewEntry; 3125 } 3126 3127 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { 3128 if (!getTargetInfo().getCXXABI().hasKeyFunctions()) 3129 return nullptr; 3130 3131 assert(RD->getDefinition() && "Cannot get key function for forward decl!"); 3132 RD = RD->getDefinition(); 3133 3134 // Beware: 3135 // 1) computing the key function might trigger deserialization, which might 3136 // invalidate iterators into KeyFunctions 3137 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and 3138 // invalidate the LazyDeclPtr within the map itself 3139 LazyDeclPtr Entry = KeyFunctions[RD]; 3140 const Decl *Result = 3141 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); 3142 3143 // Store it back if it changed. 3144 if (Entry.isOffset() || Entry.isValid() != bool(Result)) 3145 KeyFunctions[RD] = const_cast<Decl*>(Result); 3146 3147 return cast_or_null<CXXMethodDecl>(Result); 3148 } 3149 3150 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { 3151 assert(Method == Method->getFirstDecl() && 3152 "not working with method declaration from class definition"); 3153 3154 // Look up the cache entry. Since we're working with the first 3155 // declaration, its parent must be the class definition, which is 3156 // the correct key for the KeyFunctions hash. 3157 const auto &Map = KeyFunctions; 3158 auto I = Map.find(Method->getParent()); 3159 3160 // If it's not cached, there's nothing to do. 3161 if (I == Map.end()) return; 3162 3163 // If it is cached, check whether it's the target method, and if so, 3164 // remove it from the cache. Note, the call to 'get' might invalidate 3165 // the iterator and the LazyDeclPtr object within the map. 3166 LazyDeclPtr Ptr = I->second; 3167 if (Ptr.get(getExternalSource()) == Method) { 3168 // FIXME: remember that we did this for module / chained PCH state? 3169 KeyFunctions.erase(Method->getParent()); 3170 } 3171 } 3172 3173 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { 3174 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); 3175 return Layout.getFieldOffset(FD->getFieldIndex()); 3176 } 3177 3178 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { 3179 uint64_t OffsetInBits; 3180 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { 3181 OffsetInBits = ::getFieldOffset(*this, FD); 3182 } else { 3183 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); 3184 3185 OffsetInBits = 0; 3186 for (const NamedDecl *ND : IFD->chain()) 3187 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); 3188 } 3189 3190 return OffsetInBits; 3191 } 3192 3193 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, 3194 const ObjCImplementationDecl *ID, 3195 const ObjCIvarDecl *Ivar) const { 3196 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 3197 3198 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed 3199 // in here; it should never be necessary because that should be the lexical 3200 // decl context for the ivar. 3201 3202 // If we know have an implementation (and the ivar is in it) then 3203 // look up in the implementation layout. 3204 const ASTRecordLayout *RL; 3205 if (ID && declaresSameEntity(ID->getClassInterface(), Container)) 3206 RL = &getASTObjCImplementationLayout(ID); 3207 else 3208 RL = &getASTObjCInterfaceLayout(Container); 3209 3210 // Compute field index. 3211 // 3212 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is 3213 // implemented. This should be fixed to get the information from the layout 3214 // directly. 3215 unsigned Index = 0; 3216 3217 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); 3218 IVD; IVD = IVD->getNextIvar()) { 3219 if (Ivar == IVD) 3220 break; 3221 ++Index; 3222 } 3223 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); 3224 3225 return RL->getFieldOffset(Index); 3226 } 3227 3228 /// getObjCLayout - Get or compute information about the layout of the 3229 /// given interface. 3230 /// 3231 /// \param Impl - If given, also include the layout of the interface's 3232 /// implementation. This may differ by including synthesized ivars. 3233 const ASTRecordLayout & 3234 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, 3235 const ObjCImplementationDecl *Impl) const { 3236 // Retrieve the definition 3237 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3238 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); 3239 D = D->getDefinition(); 3240 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && 3241 "Invalid interface decl!"); 3242 3243 // Look up this layout, if already laid out, return what we have. 3244 const ObjCContainerDecl *Key = 3245 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; 3246 if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) 3247 return *Entry; 3248 3249 // Add in synthesized ivar count if laying out an implementation. 3250 if (Impl) { 3251 unsigned SynthCount = CountNonClassIvars(D); 3252 // If there aren't any synthesized ivars then reuse the interface 3253 // entry. Note we can't cache this because we simply free all 3254 // entries later; however we shouldn't look up implementations 3255 // frequently. 3256 if (SynthCount == 0) 3257 return getObjCLayout(D, nullptr); 3258 } 3259 3260 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3261 Builder.Layout(D); 3262 3263 const ASTRecordLayout *NewEntry = 3264 new (*this) ASTRecordLayout(*this, Builder.getSize(), 3265 Builder.Alignment, 3266 Builder.UnadjustedAlignment, 3267 /*RequiredAlignment : used by MS-ABI)*/ 3268 Builder.Alignment, 3269 Builder.getDataSize(), 3270 Builder.FieldOffsets); 3271 3272 ObjCLayouts[Key] = NewEntry; 3273 3274 return *NewEntry; 3275 } 3276 3277 static void PrintOffset(raw_ostream &OS, 3278 CharUnits Offset, unsigned IndentLevel) { 3279 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity()); 3280 OS.indent(IndentLevel * 2); 3281 } 3282 3283 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, 3284 unsigned Begin, unsigned Width, 3285 unsigned IndentLevel) { 3286 llvm::SmallString<10> Buffer; 3287 { 3288 llvm::raw_svector_ostream BufferOS(Buffer); 3289 BufferOS << Offset.getQuantity() << ':'; 3290 if (Width == 0) { 3291 BufferOS << '-'; 3292 } else { 3293 BufferOS << Begin << '-' << (Begin + Width - 1); 3294 } 3295 } 3296 3297 OS << llvm::right_justify(Buffer, 10) << " | "; 3298 OS.indent(IndentLevel * 2); 3299 } 3300 3301 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { 3302 OS << " | "; 3303 OS.indent(IndentLevel * 2); 3304 } 3305 3306 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, 3307 const ASTContext &C, 3308 CharUnits Offset, 3309 unsigned IndentLevel, 3310 const char* Description, 3311 bool PrintSizeInfo, 3312 bool IncludeVirtualBases) { 3313 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); 3314 auto CXXRD = dyn_cast<CXXRecordDecl>(RD); 3315 3316 PrintOffset(OS, Offset, IndentLevel); 3317 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString(); 3318 if (Description) 3319 OS << ' ' << Description; 3320 if (CXXRD && CXXRD->isEmpty()) 3321 OS << " (empty)"; 3322 OS << '\n'; 3323 3324 IndentLevel++; 3325 3326 // Dump bases. 3327 if (CXXRD) { 3328 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 3329 bool HasOwnVFPtr = Layout.hasOwnVFPtr(); 3330 bool HasOwnVBPtr = Layout.hasOwnVBPtr(); 3331 3332 // Vtable pointer. 3333 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { 3334 PrintOffset(OS, Offset, IndentLevel); 3335 OS << '(' << *RD << " vtable pointer)\n"; 3336 } else if (HasOwnVFPtr) { 3337 PrintOffset(OS, Offset, IndentLevel); 3338 // vfptr (for Microsoft C++ ABI) 3339 OS << '(' << *RD << " vftable pointer)\n"; 3340 } 3341 3342 // Collect nvbases. 3343 SmallVector<const CXXRecordDecl *, 4> Bases; 3344 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 3345 assert(!Base.getType()->isDependentType() && 3346 "Cannot layout class with dependent bases."); 3347 if (!Base.isVirtual()) 3348 Bases.push_back(Base.getType()->getAsCXXRecordDecl()); 3349 } 3350 3351 // Sort nvbases by offset. 3352 llvm::stable_sort( 3353 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { 3354 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); 3355 }); 3356 3357 // Dump (non-virtual) bases 3358 for (const CXXRecordDecl *Base : Bases) { 3359 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); 3360 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, 3361 Base == PrimaryBase ? "(primary base)" : "(base)", 3362 /*PrintSizeInfo=*/false, 3363 /*IncludeVirtualBases=*/false); 3364 } 3365 3366 // vbptr (for Microsoft C++ ABI) 3367 if (HasOwnVBPtr) { 3368 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); 3369 OS << '(' << *RD << " vbtable pointer)\n"; 3370 } 3371 } 3372 3373 // Dump fields. 3374 uint64_t FieldNo = 0; 3375 for (RecordDecl::field_iterator I = RD->field_begin(), 3376 E = RD->field_end(); I != E; ++I, ++FieldNo) { 3377 const FieldDecl &Field = **I; 3378 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); 3379 CharUnits FieldOffset = 3380 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); 3381 3382 // Recursively dump fields of record type. 3383 if (auto RT = Field.getType()->getAs<RecordType>()) { 3384 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, 3385 Field.getName().data(), 3386 /*PrintSizeInfo=*/false, 3387 /*IncludeVirtualBases=*/true); 3388 continue; 3389 } 3390 3391 if (Field.isBitField()) { 3392 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); 3393 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; 3394 unsigned Width = Field.getBitWidthValue(C); 3395 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); 3396 } else { 3397 PrintOffset(OS, FieldOffset, IndentLevel); 3398 } 3399 OS << Field.getType().getAsString() << ' ' << Field << '\n'; 3400 } 3401 3402 // Dump virtual bases. 3403 if (CXXRD && IncludeVirtualBases) { 3404 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = 3405 Layout.getVBaseOffsetsMap(); 3406 3407 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { 3408 assert(Base.isVirtual() && "Found non-virtual class!"); 3409 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); 3410 3411 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); 3412 3413 if (VtorDisps.find(VBase)->second.hasVtorDisp()) { 3414 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); 3415 OS << "(vtordisp for vbase " << *VBase << ")\n"; 3416 } 3417 3418 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, 3419 VBase == Layout.getPrimaryBase() ? 3420 "(primary virtual base)" : "(virtual base)", 3421 /*PrintSizeInfo=*/false, 3422 /*IncludeVirtualBases=*/false); 3423 } 3424 } 3425 3426 if (!PrintSizeInfo) return; 3427 3428 PrintIndentNoOffset(OS, IndentLevel - 1); 3429 OS << "[sizeof=" << Layout.getSize().getQuantity(); 3430 if (CXXRD && !isMsLayout(C)) 3431 OS << ", dsize=" << Layout.getDataSize().getQuantity(); 3432 OS << ", align=" << Layout.getAlignment().getQuantity(); 3433 3434 if (CXXRD) { 3435 OS << ",\n"; 3436 PrintIndentNoOffset(OS, IndentLevel - 1); 3437 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); 3438 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); 3439 } 3440 OS << "]\n"; 3441 } 3442 3443 void ASTContext::DumpRecordLayout(const RecordDecl *RD, 3444 raw_ostream &OS, 3445 bool Simple) const { 3446 if (!Simple) { 3447 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, 3448 /*PrintSizeInfo*/true, 3449 /*IncludeVirtualBases=*/true); 3450 return; 3451 } 3452 3453 // The "simple" format is designed to be parsed by the 3454 // layout-override testing code. There shouldn't be any external 3455 // uses of this format --- when LLDB overrides a layout, it sets up 3456 // the data structures directly --- so feel free to adjust this as 3457 // you like as long as you also update the rudimentary parser for it 3458 // in libFrontend. 3459 3460 const ASTRecordLayout &Info = getASTRecordLayout(RD); 3461 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n"; 3462 OS << "\nLayout: "; 3463 OS << "<ASTRecordLayout\n"; 3464 OS << " Size:" << toBits(Info.getSize()) << "\n"; 3465 if (!isMsLayout(*this)) 3466 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; 3467 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; 3468 OS << " FieldOffsets: ["; 3469 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { 3470 if (i) OS << ", "; 3471 OS << Info.getFieldOffset(i); 3472 } 3473 OS << "]>\n"; 3474 } 3475