1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/Attr.h" 12 #include "clang/AST/CXXInheritance.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/VTableBuilder.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/MathExtras.h" 23 24 using namespace clang; 25 26 namespace { 27 28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class. 29 /// For a class hierarchy like 30 /// 31 /// class A { }; 32 /// class B : A { }; 33 /// class C : A, B { }; 34 /// 35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo 36 /// instances, one for B and two for A. 37 /// 38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. 39 struct BaseSubobjectInfo { 40 /// Class - The class for this base info. 41 const CXXRecordDecl *Class; 42 43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not. 44 bool IsVirtual; 45 46 /// Bases - Information about the base subobjects. 47 SmallVector<BaseSubobjectInfo*, 4> Bases; 48 49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base 50 /// of this base info (if one exists). 51 BaseSubobjectInfo *PrimaryVirtualBaseInfo; 52 53 // FIXME: Document. 54 const BaseSubobjectInfo *Derived; 55 }; 56 57 /// Externally provided layout. Typically used when the AST source, such 58 /// as DWARF, lacks all the information that was available at compile time, such 59 /// as alignment attributes on fields and pragmas in effect. 60 struct ExternalLayout { 61 ExternalLayout() = default; 62 63 /// Overall record size in bits. 64 uint64_t Size = 0; 65 66 /// Overall record alignment in bits. 67 uint64_t Align = 0; 68 69 /// Record field offsets in bits. 70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; 71 72 /// Direct, non-virtual base offsets. 73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; 74 75 /// Virtual base offsets. 76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; 77 78 /// Get the offset of the given field. The external source must provide 79 /// entries for all fields in the record. 80 uint64_t getExternalFieldOffset(const FieldDecl *FD) { 81 assert(FieldOffsets.count(FD) && 82 "Field does not have an external offset"); 83 return FieldOffsets[FD]; 84 } 85 86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 87 auto Known = BaseOffsets.find(RD); 88 if (Known == BaseOffsets.end()) 89 return false; 90 BaseOffset = Known->second; 91 return true; 92 } 93 94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 95 auto Known = VirtualBaseOffsets.find(RD); 96 if (Known == VirtualBaseOffsets.end()) 97 return false; 98 BaseOffset = Known->second; 99 return true; 100 } 101 }; 102 103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different 104 /// offsets while laying out a C++ class. 105 class EmptySubobjectMap { 106 const ASTContext &Context; 107 uint64_t CharWidth; 108 109 /// Class - The class whose empty entries we're keeping track of. 110 const CXXRecordDecl *Class; 111 112 /// EmptyClassOffsets - A map from offsets to empty record decls. 113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; 114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; 115 EmptyClassOffsetsMapTy EmptyClassOffsets; 116 117 /// MaxEmptyClassOffset - The highest offset known to contain an empty 118 /// base subobject. 119 CharUnits MaxEmptyClassOffset; 120 121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or 122 /// member subobject that is empty. 123 void ComputeEmptySubobjectSizes(); 124 125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); 126 127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 128 CharUnits Offset, bool PlacingEmptyBase); 129 130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 131 const CXXRecordDecl *Class, CharUnits Offset, 132 bool PlacingOverlappingField); 133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, 134 bool PlacingOverlappingField); 135 136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty 137 /// subobjects beyond the given offset. 138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { 139 return Offset <= MaxEmptyClassOffset; 140 } 141 142 CharUnits 143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { 144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); 145 assert(FieldOffset % CharWidth == 0 && 146 "Field offset not at char boundary!"); 147 148 return Context.toCharUnitsFromBits(FieldOffset); 149 } 150 151 protected: 152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 153 CharUnits Offset) const; 154 155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 156 CharUnits Offset); 157 158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 159 const CXXRecordDecl *Class, 160 CharUnits Offset) const; 161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 162 CharUnits Offset) const; 163 164 public: 165 /// This holds the size of the largest empty subobject (either a base 166 /// or a member). Will be zero if the record being built doesn't contain 167 /// any empty classes. 168 CharUnits SizeOfLargestEmptySubobject; 169 170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) 171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { 172 ComputeEmptySubobjectSizes(); 173 } 174 175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed 176 /// at the given offset. 177 /// Returns false if placing the record will result in two components 178 /// (direct or indirect) of the same type having the same offset. 179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 180 CharUnits Offset); 181 182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given 183 /// offset. 184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); 185 }; 186 187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() { 188 // Check the bases. 189 for (const CXXBaseSpecifier &Base : Class->bases()) { 190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 191 192 CharUnits EmptySize; 193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 194 if (BaseDecl->isEmpty()) { 195 // If the class decl is empty, get its size. 196 EmptySize = Layout.getSize(); 197 } else { 198 // Otherwise, we get the largest empty subobject for the decl. 199 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 200 } 201 202 if (EmptySize > SizeOfLargestEmptySubobject) 203 SizeOfLargestEmptySubobject = EmptySize; 204 } 205 206 // Check the fields. 207 for (const FieldDecl *FD : Class->fields()) { 208 const RecordType *RT = 209 Context.getBaseElementType(FD->getType())->getAs<RecordType>(); 210 211 // We only care about record types. 212 if (!RT) 213 continue; 214 215 CharUnits EmptySize; 216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); 217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); 218 if (MemberDecl->isEmpty()) { 219 // If the class decl is empty, get its size. 220 EmptySize = Layout.getSize(); 221 } else { 222 // Otherwise, we get the largest empty subobject for the decl. 223 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 224 } 225 226 if (EmptySize > SizeOfLargestEmptySubobject) 227 SizeOfLargestEmptySubobject = EmptySize; 228 } 229 } 230 231 bool 232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 233 CharUnits Offset) const { 234 // We only need to check empty bases. 235 if (!RD->isEmpty()) 236 return true; 237 238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); 239 if (I == EmptyClassOffsets.end()) 240 return true; 241 242 const ClassVectorTy &Classes = I->second; 243 if (!llvm::is_contained(Classes, RD)) 244 return true; 245 246 // There is already an empty class of the same type at this offset. 247 return false; 248 } 249 250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 251 CharUnits Offset) { 252 // We only care about empty bases. 253 if (!RD->isEmpty()) 254 return; 255 256 // If we have empty structures inside a union, we can assign both 257 // the same offset. Just avoid pushing them twice in the list. 258 ClassVectorTy &Classes = EmptyClassOffsets[Offset]; 259 if (llvm::is_contained(Classes, RD)) 260 return; 261 262 Classes.push_back(RD); 263 264 // Update the empty class offset. 265 if (Offset > MaxEmptyClassOffset) 266 MaxEmptyClassOffset = Offset; 267 } 268 269 bool 270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 271 CharUnits Offset) { 272 // We don't have to keep looking past the maximum offset that's known to 273 // contain an empty class. 274 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 275 return true; 276 277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) 278 return false; 279 280 // Traverse all non-virtual bases. 281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 282 for (const BaseSubobjectInfo *Base : Info->Bases) { 283 if (Base->IsVirtual) 284 continue; 285 286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 287 288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) 289 return false; 290 } 291 292 if (Info->PrimaryVirtualBaseInfo) { 293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 294 295 if (Info == PrimaryVirtualBaseInfo->Derived) { 296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) 297 return false; 298 } 299 } 300 301 // Traverse all member variables. 302 unsigned FieldNo = 0; 303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { 305 if (I->isBitField()) 306 continue; 307 308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) 310 return false; 311 } 312 313 return true; 314 } 315 316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 317 CharUnits Offset, 318 bool PlacingEmptyBase) { 319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { 320 // We know that the only empty subobjects that can conflict with empty 321 // subobject of non-empty bases, are empty bases that can be placed at 322 // offset zero. Because of this, we only need to keep track of empty base 323 // subobjects with offsets less than the size of the largest empty 324 // subobject for our class. 325 return; 326 } 327 328 AddSubobjectAtOffset(Info->Class, Offset); 329 330 // Traverse all non-virtual bases. 331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 332 for (const BaseSubobjectInfo *Base : Info->Bases) { 333 if (Base->IsVirtual) 334 continue; 335 336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); 338 } 339 340 if (Info->PrimaryVirtualBaseInfo) { 341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 342 343 if (Info == PrimaryVirtualBaseInfo->Derived) 344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, 345 PlacingEmptyBase); 346 } 347 348 // Traverse all member variables. 349 unsigned FieldNo = 0; 350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { 352 if (I->isBitField()) 353 continue; 354 355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase); 357 } 358 } 359 360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 361 CharUnits Offset) { 362 // If we know this class doesn't have any empty subobjects we don't need to 363 // bother checking. 364 if (SizeOfLargestEmptySubobject.isZero()) 365 return true; 366 367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) 368 return false; 369 370 // We are able to place the base at this offset. Make sure to update the 371 // empty base subobject map. 372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); 373 return true; 374 } 375 376 bool 377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 378 const CXXRecordDecl *Class, 379 CharUnits Offset) const { 380 // We don't have to keep looking past the maximum offset that's known to 381 // contain an empty class. 382 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 383 return true; 384 385 if (!CanPlaceSubobjectAtOffset(RD, Offset)) 386 return false; 387 388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 389 390 // Traverse all non-virtual bases. 391 for (const CXXBaseSpecifier &Base : RD->bases()) { 392 if (Base.isVirtual()) 393 continue; 394 395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 396 397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) 399 return false; 400 } 401 402 if (RD == Class) { 403 // This is the most derived class, traverse virtual bases as well. 404 for (const CXXBaseSpecifier &Base : RD->vbases()) { 405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 406 407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) 409 return false; 410 } 411 } 412 413 // Traverse all member variables. 414 unsigned FieldNo = 0; 415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 416 I != E; ++I, ++FieldNo) { 417 if (I->isBitField()) 418 continue; 419 420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 421 422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) 423 return false; 424 } 425 426 return true; 427 } 428 429 bool 430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 431 CharUnits Offset) const { 432 // We don't have to keep looking past the maximum offset that's known to 433 // contain an empty class. 434 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 435 return true; 436 437 QualType T = FD->getType(); 438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); 440 441 // If we have an array type we need to look at every element. 442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 443 QualType ElemTy = Context.getBaseElementType(AT); 444 const RecordType *RT = ElemTy->getAs<RecordType>(); 445 if (!RT) 446 return true; 447 448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 450 451 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 452 CharUnits ElementOffset = Offset; 453 for (uint64_t I = 0; I != NumElements; ++I) { 454 // We don't have to keep looking past the maximum offset that's known to 455 // contain an empty class. 456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) 457 return true; 458 459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) 460 return false; 461 462 ElementOffset += Layout.getSize(); 463 } 464 } 465 466 return true; 467 } 468 469 bool 470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, 471 CharUnits Offset) { 472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) 473 return false; 474 475 // We are able to place the member variable at this offset. 476 // Make sure to update the empty field subobject map. 477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); 478 return true; 479 } 480 481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects( 482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, 483 bool PlacingOverlappingField) { 484 // We know that the only empty subobjects that can conflict with empty 485 // field subobjects are subobjects of empty bases and potentially-overlapping 486 // fields that can be placed at offset zero. Because of this, we only need to 487 // keep track of empty field subobjects with offsets less than the size of 488 // the largest empty subobject for our class. 489 // 490 // (Proof: we will only consider placing a subobject at offset zero or at 491 // >= the current dsize. The only cases where the earlier subobject can be 492 // placed beyond the end of dsize is if it's an empty base or a 493 // potentially-overlapping field.) 494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) 495 return; 496 497 AddSubobjectAtOffset(RD, Offset); 498 499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 500 501 // Traverse all non-virtual bases. 502 for (const CXXBaseSpecifier &Base : RD->bases()) { 503 if (Base.isVirtual()) 504 continue; 505 506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 507 508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset, 510 PlacingOverlappingField); 511 } 512 513 if (RD == Class) { 514 // This is the most derived class, traverse virtual bases as well. 515 for (const CXXBaseSpecifier &Base : RD->vbases()) { 516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 517 518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset, 520 PlacingOverlappingField); 521 } 522 } 523 524 // Traverse all member variables. 525 unsigned FieldNo = 0; 526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 527 I != E; ++I, ++FieldNo) { 528 if (I->isBitField()) 529 continue; 530 531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 532 533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField); 534 } 535 } 536 537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects( 538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { 539 QualType T = FD->getType(); 540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField); 542 return; 543 } 544 545 // If we have an array type we need to update every element. 546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 547 QualType ElemTy = Context.getBaseElementType(AT); 548 const RecordType *RT = ElemTy->getAs<RecordType>(); 549 if (!RT) 550 return; 551 552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 554 555 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 556 CharUnits ElementOffset = Offset; 557 558 for (uint64_t I = 0; I != NumElements; ++I) { 559 // We know that the only empty subobjects that can conflict with empty 560 // field subobjects are subobjects of empty bases that can be placed at 561 // offset zero. Because of this, we only need to keep track of empty field 562 // subobjects with offsets less than the size of the largest empty 563 // subobject for our class. 564 if (!PlacingOverlappingField && 565 ElementOffset >= SizeOfLargestEmptySubobject) 566 return; 567 568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset, 569 PlacingOverlappingField); 570 ElementOffset += Layout.getSize(); 571 } 572 } 573 } 574 575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; 576 577 class ItaniumRecordLayoutBuilder { 578 protected: 579 // FIXME: Remove this and make the appropriate fields public. 580 friend class clang::ASTContext; 581 582 const ASTContext &Context; 583 584 EmptySubobjectMap *EmptySubobjects; 585 586 /// Size - The current size of the record layout. 587 uint64_t Size; 588 589 /// Alignment - The current alignment of the record layout. 590 CharUnits Alignment; 591 592 /// PreferredAlignment - The preferred alignment of the record layout. 593 CharUnits PreferredAlignment; 594 595 /// The alignment if attribute packed is not used. 596 CharUnits UnpackedAlignment; 597 598 /// \brief The maximum of the alignments of top-level members. 599 CharUnits UnadjustedAlignment; 600 601 SmallVector<uint64_t, 16> FieldOffsets; 602 603 /// Whether the external AST source has provided a layout for this 604 /// record. 605 LLVM_PREFERRED_TYPE(bool) 606 unsigned UseExternalLayout : 1; 607 608 /// Whether we need to infer alignment, even when we have an 609 /// externally-provided layout. 610 LLVM_PREFERRED_TYPE(bool) 611 unsigned InferAlignment : 1; 612 613 /// Packed - Whether the record is packed or not. 614 LLVM_PREFERRED_TYPE(bool) 615 unsigned Packed : 1; 616 617 LLVM_PREFERRED_TYPE(bool) 618 unsigned IsUnion : 1; 619 620 LLVM_PREFERRED_TYPE(bool) 621 unsigned IsMac68kAlign : 1; 622 623 LLVM_PREFERRED_TYPE(bool) 624 unsigned IsNaturalAlign : 1; 625 626 LLVM_PREFERRED_TYPE(bool) 627 unsigned IsMsStruct : 1; 628 629 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, 630 /// this contains the number of bits in the last unit that can be used for 631 /// an adjacent bitfield if necessary. The unit in question is usually 632 /// a byte, but larger units are used if IsMsStruct. 633 unsigned char UnfilledBitsInLastUnit; 634 635 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the 636 /// storage unit of the previous field if it was a bitfield. 637 unsigned char LastBitfieldStorageUnitSize; 638 639 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by 640 /// #pragma pack. 641 CharUnits MaxFieldAlignment; 642 643 /// DataSize - The data size of the record being laid out. 644 uint64_t DataSize; 645 646 CharUnits NonVirtualSize; 647 CharUnits NonVirtualAlignment; 648 CharUnits PreferredNVAlignment; 649 650 /// If we've laid out a field but not included its tail padding in Size yet, 651 /// this is the size up to the end of that field. 652 CharUnits PaddedFieldSize; 653 654 /// PrimaryBase - the primary base class (if one exists) of the class 655 /// we're laying out. 656 const CXXRecordDecl *PrimaryBase; 657 658 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying 659 /// out is virtual. 660 bool PrimaryBaseIsVirtual; 661 662 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl 663 /// pointer, as opposed to inheriting one from a primary base class. 664 bool HasOwnVFPtr; 665 666 /// the flag of field offset changing due to packed attribute. 667 bool HasPackedField; 668 669 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. 670 /// When there are OverlappingEmptyFields existing in the aggregate, the 671 /// flag shows if the following first non-empty or empty-but-non-overlapping 672 /// field has been handled, if any. 673 bool HandledFirstNonOverlappingEmptyField; 674 675 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 676 677 /// Bases - base classes and their offsets in the record. 678 BaseOffsetsMapTy Bases; 679 680 // VBases - virtual base classes and their offsets in the record. 681 ASTRecordLayout::VBaseOffsetsMapTy VBases; 682 683 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are 684 /// primary base classes for some other direct or indirect base class. 685 CXXIndirectPrimaryBaseSet IndirectPrimaryBases; 686 687 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in 688 /// inheritance graph order. Used for determining the primary base class. 689 const CXXRecordDecl *FirstNearlyEmptyVBase; 690 691 /// VisitedVirtualBases - A set of all the visited virtual bases, used to 692 /// avoid visiting virtual bases more than once. 693 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 694 695 /// Valid if UseExternalLayout is true. 696 ExternalLayout External; 697 698 ItaniumRecordLayoutBuilder(const ASTContext &Context, 699 EmptySubobjectMap *EmptySubobjects) 700 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), 701 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), 702 UnpackedAlignment(CharUnits::One()), 703 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), 704 InferAlignment(false), Packed(false), IsUnion(false), 705 IsMac68kAlign(false), 706 IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), 707 IsMsStruct(false), UnfilledBitsInLastUnit(0), 708 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), 709 DataSize(0), NonVirtualSize(CharUnits::Zero()), 710 NonVirtualAlignment(CharUnits::One()), 711 PreferredNVAlignment(CharUnits::One()), 712 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), 713 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), 714 HandledFirstNonOverlappingEmptyField(false), 715 FirstNearlyEmptyVBase(nullptr) {} 716 717 void Layout(const RecordDecl *D); 718 void Layout(const CXXRecordDecl *D); 719 void Layout(const ObjCInterfaceDecl *D); 720 721 void LayoutFields(const RecordDecl *D); 722 void LayoutField(const FieldDecl *D, bool InsertExtraPadding); 723 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, 724 bool FieldPacked, const FieldDecl *D); 725 void LayoutBitField(const FieldDecl *D); 726 727 TargetCXXABI getCXXABI() const { 728 return Context.getTargetInfo().getCXXABI(); 729 } 730 731 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. 732 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; 733 734 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> 735 BaseSubobjectInfoMapTy; 736 737 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases 738 /// of the class we're laying out to their base subobject info. 739 BaseSubobjectInfoMapTy VirtualBaseInfo; 740 741 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the 742 /// class we're laying out to their base subobject info. 743 BaseSubobjectInfoMapTy NonVirtualBaseInfo; 744 745 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the 746 /// bases of the given class. 747 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); 748 749 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a 750 /// single class and all of its base classes. 751 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 752 bool IsVirtual, 753 BaseSubobjectInfo *Derived); 754 755 /// DeterminePrimaryBase - Determine the primary base of the given class. 756 void DeterminePrimaryBase(const CXXRecordDecl *RD); 757 758 void SelectPrimaryVBase(const CXXRecordDecl *RD); 759 760 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); 761 762 /// LayoutNonVirtualBases - Determines the primary base class (if any) and 763 /// lays it out. Will then proceed to lay out all non-virtual base clasess. 764 void LayoutNonVirtualBases(const CXXRecordDecl *RD); 765 766 /// LayoutNonVirtualBase - Lays out a single non-virtual base. 767 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); 768 769 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 770 CharUnits Offset); 771 772 /// LayoutVirtualBases - Lays out all the virtual bases. 773 void LayoutVirtualBases(const CXXRecordDecl *RD, 774 const CXXRecordDecl *MostDerivedClass); 775 776 /// LayoutVirtualBase - Lays out a single virtual base. 777 void LayoutVirtualBase(const BaseSubobjectInfo *Base); 778 779 /// LayoutBase - Will lay out a base and return the offset where it was 780 /// placed, in chars. 781 CharUnits LayoutBase(const BaseSubobjectInfo *Base); 782 783 /// InitializeLayout - Initialize record layout for the given record decl. 784 void InitializeLayout(const Decl *D); 785 786 /// FinishLayout - Finalize record layout. Adjust record size based on the 787 /// alignment. 788 void FinishLayout(const NamedDecl *D); 789 790 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, 791 CharUnits PreferredAlignment); 792 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { 793 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment); 794 } 795 void UpdateAlignment(CharUnits NewAlignment) { 796 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment); 797 } 798 799 /// Retrieve the externally-supplied field offset for the given 800 /// field. 801 /// 802 /// \param Field The field whose offset is being queried. 803 /// \param ComputedOffset The offset that we've computed for this field. 804 uint64_t updateExternalFieldOffset(const FieldDecl *Field, 805 uint64_t ComputedOffset); 806 807 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, 808 uint64_t UnpackedOffset, unsigned UnpackedAlign, 809 bool isPacked, const FieldDecl *D); 810 811 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); 812 813 CharUnits getSize() const { 814 assert(Size % Context.getCharWidth() == 0); 815 return Context.toCharUnitsFromBits(Size); 816 } 817 uint64_t getSizeInBits() const { return Size; } 818 819 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } 820 void setSize(uint64_t NewSize) { Size = NewSize; } 821 822 CharUnits getAligment() const { return Alignment; } 823 824 CharUnits getDataSize() const { 825 assert(DataSize % Context.getCharWidth() == 0); 826 return Context.toCharUnitsFromBits(DataSize); 827 } 828 uint64_t getDataSizeInBits() const { return DataSize; } 829 830 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } 831 void setDataSize(uint64_t NewSize) { DataSize = NewSize; } 832 833 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; 834 void operator=(const ItaniumRecordLayoutBuilder &) = delete; 835 }; 836 } // end anonymous namespace 837 838 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { 839 for (const auto &I : RD->bases()) { 840 assert(!I.getType()->isDependentType() && 841 "Cannot layout class with dependent bases."); 842 843 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 844 845 // Check if this is a nearly empty virtual base. 846 if (I.isVirtual() && Context.isNearlyEmpty(Base)) { 847 // If it's not an indirect primary base, then we've found our primary 848 // base. 849 if (!IndirectPrimaryBases.count(Base)) { 850 PrimaryBase = Base; 851 PrimaryBaseIsVirtual = true; 852 return; 853 } 854 855 // Is this the first nearly empty virtual base? 856 if (!FirstNearlyEmptyVBase) 857 FirstNearlyEmptyVBase = Base; 858 } 859 860 SelectPrimaryVBase(Base); 861 if (PrimaryBase) 862 return; 863 } 864 } 865 866 /// DeterminePrimaryBase - Determine the primary base of the given class. 867 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { 868 // If the class isn't dynamic, it won't have a primary base. 869 if (!RD->isDynamicClass()) 870 return; 871 872 // Compute all the primary virtual bases for all of our direct and 873 // indirect bases, and record all their primary virtual base classes. 874 RD->getIndirectPrimaryBases(IndirectPrimaryBases); 875 876 // If the record has a dynamic base class, attempt to choose a primary base 877 // class. It is the first (in direct base class order) non-virtual dynamic 878 // base class, if one exists. 879 for (const auto &I : RD->bases()) { 880 // Ignore virtual bases. 881 if (I.isVirtual()) 882 continue; 883 884 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 885 886 if (Base->isDynamicClass()) { 887 // We found it. 888 PrimaryBase = Base; 889 PrimaryBaseIsVirtual = false; 890 return; 891 } 892 } 893 894 // Under the Itanium ABI, if there is no non-virtual primary base class, 895 // try to compute the primary virtual base. The primary virtual base is 896 // the first nearly empty virtual base that is not an indirect primary 897 // virtual base class, if one exists. 898 if (RD->getNumVBases() != 0) { 899 SelectPrimaryVBase(RD); 900 if (PrimaryBase) 901 return; 902 } 903 904 // Otherwise, it is the first indirect primary base class, if one exists. 905 if (FirstNearlyEmptyVBase) { 906 PrimaryBase = FirstNearlyEmptyVBase; 907 PrimaryBaseIsVirtual = true; 908 return; 909 } 910 911 assert(!PrimaryBase && "Should not get here with a primary base!"); 912 } 913 914 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 915 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { 916 BaseSubobjectInfo *Info; 917 918 if (IsVirtual) { 919 // Check if we already have info about this virtual base. 920 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; 921 if (InfoSlot) { 922 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); 923 return InfoSlot; 924 } 925 926 // We don't, create it. 927 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 928 Info = InfoSlot; 929 } else { 930 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 931 } 932 933 Info->Class = RD; 934 Info->IsVirtual = IsVirtual; 935 Info->Derived = nullptr; 936 Info->PrimaryVirtualBaseInfo = nullptr; 937 938 const CXXRecordDecl *PrimaryVirtualBase = nullptr; 939 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; 940 941 // Check if this base has a primary virtual base. 942 if (RD->getNumVBases()) { 943 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 944 if (Layout.isPrimaryBaseVirtual()) { 945 // This base does have a primary virtual base. 946 PrimaryVirtualBase = Layout.getPrimaryBase(); 947 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); 948 949 // Now check if we have base subobject info about this primary base. 950 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 951 952 if (PrimaryVirtualBaseInfo) { 953 if (PrimaryVirtualBaseInfo->Derived) { 954 // We did have info about this primary base, and it turns out that it 955 // has already been claimed as a primary virtual base for another 956 // base. 957 PrimaryVirtualBase = nullptr; 958 } else { 959 // We can claim this base as our primary base. 960 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 961 PrimaryVirtualBaseInfo->Derived = Info; 962 } 963 } 964 } 965 } 966 967 // Now go through all direct bases. 968 for (const auto &I : RD->bases()) { 969 bool IsVirtual = I.isVirtual(); 970 971 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 972 973 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); 974 } 975 976 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { 977 // Traversing the bases must have created the base info for our primary 978 // virtual base. 979 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 980 assert(PrimaryVirtualBaseInfo && 981 "Did not create a primary virtual base!"); 982 983 // Claim the primary virtual base as our primary virtual base. 984 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 985 PrimaryVirtualBaseInfo->Derived = Info; 986 } 987 988 return Info; 989 } 990 991 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 992 const CXXRecordDecl *RD) { 993 for (const auto &I : RD->bases()) { 994 bool IsVirtual = I.isVirtual(); 995 996 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 997 998 // Compute the base subobject info for this base. 999 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 1000 nullptr); 1001 1002 if (IsVirtual) { 1003 // ComputeBaseInfo has already added this base for us. 1004 assert(VirtualBaseInfo.count(BaseDecl) && 1005 "Did not add virtual base!"); 1006 } else { 1007 // Add the base info to the map of non-virtual bases. 1008 assert(!NonVirtualBaseInfo.count(BaseDecl) && 1009 "Non-virtual base already exists!"); 1010 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); 1011 } 1012 } 1013 } 1014 1015 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( 1016 CharUnits UnpackedBaseAlign) { 1017 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; 1018 1019 // The maximum field alignment overrides base align. 1020 if (!MaxFieldAlignment.isZero()) { 1021 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 1022 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); 1023 } 1024 1025 // Round up the current record size to pointer alignment. 1026 setSize(getSize().alignTo(BaseAlign)); 1027 1028 // Update the alignment. 1029 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign); 1030 } 1031 1032 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( 1033 const CXXRecordDecl *RD) { 1034 // Then, determine the primary base class. 1035 DeterminePrimaryBase(RD); 1036 1037 // Compute base subobject info. 1038 ComputeBaseSubobjectInfo(RD); 1039 1040 // If we have a primary base class, lay it out. 1041 if (PrimaryBase) { 1042 if (PrimaryBaseIsVirtual) { 1043 // If the primary virtual base was a primary virtual base of some other 1044 // base class we'll have to steal it. 1045 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); 1046 PrimaryBaseInfo->Derived = nullptr; 1047 1048 // We have a virtual primary base, insert it as an indirect primary base. 1049 IndirectPrimaryBases.insert(PrimaryBase); 1050 1051 assert(!VisitedVirtualBases.count(PrimaryBase) && 1052 "vbase already visited!"); 1053 VisitedVirtualBases.insert(PrimaryBase); 1054 1055 LayoutVirtualBase(PrimaryBaseInfo); 1056 } else { 1057 BaseSubobjectInfo *PrimaryBaseInfo = 1058 NonVirtualBaseInfo.lookup(PrimaryBase); 1059 assert(PrimaryBaseInfo && 1060 "Did not find base info for non-virtual primary base!"); 1061 1062 LayoutNonVirtualBase(PrimaryBaseInfo); 1063 } 1064 1065 // If this class needs a vtable/vf-table and didn't get one from a 1066 // primary base, add it in now. 1067 } else if (RD->isDynamicClass()) { 1068 assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); 1069 CharUnits PtrWidth = Context.toCharUnitsFromBits( 1070 Context.getTargetInfo().getPointerWidth(LangAS::Default)); 1071 CharUnits PtrAlign = Context.toCharUnitsFromBits( 1072 Context.getTargetInfo().getPointerAlign(LangAS::Default)); 1073 EnsureVTablePointerAlignment(PtrAlign); 1074 HasOwnVFPtr = true; 1075 1076 assert(!IsUnion && "Unions cannot be dynamic classes."); 1077 HandledFirstNonOverlappingEmptyField = true; 1078 1079 setSize(getSize() + PtrWidth); 1080 setDataSize(getSize()); 1081 } 1082 1083 // Now lay out the non-virtual bases. 1084 for (const auto &I : RD->bases()) { 1085 1086 // Ignore virtual bases. 1087 if (I.isVirtual()) 1088 continue; 1089 1090 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 1091 1092 // Skip the primary base, because we've already laid it out. The 1093 // !PrimaryBaseIsVirtual check is required because we might have a 1094 // non-virtual base of the same type as a primary virtual base. 1095 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) 1096 continue; 1097 1098 // Lay out the base. 1099 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); 1100 assert(BaseInfo && "Did not find base info for non-virtual base!"); 1101 1102 LayoutNonVirtualBase(BaseInfo); 1103 } 1104 } 1105 1106 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( 1107 const BaseSubobjectInfo *Base) { 1108 // Layout the base. 1109 CharUnits Offset = LayoutBase(Base); 1110 1111 // Add its base class offset. 1112 assert(!Bases.count(Base->Class) && "base offset already exists!"); 1113 Bases.insert(std::make_pair(Base->Class, Offset)); 1114 1115 AddPrimaryVirtualBaseOffsets(Base, Offset); 1116 } 1117 1118 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( 1119 const BaseSubobjectInfo *Info, CharUnits Offset) { 1120 // This base isn't interesting, it has no virtual bases. 1121 if (!Info->Class->getNumVBases()) 1122 return; 1123 1124 // First, check if we have a virtual primary base to add offsets for. 1125 if (Info->PrimaryVirtualBaseInfo) { 1126 assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 1127 "Primary virtual base is not virtual!"); 1128 if (Info->PrimaryVirtualBaseInfo->Derived == Info) { 1129 // Add the offset. 1130 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 1131 "primary vbase offset already exists!"); 1132 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, 1133 ASTRecordLayout::VBaseInfo(Offset, false))); 1134 1135 // Traverse the primary virtual base. 1136 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); 1137 } 1138 } 1139 1140 // Now go through all direct non-virtual bases. 1141 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 1142 for (const BaseSubobjectInfo *Base : Info->Bases) { 1143 if (Base->IsVirtual) 1144 continue; 1145 1146 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 1147 AddPrimaryVirtualBaseOffsets(Base, BaseOffset); 1148 } 1149 } 1150 1151 void ItaniumRecordLayoutBuilder::LayoutVirtualBases( 1152 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { 1153 const CXXRecordDecl *PrimaryBase; 1154 bool PrimaryBaseIsVirtual; 1155 1156 if (MostDerivedClass == RD) { 1157 PrimaryBase = this->PrimaryBase; 1158 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; 1159 } else { 1160 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1161 PrimaryBase = Layout.getPrimaryBase(); 1162 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 1163 } 1164 1165 for (const CXXBaseSpecifier &Base : RD->bases()) { 1166 assert(!Base.getType()->isDependentType() && 1167 "Cannot layout class with dependent bases."); 1168 1169 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1170 1171 if (Base.isVirtual()) { 1172 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { 1173 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); 1174 1175 // Only lay out the virtual base if it's not an indirect primary base. 1176 if (!IndirectPrimaryBase) { 1177 // Only visit virtual bases once. 1178 if (!VisitedVirtualBases.insert(BaseDecl).second) 1179 continue; 1180 1181 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); 1182 assert(BaseInfo && "Did not find virtual base info!"); 1183 LayoutVirtualBase(BaseInfo); 1184 } 1185 } 1186 } 1187 1188 if (!BaseDecl->getNumVBases()) { 1189 // This base isn't interesting since it doesn't have any virtual bases. 1190 continue; 1191 } 1192 1193 LayoutVirtualBases(BaseDecl, MostDerivedClass); 1194 } 1195 } 1196 1197 void ItaniumRecordLayoutBuilder::LayoutVirtualBase( 1198 const BaseSubobjectInfo *Base) { 1199 assert(!Base->Derived && "Trying to lay out a primary virtual base!"); 1200 1201 // Layout the base. 1202 CharUnits Offset = LayoutBase(Base); 1203 1204 // Add its base class offset. 1205 assert(!VBases.count(Base->Class) && "vbase offset already exists!"); 1206 VBases.insert(std::make_pair(Base->Class, 1207 ASTRecordLayout::VBaseInfo(Offset, false))); 1208 1209 AddPrimaryVirtualBaseOffsets(Base, Offset); 1210 } 1211 1212 CharUnits 1213 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { 1214 assert(!IsUnion && "Unions cannot have base classes."); 1215 1216 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); 1217 CharUnits Offset; 1218 1219 // Query the external layout to see if it provides an offset. 1220 bool HasExternalLayout = false; 1221 if (UseExternalLayout) { 1222 if (Base->IsVirtual) 1223 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); 1224 else 1225 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); 1226 } 1227 1228 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { 1229 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. 1230 // Per GCC's documentation, it only applies to non-static data members. 1231 return (Packed && ((Context.getLangOpts().getClangABICompat() <= 1232 LangOptions::ClangABI::Ver6) || 1233 Context.getTargetInfo().getTriple().isPS() || 1234 Context.getTargetInfo().getTriple().isOSAIX())) 1235 ? CharUnits::One() 1236 : UnpackedAlign; 1237 }; 1238 1239 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); 1240 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); 1241 CharUnits BaseAlign = 1242 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); 1243 CharUnits PreferredBaseAlign = 1244 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); 1245 1246 const bool DefaultsToAIXPowerAlignment = 1247 Context.getTargetInfo().defaultsToAIXPowerAlignment(); 1248 if (DefaultsToAIXPowerAlignment) { 1249 // AIX `power` alignment does not apply the preferred alignment for 1250 // non-union classes if the source of the alignment (the current base in 1251 // this context) follows introduction of the first subobject with 1252 // exclusively allocated space or zero-extent array. 1253 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { 1254 // By handling a base class that is not empty, we're handling the 1255 // "first (inherited) member". 1256 HandledFirstNonOverlappingEmptyField = true; 1257 } else if (!IsNaturalAlign) { 1258 UnpackedPreferredBaseAlign = UnpackedBaseAlign; 1259 PreferredBaseAlign = BaseAlign; 1260 } 1261 } 1262 1263 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment 1264 ? UnpackedBaseAlign 1265 : UnpackedPreferredBaseAlign; 1266 // If we have an empty base class, try to place it at offset 0. 1267 if (Base->Class->isEmpty() && 1268 (!HasExternalLayout || Offset == CharUnits::Zero()) && 1269 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { 1270 setSize(std::max(getSize(), Layout.getSize())); 1271 // On PS4/PS5, don't update the alignment, to preserve compatibility. 1272 if (!Context.getTargetInfo().getTriple().isPS()) 1273 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); 1274 1275 return CharUnits::Zero(); 1276 } 1277 1278 // The maximum field alignment overrides the base align/(AIX-only) preferred 1279 // base align. 1280 if (!MaxFieldAlignment.isZero()) { 1281 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 1282 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment); 1283 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment); 1284 } 1285 1286 CharUnits AlignTo = 1287 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; 1288 if (!HasExternalLayout) { 1289 // Round up the current record size to the base's alignment boundary. 1290 Offset = getDataSize().alignTo(AlignTo); 1291 1292 // Try to place the base. 1293 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) 1294 Offset += AlignTo; 1295 } else { 1296 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); 1297 (void)Allowed; 1298 assert(Allowed && "Base subobject externally placed at overlapping offset"); 1299 1300 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) { 1301 // The externally-supplied base offset is before the base offset we 1302 // computed. Assume that the structure is packed. 1303 Alignment = CharUnits::One(); 1304 InferAlignment = false; 1305 } 1306 } 1307 1308 if (!Base->Class->isEmpty()) { 1309 // Update the data size. 1310 setDataSize(Offset + Layout.getNonVirtualSize()); 1311 1312 setSize(std::max(getSize(), getDataSize())); 1313 } else 1314 setSize(std::max(getSize(), Offset + Layout.getSize())); 1315 1316 // Remember max struct/class alignment. 1317 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); 1318 1319 return Offset; 1320 } 1321 1322 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { 1323 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 1324 IsUnion = RD->isUnion(); 1325 IsMsStruct = RD->isMsStruct(Context); 1326 } 1327 1328 Packed = D->hasAttr<PackedAttr>(); 1329 1330 // Honor the default struct packing maximum alignment flag. 1331 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { 1332 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 1333 } 1334 1335 // mac68k alignment supersedes maximum field alignment and attribute aligned, 1336 // and forces all structures to have 2-byte alignment. The IBM docs on it 1337 // allude to additional (more complicated) semantics, especially with regard 1338 // to bit-fields, but gcc appears not to follow that. 1339 if (D->hasAttr<AlignMac68kAttr>()) { 1340 assert( 1341 !D->hasAttr<AlignNaturalAttr>() && 1342 "Having both mac68k and natural alignment on a decl is not allowed."); 1343 IsMac68kAlign = true; 1344 MaxFieldAlignment = CharUnits::fromQuantity(2); 1345 Alignment = CharUnits::fromQuantity(2); 1346 PreferredAlignment = CharUnits::fromQuantity(2); 1347 } else { 1348 if (D->hasAttr<AlignNaturalAttr>()) 1349 IsNaturalAlign = true; 1350 1351 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) 1352 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); 1353 1354 if (unsigned MaxAlign = D->getMaxAlignment()) 1355 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); 1356 } 1357 1358 HandledFirstNonOverlappingEmptyField = 1359 !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; 1360 1361 // If there is an external AST source, ask it for the various offsets. 1362 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) 1363 if (ExternalASTSource *Source = Context.getExternalSource()) { 1364 UseExternalLayout = Source->layoutRecordType( 1365 RD, External.Size, External.Align, External.FieldOffsets, 1366 External.BaseOffsets, External.VirtualBaseOffsets); 1367 1368 // Update based on external alignment. 1369 if (UseExternalLayout) { 1370 if (External.Align > 0) { 1371 Alignment = Context.toCharUnitsFromBits(External.Align); 1372 PreferredAlignment = Context.toCharUnitsFromBits(External.Align); 1373 } else { 1374 // The external source didn't have alignment information; infer it. 1375 InferAlignment = true; 1376 } 1377 } 1378 } 1379 } 1380 1381 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { 1382 InitializeLayout(D); 1383 LayoutFields(D); 1384 1385 // Finally, round the size of the total struct up to the alignment of the 1386 // struct itself. 1387 FinishLayout(D); 1388 } 1389 1390 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { 1391 InitializeLayout(RD); 1392 1393 // Lay out the vtable and the non-virtual bases. 1394 LayoutNonVirtualBases(RD); 1395 1396 LayoutFields(RD); 1397 1398 NonVirtualSize = Context.toCharUnitsFromBits( 1399 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); 1400 NonVirtualAlignment = Alignment; 1401 PreferredNVAlignment = PreferredAlignment; 1402 1403 // Lay out the virtual bases and add the primary virtual base offsets. 1404 LayoutVirtualBases(RD, RD); 1405 1406 // Finally, round the size of the total struct up to the alignment 1407 // of the struct itself. 1408 FinishLayout(RD); 1409 1410 #ifndef NDEBUG 1411 // Check that we have base offsets for all bases. 1412 for (const CXXBaseSpecifier &Base : RD->bases()) { 1413 if (Base.isVirtual()) 1414 continue; 1415 1416 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1417 1418 assert(Bases.count(BaseDecl) && "Did not find base offset!"); 1419 } 1420 1421 // And all virtual bases. 1422 for (const CXXBaseSpecifier &Base : RD->vbases()) { 1423 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1424 1425 assert(VBases.count(BaseDecl) && "Did not find base offset!"); 1426 } 1427 #endif 1428 } 1429 1430 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { 1431 if (ObjCInterfaceDecl *SD = D->getSuperClass()) { 1432 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); 1433 1434 UpdateAlignment(SL.getAlignment()); 1435 1436 // We start laying out ivars not at the end of the superclass 1437 // structure, but at the next byte following the last field. 1438 setDataSize(SL.getDataSize()); 1439 setSize(getDataSize()); 1440 } 1441 1442 InitializeLayout(D); 1443 // Layout each ivar sequentially. 1444 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; 1445 IVD = IVD->getNextIvar()) 1446 LayoutField(IVD, false); 1447 1448 // Finally, round the size of the total struct up to the alignment of the 1449 // struct itself. 1450 FinishLayout(D); 1451 } 1452 1453 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { 1454 // Layout each field, for now, just sequentially, respecting alignment. In 1455 // the future, this will need to be tweakable by targets. 1456 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); 1457 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); 1458 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { 1459 auto Next(I); 1460 ++Next; 1461 LayoutField(*I, 1462 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); 1463 } 1464 } 1465 1466 // Rounds the specified size to have it a multiple of the char size. 1467 static uint64_t 1468 roundUpSizeToCharAlignment(uint64_t Size, 1469 const ASTContext &Context) { 1470 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1471 return llvm::alignTo(Size, CharAlignment); 1472 } 1473 1474 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, 1475 uint64_t StorageUnitSize, 1476 bool FieldPacked, 1477 const FieldDecl *D) { 1478 assert(Context.getLangOpts().CPlusPlus && 1479 "Can only have wide bit-fields in C++!"); 1480 1481 // Itanium C++ ABI 2.4: 1482 // If sizeof(T)*8 < n, let T' be the largest integral POD type with 1483 // sizeof(T')*8 <= n. 1484 1485 QualType IntegralPODTypes[] = { 1486 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, 1487 Context.UnsignedLongTy, Context.UnsignedLongLongTy 1488 }; 1489 1490 QualType Type; 1491 for (const QualType &QT : IntegralPODTypes) { 1492 uint64_t Size = Context.getTypeSize(QT); 1493 1494 if (Size > FieldSize) 1495 break; 1496 1497 Type = QT; 1498 } 1499 assert(!Type.isNull() && "Did not find a type!"); 1500 1501 CharUnits TypeAlign = Context.getTypeAlignInChars(Type); 1502 1503 // We're not going to use any of the unfilled bits in the last byte. 1504 UnfilledBitsInLastUnit = 0; 1505 LastBitfieldStorageUnitSize = 0; 1506 1507 uint64_t FieldOffset; 1508 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1509 1510 if (IsUnion) { 1511 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, 1512 Context); 1513 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1514 FieldOffset = 0; 1515 } else { 1516 // The bitfield is allocated starting at the next offset aligned 1517 // appropriately for T', with length n bits. 1518 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); 1519 1520 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1521 1522 setDataSize( 1523 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); 1524 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1525 } 1526 1527 // Place this field at the current location. 1528 FieldOffsets.push_back(FieldOffset); 1529 1530 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, 1531 Context.toBits(TypeAlign), FieldPacked, D); 1532 1533 // Update the size. 1534 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1535 1536 // Remember max struct/class alignment. 1537 UpdateAlignment(TypeAlign); 1538 } 1539 1540 static bool isAIXLayout(const ASTContext &Context) { 1541 return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; 1542 } 1543 1544 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { 1545 bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); 1546 uint64_t FieldSize = D->getBitWidthValue(Context); 1547 TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); 1548 uint64_t StorageUnitSize = FieldInfo.Width; 1549 unsigned FieldAlign = FieldInfo.Align; 1550 bool AlignIsRequired = FieldInfo.isAlignRequired(); 1551 1552 // UnfilledBitsInLastUnit is the difference between the end of the 1553 // last allocated bitfield (i.e. the first bit offset available for 1554 // bitfields) and the end of the current data size in bits (i.e. the 1555 // first bit offset available for non-bitfields). The current data 1556 // size in bits is always a multiple of the char size; additionally, 1557 // for ms_struct records it's also a multiple of the 1558 // LastBitfieldStorageUnitSize (if set). 1559 1560 // The struct-layout algorithm is dictated by the platform ABI, 1561 // which in principle could use almost any rules it likes. In 1562 // practice, UNIXy targets tend to inherit the algorithm described 1563 // in the System V generic ABI. The basic bitfield layout rule in 1564 // System V is to place bitfields at the next available bit offset 1565 // where the entire bitfield would fit in an aligned storage unit of 1566 // the declared type; it's okay if an earlier or later non-bitfield 1567 // is allocated in the same storage unit. However, some targets 1568 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't 1569 // require this storage unit to be aligned, and therefore always put 1570 // the bitfield at the next available bit offset. 1571 1572 // ms_struct basically requests a complete replacement of the 1573 // platform ABI's struct-layout algorithm, with the high-level goal 1574 // of duplicating MSVC's layout. For non-bitfields, this follows 1575 // the standard algorithm. The basic bitfield layout rule is to 1576 // allocate an entire unit of the bitfield's declared type 1577 // (e.g. 'unsigned long'), then parcel it up among successive 1578 // bitfields whose declared types have the same size, making a new 1579 // unit as soon as the last can no longer store the whole value. 1580 // Since it completely replaces the platform ABI's algorithm, 1581 // settings like !useBitFieldTypeAlignment() do not apply. 1582 1583 // A zero-width bitfield forces the use of a new storage unit for 1584 // later bitfields. In general, this occurs by rounding up the 1585 // current size of the struct as if the algorithm were about to 1586 // place a non-bitfield of the field's formal type. Usually this 1587 // does not change the alignment of the struct itself, but it does 1588 // on some targets (those that useZeroLengthBitfieldAlignment(), 1589 // e.g. ARM). In ms_struct layout, zero-width bitfields are 1590 // ignored unless they follow a non-zero-width bitfield. 1591 1592 // A field alignment restriction (e.g. from #pragma pack) or 1593 // specification (e.g. from __attribute__((aligned))) changes the 1594 // formal alignment of the field. For System V, this alters the 1595 // required alignment of the notional storage unit that must contain 1596 // the bitfield. For ms_struct, this only affects the placement of 1597 // new storage units. In both cases, the effect of #pragma pack is 1598 // ignored on zero-width bitfields. 1599 1600 // On System V, a packed field (e.g. from #pragma pack or 1601 // __attribute__((packed))) always uses the next available bit 1602 // offset. 1603 1604 // In an ms_struct struct, the alignment of a fundamental type is 1605 // always equal to its size. This is necessary in order to mimic 1606 // the i386 alignment rules on targets which might not fully align 1607 // all types (e.g. Darwin PPC32, where alignof(long long) == 4). 1608 1609 // First, some simple bookkeeping to perform for ms_struct structs. 1610 if (IsMsStruct) { 1611 // The field alignment for integer types is always the size. 1612 FieldAlign = StorageUnitSize; 1613 1614 // If the previous field was not a bitfield, or was a bitfield 1615 // with a different storage unit size, or if this field doesn't fit into 1616 // the current storage unit, we're done with that storage unit. 1617 if (LastBitfieldStorageUnitSize != StorageUnitSize || 1618 UnfilledBitsInLastUnit < FieldSize) { 1619 // Also, ignore zero-length bitfields after non-bitfields. 1620 if (!LastBitfieldStorageUnitSize && !FieldSize) 1621 FieldAlign = 1; 1622 1623 UnfilledBitsInLastUnit = 0; 1624 LastBitfieldStorageUnitSize = 0; 1625 } 1626 } 1627 1628 if (isAIXLayout(Context)) { 1629 if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) { 1630 // On AIX, [bool, char, short] bitfields have the same alignment 1631 // as [unsigned]. 1632 StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy); 1633 } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) && 1634 Context.getTargetInfo().getTriple().isArch32Bit() && 1635 FieldSize <= 32) { 1636 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single 1637 // long long bitfield has length no greater than 32 bits. 1638 StorageUnitSize = 32; 1639 1640 if (!AlignIsRequired) 1641 FieldAlign = 32; 1642 } 1643 1644 if (FieldAlign < StorageUnitSize) { 1645 // The bitfield alignment should always be greater than or equal to 1646 // bitcontainer size. 1647 FieldAlign = StorageUnitSize; 1648 } 1649 } 1650 1651 // If the field is wider than its declared type, it follows 1652 // different rules in all cases, except on AIX. 1653 // On AIX, wide bitfield follows the same rules as normal bitfield. 1654 if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { 1655 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); 1656 return; 1657 } 1658 1659 // Compute the next available bit offset. 1660 uint64_t FieldOffset = 1661 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); 1662 1663 // Handle targets that don't honor bitfield type alignment. 1664 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { 1665 // Some such targets do honor it on zero-width bitfields. 1666 if (FieldSize == 0 && 1667 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { 1668 // Some targets don't honor leading zero-width bitfield. 1669 if (!IsUnion && FieldOffset == 0 && 1670 !Context.getTargetInfo().useLeadingZeroLengthBitfield()) 1671 FieldAlign = 1; 1672 else { 1673 // The alignment to round up to is the max of the field's natural 1674 // alignment and a target-specific fixed value (sometimes zero). 1675 unsigned ZeroLengthBitfieldBoundary = 1676 Context.getTargetInfo().getZeroLengthBitfieldBoundary(); 1677 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); 1678 } 1679 // If that doesn't apply, just ignore the field alignment. 1680 } else { 1681 FieldAlign = 1; 1682 } 1683 } 1684 1685 // Remember the alignment we would have used if the field were not packed. 1686 unsigned UnpackedFieldAlign = FieldAlign; 1687 1688 // Ignore the field alignment if the field is packed unless it has zero-size. 1689 if (!IsMsStruct && FieldPacked && FieldSize != 0) 1690 FieldAlign = 1; 1691 1692 // But, if there's an 'aligned' attribute on the field, honor that. 1693 unsigned ExplicitFieldAlign = D->getMaxAlignment(); 1694 if (ExplicitFieldAlign) { 1695 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); 1696 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); 1697 } 1698 1699 // But, if there's a #pragma pack in play, that takes precedent over 1700 // even the 'aligned' attribute, for non-zero-width bitfields. 1701 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); 1702 if (!MaxFieldAlignment.isZero() && FieldSize) { 1703 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); 1704 if (FieldPacked) 1705 FieldAlign = UnpackedFieldAlign; 1706 else 1707 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); 1708 } 1709 1710 // But, ms_struct just ignores all of that in unions, even explicit 1711 // alignment attributes. 1712 if (IsMsStruct && IsUnion) { 1713 FieldAlign = UnpackedFieldAlign = 1; 1714 } 1715 1716 // For purposes of diagnostics, we're going to simultaneously 1717 // compute the field offsets that we would have used if we weren't 1718 // adding any alignment padding or if the field weren't packed. 1719 uint64_t UnpaddedFieldOffset = FieldOffset; 1720 uint64_t UnpackedFieldOffset = FieldOffset; 1721 1722 // Check if we need to add padding to fit the bitfield within an 1723 // allocation unit with the right size and alignment. The rules are 1724 // somewhat different here for ms_struct structs. 1725 if (IsMsStruct) { 1726 // If it's not a zero-width bitfield, and we can fit the bitfield 1727 // into the active storage unit (and we haven't already decided to 1728 // start a new storage unit), just do so, regardless of any other 1729 // other consideration. Otherwise, round up to the right alignment. 1730 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { 1731 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1732 UnpackedFieldOffset = 1733 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1734 UnfilledBitsInLastUnit = 0; 1735 } 1736 1737 } else { 1738 // #pragma pack, with any value, suppresses the insertion of padding. 1739 bool AllowPadding = MaxFieldAlignment.isZero(); 1740 1741 // Compute the real offset. 1742 if (FieldSize == 0 || 1743 (AllowPadding && 1744 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { 1745 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1746 } else if (ExplicitFieldAlign && 1747 (MaxFieldAlignmentInBits == 0 || 1748 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1749 Context.getTargetInfo().useExplicitBitFieldAlignment()) { 1750 // TODO: figure it out what needs to be done on targets that don't honor 1751 // bit-field type alignment like ARM APCS ABI. 1752 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); 1753 } 1754 1755 // Repeat the computation for diagnostic purposes. 1756 if (FieldSize == 0 || 1757 (AllowPadding && 1758 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > 1759 StorageUnitSize)) 1760 UnpackedFieldOffset = 1761 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1762 else if (ExplicitFieldAlign && 1763 (MaxFieldAlignmentInBits == 0 || 1764 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1765 Context.getTargetInfo().useExplicitBitFieldAlignment()) 1766 UnpackedFieldOffset = 1767 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); 1768 } 1769 1770 // If we're using external layout, give the external layout a chance 1771 // to override this information. 1772 if (UseExternalLayout) 1773 FieldOffset = updateExternalFieldOffset(D, FieldOffset); 1774 1775 // Okay, place the bitfield at the calculated offset. 1776 FieldOffsets.push_back(FieldOffset); 1777 1778 // Bookkeeping: 1779 1780 // Anonymous members don't affect the overall record alignment, 1781 // except on targets where they do. 1782 if (!IsMsStruct && 1783 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && 1784 !D->getIdentifier()) 1785 FieldAlign = UnpackedFieldAlign = 1; 1786 1787 // On AIX, zero-width bitfields pad out to the natural alignment boundary, 1788 // but do not increase the alignment greater than the MaxFieldAlignment, or 1 1789 // if packed. 1790 if (isAIXLayout(Context) && !FieldSize) { 1791 if (FieldPacked) 1792 FieldAlign = 1; 1793 if (!MaxFieldAlignment.isZero()) { 1794 UnpackedFieldAlign = 1795 std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); 1796 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); 1797 } 1798 } 1799 1800 // Diagnose differences in layout due to padding or packing. 1801 if (!UseExternalLayout) 1802 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, 1803 UnpackedFieldAlign, FieldPacked, D); 1804 1805 // Update DataSize to include the last byte containing (part of) the bitfield. 1806 1807 // For unions, this is just a max operation, as usual. 1808 if (IsUnion) { 1809 // For ms_struct, allocate the entire storage unit --- unless this 1810 // is a zero-width bitfield, in which case just use a size of 1. 1811 uint64_t RoundedFieldSize; 1812 if (IsMsStruct) { 1813 RoundedFieldSize = (FieldSize ? StorageUnitSize 1814 : Context.getTargetInfo().getCharWidth()); 1815 1816 // Otherwise, allocate just the number of bytes required to store 1817 // the bitfield. 1818 } else { 1819 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); 1820 } 1821 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1822 1823 // For non-zero-width bitfields in ms_struct structs, allocate a new 1824 // storage unit if necessary. 1825 } else if (IsMsStruct && FieldSize) { 1826 // We should have cleared UnfilledBitsInLastUnit in every case 1827 // where we changed storage units. 1828 if (!UnfilledBitsInLastUnit) { 1829 setDataSize(FieldOffset + StorageUnitSize); 1830 UnfilledBitsInLastUnit = StorageUnitSize; 1831 } 1832 UnfilledBitsInLastUnit -= FieldSize; 1833 LastBitfieldStorageUnitSize = StorageUnitSize; 1834 1835 // Otherwise, bump the data size up to include the bitfield, 1836 // including padding up to char alignment, and then remember how 1837 // bits we didn't use. 1838 } else { 1839 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1840 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1841 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); 1842 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1843 1844 // The only time we can get here for an ms_struct is if this is a 1845 // zero-width bitfield, which doesn't count as anything for the 1846 // purposes of unfilled bits. 1847 LastBitfieldStorageUnitSize = 0; 1848 } 1849 1850 // Update the size. 1851 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1852 1853 // Remember max struct/class alignment. 1854 UnadjustedAlignment = 1855 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); 1856 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), 1857 Context.toCharUnitsFromBits(UnpackedFieldAlign)); 1858 } 1859 1860 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, 1861 bool InsertExtraPadding) { 1862 auto *FieldClass = D->getType()->getAsCXXRecordDecl(); 1863 bool IsOverlappingEmptyField = 1864 D->isPotentiallyOverlapping() && FieldClass->isEmpty(); 1865 1866 CharUnits FieldOffset = 1867 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); 1868 1869 const bool DefaultsToAIXPowerAlignment = 1870 Context.getTargetInfo().defaultsToAIXPowerAlignment(); 1871 bool FoundFirstNonOverlappingEmptyFieldForAIX = false; 1872 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { 1873 assert(FieldOffset == CharUnits::Zero() && 1874 "The first non-overlapping empty field should have been handled."); 1875 1876 if (!IsOverlappingEmptyField) { 1877 FoundFirstNonOverlappingEmptyFieldForAIX = true; 1878 1879 // We're going to handle the "first member" based on 1880 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current 1881 // invocation of this function; record it as handled for future 1882 // invocations (except for unions, because the current field does not 1883 // represent all "firsts"). 1884 HandledFirstNonOverlappingEmptyField = !IsUnion; 1885 } 1886 } 1887 1888 if (D->isBitField()) { 1889 LayoutBitField(D); 1890 return; 1891 } 1892 1893 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1894 // Reset the unfilled bits. 1895 UnfilledBitsInLastUnit = 0; 1896 LastBitfieldStorageUnitSize = 0; 1897 1898 llvm::Triple Target = Context.getTargetInfo().getTriple(); 1899 1900 AlignRequirementKind AlignRequirement = AlignRequirementKind::None; 1901 CharUnits FieldSize; 1902 CharUnits FieldAlign; 1903 // The amount of this class's dsize occupied by the field. 1904 // This is equal to FieldSize unless we're permitted to pack 1905 // into the field's tail padding. 1906 CharUnits EffectiveFieldSize; 1907 1908 auto setDeclInfo = [&](bool IsIncompleteArrayType) { 1909 auto TI = Context.getTypeInfoInChars(D->getType()); 1910 FieldAlign = TI.Align; 1911 // Flexible array members don't have any size, but they have to be 1912 // aligned appropriately for their element type. 1913 EffectiveFieldSize = FieldSize = 1914 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; 1915 AlignRequirement = TI.AlignRequirement; 1916 }; 1917 1918 if (D->getType()->isIncompleteArrayType()) { 1919 setDeclInfo(true /* IsIncompleteArrayType */); 1920 } else { 1921 setDeclInfo(false /* IsIncompleteArrayType */); 1922 1923 // A potentially-overlapping field occupies its dsize or nvsize, whichever 1924 // is larger. 1925 if (D->isPotentiallyOverlapping()) { 1926 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass); 1927 EffectiveFieldSize = 1928 std::max(Layout.getNonVirtualSize(), Layout.getDataSize()); 1929 } 1930 1931 if (IsMsStruct) { 1932 // If MS bitfield layout is required, figure out what type is being 1933 // laid out and align the field to the width of that type. 1934 1935 // Resolve all typedefs down to their base type and round up the field 1936 // alignment if necessary. 1937 QualType T = Context.getBaseElementType(D->getType()); 1938 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { 1939 CharUnits TypeSize = Context.getTypeSizeInChars(BTy); 1940 1941 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { 1942 assert( 1943 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && 1944 "Non PowerOf2 size in MSVC mode"); 1945 // Base types with sizes that aren't a power of two don't work 1946 // with the layout rules for MS structs. This isn't an issue in 1947 // MSVC itself since there are no such base data types there. 1948 // On e.g. x86_32 mingw and linux, long double is 12 bytes though. 1949 // Any structs involving that data type obviously can't be ABI 1950 // compatible with MSVC regardless of how it is laid out. 1951 1952 // Since ms_struct can be mass enabled (via a pragma or via the 1953 // -mms-bitfields command line parameter), this can trigger for 1954 // structs that don't actually need MSVC compatibility, so we 1955 // need to be able to sidestep the ms_struct layout for these types. 1956 1957 // Since the combination of -mms-bitfields together with structs 1958 // like max_align_t (which contains a long double) for mingw is 1959 // quite common (and GCC handles it silently), just handle it 1960 // silently there. For other targets that have ms_struct enabled 1961 // (most probably via a pragma or attribute), trigger a diagnostic 1962 // that defaults to an error. 1963 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 1964 Diag(D->getLocation(), diag::warn_npot_ms_struct); 1965 } 1966 if (TypeSize > FieldAlign && 1967 llvm::isPowerOf2_64(TypeSize.getQuantity())) 1968 FieldAlign = TypeSize; 1969 } 1970 } 1971 } 1972 1973 bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || 1974 FieldClass->hasAttr<PackedAttr>() || 1975 Context.getLangOpts().getClangABICompat() <= 1976 LangOptions::ClangABI::Ver15 || 1977 Target.isPS() || Target.isOSDarwin() || 1978 Target.isOSAIX())) || 1979 D->hasAttr<PackedAttr>(); 1980 1981 // When used as part of a typedef, or together with a 'packed' attribute, the 1982 // 'aligned' attribute can be used to decrease alignment. In that case, it 1983 // overrides any computed alignment we have, and there is no need to upgrade 1984 // the alignment. 1985 auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { 1986 // Enum alignment sources can be safely ignored here, because this only 1987 // helps decide whether we need the AIX alignment upgrade, which only 1988 // applies to floating-point types. 1989 return AlignRequirement == AlignRequirementKind::RequiredByTypedef || 1990 (AlignRequirement == AlignRequirementKind::RequiredByRecord && 1991 FieldPacked); 1992 }; 1993 1994 // The AIX `power` alignment rules apply the natural alignment of the 1995 // "first member" if it is of a floating-point data type (or is an aggregate 1996 // whose recursively "first" member or element is such a type). The alignment 1997 // associated with these types for subsequent members use an alignment value 1998 // where the floating-point data type is considered to have 4-byte alignment. 1999 // 2000 // For the purposes of the foregoing: vtable pointers, non-empty base classes, 2001 // and zero-width bit-fields count as prior members; members of empty class 2002 // types marked `no_unique_address` are not considered to be prior members. 2003 CharUnits PreferredAlign = FieldAlign; 2004 if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && 2005 (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { 2006 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { 2007 if (BTy->getKind() == BuiltinType::Double || 2008 BTy->getKind() == BuiltinType::LongDouble) { 2009 assert(PreferredAlign == CharUnits::fromQuantity(4) && 2010 "No need to upgrade the alignment value."); 2011 PreferredAlign = CharUnits::fromQuantity(8); 2012 } 2013 }; 2014 2015 const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); 2016 if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { 2017 performBuiltinTypeAlignmentUpgrade( 2018 CTy->getElementType()->castAs<BuiltinType>()); 2019 } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { 2020 performBuiltinTypeAlignmentUpgrade(BTy); 2021 } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) { 2022 const RecordDecl *RD = RT->getDecl(); 2023 assert(RD && "Expected non-null RecordDecl."); 2024 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD); 2025 PreferredAlign = FieldRecord.getPreferredAlignment(); 2026 } 2027 } 2028 2029 // The align if the field is not packed. This is to check if the attribute 2030 // was unnecessary (-Wpacked). 2031 CharUnits UnpackedFieldAlign = FieldAlign; 2032 CharUnits PackedFieldAlign = CharUnits::One(); 2033 CharUnits UnpackedFieldOffset = FieldOffset; 2034 CharUnits OriginalFieldAlign = UnpackedFieldAlign; 2035 2036 CharUnits MaxAlignmentInChars = 2037 Context.toCharUnitsFromBits(D->getMaxAlignment()); 2038 PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars); 2039 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars); 2040 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); 2041 2042 // The maximum field alignment overrides the aligned attribute. 2043 if (!MaxFieldAlignment.isZero()) { 2044 PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment); 2045 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment); 2046 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); 2047 } 2048 2049 2050 if (!FieldPacked) 2051 FieldAlign = UnpackedFieldAlign; 2052 if (DefaultsToAIXPowerAlignment) 2053 UnpackedFieldAlign = PreferredAlign; 2054 if (FieldPacked) { 2055 PreferredAlign = PackedFieldAlign; 2056 FieldAlign = PackedFieldAlign; 2057 } 2058 2059 CharUnits AlignTo = 2060 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; 2061 // Round up the current record size to the field's alignment boundary. 2062 FieldOffset = FieldOffset.alignTo(AlignTo); 2063 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); 2064 2065 if (UseExternalLayout) { 2066 FieldOffset = Context.toCharUnitsFromBits( 2067 updateExternalFieldOffset(D, Context.toBits(FieldOffset))); 2068 2069 if (!IsUnion && EmptySubobjects) { 2070 // Record the fact that we're placing a field at this offset. 2071 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); 2072 (void)Allowed; 2073 assert(Allowed && "Externally-placed field cannot be placed here"); 2074 } 2075 } else { 2076 if (!IsUnion && EmptySubobjects) { 2077 // Check if we can place the field at this offset. 2078 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { 2079 // We couldn't place the field at the offset. Try again at a new offset. 2080 // We try offset 0 (for an empty field) and then dsize(C) onwards. 2081 if (FieldOffset == CharUnits::Zero() && 2082 getDataSize() != CharUnits::Zero()) 2083 FieldOffset = getDataSize().alignTo(AlignTo); 2084 else 2085 FieldOffset += AlignTo; 2086 } 2087 } 2088 } 2089 2090 // Place this field at the current location. 2091 FieldOffsets.push_back(Context.toBits(FieldOffset)); 2092 2093 if (!UseExternalLayout) 2094 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, 2095 Context.toBits(UnpackedFieldOffset), 2096 Context.toBits(UnpackedFieldAlign), FieldPacked, D); 2097 2098 if (InsertExtraPadding) { 2099 CharUnits ASanAlignment = CharUnits::fromQuantity(8); 2100 CharUnits ExtraSizeForAsan = ASanAlignment; 2101 if (FieldSize % ASanAlignment) 2102 ExtraSizeForAsan += 2103 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); 2104 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; 2105 } 2106 2107 // Reserve space for this field. 2108 if (!IsOverlappingEmptyField) { 2109 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize); 2110 if (IsUnion) 2111 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits)); 2112 else 2113 setDataSize(FieldOffset + EffectiveFieldSize); 2114 2115 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize); 2116 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 2117 } else { 2118 setSize(std::max(getSizeInBits(), 2119 (uint64_t)Context.toBits(FieldOffset + FieldSize))); 2120 } 2121 2122 // Remember max struct/class ABI-specified alignment. 2123 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); 2124 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign); 2125 2126 // For checking the alignment of inner fields against 2127 // the alignment of its parent record. 2128 if (const RecordDecl *RD = D->getParent()) { 2129 // Check if packed attribute or pragma pack is present. 2130 if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) 2131 if (FieldAlign < OriginalFieldAlign) 2132 if (D->getType()->isRecordType()) { 2133 // If the offset is a multiple of the alignment of 2134 // the type, raise the warning. 2135 // TODO: Takes no account the alignment of the outer struct 2136 if (FieldOffset % OriginalFieldAlign != 0) 2137 Diag(D->getLocation(), diag::warn_unaligned_access) 2138 << Context.getTypeDeclType(RD) << D->getName() << D->getType(); 2139 } 2140 } 2141 2142 if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) 2143 Diag(D->getLocation(), diag::warn_unpacked_field) << D; 2144 } 2145 2146 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { 2147 // In C++, records cannot be of size 0. 2148 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { 2149 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 2150 // Compatibility with gcc requires a class (pod or non-pod) 2151 // which is not empty but of size 0; such as having fields of 2152 // array of zero-length, remains of Size 0 2153 if (RD->isEmpty()) 2154 setSize(CharUnits::One()); 2155 } 2156 else 2157 setSize(CharUnits::One()); 2158 } 2159 2160 // If we have any remaining field tail padding, include that in the overall 2161 // size. 2162 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize))); 2163 2164 // Finally, round the size of the record up to the alignment of the 2165 // record itself. 2166 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; 2167 uint64_t UnpackedSizeInBits = 2168 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); 2169 2170 uint64_t RoundedSize = llvm::alignTo( 2171 getSizeInBits(), 2172 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment() 2173 ? Alignment 2174 : PreferredAlignment)); 2175 2176 if (UseExternalLayout) { 2177 // If we're inferring alignment, and the external size is smaller than 2178 // our size after we've rounded up to alignment, conservatively set the 2179 // alignment to 1. 2180 if (InferAlignment && External.Size < RoundedSize) { 2181 Alignment = CharUnits::One(); 2182 PreferredAlignment = CharUnits::One(); 2183 InferAlignment = false; 2184 } 2185 setSize(External.Size); 2186 return; 2187 } 2188 2189 // Set the size to the final size. 2190 setSize(RoundedSize); 2191 2192 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 2193 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 2194 // Warn if padding was introduced to the struct/class/union. 2195 if (getSizeInBits() > UnpaddedSize) { 2196 unsigned PadSize = getSizeInBits() - UnpaddedSize; 2197 bool InBits = true; 2198 if (PadSize % CharBitNum == 0) { 2199 PadSize = PadSize / CharBitNum; 2200 InBits = false; 2201 } 2202 Diag(RD->getLocation(), diag::warn_padded_struct_size) 2203 << Context.getTypeDeclType(RD) 2204 << PadSize 2205 << (InBits ? 1 : 0); // (byte|bit) 2206 } 2207 2208 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 2209 2210 // Warn if we packed it unnecessarily, when the unpacked alignment is not 2211 // greater than the one after packing, the size in bits doesn't change and 2212 // the offset of each field is identical. 2213 // Unless the type is non-POD (for Clang ABI > 15), where the packed 2214 // attribute on such a type does allow the type to be packed into other 2215 // structures that use the packed attribute. 2216 if (Packed && UnpackedAlignment <= Alignment && 2217 UnpackedSizeInBits == getSizeInBits() && !HasPackedField && 2218 (!CXXRD || CXXRD->isPOD() || 2219 Context.getLangOpts().getClangABICompat() <= 2220 LangOptions::ClangABI::Ver15)) 2221 Diag(D->getLocation(), diag::warn_unnecessary_packed) 2222 << Context.getTypeDeclType(RD); 2223 } 2224 } 2225 2226 void ItaniumRecordLayoutBuilder::UpdateAlignment( 2227 CharUnits NewAlignment, CharUnits UnpackedNewAlignment, 2228 CharUnits PreferredNewAlignment) { 2229 // The alignment is not modified when using 'mac68k' alignment or when 2230 // we have an externally-supplied layout that also provides overall alignment. 2231 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) 2232 return; 2233 2234 if (NewAlignment > Alignment) { 2235 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && 2236 "Alignment not a power of 2"); 2237 Alignment = NewAlignment; 2238 } 2239 2240 if (UnpackedNewAlignment > UnpackedAlignment) { 2241 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && 2242 "Alignment not a power of 2"); 2243 UnpackedAlignment = UnpackedNewAlignment; 2244 } 2245 2246 if (PreferredNewAlignment > PreferredAlignment) { 2247 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && 2248 "Alignment not a power of 2"); 2249 PreferredAlignment = PreferredNewAlignment; 2250 } 2251 } 2252 2253 uint64_t 2254 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, 2255 uint64_t ComputedOffset) { 2256 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); 2257 2258 if (InferAlignment && ExternalFieldOffset < ComputedOffset) { 2259 // The externally-supplied field offset is before the field offset we 2260 // computed. Assume that the structure is packed. 2261 Alignment = CharUnits::One(); 2262 PreferredAlignment = CharUnits::One(); 2263 InferAlignment = false; 2264 } 2265 2266 // Use the externally-supplied field offset. 2267 return ExternalFieldOffset; 2268 } 2269 2270 /// Get diagnostic %select index for tag kind for 2271 /// field padding diagnostic message. 2272 /// WARNING: Indexes apply to particular diagnostics only! 2273 /// 2274 /// \returns diagnostic %select index. 2275 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { 2276 switch (Tag) { 2277 case TagTypeKind::Struct: 2278 return 0; 2279 case TagTypeKind::Interface: 2280 return 1; 2281 case TagTypeKind::Class: 2282 return 2; 2283 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); 2284 } 2285 } 2286 2287 void ItaniumRecordLayoutBuilder::CheckFieldPadding( 2288 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, 2289 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { 2290 // We let objc ivars without warning, objc interfaces generally are not used 2291 // for padding tricks. 2292 if (isa<ObjCIvarDecl>(D)) 2293 return; 2294 2295 // Don't warn about structs created without a SourceLocation. This can 2296 // be done by clients of the AST, such as codegen. 2297 if (D->getLocation().isInvalid()) 2298 return; 2299 2300 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 2301 2302 // Warn if padding was introduced to the struct/class. 2303 if (!IsUnion && Offset > UnpaddedOffset) { 2304 unsigned PadSize = Offset - UnpaddedOffset; 2305 bool InBits = true; 2306 if (PadSize % CharBitNum == 0) { 2307 PadSize = PadSize / CharBitNum; 2308 InBits = false; 2309 } 2310 if (D->getIdentifier()) { 2311 auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_bitfield 2312 : diag::warn_padded_struct_field; 2313 Diag(D->getLocation(), Diagnostic) 2314 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 2315 << Context.getTypeDeclType(D->getParent()) << PadSize 2316 << (InBits ? 1 : 0) // (byte|bit) 2317 << D->getIdentifier(); 2318 } else { 2319 auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_anon_bitfield 2320 : diag::warn_padded_struct_anon_field; 2321 Diag(D->getLocation(), Diagnostic) 2322 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 2323 << Context.getTypeDeclType(D->getParent()) << PadSize 2324 << (InBits ? 1 : 0); // (byte|bit) 2325 } 2326 } 2327 if (isPacked && Offset != UnpackedOffset) { 2328 HasPackedField = true; 2329 } 2330 } 2331 2332 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, 2333 const CXXRecordDecl *RD) { 2334 // If a class isn't polymorphic it doesn't have a key function. 2335 if (!RD->isPolymorphic()) 2336 return nullptr; 2337 2338 // A class that is not externally visible doesn't have a key function. (Or 2339 // at least, there's no point to assigning a key function to such a class; 2340 // this doesn't affect the ABI.) 2341 if (!RD->isExternallyVisible()) 2342 return nullptr; 2343 2344 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. 2345 // Same behavior as GCC. 2346 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 2347 if (TSK == TSK_ImplicitInstantiation || 2348 TSK == TSK_ExplicitInstantiationDeclaration || 2349 TSK == TSK_ExplicitInstantiationDefinition) 2350 return nullptr; 2351 2352 bool allowInlineFunctions = 2353 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); 2354 2355 for (const CXXMethodDecl *MD : RD->methods()) { 2356 if (!MD->isVirtual()) 2357 continue; 2358 2359 if (MD->isPureVirtual()) 2360 continue; 2361 2362 // Ignore implicit member functions, they are always marked as inline, but 2363 // they don't have a body until they're defined. 2364 if (MD->isImplicit()) 2365 continue; 2366 2367 if (MD->isInlineSpecified() || MD->isConstexpr()) 2368 continue; 2369 2370 if (MD->hasInlineBody()) 2371 continue; 2372 2373 // Ignore inline deleted or defaulted functions. 2374 if (!MD->isUserProvided()) 2375 continue; 2376 2377 // In certain ABIs, ignore functions with out-of-line inline definitions. 2378 if (!allowInlineFunctions) { 2379 const FunctionDecl *Def; 2380 if (MD->hasBody(Def) && Def->isInlineSpecified()) 2381 continue; 2382 } 2383 2384 if (Context.getLangOpts().CUDA) { 2385 // While compiler may see key method in this TU, during CUDA 2386 // compilation we should ignore methods that are not accessible 2387 // on this side of compilation. 2388 if (Context.getLangOpts().CUDAIsDevice) { 2389 // In device mode ignore methods without __device__ attribute. 2390 if (!MD->hasAttr<CUDADeviceAttr>()) 2391 continue; 2392 } else { 2393 // In host mode ignore __device__-only methods. 2394 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) 2395 continue; 2396 } 2397 } 2398 2399 // If the key function is dllimport but the class isn't, then the class has 2400 // no key function. The DLL that exports the key function won't export the 2401 // vtable in this case. 2402 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && 2403 !Context.getTargetInfo().hasPS4DLLImportExport()) 2404 return nullptr; 2405 2406 // We found it. 2407 return MD; 2408 } 2409 2410 return nullptr; 2411 } 2412 2413 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, 2414 unsigned DiagID) { 2415 return Context.getDiagnostics().Report(Loc, DiagID); 2416 } 2417 2418 /// Does the target C++ ABI require us to skip over the tail-padding 2419 /// of the given class (considering it as a base class) when allocating 2420 /// objects? 2421 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { 2422 switch (ABI.getTailPaddingUseRules()) { 2423 case TargetCXXABI::AlwaysUseTailPadding: 2424 return false; 2425 2426 case TargetCXXABI::UseTailPaddingUnlessPOD03: 2427 // FIXME: To the extent that this is meant to cover the Itanium ABI 2428 // rules, we should implement the restrictions about over-sized 2429 // bitfields: 2430 // 2431 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : 2432 // In general, a type is considered a POD for the purposes of 2433 // layout if it is a POD type (in the sense of ISO C++ 2434 // [basic.types]). However, a POD-struct or POD-union (in the 2435 // sense of ISO C++ [class]) with a bitfield member whose 2436 // declared width is wider than the declared type of the 2437 // bitfield is not a POD for the purpose of layout. Similarly, 2438 // an array type is not a POD for the purpose of layout if the 2439 // element type of the array is not a POD for the purpose of 2440 // layout. 2441 // 2442 // Where references to the ISO C++ are made in this paragraph, 2443 // the Technical Corrigendum 1 version of the standard is 2444 // intended. 2445 return RD->isPOD(); 2446 2447 case TargetCXXABI::UseTailPaddingUnlessPOD11: 2448 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), 2449 // but with a lot of abstraction penalty stripped off. This does 2450 // assume that these properties are set correctly even in C++98 2451 // mode; fortunately, that is true because we want to assign 2452 // consistently semantics to the type-traits intrinsics (or at 2453 // least as many of them as possible). 2454 return RD->isTrivial() && RD->isCXX11StandardLayout(); 2455 } 2456 2457 llvm_unreachable("bad tail-padding use kind"); 2458 } 2459 2460 static bool isMsLayout(const ASTContext &Context) { 2461 // Check if it's CUDA device compilation; ensure layout consistency with host. 2462 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice && 2463 Context.getAuxTargetInfo()) 2464 return Context.getAuxTargetInfo()->getCXXABI().isMicrosoft(); 2465 2466 return Context.getTargetInfo().getCXXABI().isMicrosoft(); 2467 } 2468 2469 // This section contains an implementation of struct layout that is, up to the 2470 // included tests, compatible with cl.exe (2013). The layout produced is 2471 // significantly different than those produced by the Itanium ABI. Here we note 2472 // the most important differences. 2473 // 2474 // * The alignment of bitfields in unions is ignored when computing the 2475 // alignment of the union. 2476 // * The existence of zero-width bitfield that occurs after anything other than 2477 // a non-zero length bitfield is ignored. 2478 // * There is no explicit primary base for the purposes of layout. All bases 2479 // with vfptrs are laid out first, followed by all bases without vfptrs. 2480 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual 2481 // function pointer) and a vbptr (virtual base pointer). They can each be 2482 // shared with a, non-virtual bases. These bases need not be the same. vfptrs 2483 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are 2484 // placed after the lexicographically last non-virtual base. This placement 2485 // is always before fields but can be in the middle of the non-virtual bases 2486 // due to the two-pass layout scheme for non-virtual-bases. 2487 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before 2488 // the virtual base and is used in conjunction with virtual overrides during 2489 // construction and destruction. This is always a 4 byte value and is used as 2490 // an alternative to constructor vtables. 2491 // * vtordisps are allocated in a block of memory with size and alignment equal 2492 // to the alignment of the completed structure (before applying __declspec( 2493 // align())). The vtordisp always occur at the end of the allocation block, 2494 // immediately prior to the virtual base. 2495 // * vfptrs are injected after all bases and fields have been laid out. In 2496 // order to guarantee proper alignment of all fields, the vfptr injection 2497 // pushes all bases and fields back by the alignment imposed by those bases 2498 // and fields. This can potentially add a significant amount of padding. 2499 // vfptrs are always injected at offset 0. 2500 // * vbptrs are injected after all bases and fields have been laid out. In 2501 // order to guarantee proper alignment of all fields, the vfptr injection 2502 // pushes all bases and fields back by the alignment imposed by those bases 2503 // and fields. This can potentially add a significant amount of padding. 2504 // vbptrs are injected immediately after the last non-virtual base as 2505 // lexicographically ordered in the code. If this site isn't pointer aligned 2506 // the vbptr is placed at the next properly aligned location. Enough padding 2507 // is added to guarantee a fit. 2508 // * The last zero sized non-virtual base can be placed at the end of the 2509 // struct (potentially aliasing another object), or may alias with the first 2510 // field, even if they are of the same type. 2511 // * The last zero size virtual base may be placed at the end of the struct 2512 // potentially aliasing another object. 2513 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding 2514 // between bases or vbases with specific properties. The criteria for 2515 // additional padding between two bases is that the first base is zero sized 2516 // or ends with a zero sized subobject and the second base is zero sized or 2517 // trails with a zero sized base or field (sharing of vfptrs can reorder the 2518 // layout of the so the leading base is not always the first one declared). 2519 // This rule does take into account fields that are not records, so padding 2520 // will occur even if the last field is, e.g. an int. The padding added for 2521 // bases is 1 byte. The padding added between vbases depends on the alignment 2522 // of the object but is at least 4 bytes (in both 32 and 64 bit modes). 2523 // * There is no concept of non-virtual alignment, non-virtual alignment and 2524 // alignment are always identical. 2525 // * There is a distinction between alignment and required alignment. 2526 // __declspec(align) changes the required alignment of a struct. This 2527 // alignment is _always_ obeyed, even in the presence of #pragma pack. A 2528 // record inherits required alignment from all of its fields and bases. 2529 // * __declspec(align) on bitfields has the effect of changing the bitfield's 2530 // alignment instead of its required alignment. This is the only known way 2531 // to make the alignment of a struct bigger than 8. Interestingly enough 2532 // this alignment is also immune to the effects of #pragma pack and can be 2533 // used to create structures with large alignment under #pragma pack. 2534 // However, because it does not impact required alignment, such a structure, 2535 // when used as a field or base, will not be aligned if #pragma pack is 2536 // still active at the time of use. 2537 // 2538 // Known incompatibilities: 2539 // * all: #pragma pack between fields in a record 2540 // * 2010 and back: If the last field in a record is a bitfield, every object 2541 // laid out after the record will have extra padding inserted before it. The 2542 // extra padding will have size equal to the size of the storage class of the 2543 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra 2544 // padding can be avoided by adding a 0 sized bitfield after the non-zero- 2545 // sized bitfield. 2546 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or 2547 // greater due to __declspec(align()) then a second layout phase occurs after 2548 // The locations of the vf and vb pointers are known. This layout phase 2549 // suffers from the "last field is a bitfield" bug in 2010 and results in 2550 // _every_ field getting padding put in front of it, potentially including the 2551 // vfptr, leaving the vfprt at a non-zero location which results in a fault if 2552 // anything tries to read the vftbl. The second layout phase also treats 2553 // bitfields as separate entities and gives them each storage rather than 2554 // packing them. Additionally, because this phase appears to perform a 2555 // (an unstable) sort on the members before laying them out and because merged 2556 // bitfields have the same address, the bitfields end up in whatever order 2557 // the sort left them in, a behavior we could never hope to replicate. 2558 2559 namespace { 2560 struct MicrosoftRecordLayoutBuilder { 2561 struct ElementInfo { 2562 CharUnits Size; 2563 CharUnits Alignment; 2564 }; 2565 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 2566 MicrosoftRecordLayoutBuilder(const ASTContext &Context, 2567 EmptySubobjectMap *EmptySubobjects) 2568 : Context(Context), EmptySubobjects(EmptySubobjects) {} 2569 2570 private: 2571 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; 2572 void operator=(const MicrosoftRecordLayoutBuilder &) = delete; 2573 public: 2574 void layout(const RecordDecl *RD); 2575 void cxxLayout(const CXXRecordDecl *RD); 2576 /// Initializes size and alignment and honors some flags. 2577 void initializeLayout(const RecordDecl *RD); 2578 /// Initialized C++ layout, compute alignment and virtual alignment and 2579 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is 2580 /// laid out. 2581 void initializeCXXLayout(const CXXRecordDecl *RD); 2582 void layoutNonVirtualBases(const CXXRecordDecl *RD); 2583 void layoutNonVirtualBase(const CXXRecordDecl *RD, 2584 const CXXRecordDecl *BaseDecl, 2585 const ASTRecordLayout &BaseLayout, 2586 const ASTRecordLayout *&PreviousBaseLayout); 2587 void injectVFPtr(const CXXRecordDecl *RD); 2588 void injectVBPtr(const CXXRecordDecl *RD); 2589 /// Lays out the fields of the record. Also rounds size up to 2590 /// alignment. 2591 void layoutFields(const RecordDecl *RD); 2592 void layoutField(const FieldDecl *FD); 2593 void layoutBitField(const FieldDecl *FD); 2594 /// Lays out a single zero-width bit-field in the record and handles 2595 /// special cases associated with zero-width bit-fields. 2596 void layoutZeroWidthBitField(const FieldDecl *FD); 2597 void layoutVirtualBases(const CXXRecordDecl *RD); 2598 void finalizeLayout(const RecordDecl *RD); 2599 /// Gets the size and alignment of a base taking pragma pack and 2600 /// __declspec(align) into account. 2601 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); 2602 /// Gets the size and alignment of a field taking pragma pack and 2603 /// __declspec(align) into account. It also updates RequiredAlignment as a 2604 /// side effect because it is most convenient to do so here. 2605 ElementInfo getAdjustedElementInfo(const FieldDecl *FD); 2606 /// Places a field at an offset in CharUnits. 2607 void placeFieldAtOffset(CharUnits FieldOffset) { 2608 FieldOffsets.push_back(Context.toBits(FieldOffset)); 2609 } 2610 /// Places a bitfield at a bit offset. 2611 void placeFieldAtBitOffset(uint64_t FieldOffset) { 2612 FieldOffsets.push_back(FieldOffset); 2613 } 2614 /// Compute the set of virtual bases for which vtordisps are required. 2615 void computeVtorDispSet( 2616 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, 2617 const CXXRecordDecl *RD) const; 2618 const ASTContext &Context; 2619 EmptySubobjectMap *EmptySubobjects; 2620 2621 /// The size of the record being laid out. 2622 CharUnits Size; 2623 /// The non-virtual size of the record layout. 2624 CharUnits NonVirtualSize; 2625 /// The data size of the record layout. 2626 CharUnits DataSize; 2627 /// The current alignment of the record layout. 2628 CharUnits Alignment; 2629 /// The maximum allowed field alignment. This is set by #pragma pack. 2630 CharUnits MaxFieldAlignment; 2631 /// The alignment that this record must obey. This is imposed by 2632 /// __declspec(align()) on the record itself or one of its fields or bases. 2633 CharUnits RequiredAlignment; 2634 /// The size of the allocation of the currently active bitfield. 2635 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield 2636 /// is true. 2637 CharUnits CurrentBitfieldSize; 2638 /// Offset to the virtual base table pointer (if one exists). 2639 CharUnits VBPtrOffset; 2640 /// Minimum record size possible. 2641 CharUnits MinEmptyStructSize; 2642 /// The size and alignment info of a pointer. 2643 ElementInfo PointerInfo; 2644 /// The primary base class (if one exists). 2645 const CXXRecordDecl *PrimaryBase; 2646 /// The class we share our vb-pointer with. 2647 const CXXRecordDecl *SharedVBPtrBase; 2648 /// The collection of field offsets. 2649 SmallVector<uint64_t, 16> FieldOffsets; 2650 /// Base classes and their offsets in the record. 2651 BaseOffsetsMapTy Bases; 2652 /// virtual base classes and their offsets in the record. 2653 ASTRecordLayout::VBaseOffsetsMapTy VBases; 2654 /// The number of remaining bits in our last bitfield allocation. 2655 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is 2656 /// true. 2657 unsigned RemainingBitsInField; 2658 bool IsUnion : 1; 2659 /// True if the last field laid out was a bitfield and was not 0 2660 /// width. 2661 bool LastFieldIsNonZeroWidthBitfield : 1; 2662 /// True if the class has its own vftable pointer. 2663 bool HasOwnVFPtr : 1; 2664 /// True if the class has a vbtable pointer. 2665 bool HasVBPtr : 1; 2666 /// True if the last sub-object within the type is zero sized or the 2667 /// object itself is zero sized. This *does not* count members that are not 2668 /// records. Only used for MS-ABI. 2669 bool EndsWithZeroSizedObject : 1; 2670 /// True if this class is zero sized or first base is zero sized or 2671 /// has this property. Only used for MS-ABI. 2672 bool LeadsWithZeroSizedBase : 1; 2673 2674 /// True if the external AST source provided a layout for this record. 2675 bool UseExternalLayout : 1; 2676 2677 /// The layout provided by the external AST source. Only active if 2678 /// UseExternalLayout is true. 2679 ExternalLayout External; 2680 }; 2681 } // namespace 2682 2683 MicrosoftRecordLayoutBuilder::ElementInfo 2684 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2685 const ASTRecordLayout &Layout) { 2686 ElementInfo Info; 2687 Info.Alignment = Layout.getAlignment(); 2688 // Respect pragma pack. 2689 if (!MaxFieldAlignment.isZero()) 2690 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2691 // Track zero-sized subobjects here where it's already available. 2692 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2693 // Respect required alignment, this is necessary because we may have adjusted 2694 // the alignment in the case of pragma pack. Note that the required alignment 2695 // doesn't actually apply to the struct alignment at this point. 2696 Alignment = std::max(Alignment, Info.Alignment); 2697 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); 2698 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); 2699 Info.Size = Layout.getNonVirtualSize(); 2700 return Info; 2701 } 2702 2703 MicrosoftRecordLayoutBuilder::ElementInfo 2704 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2705 const FieldDecl *FD) { 2706 // Get the alignment of the field type's natural alignment, ignore any 2707 // alignment attributes. 2708 auto TInfo = 2709 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); 2710 ElementInfo Info{TInfo.Width, TInfo.Align}; 2711 // Respect align attributes on the field. 2712 CharUnits FieldRequiredAlignment = 2713 Context.toCharUnitsFromBits(FD->getMaxAlignment()); 2714 // Respect align attributes on the type. 2715 if (Context.isAlignmentRequired(FD->getType())) 2716 FieldRequiredAlignment = std::max( 2717 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); 2718 // Respect attributes applied to subobjects of the field. 2719 if (FD->isBitField()) 2720 // For some reason __declspec align impacts alignment rather than required 2721 // alignment when it is applied to bitfields. 2722 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2723 else { 2724 if (auto RT = 2725 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 2726 auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); 2727 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2728 FieldRequiredAlignment = std::max(FieldRequiredAlignment, 2729 Layout.getRequiredAlignment()); 2730 } 2731 // Capture required alignment as a side-effect. 2732 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); 2733 } 2734 // Respect pragma pack, attribute pack and declspec align 2735 if (!MaxFieldAlignment.isZero()) 2736 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2737 if (FD->hasAttr<PackedAttr>()) 2738 Info.Alignment = CharUnits::One(); 2739 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2740 return Info; 2741 } 2742 2743 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { 2744 // For C record layout, zero-sized records always have size 4. 2745 MinEmptyStructSize = CharUnits::fromQuantity(4); 2746 initializeLayout(RD); 2747 layoutFields(RD); 2748 DataSize = Size = Size.alignTo(Alignment); 2749 RequiredAlignment = std::max( 2750 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2751 finalizeLayout(RD); 2752 } 2753 2754 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { 2755 // The C++ standard says that empty structs have size 1. 2756 MinEmptyStructSize = CharUnits::One(); 2757 initializeLayout(RD); 2758 initializeCXXLayout(RD); 2759 layoutNonVirtualBases(RD); 2760 layoutFields(RD); 2761 injectVBPtr(RD); 2762 injectVFPtr(RD); 2763 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) 2764 Alignment = std::max(Alignment, PointerInfo.Alignment); 2765 auto RoundingAlignment = Alignment; 2766 if (!MaxFieldAlignment.isZero()) 2767 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 2768 if (!UseExternalLayout) 2769 Size = Size.alignTo(RoundingAlignment); 2770 NonVirtualSize = Size; 2771 RequiredAlignment = std::max( 2772 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2773 layoutVirtualBases(RD); 2774 finalizeLayout(RD); 2775 } 2776 2777 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { 2778 IsUnion = RD->isUnion(); 2779 Size = CharUnits::Zero(); 2780 Alignment = CharUnits::One(); 2781 // In 64-bit mode we always perform an alignment step after laying out vbases. 2782 // In 32-bit mode we do not. The check to see if we need to perform alignment 2783 // checks the RequiredAlignment field and performs alignment if it isn't 0. 2784 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() 2785 ? CharUnits::One() 2786 : CharUnits::Zero(); 2787 // Compute the maximum field alignment. 2788 MaxFieldAlignment = CharUnits::Zero(); 2789 // Honor the default struct packing maximum alignment flag. 2790 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) 2791 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 2792 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger 2793 // than the pointer size. 2794 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ 2795 unsigned PackedAlignment = MFAA->getAlignment(); 2796 if (PackedAlignment <= 2797 Context.getTargetInfo().getPointerWidth(LangAS::Default)) 2798 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); 2799 } 2800 // Packed attribute forces max field alignment to be 1. 2801 if (RD->hasAttr<PackedAttr>()) 2802 MaxFieldAlignment = CharUnits::One(); 2803 2804 // Try to respect the external layout if present. 2805 UseExternalLayout = false; 2806 if (ExternalASTSource *Source = Context.getExternalSource()) 2807 UseExternalLayout = Source->layoutRecordType( 2808 RD, External.Size, External.Align, External.FieldOffsets, 2809 External.BaseOffsets, External.VirtualBaseOffsets); 2810 } 2811 2812 void 2813 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { 2814 EndsWithZeroSizedObject = false; 2815 LeadsWithZeroSizedBase = false; 2816 HasOwnVFPtr = false; 2817 HasVBPtr = false; 2818 PrimaryBase = nullptr; 2819 SharedVBPtrBase = nullptr; 2820 // Calculate pointer size and alignment. These are used for vfptr and vbprt 2821 // injection. 2822 PointerInfo.Size = Context.toCharUnitsFromBits( 2823 Context.getTargetInfo().getPointerWidth(LangAS::Default)); 2824 PointerInfo.Alignment = Context.toCharUnitsFromBits( 2825 Context.getTargetInfo().getPointerAlign(LangAS::Default)); 2826 // Respect pragma pack. 2827 if (!MaxFieldAlignment.isZero()) 2828 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); 2829 } 2830 2831 void 2832 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { 2833 // The MS-ABI lays out all bases that contain leading vfptrs before it lays 2834 // out any bases that do not contain vfptrs. We implement this as two passes 2835 // over the bases. This approach guarantees that the primary base is laid out 2836 // first. We use these passes to calculate some additional aggregated 2837 // information about the bases, such as required alignment and the presence of 2838 // zero sized members. 2839 const ASTRecordLayout *PreviousBaseLayout = nullptr; 2840 bool HasPolymorphicBaseClass = false; 2841 // Iterate through the bases and lay out the non-virtual ones. 2842 for (const CXXBaseSpecifier &Base : RD->bases()) { 2843 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2844 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); 2845 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2846 // Mark and skip virtual bases. 2847 if (Base.isVirtual()) { 2848 HasVBPtr = true; 2849 continue; 2850 } 2851 // Check for a base to share a VBPtr with. 2852 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { 2853 SharedVBPtrBase = BaseDecl; 2854 HasVBPtr = true; 2855 } 2856 // Only lay out bases with extendable VFPtrs on the first pass. 2857 if (!BaseLayout.hasExtendableVFPtr()) 2858 continue; 2859 // If we don't have a primary base, this one qualifies. 2860 if (!PrimaryBase) { 2861 PrimaryBase = BaseDecl; 2862 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2863 } 2864 // Lay out the base. 2865 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2866 } 2867 // Figure out if we need a fresh VFPtr for this class. 2868 if (RD->isPolymorphic()) { 2869 if (!HasPolymorphicBaseClass) 2870 // This class introduces polymorphism, so we need a vftable to store the 2871 // RTTI information. 2872 HasOwnVFPtr = true; 2873 else if (!PrimaryBase) { 2874 // We have a polymorphic base class but can't extend its vftable. Add a 2875 // new vfptr if we would use any vftable slots. 2876 for (CXXMethodDecl *M : RD->methods()) { 2877 if (MicrosoftVTableContext::hasVtableSlot(M) && 2878 M->size_overridden_methods() == 0) { 2879 HasOwnVFPtr = true; 2880 break; 2881 } 2882 } 2883 } 2884 } 2885 // If we don't have a primary base then we have a leading object that could 2886 // itself lead with a zero-sized object, something we track. 2887 bool CheckLeadingLayout = !PrimaryBase; 2888 // Iterate through the bases and lay out the non-virtual ones. 2889 for (const CXXBaseSpecifier &Base : RD->bases()) { 2890 if (Base.isVirtual()) 2891 continue; 2892 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2893 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2894 // Only lay out bases without extendable VFPtrs on the second pass. 2895 if (BaseLayout.hasExtendableVFPtr()) { 2896 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2897 continue; 2898 } 2899 // If this is the first layout, check to see if it leads with a zero sized 2900 // object. If it does, so do we. 2901 if (CheckLeadingLayout) { 2902 CheckLeadingLayout = false; 2903 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2904 } 2905 // Lay out the base. 2906 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2907 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2908 } 2909 // Set our VBPtroffset if we know it at this point. 2910 if (!HasVBPtr) 2911 VBPtrOffset = CharUnits::fromQuantity(-1); 2912 else if (SharedVBPtrBase) { 2913 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); 2914 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); 2915 } 2916 } 2917 2918 static bool recordUsesEBO(const RecordDecl *RD) { 2919 if (!isa<CXXRecordDecl>(RD)) 2920 return false; 2921 if (RD->hasAttr<EmptyBasesAttr>()) 2922 return true; 2923 if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) 2924 // TODO: Double check with the next version of MSVC. 2925 if (LVA->getVersion() <= LangOptions::MSVC2015) 2926 return false; 2927 // TODO: Some later version of MSVC will change the default behavior of the 2928 // compiler to enable EBO by default. When this happens, we will need an 2929 // additional isCompatibleWithMSVC check. 2930 return false; 2931 } 2932 2933 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( 2934 const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl, 2935 const ASTRecordLayout &BaseLayout, 2936 const ASTRecordLayout *&PreviousBaseLayout) { 2937 // Insert padding between two bases if the left first one is zero sized or 2938 // contains a zero sized subobject and the right is zero sized or one leads 2939 // with a zero sized base. 2940 bool MDCUsesEBO = recordUsesEBO(RD); 2941 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 2942 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) 2943 Size++; 2944 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 2945 CharUnits BaseOffset; 2946 2947 // Respect the external AST source base offset, if present. 2948 bool FoundBase = false; 2949 if (UseExternalLayout) { 2950 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); 2951 if (BaseOffset > Size) { 2952 Size = BaseOffset; 2953 } 2954 } 2955 2956 if (!FoundBase) { 2957 if (MDCUsesEBO && BaseDecl->isEmpty() && 2958 (BaseLayout.getNonVirtualSize() == CharUnits::Zero())) { 2959 BaseOffset = CharUnits::Zero(); 2960 } else { 2961 // Otherwise, lay the base out at the end of the MDC. 2962 BaseOffset = Size = Size.alignTo(Info.Alignment); 2963 } 2964 } 2965 Bases.insert(std::make_pair(BaseDecl, BaseOffset)); 2966 Size += BaseLayout.getNonVirtualSize(); 2967 DataSize = Size; 2968 PreviousBaseLayout = &BaseLayout; 2969 } 2970 2971 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { 2972 LastFieldIsNonZeroWidthBitfield = false; 2973 for (const FieldDecl *Field : RD->fields()) 2974 layoutField(Field); 2975 } 2976 2977 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { 2978 if (FD->isBitField()) { 2979 layoutBitField(FD); 2980 return; 2981 } 2982 LastFieldIsNonZeroWidthBitfield = false; 2983 ElementInfo Info = getAdjustedElementInfo(FD); 2984 Alignment = std::max(Alignment, Info.Alignment); 2985 2986 const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl(); 2987 bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() && 2988 FieldClass->isEmpty() && 2989 FieldClass->fields().empty(); 2990 CharUnits FieldOffset = CharUnits::Zero(); 2991 2992 if (UseExternalLayout) { 2993 FieldOffset = 2994 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); 2995 } else if (IsUnion) { 2996 FieldOffset = CharUnits::Zero(); 2997 } else if (EmptySubobjects) { 2998 if (!IsOverlappingEmptyField) 2999 FieldOffset = DataSize.alignTo(Info.Alignment); 3000 3001 while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, FieldOffset)) { 3002 const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 3003 bool HasBases = ParentClass && (!ParentClass->bases().empty() || 3004 !ParentClass->vbases().empty()); 3005 if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() && 3006 HasBases) { 3007 // MSVC appears to only do this when there are base classes; 3008 // otherwise it overlaps no_unique_address fields in non-zero offsets. 3009 FieldOffset = DataSize.alignTo(Info.Alignment); 3010 } else { 3011 FieldOffset += Info.Alignment; 3012 } 3013 } 3014 } else { 3015 FieldOffset = Size.alignTo(Info.Alignment); 3016 } 3017 placeFieldAtOffset(FieldOffset); 3018 3019 if (!IsOverlappingEmptyField) 3020 DataSize = std::max(DataSize, FieldOffset + Info.Size); 3021 3022 Size = std::max(Size, FieldOffset + Info.Size); 3023 } 3024 3025 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { 3026 unsigned Width = FD->getBitWidthValue(Context); 3027 if (Width == 0) { 3028 layoutZeroWidthBitField(FD); 3029 return; 3030 } 3031 ElementInfo Info = getAdjustedElementInfo(FD); 3032 // Clamp the bitfield to a containable size for the sake of being able 3033 // to lay them out. Sema will throw an error. 3034 if (Width > Context.toBits(Info.Size)) 3035 Width = Context.toBits(Info.Size); 3036 // Check to see if this bitfield fits into an existing allocation. Note: 3037 // MSVC refuses to pack bitfields of formal types with different sizes 3038 // into the same allocation. 3039 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && 3040 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { 3041 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); 3042 RemainingBitsInField -= Width; 3043 return; 3044 } 3045 LastFieldIsNonZeroWidthBitfield = true; 3046 CurrentBitfieldSize = Info.Size; 3047 if (UseExternalLayout) { 3048 auto FieldBitOffset = External.getExternalFieldOffset(FD); 3049 placeFieldAtBitOffset(FieldBitOffset); 3050 auto NewSize = Context.toCharUnitsFromBits( 3051 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) + 3052 Context.toBits(Info.Size)); 3053 Size = std::max(Size, NewSize); 3054 Alignment = std::max(Alignment, Info.Alignment); 3055 } else if (IsUnion) { 3056 placeFieldAtOffset(CharUnits::Zero()); 3057 Size = std::max(Size, Info.Size); 3058 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 3059 } else { 3060 // Allocate a new block of memory and place the bitfield in it. 3061 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 3062 placeFieldAtOffset(FieldOffset); 3063 Size = FieldOffset + Info.Size; 3064 Alignment = std::max(Alignment, Info.Alignment); 3065 RemainingBitsInField = Context.toBits(Info.Size) - Width; 3066 } 3067 DataSize = Size; 3068 } 3069 3070 void 3071 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { 3072 // Zero-width bitfields are ignored unless they follow a non-zero-width 3073 // bitfield. 3074 if (!LastFieldIsNonZeroWidthBitfield) { 3075 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); 3076 // TODO: Add a Sema warning that MS ignores alignment for zero 3077 // sized bitfields that occur after zero-size bitfields or non-bitfields. 3078 return; 3079 } 3080 LastFieldIsNonZeroWidthBitfield = false; 3081 ElementInfo Info = getAdjustedElementInfo(FD); 3082 if (IsUnion) { 3083 placeFieldAtOffset(CharUnits::Zero()); 3084 Size = std::max(Size, Info.Size); 3085 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 3086 } else { 3087 // Round up the current record size to the field's alignment boundary. 3088 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 3089 placeFieldAtOffset(FieldOffset); 3090 Size = FieldOffset; 3091 Alignment = std::max(Alignment, Info.Alignment); 3092 } 3093 DataSize = Size; 3094 } 3095 3096 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { 3097 if (!HasVBPtr || SharedVBPtrBase) 3098 return; 3099 // Inject the VBPointer at the injection site. 3100 CharUnits InjectionSite = VBPtrOffset; 3101 // But before we do, make sure it's properly aligned. 3102 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); 3103 // Determine where the first field should be laid out after the vbptr. 3104 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; 3105 // Shift everything after the vbptr down, unless we're using an external 3106 // layout. 3107 if (UseExternalLayout) { 3108 // It is possible that there were no fields or bases located after vbptr, 3109 // so the size was not adjusted before. 3110 if (Size < FieldStart) 3111 Size = FieldStart; 3112 return; 3113 } 3114 // Make sure that the amount we push the fields back by is a multiple of the 3115 // alignment. 3116 CharUnits Offset = (FieldStart - InjectionSite) 3117 .alignTo(std::max(RequiredAlignment, Alignment)); 3118 Size += Offset; 3119 for (uint64_t &FieldOffset : FieldOffsets) 3120 FieldOffset += Context.toBits(Offset); 3121 for (BaseOffsetsMapTy::value_type &Base : Bases) 3122 if (Base.second >= InjectionSite) 3123 Base.second += Offset; 3124 } 3125 3126 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { 3127 if (!HasOwnVFPtr) 3128 return; 3129 // Make sure that the amount we push the struct back by is a multiple of the 3130 // alignment. 3131 CharUnits Offset = 3132 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); 3133 // Push back the vbptr, but increase the size of the object and push back 3134 // regular fields by the offset only if not using external record layout. 3135 if (HasVBPtr) 3136 VBPtrOffset += Offset; 3137 3138 if (UseExternalLayout) { 3139 // The class may have size 0 and a vfptr (e.g. it's an interface class). The 3140 // size was not correctly set before in this case. 3141 if (Size.isZero()) 3142 Size += Offset; 3143 return; 3144 } 3145 3146 Size += Offset; 3147 3148 // If we're using an external layout, the fields offsets have already 3149 // accounted for this adjustment. 3150 for (uint64_t &FieldOffset : FieldOffsets) 3151 FieldOffset += Context.toBits(Offset); 3152 for (BaseOffsetsMapTy::value_type &Base : Bases) 3153 Base.second += Offset; 3154 } 3155 3156 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { 3157 if (!HasVBPtr) 3158 return; 3159 // Vtordisps are always 4 bytes (even in 64-bit mode) 3160 CharUnits VtorDispSize = CharUnits::fromQuantity(4); 3161 CharUnits VtorDispAlignment = VtorDispSize; 3162 // vtordisps respect pragma pack. 3163 if (!MaxFieldAlignment.isZero()) 3164 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); 3165 // The alignment of the vtordisp is at least the required alignment of the 3166 // entire record. This requirement may be present to support vtordisp 3167 // injection. 3168 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 3169 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 3170 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 3171 RequiredAlignment = 3172 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); 3173 } 3174 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); 3175 // Compute the vtordisp set. 3176 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; 3177 computeVtorDispSet(HasVtorDispSet, RD); 3178 // Iterate through the virtual bases and lay them out. 3179 const ASTRecordLayout *PreviousBaseLayout = nullptr; 3180 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 3181 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 3182 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 3183 bool HasVtordisp = HasVtorDispSet.contains(BaseDecl); 3184 // Insert padding between two bases if the left first one is zero sized or 3185 // contains a zero sized subobject and the right is zero sized or one leads 3186 // with a zero sized base. The padding between virtual bases is 4 3187 // bytes (in both 32 and 64 bits modes) and always involves rounding up to 3188 // the required alignment, we don't know why. 3189 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 3190 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || 3191 HasVtordisp) { 3192 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; 3193 Alignment = std::max(VtorDispAlignment, Alignment); 3194 } 3195 // Insert the virtual base. 3196 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 3197 CharUnits BaseOffset; 3198 3199 // Respect the external AST source base offset, if present. 3200 if (UseExternalLayout) { 3201 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) 3202 BaseOffset = Size; 3203 } else 3204 BaseOffset = Size.alignTo(Info.Alignment); 3205 3206 assert(BaseOffset >= Size && "base offset already allocated"); 3207 3208 VBases.insert(std::make_pair(BaseDecl, 3209 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); 3210 Size = BaseOffset + BaseLayout.getNonVirtualSize(); 3211 PreviousBaseLayout = &BaseLayout; 3212 } 3213 } 3214 3215 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { 3216 // Respect required alignment. Note that in 32-bit mode Required alignment 3217 // may be 0 and cause size not to be updated. 3218 DataSize = Size; 3219 if (!RequiredAlignment.isZero()) { 3220 Alignment = std::max(Alignment, RequiredAlignment); 3221 auto RoundingAlignment = Alignment; 3222 if (!MaxFieldAlignment.isZero()) 3223 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 3224 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); 3225 Size = Size.alignTo(RoundingAlignment); 3226 } 3227 if (Size.isZero()) { 3228 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { 3229 EndsWithZeroSizedObject = true; 3230 LeadsWithZeroSizedBase = true; 3231 } 3232 // Zero-sized structures have size equal to their alignment if a 3233 // __declspec(align) came into play. 3234 if (RequiredAlignment >= MinEmptyStructSize) 3235 Size = Alignment; 3236 else 3237 Size = MinEmptyStructSize; 3238 } 3239 3240 if (UseExternalLayout) { 3241 Size = Context.toCharUnitsFromBits(External.Size); 3242 if (External.Align) 3243 Alignment = Context.toCharUnitsFromBits(External.Align); 3244 } 3245 } 3246 3247 // Recursively walks the non-virtual bases of a class and determines if any of 3248 // them are in the bases with overridden methods set. 3249 static bool 3250 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & 3251 BasesWithOverriddenMethods, 3252 const CXXRecordDecl *RD) { 3253 if (BasesWithOverriddenMethods.count(RD)) 3254 return true; 3255 // If any of a virtual bases non-virtual bases (recursively) requires a 3256 // vtordisp than so does this virtual base. 3257 for (const CXXBaseSpecifier &Base : RD->bases()) 3258 if (!Base.isVirtual() && 3259 RequiresVtordisp(BasesWithOverriddenMethods, 3260 Base.getType()->getAsCXXRecordDecl())) 3261 return true; 3262 return false; 3263 } 3264 3265 void MicrosoftRecordLayoutBuilder::computeVtorDispSet( 3266 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, 3267 const CXXRecordDecl *RD) const { 3268 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with 3269 // vftables. 3270 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { 3271 for (const CXXBaseSpecifier &Base : RD->vbases()) { 3272 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3273 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 3274 if (Layout.hasExtendableVFPtr()) 3275 HasVtordispSet.insert(BaseDecl); 3276 } 3277 return; 3278 } 3279 3280 // If any of our bases need a vtordisp for this type, so do we. Check our 3281 // direct bases for vtordisp requirements. 3282 for (const CXXBaseSpecifier &Base : RD->bases()) { 3283 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3284 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 3285 for (const auto &bi : Layout.getVBaseOffsetsMap()) 3286 if (bi.second.hasVtorDisp()) 3287 HasVtordispSet.insert(bi.first); 3288 } 3289 // We don't introduce any additional vtordisps if either: 3290 // * A user declared constructor or destructor aren't declared. 3291 // * #pragma vtordisp(0) or the /vd0 flag are in use. 3292 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || 3293 RD->getMSVtorDispMode() == MSVtorDispMode::Never) 3294 return; 3295 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's 3296 // possible for a partially constructed object with virtual base overrides to 3297 // escape a non-trivial constructor. 3298 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride); 3299 // Compute a set of base classes which define methods we override. A virtual 3300 // base in this set will require a vtordisp. A virtual base that transitively 3301 // contains one of these bases as a non-virtual base will also require a 3302 // vtordisp. 3303 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; 3304 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; 3305 // Seed the working set with our non-destructor, non-pure virtual methods. 3306 for (const CXXMethodDecl *MD : RD->methods()) 3307 if (MicrosoftVTableContext::hasVtableSlot(MD) && 3308 !isa<CXXDestructorDecl>(MD) && !MD->isPureVirtual()) 3309 Work.insert(MD); 3310 while (!Work.empty()) { 3311 const CXXMethodDecl *MD = *Work.begin(); 3312 auto MethodRange = MD->overridden_methods(); 3313 // If a virtual method has no-overrides it lives in its parent's vtable. 3314 if (MethodRange.begin() == MethodRange.end()) 3315 BasesWithOverriddenMethods.insert(MD->getParent()); 3316 else 3317 Work.insert(MethodRange.begin(), MethodRange.end()); 3318 // We've finished processing this element, remove it from the working set. 3319 Work.erase(MD); 3320 } 3321 // For each of our virtual bases, check if it is in the set of overridden 3322 // bases or if it transitively contains a non-virtual base that is. 3323 for (const CXXBaseSpecifier &Base : RD->vbases()) { 3324 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3325 if (!HasVtordispSet.count(BaseDecl) && 3326 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) 3327 HasVtordispSet.insert(BaseDecl); 3328 } 3329 } 3330 3331 /// getASTRecordLayout - Get or compute information about the layout of the 3332 /// specified record (struct/union/class), which indicates its size and field 3333 /// position information. 3334 const ASTRecordLayout & 3335 ASTContext::getASTRecordLayout(const RecordDecl *D) const { 3336 // These asserts test different things. A record has a definition 3337 // as soon as we begin to parse the definition. That definition is 3338 // not a complete definition (which is what isDefinition() tests) 3339 // until we *finish* parsing the definition. 3340 3341 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3342 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); 3343 // Complete the redecl chain (if necessary). 3344 (void)D->getMostRecentDecl(); 3345 3346 D = D->getDefinition(); 3347 assert(D && "Cannot get layout of forward declarations!"); 3348 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); 3349 assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); 3350 3351 // Look up this layout, if already laid out, return what we have. 3352 // Note that we can't save a reference to the entry because this function 3353 // is recursive. 3354 const ASTRecordLayout *Entry = ASTRecordLayouts[D]; 3355 if (Entry) return *Entry; 3356 3357 const ASTRecordLayout *NewEntry = nullptr; 3358 3359 if (isMsLayout(*this)) { 3360 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 3361 EmptySubobjectMap EmptySubobjects(*this, RD); 3362 MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects); 3363 Builder.cxxLayout(RD); 3364 NewEntry = new (*this) ASTRecordLayout( 3365 *this, Builder.Size, Builder.Alignment, Builder.Alignment, 3366 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, 3367 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, 3368 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, 3369 Builder.Alignment, Builder.Alignment, CharUnits::Zero(), 3370 Builder.PrimaryBase, false, Builder.SharedVBPtrBase, 3371 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, 3372 Builder.Bases, Builder.VBases); 3373 } else { 3374 MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3375 Builder.layout(D); 3376 NewEntry = new (*this) ASTRecordLayout( 3377 *this, Builder.Size, Builder.Alignment, Builder.Alignment, 3378 Builder.Alignment, Builder.RequiredAlignment, Builder.Size, 3379 Builder.FieldOffsets); 3380 } 3381 } else { 3382 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 3383 EmptySubobjectMap EmptySubobjects(*this, RD); 3384 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); 3385 Builder.Layout(RD); 3386 3387 // In certain situations, we are allowed to lay out objects in the 3388 // tail-padding of base classes. This is ABI-dependent. 3389 // FIXME: this should be stored in the record layout. 3390 bool skipTailPadding = 3391 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); 3392 3393 // FIXME: This should be done in FinalizeLayout. 3394 CharUnits DataSize = 3395 skipTailPadding ? Builder.getSize() : Builder.getDataSize(); 3396 CharUnits NonVirtualSize = 3397 skipTailPadding ? DataSize : Builder.NonVirtualSize; 3398 NewEntry = new (*this) ASTRecordLayout( 3399 *this, Builder.getSize(), Builder.Alignment, 3400 Builder.PreferredAlignment, Builder.UnadjustedAlignment, 3401 /*RequiredAlignment : used by MS-ABI)*/ 3402 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), 3403 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, 3404 NonVirtualSize, Builder.NonVirtualAlignment, 3405 Builder.PreferredNVAlignment, 3406 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, 3407 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, 3408 Builder.VBases); 3409 } else { 3410 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3411 Builder.Layout(D); 3412 3413 NewEntry = new (*this) ASTRecordLayout( 3414 *this, Builder.getSize(), Builder.Alignment, 3415 Builder.PreferredAlignment, Builder.UnadjustedAlignment, 3416 /*RequiredAlignment : used by MS-ABI)*/ 3417 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); 3418 } 3419 } 3420 3421 ASTRecordLayouts[D] = NewEntry; 3422 3423 if (getLangOpts().DumpRecordLayouts) { 3424 llvm::outs() << "\n*** Dumping AST Record Layout\n"; 3425 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); 3426 } 3427 3428 return *NewEntry; 3429 } 3430 3431 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { 3432 if (!getTargetInfo().getCXXABI().hasKeyFunctions()) 3433 return nullptr; 3434 3435 assert(RD->getDefinition() && "Cannot get key function for forward decl!"); 3436 RD = RD->getDefinition(); 3437 3438 // Beware: 3439 // 1) computing the key function might trigger deserialization, which might 3440 // invalidate iterators into KeyFunctions 3441 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and 3442 // invalidate the LazyDeclPtr within the map itself 3443 LazyDeclPtr Entry = KeyFunctions[RD]; 3444 const Decl *Result = 3445 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); 3446 3447 // Store it back if it changed. 3448 if (Entry.isOffset() || Entry.isValid() != bool(Result)) 3449 KeyFunctions[RD] = const_cast<Decl*>(Result); 3450 3451 return cast_or_null<CXXMethodDecl>(Result); 3452 } 3453 3454 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { 3455 assert(Method == Method->getFirstDecl() && 3456 "not working with method declaration from class definition"); 3457 3458 // Look up the cache entry. Since we're working with the first 3459 // declaration, its parent must be the class definition, which is 3460 // the correct key for the KeyFunctions hash. 3461 const auto &Map = KeyFunctions; 3462 auto I = Map.find(Method->getParent()); 3463 3464 // If it's not cached, there's nothing to do. 3465 if (I == Map.end()) return; 3466 3467 // If it is cached, check whether it's the target method, and if so, 3468 // remove it from the cache. Note, the call to 'get' might invalidate 3469 // the iterator and the LazyDeclPtr object within the map. 3470 LazyDeclPtr Ptr = I->second; 3471 if (Ptr.get(getExternalSource()) == Method) { 3472 // FIXME: remember that we did this for module / chained PCH state? 3473 KeyFunctions.erase(Method->getParent()); 3474 } 3475 } 3476 3477 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { 3478 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); 3479 return Layout.getFieldOffset(FD->getFieldIndex()); 3480 } 3481 3482 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { 3483 uint64_t OffsetInBits; 3484 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { 3485 OffsetInBits = ::getFieldOffset(*this, FD); 3486 } else { 3487 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); 3488 3489 OffsetInBits = 0; 3490 for (const NamedDecl *ND : IFD->chain()) 3491 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); 3492 } 3493 3494 return OffsetInBits; 3495 } 3496 3497 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, 3498 const ObjCImplementationDecl *ID, 3499 const ObjCIvarDecl *Ivar) const { 3500 Ivar = Ivar->getCanonicalDecl(); 3501 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 3502 3503 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed 3504 // in here; it should never be necessary because that should be the lexical 3505 // decl context for the ivar. 3506 3507 // If we know have an implementation (and the ivar is in it) then 3508 // look up in the implementation layout. 3509 const ASTRecordLayout *RL; 3510 if (ID && declaresSameEntity(ID->getClassInterface(), Container)) 3511 RL = &getASTObjCImplementationLayout(ID); 3512 else 3513 RL = &getASTObjCInterfaceLayout(Container); 3514 3515 // Compute field index. 3516 // 3517 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is 3518 // implemented. This should be fixed to get the information from the layout 3519 // directly. 3520 unsigned Index = 0; 3521 3522 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); 3523 IVD; IVD = IVD->getNextIvar()) { 3524 if (Ivar == IVD) 3525 break; 3526 ++Index; 3527 } 3528 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); 3529 3530 return RL->getFieldOffset(Index); 3531 } 3532 3533 /// getObjCLayout - Get or compute information about the layout of the 3534 /// given interface. 3535 /// 3536 /// \param Impl - If given, also include the layout of the interface's 3537 /// implementation. This may differ by including synthesized ivars. 3538 const ASTRecordLayout & 3539 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, 3540 const ObjCImplementationDecl *Impl) const { 3541 // Retrieve the definition 3542 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3543 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); 3544 D = D->getDefinition(); 3545 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && 3546 "Invalid interface decl!"); 3547 3548 // Look up this layout, if already laid out, return what we have. 3549 const ObjCContainerDecl *Key = 3550 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; 3551 if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) 3552 return *Entry; 3553 3554 // Add in synthesized ivar count if laying out an implementation. 3555 if (Impl) { 3556 unsigned SynthCount = CountNonClassIvars(D); 3557 // If there aren't any synthesized ivars then reuse the interface 3558 // entry. Note we can't cache this because we simply free all 3559 // entries later; however we shouldn't look up implementations 3560 // frequently. 3561 if (SynthCount == 0) 3562 return getObjCLayout(D, nullptr); 3563 } 3564 3565 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3566 Builder.Layout(D); 3567 3568 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( 3569 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, 3570 Builder.UnadjustedAlignment, 3571 /*RequiredAlignment : used by MS-ABI)*/ 3572 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); 3573 3574 ObjCLayouts[Key] = NewEntry; 3575 3576 return *NewEntry; 3577 } 3578 3579 static void PrintOffset(raw_ostream &OS, 3580 CharUnits Offset, unsigned IndentLevel) { 3581 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity()); 3582 OS.indent(IndentLevel * 2); 3583 } 3584 3585 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, 3586 unsigned Begin, unsigned Width, 3587 unsigned IndentLevel) { 3588 llvm::SmallString<10> Buffer; 3589 { 3590 llvm::raw_svector_ostream BufferOS(Buffer); 3591 BufferOS << Offset.getQuantity() << ':'; 3592 if (Width == 0) { 3593 BufferOS << '-'; 3594 } else { 3595 BufferOS << Begin << '-' << (Begin + Width - 1); 3596 } 3597 } 3598 3599 OS << llvm::right_justify(Buffer, 10) << " | "; 3600 OS.indent(IndentLevel * 2); 3601 } 3602 3603 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { 3604 OS << " | "; 3605 OS.indent(IndentLevel * 2); 3606 } 3607 3608 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, 3609 const ASTContext &C, 3610 CharUnits Offset, 3611 unsigned IndentLevel, 3612 const char* Description, 3613 bool PrintSizeInfo, 3614 bool IncludeVirtualBases) { 3615 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); 3616 auto CXXRD = dyn_cast<CXXRecordDecl>(RD); 3617 3618 PrintOffset(OS, Offset, IndentLevel); 3619 OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD)); 3620 if (Description) 3621 OS << ' ' << Description; 3622 if (CXXRD && CXXRD->isEmpty()) 3623 OS << " (empty)"; 3624 OS << '\n'; 3625 3626 IndentLevel++; 3627 3628 // Dump bases. 3629 if (CXXRD) { 3630 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 3631 bool HasOwnVFPtr = Layout.hasOwnVFPtr(); 3632 bool HasOwnVBPtr = Layout.hasOwnVBPtr(); 3633 3634 // Vtable pointer. 3635 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { 3636 PrintOffset(OS, Offset, IndentLevel); 3637 OS << '(' << *RD << " vtable pointer)\n"; 3638 } else if (HasOwnVFPtr) { 3639 PrintOffset(OS, Offset, IndentLevel); 3640 // vfptr (for Microsoft C++ ABI) 3641 OS << '(' << *RD << " vftable pointer)\n"; 3642 } 3643 3644 // Collect nvbases. 3645 SmallVector<const CXXRecordDecl *, 4> Bases; 3646 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 3647 assert(!Base.getType()->isDependentType() && 3648 "Cannot layout class with dependent bases."); 3649 if (!Base.isVirtual()) 3650 Bases.push_back(Base.getType()->getAsCXXRecordDecl()); 3651 } 3652 3653 // Sort nvbases by offset. 3654 llvm::stable_sort( 3655 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { 3656 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); 3657 }); 3658 3659 // Dump (non-virtual) bases 3660 for (const CXXRecordDecl *Base : Bases) { 3661 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); 3662 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, 3663 Base == PrimaryBase ? "(primary base)" : "(base)", 3664 /*PrintSizeInfo=*/false, 3665 /*IncludeVirtualBases=*/false); 3666 } 3667 3668 // vbptr (for Microsoft C++ ABI) 3669 if (HasOwnVBPtr) { 3670 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); 3671 OS << '(' << *RD << " vbtable pointer)\n"; 3672 } 3673 } 3674 3675 // Dump fields. 3676 uint64_t FieldNo = 0; 3677 for (RecordDecl::field_iterator I = RD->field_begin(), 3678 E = RD->field_end(); I != E; ++I, ++FieldNo) { 3679 const FieldDecl &Field = **I; 3680 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); 3681 CharUnits FieldOffset = 3682 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); 3683 3684 // Recursively dump fields of record type. 3685 if (auto RT = Field.getType()->getAs<RecordType>()) { 3686 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, 3687 Field.getName().data(), 3688 /*PrintSizeInfo=*/false, 3689 /*IncludeVirtualBases=*/true); 3690 continue; 3691 } 3692 3693 if (Field.isBitField()) { 3694 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); 3695 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; 3696 unsigned Width = Field.getBitWidthValue(C); 3697 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); 3698 } else { 3699 PrintOffset(OS, FieldOffset, IndentLevel); 3700 } 3701 const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical 3702 ? Field.getType().getCanonicalType() 3703 : Field.getType(); 3704 OS << FieldType << ' ' << Field << '\n'; 3705 } 3706 3707 // Dump virtual bases. 3708 if (CXXRD && IncludeVirtualBases) { 3709 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = 3710 Layout.getVBaseOffsetsMap(); 3711 3712 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { 3713 assert(Base.isVirtual() && "Found non-virtual class!"); 3714 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); 3715 3716 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); 3717 3718 if (VtorDisps.find(VBase)->second.hasVtorDisp()) { 3719 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); 3720 OS << "(vtordisp for vbase " << *VBase << ")\n"; 3721 } 3722 3723 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, 3724 VBase == Layout.getPrimaryBase() ? 3725 "(primary virtual base)" : "(virtual base)", 3726 /*PrintSizeInfo=*/false, 3727 /*IncludeVirtualBases=*/false); 3728 } 3729 } 3730 3731 if (!PrintSizeInfo) return; 3732 3733 PrintIndentNoOffset(OS, IndentLevel - 1); 3734 OS << "[sizeof=" << Layout.getSize().getQuantity(); 3735 if (CXXRD && !isMsLayout(C)) 3736 OS << ", dsize=" << Layout.getDataSize().getQuantity(); 3737 OS << ", align=" << Layout.getAlignment().getQuantity(); 3738 if (C.getTargetInfo().defaultsToAIXPowerAlignment()) 3739 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity(); 3740 3741 if (CXXRD) { 3742 OS << ",\n"; 3743 PrintIndentNoOffset(OS, IndentLevel - 1); 3744 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); 3745 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); 3746 if (C.getTargetInfo().defaultsToAIXPowerAlignment()) 3747 OS << ", preferrednvalign=" 3748 << Layout.getPreferredNVAlignment().getQuantity(); 3749 } 3750 OS << "]\n"; 3751 } 3752 3753 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, 3754 bool Simple) const { 3755 if (!Simple) { 3756 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, 3757 /*PrintSizeInfo*/ true, 3758 /*IncludeVirtualBases=*/true); 3759 return; 3760 } 3761 3762 // The "simple" format is designed to be parsed by the 3763 // layout-override testing code. There shouldn't be any external 3764 // uses of this format --- when LLDB overrides a layout, it sets up 3765 // the data structures directly --- so feel free to adjust this as 3766 // you like as long as you also update the rudimentary parser for it 3767 // in libFrontend. 3768 3769 const ASTRecordLayout &Info = getASTRecordLayout(RD); 3770 OS << "Type: " << getTypeDeclType(RD) << "\n"; 3771 OS << "\nLayout: "; 3772 OS << "<ASTRecordLayout\n"; 3773 OS << " Size:" << toBits(Info.getSize()) << "\n"; 3774 if (!isMsLayout(*this)) 3775 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; 3776 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; 3777 if (Target->defaultsToAIXPowerAlignment()) 3778 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment()) 3779 << "\n"; 3780 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3781 OS << " BaseOffsets: ["; 3782 const CXXRecordDecl *Base = nullptr; 3783 for (auto I : CXXRD->bases()) { 3784 if (I.isVirtual()) 3785 continue; 3786 if (Base) 3787 OS << ", "; 3788 Base = I.getType()->getAsCXXRecordDecl(); 3789 OS << Info.CXXInfo->BaseOffsets[Base].getQuantity(); 3790 } 3791 OS << "]>\n"; 3792 OS << " VBaseOffsets: ["; 3793 const CXXRecordDecl *VBase = nullptr; 3794 for (auto I : CXXRD->vbases()) { 3795 if (VBase) 3796 OS << ", "; 3797 VBase = I.getType()->getAsCXXRecordDecl(); 3798 OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity(); 3799 } 3800 OS << "]>\n"; 3801 } 3802 OS << " FieldOffsets: ["; 3803 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { 3804 if (i) 3805 OS << ", "; 3806 OS << Info.getFieldOffset(i); 3807 } 3808 OS << "]>\n"; 3809 } 3810