xref: /freebsd/contrib/llvm-project/clang/lib/AST/RecordLayoutBuilder.cpp (revision 4b9d605768acabc460aa6dcfe8a1f8db35b16794)
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61   ExternalLayout() : Size(0), Align(0) {}
62 
63   /// Overall record size in bits.
64   uint64_t Size;
65 
66   /// Overall record alignment in bits.
67   uint64_t Align;
68 
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71 
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74 
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77 
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85 
86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93 
94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102 
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108 
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111 
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116 
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120 
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124 
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126 
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129 
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class, CharUnits Offset,
132                                   bool PlacingOverlappingField);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                   bool PlacingOverlappingField);
135 
136   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137   /// subobjects beyond the given offset.
138   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139     return Offset <= MaxEmptyClassOffset;
140   }
141 
142   CharUnits
143   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145     assert(FieldOffset % CharWidth == 0 &&
146            "Field offset not at char boundary!");
147 
148     return Context.toCharUnitsFromBits(FieldOffset);
149   }
150 
151 protected:
152   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                  CharUnits Offset) const;
154 
155   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                      CharUnits Offset);
157 
158   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                       const CXXRecordDecl *Class,
160                                       CharUnits Offset) const;
161   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                       CharUnits Offset) const;
163 
164 public:
165   /// This holds the size of the largest empty subobject (either a base
166   /// or a member). Will be zero if the record being built doesn't contain
167   /// any empty classes.
168   CharUnits SizeOfLargestEmptySubobject;
169 
170   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172       ComputeEmptySubobjectSizes();
173   }
174 
175   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176   /// at the given offset.
177   /// Returns false if placing the record will result in two components
178   /// (direct or indirect) of the same type having the same offset.
179   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                             CharUnits Offset);
181 
182   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183   /// offset.
184   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186 
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188   // Check the bases.
189   for (const CXXBaseSpecifier &Base : Class->bases()) {
190     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191 
192     CharUnits EmptySize;
193     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194     if (BaseDecl->isEmpty()) {
195       // If the class decl is empty, get its size.
196       EmptySize = Layout.getSize();
197     } else {
198       // Otherwise, we get the largest empty subobject for the decl.
199       EmptySize = Layout.getSizeOfLargestEmptySubobject();
200     }
201 
202     if (EmptySize > SizeOfLargestEmptySubobject)
203       SizeOfLargestEmptySubobject = EmptySize;
204   }
205 
206   // Check the fields.
207   for (const FieldDecl *FD : Class->fields()) {
208     const RecordType *RT =
209         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210 
211     // We only care about record types.
212     if (!RT)
213       continue;
214 
215     CharUnits EmptySize;
216     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218     if (MemberDecl->isEmpty()) {
219       // If the class decl is empty, get its size.
220       EmptySize = Layout.getSize();
221     } else {
222       // Otherwise, we get the largest empty subobject for the decl.
223       EmptySize = Layout.getSizeOfLargestEmptySubobject();
224     }
225 
226     if (EmptySize > SizeOfLargestEmptySubobject)
227       SizeOfLargestEmptySubobject = EmptySize;
228   }
229 }
230 
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                              CharUnits Offset) const {
234   // We only need to check empty bases.
235   if (!RD->isEmpty())
236     return true;
237 
238   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239   if (I == EmptyClassOffsets.end())
240     return true;
241 
242   const ClassVectorTy &Classes = I->second;
243   if (!llvm::is_contained(Classes, RD))
244     return true;
245 
246   // There is already an empty class of the same type at this offset.
247   return false;
248 }
249 
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                              CharUnits Offset) {
252   // We only care about empty bases.
253   if (!RD->isEmpty())
254     return;
255 
256   // If we have empty structures inside a union, we can assign both
257   // the same offset. Just avoid pushing them twice in the list.
258   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259   if (llvm::is_contained(Classes, RD))
260     return;
261 
262   Classes.push_back(RD);
263 
264   // Update the empty class offset.
265   if (Offset > MaxEmptyClassOffset)
266     MaxEmptyClassOffset = Offset;
267 }
268 
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                  CharUnits Offset) {
272   // We don't have to keep looking past the maximum offset that's known to
273   // contain an empty class.
274   if (!AnyEmptySubobjectsBeyondOffset(Offset))
275     return true;
276 
277   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278     return false;
279 
280   // Traverse all non-virtual bases.
281   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282   for (const BaseSubobjectInfo *Base : Info->Bases) {
283     if (Base->IsVirtual)
284       continue;
285 
286     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287 
288     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289       return false;
290   }
291 
292   if (Info->PrimaryVirtualBaseInfo) {
293     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294 
295     if (Info == PrimaryVirtualBaseInfo->Derived) {
296       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297         return false;
298     }
299   }
300 
301   // Traverse all member variables.
302   unsigned FieldNo = 0;
303   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305     if (I->isBitField())
306       continue;
307 
308     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310       return false;
311   }
312 
313   return true;
314 }
315 
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                   CharUnits Offset,
318                                                   bool PlacingEmptyBase) {
319   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320     // We know that the only empty subobjects that can conflict with empty
321     // subobject of non-empty bases, are empty bases that can be placed at
322     // offset zero. Because of this, we only need to keep track of empty base
323     // subobjects with offsets less than the size of the largest empty
324     // subobject for our class.
325     return;
326   }
327 
328   AddSubobjectAtOffset(Info->Class, Offset);
329 
330   // Traverse all non-virtual bases.
331   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332   for (const BaseSubobjectInfo *Base : Info->Bases) {
333     if (Base->IsVirtual)
334       continue;
335 
336     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338   }
339 
340   if (Info->PrimaryVirtualBaseInfo) {
341     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342 
343     if (Info == PrimaryVirtualBaseInfo->Derived)
344       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                 PlacingEmptyBase);
346   }
347 
348   // Traverse all member variables.
349   unsigned FieldNo = 0;
350   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352     if (I->isBitField())
353       continue;
354 
355     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357   }
358 }
359 
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                              CharUnits Offset) {
362   // If we know this class doesn't have any empty subobjects we don't need to
363   // bother checking.
364   if (SizeOfLargestEmptySubobject.isZero())
365     return true;
366 
367   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368     return false;
369 
370   // We are able to place the base at this offset. Make sure to update the
371   // empty base subobject map.
372   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373   return true;
374 }
375 
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                   const CXXRecordDecl *Class,
379                                                   CharUnits Offset) const {
380   // We don't have to keep looking past the maximum offset that's known to
381   // contain an empty class.
382   if (!AnyEmptySubobjectsBeyondOffset(Offset))
383     return true;
384 
385   if (!CanPlaceSubobjectAtOffset(RD, Offset))
386     return false;
387 
388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389 
390   // Traverse all non-virtual bases.
391   for (const CXXBaseSpecifier &Base : RD->bases()) {
392     if (Base.isVirtual())
393       continue;
394 
395     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396 
397     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399       return false;
400   }
401 
402   if (RD == Class) {
403     // This is the most derived class, traverse virtual bases as well.
404     for (const CXXBaseSpecifier &Base : RD->vbases()) {
405       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406 
407       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409         return false;
410     }
411   }
412 
413   // Traverse all member variables.
414   unsigned FieldNo = 0;
415   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416        I != E; ++I, ++FieldNo) {
417     if (I->isBitField())
418       continue;
419 
420     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421 
422     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423       return false;
424   }
425 
426   return true;
427 }
428 
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                   CharUnits Offset) const {
432   // We don't have to keep looking past the maximum offset that's known to
433   // contain an empty class.
434   if (!AnyEmptySubobjectsBeyondOffset(Offset))
435     return true;
436 
437   QualType T = FD->getType();
438   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440 
441   // If we have an array type we need to look at every element.
442   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443     QualType ElemTy = Context.getBaseElementType(AT);
444     const RecordType *RT = ElemTy->getAs<RecordType>();
445     if (!RT)
446       return true;
447 
448     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 
451     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452     CharUnits ElementOffset = Offset;
453     for (uint64_t I = 0; I != NumElements; ++I) {
454       // We don't have to keep looking past the maximum offset that's known to
455       // contain an empty class.
456       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457         return true;
458 
459       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460         return false;
461 
462       ElementOffset += Layout.getSize();
463     }
464   }
465 
466   return true;
467 }
468 
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                          CharUnits Offset) {
472   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473     return false;
474 
475   // We are able to place the member variable at this offset.
476   // Make sure to update the empty field subobject map.
477   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478   return true;
479 }
480 
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483     bool PlacingOverlappingField) {
484   // We know that the only empty subobjects that can conflict with empty
485   // field subobjects are subobjects of empty bases and potentially-overlapping
486   // fields that can be placed at offset zero. Because of this, we only need to
487   // keep track of empty field subobjects with offsets less than the size of
488   // the largest empty subobject for our class.
489   //
490   // (Proof: we will only consider placing a subobject at offset zero or at
491   // >= the current dsize. The only cases where the earlier subobject can be
492   // placed beyond the end of dsize is if it's an empty base or a
493   // potentially-overlapping field.)
494   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495     return;
496 
497   AddSubobjectAtOffset(RD, Offset);
498 
499   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500 
501   // Traverse all non-virtual bases.
502   for (const CXXBaseSpecifier &Base : RD->bases()) {
503     if (Base.isVirtual())
504       continue;
505 
506     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507 
508     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                                PlacingOverlappingField);
511   }
512 
513   if (RD == Class) {
514     // This is the most derived class, traverse virtual bases as well.
515     for (const CXXBaseSpecifier &Base : RD->vbases()) {
516       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517 
518       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                  PlacingOverlappingField);
521     }
522   }
523 
524   // Traverse all member variables.
525   unsigned FieldNo = 0;
526   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527        I != E; ++I, ++FieldNo) {
528     if (I->isBitField())
529       continue;
530 
531     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532 
533     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534   }
535 }
536 
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539   QualType T = FD->getType();
540   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542     return;
543   }
544 
545   // If we have an array type we need to update every element.
546   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547     QualType ElemTy = Context.getBaseElementType(AT);
548     const RecordType *RT = ElemTy->getAs<RecordType>();
549     if (!RT)
550       return;
551 
552     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554 
555     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556     CharUnits ElementOffset = Offset;
557 
558     for (uint64_t I = 0; I != NumElements; ++I) {
559       // We know that the only empty subobjects that can conflict with empty
560       // field subobjects are subobjects of empty bases that can be placed at
561       // offset zero. Because of this, we only need to keep track of empty field
562       // subobjects with offsets less than the size of the largest empty
563       // subobject for our class.
564       if (!PlacingOverlappingField &&
565           ElementOffset >= SizeOfLargestEmptySubobject)
566         return;
567 
568       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                  PlacingOverlappingField);
570       ElementOffset += Layout.getSize();
571     }
572   }
573 }
574 
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576 
577 class ItaniumRecordLayoutBuilder {
578 protected:
579   // FIXME: Remove this and make the appropriate fields public.
580   friend class clang::ASTContext;
581 
582   const ASTContext &Context;
583 
584   EmptySubobjectMap *EmptySubobjects;
585 
586   /// Size - The current size of the record layout.
587   uint64_t Size;
588 
589   /// Alignment - The current alignment of the record layout.
590   CharUnits Alignment;
591 
592   /// PreferredAlignment - The preferred alignment of the record layout.
593   CharUnits PreferredAlignment;
594 
595   /// The alignment if attribute packed is not used.
596   CharUnits UnpackedAlignment;
597 
598   /// \brief The maximum of the alignments of top-level members.
599   CharUnits UnadjustedAlignment;
600 
601   SmallVector<uint64_t, 16> FieldOffsets;
602 
603   /// Whether the external AST source has provided a layout for this
604   /// record.
605   unsigned UseExternalLayout : 1;
606 
607   /// Whether we need to infer alignment, even when we have an
608   /// externally-provided layout.
609   unsigned InferAlignment : 1;
610 
611   /// Packed - Whether the record is packed or not.
612   unsigned Packed : 1;
613 
614   unsigned IsUnion : 1;
615 
616   unsigned IsMac68kAlign : 1;
617 
618   unsigned IsNaturalAlign : 1;
619 
620   unsigned IsMsStruct : 1;
621 
622   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623   /// this contains the number of bits in the last unit that can be used for
624   /// an adjacent bitfield if necessary.  The unit in question is usually
625   /// a byte, but larger units are used if IsMsStruct.
626   unsigned char UnfilledBitsInLastUnit;
627 
628   /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629   /// storage unit of the previous field if it was a bitfield.
630   unsigned char LastBitfieldStorageUnitSize;
631 
632   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633   /// #pragma pack.
634   CharUnits MaxFieldAlignment;
635 
636   /// DataSize - The data size of the record being laid out.
637   uint64_t DataSize;
638 
639   CharUnits NonVirtualSize;
640   CharUnits NonVirtualAlignment;
641   CharUnits PreferredNVAlignment;
642 
643   /// If we've laid out a field but not included its tail padding in Size yet,
644   /// this is the size up to the end of that field.
645   CharUnits PaddedFieldSize;
646 
647   /// PrimaryBase - the primary base class (if one exists) of the class
648   /// we're laying out.
649   const CXXRecordDecl *PrimaryBase;
650 
651   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652   /// out is virtual.
653   bool PrimaryBaseIsVirtual;
654 
655   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656   /// pointer, as opposed to inheriting one from a primary base class.
657   bool HasOwnVFPtr;
658 
659   /// the flag of field offset changing due to packed attribute.
660   bool HasPackedField;
661 
662   /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663   /// When there are OverlappingEmptyFields existing in the aggregate, the
664   /// flag shows if the following first non-empty or empty-but-non-overlapping
665   /// field has been handled, if any.
666   bool HandledFirstNonOverlappingEmptyField;
667 
668   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669 
670   /// Bases - base classes and their offsets in the record.
671   BaseOffsetsMapTy Bases;
672 
673   // VBases - virtual base classes and their offsets in the record.
674   ASTRecordLayout::VBaseOffsetsMapTy VBases;
675 
676   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677   /// primary base classes for some other direct or indirect base class.
678   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679 
680   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681   /// inheritance graph order. Used for determining the primary base class.
682   const CXXRecordDecl *FirstNearlyEmptyVBase;
683 
684   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685   /// avoid visiting virtual bases more than once.
686   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687 
688   /// Valid if UseExternalLayout is true.
689   ExternalLayout External;
690 
691   ItaniumRecordLayoutBuilder(const ASTContext &Context,
692                              EmptySubobjectMap *EmptySubobjects)
693       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694         Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695         UnpackedAlignment(CharUnits::One()),
696         UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697         InferAlignment(false), Packed(false), IsUnion(false),
698         IsMac68kAlign(false),
699         IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700         IsMsStruct(false), UnfilledBitsInLastUnit(0),
701         LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702         DataSize(0), NonVirtualSize(CharUnits::Zero()),
703         NonVirtualAlignment(CharUnits::One()),
704         PreferredNVAlignment(CharUnits::One()),
705         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707         HandledFirstNonOverlappingEmptyField(false),
708         FirstNearlyEmptyVBase(nullptr) {}
709 
710   void Layout(const RecordDecl *D);
711   void Layout(const CXXRecordDecl *D);
712   void Layout(const ObjCInterfaceDecl *D);
713 
714   void LayoutFields(const RecordDecl *D);
715   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716   void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717                           bool FieldPacked, const FieldDecl *D);
718   void LayoutBitField(const FieldDecl *D);
719 
720   TargetCXXABI getCXXABI() const {
721     return Context.getTargetInfo().getCXXABI();
722   }
723 
724   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726 
727   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728     BaseSubobjectInfoMapTy;
729 
730   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731   /// of the class we're laying out to their base subobject info.
732   BaseSubobjectInfoMapTy VirtualBaseInfo;
733 
734   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735   /// class we're laying out to their base subobject info.
736   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737 
738   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739   /// bases of the given class.
740   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741 
742   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743   /// single class and all of its base classes.
744   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745                                               bool IsVirtual,
746                                               BaseSubobjectInfo *Derived);
747 
748   /// DeterminePrimaryBase - Determine the primary base of the given class.
749   void DeterminePrimaryBase(const CXXRecordDecl *RD);
750 
751   void SelectPrimaryVBase(const CXXRecordDecl *RD);
752 
753   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754 
755   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758 
759   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761 
762   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763                                     CharUnits Offset);
764 
765   /// LayoutVirtualBases - Lays out all the virtual bases.
766   void LayoutVirtualBases(const CXXRecordDecl *RD,
767                           const CXXRecordDecl *MostDerivedClass);
768 
769   /// LayoutVirtualBase - Lays out a single virtual base.
770   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771 
772   /// LayoutBase - Will lay out a base and return the offset where it was
773   /// placed, in chars.
774   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775 
776   /// InitializeLayout - Initialize record layout for the given record decl.
777   void InitializeLayout(const Decl *D);
778 
779   /// FinishLayout - Finalize record layout. Adjust record size based on the
780   /// alignment.
781   void FinishLayout(const NamedDecl *D);
782 
783   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784                        CharUnits PreferredAlignment);
785   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786     UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787   }
788   void UpdateAlignment(CharUnits NewAlignment) {
789     UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790   }
791 
792   /// Retrieve the externally-supplied field offset for the given
793   /// field.
794   ///
795   /// \param Field The field whose offset is being queried.
796   /// \param ComputedOffset The offset that we've computed for this field.
797   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798                                      uint64_t ComputedOffset);
799 
800   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
802                           bool isPacked, const FieldDecl *D);
803 
804   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805 
806   CharUnits getSize() const {
807     assert(Size % Context.getCharWidth() == 0);
808     return Context.toCharUnitsFromBits(Size);
809   }
810   uint64_t getSizeInBits() const { return Size; }
811 
812   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813   void setSize(uint64_t NewSize) { Size = NewSize; }
814 
815   CharUnits getAligment() const { return Alignment; }
816 
817   CharUnits getDataSize() const {
818     assert(DataSize % Context.getCharWidth() == 0);
819     return Context.toCharUnitsFromBits(DataSize);
820   }
821   uint64_t getDataSizeInBits() const { return DataSize; }
822 
823   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825 
826   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828 };
829 } // end anonymous namespace
830 
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832   for (const auto &I : RD->bases()) {
833     assert(!I.getType()->isDependentType() &&
834            "Cannot layout class with dependent bases.");
835 
836     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837 
838     // Check if this is a nearly empty virtual base.
839     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840       // If it's not an indirect primary base, then we've found our primary
841       // base.
842       if (!IndirectPrimaryBases.count(Base)) {
843         PrimaryBase = Base;
844         PrimaryBaseIsVirtual = true;
845         return;
846       }
847 
848       // Is this the first nearly empty virtual base?
849       if (!FirstNearlyEmptyVBase)
850         FirstNearlyEmptyVBase = Base;
851     }
852 
853     SelectPrimaryVBase(Base);
854     if (PrimaryBase)
855       return;
856   }
857 }
858 
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861   // If the class isn't dynamic, it won't have a primary base.
862   if (!RD->isDynamicClass())
863     return;
864 
865   // Compute all the primary virtual bases for all of our direct and
866   // indirect bases, and record all their primary virtual base classes.
867   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868 
869   // If the record has a dynamic base class, attempt to choose a primary base
870   // class. It is the first (in direct base class order) non-virtual dynamic
871   // base class, if one exists.
872   for (const auto &I : RD->bases()) {
873     // Ignore virtual bases.
874     if (I.isVirtual())
875       continue;
876 
877     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878 
879     if (Base->isDynamicClass()) {
880       // We found it.
881       PrimaryBase = Base;
882       PrimaryBaseIsVirtual = false;
883       return;
884     }
885   }
886 
887   // Under the Itanium ABI, if there is no non-virtual primary base class,
888   // try to compute the primary virtual base.  The primary virtual base is
889   // the first nearly empty virtual base that is not an indirect primary
890   // virtual base class, if one exists.
891   if (RD->getNumVBases() != 0) {
892     SelectPrimaryVBase(RD);
893     if (PrimaryBase)
894       return;
895   }
896 
897   // Otherwise, it is the first indirect primary base class, if one exists.
898   if (FirstNearlyEmptyVBase) {
899     PrimaryBase = FirstNearlyEmptyVBase;
900     PrimaryBaseIsVirtual = true;
901     return;
902   }
903 
904   assert(!PrimaryBase && "Should not get here with a primary base!");
905 }
906 
907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909   BaseSubobjectInfo *Info;
910 
911   if (IsVirtual) {
912     // Check if we already have info about this virtual base.
913     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914     if (InfoSlot) {
915       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916       return InfoSlot;
917     }
918 
919     // We don't, create it.
920     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921     Info = InfoSlot;
922   } else {
923     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924   }
925 
926   Info->Class = RD;
927   Info->IsVirtual = IsVirtual;
928   Info->Derived = nullptr;
929   Info->PrimaryVirtualBaseInfo = nullptr;
930 
931   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933 
934   // Check if this base has a primary virtual base.
935   if (RD->getNumVBases()) {
936     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937     if (Layout.isPrimaryBaseVirtual()) {
938       // This base does have a primary virtual base.
939       PrimaryVirtualBase = Layout.getPrimaryBase();
940       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941 
942       // Now check if we have base subobject info about this primary base.
943       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944 
945       if (PrimaryVirtualBaseInfo) {
946         if (PrimaryVirtualBaseInfo->Derived) {
947           // We did have info about this primary base, and it turns out that it
948           // has already been claimed as a primary virtual base for another
949           // base.
950           PrimaryVirtualBase = nullptr;
951         } else {
952           // We can claim this base as our primary base.
953           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954           PrimaryVirtualBaseInfo->Derived = Info;
955         }
956       }
957     }
958   }
959 
960   // Now go through all direct bases.
961   for (const auto &I : RD->bases()) {
962     bool IsVirtual = I.isVirtual();
963 
964     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965 
966     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967   }
968 
969   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970     // Traversing the bases must have created the base info for our primary
971     // virtual base.
972     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973     assert(PrimaryVirtualBaseInfo &&
974            "Did not create a primary virtual base!");
975 
976     // Claim the primary virtual base as our primary virtual base.
977     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978     PrimaryVirtualBaseInfo->Derived = Info;
979   }
980 
981   return Info;
982 }
983 
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985     const CXXRecordDecl *RD) {
986   for (const auto &I : RD->bases()) {
987     bool IsVirtual = I.isVirtual();
988 
989     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990 
991     // Compute the base subobject info for this base.
992     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993                                                        nullptr);
994 
995     if (IsVirtual) {
996       // ComputeBaseInfo has already added this base for us.
997       assert(VirtualBaseInfo.count(BaseDecl) &&
998              "Did not add virtual base!");
999     } else {
1000       // Add the base info to the map of non-virtual bases.
1001       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002              "Non-virtual base already exists!");
1003       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004     }
1005   }
1006 }
1007 
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009     CharUnits UnpackedBaseAlign) {
1010   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011 
1012   // The maximum field alignment overrides base align.
1013   if (!MaxFieldAlignment.isZero()) {
1014     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016   }
1017 
1018   // Round up the current record size to pointer alignment.
1019   setSize(getSize().alignTo(BaseAlign));
1020 
1021   // Update the alignment.
1022   UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023 }
1024 
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026     const CXXRecordDecl *RD) {
1027   // Then, determine the primary base class.
1028   DeterminePrimaryBase(RD);
1029 
1030   // Compute base subobject info.
1031   ComputeBaseSubobjectInfo(RD);
1032 
1033   // If we have a primary base class, lay it out.
1034   if (PrimaryBase) {
1035     if (PrimaryBaseIsVirtual) {
1036       // If the primary virtual base was a primary virtual base of some other
1037       // base class we'll have to steal it.
1038       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039       PrimaryBaseInfo->Derived = nullptr;
1040 
1041       // We have a virtual primary base, insert it as an indirect primary base.
1042       IndirectPrimaryBases.insert(PrimaryBase);
1043 
1044       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045              "vbase already visited!");
1046       VisitedVirtualBases.insert(PrimaryBase);
1047 
1048       LayoutVirtualBase(PrimaryBaseInfo);
1049     } else {
1050       BaseSubobjectInfo *PrimaryBaseInfo =
1051         NonVirtualBaseInfo.lookup(PrimaryBase);
1052       assert(PrimaryBaseInfo &&
1053              "Did not find base info for non-virtual primary base!");
1054 
1055       LayoutNonVirtualBase(PrimaryBaseInfo);
1056     }
1057 
1058   // If this class needs a vtable/vf-table and didn't get one from a
1059   // primary base, add it in now.
1060   } else if (RD->isDynamicClass()) {
1061     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062     CharUnits PtrWidth = Context.toCharUnitsFromBits(
1063         Context.getTargetInfo().getPointerWidth(LangAS::Default));
1064     CharUnits PtrAlign = Context.toCharUnitsFromBits(
1065         Context.getTargetInfo().getPointerAlign(LangAS::Default));
1066     EnsureVTablePointerAlignment(PtrAlign);
1067     HasOwnVFPtr = true;
1068 
1069     assert(!IsUnion && "Unions cannot be dynamic classes.");
1070     HandledFirstNonOverlappingEmptyField = true;
1071 
1072     setSize(getSize() + PtrWidth);
1073     setDataSize(getSize());
1074   }
1075 
1076   // Now lay out the non-virtual bases.
1077   for (const auto &I : RD->bases()) {
1078 
1079     // Ignore virtual bases.
1080     if (I.isVirtual())
1081       continue;
1082 
1083     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084 
1085     // Skip the primary base, because we've already laid it out.  The
1086     // !PrimaryBaseIsVirtual check is required because we might have a
1087     // non-virtual base of the same type as a primary virtual base.
1088     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089       continue;
1090 
1091     // Lay out the base.
1092     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093     assert(BaseInfo && "Did not find base info for non-virtual base!");
1094 
1095     LayoutNonVirtualBase(BaseInfo);
1096   }
1097 }
1098 
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100     const BaseSubobjectInfo *Base) {
1101   // Layout the base.
1102   CharUnits Offset = LayoutBase(Base);
1103 
1104   // Add its base class offset.
1105   assert(!Bases.count(Base->Class) && "base offset already exists!");
1106   Bases.insert(std::make_pair(Base->Class, Offset));
1107 
1108   AddPrimaryVirtualBaseOffsets(Base, Offset);
1109 }
1110 
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112     const BaseSubobjectInfo *Info, CharUnits Offset) {
1113   // This base isn't interesting, it has no virtual bases.
1114   if (!Info->Class->getNumVBases())
1115     return;
1116 
1117   // First, check if we have a virtual primary base to add offsets for.
1118   if (Info->PrimaryVirtualBaseInfo) {
1119     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120            "Primary virtual base is not virtual!");
1121     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122       // Add the offset.
1123       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124              "primary vbase offset already exists!");
1125       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1127 
1128       // Traverse the primary virtual base.
1129       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130     }
1131   }
1132 
1133   // Now go through all direct non-virtual bases.
1134   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135   for (const BaseSubobjectInfo *Base : Info->Bases) {
1136     if (Base->IsVirtual)
1137       continue;
1138 
1139     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141   }
1142 }
1143 
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146   const CXXRecordDecl *PrimaryBase;
1147   bool PrimaryBaseIsVirtual;
1148 
1149   if (MostDerivedClass == RD) {
1150     PrimaryBase = this->PrimaryBase;
1151     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152   } else {
1153     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154     PrimaryBase = Layout.getPrimaryBase();
1155     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156   }
1157 
1158   for (const CXXBaseSpecifier &Base : RD->bases()) {
1159     assert(!Base.getType()->isDependentType() &&
1160            "Cannot layout class with dependent bases.");
1161 
1162     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163 
1164     if (Base.isVirtual()) {
1165       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167 
1168         // Only lay out the virtual base if it's not an indirect primary base.
1169         if (!IndirectPrimaryBase) {
1170           // Only visit virtual bases once.
1171           if (!VisitedVirtualBases.insert(BaseDecl).second)
1172             continue;
1173 
1174           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175           assert(BaseInfo && "Did not find virtual base info!");
1176           LayoutVirtualBase(BaseInfo);
1177         }
1178       }
1179     }
1180 
1181     if (!BaseDecl->getNumVBases()) {
1182       // This base isn't interesting since it doesn't have any virtual bases.
1183       continue;
1184     }
1185 
1186     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187   }
1188 }
1189 
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191     const BaseSubobjectInfo *Base) {
1192   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193 
1194   // Layout the base.
1195   CharUnits Offset = LayoutBase(Base);
1196 
1197   // Add its base class offset.
1198   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199   VBases.insert(std::make_pair(Base->Class,
1200                        ASTRecordLayout::VBaseInfo(Offset, false)));
1201 
1202   AddPrimaryVirtualBaseOffsets(Base, Offset);
1203 }
1204 
1205 CharUnits
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207   assert(!IsUnion && "Unions cannot have base classes.");
1208 
1209   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210   CharUnits Offset;
1211 
1212   // Query the external layout to see if it provides an offset.
1213   bool HasExternalLayout = false;
1214   if (UseExternalLayout) {
1215     if (Base->IsVirtual)
1216       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217     else
1218       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219   }
1220 
1221   auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222     // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223     // Per GCC's documentation, it only applies to non-static data members.
1224     return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225                         LangOptions::ClangABI::Ver6) ||
1226                        Context.getTargetInfo().getTriple().isPS() ||
1227                        Context.getTargetInfo().getTriple().isOSAIX()))
1228                ? CharUnits::One()
1229                : UnpackedAlign;
1230   };
1231 
1232   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233   CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234   CharUnits BaseAlign =
1235       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236   CharUnits PreferredBaseAlign =
1237       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238 
1239   const bool DefaultsToAIXPowerAlignment =
1240       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241   if (DefaultsToAIXPowerAlignment) {
1242     // AIX `power` alignment does not apply the preferred alignment for
1243     // non-union classes if the source of the alignment (the current base in
1244     // this context) follows introduction of the first subobject with
1245     // exclusively allocated space or zero-extent array.
1246     if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247       // By handling a base class that is not empty, we're handling the
1248       // "first (inherited) member".
1249       HandledFirstNonOverlappingEmptyField = true;
1250     } else if (!IsNaturalAlign) {
1251       UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252       PreferredBaseAlign = BaseAlign;
1253     }
1254   }
1255 
1256   CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257                                   ? UnpackedBaseAlign
1258                                   : UnpackedPreferredBaseAlign;
1259   // If we have an empty base class, try to place it at offset 0.
1260   if (Base->Class->isEmpty() &&
1261       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263     setSize(std::max(getSize(), Layout.getSize()));
1264     // On PS4/PS5, don't update the alignment, to preserve compatibility.
1265     if (!Context.getTargetInfo().getTriple().isPS())
1266       UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1267 
1268     return CharUnits::Zero();
1269   }
1270 
1271   // The maximum field alignment overrides the base align/(AIX-only) preferred
1272   // base align.
1273   if (!MaxFieldAlignment.isZero()) {
1274     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1275     PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1276     UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1277   }
1278 
1279   CharUnits AlignTo =
1280       !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1281   if (!HasExternalLayout) {
1282     // Round up the current record size to the base's alignment boundary.
1283     Offset = getDataSize().alignTo(AlignTo);
1284 
1285     // Try to place the base.
1286     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1287       Offset += AlignTo;
1288   } else {
1289     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1290     (void)Allowed;
1291     assert(Allowed && "Base subobject externally placed at overlapping offset");
1292 
1293     if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1294       // The externally-supplied base offset is before the base offset we
1295       // computed. Assume that the structure is packed.
1296       Alignment = CharUnits::One();
1297       InferAlignment = false;
1298     }
1299   }
1300 
1301   if (!Base->Class->isEmpty()) {
1302     // Update the data size.
1303     setDataSize(Offset + Layout.getNonVirtualSize());
1304 
1305     setSize(std::max(getSize(), getDataSize()));
1306   } else
1307     setSize(std::max(getSize(), Offset + Layout.getSize()));
1308 
1309   // Remember max struct/class alignment.
1310   UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1311 
1312   return Offset;
1313 }
1314 
1315 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1316   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1317     IsUnion = RD->isUnion();
1318     IsMsStruct = RD->isMsStruct(Context);
1319   }
1320 
1321   Packed = D->hasAttr<PackedAttr>();
1322 
1323   // Honor the default struct packing maximum alignment flag.
1324   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1325     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1326   }
1327 
1328   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1329   // and forces all structures to have 2-byte alignment. The IBM docs on it
1330   // allude to additional (more complicated) semantics, especially with regard
1331   // to bit-fields, but gcc appears not to follow that.
1332   if (D->hasAttr<AlignMac68kAttr>()) {
1333     assert(
1334         !D->hasAttr<AlignNaturalAttr>() &&
1335         "Having both mac68k and natural alignment on a decl is not allowed.");
1336     IsMac68kAlign = true;
1337     MaxFieldAlignment = CharUnits::fromQuantity(2);
1338     Alignment = CharUnits::fromQuantity(2);
1339     PreferredAlignment = CharUnits::fromQuantity(2);
1340   } else {
1341     if (D->hasAttr<AlignNaturalAttr>())
1342       IsNaturalAlign = true;
1343 
1344     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1345       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1346 
1347     if (unsigned MaxAlign = D->getMaxAlignment())
1348       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1349   }
1350 
1351   HandledFirstNonOverlappingEmptyField =
1352       !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1353 
1354   // If there is an external AST source, ask it for the various offsets.
1355   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1356     if (ExternalASTSource *Source = Context.getExternalSource()) {
1357       UseExternalLayout = Source->layoutRecordType(
1358           RD, External.Size, External.Align, External.FieldOffsets,
1359           External.BaseOffsets, External.VirtualBaseOffsets);
1360 
1361       // Update based on external alignment.
1362       if (UseExternalLayout) {
1363         if (External.Align > 0) {
1364           Alignment = Context.toCharUnitsFromBits(External.Align);
1365           PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1366         } else {
1367           // The external source didn't have alignment information; infer it.
1368           InferAlignment = true;
1369         }
1370       }
1371     }
1372 }
1373 
1374 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1375   InitializeLayout(D);
1376   LayoutFields(D);
1377 
1378   // Finally, round the size of the total struct up to the alignment of the
1379   // struct itself.
1380   FinishLayout(D);
1381 }
1382 
1383 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1384   InitializeLayout(RD);
1385 
1386   // Lay out the vtable and the non-virtual bases.
1387   LayoutNonVirtualBases(RD);
1388 
1389   LayoutFields(RD);
1390 
1391   NonVirtualSize = Context.toCharUnitsFromBits(
1392       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1393   NonVirtualAlignment = Alignment;
1394   PreferredNVAlignment = PreferredAlignment;
1395 
1396   // Lay out the virtual bases and add the primary virtual base offsets.
1397   LayoutVirtualBases(RD, RD);
1398 
1399   // Finally, round the size of the total struct up to the alignment
1400   // of the struct itself.
1401   FinishLayout(RD);
1402 
1403 #ifndef NDEBUG
1404   // Check that we have base offsets for all bases.
1405   for (const CXXBaseSpecifier &Base : RD->bases()) {
1406     if (Base.isVirtual())
1407       continue;
1408 
1409     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1410 
1411     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1412   }
1413 
1414   // And all virtual bases.
1415   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1416     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1417 
1418     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1419   }
1420 #endif
1421 }
1422 
1423 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1424   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1425     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1426 
1427     UpdateAlignment(SL.getAlignment());
1428 
1429     // We start laying out ivars not at the end of the superclass
1430     // structure, but at the next byte following the last field.
1431     setDataSize(SL.getDataSize());
1432     setSize(getDataSize());
1433   }
1434 
1435   InitializeLayout(D);
1436   // Layout each ivar sequentially.
1437   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1438        IVD = IVD->getNextIvar())
1439     LayoutField(IVD, false);
1440 
1441   // Finally, round the size of the total struct up to the alignment of the
1442   // struct itself.
1443   FinishLayout(D);
1444 }
1445 
1446 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1447   // Layout each field, for now, just sequentially, respecting alignment.  In
1448   // the future, this will need to be tweakable by targets.
1449   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1450   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1451   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1452     auto Next(I);
1453     ++Next;
1454     LayoutField(*I,
1455                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1456   }
1457 }
1458 
1459 // Rounds the specified size to have it a multiple of the char size.
1460 static uint64_t
1461 roundUpSizeToCharAlignment(uint64_t Size,
1462                            const ASTContext &Context) {
1463   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1464   return llvm::alignTo(Size, CharAlignment);
1465 }
1466 
1467 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1468                                                     uint64_t StorageUnitSize,
1469                                                     bool FieldPacked,
1470                                                     const FieldDecl *D) {
1471   assert(Context.getLangOpts().CPlusPlus &&
1472          "Can only have wide bit-fields in C++!");
1473 
1474   // Itanium C++ ABI 2.4:
1475   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1476   //   sizeof(T')*8 <= n.
1477 
1478   QualType IntegralPODTypes[] = {
1479     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1480     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1481   };
1482 
1483   QualType Type;
1484   for (const QualType &QT : IntegralPODTypes) {
1485     uint64_t Size = Context.getTypeSize(QT);
1486 
1487     if (Size > FieldSize)
1488       break;
1489 
1490     Type = QT;
1491   }
1492   assert(!Type.isNull() && "Did not find a type!");
1493 
1494   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1495 
1496   // We're not going to use any of the unfilled bits in the last byte.
1497   UnfilledBitsInLastUnit = 0;
1498   LastBitfieldStorageUnitSize = 0;
1499 
1500   uint64_t FieldOffset;
1501   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1502 
1503   if (IsUnion) {
1504     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1505                                                            Context);
1506     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1507     FieldOffset = 0;
1508   } else {
1509     // The bitfield is allocated starting at the next offset aligned
1510     // appropriately for T', with length n bits.
1511     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1512 
1513     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1514 
1515     setDataSize(
1516         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1517     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1518   }
1519 
1520   // Place this field at the current location.
1521   FieldOffsets.push_back(FieldOffset);
1522 
1523   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1524                     Context.toBits(TypeAlign), FieldPacked, D);
1525 
1526   // Update the size.
1527   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1528 
1529   // Remember max struct/class alignment.
1530   UpdateAlignment(TypeAlign);
1531 }
1532 
1533 static bool isAIXLayout(const ASTContext &Context) {
1534   return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1535 }
1536 
1537 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1538   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1539   uint64_t FieldSize = D->getBitWidthValue(Context);
1540   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1541   uint64_t StorageUnitSize = FieldInfo.Width;
1542   unsigned FieldAlign = FieldInfo.Align;
1543   bool AlignIsRequired = FieldInfo.isAlignRequired();
1544 
1545   // UnfilledBitsInLastUnit is the difference between the end of the
1546   // last allocated bitfield (i.e. the first bit offset available for
1547   // bitfields) and the end of the current data size in bits (i.e. the
1548   // first bit offset available for non-bitfields).  The current data
1549   // size in bits is always a multiple of the char size; additionally,
1550   // for ms_struct records it's also a multiple of the
1551   // LastBitfieldStorageUnitSize (if set).
1552 
1553   // The struct-layout algorithm is dictated by the platform ABI,
1554   // which in principle could use almost any rules it likes.  In
1555   // practice, UNIXy targets tend to inherit the algorithm described
1556   // in the System V generic ABI.  The basic bitfield layout rule in
1557   // System V is to place bitfields at the next available bit offset
1558   // where the entire bitfield would fit in an aligned storage unit of
1559   // the declared type; it's okay if an earlier or later non-bitfield
1560   // is allocated in the same storage unit.  However, some targets
1561   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1562   // require this storage unit to be aligned, and therefore always put
1563   // the bitfield at the next available bit offset.
1564 
1565   // ms_struct basically requests a complete replacement of the
1566   // platform ABI's struct-layout algorithm, with the high-level goal
1567   // of duplicating MSVC's layout.  For non-bitfields, this follows
1568   // the standard algorithm.  The basic bitfield layout rule is to
1569   // allocate an entire unit of the bitfield's declared type
1570   // (e.g. 'unsigned long'), then parcel it up among successive
1571   // bitfields whose declared types have the same size, making a new
1572   // unit as soon as the last can no longer store the whole value.
1573   // Since it completely replaces the platform ABI's algorithm,
1574   // settings like !useBitFieldTypeAlignment() do not apply.
1575 
1576   // A zero-width bitfield forces the use of a new storage unit for
1577   // later bitfields.  In general, this occurs by rounding up the
1578   // current size of the struct as if the algorithm were about to
1579   // place a non-bitfield of the field's formal type.  Usually this
1580   // does not change the alignment of the struct itself, but it does
1581   // on some targets (those that useZeroLengthBitfieldAlignment(),
1582   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1583   // ignored unless they follow a non-zero-width bitfield.
1584 
1585   // A field alignment restriction (e.g. from #pragma pack) or
1586   // specification (e.g. from __attribute__((aligned))) changes the
1587   // formal alignment of the field.  For System V, this alters the
1588   // required alignment of the notional storage unit that must contain
1589   // the bitfield.  For ms_struct, this only affects the placement of
1590   // new storage units.  In both cases, the effect of #pragma pack is
1591   // ignored on zero-width bitfields.
1592 
1593   // On System V, a packed field (e.g. from #pragma pack or
1594   // __attribute__((packed))) always uses the next available bit
1595   // offset.
1596 
1597   // In an ms_struct struct, the alignment of a fundamental type is
1598   // always equal to its size.  This is necessary in order to mimic
1599   // the i386 alignment rules on targets which might not fully align
1600   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1601 
1602   // First, some simple bookkeeping to perform for ms_struct structs.
1603   if (IsMsStruct) {
1604     // The field alignment for integer types is always the size.
1605     FieldAlign = StorageUnitSize;
1606 
1607     // If the previous field was not a bitfield, or was a bitfield
1608     // with a different storage unit size, or if this field doesn't fit into
1609     // the current storage unit, we're done with that storage unit.
1610     if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1611         UnfilledBitsInLastUnit < FieldSize) {
1612       // Also, ignore zero-length bitfields after non-bitfields.
1613       if (!LastBitfieldStorageUnitSize && !FieldSize)
1614         FieldAlign = 1;
1615 
1616       UnfilledBitsInLastUnit = 0;
1617       LastBitfieldStorageUnitSize = 0;
1618     }
1619   }
1620 
1621   if (isAIXLayout(Context)) {
1622     if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1623       // On AIX, [bool, char, short] bitfields have the same alignment
1624       // as [unsigned].
1625       StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1626     } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1627                Context.getTargetInfo().getTriple().isArch32Bit() &&
1628                FieldSize <= 32) {
1629       // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1630       // long long bitfield has length no greater than 32 bits.
1631       StorageUnitSize = 32;
1632 
1633       if (!AlignIsRequired)
1634         FieldAlign = 32;
1635     }
1636 
1637     if (FieldAlign < StorageUnitSize) {
1638       // The bitfield alignment should always be greater than or equal to
1639       // bitcontainer size.
1640       FieldAlign = StorageUnitSize;
1641     }
1642   }
1643 
1644   // If the field is wider than its declared type, it follows
1645   // different rules in all cases, except on AIX.
1646   // On AIX, wide bitfield follows the same rules as normal bitfield.
1647   if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1648     LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1649     return;
1650   }
1651 
1652   // Compute the next available bit offset.
1653   uint64_t FieldOffset =
1654     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1655 
1656   // Handle targets that don't honor bitfield type alignment.
1657   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1658     // Some such targets do honor it on zero-width bitfields.
1659     if (FieldSize == 0 &&
1660         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1661       // Some targets don't honor leading zero-width bitfield.
1662       if (!IsUnion && FieldOffset == 0 &&
1663           !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1664         FieldAlign = 1;
1665       else {
1666         // The alignment to round up to is the max of the field's natural
1667         // alignment and a target-specific fixed value (sometimes zero).
1668         unsigned ZeroLengthBitfieldBoundary =
1669             Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1670         FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1671       }
1672     // If that doesn't apply, just ignore the field alignment.
1673     } else {
1674       FieldAlign = 1;
1675     }
1676   }
1677 
1678   // Remember the alignment we would have used if the field were not packed.
1679   unsigned UnpackedFieldAlign = FieldAlign;
1680 
1681   // Ignore the field alignment if the field is packed unless it has zero-size.
1682   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1683     FieldAlign = 1;
1684 
1685   // But, if there's an 'aligned' attribute on the field, honor that.
1686   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1687   if (ExplicitFieldAlign) {
1688     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1689     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1690   }
1691 
1692   // But, if there's a #pragma pack in play, that takes precedent over
1693   // even the 'aligned' attribute, for non-zero-width bitfields.
1694   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1695   if (!MaxFieldAlignment.isZero() && FieldSize) {
1696     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1697     if (FieldPacked)
1698       FieldAlign = UnpackedFieldAlign;
1699     else
1700       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1701   }
1702 
1703   // But, ms_struct just ignores all of that in unions, even explicit
1704   // alignment attributes.
1705   if (IsMsStruct && IsUnion) {
1706     FieldAlign = UnpackedFieldAlign = 1;
1707   }
1708 
1709   // For purposes of diagnostics, we're going to simultaneously
1710   // compute the field offsets that we would have used if we weren't
1711   // adding any alignment padding or if the field weren't packed.
1712   uint64_t UnpaddedFieldOffset = FieldOffset;
1713   uint64_t UnpackedFieldOffset = FieldOffset;
1714 
1715   // Check if we need to add padding to fit the bitfield within an
1716   // allocation unit with the right size and alignment.  The rules are
1717   // somewhat different here for ms_struct structs.
1718   if (IsMsStruct) {
1719     // If it's not a zero-width bitfield, and we can fit the bitfield
1720     // into the active storage unit (and we haven't already decided to
1721     // start a new storage unit), just do so, regardless of any other
1722     // other consideration.  Otherwise, round up to the right alignment.
1723     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1724       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1725       UnpackedFieldOffset =
1726           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1727       UnfilledBitsInLastUnit = 0;
1728     }
1729 
1730   } else {
1731     // #pragma pack, with any value, suppresses the insertion of padding.
1732     bool AllowPadding = MaxFieldAlignment.isZero();
1733 
1734     // Compute the real offset.
1735     if (FieldSize == 0 ||
1736         (AllowPadding &&
1737          (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1738       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1739     } else if (ExplicitFieldAlign &&
1740                (MaxFieldAlignmentInBits == 0 ||
1741                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1742                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1743       // TODO: figure it out what needs to be done on targets that don't honor
1744       // bit-field type alignment like ARM APCS ABI.
1745       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1746     }
1747 
1748     // Repeat the computation for diagnostic purposes.
1749     if (FieldSize == 0 ||
1750         (AllowPadding &&
1751          (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1752              StorageUnitSize))
1753       UnpackedFieldOffset =
1754           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1755     else if (ExplicitFieldAlign &&
1756              (MaxFieldAlignmentInBits == 0 ||
1757               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1758              Context.getTargetInfo().useExplicitBitFieldAlignment())
1759       UnpackedFieldOffset =
1760           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1761   }
1762 
1763   // If we're using external layout, give the external layout a chance
1764   // to override this information.
1765   if (UseExternalLayout)
1766     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1767 
1768   // Okay, place the bitfield at the calculated offset.
1769   FieldOffsets.push_back(FieldOffset);
1770 
1771   // Bookkeeping:
1772 
1773   // Anonymous members don't affect the overall record alignment,
1774   // except on targets where they do.
1775   if (!IsMsStruct &&
1776       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1777       !D->getIdentifier())
1778     FieldAlign = UnpackedFieldAlign = 1;
1779 
1780   // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1781   // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1782   // if packed.
1783   if (isAIXLayout(Context) && !FieldSize) {
1784     if (FieldPacked)
1785       FieldAlign = 1;
1786     if (!MaxFieldAlignment.isZero()) {
1787       UnpackedFieldAlign =
1788           std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1789       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1790     }
1791   }
1792 
1793   // Diagnose differences in layout due to padding or packing.
1794   if (!UseExternalLayout)
1795     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1796                       UnpackedFieldAlign, FieldPacked, D);
1797 
1798   // Update DataSize to include the last byte containing (part of) the bitfield.
1799 
1800   // For unions, this is just a max operation, as usual.
1801   if (IsUnion) {
1802     // For ms_struct, allocate the entire storage unit --- unless this
1803     // is a zero-width bitfield, in which case just use a size of 1.
1804     uint64_t RoundedFieldSize;
1805     if (IsMsStruct) {
1806       RoundedFieldSize = (FieldSize ? StorageUnitSize
1807                                     : Context.getTargetInfo().getCharWidth());
1808 
1809       // Otherwise, allocate just the number of bytes required to store
1810       // the bitfield.
1811     } else {
1812       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1813     }
1814     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1815 
1816   // For non-zero-width bitfields in ms_struct structs, allocate a new
1817   // storage unit if necessary.
1818   } else if (IsMsStruct && FieldSize) {
1819     // We should have cleared UnfilledBitsInLastUnit in every case
1820     // where we changed storage units.
1821     if (!UnfilledBitsInLastUnit) {
1822       setDataSize(FieldOffset + StorageUnitSize);
1823       UnfilledBitsInLastUnit = StorageUnitSize;
1824     }
1825     UnfilledBitsInLastUnit -= FieldSize;
1826     LastBitfieldStorageUnitSize = StorageUnitSize;
1827 
1828     // Otherwise, bump the data size up to include the bitfield,
1829     // including padding up to char alignment, and then remember how
1830     // bits we didn't use.
1831   } else {
1832     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1833     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1834     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1835     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1836 
1837     // The only time we can get here for an ms_struct is if this is a
1838     // zero-width bitfield, which doesn't count as anything for the
1839     // purposes of unfilled bits.
1840     LastBitfieldStorageUnitSize = 0;
1841   }
1842 
1843   // Update the size.
1844   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1845 
1846   // Remember max struct/class alignment.
1847   UnadjustedAlignment =
1848       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1849   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1850                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1851 }
1852 
1853 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1854                                              bool InsertExtraPadding) {
1855   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1856   bool IsOverlappingEmptyField =
1857       D->isPotentiallyOverlapping() && FieldClass->isEmpty();
1858 
1859   CharUnits FieldOffset =
1860       (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1861 
1862   const bool DefaultsToAIXPowerAlignment =
1863       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1864   bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1865   if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1866     assert(FieldOffset == CharUnits::Zero() &&
1867            "The first non-overlapping empty field should have been handled.");
1868 
1869     if (!IsOverlappingEmptyField) {
1870       FoundFirstNonOverlappingEmptyFieldForAIX = true;
1871 
1872       // We're going to handle the "first member" based on
1873       // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1874       // invocation of this function; record it as handled for future
1875       // invocations (except for unions, because the current field does not
1876       // represent all "firsts").
1877       HandledFirstNonOverlappingEmptyField = !IsUnion;
1878     }
1879   }
1880 
1881   if (D->isBitField()) {
1882     LayoutBitField(D);
1883     return;
1884   }
1885 
1886   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1887   // Reset the unfilled bits.
1888   UnfilledBitsInLastUnit = 0;
1889   LastBitfieldStorageUnitSize = 0;
1890 
1891   llvm::Triple Target = Context.getTargetInfo().getTriple();
1892 
1893   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1894   CharUnits FieldSize;
1895   CharUnits FieldAlign;
1896   // The amount of this class's dsize occupied by the field.
1897   // This is equal to FieldSize unless we're permitted to pack
1898   // into the field's tail padding.
1899   CharUnits EffectiveFieldSize;
1900 
1901   auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1902     auto TI = Context.getTypeInfoInChars(D->getType());
1903     FieldAlign = TI.Align;
1904     // Flexible array members don't have any size, but they have to be
1905     // aligned appropriately for their element type.
1906     EffectiveFieldSize = FieldSize =
1907         IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1908     AlignRequirement = TI.AlignRequirement;
1909   };
1910 
1911   if (D->getType()->isIncompleteArrayType()) {
1912     setDeclInfo(true /* IsIncompleteArrayType */);
1913   } else {
1914     setDeclInfo(false /* IsIncompleteArrayType */);
1915 
1916     // A potentially-overlapping field occupies its dsize or nvsize, whichever
1917     // is larger.
1918     if (D->isPotentiallyOverlapping()) {
1919       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1920       EffectiveFieldSize =
1921           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1922     }
1923 
1924     if (IsMsStruct) {
1925       // If MS bitfield layout is required, figure out what type is being
1926       // laid out and align the field to the width of that type.
1927 
1928       // Resolve all typedefs down to their base type and round up the field
1929       // alignment if necessary.
1930       QualType T = Context.getBaseElementType(D->getType());
1931       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1932         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1933 
1934         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1935           assert(
1936               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1937               "Non PowerOf2 size in MSVC mode");
1938           // Base types with sizes that aren't a power of two don't work
1939           // with the layout rules for MS structs. This isn't an issue in
1940           // MSVC itself since there are no such base data types there.
1941           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1942           // Any structs involving that data type obviously can't be ABI
1943           // compatible with MSVC regardless of how it is laid out.
1944 
1945           // Since ms_struct can be mass enabled (via a pragma or via the
1946           // -mms-bitfields command line parameter), this can trigger for
1947           // structs that don't actually need MSVC compatibility, so we
1948           // need to be able to sidestep the ms_struct layout for these types.
1949 
1950           // Since the combination of -mms-bitfields together with structs
1951           // like max_align_t (which contains a long double) for mingw is
1952           // quite common (and GCC handles it silently), just handle it
1953           // silently there. For other targets that have ms_struct enabled
1954           // (most probably via a pragma or attribute), trigger a diagnostic
1955           // that defaults to an error.
1956           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1957             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1958         }
1959         if (TypeSize > FieldAlign &&
1960             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1961           FieldAlign = TypeSize;
1962       }
1963     }
1964   }
1965 
1966   bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() ||
1967                                  FieldClass->hasAttr<PackedAttr>() ||
1968                                  Context.getLangOpts().getClangABICompat() <=
1969                                      LangOptions::ClangABI::Ver15 ||
1970                                  Target.isPS() || Target.isOSDarwin() ||
1971                                  Target.isOSAIX())) ||
1972                      D->hasAttr<PackedAttr>();
1973 
1974   // When used as part of a typedef, or together with a 'packed' attribute, the
1975   // 'aligned' attribute can be used to decrease alignment. In that case, it
1976   // overrides any computed alignment we have, and there is no need to upgrade
1977   // the alignment.
1978   auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1979     // Enum alignment sources can be safely ignored here, because this only
1980     // helps decide whether we need the AIX alignment upgrade, which only
1981     // applies to floating-point types.
1982     return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1983            (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1984             FieldPacked);
1985   };
1986 
1987   // The AIX `power` alignment rules apply the natural alignment of the
1988   // "first member" if it is of a floating-point data type (or is an aggregate
1989   // whose recursively "first" member or element is such a type). The alignment
1990   // associated with these types for subsequent members use an alignment value
1991   // where the floating-point data type is considered to have 4-byte alignment.
1992   //
1993   // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1994   // and zero-width bit-fields count as prior members; members of empty class
1995   // types marked `no_unique_address` are not considered to be prior members.
1996   CharUnits PreferredAlign = FieldAlign;
1997   if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
1998       (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1999     auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
2000       if (BTy->getKind() == BuiltinType::Double ||
2001           BTy->getKind() == BuiltinType::LongDouble) {
2002         assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2003                "No need to upgrade the alignment value.");
2004         PreferredAlign = CharUnits::fromQuantity(8);
2005       }
2006     };
2007 
2008     const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2009     if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2010       performBuiltinTypeAlignmentUpgrade(
2011           CTy->getElementType()->castAs<BuiltinType>());
2012     } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2013       performBuiltinTypeAlignmentUpgrade(BTy);
2014     } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2015       const RecordDecl *RD = RT->getDecl();
2016       assert(RD && "Expected non-null RecordDecl.");
2017       const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2018       PreferredAlign = FieldRecord.getPreferredAlignment();
2019     }
2020   }
2021 
2022   // The align if the field is not packed. This is to check if the attribute
2023   // was unnecessary (-Wpacked).
2024   CharUnits UnpackedFieldAlign = FieldAlign;
2025   CharUnits PackedFieldAlign = CharUnits::One();
2026   CharUnits UnpackedFieldOffset = FieldOffset;
2027   CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2028 
2029   CharUnits MaxAlignmentInChars =
2030       Context.toCharUnitsFromBits(D->getMaxAlignment());
2031   PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars);
2032   PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2033   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2034 
2035   // The maximum field alignment overrides the aligned attribute.
2036   if (!MaxFieldAlignment.isZero()) {
2037     PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment);
2038     PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2039     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2040   }
2041 
2042 
2043   if (!FieldPacked)
2044     FieldAlign = UnpackedFieldAlign;
2045   if (DefaultsToAIXPowerAlignment)
2046     UnpackedFieldAlign = PreferredAlign;
2047   if (FieldPacked) {
2048     PreferredAlign = PackedFieldAlign;
2049     FieldAlign = PackedFieldAlign;
2050   }
2051 
2052   CharUnits AlignTo =
2053       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2054   // Round up the current record size to the field's alignment boundary.
2055   FieldOffset = FieldOffset.alignTo(AlignTo);
2056   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2057 
2058   if (UseExternalLayout) {
2059     FieldOffset = Context.toCharUnitsFromBits(
2060         updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2061 
2062     if (!IsUnion && EmptySubobjects) {
2063       // Record the fact that we're placing a field at this offset.
2064       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2065       (void)Allowed;
2066       assert(Allowed && "Externally-placed field cannot be placed here");
2067     }
2068   } else {
2069     if (!IsUnion && EmptySubobjects) {
2070       // Check if we can place the field at this offset.
2071       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2072         // We couldn't place the field at the offset. Try again at a new offset.
2073         // We try offset 0 (for an empty field) and then dsize(C) onwards.
2074         if (FieldOffset == CharUnits::Zero() &&
2075             getDataSize() != CharUnits::Zero())
2076           FieldOffset = getDataSize().alignTo(AlignTo);
2077         else
2078           FieldOffset += AlignTo;
2079       }
2080     }
2081   }
2082 
2083   // Place this field at the current location.
2084   FieldOffsets.push_back(Context.toBits(FieldOffset));
2085 
2086   if (!UseExternalLayout)
2087     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2088                       Context.toBits(UnpackedFieldOffset),
2089                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2090 
2091   if (InsertExtraPadding) {
2092     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2093     CharUnits ExtraSizeForAsan = ASanAlignment;
2094     if (FieldSize % ASanAlignment)
2095       ExtraSizeForAsan +=
2096           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2097     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2098   }
2099 
2100   // Reserve space for this field.
2101   if (!IsOverlappingEmptyField) {
2102     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2103     if (IsUnion)
2104       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2105     else
2106       setDataSize(FieldOffset + EffectiveFieldSize);
2107 
2108     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2109     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2110   } else {
2111     setSize(std::max(getSizeInBits(),
2112                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2113   }
2114 
2115   // Remember max struct/class ABI-specified alignment.
2116   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2117   UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2118 
2119   // For checking the alignment of inner fields against
2120   // the alignment of its parent record.
2121   if (const RecordDecl *RD = D->getParent()) {
2122     // Check if packed attribute or pragma pack is present.
2123     if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2124       if (FieldAlign < OriginalFieldAlign)
2125         if (D->getType()->isRecordType()) {
2126           // If the offset is a multiple of the alignment of
2127           // the type, raise the warning.
2128           // TODO: Takes no account the alignment of the outer struct
2129           if (FieldOffset % OriginalFieldAlign != 0)
2130             Diag(D->getLocation(), diag::warn_unaligned_access)
2131                 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2132         }
2133   }
2134 
2135   if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign)
2136     Diag(D->getLocation(), diag::warn_unpacked_field) << D;
2137 }
2138 
2139 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2140   // In C++, records cannot be of size 0.
2141   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2142     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2143       // Compatibility with gcc requires a class (pod or non-pod)
2144       // which is not empty but of size 0; such as having fields of
2145       // array of zero-length, remains of Size 0
2146       if (RD->isEmpty())
2147         setSize(CharUnits::One());
2148     }
2149     else
2150       setSize(CharUnits::One());
2151   }
2152 
2153   // If we have any remaining field tail padding, include that in the overall
2154   // size.
2155   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2156 
2157   // Finally, round the size of the record up to the alignment of the
2158   // record itself.
2159   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2160   uint64_t UnpackedSizeInBits =
2161       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2162 
2163   uint64_t RoundedSize = llvm::alignTo(
2164       getSizeInBits(),
2165       Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2166                          ? Alignment
2167                          : PreferredAlignment));
2168 
2169   if (UseExternalLayout) {
2170     // If we're inferring alignment, and the external size is smaller than
2171     // our size after we've rounded up to alignment, conservatively set the
2172     // alignment to 1.
2173     if (InferAlignment && External.Size < RoundedSize) {
2174       Alignment = CharUnits::One();
2175       PreferredAlignment = CharUnits::One();
2176       InferAlignment = false;
2177     }
2178     setSize(External.Size);
2179     return;
2180   }
2181 
2182   // Set the size to the final size.
2183   setSize(RoundedSize);
2184 
2185   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2186   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2187     // Warn if padding was introduced to the struct/class/union.
2188     if (getSizeInBits() > UnpaddedSize) {
2189       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2190       bool InBits = true;
2191       if (PadSize % CharBitNum == 0) {
2192         PadSize = PadSize / CharBitNum;
2193         InBits = false;
2194       }
2195       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2196           << Context.getTypeDeclType(RD)
2197           << PadSize
2198           << (InBits ? 1 : 0); // (byte|bit)
2199     }
2200 
2201     const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
2202 
2203     // Warn if we packed it unnecessarily, when the unpacked alignment is not
2204     // greater than the one after packing, the size in bits doesn't change and
2205     // the offset of each field is identical.
2206     // Unless the type is non-POD (for Clang ABI > 15), where the packed
2207     // attribute on such a type does allow the type to be packed into other
2208     // structures that use the packed attribute.
2209     if (Packed && UnpackedAlignment <= Alignment &&
2210         UnpackedSizeInBits == getSizeInBits() && !HasPackedField &&
2211         (!CXXRD || CXXRD->isPOD() ||
2212          Context.getLangOpts().getClangABICompat() <=
2213              LangOptions::ClangABI::Ver15))
2214       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2215           << Context.getTypeDeclType(RD);
2216   }
2217 }
2218 
2219 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2220     CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2221     CharUnits PreferredNewAlignment) {
2222   // The alignment is not modified when using 'mac68k' alignment or when
2223   // we have an externally-supplied layout that also provides overall alignment.
2224   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2225     return;
2226 
2227   if (NewAlignment > Alignment) {
2228     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2229            "Alignment not a power of 2");
2230     Alignment = NewAlignment;
2231   }
2232 
2233   if (UnpackedNewAlignment > UnpackedAlignment) {
2234     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2235            "Alignment not a power of 2");
2236     UnpackedAlignment = UnpackedNewAlignment;
2237   }
2238 
2239   if (PreferredNewAlignment > PreferredAlignment) {
2240     assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2241            "Alignment not a power of 2");
2242     PreferredAlignment = PreferredNewAlignment;
2243   }
2244 }
2245 
2246 uint64_t
2247 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2248                                                       uint64_t ComputedOffset) {
2249   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2250 
2251   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2252     // The externally-supplied field offset is before the field offset we
2253     // computed. Assume that the structure is packed.
2254     Alignment = CharUnits::One();
2255     PreferredAlignment = CharUnits::One();
2256     InferAlignment = false;
2257   }
2258 
2259   // Use the externally-supplied field offset.
2260   return ExternalFieldOffset;
2261 }
2262 
2263 /// Get diagnostic %select index for tag kind for
2264 /// field padding diagnostic message.
2265 /// WARNING: Indexes apply to particular diagnostics only!
2266 ///
2267 /// \returns diagnostic %select index.
2268 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2269   switch (Tag) {
2270   case TTK_Struct: return 0;
2271   case TTK_Interface: return 1;
2272   case TTK_Class: return 2;
2273   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2274   }
2275 }
2276 
2277 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2278     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2279     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2280   // We let objc ivars without warning, objc interfaces generally are not used
2281   // for padding tricks.
2282   if (isa<ObjCIvarDecl>(D))
2283     return;
2284 
2285   // Don't warn about structs created without a SourceLocation.  This can
2286   // be done by clients of the AST, such as codegen.
2287   if (D->getLocation().isInvalid())
2288     return;
2289 
2290   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2291 
2292   // Warn if padding was introduced to the struct/class.
2293   if (!IsUnion && Offset > UnpaddedOffset) {
2294     unsigned PadSize = Offset - UnpaddedOffset;
2295     bool InBits = true;
2296     if (PadSize % CharBitNum == 0) {
2297       PadSize = PadSize / CharBitNum;
2298       InBits = false;
2299     }
2300     if (D->getIdentifier())
2301       Diag(D->getLocation(), diag::warn_padded_struct_field)
2302           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2303           << Context.getTypeDeclType(D->getParent())
2304           << PadSize
2305           << (InBits ? 1 : 0) // (byte|bit)
2306           << D->getIdentifier();
2307     else
2308       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2309           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2310           << Context.getTypeDeclType(D->getParent())
2311           << PadSize
2312           << (InBits ? 1 : 0); // (byte|bit)
2313  }
2314  if (isPacked && Offset != UnpackedOffset) {
2315    HasPackedField = true;
2316  }
2317 }
2318 
2319 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2320                                                const CXXRecordDecl *RD) {
2321   // If a class isn't polymorphic it doesn't have a key function.
2322   if (!RD->isPolymorphic())
2323     return nullptr;
2324 
2325   // A class that is not externally visible doesn't have a key function. (Or
2326   // at least, there's no point to assigning a key function to such a class;
2327   // this doesn't affect the ABI.)
2328   if (!RD->isExternallyVisible())
2329     return nullptr;
2330 
2331   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2332   // Same behavior as GCC.
2333   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2334   if (TSK == TSK_ImplicitInstantiation ||
2335       TSK == TSK_ExplicitInstantiationDeclaration ||
2336       TSK == TSK_ExplicitInstantiationDefinition)
2337     return nullptr;
2338 
2339   bool allowInlineFunctions =
2340     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2341 
2342   for (const CXXMethodDecl *MD : RD->methods()) {
2343     if (!MD->isVirtual())
2344       continue;
2345 
2346     if (MD->isPure())
2347       continue;
2348 
2349     // Ignore implicit member functions, they are always marked as inline, but
2350     // they don't have a body until they're defined.
2351     if (MD->isImplicit())
2352       continue;
2353 
2354     if (MD->isInlineSpecified() || MD->isConstexpr())
2355       continue;
2356 
2357     if (MD->hasInlineBody())
2358       continue;
2359 
2360     // Ignore inline deleted or defaulted functions.
2361     if (!MD->isUserProvided())
2362       continue;
2363 
2364     // In certain ABIs, ignore functions with out-of-line inline definitions.
2365     if (!allowInlineFunctions) {
2366       const FunctionDecl *Def;
2367       if (MD->hasBody(Def) && Def->isInlineSpecified())
2368         continue;
2369     }
2370 
2371     if (Context.getLangOpts().CUDA) {
2372       // While compiler may see key method in this TU, during CUDA
2373       // compilation we should ignore methods that are not accessible
2374       // on this side of compilation.
2375       if (Context.getLangOpts().CUDAIsDevice) {
2376         // In device mode ignore methods without __device__ attribute.
2377         if (!MD->hasAttr<CUDADeviceAttr>())
2378           continue;
2379       } else {
2380         // In host mode ignore __device__-only methods.
2381         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2382           continue;
2383       }
2384     }
2385 
2386     // If the key function is dllimport but the class isn't, then the class has
2387     // no key function. The DLL that exports the key function won't export the
2388     // vtable in this case.
2389     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2390         !Context.getTargetInfo().hasPS4DLLImportExport())
2391       return nullptr;
2392 
2393     // We found it.
2394     return MD;
2395   }
2396 
2397   return nullptr;
2398 }
2399 
2400 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2401                                                    unsigned DiagID) {
2402   return Context.getDiagnostics().Report(Loc, DiagID);
2403 }
2404 
2405 /// Does the target C++ ABI require us to skip over the tail-padding
2406 /// of the given class (considering it as a base class) when allocating
2407 /// objects?
2408 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2409   switch (ABI.getTailPaddingUseRules()) {
2410   case TargetCXXABI::AlwaysUseTailPadding:
2411     return false;
2412 
2413   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2414     // FIXME: To the extent that this is meant to cover the Itanium ABI
2415     // rules, we should implement the restrictions about over-sized
2416     // bitfields:
2417     //
2418     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2419     //   In general, a type is considered a POD for the purposes of
2420     //   layout if it is a POD type (in the sense of ISO C++
2421     //   [basic.types]). However, a POD-struct or POD-union (in the
2422     //   sense of ISO C++ [class]) with a bitfield member whose
2423     //   declared width is wider than the declared type of the
2424     //   bitfield is not a POD for the purpose of layout.  Similarly,
2425     //   an array type is not a POD for the purpose of layout if the
2426     //   element type of the array is not a POD for the purpose of
2427     //   layout.
2428     //
2429     //   Where references to the ISO C++ are made in this paragraph,
2430     //   the Technical Corrigendum 1 version of the standard is
2431     //   intended.
2432     return RD->isPOD();
2433 
2434   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2435     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2436     // but with a lot of abstraction penalty stripped off.  This does
2437     // assume that these properties are set correctly even in C++98
2438     // mode; fortunately, that is true because we want to assign
2439     // consistently semantics to the type-traits intrinsics (or at
2440     // least as many of them as possible).
2441     return RD->isTrivial() && RD->isCXX11StandardLayout();
2442   }
2443 
2444   llvm_unreachable("bad tail-padding use kind");
2445 }
2446 
2447 static bool isMsLayout(const ASTContext &Context) {
2448   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2449 }
2450 
2451 // This section contains an implementation of struct layout that is, up to the
2452 // included tests, compatible with cl.exe (2013).  The layout produced is
2453 // significantly different than those produced by the Itanium ABI.  Here we note
2454 // the most important differences.
2455 //
2456 // * The alignment of bitfields in unions is ignored when computing the
2457 //   alignment of the union.
2458 // * The existence of zero-width bitfield that occurs after anything other than
2459 //   a non-zero length bitfield is ignored.
2460 // * There is no explicit primary base for the purposes of layout.  All bases
2461 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2462 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2463 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2464 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2465 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2466 //   placed after the lexicographically last non-virtual base.  This placement
2467 //   is always before fields but can be in the middle of the non-virtual bases
2468 //   due to the two-pass layout scheme for non-virtual-bases.
2469 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2470 //   the virtual base and is used in conjunction with virtual overrides during
2471 //   construction and destruction.  This is always a 4 byte value and is used as
2472 //   an alternative to constructor vtables.
2473 // * vtordisps are allocated in a block of memory with size and alignment equal
2474 //   to the alignment of the completed structure (before applying __declspec(
2475 //   align())).  The vtordisp always occur at the end of the allocation block,
2476 //   immediately prior to the virtual base.
2477 // * vfptrs are injected after all bases and fields have been laid out.  In
2478 //   order to guarantee proper alignment of all fields, the vfptr injection
2479 //   pushes all bases and fields back by the alignment imposed by those bases
2480 //   and fields.  This can potentially add a significant amount of padding.
2481 //   vfptrs are always injected at offset 0.
2482 // * vbptrs are injected after all bases and fields have been laid out.  In
2483 //   order to guarantee proper alignment of all fields, the vfptr injection
2484 //   pushes all bases and fields back by the alignment imposed by those bases
2485 //   and fields.  This can potentially add a significant amount of padding.
2486 //   vbptrs are injected immediately after the last non-virtual base as
2487 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2488 //   the vbptr is placed at the next properly aligned location.  Enough padding
2489 //   is added to guarantee a fit.
2490 // * The last zero sized non-virtual base can be placed at the end of the
2491 //   struct (potentially aliasing another object), or may alias with the first
2492 //   field, even if they are of the same type.
2493 // * The last zero size virtual base may be placed at the end of the struct
2494 //   potentially aliasing another object.
2495 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2496 //   between bases or vbases with specific properties.  The criteria for
2497 //   additional padding between two bases is that the first base is zero sized
2498 //   or ends with a zero sized subobject and the second base is zero sized or
2499 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2500 //   layout of the so the leading base is not always the first one declared).
2501 //   This rule does take into account fields that are not records, so padding
2502 //   will occur even if the last field is, e.g. an int. The padding added for
2503 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2504 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2505 // * There is no concept of non-virtual alignment, non-virtual alignment and
2506 //   alignment are always identical.
2507 // * There is a distinction between alignment and required alignment.
2508 //   __declspec(align) changes the required alignment of a struct.  This
2509 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2510 //   record inherits required alignment from all of its fields and bases.
2511 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2512 //   alignment instead of its required alignment.  This is the only known way
2513 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2514 //   this alignment is also immune to the effects of #pragma pack and can be
2515 //   used to create structures with large alignment under #pragma pack.
2516 //   However, because it does not impact required alignment, such a structure,
2517 //   when used as a field or base, will not be aligned if #pragma pack is
2518 //   still active at the time of use.
2519 //
2520 // Known incompatibilities:
2521 // * all: #pragma pack between fields in a record
2522 // * 2010 and back: If the last field in a record is a bitfield, every object
2523 //   laid out after the record will have extra padding inserted before it.  The
2524 //   extra padding will have size equal to the size of the storage class of the
2525 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2526 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2527 //   sized bitfield.
2528 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2529 //   greater due to __declspec(align()) then a second layout phase occurs after
2530 //   The locations of the vf and vb pointers are known.  This layout phase
2531 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2532 //   _every_ field getting padding put in front of it, potentially including the
2533 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2534 //   anything tries to read the vftbl.  The second layout phase also treats
2535 //   bitfields as separate entities and gives them each storage rather than
2536 //   packing them.  Additionally, because this phase appears to perform a
2537 //   (an unstable) sort on the members before laying them out and because merged
2538 //   bitfields have the same address, the bitfields end up in whatever order
2539 //   the sort left them in, a behavior we could never hope to replicate.
2540 
2541 namespace {
2542 struct MicrosoftRecordLayoutBuilder {
2543   struct ElementInfo {
2544     CharUnits Size;
2545     CharUnits Alignment;
2546   };
2547   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2548   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2549 private:
2550   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2551   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2552 public:
2553   void layout(const RecordDecl *RD);
2554   void cxxLayout(const CXXRecordDecl *RD);
2555   /// Initializes size and alignment and honors some flags.
2556   void initializeLayout(const RecordDecl *RD);
2557   /// Initialized C++ layout, compute alignment and virtual alignment and
2558   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2559   /// laid out.
2560   void initializeCXXLayout(const CXXRecordDecl *RD);
2561   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2562   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2563                             const CXXRecordDecl *BaseDecl,
2564                             const ASTRecordLayout &BaseLayout,
2565                             const ASTRecordLayout *&PreviousBaseLayout);
2566   void injectVFPtr(const CXXRecordDecl *RD);
2567   void injectVBPtr(const CXXRecordDecl *RD);
2568   /// Lays out the fields of the record.  Also rounds size up to
2569   /// alignment.
2570   void layoutFields(const RecordDecl *RD);
2571   void layoutField(const FieldDecl *FD);
2572   void layoutBitField(const FieldDecl *FD);
2573   /// Lays out a single zero-width bit-field in the record and handles
2574   /// special cases associated with zero-width bit-fields.
2575   void layoutZeroWidthBitField(const FieldDecl *FD);
2576   void layoutVirtualBases(const CXXRecordDecl *RD);
2577   void finalizeLayout(const RecordDecl *RD);
2578   /// Gets the size and alignment of a base taking pragma pack and
2579   /// __declspec(align) into account.
2580   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2581   /// Gets the size and alignment of a field taking pragma  pack and
2582   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2583   /// side effect because it is most convenient to do so here.
2584   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2585   /// Places a field at an offset in CharUnits.
2586   void placeFieldAtOffset(CharUnits FieldOffset) {
2587     FieldOffsets.push_back(Context.toBits(FieldOffset));
2588   }
2589   /// Places a bitfield at a bit offset.
2590   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2591     FieldOffsets.push_back(FieldOffset);
2592   }
2593   /// Compute the set of virtual bases for which vtordisps are required.
2594   void computeVtorDispSet(
2595       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2596       const CXXRecordDecl *RD) const;
2597   const ASTContext &Context;
2598   /// The size of the record being laid out.
2599   CharUnits Size;
2600   /// The non-virtual size of the record layout.
2601   CharUnits NonVirtualSize;
2602   /// The data size of the record layout.
2603   CharUnits DataSize;
2604   /// The current alignment of the record layout.
2605   CharUnits Alignment;
2606   /// The maximum allowed field alignment. This is set by #pragma pack.
2607   CharUnits MaxFieldAlignment;
2608   /// The alignment that this record must obey.  This is imposed by
2609   /// __declspec(align()) on the record itself or one of its fields or bases.
2610   CharUnits RequiredAlignment;
2611   /// The size of the allocation of the currently active bitfield.
2612   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2613   /// is true.
2614   CharUnits CurrentBitfieldSize;
2615   /// Offset to the virtual base table pointer (if one exists).
2616   CharUnits VBPtrOffset;
2617   /// Minimum record size possible.
2618   CharUnits MinEmptyStructSize;
2619   /// The size and alignment info of a pointer.
2620   ElementInfo PointerInfo;
2621   /// The primary base class (if one exists).
2622   const CXXRecordDecl *PrimaryBase;
2623   /// The class we share our vb-pointer with.
2624   const CXXRecordDecl *SharedVBPtrBase;
2625   /// The collection of field offsets.
2626   SmallVector<uint64_t, 16> FieldOffsets;
2627   /// Base classes and their offsets in the record.
2628   BaseOffsetsMapTy Bases;
2629   /// virtual base classes and their offsets in the record.
2630   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2631   /// The number of remaining bits in our last bitfield allocation.
2632   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2633   /// true.
2634   unsigned RemainingBitsInField;
2635   bool IsUnion : 1;
2636   /// True if the last field laid out was a bitfield and was not 0
2637   /// width.
2638   bool LastFieldIsNonZeroWidthBitfield : 1;
2639   /// True if the class has its own vftable pointer.
2640   bool HasOwnVFPtr : 1;
2641   /// True if the class has a vbtable pointer.
2642   bool HasVBPtr : 1;
2643   /// True if the last sub-object within the type is zero sized or the
2644   /// object itself is zero sized.  This *does not* count members that are not
2645   /// records.  Only used for MS-ABI.
2646   bool EndsWithZeroSizedObject : 1;
2647   /// True if this class is zero sized or first base is zero sized or
2648   /// has this property.  Only used for MS-ABI.
2649   bool LeadsWithZeroSizedBase : 1;
2650 
2651   /// True if the external AST source provided a layout for this record.
2652   bool UseExternalLayout : 1;
2653 
2654   /// The layout provided by the external AST source. Only active if
2655   /// UseExternalLayout is true.
2656   ExternalLayout External;
2657 };
2658 } // namespace
2659 
2660 MicrosoftRecordLayoutBuilder::ElementInfo
2661 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2662     const ASTRecordLayout &Layout) {
2663   ElementInfo Info;
2664   Info.Alignment = Layout.getAlignment();
2665   // Respect pragma pack.
2666   if (!MaxFieldAlignment.isZero())
2667     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2668   // Track zero-sized subobjects here where it's already available.
2669   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2670   // Respect required alignment, this is necessary because we may have adjusted
2671   // the alignment in the case of pragma pack.  Note that the required alignment
2672   // doesn't actually apply to the struct alignment at this point.
2673   Alignment = std::max(Alignment, Info.Alignment);
2674   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2675   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2676   Info.Size = Layout.getNonVirtualSize();
2677   return Info;
2678 }
2679 
2680 MicrosoftRecordLayoutBuilder::ElementInfo
2681 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2682     const FieldDecl *FD) {
2683   // Get the alignment of the field type's natural alignment, ignore any
2684   // alignment attributes.
2685   auto TInfo =
2686       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2687   ElementInfo Info{TInfo.Width, TInfo.Align};
2688   // Respect align attributes on the field.
2689   CharUnits FieldRequiredAlignment =
2690       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2691   // Respect align attributes on the type.
2692   if (Context.isAlignmentRequired(FD->getType()))
2693     FieldRequiredAlignment = std::max(
2694         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2695   // Respect attributes applied to subobjects of the field.
2696   if (FD->isBitField())
2697     // For some reason __declspec align impacts alignment rather than required
2698     // alignment when it is applied to bitfields.
2699     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2700   else {
2701     if (auto RT =
2702             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2703       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2704       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2705       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2706                                         Layout.getRequiredAlignment());
2707     }
2708     // Capture required alignment as a side-effect.
2709     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2710   }
2711   // Respect pragma pack, attribute pack and declspec align
2712   if (!MaxFieldAlignment.isZero())
2713     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2714   if (FD->hasAttr<PackedAttr>())
2715     Info.Alignment = CharUnits::One();
2716   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2717   return Info;
2718 }
2719 
2720 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2721   // For C record layout, zero-sized records always have size 4.
2722   MinEmptyStructSize = CharUnits::fromQuantity(4);
2723   initializeLayout(RD);
2724   layoutFields(RD);
2725   DataSize = Size = Size.alignTo(Alignment);
2726   RequiredAlignment = std::max(
2727       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2728   finalizeLayout(RD);
2729 }
2730 
2731 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2732   // The C++ standard says that empty structs have size 1.
2733   MinEmptyStructSize = CharUnits::One();
2734   initializeLayout(RD);
2735   initializeCXXLayout(RD);
2736   layoutNonVirtualBases(RD);
2737   layoutFields(RD);
2738   injectVBPtr(RD);
2739   injectVFPtr(RD);
2740   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2741     Alignment = std::max(Alignment, PointerInfo.Alignment);
2742   auto RoundingAlignment = Alignment;
2743   if (!MaxFieldAlignment.isZero())
2744     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2745   if (!UseExternalLayout)
2746     Size = Size.alignTo(RoundingAlignment);
2747   NonVirtualSize = Size;
2748   RequiredAlignment = std::max(
2749       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2750   layoutVirtualBases(RD);
2751   finalizeLayout(RD);
2752 }
2753 
2754 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2755   IsUnion = RD->isUnion();
2756   Size = CharUnits::Zero();
2757   Alignment = CharUnits::One();
2758   // In 64-bit mode we always perform an alignment step after laying out vbases.
2759   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2760   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2761   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2762                           ? CharUnits::One()
2763                           : CharUnits::Zero();
2764   // Compute the maximum field alignment.
2765   MaxFieldAlignment = CharUnits::Zero();
2766   // Honor the default struct packing maximum alignment flag.
2767   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2768       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2769   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2770   // than the pointer size.
2771   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2772     unsigned PackedAlignment = MFAA->getAlignment();
2773     if (PackedAlignment <=
2774         Context.getTargetInfo().getPointerWidth(LangAS::Default))
2775       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2776   }
2777   // Packed attribute forces max field alignment to be 1.
2778   if (RD->hasAttr<PackedAttr>())
2779     MaxFieldAlignment = CharUnits::One();
2780 
2781   // Try to respect the external layout if present.
2782   UseExternalLayout = false;
2783   if (ExternalASTSource *Source = Context.getExternalSource())
2784     UseExternalLayout = Source->layoutRecordType(
2785         RD, External.Size, External.Align, External.FieldOffsets,
2786         External.BaseOffsets, External.VirtualBaseOffsets);
2787 }
2788 
2789 void
2790 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2791   EndsWithZeroSizedObject = false;
2792   LeadsWithZeroSizedBase = false;
2793   HasOwnVFPtr = false;
2794   HasVBPtr = false;
2795   PrimaryBase = nullptr;
2796   SharedVBPtrBase = nullptr;
2797   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2798   // injection.
2799   PointerInfo.Size = Context.toCharUnitsFromBits(
2800       Context.getTargetInfo().getPointerWidth(LangAS::Default));
2801   PointerInfo.Alignment = Context.toCharUnitsFromBits(
2802       Context.getTargetInfo().getPointerAlign(LangAS::Default));
2803   // Respect pragma pack.
2804   if (!MaxFieldAlignment.isZero())
2805     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2806 }
2807 
2808 void
2809 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2810   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2811   // out any bases that do not contain vfptrs.  We implement this as two passes
2812   // over the bases.  This approach guarantees that the primary base is laid out
2813   // first.  We use these passes to calculate some additional aggregated
2814   // information about the bases, such as required alignment and the presence of
2815   // zero sized members.
2816   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2817   bool HasPolymorphicBaseClass = false;
2818   // Iterate through the bases and lay out the non-virtual ones.
2819   for (const CXXBaseSpecifier &Base : RD->bases()) {
2820     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2821     HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2822     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2823     // Mark and skip virtual bases.
2824     if (Base.isVirtual()) {
2825       HasVBPtr = true;
2826       continue;
2827     }
2828     // Check for a base to share a VBPtr with.
2829     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2830       SharedVBPtrBase = BaseDecl;
2831       HasVBPtr = true;
2832     }
2833     // Only lay out bases with extendable VFPtrs on the first pass.
2834     if (!BaseLayout.hasExtendableVFPtr())
2835       continue;
2836     // If we don't have a primary base, this one qualifies.
2837     if (!PrimaryBase) {
2838       PrimaryBase = BaseDecl;
2839       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2840     }
2841     // Lay out the base.
2842     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2843   }
2844   // Figure out if we need a fresh VFPtr for this class.
2845   if (RD->isPolymorphic()) {
2846     if (!HasPolymorphicBaseClass)
2847       // This class introduces polymorphism, so we need a vftable to store the
2848       // RTTI information.
2849       HasOwnVFPtr = true;
2850     else if (!PrimaryBase) {
2851       // We have a polymorphic base class but can't extend its vftable. Add a
2852       // new vfptr if we would use any vftable slots.
2853       for (CXXMethodDecl *M : RD->methods()) {
2854         if (MicrosoftVTableContext::hasVtableSlot(M) &&
2855             M->size_overridden_methods() == 0) {
2856           HasOwnVFPtr = true;
2857           break;
2858         }
2859       }
2860     }
2861   }
2862   // If we don't have a primary base then we have a leading object that could
2863   // itself lead with a zero-sized object, something we track.
2864   bool CheckLeadingLayout = !PrimaryBase;
2865   // Iterate through the bases and lay out the non-virtual ones.
2866   for (const CXXBaseSpecifier &Base : RD->bases()) {
2867     if (Base.isVirtual())
2868       continue;
2869     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2870     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2871     // Only lay out bases without extendable VFPtrs on the second pass.
2872     if (BaseLayout.hasExtendableVFPtr()) {
2873       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2874       continue;
2875     }
2876     // If this is the first layout, check to see if it leads with a zero sized
2877     // object.  If it does, so do we.
2878     if (CheckLeadingLayout) {
2879       CheckLeadingLayout = false;
2880       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2881     }
2882     // Lay out the base.
2883     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2884     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2885   }
2886   // Set our VBPtroffset if we know it at this point.
2887   if (!HasVBPtr)
2888     VBPtrOffset = CharUnits::fromQuantity(-1);
2889   else if (SharedVBPtrBase) {
2890     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2891     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2892   }
2893 }
2894 
2895 static bool recordUsesEBO(const RecordDecl *RD) {
2896   if (!isa<CXXRecordDecl>(RD))
2897     return false;
2898   if (RD->hasAttr<EmptyBasesAttr>())
2899     return true;
2900   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2901     // TODO: Double check with the next version of MSVC.
2902     if (LVA->getVersion() <= LangOptions::MSVC2015)
2903       return false;
2904   // TODO: Some later version of MSVC will change the default behavior of the
2905   // compiler to enable EBO by default.  When this happens, we will need an
2906   // additional isCompatibleWithMSVC check.
2907   return false;
2908 }
2909 
2910 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2911     const CXXRecordDecl *RD,
2912     const CXXRecordDecl *BaseDecl,
2913     const ASTRecordLayout &BaseLayout,
2914     const ASTRecordLayout *&PreviousBaseLayout) {
2915   // Insert padding between two bases if the left first one is zero sized or
2916   // contains a zero sized subobject and the right is zero sized or one leads
2917   // with a zero sized base.
2918   bool MDCUsesEBO = recordUsesEBO(RD);
2919   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2920       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2921     Size++;
2922   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2923   CharUnits BaseOffset;
2924 
2925   // Respect the external AST source base offset, if present.
2926   bool FoundBase = false;
2927   if (UseExternalLayout) {
2928     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2929     if (BaseOffset > Size) {
2930       Size = BaseOffset;
2931     }
2932   }
2933 
2934   if (!FoundBase) {
2935     if (MDCUsesEBO && BaseDecl->isEmpty()) {
2936       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2937       BaseOffset = CharUnits::Zero();
2938     } else {
2939       // Otherwise, lay the base out at the end of the MDC.
2940       BaseOffset = Size = Size.alignTo(Info.Alignment);
2941     }
2942   }
2943   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2944   Size += BaseLayout.getNonVirtualSize();
2945   PreviousBaseLayout = &BaseLayout;
2946 }
2947 
2948 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2949   LastFieldIsNonZeroWidthBitfield = false;
2950   for (const FieldDecl *Field : RD->fields())
2951     layoutField(Field);
2952 }
2953 
2954 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2955   if (FD->isBitField()) {
2956     layoutBitField(FD);
2957     return;
2958   }
2959   LastFieldIsNonZeroWidthBitfield = false;
2960   ElementInfo Info = getAdjustedElementInfo(FD);
2961   Alignment = std::max(Alignment, Info.Alignment);
2962   CharUnits FieldOffset;
2963   if (UseExternalLayout)
2964     FieldOffset =
2965         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2966   else if (IsUnion)
2967     FieldOffset = CharUnits::Zero();
2968   else
2969     FieldOffset = Size.alignTo(Info.Alignment);
2970   placeFieldAtOffset(FieldOffset);
2971   Size = std::max(Size, FieldOffset + Info.Size);
2972 }
2973 
2974 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2975   unsigned Width = FD->getBitWidthValue(Context);
2976   if (Width == 0) {
2977     layoutZeroWidthBitField(FD);
2978     return;
2979   }
2980   ElementInfo Info = getAdjustedElementInfo(FD);
2981   // Clamp the bitfield to a containable size for the sake of being able
2982   // to lay them out.  Sema will throw an error.
2983   if (Width > Context.toBits(Info.Size))
2984     Width = Context.toBits(Info.Size);
2985   // Check to see if this bitfield fits into an existing allocation.  Note:
2986   // MSVC refuses to pack bitfields of formal types with different sizes
2987   // into the same allocation.
2988   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2989       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2990     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2991     RemainingBitsInField -= Width;
2992     return;
2993   }
2994   LastFieldIsNonZeroWidthBitfield = true;
2995   CurrentBitfieldSize = Info.Size;
2996   if (UseExternalLayout) {
2997     auto FieldBitOffset = External.getExternalFieldOffset(FD);
2998     placeFieldAtBitOffset(FieldBitOffset);
2999     auto NewSize = Context.toCharUnitsFromBits(
3000         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
3001         Context.toBits(Info.Size));
3002     Size = std::max(Size, NewSize);
3003     Alignment = std::max(Alignment, Info.Alignment);
3004   } else if (IsUnion) {
3005     placeFieldAtOffset(CharUnits::Zero());
3006     Size = std::max(Size, Info.Size);
3007     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3008   } else {
3009     // Allocate a new block of memory and place the bitfield in it.
3010     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3011     placeFieldAtOffset(FieldOffset);
3012     Size = FieldOffset + Info.Size;
3013     Alignment = std::max(Alignment, Info.Alignment);
3014     RemainingBitsInField = Context.toBits(Info.Size) - Width;
3015   }
3016 }
3017 
3018 void
3019 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3020   // Zero-width bitfields are ignored unless they follow a non-zero-width
3021   // bitfield.
3022   if (!LastFieldIsNonZeroWidthBitfield) {
3023     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3024     // TODO: Add a Sema warning that MS ignores alignment for zero
3025     // sized bitfields that occur after zero-size bitfields or non-bitfields.
3026     return;
3027   }
3028   LastFieldIsNonZeroWidthBitfield = false;
3029   ElementInfo Info = getAdjustedElementInfo(FD);
3030   if (IsUnion) {
3031     placeFieldAtOffset(CharUnits::Zero());
3032     Size = std::max(Size, Info.Size);
3033     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3034   } else {
3035     // Round up the current record size to the field's alignment boundary.
3036     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3037     placeFieldAtOffset(FieldOffset);
3038     Size = FieldOffset;
3039     Alignment = std::max(Alignment, Info.Alignment);
3040   }
3041 }
3042 
3043 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3044   if (!HasVBPtr || SharedVBPtrBase)
3045     return;
3046   // Inject the VBPointer at the injection site.
3047   CharUnits InjectionSite = VBPtrOffset;
3048   // But before we do, make sure it's properly aligned.
3049   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3050   // Determine where the first field should be laid out after the vbptr.
3051   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3052   // Shift everything after the vbptr down, unless we're using an external
3053   // layout.
3054   if (UseExternalLayout) {
3055     // It is possible that there were no fields or bases located after vbptr,
3056     // so the size was not adjusted before.
3057     if (Size < FieldStart)
3058       Size = FieldStart;
3059     return;
3060   }
3061   // Make sure that the amount we push the fields back by is a multiple of the
3062   // alignment.
3063   CharUnits Offset = (FieldStart - InjectionSite)
3064                          .alignTo(std::max(RequiredAlignment, Alignment));
3065   Size += Offset;
3066   for (uint64_t &FieldOffset : FieldOffsets)
3067     FieldOffset += Context.toBits(Offset);
3068   for (BaseOffsetsMapTy::value_type &Base : Bases)
3069     if (Base.second >= InjectionSite)
3070       Base.second += Offset;
3071 }
3072 
3073 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3074   if (!HasOwnVFPtr)
3075     return;
3076   // Make sure that the amount we push the struct back by is a multiple of the
3077   // alignment.
3078   CharUnits Offset =
3079       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3080   // Push back the vbptr, but increase the size of the object and push back
3081   // regular fields by the offset only if not using external record layout.
3082   if (HasVBPtr)
3083     VBPtrOffset += Offset;
3084 
3085   if (UseExternalLayout) {
3086     // The class may have size 0 and a vfptr (e.g. it's an interface class). The
3087     // size was not correctly set before in this case.
3088     if (Size.isZero())
3089       Size += Offset;
3090     return;
3091   }
3092 
3093   Size += Offset;
3094 
3095   // If we're using an external layout, the fields offsets have already
3096   // accounted for this adjustment.
3097   for (uint64_t &FieldOffset : FieldOffsets)
3098     FieldOffset += Context.toBits(Offset);
3099   for (BaseOffsetsMapTy::value_type &Base : Bases)
3100     Base.second += Offset;
3101 }
3102 
3103 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3104   if (!HasVBPtr)
3105     return;
3106   // Vtordisps are always 4 bytes (even in 64-bit mode)
3107   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3108   CharUnits VtorDispAlignment = VtorDispSize;
3109   // vtordisps respect pragma pack.
3110   if (!MaxFieldAlignment.isZero())
3111     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3112   // The alignment of the vtordisp is at least the required alignment of the
3113   // entire record.  This requirement may be present to support vtordisp
3114   // injection.
3115   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3116     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3117     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3118     RequiredAlignment =
3119         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3120   }
3121   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3122   // Compute the vtordisp set.
3123   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3124   computeVtorDispSet(HasVtorDispSet, RD);
3125   // Iterate through the virtual bases and lay them out.
3126   const ASTRecordLayout *PreviousBaseLayout = nullptr;
3127   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3128     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3129     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3130     bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3131     // Insert padding between two bases if the left first one is zero sized or
3132     // contains a zero sized subobject and the right is zero sized or one leads
3133     // with a zero sized base.  The padding between virtual bases is 4
3134     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3135     // the required alignment, we don't know why.
3136     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3137          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3138         HasVtordisp) {
3139       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3140       Alignment = std::max(VtorDispAlignment, Alignment);
3141     }
3142     // Insert the virtual base.
3143     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3144     CharUnits BaseOffset;
3145 
3146     // Respect the external AST source base offset, if present.
3147     if (UseExternalLayout) {
3148       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3149         BaseOffset = Size;
3150     } else
3151       BaseOffset = Size.alignTo(Info.Alignment);
3152 
3153     assert(BaseOffset >= Size && "base offset already allocated");
3154 
3155     VBases.insert(std::make_pair(BaseDecl,
3156         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3157     Size = BaseOffset + BaseLayout.getNonVirtualSize();
3158     PreviousBaseLayout = &BaseLayout;
3159   }
3160 }
3161 
3162 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3163   // Respect required alignment.  Note that in 32-bit mode Required alignment
3164   // may be 0 and cause size not to be updated.
3165   DataSize = Size;
3166   if (!RequiredAlignment.isZero()) {
3167     Alignment = std::max(Alignment, RequiredAlignment);
3168     auto RoundingAlignment = Alignment;
3169     if (!MaxFieldAlignment.isZero())
3170       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3171     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3172     Size = Size.alignTo(RoundingAlignment);
3173   }
3174   if (Size.isZero()) {
3175     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3176       EndsWithZeroSizedObject = true;
3177       LeadsWithZeroSizedBase = true;
3178     }
3179     // Zero-sized structures have size equal to their alignment if a
3180     // __declspec(align) came into play.
3181     if (RequiredAlignment >= MinEmptyStructSize)
3182       Size = Alignment;
3183     else
3184       Size = MinEmptyStructSize;
3185   }
3186 
3187   if (UseExternalLayout) {
3188     Size = Context.toCharUnitsFromBits(External.Size);
3189     if (External.Align)
3190       Alignment = Context.toCharUnitsFromBits(External.Align);
3191   }
3192 }
3193 
3194 // Recursively walks the non-virtual bases of a class and determines if any of
3195 // them are in the bases with overridden methods set.
3196 static bool
3197 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3198                      BasesWithOverriddenMethods,
3199                  const CXXRecordDecl *RD) {
3200   if (BasesWithOverriddenMethods.count(RD))
3201     return true;
3202   // If any of a virtual bases non-virtual bases (recursively) requires a
3203   // vtordisp than so does this virtual base.
3204   for (const CXXBaseSpecifier &Base : RD->bases())
3205     if (!Base.isVirtual() &&
3206         RequiresVtordisp(BasesWithOverriddenMethods,
3207                          Base.getType()->getAsCXXRecordDecl()))
3208       return true;
3209   return false;
3210 }
3211 
3212 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3213     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3214     const CXXRecordDecl *RD) const {
3215   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3216   // vftables.
3217   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3218     for (const CXXBaseSpecifier &Base : RD->vbases()) {
3219       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3220       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3221       if (Layout.hasExtendableVFPtr())
3222         HasVtordispSet.insert(BaseDecl);
3223     }
3224     return;
3225   }
3226 
3227   // If any of our bases need a vtordisp for this type, so do we.  Check our
3228   // direct bases for vtordisp requirements.
3229   for (const CXXBaseSpecifier &Base : RD->bases()) {
3230     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3231     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3232     for (const auto &bi : Layout.getVBaseOffsetsMap())
3233       if (bi.second.hasVtorDisp())
3234         HasVtordispSet.insert(bi.first);
3235   }
3236   // We don't introduce any additional vtordisps if either:
3237   // * A user declared constructor or destructor aren't declared.
3238   // * #pragma vtordisp(0) or the /vd0 flag are in use.
3239   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3240       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3241     return;
3242   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3243   // possible for a partially constructed object with virtual base overrides to
3244   // escape a non-trivial constructor.
3245   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3246   // Compute a set of base classes which define methods we override.  A virtual
3247   // base in this set will require a vtordisp.  A virtual base that transitively
3248   // contains one of these bases as a non-virtual base will also require a
3249   // vtordisp.
3250   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3251   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3252   // Seed the working set with our non-destructor, non-pure virtual methods.
3253   for (const CXXMethodDecl *MD : RD->methods())
3254     if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3255         !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3256       Work.insert(MD);
3257   while (!Work.empty()) {
3258     const CXXMethodDecl *MD = *Work.begin();
3259     auto MethodRange = MD->overridden_methods();
3260     // If a virtual method has no-overrides it lives in its parent's vtable.
3261     if (MethodRange.begin() == MethodRange.end())
3262       BasesWithOverriddenMethods.insert(MD->getParent());
3263     else
3264       Work.insert(MethodRange.begin(), MethodRange.end());
3265     // We've finished processing this element, remove it from the working set.
3266     Work.erase(MD);
3267   }
3268   // For each of our virtual bases, check if it is in the set of overridden
3269   // bases or if it transitively contains a non-virtual base that is.
3270   for (const CXXBaseSpecifier &Base : RD->vbases()) {
3271     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3272     if (!HasVtordispSet.count(BaseDecl) &&
3273         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3274       HasVtordispSet.insert(BaseDecl);
3275   }
3276 }
3277 
3278 /// getASTRecordLayout - Get or compute information about the layout of the
3279 /// specified record (struct/union/class), which indicates its size and field
3280 /// position information.
3281 const ASTRecordLayout &
3282 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3283   // These asserts test different things.  A record has a definition
3284   // as soon as we begin to parse the definition.  That definition is
3285   // not a complete definition (which is what isDefinition() tests)
3286   // until we *finish* parsing the definition.
3287 
3288   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3289     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3290   // Complete the redecl chain (if necessary).
3291   (void)D->getMostRecentDecl();
3292 
3293   D = D->getDefinition();
3294   assert(D && "Cannot get layout of forward declarations!");
3295   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3296   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3297 
3298   // Look up this layout, if already laid out, return what we have.
3299   // Note that we can't save a reference to the entry because this function
3300   // is recursive.
3301   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3302   if (Entry) return *Entry;
3303 
3304   const ASTRecordLayout *NewEntry = nullptr;
3305 
3306   if (isMsLayout(*this)) {
3307     MicrosoftRecordLayoutBuilder Builder(*this);
3308     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3309       Builder.cxxLayout(RD);
3310       NewEntry = new (*this) ASTRecordLayout(
3311           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3312           Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3313           Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3314           Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3315           Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3316           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3317           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3318           Builder.Bases, Builder.VBases);
3319     } else {
3320       Builder.layout(D);
3321       NewEntry = new (*this) ASTRecordLayout(
3322           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3323           Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3324           Builder.FieldOffsets);
3325     }
3326   } else {
3327     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3328       EmptySubobjectMap EmptySubobjects(*this, RD);
3329       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3330       Builder.Layout(RD);
3331 
3332       // In certain situations, we are allowed to lay out objects in the
3333       // tail-padding of base classes.  This is ABI-dependent.
3334       // FIXME: this should be stored in the record layout.
3335       bool skipTailPadding =
3336           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3337 
3338       // FIXME: This should be done in FinalizeLayout.
3339       CharUnits DataSize =
3340           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3341       CharUnits NonVirtualSize =
3342           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3343       NewEntry = new (*this) ASTRecordLayout(
3344           *this, Builder.getSize(), Builder.Alignment,
3345           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3346           /*RequiredAlignment : used by MS-ABI)*/
3347           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3348           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3349           NonVirtualSize, Builder.NonVirtualAlignment,
3350           Builder.PreferredNVAlignment,
3351           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3352           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3353           Builder.VBases);
3354     } else {
3355       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3356       Builder.Layout(D);
3357 
3358       NewEntry = new (*this) ASTRecordLayout(
3359           *this, Builder.getSize(), Builder.Alignment,
3360           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3361           /*RequiredAlignment : used by MS-ABI)*/
3362           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3363     }
3364   }
3365 
3366   ASTRecordLayouts[D] = NewEntry;
3367 
3368   if (getLangOpts().DumpRecordLayouts) {
3369     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3370     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3371   }
3372 
3373   return *NewEntry;
3374 }
3375 
3376 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3377   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3378     return nullptr;
3379 
3380   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3381   RD = RD->getDefinition();
3382 
3383   // Beware:
3384   //  1) computing the key function might trigger deserialization, which might
3385   //     invalidate iterators into KeyFunctions
3386   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3387   //     invalidate the LazyDeclPtr within the map itself
3388   LazyDeclPtr Entry = KeyFunctions[RD];
3389   const Decl *Result =
3390       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3391 
3392   // Store it back if it changed.
3393   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3394     KeyFunctions[RD] = const_cast<Decl*>(Result);
3395 
3396   return cast_or_null<CXXMethodDecl>(Result);
3397 }
3398 
3399 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3400   assert(Method == Method->getFirstDecl() &&
3401          "not working with method declaration from class definition");
3402 
3403   // Look up the cache entry.  Since we're working with the first
3404   // declaration, its parent must be the class definition, which is
3405   // the correct key for the KeyFunctions hash.
3406   const auto &Map = KeyFunctions;
3407   auto I = Map.find(Method->getParent());
3408 
3409   // If it's not cached, there's nothing to do.
3410   if (I == Map.end()) return;
3411 
3412   // If it is cached, check whether it's the target method, and if so,
3413   // remove it from the cache. Note, the call to 'get' might invalidate
3414   // the iterator and the LazyDeclPtr object within the map.
3415   LazyDeclPtr Ptr = I->second;
3416   if (Ptr.get(getExternalSource()) == Method) {
3417     // FIXME: remember that we did this for module / chained PCH state?
3418     KeyFunctions.erase(Method->getParent());
3419   }
3420 }
3421 
3422 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3423   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3424   return Layout.getFieldOffset(FD->getFieldIndex());
3425 }
3426 
3427 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3428   uint64_t OffsetInBits;
3429   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3430     OffsetInBits = ::getFieldOffset(*this, FD);
3431   } else {
3432     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3433 
3434     OffsetInBits = 0;
3435     for (const NamedDecl *ND : IFD->chain())
3436       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3437   }
3438 
3439   return OffsetInBits;
3440 }
3441 
3442 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3443                                           const ObjCImplementationDecl *ID,
3444                                           const ObjCIvarDecl *Ivar) const {
3445   Ivar = Ivar->getCanonicalDecl();
3446   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3447 
3448   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3449   // in here; it should never be necessary because that should be the lexical
3450   // decl context for the ivar.
3451 
3452   // If we know have an implementation (and the ivar is in it) then
3453   // look up in the implementation layout.
3454   const ASTRecordLayout *RL;
3455   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3456     RL = &getASTObjCImplementationLayout(ID);
3457   else
3458     RL = &getASTObjCInterfaceLayout(Container);
3459 
3460   // Compute field index.
3461   //
3462   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3463   // implemented. This should be fixed to get the information from the layout
3464   // directly.
3465   unsigned Index = 0;
3466 
3467   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3468        IVD; IVD = IVD->getNextIvar()) {
3469     if (Ivar == IVD)
3470       break;
3471     ++Index;
3472   }
3473   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3474 
3475   return RL->getFieldOffset(Index);
3476 }
3477 
3478 /// getObjCLayout - Get or compute information about the layout of the
3479 /// given interface.
3480 ///
3481 /// \param Impl - If given, also include the layout of the interface's
3482 /// implementation. This may differ by including synthesized ivars.
3483 const ASTRecordLayout &
3484 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3485                           const ObjCImplementationDecl *Impl) const {
3486   // Retrieve the definition
3487   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3488     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3489   D = D->getDefinition();
3490   assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3491          "Invalid interface decl!");
3492 
3493   // Look up this layout, if already laid out, return what we have.
3494   const ObjCContainerDecl *Key =
3495     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3496   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3497     return *Entry;
3498 
3499   // Add in synthesized ivar count if laying out an implementation.
3500   if (Impl) {
3501     unsigned SynthCount = CountNonClassIvars(D);
3502     // If there aren't any synthesized ivars then reuse the interface
3503     // entry. Note we can't cache this because we simply free all
3504     // entries later; however we shouldn't look up implementations
3505     // frequently.
3506     if (SynthCount == 0)
3507       return getObjCLayout(D, nullptr);
3508   }
3509 
3510   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3511   Builder.Layout(D);
3512 
3513   const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3514       *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3515       Builder.UnadjustedAlignment,
3516       /*RequiredAlignment : used by MS-ABI)*/
3517       Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3518 
3519   ObjCLayouts[Key] = NewEntry;
3520 
3521   return *NewEntry;
3522 }
3523 
3524 static void PrintOffset(raw_ostream &OS,
3525                         CharUnits Offset, unsigned IndentLevel) {
3526   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3527   OS.indent(IndentLevel * 2);
3528 }
3529 
3530 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3531                                 unsigned Begin, unsigned Width,
3532                                 unsigned IndentLevel) {
3533   llvm::SmallString<10> Buffer;
3534   {
3535     llvm::raw_svector_ostream BufferOS(Buffer);
3536     BufferOS << Offset.getQuantity() << ':';
3537     if (Width == 0) {
3538       BufferOS << '-';
3539     } else {
3540       BufferOS << Begin << '-' << (Begin + Width - 1);
3541     }
3542   }
3543 
3544   OS << llvm::right_justify(Buffer, 10) << " | ";
3545   OS.indent(IndentLevel * 2);
3546 }
3547 
3548 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3549   OS << "           | ";
3550   OS.indent(IndentLevel * 2);
3551 }
3552 
3553 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3554                              const ASTContext &C,
3555                              CharUnits Offset,
3556                              unsigned IndentLevel,
3557                              const char* Description,
3558                              bool PrintSizeInfo,
3559                              bool IncludeVirtualBases) {
3560   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3561   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3562 
3563   PrintOffset(OS, Offset, IndentLevel);
3564   OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD));
3565   if (Description)
3566     OS << ' ' << Description;
3567   if (CXXRD && CXXRD->isEmpty())
3568     OS << " (empty)";
3569   OS << '\n';
3570 
3571   IndentLevel++;
3572 
3573   // Dump bases.
3574   if (CXXRD) {
3575     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3576     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3577     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3578 
3579     // Vtable pointer.
3580     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3581       PrintOffset(OS, Offset, IndentLevel);
3582       OS << '(' << *RD << " vtable pointer)\n";
3583     } else if (HasOwnVFPtr) {
3584       PrintOffset(OS, Offset, IndentLevel);
3585       // vfptr (for Microsoft C++ ABI)
3586       OS << '(' << *RD << " vftable pointer)\n";
3587     }
3588 
3589     // Collect nvbases.
3590     SmallVector<const CXXRecordDecl *, 4> Bases;
3591     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3592       assert(!Base.getType()->isDependentType() &&
3593              "Cannot layout class with dependent bases.");
3594       if (!Base.isVirtual())
3595         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3596     }
3597 
3598     // Sort nvbases by offset.
3599     llvm::stable_sort(
3600         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3601           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3602         });
3603 
3604     // Dump (non-virtual) bases
3605     for (const CXXRecordDecl *Base : Bases) {
3606       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3607       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3608                        Base == PrimaryBase ? "(primary base)" : "(base)",
3609                        /*PrintSizeInfo=*/false,
3610                        /*IncludeVirtualBases=*/false);
3611     }
3612 
3613     // vbptr (for Microsoft C++ ABI)
3614     if (HasOwnVBPtr) {
3615       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3616       OS << '(' << *RD << " vbtable pointer)\n";
3617     }
3618   }
3619 
3620   // Dump fields.
3621   uint64_t FieldNo = 0;
3622   for (RecordDecl::field_iterator I = RD->field_begin(),
3623          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3624     const FieldDecl &Field = **I;
3625     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3626     CharUnits FieldOffset =
3627       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3628 
3629     // Recursively dump fields of record type.
3630     if (auto RT = Field.getType()->getAs<RecordType>()) {
3631       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3632                        Field.getName().data(),
3633                        /*PrintSizeInfo=*/false,
3634                        /*IncludeVirtualBases=*/true);
3635       continue;
3636     }
3637 
3638     if (Field.isBitField()) {
3639       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3640       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3641       unsigned Width = Field.getBitWidthValue(C);
3642       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3643     } else {
3644       PrintOffset(OS, FieldOffset, IndentLevel);
3645     }
3646     const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3647                                     ? Field.getType().getCanonicalType()
3648                                     : Field.getType();
3649     OS << FieldType << ' ' << Field << '\n';
3650   }
3651 
3652   // Dump virtual bases.
3653   if (CXXRD && IncludeVirtualBases) {
3654     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3655       Layout.getVBaseOffsetsMap();
3656 
3657     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3658       assert(Base.isVirtual() && "Found non-virtual class!");
3659       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3660 
3661       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3662 
3663       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3664         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3665         OS << "(vtordisp for vbase " << *VBase << ")\n";
3666       }
3667 
3668       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3669                        VBase == Layout.getPrimaryBase() ?
3670                          "(primary virtual base)" : "(virtual base)",
3671                        /*PrintSizeInfo=*/false,
3672                        /*IncludeVirtualBases=*/false);
3673     }
3674   }
3675 
3676   if (!PrintSizeInfo) return;
3677 
3678   PrintIndentNoOffset(OS, IndentLevel - 1);
3679   OS << "[sizeof=" << Layout.getSize().getQuantity();
3680   if (CXXRD && !isMsLayout(C))
3681     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3682   OS << ", align=" << Layout.getAlignment().getQuantity();
3683   if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3684     OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3685 
3686   if (CXXRD) {
3687     OS << ",\n";
3688     PrintIndentNoOffset(OS, IndentLevel - 1);
3689     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3690     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3691     if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3692       OS << ", preferrednvalign="
3693          << Layout.getPreferredNVAlignment().getQuantity();
3694   }
3695   OS << "]\n";
3696 }
3697 
3698 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3699                                   bool Simple) const {
3700   if (!Simple) {
3701     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3702                        /*PrintSizeInfo*/ true,
3703                        /*IncludeVirtualBases=*/true);
3704     return;
3705   }
3706 
3707   // The "simple" format is designed to be parsed by the
3708   // layout-override testing code.  There shouldn't be any external
3709   // uses of this format --- when LLDB overrides a layout, it sets up
3710   // the data structures directly --- so feel free to adjust this as
3711   // you like as long as you also update the rudimentary parser for it
3712   // in libFrontend.
3713 
3714   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3715   OS << "Type: " << getTypeDeclType(RD) << "\n";
3716   OS << "\nLayout: ";
3717   OS << "<ASTRecordLayout\n";
3718   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3719   if (!isMsLayout(*this))
3720     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3721   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3722   if (Target->defaultsToAIXPowerAlignment())
3723     OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3724        << "\n";
3725   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3726     OS << "  BaseOffsets: [";
3727     const CXXRecordDecl *Base = nullptr;
3728     for (auto I : CXXRD->bases()) {
3729       if (I.isVirtual())
3730         continue;
3731       if (Base)
3732         OS << ", ";
3733       Base = I.getType()->getAsCXXRecordDecl();
3734       OS << Info.CXXInfo->BaseOffsets[Base].getQuantity();
3735     }
3736     OS << "]>\n";
3737     OS << "  VBaseOffsets: [";
3738     const CXXRecordDecl *VBase = nullptr;
3739     for (auto I : CXXRD->vbases()) {
3740       if (VBase)
3741         OS << ", ";
3742       VBase = I.getType()->getAsCXXRecordDecl();
3743       OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity();
3744     }
3745     OS << "]>\n";
3746   }
3747   OS << "  FieldOffsets: [";
3748   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3749     if (i)
3750       OS << ", ";
3751     OS << Info.getFieldOffset(i);
3752   }
3753   OS << "]>\n";
3754 }
3755