xref: /freebsd/contrib/llvm-project/clang/lib/AST/RecordLayoutBuilder.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61   ExternalLayout() = default;
62 
63   /// Overall record size in bits.
64   uint64_t Size = 0;
65 
66   /// Overall record alignment in bits.
67   uint64_t Align = 0;
68 
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71 
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74 
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77 
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85 
86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93 
94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102 
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108 
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111 
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116 
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120 
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124 
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126 
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129 
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class, CharUnits Offset,
132                                   bool PlacingOverlappingField);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                   bool PlacingOverlappingField);
135 
136   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137   /// subobjects beyond the given offset.
138   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139     return Offset <= MaxEmptyClassOffset;
140   }
141 
142   CharUnits
143   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145     assert(FieldOffset % CharWidth == 0 &&
146            "Field offset not at char boundary!");
147 
148     return Context.toCharUnitsFromBits(FieldOffset);
149   }
150 
151 protected:
152   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                  CharUnits Offset) const;
154 
155   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                      CharUnits Offset);
157 
158   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                       const CXXRecordDecl *Class,
160                                       CharUnits Offset) const;
161   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                       CharUnits Offset) const;
163 
164 public:
165   /// This holds the size of the largest empty subobject (either a base
166   /// or a member). Will be zero if the record being built doesn't contain
167   /// any empty classes.
168   CharUnits SizeOfLargestEmptySubobject;
169 
170   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172       ComputeEmptySubobjectSizes();
173   }
174 
175   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176   /// at the given offset.
177   /// Returns false if placing the record will result in two components
178   /// (direct or indirect) of the same type having the same offset.
179   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                             CharUnits Offset);
181 
182   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183   /// offset.
184   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186 
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188   // Check the bases.
189   for (const CXXBaseSpecifier &Base : Class->bases()) {
190     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191 
192     CharUnits EmptySize;
193     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194     if (BaseDecl->isEmpty()) {
195       // If the class decl is empty, get its size.
196       EmptySize = Layout.getSize();
197     } else {
198       // Otherwise, we get the largest empty subobject for the decl.
199       EmptySize = Layout.getSizeOfLargestEmptySubobject();
200     }
201 
202     if (EmptySize > SizeOfLargestEmptySubobject)
203       SizeOfLargestEmptySubobject = EmptySize;
204   }
205 
206   // Check the fields.
207   for (const FieldDecl *FD : Class->fields()) {
208     const RecordType *RT =
209         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210 
211     // We only care about record types.
212     if (!RT)
213       continue;
214 
215     CharUnits EmptySize;
216     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218     if (MemberDecl->isEmpty()) {
219       // If the class decl is empty, get its size.
220       EmptySize = Layout.getSize();
221     } else {
222       // Otherwise, we get the largest empty subobject for the decl.
223       EmptySize = Layout.getSizeOfLargestEmptySubobject();
224     }
225 
226     if (EmptySize > SizeOfLargestEmptySubobject)
227       SizeOfLargestEmptySubobject = EmptySize;
228   }
229 }
230 
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                              CharUnits Offset) const {
234   // We only need to check empty bases.
235   if (!RD->isEmpty())
236     return true;
237 
238   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239   if (I == EmptyClassOffsets.end())
240     return true;
241 
242   const ClassVectorTy &Classes = I->second;
243   if (!llvm::is_contained(Classes, RD))
244     return true;
245 
246   // There is already an empty class of the same type at this offset.
247   return false;
248 }
249 
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                              CharUnits Offset) {
252   // We only care about empty bases.
253   if (!RD->isEmpty())
254     return;
255 
256   // If we have empty structures inside a union, we can assign both
257   // the same offset. Just avoid pushing them twice in the list.
258   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259   if (llvm::is_contained(Classes, RD))
260     return;
261 
262   Classes.push_back(RD);
263 
264   // Update the empty class offset.
265   if (Offset > MaxEmptyClassOffset)
266     MaxEmptyClassOffset = Offset;
267 }
268 
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                  CharUnits Offset) {
272   // We don't have to keep looking past the maximum offset that's known to
273   // contain an empty class.
274   if (!AnyEmptySubobjectsBeyondOffset(Offset))
275     return true;
276 
277   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278     return false;
279 
280   // Traverse all non-virtual bases.
281   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282   for (const BaseSubobjectInfo *Base : Info->Bases) {
283     if (Base->IsVirtual)
284       continue;
285 
286     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287 
288     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289       return false;
290   }
291 
292   if (Info->PrimaryVirtualBaseInfo) {
293     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294 
295     if (Info == PrimaryVirtualBaseInfo->Derived) {
296       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297         return false;
298     }
299   }
300 
301   // Traverse all member variables.
302   unsigned FieldNo = 0;
303   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305     if (I->isBitField())
306       continue;
307 
308     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310       return false;
311   }
312 
313   return true;
314 }
315 
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                   CharUnits Offset,
318                                                   bool PlacingEmptyBase) {
319   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320     // We know that the only empty subobjects that can conflict with empty
321     // subobject of non-empty bases, are empty bases that can be placed at
322     // offset zero. Because of this, we only need to keep track of empty base
323     // subobjects with offsets less than the size of the largest empty
324     // subobject for our class.
325     return;
326   }
327 
328   AddSubobjectAtOffset(Info->Class, Offset);
329 
330   // Traverse all non-virtual bases.
331   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332   for (const BaseSubobjectInfo *Base : Info->Bases) {
333     if (Base->IsVirtual)
334       continue;
335 
336     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338   }
339 
340   if (Info->PrimaryVirtualBaseInfo) {
341     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342 
343     if (Info == PrimaryVirtualBaseInfo->Derived)
344       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                 PlacingEmptyBase);
346   }
347 
348   // Traverse all member variables.
349   unsigned FieldNo = 0;
350   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352     if (I->isBitField())
353       continue;
354 
355     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357   }
358 }
359 
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                              CharUnits Offset) {
362   // If we know this class doesn't have any empty subobjects we don't need to
363   // bother checking.
364   if (SizeOfLargestEmptySubobject.isZero())
365     return true;
366 
367   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368     return false;
369 
370   // We are able to place the base at this offset. Make sure to update the
371   // empty base subobject map.
372   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373   return true;
374 }
375 
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                   const CXXRecordDecl *Class,
379                                                   CharUnits Offset) const {
380   // We don't have to keep looking past the maximum offset that's known to
381   // contain an empty class.
382   if (!AnyEmptySubobjectsBeyondOffset(Offset))
383     return true;
384 
385   if (!CanPlaceSubobjectAtOffset(RD, Offset))
386     return false;
387 
388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389 
390   // Traverse all non-virtual bases.
391   for (const CXXBaseSpecifier &Base : RD->bases()) {
392     if (Base.isVirtual())
393       continue;
394 
395     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396 
397     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399       return false;
400   }
401 
402   if (RD == Class) {
403     // This is the most derived class, traverse virtual bases as well.
404     for (const CXXBaseSpecifier &Base : RD->vbases()) {
405       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406 
407       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409         return false;
410     }
411   }
412 
413   // Traverse all member variables.
414   unsigned FieldNo = 0;
415   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416        I != E; ++I, ++FieldNo) {
417     if (I->isBitField())
418       continue;
419 
420     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421 
422     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423       return false;
424   }
425 
426   return true;
427 }
428 
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                   CharUnits Offset) const {
432   // We don't have to keep looking past the maximum offset that's known to
433   // contain an empty class.
434   if (!AnyEmptySubobjectsBeyondOffset(Offset))
435     return true;
436 
437   QualType T = FD->getType();
438   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440 
441   // If we have an array type we need to look at every element.
442   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443     QualType ElemTy = Context.getBaseElementType(AT);
444     const RecordType *RT = ElemTy->getAs<RecordType>();
445     if (!RT)
446       return true;
447 
448     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 
451     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452     CharUnits ElementOffset = Offset;
453     for (uint64_t I = 0; I != NumElements; ++I) {
454       // We don't have to keep looking past the maximum offset that's known to
455       // contain an empty class.
456       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457         return true;
458 
459       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460         return false;
461 
462       ElementOffset += Layout.getSize();
463     }
464   }
465 
466   return true;
467 }
468 
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                          CharUnits Offset) {
472   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473     return false;
474 
475   // We are able to place the member variable at this offset.
476   // Make sure to update the empty field subobject map.
477   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478   return true;
479 }
480 
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483     bool PlacingOverlappingField) {
484   // We know that the only empty subobjects that can conflict with empty
485   // field subobjects are subobjects of empty bases and potentially-overlapping
486   // fields that can be placed at offset zero. Because of this, we only need to
487   // keep track of empty field subobjects with offsets less than the size of
488   // the largest empty subobject for our class.
489   //
490   // (Proof: we will only consider placing a subobject at offset zero or at
491   // >= the current dsize. The only cases where the earlier subobject can be
492   // placed beyond the end of dsize is if it's an empty base or a
493   // potentially-overlapping field.)
494   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495     return;
496 
497   AddSubobjectAtOffset(RD, Offset);
498 
499   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500 
501   // Traverse all non-virtual bases.
502   for (const CXXBaseSpecifier &Base : RD->bases()) {
503     if (Base.isVirtual())
504       continue;
505 
506     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507 
508     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                                PlacingOverlappingField);
511   }
512 
513   if (RD == Class) {
514     // This is the most derived class, traverse virtual bases as well.
515     for (const CXXBaseSpecifier &Base : RD->vbases()) {
516       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517 
518       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                  PlacingOverlappingField);
521     }
522   }
523 
524   // Traverse all member variables.
525   unsigned FieldNo = 0;
526   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527        I != E; ++I, ++FieldNo) {
528     if (I->isBitField())
529       continue;
530 
531     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532 
533     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534   }
535 }
536 
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539   QualType T = FD->getType();
540   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542     return;
543   }
544 
545   // If we have an array type we need to update every element.
546   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547     QualType ElemTy = Context.getBaseElementType(AT);
548     const RecordType *RT = ElemTy->getAs<RecordType>();
549     if (!RT)
550       return;
551 
552     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554 
555     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556     CharUnits ElementOffset = Offset;
557 
558     for (uint64_t I = 0; I != NumElements; ++I) {
559       // We know that the only empty subobjects that can conflict with empty
560       // field subobjects are subobjects of empty bases that can be placed at
561       // offset zero. Because of this, we only need to keep track of empty field
562       // subobjects with offsets less than the size of the largest empty
563       // subobject for our class.
564       if (!PlacingOverlappingField &&
565           ElementOffset >= SizeOfLargestEmptySubobject)
566         return;
567 
568       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                  PlacingOverlappingField);
570       ElementOffset += Layout.getSize();
571     }
572   }
573 }
574 
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576 
577 class ItaniumRecordLayoutBuilder {
578 protected:
579   // FIXME: Remove this and make the appropriate fields public.
580   friend class clang::ASTContext;
581 
582   const ASTContext &Context;
583 
584   EmptySubobjectMap *EmptySubobjects;
585 
586   /// Size - The current size of the record layout.
587   uint64_t Size;
588 
589   /// Alignment - The current alignment of the record layout.
590   CharUnits Alignment;
591 
592   /// PreferredAlignment - The preferred alignment of the record layout.
593   CharUnits PreferredAlignment;
594 
595   /// The alignment if attribute packed is not used.
596   CharUnits UnpackedAlignment;
597 
598   /// \brief The maximum of the alignments of top-level members.
599   CharUnits UnadjustedAlignment;
600 
601   SmallVector<uint64_t, 16> FieldOffsets;
602 
603   /// Whether the external AST source has provided a layout for this
604   /// record.
605   LLVM_PREFERRED_TYPE(bool)
606   unsigned UseExternalLayout : 1;
607 
608   /// Whether we need to infer alignment, even when we have an
609   /// externally-provided layout.
610   LLVM_PREFERRED_TYPE(bool)
611   unsigned InferAlignment : 1;
612 
613   /// Packed - Whether the record is packed or not.
614   LLVM_PREFERRED_TYPE(bool)
615   unsigned Packed : 1;
616 
617   LLVM_PREFERRED_TYPE(bool)
618   unsigned IsUnion : 1;
619 
620   LLVM_PREFERRED_TYPE(bool)
621   unsigned IsMac68kAlign : 1;
622 
623   LLVM_PREFERRED_TYPE(bool)
624   unsigned IsNaturalAlign : 1;
625 
626   LLVM_PREFERRED_TYPE(bool)
627   unsigned IsMsStruct : 1;
628 
629   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
630   /// this contains the number of bits in the last unit that can be used for
631   /// an adjacent bitfield if necessary.  The unit in question is usually
632   /// a byte, but larger units are used if IsMsStruct.
633   unsigned char UnfilledBitsInLastUnit;
634 
635   /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
636   /// storage unit of the previous field if it was a bitfield.
637   unsigned char LastBitfieldStorageUnitSize;
638 
639   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
640   /// #pragma pack.
641   CharUnits MaxFieldAlignment;
642 
643   /// DataSize - The data size of the record being laid out.
644   uint64_t DataSize;
645 
646   CharUnits NonVirtualSize;
647   CharUnits NonVirtualAlignment;
648   CharUnits PreferredNVAlignment;
649 
650   /// If we've laid out a field but not included its tail padding in Size yet,
651   /// this is the size up to the end of that field.
652   CharUnits PaddedFieldSize;
653 
654   /// PrimaryBase - the primary base class (if one exists) of the class
655   /// we're laying out.
656   const CXXRecordDecl *PrimaryBase;
657 
658   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
659   /// out is virtual.
660   bool PrimaryBaseIsVirtual;
661 
662   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
663   /// pointer, as opposed to inheriting one from a primary base class.
664   bool HasOwnVFPtr;
665 
666   /// the flag of field offset changing due to packed attribute.
667   bool HasPackedField;
668 
669   /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
670   /// When there are OverlappingEmptyFields existing in the aggregate, the
671   /// flag shows if the following first non-empty or empty-but-non-overlapping
672   /// field has been handled, if any.
673   bool HandledFirstNonOverlappingEmptyField;
674 
675   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
676 
677   /// Bases - base classes and their offsets in the record.
678   BaseOffsetsMapTy Bases;
679 
680   // VBases - virtual base classes and their offsets in the record.
681   ASTRecordLayout::VBaseOffsetsMapTy VBases;
682 
683   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
684   /// primary base classes for some other direct or indirect base class.
685   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
686 
687   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
688   /// inheritance graph order. Used for determining the primary base class.
689   const CXXRecordDecl *FirstNearlyEmptyVBase;
690 
691   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
692   /// avoid visiting virtual bases more than once.
693   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
694 
695   /// Valid if UseExternalLayout is true.
696   ExternalLayout External;
697 
698   ItaniumRecordLayoutBuilder(const ASTContext &Context,
699                              EmptySubobjectMap *EmptySubobjects)
700       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
701         Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
702         UnpackedAlignment(CharUnits::One()),
703         UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
704         InferAlignment(false), Packed(false), IsUnion(false),
705         IsMac68kAlign(false),
706         IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
707         IsMsStruct(false), UnfilledBitsInLastUnit(0),
708         LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
709         DataSize(0), NonVirtualSize(CharUnits::Zero()),
710         NonVirtualAlignment(CharUnits::One()),
711         PreferredNVAlignment(CharUnits::One()),
712         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
713         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
714         HandledFirstNonOverlappingEmptyField(false),
715         FirstNearlyEmptyVBase(nullptr) {}
716 
717   void Layout(const RecordDecl *D);
718   void Layout(const CXXRecordDecl *D);
719   void Layout(const ObjCInterfaceDecl *D);
720 
721   void LayoutFields(const RecordDecl *D);
722   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
723   void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
724                           bool FieldPacked, const FieldDecl *D);
725   void LayoutBitField(const FieldDecl *D);
726 
727   TargetCXXABI getCXXABI() const {
728     return Context.getTargetInfo().getCXXABI();
729   }
730 
731   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
732   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
733 
734   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
735     BaseSubobjectInfoMapTy;
736 
737   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
738   /// of the class we're laying out to their base subobject info.
739   BaseSubobjectInfoMapTy VirtualBaseInfo;
740 
741   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
742   /// class we're laying out to their base subobject info.
743   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
744 
745   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
746   /// bases of the given class.
747   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
748 
749   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
750   /// single class and all of its base classes.
751   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
752                                               bool IsVirtual,
753                                               BaseSubobjectInfo *Derived);
754 
755   /// DeterminePrimaryBase - Determine the primary base of the given class.
756   void DeterminePrimaryBase(const CXXRecordDecl *RD);
757 
758   void SelectPrimaryVBase(const CXXRecordDecl *RD);
759 
760   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
761 
762   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
763   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
764   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
765 
766   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
767   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
768 
769   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
770                                     CharUnits Offset);
771 
772   /// LayoutVirtualBases - Lays out all the virtual bases.
773   void LayoutVirtualBases(const CXXRecordDecl *RD,
774                           const CXXRecordDecl *MostDerivedClass);
775 
776   /// LayoutVirtualBase - Lays out a single virtual base.
777   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
778 
779   /// LayoutBase - Will lay out a base and return the offset where it was
780   /// placed, in chars.
781   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
782 
783   /// InitializeLayout - Initialize record layout for the given record decl.
784   void InitializeLayout(const Decl *D);
785 
786   /// FinishLayout - Finalize record layout. Adjust record size based on the
787   /// alignment.
788   void FinishLayout(const NamedDecl *D);
789 
790   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
791                        CharUnits PreferredAlignment);
792   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
793     UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
794   }
795   void UpdateAlignment(CharUnits NewAlignment) {
796     UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
797   }
798 
799   /// Retrieve the externally-supplied field offset for the given
800   /// field.
801   ///
802   /// \param Field The field whose offset is being queried.
803   /// \param ComputedOffset The offset that we've computed for this field.
804   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
805                                      uint64_t ComputedOffset);
806 
807   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
808                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
809                           bool isPacked, const FieldDecl *D);
810 
811   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
812 
813   CharUnits getSize() const {
814     assert(Size % Context.getCharWidth() == 0);
815     return Context.toCharUnitsFromBits(Size);
816   }
817   uint64_t getSizeInBits() const { return Size; }
818 
819   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
820   void setSize(uint64_t NewSize) { Size = NewSize; }
821 
822   CharUnits getAligment() const { return Alignment; }
823 
824   CharUnits getDataSize() const {
825     assert(DataSize % Context.getCharWidth() == 0);
826     return Context.toCharUnitsFromBits(DataSize);
827   }
828   uint64_t getDataSizeInBits() const { return DataSize; }
829 
830   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
831   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
832 
833   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
834   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
835 };
836 } // end anonymous namespace
837 
838 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
839   for (const auto &I : RD->bases()) {
840     assert(!I.getType()->isDependentType() &&
841            "Cannot layout class with dependent bases.");
842 
843     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
844 
845     // Check if this is a nearly empty virtual base.
846     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
847       // If it's not an indirect primary base, then we've found our primary
848       // base.
849       if (!IndirectPrimaryBases.count(Base)) {
850         PrimaryBase = Base;
851         PrimaryBaseIsVirtual = true;
852         return;
853       }
854 
855       // Is this the first nearly empty virtual base?
856       if (!FirstNearlyEmptyVBase)
857         FirstNearlyEmptyVBase = Base;
858     }
859 
860     SelectPrimaryVBase(Base);
861     if (PrimaryBase)
862       return;
863   }
864 }
865 
866 /// DeterminePrimaryBase - Determine the primary base of the given class.
867 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
868   // If the class isn't dynamic, it won't have a primary base.
869   if (!RD->isDynamicClass())
870     return;
871 
872   // Compute all the primary virtual bases for all of our direct and
873   // indirect bases, and record all their primary virtual base classes.
874   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
875 
876   // If the record has a dynamic base class, attempt to choose a primary base
877   // class. It is the first (in direct base class order) non-virtual dynamic
878   // base class, if one exists.
879   for (const auto &I : RD->bases()) {
880     // Ignore virtual bases.
881     if (I.isVirtual())
882       continue;
883 
884     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
885 
886     if (Base->isDynamicClass()) {
887       // We found it.
888       PrimaryBase = Base;
889       PrimaryBaseIsVirtual = false;
890       return;
891     }
892   }
893 
894   // Under the Itanium ABI, if there is no non-virtual primary base class,
895   // try to compute the primary virtual base.  The primary virtual base is
896   // the first nearly empty virtual base that is not an indirect primary
897   // virtual base class, if one exists.
898   if (RD->getNumVBases() != 0) {
899     SelectPrimaryVBase(RD);
900     if (PrimaryBase)
901       return;
902   }
903 
904   // Otherwise, it is the first indirect primary base class, if one exists.
905   if (FirstNearlyEmptyVBase) {
906     PrimaryBase = FirstNearlyEmptyVBase;
907     PrimaryBaseIsVirtual = true;
908     return;
909   }
910 
911   assert(!PrimaryBase && "Should not get here with a primary base!");
912 }
913 
914 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
915     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
916   BaseSubobjectInfo *Info;
917 
918   if (IsVirtual) {
919     // Check if we already have info about this virtual base.
920     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
921     if (InfoSlot) {
922       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
923       return InfoSlot;
924     }
925 
926     // We don't, create it.
927     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
928     Info = InfoSlot;
929   } else {
930     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
931   }
932 
933   Info->Class = RD;
934   Info->IsVirtual = IsVirtual;
935   Info->Derived = nullptr;
936   Info->PrimaryVirtualBaseInfo = nullptr;
937 
938   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
939   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
940 
941   // Check if this base has a primary virtual base.
942   if (RD->getNumVBases()) {
943     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
944     if (Layout.isPrimaryBaseVirtual()) {
945       // This base does have a primary virtual base.
946       PrimaryVirtualBase = Layout.getPrimaryBase();
947       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
948 
949       // Now check if we have base subobject info about this primary base.
950       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
951 
952       if (PrimaryVirtualBaseInfo) {
953         if (PrimaryVirtualBaseInfo->Derived) {
954           // We did have info about this primary base, and it turns out that it
955           // has already been claimed as a primary virtual base for another
956           // base.
957           PrimaryVirtualBase = nullptr;
958         } else {
959           // We can claim this base as our primary base.
960           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
961           PrimaryVirtualBaseInfo->Derived = Info;
962         }
963       }
964     }
965   }
966 
967   // Now go through all direct bases.
968   for (const auto &I : RD->bases()) {
969     bool IsVirtual = I.isVirtual();
970 
971     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
972 
973     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
974   }
975 
976   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
977     // Traversing the bases must have created the base info for our primary
978     // virtual base.
979     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
980     assert(PrimaryVirtualBaseInfo &&
981            "Did not create a primary virtual base!");
982 
983     // Claim the primary virtual base as our primary virtual base.
984     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
985     PrimaryVirtualBaseInfo->Derived = Info;
986   }
987 
988   return Info;
989 }
990 
991 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
992     const CXXRecordDecl *RD) {
993   for (const auto &I : RD->bases()) {
994     bool IsVirtual = I.isVirtual();
995 
996     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
997 
998     // Compute the base subobject info for this base.
999     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
1000                                                        nullptr);
1001 
1002     if (IsVirtual) {
1003       // ComputeBaseInfo has already added this base for us.
1004       assert(VirtualBaseInfo.count(BaseDecl) &&
1005              "Did not add virtual base!");
1006     } else {
1007       // Add the base info to the map of non-virtual bases.
1008       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1009              "Non-virtual base already exists!");
1010       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1011     }
1012   }
1013 }
1014 
1015 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1016     CharUnits UnpackedBaseAlign) {
1017   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1018 
1019   // The maximum field alignment overrides base align.
1020   if (!MaxFieldAlignment.isZero()) {
1021     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1022     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1023   }
1024 
1025   // Round up the current record size to pointer alignment.
1026   setSize(getSize().alignTo(BaseAlign));
1027 
1028   // Update the alignment.
1029   UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1030 }
1031 
1032 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1033     const CXXRecordDecl *RD) {
1034   // Then, determine the primary base class.
1035   DeterminePrimaryBase(RD);
1036 
1037   // Compute base subobject info.
1038   ComputeBaseSubobjectInfo(RD);
1039 
1040   // If we have a primary base class, lay it out.
1041   if (PrimaryBase) {
1042     if (PrimaryBaseIsVirtual) {
1043       // If the primary virtual base was a primary virtual base of some other
1044       // base class we'll have to steal it.
1045       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1046       PrimaryBaseInfo->Derived = nullptr;
1047 
1048       // We have a virtual primary base, insert it as an indirect primary base.
1049       IndirectPrimaryBases.insert(PrimaryBase);
1050 
1051       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1052              "vbase already visited!");
1053       VisitedVirtualBases.insert(PrimaryBase);
1054 
1055       LayoutVirtualBase(PrimaryBaseInfo);
1056     } else {
1057       BaseSubobjectInfo *PrimaryBaseInfo =
1058         NonVirtualBaseInfo.lookup(PrimaryBase);
1059       assert(PrimaryBaseInfo &&
1060              "Did not find base info for non-virtual primary base!");
1061 
1062       LayoutNonVirtualBase(PrimaryBaseInfo);
1063     }
1064 
1065   // If this class needs a vtable/vf-table and didn't get one from a
1066   // primary base, add it in now.
1067   } else if (RD->isDynamicClass()) {
1068     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1069     CharUnits PtrWidth = Context.toCharUnitsFromBits(
1070         Context.getTargetInfo().getPointerWidth(LangAS::Default));
1071     CharUnits PtrAlign = Context.toCharUnitsFromBits(
1072         Context.getTargetInfo().getPointerAlign(LangAS::Default));
1073     EnsureVTablePointerAlignment(PtrAlign);
1074     HasOwnVFPtr = true;
1075 
1076     assert(!IsUnion && "Unions cannot be dynamic classes.");
1077     HandledFirstNonOverlappingEmptyField = true;
1078 
1079     setSize(getSize() + PtrWidth);
1080     setDataSize(getSize());
1081   }
1082 
1083   // Now lay out the non-virtual bases.
1084   for (const auto &I : RD->bases()) {
1085 
1086     // Ignore virtual bases.
1087     if (I.isVirtual())
1088       continue;
1089 
1090     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1091 
1092     // Skip the primary base, because we've already laid it out.  The
1093     // !PrimaryBaseIsVirtual check is required because we might have a
1094     // non-virtual base of the same type as a primary virtual base.
1095     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1096       continue;
1097 
1098     // Lay out the base.
1099     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1100     assert(BaseInfo && "Did not find base info for non-virtual base!");
1101 
1102     LayoutNonVirtualBase(BaseInfo);
1103   }
1104 }
1105 
1106 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1107     const BaseSubobjectInfo *Base) {
1108   // Layout the base.
1109   CharUnits Offset = LayoutBase(Base);
1110 
1111   // Add its base class offset.
1112   assert(!Bases.count(Base->Class) && "base offset already exists!");
1113   Bases.insert(std::make_pair(Base->Class, Offset));
1114 
1115   AddPrimaryVirtualBaseOffsets(Base, Offset);
1116 }
1117 
1118 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1119     const BaseSubobjectInfo *Info, CharUnits Offset) {
1120   // This base isn't interesting, it has no virtual bases.
1121   if (!Info->Class->getNumVBases())
1122     return;
1123 
1124   // First, check if we have a virtual primary base to add offsets for.
1125   if (Info->PrimaryVirtualBaseInfo) {
1126     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1127            "Primary virtual base is not virtual!");
1128     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1129       // Add the offset.
1130       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1131              "primary vbase offset already exists!");
1132       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1133                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1134 
1135       // Traverse the primary virtual base.
1136       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1137     }
1138   }
1139 
1140   // Now go through all direct non-virtual bases.
1141   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1142   for (const BaseSubobjectInfo *Base : Info->Bases) {
1143     if (Base->IsVirtual)
1144       continue;
1145 
1146     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1147     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1148   }
1149 }
1150 
1151 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1152     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1153   const CXXRecordDecl *PrimaryBase;
1154   bool PrimaryBaseIsVirtual;
1155 
1156   if (MostDerivedClass == RD) {
1157     PrimaryBase = this->PrimaryBase;
1158     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1159   } else {
1160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1161     PrimaryBase = Layout.getPrimaryBase();
1162     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1163   }
1164 
1165   for (const CXXBaseSpecifier &Base : RD->bases()) {
1166     assert(!Base.getType()->isDependentType() &&
1167            "Cannot layout class with dependent bases.");
1168 
1169     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1170 
1171     if (Base.isVirtual()) {
1172       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1173         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1174 
1175         // Only lay out the virtual base if it's not an indirect primary base.
1176         if (!IndirectPrimaryBase) {
1177           // Only visit virtual bases once.
1178           if (!VisitedVirtualBases.insert(BaseDecl).second)
1179             continue;
1180 
1181           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1182           assert(BaseInfo && "Did not find virtual base info!");
1183           LayoutVirtualBase(BaseInfo);
1184         }
1185       }
1186     }
1187 
1188     if (!BaseDecl->getNumVBases()) {
1189       // This base isn't interesting since it doesn't have any virtual bases.
1190       continue;
1191     }
1192 
1193     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1194   }
1195 }
1196 
1197 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1198     const BaseSubobjectInfo *Base) {
1199   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1200 
1201   // Layout the base.
1202   CharUnits Offset = LayoutBase(Base);
1203 
1204   // Add its base class offset.
1205   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1206   VBases.insert(std::make_pair(Base->Class,
1207                        ASTRecordLayout::VBaseInfo(Offset, false)));
1208 
1209   AddPrimaryVirtualBaseOffsets(Base, Offset);
1210 }
1211 
1212 CharUnits
1213 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1214   assert(!IsUnion && "Unions cannot have base classes.");
1215 
1216   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1217   CharUnits Offset;
1218 
1219   // Query the external layout to see if it provides an offset.
1220   bool HasExternalLayout = false;
1221   if (UseExternalLayout) {
1222     if (Base->IsVirtual)
1223       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1224     else
1225       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1226   }
1227 
1228   auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1229     // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1230     // Per GCC's documentation, it only applies to non-static data members.
1231     return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1232                         LangOptions::ClangABI::Ver6) ||
1233                        Context.getTargetInfo().getTriple().isPS() ||
1234                        Context.getTargetInfo().getTriple().isOSAIX()))
1235                ? CharUnits::One()
1236                : UnpackedAlign;
1237   };
1238 
1239   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1240   CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1241   CharUnits BaseAlign =
1242       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1243   CharUnits PreferredBaseAlign =
1244       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1245 
1246   const bool DefaultsToAIXPowerAlignment =
1247       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1248   if (DefaultsToAIXPowerAlignment) {
1249     // AIX `power` alignment does not apply the preferred alignment for
1250     // non-union classes if the source of the alignment (the current base in
1251     // this context) follows introduction of the first subobject with
1252     // exclusively allocated space or zero-extent array.
1253     if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1254       // By handling a base class that is not empty, we're handling the
1255       // "first (inherited) member".
1256       HandledFirstNonOverlappingEmptyField = true;
1257     } else if (!IsNaturalAlign) {
1258       UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1259       PreferredBaseAlign = BaseAlign;
1260     }
1261   }
1262 
1263   CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1264                                   ? UnpackedBaseAlign
1265                                   : UnpackedPreferredBaseAlign;
1266   // If we have an empty base class, try to place it at offset 0.
1267   if (Base->Class->isEmpty() &&
1268       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1269       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1270     setSize(std::max(getSize(), Layout.getSize()));
1271     // On PS4/PS5, don't update the alignment, to preserve compatibility.
1272     if (!Context.getTargetInfo().getTriple().isPS())
1273       UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1274 
1275     return CharUnits::Zero();
1276   }
1277 
1278   // The maximum field alignment overrides the base align/(AIX-only) preferred
1279   // base align.
1280   if (!MaxFieldAlignment.isZero()) {
1281     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1282     PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1283     UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1284   }
1285 
1286   CharUnits AlignTo =
1287       !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1288   if (!HasExternalLayout) {
1289     // Round up the current record size to the base's alignment boundary.
1290     Offset = getDataSize().alignTo(AlignTo);
1291 
1292     // Try to place the base.
1293     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1294       Offset += AlignTo;
1295   } else {
1296     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1297     (void)Allowed;
1298     assert(Allowed && "Base subobject externally placed at overlapping offset");
1299 
1300     if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1301       // The externally-supplied base offset is before the base offset we
1302       // computed. Assume that the structure is packed.
1303       Alignment = CharUnits::One();
1304       InferAlignment = false;
1305     }
1306   }
1307 
1308   if (!Base->Class->isEmpty()) {
1309     // Update the data size.
1310     setDataSize(Offset + Layout.getNonVirtualSize());
1311 
1312     setSize(std::max(getSize(), getDataSize()));
1313   } else
1314     setSize(std::max(getSize(), Offset + Layout.getSize()));
1315 
1316   // Remember max struct/class alignment.
1317   UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1318 
1319   return Offset;
1320 }
1321 
1322 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1323   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1324     IsUnion = RD->isUnion();
1325     IsMsStruct = RD->isMsStruct(Context);
1326   }
1327 
1328   Packed = D->hasAttr<PackedAttr>();
1329 
1330   // Honor the default struct packing maximum alignment flag.
1331   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1332     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1333   }
1334 
1335   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1336   // and forces all structures to have 2-byte alignment. The IBM docs on it
1337   // allude to additional (more complicated) semantics, especially with regard
1338   // to bit-fields, but gcc appears not to follow that.
1339   if (D->hasAttr<AlignMac68kAttr>()) {
1340     assert(
1341         !D->hasAttr<AlignNaturalAttr>() &&
1342         "Having both mac68k and natural alignment on a decl is not allowed.");
1343     IsMac68kAlign = true;
1344     MaxFieldAlignment = CharUnits::fromQuantity(2);
1345     Alignment = CharUnits::fromQuantity(2);
1346     PreferredAlignment = CharUnits::fromQuantity(2);
1347   } else {
1348     if (D->hasAttr<AlignNaturalAttr>())
1349       IsNaturalAlign = true;
1350 
1351     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1352       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1353 
1354     if (unsigned MaxAlign = D->getMaxAlignment())
1355       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1356   }
1357 
1358   HandledFirstNonOverlappingEmptyField =
1359       !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1360 
1361   // If there is an external AST source, ask it for the various offsets.
1362   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1363     if (ExternalASTSource *Source = Context.getExternalSource()) {
1364       UseExternalLayout = Source->layoutRecordType(
1365           RD, External.Size, External.Align, External.FieldOffsets,
1366           External.BaseOffsets, External.VirtualBaseOffsets);
1367 
1368       // Update based on external alignment.
1369       if (UseExternalLayout) {
1370         if (External.Align > 0) {
1371           Alignment = Context.toCharUnitsFromBits(External.Align);
1372           PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1373         } else {
1374           // The external source didn't have alignment information; infer it.
1375           InferAlignment = true;
1376         }
1377       }
1378     }
1379 }
1380 
1381 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1382   InitializeLayout(D);
1383   LayoutFields(D);
1384 
1385   // Finally, round the size of the total struct up to the alignment of the
1386   // struct itself.
1387   FinishLayout(D);
1388 }
1389 
1390 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1391   InitializeLayout(RD);
1392 
1393   // Lay out the vtable and the non-virtual bases.
1394   LayoutNonVirtualBases(RD);
1395 
1396   LayoutFields(RD);
1397 
1398   NonVirtualSize = Context.toCharUnitsFromBits(
1399       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1400   NonVirtualAlignment = Alignment;
1401   PreferredNVAlignment = PreferredAlignment;
1402 
1403   // Lay out the virtual bases and add the primary virtual base offsets.
1404   LayoutVirtualBases(RD, RD);
1405 
1406   // Finally, round the size of the total struct up to the alignment
1407   // of the struct itself.
1408   FinishLayout(RD);
1409 
1410 #ifndef NDEBUG
1411   // Check that we have base offsets for all bases.
1412   for (const CXXBaseSpecifier &Base : RD->bases()) {
1413     if (Base.isVirtual())
1414       continue;
1415 
1416     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1417 
1418     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1419   }
1420 
1421   // And all virtual bases.
1422   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1423     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1424 
1425     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1426   }
1427 #endif
1428 }
1429 
1430 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1431   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1432     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1433 
1434     UpdateAlignment(SL.getAlignment());
1435 
1436     // We start laying out ivars not at the end of the superclass
1437     // structure, but at the next byte following the last field.
1438     setDataSize(SL.getDataSize());
1439     setSize(getDataSize());
1440   }
1441 
1442   InitializeLayout(D);
1443   // Layout each ivar sequentially.
1444   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1445        IVD = IVD->getNextIvar())
1446     LayoutField(IVD, false);
1447 
1448   // Finally, round the size of the total struct up to the alignment of the
1449   // struct itself.
1450   FinishLayout(D);
1451 }
1452 
1453 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1454   // Layout each field, for now, just sequentially, respecting alignment.  In
1455   // the future, this will need to be tweakable by targets.
1456   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1457   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1458   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1459     auto Next(I);
1460     ++Next;
1461     LayoutField(*I,
1462                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1463   }
1464 }
1465 
1466 // Rounds the specified size to have it a multiple of the char size.
1467 static uint64_t
1468 roundUpSizeToCharAlignment(uint64_t Size,
1469                            const ASTContext &Context) {
1470   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1471   return llvm::alignTo(Size, CharAlignment);
1472 }
1473 
1474 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1475                                                     uint64_t StorageUnitSize,
1476                                                     bool FieldPacked,
1477                                                     const FieldDecl *D) {
1478   assert(Context.getLangOpts().CPlusPlus &&
1479          "Can only have wide bit-fields in C++!");
1480 
1481   // Itanium C++ ABI 2.4:
1482   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1483   //   sizeof(T')*8 <= n.
1484 
1485   QualType IntegralPODTypes[] = {
1486     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1487     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1488   };
1489 
1490   QualType Type;
1491   for (const QualType &QT : IntegralPODTypes) {
1492     uint64_t Size = Context.getTypeSize(QT);
1493 
1494     if (Size > FieldSize)
1495       break;
1496 
1497     Type = QT;
1498   }
1499   assert(!Type.isNull() && "Did not find a type!");
1500 
1501   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1502 
1503   // We're not going to use any of the unfilled bits in the last byte.
1504   UnfilledBitsInLastUnit = 0;
1505   LastBitfieldStorageUnitSize = 0;
1506 
1507   uint64_t FieldOffset;
1508   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1509 
1510   if (IsUnion) {
1511     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1512                                                            Context);
1513     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1514     FieldOffset = 0;
1515   } else {
1516     // The bitfield is allocated starting at the next offset aligned
1517     // appropriately for T', with length n bits.
1518     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1519 
1520     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1521 
1522     setDataSize(
1523         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1524     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1525   }
1526 
1527   // Place this field at the current location.
1528   FieldOffsets.push_back(FieldOffset);
1529 
1530   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1531                     Context.toBits(TypeAlign), FieldPacked, D);
1532 
1533   // Update the size.
1534   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1535 
1536   // Remember max struct/class alignment.
1537   UpdateAlignment(TypeAlign);
1538 }
1539 
1540 static bool isAIXLayout(const ASTContext &Context) {
1541   return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1542 }
1543 
1544 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1545   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1546   uint64_t FieldSize = D->getBitWidthValue(Context);
1547   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1548   uint64_t StorageUnitSize = FieldInfo.Width;
1549   unsigned FieldAlign = FieldInfo.Align;
1550   bool AlignIsRequired = FieldInfo.isAlignRequired();
1551 
1552   // UnfilledBitsInLastUnit is the difference between the end of the
1553   // last allocated bitfield (i.e. the first bit offset available for
1554   // bitfields) and the end of the current data size in bits (i.e. the
1555   // first bit offset available for non-bitfields).  The current data
1556   // size in bits is always a multiple of the char size; additionally,
1557   // for ms_struct records it's also a multiple of the
1558   // LastBitfieldStorageUnitSize (if set).
1559 
1560   // The struct-layout algorithm is dictated by the platform ABI,
1561   // which in principle could use almost any rules it likes.  In
1562   // practice, UNIXy targets tend to inherit the algorithm described
1563   // in the System V generic ABI.  The basic bitfield layout rule in
1564   // System V is to place bitfields at the next available bit offset
1565   // where the entire bitfield would fit in an aligned storage unit of
1566   // the declared type; it's okay if an earlier or later non-bitfield
1567   // is allocated in the same storage unit.  However, some targets
1568   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1569   // require this storage unit to be aligned, and therefore always put
1570   // the bitfield at the next available bit offset.
1571 
1572   // ms_struct basically requests a complete replacement of the
1573   // platform ABI's struct-layout algorithm, with the high-level goal
1574   // of duplicating MSVC's layout.  For non-bitfields, this follows
1575   // the standard algorithm.  The basic bitfield layout rule is to
1576   // allocate an entire unit of the bitfield's declared type
1577   // (e.g. 'unsigned long'), then parcel it up among successive
1578   // bitfields whose declared types have the same size, making a new
1579   // unit as soon as the last can no longer store the whole value.
1580   // Since it completely replaces the platform ABI's algorithm,
1581   // settings like !useBitFieldTypeAlignment() do not apply.
1582 
1583   // A zero-width bitfield forces the use of a new storage unit for
1584   // later bitfields.  In general, this occurs by rounding up the
1585   // current size of the struct as if the algorithm were about to
1586   // place a non-bitfield of the field's formal type.  Usually this
1587   // does not change the alignment of the struct itself, but it does
1588   // on some targets (those that useZeroLengthBitfieldAlignment(),
1589   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1590   // ignored unless they follow a non-zero-width bitfield.
1591 
1592   // A field alignment restriction (e.g. from #pragma pack) or
1593   // specification (e.g. from __attribute__((aligned))) changes the
1594   // formal alignment of the field.  For System V, this alters the
1595   // required alignment of the notional storage unit that must contain
1596   // the bitfield.  For ms_struct, this only affects the placement of
1597   // new storage units.  In both cases, the effect of #pragma pack is
1598   // ignored on zero-width bitfields.
1599 
1600   // On System V, a packed field (e.g. from #pragma pack or
1601   // __attribute__((packed))) always uses the next available bit
1602   // offset.
1603 
1604   // In an ms_struct struct, the alignment of a fundamental type is
1605   // always equal to its size.  This is necessary in order to mimic
1606   // the i386 alignment rules on targets which might not fully align
1607   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1608 
1609   // First, some simple bookkeeping to perform for ms_struct structs.
1610   if (IsMsStruct) {
1611     // The field alignment for integer types is always the size.
1612     FieldAlign = StorageUnitSize;
1613 
1614     // If the previous field was not a bitfield, or was a bitfield
1615     // with a different storage unit size, or if this field doesn't fit into
1616     // the current storage unit, we're done with that storage unit.
1617     if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1618         UnfilledBitsInLastUnit < FieldSize) {
1619       // Also, ignore zero-length bitfields after non-bitfields.
1620       if (!LastBitfieldStorageUnitSize && !FieldSize)
1621         FieldAlign = 1;
1622 
1623       UnfilledBitsInLastUnit = 0;
1624       LastBitfieldStorageUnitSize = 0;
1625     }
1626   }
1627 
1628   if (isAIXLayout(Context)) {
1629     if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1630       // On AIX, [bool, char, short] bitfields have the same alignment
1631       // as [unsigned].
1632       StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1633     } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1634                Context.getTargetInfo().getTriple().isArch32Bit() &&
1635                FieldSize <= 32) {
1636       // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1637       // long long bitfield has length no greater than 32 bits.
1638       StorageUnitSize = 32;
1639 
1640       if (!AlignIsRequired)
1641         FieldAlign = 32;
1642     }
1643 
1644     if (FieldAlign < StorageUnitSize) {
1645       // The bitfield alignment should always be greater than or equal to
1646       // bitcontainer size.
1647       FieldAlign = StorageUnitSize;
1648     }
1649   }
1650 
1651   // If the field is wider than its declared type, it follows
1652   // different rules in all cases, except on AIX.
1653   // On AIX, wide bitfield follows the same rules as normal bitfield.
1654   if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1655     LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1656     return;
1657   }
1658 
1659   // Compute the next available bit offset.
1660   uint64_t FieldOffset =
1661     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1662 
1663   // Handle targets that don't honor bitfield type alignment.
1664   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1665     // Some such targets do honor it on zero-width bitfields.
1666     if (FieldSize == 0 &&
1667         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1668       // Some targets don't honor leading zero-width bitfield.
1669       if (!IsUnion && FieldOffset == 0 &&
1670           !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1671         FieldAlign = 1;
1672       else {
1673         // The alignment to round up to is the max of the field's natural
1674         // alignment and a target-specific fixed value (sometimes zero).
1675         unsigned ZeroLengthBitfieldBoundary =
1676             Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1677         FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1678       }
1679     // If that doesn't apply, just ignore the field alignment.
1680     } else {
1681       FieldAlign = 1;
1682     }
1683   }
1684 
1685   // Remember the alignment we would have used if the field were not packed.
1686   unsigned UnpackedFieldAlign = FieldAlign;
1687 
1688   // Ignore the field alignment if the field is packed unless it has zero-size.
1689   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1690     FieldAlign = 1;
1691 
1692   // But, if there's an 'aligned' attribute on the field, honor that.
1693   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1694   if (ExplicitFieldAlign) {
1695     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1696     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1697   }
1698 
1699   // But, if there's a #pragma pack in play, that takes precedent over
1700   // even the 'aligned' attribute, for non-zero-width bitfields.
1701   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1702   if (!MaxFieldAlignment.isZero() && FieldSize) {
1703     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1704     if (FieldPacked)
1705       FieldAlign = UnpackedFieldAlign;
1706     else
1707       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1708   }
1709 
1710   // But, ms_struct just ignores all of that in unions, even explicit
1711   // alignment attributes.
1712   if (IsMsStruct && IsUnion) {
1713     FieldAlign = UnpackedFieldAlign = 1;
1714   }
1715 
1716   // For purposes of diagnostics, we're going to simultaneously
1717   // compute the field offsets that we would have used if we weren't
1718   // adding any alignment padding or if the field weren't packed.
1719   uint64_t UnpaddedFieldOffset = FieldOffset;
1720   uint64_t UnpackedFieldOffset = FieldOffset;
1721 
1722   // Check if we need to add padding to fit the bitfield within an
1723   // allocation unit with the right size and alignment.  The rules are
1724   // somewhat different here for ms_struct structs.
1725   if (IsMsStruct) {
1726     // If it's not a zero-width bitfield, and we can fit the bitfield
1727     // into the active storage unit (and we haven't already decided to
1728     // start a new storage unit), just do so, regardless of any other
1729     // other consideration.  Otherwise, round up to the right alignment.
1730     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1731       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1732       UnpackedFieldOffset =
1733           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1734       UnfilledBitsInLastUnit = 0;
1735     }
1736 
1737   } else {
1738     // #pragma pack, with any value, suppresses the insertion of padding.
1739     bool AllowPadding = MaxFieldAlignment.isZero();
1740 
1741     // Compute the real offset.
1742     if (FieldSize == 0 ||
1743         (AllowPadding &&
1744          (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1745       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1746     } else if (ExplicitFieldAlign &&
1747                (MaxFieldAlignmentInBits == 0 ||
1748                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1749                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1750       // TODO: figure it out what needs to be done on targets that don't honor
1751       // bit-field type alignment like ARM APCS ABI.
1752       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1753     }
1754 
1755     // Repeat the computation for diagnostic purposes.
1756     if (FieldSize == 0 ||
1757         (AllowPadding &&
1758          (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1759              StorageUnitSize))
1760       UnpackedFieldOffset =
1761           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1762     else if (ExplicitFieldAlign &&
1763              (MaxFieldAlignmentInBits == 0 ||
1764               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1765              Context.getTargetInfo().useExplicitBitFieldAlignment())
1766       UnpackedFieldOffset =
1767           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1768   }
1769 
1770   // If we're using external layout, give the external layout a chance
1771   // to override this information.
1772   if (UseExternalLayout)
1773     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1774 
1775   // Okay, place the bitfield at the calculated offset.
1776   FieldOffsets.push_back(FieldOffset);
1777 
1778   // Bookkeeping:
1779 
1780   // Anonymous members don't affect the overall record alignment,
1781   // except on targets where they do.
1782   if (!IsMsStruct &&
1783       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1784       !D->getIdentifier())
1785     FieldAlign = UnpackedFieldAlign = 1;
1786 
1787   // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1788   // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1789   // if packed.
1790   if (isAIXLayout(Context) && !FieldSize) {
1791     if (FieldPacked)
1792       FieldAlign = 1;
1793     if (!MaxFieldAlignment.isZero()) {
1794       UnpackedFieldAlign =
1795           std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1796       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1797     }
1798   }
1799 
1800   // Diagnose differences in layout due to padding or packing.
1801   if (!UseExternalLayout)
1802     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1803                       UnpackedFieldAlign, FieldPacked, D);
1804 
1805   // Update DataSize to include the last byte containing (part of) the bitfield.
1806 
1807   // For unions, this is just a max operation, as usual.
1808   if (IsUnion) {
1809     // For ms_struct, allocate the entire storage unit --- unless this
1810     // is a zero-width bitfield, in which case just use a size of 1.
1811     uint64_t RoundedFieldSize;
1812     if (IsMsStruct) {
1813       RoundedFieldSize = (FieldSize ? StorageUnitSize
1814                                     : Context.getTargetInfo().getCharWidth());
1815 
1816       // Otherwise, allocate just the number of bytes required to store
1817       // the bitfield.
1818     } else {
1819       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1820     }
1821     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1822 
1823   // For non-zero-width bitfields in ms_struct structs, allocate a new
1824   // storage unit if necessary.
1825   } else if (IsMsStruct && FieldSize) {
1826     // We should have cleared UnfilledBitsInLastUnit in every case
1827     // where we changed storage units.
1828     if (!UnfilledBitsInLastUnit) {
1829       setDataSize(FieldOffset + StorageUnitSize);
1830       UnfilledBitsInLastUnit = StorageUnitSize;
1831     }
1832     UnfilledBitsInLastUnit -= FieldSize;
1833     LastBitfieldStorageUnitSize = StorageUnitSize;
1834 
1835     // Otherwise, bump the data size up to include the bitfield,
1836     // including padding up to char alignment, and then remember how
1837     // bits we didn't use.
1838   } else {
1839     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1840     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1841     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1842     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1843 
1844     // The only time we can get here for an ms_struct is if this is a
1845     // zero-width bitfield, which doesn't count as anything for the
1846     // purposes of unfilled bits.
1847     LastBitfieldStorageUnitSize = 0;
1848   }
1849 
1850   // Update the size.
1851   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1852 
1853   // Remember max struct/class alignment.
1854   UnadjustedAlignment =
1855       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1856   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1857                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1858 }
1859 
1860 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1861                                              bool InsertExtraPadding) {
1862   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1863   bool IsOverlappingEmptyField =
1864       D->isPotentiallyOverlapping() && FieldClass->isEmpty();
1865 
1866   CharUnits FieldOffset =
1867       (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1868 
1869   const bool DefaultsToAIXPowerAlignment =
1870       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1871   bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1872   if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1873     assert(FieldOffset == CharUnits::Zero() &&
1874            "The first non-overlapping empty field should have been handled.");
1875 
1876     if (!IsOverlappingEmptyField) {
1877       FoundFirstNonOverlappingEmptyFieldForAIX = true;
1878 
1879       // We're going to handle the "first member" based on
1880       // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1881       // invocation of this function; record it as handled for future
1882       // invocations (except for unions, because the current field does not
1883       // represent all "firsts").
1884       HandledFirstNonOverlappingEmptyField = !IsUnion;
1885     }
1886   }
1887 
1888   if (D->isBitField()) {
1889     LayoutBitField(D);
1890     return;
1891   }
1892 
1893   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1894   // Reset the unfilled bits.
1895   UnfilledBitsInLastUnit = 0;
1896   LastBitfieldStorageUnitSize = 0;
1897 
1898   llvm::Triple Target = Context.getTargetInfo().getTriple();
1899 
1900   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1901   CharUnits FieldSize;
1902   CharUnits FieldAlign;
1903   // The amount of this class's dsize occupied by the field.
1904   // This is equal to FieldSize unless we're permitted to pack
1905   // into the field's tail padding.
1906   CharUnits EffectiveFieldSize;
1907 
1908   auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1909     auto TI = Context.getTypeInfoInChars(D->getType());
1910     FieldAlign = TI.Align;
1911     // Flexible array members don't have any size, but they have to be
1912     // aligned appropriately for their element type.
1913     EffectiveFieldSize = FieldSize =
1914         IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1915     AlignRequirement = TI.AlignRequirement;
1916   };
1917 
1918   if (D->getType()->isIncompleteArrayType()) {
1919     setDeclInfo(true /* IsIncompleteArrayType */);
1920   } else {
1921     setDeclInfo(false /* IsIncompleteArrayType */);
1922 
1923     // A potentially-overlapping field occupies its dsize or nvsize, whichever
1924     // is larger.
1925     if (D->isPotentiallyOverlapping()) {
1926       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1927       EffectiveFieldSize =
1928           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1929     }
1930 
1931     if (IsMsStruct) {
1932       // If MS bitfield layout is required, figure out what type is being
1933       // laid out and align the field to the width of that type.
1934 
1935       // Resolve all typedefs down to their base type and round up the field
1936       // alignment if necessary.
1937       QualType T = Context.getBaseElementType(D->getType());
1938       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1939         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1940 
1941         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1942           assert(
1943               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1944               "Non PowerOf2 size in MSVC mode");
1945           // Base types with sizes that aren't a power of two don't work
1946           // with the layout rules for MS structs. This isn't an issue in
1947           // MSVC itself since there are no such base data types there.
1948           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1949           // Any structs involving that data type obviously can't be ABI
1950           // compatible with MSVC regardless of how it is laid out.
1951 
1952           // Since ms_struct can be mass enabled (via a pragma or via the
1953           // -mms-bitfields command line parameter), this can trigger for
1954           // structs that don't actually need MSVC compatibility, so we
1955           // need to be able to sidestep the ms_struct layout for these types.
1956 
1957           // Since the combination of -mms-bitfields together with structs
1958           // like max_align_t (which contains a long double) for mingw is
1959           // quite common (and GCC handles it silently), just handle it
1960           // silently there. For other targets that have ms_struct enabled
1961           // (most probably via a pragma or attribute), trigger a diagnostic
1962           // that defaults to an error.
1963           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1964             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1965         }
1966         if (TypeSize > FieldAlign &&
1967             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1968           FieldAlign = TypeSize;
1969       }
1970     }
1971   }
1972 
1973   bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() ||
1974                                  FieldClass->hasAttr<PackedAttr>() ||
1975                                  Context.getLangOpts().getClangABICompat() <=
1976                                      LangOptions::ClangABI::Ver15 ||
1977                                  Target.isPS() || Target.isOSDarwin() ||
1978                                  Target.isOSAIX())) ||
1979                      D->hasAttr<PackedAttr>();
1980 
1981   // When used as part of a typedef, or together with a 'packed' attribute, the
1982   // 'aligned' attribute can be used to decrease alignment. In that case, it
1983   // overrides any computed alignment we have, and there is no need to upgrade
1984   // the alignment.
1985   auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1986     // Enum alignment sources can be safely ignored here, because this only
1987     // helps decide whether we need the AIX alignment upgrade, which only
1988     // applies to floating-point types.
1989     return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1990            (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1991             FieldPacked);
1992   };
1993 
1994   // The AIX `power` alignment rules apply the natural alignment of the
1995   // "first member" if it is of a floating-point data type (or is an aggregate
1996   // whose recursively "first" member or element is such a type). The alignment
1997   // associated with these types for subsequent members use an alignment value
1998   // where the floating-point data type is considered to have 4-byte alignment.
1999   //
2000   // For the purposes of the foregoing: vtable pointers, non-empty base classes,
2001   // and zero-width bit-fields count as prior members; members of empty class
2002   // types marked `no_unique_address` are not considered to be prior members.
2003   CharUnits PreferredAlign = FieldAlign;
2004   if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
2005       (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
2006     auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
2007       if (BTy->getKind() == BuiltinType::Double ||
2008           BTy->getKind() == BuiltinType::LongDouble) {
2009         assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2010                "No need to upgrade the alignment value.");
2011         PreferredAlign = CharUnits::fromQuantity(8);
2012       }
2013     };
2014 
2015     const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2016     if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2017       performBuiltinTypeAlignmentUpgrade(
2018           CTy->getElementType()->castAs<BuiltinType>());
2019     } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2020       performBuiltinTypeAlignmentUpgrade(BTy);
2021     } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2022       const RecordDecl *RD = RT->getDecl();
2023       assert(RD && "Expected non-null RecordDecl.");
2024       const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2025       PreferredAlign = FieldRecord.getPreferredAlignment();
2026     }
2027   }
2028 
2029   // The align if the field is not packed. This is to check if the attribute
2030   // was unnecessary (-Wpacked).
2031   CharUnits UnpackedFieldAlign = FieldAlign;
2032   CharUnits PackedFieldAlign = CharUnits::One();
2033   CharUnits UnpackedFieldOffset = FieldOffset;
2034   CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2035 
2036   CharUnits MaxAlignmentInChars =
2037       Context.toCharUnitsFromBits(D->getMaxAlignment());
2038   PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars);
2039   PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2040   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2041 
2042   // The maximum field alignment overrides the aligned attribute.
2043   if (!MaxFieldAlignment.isZero()) {
2044     PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment);
2045     PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2046     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2047   }
2048 
2049 
2050   if (!FieldPacked)
2051     FieldAlign = UnpackedFieldAlign;
2052   if (DefaultsToAIXPowerAlignment)
2053     UnpackedFieldAlign = PreferredAlign;
2054   if (FieldPacked) {
2055     PreferredAlign = PackedFieldAlign;
2056     FieldAlign = PackedFieldAlign;
2057   }
2058 
2059   CharUnits AlignTo =
2060       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2061   // Round up the current record size to the field's alignment boundary.
2062   FieldOffset = FieldOffset.alignTo(AlignTo);
2063   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2064 
2065   if (UseExternalLayout) {
2066     FieldOffset = Context.toCharUnitsFromBits(
2067         updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2068 
2069     if (!IsUnion && EmptySubobjects) {
2070       // Record the fact that we're placing a field at this offset.
2071       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2072       (void)Allowed;
2073       assert(Allowed && "Externally-placed field cannot be placed here");
2074     }
2075   } else {
2076     if (!IsUnion && EmptySubobjects) {
2077       // Check if we can place the field at this offset.
2078       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2079         // We couldn't place the field at the offset. Try again at a new offset.
2080         // We try offset 0 (for an empty field) and then dsize(C) onwards.
2081         if (FieldOffset == CharUnits::Zero() &&
2082             getDataSize() != CharUnits::Zero())
2083           FieldOffset = getDataSize().alignTo(AlignTo);
2084         else
2085           FieldOffset += AlignTo;
2086       }
2087     }
2088   }
2089 
2090   // Place this field at the current location.
2091   FieldOffsets.push_back(Context.toBits(FieldOffset));
2092 
2093   if (!UseExternalLayout)
2094     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2095                       Context.toBits(UnpackedFieldOffset),
2096                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2097 
2098   if (InsertExtraPadding) {
2099     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2100     CharUnits ExtraSizeForAsan = ASanAlignment;
2101     if (FieldSize % ASanAlignment)
2102       ExtraSizeForAsan +=
2103           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2104     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2105   }
2106 
2107   // Reserve space for this field.
2108   if (!IsOverlappingEmptyField) {
2109     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2110     if (IsUnion)
2111       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2112     else
2113       setDataSize(FieldOffset + EffectiveFieldSize);
2114 
2115     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2116     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2117   } else {
2118     setSize(std::max(getSizeInBits(),
2119                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2120   }
2121 
2122   // Remember max struct/class ABI-specified alignment.
2123   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2124   UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2125 
2126   // For checking the alignment of inner fields against
2127   // the alignment of its parent record.
2128   if (const RecordDecl *RD = D->getParent()) {
2129     // Check if packed attribute or pragma pack is present.
2130     if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2131       if (FieldAlign < OriginalFieldAlign)
2132         if (D->getType()->isRecordType()) {
2133           // If the offset is a multiple of the alignment of
2134           // the type, raise the warning.
2135           // TODO: Takes no account the alignment of the outer struct
2136           if (FieldOffset % OriginalFieldAlign != 0)
2137             Diag(D->getLocation(), diag::warn_unaligned_access)
2138                 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2139         }
2140   }
2141 
2142   if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign)
2143     Diag(D->getLocation(), diag::warn_unpacked_field) << D;
2144 }
2145 
2146 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2147   // In C++, records cannot be of size 0.
2148   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2149     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2150       // Compatibility with gcc requires a class (pod or non-pod)
2151       // which is not empty but of size 0; such as having fields of
2152       // array of zero-length, remains of Size 0
2153       if (RD->isEmpty())
2154         setSize(CharUnits::One());
2155     }
2156     else
2157       setSize(CharUnits::One());
2158   }
2159 
2160   // If we have any remaining field tail padding, include that in the overall
2161   // size.
2162   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2163 
2164   // Finally, round the size of the record up to the alignment of the
2165   // record itself.
2166   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2167   uint64_t UnpackedSizeInBits =
2168       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2169 
2170   uint64_t RoundedSize = llvm::alignTo(
2171       getSizeInBits(),
2172       Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2173                          ? Alignment
2174                          : PreferredAlignment));
2175 
2176   if (UseExternalLayout) {
2177     // If we're inferring alignment, and the external size is smaller than
2178     // our size after we've rounded up to alignment, conservatively set the
2179     // alignment to 1.
2180     if (InferAlignment && External.Size < RoundedSize) {
2181       Alignment = CharUnits::One();
2182       PreferredAlignment = CharUnits::One();
2183       InferAlignment = false;
2184     }
2185     setSize(External.Size);
2186     return;
2187   }
2188 
2189   // Set the size to the final size.
2190   setSize(RoundedSize);
2191 
2192   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2193   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2194     // Warn if padding was introduced to the struct/class/union.
2195     if (getSizeInBits() > UnpaddedSize) {
2196       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2197       bool InBits = true;
2198       if (PadSize % CharBitNum == 0) {
2199         PadSize = PadSize / CharBitNum;
2200         InBits = false;
2201       }
2202       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2203           << Context.getTypeDeclType(RD)
2204           << PadSize
2205           << (InBits ? 1 : 0); // (byte|bit)
2206     }
2207 
2208     const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
2209 
2210     // Warn if we packed it unnecessarily, when the unpacked alignment is not
2211     // greater than the one after packing, the size in bits doesn't change and
2212     // the offset of each field is identical.
2213     // Unless the type is non-POD (for Clang ABI > 15), where the packed
2214     // attribute on such a type does allow the type to be packed into other
2215     // structures that use the packed attribute.
2216     if (Packed && UnpackedAlignment <= Alignment &&
2217         UnpackedSizeInBits == getSizeInBits() && !HasPackedField &&
2218         (!CXXRD || CXXRD->isPOD() ||
2219          Context.getLangOpts().getClangABICompat() <=
2220              LangOptions::ClangABI::Ver15))
2221       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2222           << Context.getTypeDeclType(RD);
2223   }
2224 }
2225 
2226 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2227     CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2228     CharUnits PreferredNewAlignment) {
2229   // The alignment is not modified when using 'mac68k' alignment or when
2230   // we have an externally-supplied layout that also provides overall alignment.
2231   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2232     return;
2233 
2234   if (NewAlignment > Alignment) {
2235     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2236            "Alignment not a power of 2");
2237     Alignment = NewAlignment;
2238   }
2239 
2240   if (UnpackedNewAlignment > UnpackedAlignment) {
2241     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2242            "Alignment not a power of 2");
2243     UnpackedAlignment = UnpackedNewAlignment;
2244   }
2245 
2246   if (PreferredNewAlignment > PreferredAlignment) {
2247     assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2248            "Alignment not a power of 2");
2249     PreferredAlignment = PreferredNewAlignment;
2250   }
2251 }
2252 
2253 uint64_t
2254 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2255                                                       uint64_t ComputedOffset) {
2256   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2257 
2258   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2259     // The externally-supplied field offset is before the field offset we
2260     // computed. Assume that the structure is packed.
2261     Alignment = CharUnits::One();
2262     PreferredAlignment = CharUnits::One();
2263     InferAlignment = false;
2264   }
2265 
2266   // Use the externally-supplied field offset.
2267   return ExternalFieldOffset;
2268 }
2269 
2270 /// Get diagnostic %select index for tag kind for
2271 /// field padding diagnostic message.
2272 /// WARNING: Indexes apply to particular diagnostics only!
2273 ///
2274 /// \returns diagnostic %select index.
2275 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2276   switch (Tag) {
2277   case TagTypeKind::Struct:
2278     return 0;
2279   case TagTypeKind::Interface:
2280     return 1;
2281   case TagTypeKind::Class:
2282     return 2;
2283   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2284   }
2285 }
2286 
2287 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2288     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2289     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2290   // We let objc ivars without warning, objc interfaces generally are not used
2291   // for padding tricks.
2292   if (isa<ObjCIvarDecl>(D))
2293     return;
2294 
2295   // Don't warn about structs created without a SourceLocation.  This can
2296   // be done by clients of the AST, such as codegen.
2297   if (D->getLocation().isInvalid())
2298     return;
2299 
2300   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2301 
2302   // Warn if padding was introduced to the struct/class.
2303   if (!IsUnion && Offset > UnpaddedOffset) {
2304     unsigned PadSize = Offset - UnpaddedOffset;
2305     bool InBits = true;
2306     if (PadSize % CharBitNum == 0) {
2307       PadSize = PadSize / CharBitNum;
2308       InBits = false;
2309     }
2310     if (D->getIdentifier()) {
2311       auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_bitfield
2312                                         : diag::warn_padded_struct_field;
2313       Diag(D->getLocation(), Diagnostic)
2314           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2315           << Context.getTypeDeclType(D->getParent()) << PadSize
2316           << (InBits ? 1 : 0) // (byte|bit)
2317           << D->getIdentifier();
2318     } else {
2319       auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_anon_bitfield
2320                                         : diag::warn_padded_struct_anon_field;
2321       Diag(D->getLocation(), Diagnostic)
2322           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2323           << Context.getTypeDeclType(D->getParent()) << PadSize
2324           << (InBits ? 1 : 0); // (byte|bit)
2325     }
2326  }
2327  if (isPacked && Offset != UnpackedOffset) {
2328    HasPackedField = true;
2329  }
2330 }
2331 
2332 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2333                                                const CXXRecordDecl *RD) {
2334   // If a class isn't polymorphic it doesn't have a key function.
2335   if (!RD->isPolymorphic())
2336     return nullptr;
2337 
2338   // A class that is not externally visible doesn't have a key function. (Or
2339   // at least, there's no point to assigning a key function to such a class;
2340   // this doesn't affect the ABI.)
2341   if (!RD->isExternallyVisible())
2342     return nullptr;
2343 
2344   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2345   // Same behavior as GCC.
2346   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2347   if (TSK == TSK_ImplicitInstantiation ||
2348       TSK == TSK_ExplicitInstantiationDeclaration ||
2349       TSK == TSK_ExplicitInstantiationDefinition)
2350     return nullptr;
2351 
2352   bool allowInlineFunctions =
2353     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2354 
2355   for (const CXXMethodDecl *MD : RD->methods()) {
2356     if (!MD->isVirtual())
2357       continue;
2358 
2359     if (MD->isPureVirtual())
2360       continue;
2361 
2362     // Ignore implicit member functions, they are always marked as inline, but
2363     // they don't have a body until they're defined.
2364     if (MD->isImplicit())
2365       continue;
2366 
2367     if (MD->isInlineSpecified() || MD->isConstexpr())
2368       continue;
2369 
2370     if (MD->hasInlineBody())
2371       continue;
2372 
2373     // Ignore inline deleted or defaulted functions.
2374     if (!MD->isUserProvided())
2375       continue;
2376 
2377     // In certain ABIs, ignore functions with out-of-line inline definitions.
2378     if (!allowInlineFunctions) {
2379       const FunctionDecl *Def;
2380       if (MD->hasBody(Def) && Def->isInlineSpecified())
2381         continue;
2382     }
2383 
2384     if (Context.getLangOpts().CUDA) {
2385       // While compiler may see key method in this TU, during CUDA
2386       // compilation we should ignore methods that are not accessible
2387       // on this side of compilation.
2388       if (Context.getLangOpts().CUDAIsDevice) {
2389         // In device mode ignore methods without __device__ attribute.
2390         if (!MD->hasAttr<CUDADeviceAttr>())
2391           continue;
2392       } else {
2393         // In host mode ignore __device__-only methods.
2394         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2395           continue;
2396       }
2397     }
2398 
2399     // If the key function is dllimport but the class isn't, then the class has
2400     // no key function. The DLL that exports the key function won't export the
2401     // vtable in this case.
2402     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2403         !Context.getTargetInfo().hasPS4DLLImportExport())
2404       return nullptr;
2405 
2406     // We found it.
2407     return MD;
2408   }
2409 
2410   return nullptr;
2411 }
2412 
2413 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2414                                                    unsigned DiagID) {
2415   return Context.getDiagnostics().Report(Loc, DiagID);
2416 }
2417 
2418 /// Does the target C++ ABI require us to skip over the tail-padding
2419 /// of the given class (considering it as a base class) when allocating
2420 /// objects?
2421 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2422   switch (ABI.getTailPaddingUseRules()) {
2423   case TargetCXXABI::AlwaysUseTailPadding:
2424     return false;
2425 
2426   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2427     // FIXME: To the extent that this is meant to cover the Itanium ABI
2428     // rules, we should implement the restrictions about over-sized
2429     // bitfields:
2430     //
2431     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2432     //   In general, a type is considered a POD for the purposes of
2433     //   layout if it is a POD type (in the sense of ISO C++
2434     //   [basic.types]). However, a POD-struct or POD-union (in the
2435     //   sense of ISO C++ [class]) with a bitfield member whose
2436     //   declared width is wider than the declared type of the
2437     //   bitfield is not a POD for the purpose of layout.  Similarly,
2438     //   an array type is not a POD for the purpose of layout if the
2439     //   element type of the array is not a POD for the purpose of
2440     //   layout.
2441     //
2442     //   Where references to the ISO C++ are made in this paragraph,
2443     //   the Technical Corrigendum 1 version of the standard is
2444     //   intended.
2445     return RD->isPOD();
2446 
2447   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2448     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2449     // but with a lot of abstraction penalty stripped off.  This does
2450     // assume that these properties are set correctly even in C++98
2451     // mode; fortunately, that is true because we want to assign
2452     // consistently semantics to the type-traits intrinsics (or at
2453     // least as many of them as possible).
2454     return RD->isTrivial() && RD->isCXX11StandardLayout();
2455   }
2456 
2457   llvm_unreachable("bad tail-padding use kind");
2458 }
2459 
2460 static bool isMsLayout(const ASTContext &Context) {
2461   // Check if it's CUDA device compilation; ensure layout consistency with host.
2462   if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
2463       Context.getAuxTargetInfo())
2464     return Context.getAuxTargetInfo()->getCXXABI().isMicrosoft();
2465 
2466   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2467 }
2468 
2469 // This section contains an implementation of struct layout that is, up to the
2470 // included tests, compatible with cl.exe (2013).  The layout produced is
2471 // significantly different than those produced by the Itanium ABI.  Here we note
2472 // the most important differences.
2473 //
2474 // * The alignment of bitfields in unions is ignored when computing the
2475 //   alignment of the union.
2476 // * The existence of zero-width bitfield that occurs after anything other than
2477 //   a non-zero length bitfield is ignored.
2478 // * There is no explicit primary base for the purposes of layout.  All bases
2479 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2480 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2481 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2482 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2483 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2484 //   placed after the lexicographically last non-virtual base.  This placement
2485 //   is always before fields but can be in the middle of the non-virtual bases
2486 //   due to the two-pass layout scheme for non-virtual-bases.
2487 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2488 //   the virtual base and is used in conjunction with virtual overrides during
2489 //   construction and destruction.  This is always a 4 byte value and is used as
2490 //   an alternative to constructor vtables.
2491 // * vtordisps are allocated in a block of memory with size and alignment equal
2492 //   to the alignment of the completed structure (before applying __declspec(
2493 //   align())).  The vtordisp always occur at the end of the allocation block,
2494 //   immediately prior to the virtual base.
2495 // * vfptrs are injected after all bases and fields have been laid out.  In
2496 //   order to guarantee proper alignment of all fields, the vfptr injection
2497 //   pushes all bases and fields back by the alignment imposed by those bases
2498 //   and fields.  This can potentially add a significant amount of padding.
2499 //   vfptrs are always injected at offset 0.
2500 // * vbptrs are injected after all bases and fields have been laid out.  In
2501 //   order to guarantee proper alignment of all fields, the vfptr injection
2502 //   pushes all bases and fields back by the alignment imposed by those bases
2503 //   and fields.  This can potentially add a significant amount of padding.
2504 //   vbptrs are injected immediately after the last non-virtual base as
2505 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2506 //   the vbptr is placed at the next properly aligned location.  Enough padding
2507 //   is added to guarantee a fit.
2508 // * The last zero sized non-virtual base can be placed at the end of the
2509 //   struct (potentially aliasing another object), or may alias with the first
2510 //   field, even if they are of the same type.
2511 // * The last zero size virtual base may be placed at the end of the struct
2512 //   potentially aliasing another object.
2513 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2514 //   between bases or vbases with specific properties.  The criteria for
2515 //   additional padding between two bases is that the first base is zero sized
2516 //   or ends with a zero sized subobject and the second base is zero sized or
2517 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2518 //   layout of the so the leading base is not always the first one declared).
2519 //   This rule does take into account fields that are not records, so padding
2520 //   will occur even if the last field is, e.g. an int. The padding added for
2521 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2522 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2523 // * There is no concept of non-virtual alignment, non-virtual alignment and
2524 //   alignment are always identical.
2525 // * There is a distinction between alignment and required alignment.
2526 //   __declspec(align) changes the required alignment of a struct.  This
2527 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2528 //   record inherits required alignment from all of its fields and bases.
2529 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2530 //   alignment instead of its required alignment.  This is the only known way
2531 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2532 //   this alignment is also immune to the effects of #pragma pack and can be
2533 //   used to create structures with large alignment under #pragma pack.
2534 //   However, because it does not impact required alignment, such a structure,
2535 //   when used as a field or base, will not be aligned if #pragma pack is
2536 //   still active at the time of use.
2537 //
2538 // Known incompatibilities:
2539 // * all: #pragma pack between fields in a record
2540 // * 2010 and back: If the last field in a record is a bitfield, every object
2541 //   laid out after the record will have extra padding inserted before it.  The
2542 //   extra padding will have size equal to the size of the storage class of the
2543 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2544 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2545 //   sized bitfield.
2546 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2547 //   greater due to __declspec(align()) then a second layout phase occurs after
2548 //   The locations of the vf and vb pointers are known.  This layout phase
2549 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2550 //   _every_ field getting padding put in front of it, potentially including the
2551 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2552 //   anything tries to read the vftbl.  The second layout phase also treats
2553 //   bitfields as separate entities and gives them each storage rather than
2554 //   packing them.  Additionally, because this phase appears to perform a
2555 //   (an unstable) sort on the members before laying them out and because merged
2556 //   bitfields have the same address, the bitfields end up in whatever order
2557 //   the sort left them in, a behavior we could never hope to replicate.
2558 
2559 namespace {
2560 struct MicrosoftRecordLayoutBuilder {
2561   struct ElementInfo {
2562     CharUnits Size;
2563     CharUnits Alignment;
2564   };
2565   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2566   MicrosoftRecordLayoutBuilder(const ASTContext &Context,
2567                                EmptySubobjectMap *EmptySubobjects)
2568       : Context(Context), EmptySubobjects(EmptySubobjects) {}
2569 
2570 private:
2571   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2572   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2573 public:
2574   void layout(const RecordDecl *RD);
2575   void cxxLayout(const CXXRecordDecl *RD);
2576   /// Initializes size and alignment and honors some flags.
2577   void initializeLayout(const RecordDecl *RD);
2578   /// Initialized C++ layout, compute alignment and virtual alignment and
2579   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2580   /// laid out.
2581   void initializeCXXLayout(const CXXRecordDecl *RD);
2582   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2583   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2584                             const CXXRecordDecl *BaseDecl,
2585                             const ASTRecordLayout &BaseLayout,
2586                             const ASTRecordLayout *&PreviousBaseLayout);
2587   void injectVFPtr(const CXXRecordDecl *RD);
2588   void injectVBPtr(const CXXRecordDecl *RD);
2589   /// Lays out the fields of the record.  Also rounds size up to
2590   /// alignment.
2591   void layoutFields(const RecordDecl *RD);
2592   void layoutField(const FieldDecl *FD);
2593   void layoutBitField(const FieldDecl *FD);
2594   /// Lays out a single zero-width bit-field in the record and handles
2595   /// special cases associated with zero-width bit-fields.
2596   void layoutZeroWidthBitField(const FieldDecl *FD);
2597   void layoutVirtualBases(const CXXRecordDecl *RD);
2598   void finalizeLayout(const RecordDecl *RD);
2599   /// Gets the size and alignment of a base taking pragma pack and
2600   /// __declspec(align) into account.
2601   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2602   /// Gets the size and alignment of a field taking pragma  pack and
2603   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2604   /// side effect because it is most convenient to do so here.
2605   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2606   /// Places a field at an offset in CharUnits.
2607   void placeFieldAtOffset(CharUnits FieldOffset) {
2608     FieldOffsets.push_back(Context.toBits(FieldOffset));
2609   }
2610   /// Places a bitfield at a bit offset.
2611   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2612     FieldOffsets.push_back(FieldOffset);
2613   }
2614   /// Compute the set of virtual bases for which vtordisps are required.
2615   void computeVtorDispSet(
2616       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2617       const CXXRecordDecl *RD) const;
2618   const ASTContext &Context;
2619   EmptySubobjectMap *EmptySubobjects;
2620 
2621   /// The size of the record being laid out.
2622   CharUnits Size;
2623   /// The non-virtual size of the record layout.
2624   CharUnits NonVirtualSize;
2625   /// The data size of the record layout.
2626   CharUnits DataSize;
2627   /// The current alignment of the record layout.
2628   CharUnits Alignment;
2629   /// The maximum allowed field alignment. This is set by #pragma pack.
2630   CharUnits MaxFieldAlignment;
2631   /// The alignment that this record must obey.  This is imposed by
2632   /// __declspec(align()) on the record itself or one of its fields or bases.
2633   CharUnits RequiredAlignment;
2634   /// The size of the allocation of the currently active bitfield.
2635   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2636   /// is true.
2637   CharUnits CurrentBitfieldSize;
2638   /// Offset to the virtual base table pointer (if one exists).
2639   CharUnits VBPtrOffset;
2640   /// Minimum record size possible.
2641   CharUnits MinEmptyStructSize;
2642   /// The size and alignment info of a pointer.
2643   ElementInfo PointerInfo;
2644   /// The primary base class (if one exists).
2645   const CXXRecordDecl *PrimaryBase;
2646   /// The class we share our vb-pointer with.
2647   const CXXRecordDecl *SharedVBPtrBase;
2648   /// The collection of field offsets.
2649   SmallVector<uint64_t, 16> FieldOffsets;
2650   /// Base classes and their offsets in the record.
2651   BaseOffsetsMapTy Bases;
2652   /// virtual base classes and their offsets in the record.
2653   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2654   /// The number of remaining bits in our last bitfield allocation.
2655   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2656   /// true.
2657   unsigned RemainingBitsInField;
2658   bool IsUnion : 1;
2659   /// True if the last field laid out was a bitfield and was not 0
2660   /// width.
2661   bool LastFieldIsNonZeroWidthBitfield : 1;
2662   /// True if the class has its own vftable pointer.
2663   bool HasOwnVFPtr : 1;
2664   /// True if the class has a vbtable pointer.
2665   bool HasVBPtr : 1;
2666   /// True if the last sub-object within the type is zero sized or the
2667   /// object itself is zero sized.  This *does not* count members that are not
2668   /// records.  Only used for MS-ABI.
2669   bool EndsWithZeroSizedObject : 1;
2670   /// True if this class is zero sized or first base is zero sized or
2671   /// has this property.  Only used for MS-ABI.
2672   bool LeadsWithZeroSizedBase : 1;
2673 
2674   /// True if the external AST source provided a layout for this record.
2675   bool UseExternalLayout : 1;
2676 
2677   /// The layout provided by the external AST source. Only active if
2678   /// UseExternalLayout is true.
2679   ExternalLayout External;
2680 };
2681 } // namespace
2682 
2683 MicrosoftRecordLayoutBuilder::ElementInfo
2684 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2685     const ASTRecordLayout &Layout) {
2686   ElementInfo Info;
2687   Info.Alignment = Layout.getAlignment();
2688   // Respect pragma pack.
2689   if (!MaxFieldAlignment.isZero())
2690     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2691   // Track zero-sized subobjects here where it's already available.
2692   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2693   // Respect required alignment, this is necessary because we may have adjusted
2694   // the alignment in the case of pragma pack.  Note that the required alignment
2695   // doesn't actually apply to the struct alignment at this point.
2696   Alignment = std::max(Alignment, Info.Alignment);
2697   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2698   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2699   Info.Size = Layout.getNonVirtualSize();
2700   return Info;
2701 }
2702 
2703 MicrosoftRecordLayoutBuilder::ElementInfo
2704 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2705     const FieldDecl *FD) {
2706   // Get the alignment of the field type's natural alignment, ignore any
2707   // alignment attributes.
2708   auto TInfo =
2709       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2710   ElementInfo Info{TInfo.Width, TInfo.Align};
2711   // Respect align attributes on the field.
2712   CharUnits FieldRequiredAlignment =
2713       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2714   // Respect align attributes on the type.
2715   if (Context.isAlignmentRequired(FD->getType()))
2716     FieldRequiredAlignment = std::max(
2717         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2718   // Respect attributes applied to subobjects of the field.
2719   if (FD->isBitField())
2720     // For some reason __declspec align impacts alignment rather than required
2721     // alignment when it is applied to bitfields.
2722     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2723   else {
2724     if (auto RT =
2725             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2726       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2727       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2728       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2729                                         Layout.getRequiredAlignment());
2730     }
2731     // Capture required alignment as a side-effect.
2732     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2733   }
2734   // Respect pragma pack, attribute pack and declspec align
2735   if (!MaxFieldAlignment.isZero())
2736     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2737   if (FD->hasAttr<PackedAttr>())
2738     Info.Alignment = CharUnits::One();
2739   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2740   return Info;
2741 }
2742 
2743 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2744   // For C record layout, zero-sized records always have size 4.
2745   MinEmptyStructSize = CharUnits::fromQuantity(4);
2746   initializeLayout(RD);
2747   layoutFields(RD);
2748   DataSize = Size = Size.alignTo(Alignment);
2749   RequiredAlignment = std::max(
2750       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2751   finalizeLayout(RD);
2752 }
2753 
2754 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2755   // The C++ standard says that empty structs have size 1.
2756   MinEmptyStructSize = CharUnits::One();
2757   initializeLayout(RD);
2758   initializeCXXLayout(RD);
2759   layoutNonVirtualBases(RD);
2760   layoutFields(RD);
2761   injectVBPtr(RD);
2762   injectVFPtr(RD);
2763   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2764     Alignment = std::max(Alignment, PointerInfo.Alignment);
2765   auto RoundingAlignment = Alignment;
2766   if (!MaxFieldAlignment.isZero())
2767     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2768   if (!UseExternalLayout)
2769     Size = Size.alignTo(RoundingAlignment);
2770   NonVirtualSize = Size;
2771   RequiredAlignment = std::max(
2772       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2773   layoutVirtualBases(RD);
2774   finalizeLayout(RD);
2775 }
2776 
2777 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2778   IsUnion = RD->isUnion();
2779   Size = CharUnits::Zero();
2780   Alignment = CharUnits::One();
2781   // In 64-bit mode we always perform an alignment step after laying out vbases.
2782   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2783   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2784   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2785                           ? CharUnits::One()
2786                           : CharUnits::Zero();
2787   // Compute the maximum field alignment.
2788   MaxFieldAlignment = CharUnits::Zero();
2789   // Honor the default struct packing maximum alignment flag.
2790   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2791       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2792   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2793   // than the pointer size.
2794   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2795     unsigned PackedAlignment = MFAA->getAlignment();
2796     if (PackedAlignment <=
2797         Context.getTargetInfo().getPointerWidth(LangAS::Default))
2798       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2799   }
2800   // Packed attribute forces max field alignment to be 1.
2801   if (RD->hasAttr<PackedAttr>())
2802     MaxFieldAlignment = CharUnits::One();
2803 
2804   // Try to respect the external layout if present.
2805   UseExternalLayout = false;
2806   if (ExternalASTSource *Source = Context.getExternalSource())
2807     UseExternalLayout = Source->layoutRecordType(
2808         RD, External.Size, External.Align, External.FieldOffsets,
2809         External.BaseOffsets, External.VirtualBaseOffsets);
2810 }
2811 
2812 void
2813 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2814   EndsWithZeroSizedObject = false;
2815   LeadsWithZeroSizedBase = false;
2816   HasOwnVFPtr = false;
2817   HasVBPtr = false;
2818   PrimaryBase = nullptr;
2819   SharedVBPtrBase = nullptr;
2820   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2821   // injection.
2822   PointerInfo.Size = Context.toCharUnitsFromBits(
2823       Context.getTargetInfo().getPointerWidth(LangAS::Default));
2824   PointerInfo.Alignment = Context.toCharUnitsFromBits(
2825       Context.getTargetInfo().getPointerAlign(LangAS::Default));
2826   // Respect pragma pack.
2827   if (!MaxFieldAlignment.isZero())
2828     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2829 }
2830 
2831 void
2832 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2833   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2834   // out any bases that do not contain vfptrs.  We implement this as two passes
2835   // over the bases.  This approach guarantees that the primary base is laid out
2836   // first.  We use these passes to calculate some additional aggregated
2837   // information about the bases, such as required alignment and the presence of
2838   // zero sized members.
2839   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2840   bool HasPolymorphicBaseClass = false;
2841   // Iterate through the bases and lay out the non-virtual ones.
2842   for (const CXXBaseSpecifier &Base : RD->bases()) {
2843     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2844     HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2845     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2846     // Mark and skip virtual bases.
2847     if (Base.isVirtual()) {
2848       HasVBPtr = true;
2849       continue;
2850     }
2851     // Check for a base to share a VBPtr with.
2852     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2853       SharedVBPtrBase = BaseDecl;
2854       HasVBPtr = true;
2855     }
2856     // Only lay out bases with extendable VFPtrs on the first pass.
2857     if (!BaseLayout.hasExtendableVFPtr())
2858       continue;
2859     // If we don't have a primary base, this one qualifies.
2860     if (!PrimaryBase) {
2861       PrimaryBase = BaseDecl;
2862       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2863     }
2864     // Lay out the base.
2865     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2866   }
2867   // Figure out if we need a fresh VFPtr for this class.
2868   if (RD->isPolymorphic()) {
2869     if (!HasPolymorphicBaseClass)
2870       // This class introduces polymorphism, so we need a vftable to store the
2871       // RTTI information.
2872       HasOwnVFPtr = true;
2873     else if (!PrimaryBase) {
2874       // We have a polymorphic base class but can't extend its vftable. Add a
2875       // new vfptr if we would use any vftable slots.
2876       for (CXXMethodDecl *M : RD->methods()) {
2877         if (MicrosoftVTableContext::hasVtableSlot(M) &&
2878             M->size_overridden_methods() == 0) {
2879           HasOwnVFPtr = true;
2880           break;
2881         }
2882       }
2883     }
2884   }
2885   // If we don't have a primary base then we have a leading object that could
2886   // itself lead with a zero-sized object, something we track.
2887   bool CheckLeadingLayout = !PrimaryBase;
2888   // Iterate through the bases and lay out the non-virtual ones.
2889   for (const CXXBaseSpecifier &Base : RD->bases()) {
2890     if (Base.isVirtual())
2891       continue;
2892     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2893     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2894     // Only lay out bases without extendable VFPtrs on the second pass.
2895     if (BaseLayout.hasExtendableVFPtr()) {
2896       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2897       continue;
2898     }
2899     // If this is the first layout, check to see if it leads with a zero sized
2900     // object.  If it does, so do we.
2901     if (CheckLeadingLayout) {
2902       CheckLeadingLayout = false;
2903       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2904     }
2905     // Lay out the base.
2906     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2907     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2908   }
2909   // Set our VBPtroffset if we know it at this point.
2910   if (!HasVBPtr)
2911     VBPtrOffset = CharUnits::fromQuantity(-1);
2912   else if (SharedVBPtrBase) {
2913     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2914     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2915   }
2916 }
2917 
2918 static bool recordUsesEBO(const RecordDecl *RD) {
2919   if (!isa<CXXRecordDecl>(RD))
2920     return false;
2921   if (RD->hasAttr<EmptyBasesAttr>())
2922     return true;
2923   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2924     // TODO: Double check with the next version of MSVC.
2925     if (LVA->getVersion() <= LangOptions::MSVC2015)
2926       return false;
2927   // TODO: Some later version of MSVC will change the default behavior of the
2928   // compiler to enable EBO by default.  When this happens, we will need an
2929   // additional isCompatibleWithMSVC check.
2930   return false;
2931 }
2932 
2933 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2934     const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl,
2935     const ASTRecordLayout &BaseLayout,
2936     const ASTRecordLayout *&PreviousBaseLayout) {
2937   // Insert padding between two bases if the left first one is zero sized or
2938   // contains a zero sized subobject and the right is zero sized or one leads
2939   // with a zero sized base.
2940   bool MDCUsesEBO = recordUsesEBO(RD);
2941   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2942       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2943     Size++;
2944   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2945   CharUnits BaseOffset;
2946 
2947   // Respect the external AST source base offset, if present.
2948   bool FoundBase = false;
2949   if (UseExternalLayout) {
2950     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2951     if (BaseOffset > Size) {
2952       Size = BaseOffset;
2953     }
2954   }
2955 
2956   if (!FoundBase) {
2957     if (MDCUsesEBO && BaseDecl->isEmpty() &&
2958         (BaseLayout.getNonVirtualSize() == CharUnits::Zero())) {
2959       BaseOffset = CharUnits::Zero();
2960     } else {
2961       // Otherwise, lay the base out at the end of the MDC.
2962       BaseOffset = Size = Size.alignTo(Info.Alignment);
2963     }
2964   }
2965   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2966   Size += BaseLayout.getNonVirtualSize();
2967   DataSize = Size;
2968   PreviousBaseLayout = &BaseLayout;
2969 }
2970 
2971 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2972   LastFieldIsNonZeroWidthBitfield = false;
2973   for (const FieldDecl *Field : RD->fields())
2974     layoutField(Field);
2975 }
2976 
2977 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2978   if (FD->isBitField()) {
2979     layoutBitField(FD);
2980     return;
2981   }
2982   LastFieldIsNonZeroWidthBitfield = false;
2983   ElementInfo Info = getAdjustedElementInfo(FD);
2984   Alignment = std::max(Alignment, Info.Alignment);
2985 
2986   const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl();
2987   bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() &&
2988                                  FieldClass->isEmpty() &&
2989                                  FieldClass->fields().empty();
2990   CharUnits FieldOffset = CharUnits::Zero();
2991 
2992   if (UseExternalLayout) {
2993     FieldOffset =
2994         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2995   } else if (IsUnion) {
2996     FieldOffset = CharUnits::Zero();
2997   } else if (EmptySubobjects) {
2998     if (!IsOverlappingEmptyField)
2999       FieldOffset = DataSize.alignTo(Info.Alignment);
3000 
3001     while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, FieldOffset)) {
3002       const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(FD->getParent());
3003       bool HasBases = ParentClass && (!ParentClass->bases().empty() ||
3004                                       !ParentClass->vbases().empty());
3005       if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() &&
3006           HasBases) {
3007         // MSVC appears to only do this when there are base classes;
3008         // otherwise it overlaps no_unique_address fields in non-zero offsets.
3009         FieldOffset = DataSize.alignTo(Info.Alignment);
3010       } else {
3011         FieldOffset += Info.Alignment;
3012       }
3013     }
3014   } else {
3015     FieldOffset = Size.alignTo(Info.Alignment);
3016   }
3017   placeFieldAtOffset(FieldOffset);
3018 
3019   if (!IsOverlappingEmptyField)
3020     DataSize = std::max(DataSize, FieldOffset + Info.Size);
3021 
3022   Size = std::max(Size, FieldOffset + Info.Size);
3023 }
3024 
3025 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
3026   unsigned Width = FD->getBitWidthValue(Context);
3027   if (Width == 0) {
3028     layoutZeroWidthBitField(FD);
3029     return;
3030   }
3031   ElementInfo Info = getAdjustedElementInfo(FD);
3032   // Clamp the bitfield to a containable size for the sake of being able
3033   // to lay them out.  Sema will throw an error.
3034   if (Width > Context.toBits(Info.Size))
3035     Width = Context.toBits(Info.Size);
3036   // Check to see if this bitfield fits into an existing allocation.  Note:
3037   // MSVC refuses to pack bitfields of formal types with different sizes
3038   // into the same allocation.
3039   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
3040       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
3041     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
3042     RemainingBitsInField -= Width;
3043     return;
3044   }
3045   LastFieldIsNonZeroWidthBitfield = true;
3046   CurrentBitfieldSize = Info.Size;
3047   if (UseExternalLayout) {
3048     auto FieldBitOffset = External.getExternalFieldOffset(FD);
3049     placeFieldAtBitOffset(FieldBitOffset);
3050     auto NewSize = Context.toCharUnitsFromBits(
3051         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
3052         Context.toBits(Info.Size));
3053     Size = std::max(Size, NewSize);
3054     Alignment = std::max(Alignment, Info.Alignment);
3055   } else if (IsUnion) {
3056     placeFieldAtOffset(CharUnits::Zero());
3057     Size = std::max(Size, Info.Size);
3058     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3059   } else {
3060     // Allocate a new block of memory and place the bitfield in it.
3061     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3062     placeFieldAtOffset(FieldOffset);
3063     Size = FieldOffset + Info.Size;
3064     Alignment = std::max(Alignment, Info.Alignment);
3065     RemainingBitsInField = Context.toBits(Info.Size) - Width;
3066   }
3067   DataSize = Size;
3068 }
3069 
3070 void
3071 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3072   // Zero-width bitfields are ignored unless they follow a non-zero-width
3073   // bitfield.
3074   if (!LastFieldIsNonZeroWidthBitfield) {
3075     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3076     // TODO: Add a Sema warning that MS ignores alignment for zero
3077     // sized bitfields that occur after zero-size bitfields or non-bitfields.
3078     return;
3079   }
3080   LastFieldIsNonZeroWidthBitfield = false;
3081   ElementInfo Info = getAdjustedElementInfo(FD);
3082   if (IsUnion) {
3083     placeFieldAtOffset(CharUnits::Zero());
3084     Size = std::max(Size, Info.Size);
3085     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3086   } else {
3087     // Round up the current record size to the field's alignment boundary.
3088     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3089     placeFieldAtOffset(FieldOffset);
3090     Size = FieldOffset;
3091     Alignment = std::max(Alignment, Info.Alignment);
3092   }
3093   DataSize = Size;
3094 }
3095 
3096 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3097   if (!HasVBPtr || SharedVBPtrBase)
3098     return;
3099   // Inject the VBPointer at the injection site.
3100   CharUnits InjectionSite = VBPtrOffset;
3101   // But before we do, make sure it's properly aligned.
3102   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3103   // Determine where the first field should be laid out after the vbptr.
3104   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3105   // Shift everything after the vbptr down, unless we're using an external
3106   // layout.
3107   if (UseExternalLayout) {
3108     // It is possible that there were no fields or bases located after vbptr,
3109     // so the size was not adjusted before.
3110     if (Size < FieldStart)
3111       Size = FieldStart;
3112     return;
3113   }
3114   // Make sure that the amount we push the fields back by is a multiple of the
3115   // alignment.
3116   CharUnits Offset = (FieldStart - InjectionSite)
3117                          .alignTo(std::max(RequiredAlignment, Alignment));
3118   Size += Offset;
3119   for (uint64_t &FieldOffset : FieldOffsets)
3120     FieldOffset += Context.toBits(Offset);
3121   for (BaseOffsetsMapTy::value_type &Base : Bases)
3122     if (Base.second >= InjectionSite)
3123       Base.second += Offset;
3124 }
3125 
3126 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3127   if (!HasOwnVFPtr)
3128     return;
3129   // Make sure that the amount we push the struct back by is a multiple of the
3130   // alignment.
3131   CharUnits Offset =
3132       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3133   // Push back the vbptr, but increase the size of the object and push back
3134   // regular fields by the offset only if not using external record layout.
3135   if (HasVBPtr)
3136     VBPtrOffset += Offset;
3137 
3138   if (UseExternalLayout) {
3139     // The class may have size 0 and a vfptr (e.g. it's an interface class). The
3140     // size was not correctly set before in this case.
3141     if (Size.isZero())
3142       Size += Offset;
3143     return;
3144   }
3145 
3146   Size += Offset;
3147 
3148   // If we're using an external layout, the fields offsets have already
3149   // accounted for this adjustment.
3150   for (uint64_t &FieldOffset : FieldOffsets)
3151     FieldOffset += Context.toBits(Offset);
3152   for (BaseOffsetsMapTy::value_type &Base : Bases)
3153     Base.second += Offset;
3154 }
3155 
3156 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3157   if (!HasVBPtr)
3158     return;
3159   // Vtordisps are always 4 bytes (even in 64-bit mode)
3160   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3161   CharUnits VtorDispAlignment = VtorDispSize;
3162   // vtordisps respect pragma pack.
3163   if (!MaxFieldAlignment.isZero())
3164     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3165   // The alignment of the vtordisp is at least the required alignment of the
3166   // entire record.  This requirement may be present to support vtordisp
3167   // injection.
3168   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3169     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3170     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3171     RequiredAlignment =
3172         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3173   }
3174   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3175   // Compute the vtordisp set.
3176   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3177   computeVtorDispSet(HasVtorDispSet, RD);
3178   // Iterate through the virtual bases and lay them out.
3179   const ASTRecordLayout *PreviousBaseLayout = nullptr;
3180   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3181     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3182     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3183     bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3184     // Insert padding between two bases if the left first one is zero sized or
3185     // contains a zero sized subobject and the right is zero sized or one leads
3186     // with a zero sized base.  The padding between virtual bases is 4
3187     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3188     // the required alignment, we don't know why.
3189     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3190          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3191         HasVtordisp) {
3192       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3193       Alignment = std::max(VtorDispAlignment, Alignment);
3194     }
3195     // Insert the virtual base.
3196     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3197     CharUnits BaseOffset;
3198 
3199     // Respect the external AST source base offset, if present.
3200     if (UseExternalLayout) {
3201       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3202         BaseOffset = Size;
3203     } else
3204       BaseOffset = Size.alignTo(Info.Alignment);
3205 
3206     assert(BaseOffset >= Size && "base offset already allocated");
3207 
3208     VBases.insert(std::make_pair(BaseDecl,
3209         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3210     Size = BaseOffset + BaseLayout.getNonVirtualSize();
3211     PreviousBaseLayout = &BaseLayout;
3212   }
3213 }
3214 
3215 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3216   // Respect required alignment.  Note that in 32-bit mode Required alignment
3217   // may be 0 and cause size not to be updated.
3218   DataSize = Size;
3219   if (!RequiredAlignment.isZero()) {
3220     Alignment = std::max(Alignment, RequiredAlignment);
3221     auto RoundingAlignment = Alignment;
3222     if (!MaxFieldAlignment.isZero())
3223       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3224     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3225     Size = Size.alignTo(RoundingAlignment);
3226   }
3227   if (Size.isZero()) {
3228     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3229       EndsWithZeroSizedObject = true;
3230       LeadsWithZeroSizedBase = true;
3231     }
3232     // Zero-sized structures have size equal to their alignment if a
3233     // __declspec(align) came into play.
3234     if (RequiredAlignment >= MinEmptyStructSize)
3235       Size = Alignment;
3236     else
3237       Size = MinEmptyStructSize;
3238   }
3239 
3240   if (UseExternalLayout) {
3241     Size = Context.toCharUnitsFromBits(External.Size);
3242     if (External.Align)
3243       Alignment = Context.toCharUnitsFromBits(External.Align);
3244   }
3245 }
3246 
3247 // Recursively walks the non-virtual bases of a class and determines if any of
3248 // them are in the bases with overridden methods set.
3249 static bool
3250 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3251                      BasesWithOverriddenMethods,
3252                  const CXXRecordDecl *RD) {
3253   if (BasesWithOverriddenMethods.count(RD))
3254     return true;
3255   // If any of a virtual bases non-virtual bases (recursively) requires a
3256   // vtordisp than so does this virtual base.
3257   for (const CXXBaseSpecifier &Base : RD->bases())
3258     if (!Base.isVirtual() &&
3259         RequiresVtordisp(BasesWithOverriddenMethods,
3260                          Base.getType()->getAsCXXRecordDecl()))
3261       return true;
3262   return false;
3263 }
3264 
3265 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3266     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3267     const CXXRecordDecl *RD) const {
3268   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3269   // vftables.
3270   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3271     for (const CXXBaseSpecifier &Base : RD->vbases()) {
3272       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3273       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3274       if (Layout.hasExtendableVFPtr())
3275         HasVtordispSet.insert(BaseDecl);
3276     }
3277     return;
3278   }
3279 
3280   // If any of our bases need a vtordisp for this type, so do we.  Check our
3281   // direct bases for vtordisp requirements.
3282   for (const CXXBaseSpecifier &Base : RD->bases()) {
3283     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3284     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3285     for (const auto &bi : Layout.getVBaseOffsetsMap())
3286       if (bi.second.hasVtorDisp())
3287         HasVtordispSet.insert(bi.first);
3288   }
3289   // We don't introduce any additional vtordisps if either:
3290   // * A user declared constructor or destructor aren't declared.
3291   // * #pragma vtordisp(0) or the /vd0 flag are in use.
3292   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3293       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3294     return;
3295   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3296   // possible for a partially constructed object with virtual base overrides to
3297   // escape a non-trivial constructor.
3298   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3299   // Compute a set of base classes which define methods we override.  A virtual
3300   // base in this set will require a vtordisp.  A virtual base that transitively
3301   // contains one of these bases as a non-virtual base will also require a
3302   // vtordisp.
3303   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3304   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3305   // Seed the working set with our non-destructor, non-pure virtual methods.
3306   for (const CXXMethodDecl *MD : RD->methods())
3307     if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3308         !isa<CXXDestructorDecl>(MD) && !MD->isPureVirtual())
3309       Work.insert(MD);
3310   while (!Work.empty()) {
3311     const CXXMethodDecl *MD = *Work.begin();
3312     auto MethodRange = MD->overridden_methods();
3313     // If a virtual method has no-overrides it lives in its parent's vtable.
3314     if (MethodRange.begin() == MethodRange.end())
3315       BasesWithOverriddenMethods.insert(MD->getParent());
3316     else
3317       Work.insert(MethodRange.begin(), MethodRange.end());
3318     // We've finished processing this element, remove it from the working set.
3319     Work.erase(MD);
3320   }
3321   // For each of our virtual bases, check if it is in the set of overridden
3322   // bases or if it transitively contains a non-virtual base that is.
3323   for (const CXXBaseSpecifier &Base : RD->vbases()) {
3324     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3325     if (!HasVtordispSet.count(BaseDecl) &&
3326         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3327       HasVtordispSet.insert(BaseDecl);
3328   }
3329 }
3330 
3331 /// getASTRecordLayout - Get or compute information about the layout of the
3332 /// specified record (struct/union/class), which indicates its size and field
3333 /// position information.
3334 const ASTRecordLayout &
3335 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3336   // These asserts test different things.  A record has a definition
3337   // as soon as we begin to parse the definition.  That definition is
3338   // not a complete definition (which is what isDefinition() tests)
3339   // until we *finish* parsing the definition.
3340 
3341   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3342     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3343   // Complete the redecl chain (if necessary).
3344   (void)D->getMostRecentDecl();
3345 
3346   D = D->getDefinition();
3347   assert(D && "Cannot get layout of forward declarations!");
3348   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3349   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3350 
3351   // Look up this layout, if already laid out, return what we have.
3352   // Note that we can't save a reference to the entry because this function
3353   // is recursive.
3354   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3355   if (Entry) return *Entry;
3356 
3357   const ASTRecordLayout *NewEntry = nullptr;
3358 
3359   if (isMsLayout(*this)) {
3360     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3361       EmptySubobjectMap EmptySubobjects(*this, RD);
3362       MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3363       Builder.cxxLayout(RD);
3364       NewEntry = new (*this) ASTRecordLayout(
3365           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3366           Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3367           Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3368           Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3369           Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3370           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3371           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3372           Builder.Bases, Builder.VBases);
3373     } else {
3374       MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3375       Builder.layout(D);
3376       NewEntry = new (*this) ASTRecordLayout(
3377           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3378           Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3379           Builder.FieldOffsets);
3380     }
3381   } else {
3382     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3383       EmptySubobjectMap EmptySubobjects(*this, RD);
3384       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3385       Builder.Layout(RD);
3386 
3387       // In certain situations, we are allowed to lay out objects in the
3388       // tail-padding of base classes.  This is ABI-dependent.
3389       // FIXME: this should be stored in the record layout.
3390       bool skipTailPadding =
3391           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3392 
3393       // FIXME: This should be done in FinalizeLayout.
3394       CharUnits DataSize =
3395           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3396       CharUnits NonVirtualSize =
3397           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3398       NewEntry = new (*this) ASTRecordLayout(
3399           *this, Builder.getSize(), Builder.Alignment,
3400           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3401           /*RequiredAlignment : used by MS-ABI)*/
3402           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3403           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3404           NonVirtualSize, Builder.NonVirtualAlignment,
3405           Builder.PreferredNVAlignment,
3406           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3407           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3408           Builder.VBases);
3409     } else {
3410       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3411       Builder.Layout(D);
3412 
3413       NewEntry = new (*this) ASTRecordLayout(
3414           *this, Builder.getSize(), Builder.Alignment,
3415           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3416           /*RequiredAlignment : used by MS-ABI)*/
3417           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3418     }
3419   }
3420 
3421   ASTRecordLayouts[D] = NewEntry;
3422 
3423   if (getLangOpts().DumpRecordLayouts) {
3424     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3425     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3426   }
3427 
3428   return *NewEntry;
3429 }
3430 
3431 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3432   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3433     return nullptr;
3434 
3435   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3436   RD = RD->getDefinition();
3437 
3438   // Beware:
3439   //  1) computing the key function might trigger deserialization, which might
3440   //     invalidate iterators into KeyFunctions
3441   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3442   //     invalidate the LazyDeclPtr within the map itself
3443   LazyDeclPtr Entry = KeyFunctions[RD];
3444   const Decl *Result =
3445       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3446 
3447   // Store it back if it changed.
3448   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3449     KeyFunctions[RD] = const_cast<Decl*>(Result);
3450 
3451   return cast_or_null<CXXMethodDecl>(Result);
3452 }
3453 
3454 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3455   assert(Method == Method->getFirstDecl() &&
3456          "not working with method declaration from class definition");
3457 
3458   // Look up the cache entry.  Since we're working with the first
3459   // declaration, its parent must be the class definition, which is
3460   // the correct key for the KeyFunctions hash.
3461   const auto &Map = KeyFunctions;
3462   auto I = Map.find(Method->getParent());
3463 
3464   // If it's not cached, there's nothing to do.
3465   if (I == Map.end()) return;
3466 
3467   // If it is cached, check whether it's the target method, and if so,
3468   // remove it from the cache. Note, the call to 'get' might invalidate
3469   // the iterator and the LazyDeclPtr object within the map.
3470   LazyDeclPtr Ptr = I->second;
3471   if (Ptr.get(getExternalSource()) == Method) {
3472     // FIXME: remember that we did this for module / chained PCH state?
3473     KeyFunctions.erase(Method->getParent());
3474   }
3475 }
3476 
3477 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3478   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3479   return Layout.getFieldOffset(FD->getFieldIndex());
3480 }
3481 
3482 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3483   uint64_t OffsetInBits;
3484   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3485     OffsetInBits = ::getFieldOffset(*this, FD);
3486   } else {
3487     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3488 
3489     OffsetInBits = 0;
3490     for (const NamedDecl *ND : IFD->chain())
3491       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3492   }
3493 
3494   return OffsetInBits;
3495 }
3496 
3497 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3498                                           const ObjCImplementationDecl *ID,
3499                                           const ObjCIvarDecl *Ivar) const {
3500   Ivar = Ivar->getCanonicalDecl();
3501   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3502 
3503   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3504   // in here; it should never be necessary because that should be the lexical
3505   // decl context for the ivar.
3506 
3507   // If we know have an implementation (and the ivar is in it) then
3508   // look up in the implementation layout.
3509   const ASTRecordLayout *RL;
3510   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3511     RL = &getASTObjCImplementationLayout(ID);
3512   else
3513     RL = &getASTObjCInterfaceLayout(Container);
3514 
3515   // Compute field index.
3516   //
3517   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3518   // implemented. This should be fixed to get the information from the layout
3519   // directly.
3520   unsigned Index = 0;
3521 
3522   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3523        IVD; IVD = IVD->getNextIvar()) {
3524     if (Ivar == IVD)
3525       break;
3526     ++Index;
3527   }
3528   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3529 
3530   return RL->getFieldOffset(Index);
3531 }
3532 
3533 /// getObjCLayout - Get or compute information about the layout of the
3534 /// given interface.
3535 ///
3536 /// \param Impl - If given, also include the layout of the interface's
3537 /// implementation. This may differ by including synthesized ivars.
3538 const ASTRecordLayout &
3539 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3540                           const ObjCImplementationDecl *Impl) const {
3541   // Retrieve the definition
3542   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3543     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3544   D = D->getDefinition();
3545   assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3546          "Invalid interface decl!");
3547 
3548   // Look up this layout, if already laid out, return what we have.
3549   const ObjCContainerDecl *Key =
3550     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3551   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3552     return *Entry;
3553 
3554   // Add in synthesized ivar count if laying out an implementation.
3555   if (Impl) {
3556     unsigned SynthCount = CountNonClassIvars(D);
3557     // If there aren't any synthesized ivars then reuse the interface
3558     // entry. Note we can't cache this because we simply free all
3559     // entries later; however we shouldn't look up implementations
3560     // frequently.
3561     if (SynthCount == 0)
3562       return getObjCLayout(D, nullptr);
3563   }
3564 
3565   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3566   Builder.Layout(D);
3567 
3568   const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3569       *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3570       Builder.UnadjustedAlignment,
3571       /*RequiredAlignment : used by MS-ABI)*/
3572       Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3573 
3574   ObjCLayouts[Key] = NewEntry;
3575 
3576   return *NewEntry;
3577 }
3578 
3579 static void PrintOffset(raw_ostream &OS,
3580                         CharUnits Offset, unsigned IndentLevel) {
3581   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3582   OS.indent(IndentLevel * 2);
3583 }
3584 
3585 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3586                                 unsigned Begin, unsigned Width,
3587                                 unsigned IndentLevel) {
3588   llvm::SmallString<10> Buffer;
3589   {
3590     llvm::raw_svector_ostream BufferOS(Buffer);
3591     BufferOS << Offset.getQuantity() << ':';
3592     if (Width == 0) {
3593       BufferOS << '-';
3594     } else {
3595       BufferOS << Begin << '-' << (Begin + Width - 1);
3596     }
3597   }
3598 
3599   OS << llvm::right_justify(Buffer, 10) << " | ";
3600   OS.indent(IndentLevel * 2);
3601 }
3602 
3603 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3604   OS << "           | ";
3605   OS.indent(IndentLevel * 2);
3606 }
3607 
3608 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3609                              const ASTContext &C,
3610                              CharUnits Offset,
3611                              unsigned IndentLevel,
3612                              const char* Description,
3613                              bool PrintSizeInfo,
3614                              bool IncludeVirtualBases) {
3615   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3616   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3617 
3618   PrintOffset(OS, Offset, IndentLevel);
3619   OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD));
3620   if (Description)
3621     OS << ' ' << Description;
3622   if (CXXRD && CXXRD->isEmpty())
3623     OS << " (empty)";
3624   OS << '\n';
3625 
3626   IndentLevel++;
3627 
3628   // Dump bases.
3629   if (CXXRD) {
3630     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3631     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3632     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3633 
3634     // Vtable pointer.
3635     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3636       PrintOffset(OS, Offset, IndentLevel);
3637       OS << '(' << *RD << " vtable pointer)\n";
3638     } else if (HasOwnVFPtr) {
3639       PrintOffset(OS, Offset, IndentLevel);
3640       // vfptr (for Microsoft C++ ABI)
3641       OS << '(' << *RD << " vftable pointer)\n";
3642     }
3643 
3644     // Collect nvbases.
3645     SmallVector<const CXXRecordDecl *, 4> Bases;
3646     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3647       assert(!Base.getType()->isDependentType() &&
3648              "Cannot layout class with dependent bases.");
3649       if (!Base.isVirtual())
3650         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3651     }
3652 
3653     // Sort nvbases by offset.
3654     llvm::stable_sort(
3655         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3656           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3657         });
3658 
3659     // Dump (non-virtual) bases
3660     for (const CXXRecordDecl *Base : Bases) {
3661       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3662       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3663                        Base == PrimaryBase ? "(primary base)" : "(base)",
3664                        /*PrintSizeInfo=*/false,
3665                        /*IncludeVirtualBases=*/false);
3666     }
3667 
3668     // vbptr (for Microsoft C++ ABI)
3669     if (HasOwnVBPtr) {
3670       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3671       OS << '(' << *RD << " vbtable pointer)\n";
3672     }
3673   }
3674 
3675   // Dump fields.
3676   uint64_t FieldNo = 0;
3677   for (RecordDecl::field_iterator I = RD->field_begin(),
3678          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3679     const FieldDecl &Field = **I;
3680     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3681     CharUnits FieldOffset =
3682       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3683 
3684     // Recursively dump fields of record type.
3685     if (auto RT = Field.getType()->getAs<RecordType>()) {
3686       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3687                        Field.getName().data(),
3688                        /*PrintSizeInfo=*/false,
3689                        /*IncludeVirtualBases=*/true);
3690       continue;
3691     }
3692 
3693     if (Field.isBitField()) {
3694       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3695       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3696       unsigned Width = Field.getBitWidthValue(C);
3697       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3698     } else {
3699       PrintOffset(OS, FieldOffset, IndentLevel);
3700     }
3701     const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3702                                     ? Field.getType().getCanonicalType()
3703                                     : Field.getType();
3704     OS << FieldType << ' ' << Field << '\n';
3705   }
3706 
3707   // Dump virtual bases.
3708   if (CXXRD && IncludeVirtualBases) {
3709     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3710       Layout.getVBaseOffsetsMap();
3711 
3712     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3713       assert(Base.isVirtual() && "Found non-virtual class!");
3714       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3715 
3716       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3717 
3718       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3719         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3720         OS << "(vtordisp for vbase " << *VBase << ")\n";
3721       }
3722 
3723       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3724                        VBase == Layout.getPrimaryBase() ?
3725                          "(primary virtual base)" : "(virtual base)",
3726                        /*PrintSizeInfo=*/false,
3727                        /*IncludeVirtualBases=*/false);
3728     }
3729   }
3730 
3731   if (!PrintSizeInfo) return;
3732 
3733   PrintIndentNoOffset(OS, IndentLevel - 1);
3734   OS << "[sizeof=" << Layout.getSize().getQuantity();
3735   if (CXXRD && !isMsLayout(C))
3736     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3737   OS << ", align=" << Layout.getAlignment().getQuantity();
3738   if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3739     OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3740 
3741   if (CXXRD) {
3742     OS << ",\n";
3743     PrintIndentNoOffset(OS, IndentLevel - 1);
3744     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3745     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3746     if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3747       OS << ", preferrednvalign="
3748          << Layout.getPreferredNVAlignment().getQuantity();
3749   }
3750   OS << "]\n";
3751 }
3752 
3753 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3754                                   bool Simple) const {
3755   if (!Simple) {
3756     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3757                        /*PrintSizeInfo*/ true,
3758                        /*IncludeVirtualBases=*/true);
3759     return;
3760   }
3761 
3762   // The "simple" format is designed to be parsed by the
3763   // layout-override testing code.  There shouldn't be any external
3764   // uses of this format --- when LLDB overrides a layout, it sets up
3765   // the data structures directly --- so feel free to adjust this as
3766   // you like as long as you also update the rudimentary parser for it
3767   // in libFrontend.
3768 
3769   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3770   OS << "Type: " << getTypeDeclType(RD) << "\n";
3771   OS << "\nLayout: ";
3772   OS << "<ASTRecordLayout\n";
3773   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3774   if (!isMsLayout(*this))
3775     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3776   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3777   if (Target->defaultsToAIXPowerAlignment())
3778     OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3779        << "\n";
3780   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3781     OS << "  BaseOffsets: [";
3782     const CXXRecordDecl *Base = nullptr;
3783     for (auto I : CXXRD->bases()) {
3784       if (I.isVirtual())
3785         continue;
3786       if (Base)
3787         OS << ", ";
3788       Base = I.getType()->getAsCXXRecordDecl();
3789       OS << Info.CXXInfo->BaseOffsets[Base].getQuantity();
3790     }
3791     OS << "]>\n";
3792     OS << "  VBaseOffsets: [";
3793     const CXXRecordDecl *VBase = nullptr;
3794     for (auto I : CXXRD->vbases()) {
3795       if (VBase)
3796         OS << ", ";
3797       VBase = I.getType()->getAsCXXRecordDecl();
3798       OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity();
3799     }
3800     OS << "]>\n";
3801   }
3802   OS << "  FieldOffsets: [";
3803   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3804     if (i)
3805       OS << ", ";
3806     OS << Info.getFieldOffset(i);
3807   }
3808   OS << "]>\n";
3809 }
3810