xref: /freebsd/contrib/llvm-project/clang/lib/AST/RecordLayoutBuilder.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61   ExternalLayout() : Size(0), Align(0) {}
62 
63   /// Overall record size in bits.
64   uint64_t Size;
65 
66   /// Overall record alignment in bits.
67   uint64_t Align;
68 
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71 
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74 
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77 
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85 
86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93 
94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102 
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108 
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111 
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116 
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120 
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124 
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126 
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129 
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class, CharUnits Offset,
132                                   bool PlacingOverlappingField);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                   bool PlacingOverlappingField);
135 
136   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137   /// subobjects beyond the given offset.
138   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139     return Offset <= MaxEmptyClassOffset;
140   }
141 
142   CharUnits
143   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145     assert(FieldOffset % CharWidth == 0 &&
146            "Field offset not at char boundary!");
147 
148     return Context.toCharUnitsFromBits(FieldOffset);
149   }
150 
151 protected:
152   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                  CharUnits Offset) const;
154 
155   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                      CharUnits Offset);
157 
158   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                       const CXXRecordDecl *Class,
160                                       CharUnits Offset) const;
161   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                       CharUnits Offset) const;
163 
164 public:
165   /// This holds the size of the largest empty subobject (either a base
166   /// or a member). Will be zero if the record being built doesn't contain
167   /// any empty classes.
168   CharUnits SizeOfLargestEmptySubobject;
169 
170   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172       ComputeEmptySubobjectSizes();
173   }
174 
175   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176   /// at the given offset.
177   /// Returns false if placing the record will result in two components
178   /// (direct or indirect) of the same type having the same offset.
179   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                             CharUnits Offset);
181 
182   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183   /// offset.
184   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186 
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188   // Check the bases.
189   for (const CXXBaseSpecifier &Base : Class->bases()) {
190     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191 
192     CharUnits EmptySize;
193     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194     if (BaseDecl->isEmpty()) {
195       // If the class decl is empty, get its size.
196       EmptySize = Layout.getSize();
197     } else {
198       // Otherwise, we get the largest empty subobject for the decl.
199       EmptySize = Layout.getSizeOfLargestEmptySubobject();
200     }
201 
202     if (EmptySize > SizeOfLargestEmptySubobject)
203       SizeOfLargestEmptySubobject = EmptySize;
204   }
205 
206   // Check the fields.
207   for (const FieldDecl *FD : Class->fields()) {
208     const RecordType *RT =
209         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210 
211     // We only care about record types.
212     if (!RT)
213       continue;
214 
215     CharUnits EmptySize;
216     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218     if (MemberDecl->isEmpty()) {
219       // If the class decl is empty, get its size.
220       EmptySize = Layout.getSize();
221     } else {
222       // Otherwise, we get the largest empty subobject for the decl.
223       EmptySize = Layout.getSizeOfLargestEmptySubobject();
224     }
225 
226     if (EmptySize > SizeOfLargestEmptySubobject)
227       SizeOfLargestEmptySubobject = EmptySize;
228   }
229 }
230 
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                              CharUnits Offset) const {
234   // We only need to check empty bases.
235   if (!RD->isEmpty())
236     return true;
237 
238   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239   if (I == EmptyClassOffsets.end())
240     return true;
241 
242   const ClassVectorTy &Classes = I->second;
243   if (llvm::find(Classes, RD) == Classes.end())
244     return true;
245 
246   // There is already an empty class of the same type at this offset.
247   return false;
248 }
249 
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                              CharUnits Offset) {
252   // We only care about empty bases.
253   if (!RD->isEmpty())
254     return;
255 
256   // If we have empty structures inside a union, we can assign both
257   // the same offset. Just avoid pushing them twice in the list.
258   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259   if (llvm::is_contained(Classes, RD))
260     return;
261 
262   Classes.push_back(RD);
263 
264   // Update the empty class offset.
265   if (Offset > MaxEmptyClassOffset)
266     MaxEmptyClassOffset = Offset;
267 }
268 
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                  CharUnits Offset) {
272   // We don't have to keep looking past the maximum offset that's known to
273   // contain an empty class.
274   if (!AnyEmptySubobjectsBeyondOffset(Offset))
275     return true;
276 
277   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278     return false;
279 
280   // Traverse all non-virtual bases.
281   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282   for (const BaseSubobjectInfo *Base : Info->Bases) {
283     if (Base->IsVirtual)
284       continue;
285 
286     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287 
288     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289       return false;
290   }
291 
292   if (Info->PrimaryVirtualBaseInfo) {
293     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294 
295     if (Info == PrimaryVirtualBaseInfo->Derived) {
296       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297         return false;
298     }
299   }
300 
301   // Traverse all member variables.
302   unsigned FieldNo = 0;
303   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305     if (I->isBitField())
306       continue;
307 
308     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310       return false;
311   }
312 
313   return true;
314 }
315 
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                   CharUnits Offset,
318                                                   bool PlacingEmptyBase) {
319   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320     // We know that the only empty subobjects that can conflict with empty
321     // subobject of non-empty bases, are empty bases that can be placed at
322     // offset zero. Because of this, we only need to keep track of empty base
323     // subobjects with offsets less than the size of the largest empty
324     // subobject for our class.
325     return;
326   }
327 
328   AddSubobjectAtOffset(Info->Class, Offset);
329 
330   // Traverse all non-virtual bases.
331   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332   for (const BaseSubobjectInfo *Base : Info->Bases) {
333     if (Base->IsVirtual)
334       continue;
335 
336     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338   }
339 
340   if (Info->PrimaryVirtualBaseInfo) {
341     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342 
343     if (Info == PrimaryVirtualBaseInfo->Derived)
344       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                 PlacingEmptyBase);
346   }
347 
348   // Traverse all member variables.
349   unsigned FieldNo = 0;
350   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352     if (I->isBitField())
353       continue;
354 
355     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357   }
358 }
359 
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                              CharUnits Offset) {
362   // If we know this class doesn't have any empty subobjects we don't need to
363   // bother checking.
364   if (SizeOfLargestEmptySubobject.isZero())
365     return true;
366 
367   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368     return false;
369 
370   // We are able to place the base at this offset. Make sure to update the
371   // empty base subobject map.
372   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373   return true;
374 }
375 
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                   const CXXRecordDecl *Class,
379                                                   CharUnits Offset) const {
380   // We don't have to keep looking past the maximum offset that's known to
381   // contain an empty class.
382   if (!AnyEmptySubobjectsBeyondOffset(Offset))
383     return true;
384 
385   if (!CanPlaceSubobjectAtOffset(RD, Offset))
386     return false;
387 
388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389 
390   // Traverse all non-virtual bases.
391   for (const CXXBaseSpecifier &Base : RD->bases()) {
392     if (Base.isVirtual())
393       continue;
394 
395     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396 
397     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399       return false;
400   }
401 
402   if (RD == Class) {
403     // This is the most derived class, traverse virtual bases as well.
404     for (const CXXBaseSpecifier &Base : RD->vbases()) {
405       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406 
407       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409         return false;
410     }
411   }
412 
413   // Traverse all member variables.
414   unsigned FieldNo = 0;
415   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416        I != E; ++I, ++FieldNo) {
417     if (I->isBitField())
418       continue;
419 
420     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421 
422     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423       return false;
424   }
425 
426   return true;
427 }
428 
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                   CharUnits Offset) const {
432   // We don't have to keep looking past the maximum offset that's known to
433   // contain an empty class.
434   if (!AnyEmptySubobjectsBeyondOffset(Offset))
435     return true;
436 
437   QualType T = FD->getType();
438   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440 
441   // If we have an array type we need to look at every element.
442   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443     QualType ElemTy = Context.getBaseElementType(AT);
444     const RecordType *RT = ElemTy->getAs<RecordType>();
445     if (!RT)
446       return true;
447 
448     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 
451     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452     CharUnits ElementOffset = Offset;
453     for (uint64_t I = 0; I != NumElements; ++I) {
454       // We don't have to keep looking past the maximum offset that's known to
455       // contain an empty class.
456       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457         return true;
458 
459       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460         return false;
461 
462       ElementOffset += Layout.getSize();
463     }
464   }
465 
466   return true;
467 }
468 
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                          CharUnits Offset) {
472   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473     return false;
474 
475   // We are able to place the member variable at this offset.
476   // Make sure to update the empty field subobject map.
477   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478   return true;
479 }
480 
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483     bool PlacingOverlappingField) {
484   // We know that the only empty subobjects that can conflict with empty
485   // field subobjects are subobjects of empty bases and potentially-overlapping
486   // fields that can be placed at offset zero. Because of this, we only need to
487   // keep track of empty field subobjects with offsets less than the size of
488   // the largest empty subobject for our class.
489   //
490   // (Proof: we will only consider placing a subobject at offset zero or at
491   // >= the current dsize. The only cases where the earlier subobject can be
492   // placed beyond the end of dsize is if it's an empty base or a
493   // potentially-overlapping field.)
494   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495     return;
496 
497   AddSubobjectAtOffset(RD, Offset);
498 
499   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500 
501   // Traverse all non-virtual bases.
502   for (const CXXBaseSpecifier &Base : RD->bases()) {
503     if (Base.isVirtual())
504       continue;
505 
506     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507 
508     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                                PlacingOverlappingField);
511   }
512 
513   if (RD == Class) {
514     // This is the most derived class, traverse virtual bases as well.
515     for (const CXXBaseSpecifier &Base : RD->vbases()) {
516       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517 
518       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                  PlacingOverlappingField);
521     }
522   }
523 
524   // Traverse all member variables.
525   unsigned FieldNo = 0;
526   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527        I != E; ++I, ++FieldNo) {
528     if (I->isBitField())
529       continue;
530 
531     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532 
533     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534   }
535 }
536 
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539   QualType T = FD->getType();
540   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542     return;
543   }
544 
545   // If we have an array type we need to update every element.
546   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547     QualType ElemTy = Context.getBaseElementType(AT);
548     const RecordType *RT = ElemTy->getAs<RecordType>();
549     if (!RT)
550       return;
551 
552     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554 
555     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556     CharUnits ElementOffset = Offset;
557 
558     for (uint64_t I = 0; I != NumElements; ++I) {
559       // We know that the only empty subobjects that can conflict with empty
560       // field subobjects are subobjects of empty bases that can be placed at
561       // offset zero. Because of this, we only need to keep track of empty field
562       // subobjects with offsets less than the size of the largest empty
563       // subobject for our class.
564       if (!PlacingOverlappingField &&
565           ElementOffset >= SizeOfLargestEmptySubobject)
566         return;
567 
568       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                  PlacingOverlappingField);
570       ElementOffset += Layout.getSize();
571     }
572   }
573 }
574 
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576 
577 class ItaniumRecordLayoutBuilder {
578 protected:
579   // FIXME: Remove this and make the appropriate fields public.
580   friend class clang::ASTContext;
581 
582   const ASTContext &Context;
583 
584   EmptySubobjectMap *EmptySubobjects;
585 
586   /// Size - The current size of the record layout.
587   uint64_t Size;
588 
589   /// Alignment - The current alignment of the record layout.
590   CharUnits Alignment;
591 
592   /// PreferredAlignment - The preferred alignment of the record layout.
593   CharUnits PreferredAlignment;
594 
595   /// The alignment if attribute packed is not used.
596   CharUnits UnpackedAlignment;
597 
598   /// \brief The maximum of the alignments of top-level members.
599   CharUnits UnadjustedAlignment;
600 
601   SmallVector<uint64_t, 16> FieldOffsets;
602 
603   /// Whether the external AST source has provided a layout for this
604   /// record.
605   unsigned UseExternalLayout : 1;
606 
607   /// Whether we need to infer alignment, even when we have an
608   /// externally-provided layout.
609   unsigned InferAlignment : 1;
610 
611   /// Packed - Whether the record is packed or not.
612   unsigned Packed : 1;
613 
614   unsigned IsUnion : 1;
615 
616   unsigned IsMac68kAlign : 1;
617 
618   unsigned IsNaturalAlign : 1;
619 
620   unsigned IsMsStruct : 1;
621 
622   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623   /// this contains the number of bits in the last unit that can be used for
624   /// an adjacent bitfield if necessary.  The unit in question is usually
625   /// a byte, but larger units are used if IsMsStruct.
626   unsigned char UnfilledBitsInLastUnit;
627 
628   /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629   /// storage unit of the previous field if it was a bitfield.
630   unsigned char LastBitfieldStorageUnitSize;
631 
632   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633   /// #pragma pack.
634   CharUnits MaxFieldAlignment;
635 
636   /// DataSize - The data size of the record being laid out.
637   uint64_t DataSize;
638 
639   CharUnits NonVirtualSize;
640   CharUnits NonVirtualAlignment;
641   CharUnits PreferredNVAlignment;
642 
643   /// If we've laid out a field but not included its tail padding in Size yet,
644   /// this is the size up to the end of that field.
645   CharUnits PaddedFieldSize;
646 
647   /// PrimaryBase - the primary base class (if one exists) of the class
648   /// we're laying out.
649   const CXXRecordDecl *PrimaryBase;
650 
651   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652   /// out is virtual.
653   bool PrimaryBaseIsVirtual;
654 
655   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656   /// pointer, as opposed to inheriting one from a primary base class.
657   bool HasOwnVFPtr;
658 
659   /// the flag of field offset changing due to packed attribute.
660   bool HasPackedField;
661 
662   /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663   /// When there are OverlappingEmptyFields existing in the aggregate, the
664   /// flag shows if the following first non-empty or empty-but-non-overlapping
665   /// field has been handled, if any.
666   bool HandledFirstNonOverlappingEmptyField;
667 
668   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669 
670   /// Bases - base classes and their offsets in the record.
671   BaseOffsetsMapTy Bases;
672 
673   // VBases - virtual base classes and their offsets in the record.
674   ASTRecordLayout::VBaseOffsetsMapTy VBases;
675 
676   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677   /// primary base classes for some other direct or indirect base class.
678   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679 
680   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681   /// inheritance graph order. Used for determining the primary base class.
682   const CXXRecordDecl *FirstNearlyEmptyVBase;
683 
684   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685   /// avoid visiting virtual bases more than once.
686   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687 
688   /// Valid if UseExternalLayout is true.
689   ExternalLayout External;
690 
691   ItaniumRecordLayoutBuilder(const ASTContext &Context,
692                              EmptySubobjectMap *EmptySubobjects)
693       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694         Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695         UnpackedAlignment(CharUnits::One()),
696         UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697         InferAlignment(false), Packed(false), IsUnion(false),
698         IsMac68kAlign(false),
699         IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700         IsMsStruct(false), UnfilledBitsInLastUnit(0),
701         LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702         DataSize(0), NonVirtualSize(CharUnits::Zero()),
703         NonVirtualAlignment(CharUnits::One()),
704         PreferredNVAlignment(CharUnits::One()),
705         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707         HandledFirstNonOverlappingEmptyField(false),
708         FirstNearlyEmptyVBase(nullptr) {}
709 
710   void Layout(const RecordDecl *D);
711   void Layout(const CXXRecordDecl *D);
712   void Layout(const ObjCInterfaceDecl *D);
713 
714   void LayoutFields(const RecordDecl *D);
715   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716   void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717                           bool FieldPacked, const FieldDecl *D);
718   void LayoutBitField(const FieldDecl *D);
719 
720   TargetCXXABI getCXXABI() const {
721     return Context.getTargetInfo().getCXXABI();
722   }
723 
724   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726 
727   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728     BaseSubobjectInfoMapTy;
729 
730   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731   /// of the class we're laying out to their base subobject info.
732   BaseSubobjectInfoMapTy VirtualBaseInfo;
733 
734   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735   /// class we're laying out to their base subobject info.
736   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737 
738   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739   /// bases of the given class.
740   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741 
742   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743   /// single class and all of its base classes.
744   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745                                               bool IsVirtual,
746                                               BaseSubobjectInfo *Derived);
747 
748   /// DeterminePrimaryBase - Determine the primary base of the given class.
749   void DeterminePrimaryBase(const CXXRecordDecl *RD);
750 
751   void SelectPrimaryVBase(const CXXRecordDecl *RD);
752 
753   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754 
755   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758 
759   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761 
762   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763                                     CharUnits Offset);
764 
765   /// LayoutVirtualBases - Lays out all the virtual bases.
766   void LayoutVirtualBases(const CXXRecordDecl *RD,
767                           const CXXRecordDecl *MostDerivedClass);
768 
769   /// LayoutVirtualBase - Lays out a single virtual base.
770   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771 
772   /// LayoutBase - Will lay out a base and return the offset where it was
773   /// placed, in chars.
774   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775 
776   /// InitializeLayout - Initialize record layout for the given record decl.
777   void InitializeLayout(const Decl *D);
778 
779   /// FinishLayout - Finalize record layout. Adjust record size based on the
780   /// alignment.
781   void FinishLayout(const NamedDecl *D);
782 
783   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784                        CharUnits PreferredAlignment);
785   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786     UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787   }
788   void UpdateAlignment(CharUnits NewAlignment) {
789     UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790   }
791 
792   /// Retrieve the externally-supplied field offset for the given
793   /// field.
794   ///
795   /// \param Field The field whose offset is being queried.
796   /// \param ComputedOffset The offset that we've computed for this field.
797   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798                                      uint64_t ComputedOffset);
799 
800   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
802                           bool isPacked, const FieldDecl *D);
803 
804   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805 
806   CharUnits getSize() const {
807     assert(Size % Context.getCharWidth() == 0);
808     return Context.toCharUnitsFromBits(Size);
809   }
810   uint64_t getSizeInBits() const { return Size; }
811 
812   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813   void setSize(uint64_t NewSize) { Size = NewSize; }
814 
815   CharUnits getAligment() const { return Alignment; }
816 
817   CharUnits getDataSize() const {
818     assert(DataSize % Context.getCharWidth() == 0);
819     return Context.toCharUnitsFromBits(DataSize);
820   }
821   uint64_t getDataSizeInBits() const { return DataSize; }
822 
823   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825 
826   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828 };
829 } // end anonymous namespace
830 
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832   for (const auto &I : RD->bases()) {
833     assert(!I.getType()->isDependentType() &&
834            "Cannot layout class with dependent bases.");
835 
836     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837 
838     // Check if this is a nearly empty virtual base.
839     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840       // If it's not an indirect primary base, then we've found our primary
841       // base.
842       if (!IndirectPrimaryBases.count(Base)) {
843         PrimaryBase = Base;
844         PrimaryBaseIsVirtual = true;
845         return;
846       }
847 
848       // Is this the first nearly empty virtual base?
849       if (!FirstNearlyEmptyVBase)
850         FirstNearlyEmptyVBase = Base;
851     }
852 
853     SelectPrimaryVBase(Base);
854     if (PrimaryBase)
855       return;
856   }
857 }
858 
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861   // If the class isn't dynamic, it won't have a primary base.
862   if (!RD->isDynamicClass())
863     return;
864 
865   // Compute all the primary virtual bases for all of our direct and
866   // indirect bases, and record all their primary virtual base classes.
867   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868 
869   // If the record has a dynamic base class, attempt to choose a primary base
870   // class. It is the first (in direct base class order) non-virtual dynamic
871   // base class, if one exists.
872   for (const auto &I : RD->bases()) {
873     // Ignore virtual bases.
874     if (I.isVirtual())
875       continue;
876 
877     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878 
879     if (Base->isDynamicClass()) {
880       // We found it.
881       PrimaryBase = Base;
882       PrimaryBaseIsVirtual = false;
883       return;
884     }
885   }
886 
887   // Under the Itanium ABI, if there is no non-virtual primary base class,
888   // try to compute the primary virtual base.  The primary virtual base is
889   // the first nearly empty virtual base that is not an indirect primary
890   // virtual base class, if one exists.
891   if (RD->getNumVBases() != 0) {
892     SelectPrimaryVBase(RD);
893     if (PrimaryBase)
894       return;
895   }
896 
897   // Otherwise, it is the first indirect primary base class, if one exists.
898   if (FirstNearlyEmptyVBase) {
899     PrimaryBase = FirstNearlyEmptyVBase;
900     PrimaryBaseIsVirtual = true;
901     return;
902   }
903 
904   assert(!PrimaryBase && "Should not get here with a primary base!");
905 }
906 
907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909   BaseSubobjectInfo *Info;
910 
911   if (IsVirtual) {
912     // Check if we already have info about this virtual base.
913     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914     if (InfoSlot) {
915       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916       return InfoSlot;
917     }
918 
919     // We don't, create it.
920     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921     Info = InfoSlot;
922   } else {
923     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924   }
925 
926   Info->Class = RD;
927   Info->IsVirtual = IsVirtual;
928   Info->Derived = nullptr;
929   Info->PrimaryVirtualBaseInfo = nullptr;
930 
931   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933 
934   // Check if this base has a primary virtual base.
935   if (RD->getNumVBases()) {
936     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937     if (Layout.isPrimaryBaseVirtual()) {
938       // This base does have a primary virtual base.
939       PrimaryVirtualBase = Layout.getPrimaryBase();
940       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941 
942       // Now check if we have base subobject info about this primary base.
943       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944 
945       if (PrimaryVirtualBaseInfo) {
946         if (PrimaryVirtualBaseInfo->Derived) {
947           // We did have info about this primary base, and it turns out that it
948           // has already been claimed as a primary virtual base for another
949           // base.
950           PrimaryVirtualBase = nullptr;
951         } else {
952           // We can claim this base as our primary base.
953           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954           PrimaryVirtualBaseInfo->Derived = Info;
955         }
956       }
957     }
958   }
959 
960   // Now go through all direct bases.
961   for (const auto &I : RD->bases()) {
962     bool IsVirtual = I.isVirtual();
963 
964     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965 
966     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967   }
968 
969   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970     // Traversing the bases must have created the base info for our primary
971     // virtual base.
972     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973     assert(PrimaryVirtualBaseInfo &&
974            "Did not create a primary virtual base!");
975 
976     // Claim the primary virtual base as our primary virtual base.
977     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978     PrimaryVirtualBaseInfo->Derived = Info;
979   }
980 
981   return Info;
982 }
983 
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985     const CXXRecordDecl *RD) {
986   for (const auto &I : RD->bases()) {
987     bool IsVirtual = I.isVirtual();
988 
989     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990 
991     // Compute the base subobject info for this base.
992     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993                                                        nullptr);
994 
995     if (IsVirtual) {
996       // ComputeBaseInfo has already added this base for us.
997       assert(VirtualBaseInfo.count(BaseDecl) &&
998              "Did not add virtual base!");
999     } else {
1000       // Add the base info to the map of non-virtual bases.
1001       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002              "Non-virtual base already exists!");
1003       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004     }
1005   }
1006 }
1007 
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009     CharUnits UnpackedBaseAlign) {
1010   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011 
1012   // The maximum field alignment overrides base align.
1013   if (!MaxFieldAlignment.isZero()) {
1014     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016   }
1017 
1018   // Round up the current record size to pointer alignment.
1019   setSize(getSize().alignTo(BaseAlign));
1020 
1021   // Update the alignment.
1022   UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023 }
1024 
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026     const CXXRecordDecl *RD) {
1027   // Then, determine the primary base class.
1028   DeterminePrimaryBase(RD);
1029 
1030   // Compute base subobject info.
1031   ComputeBaseSubobjectInfo(RD);
1032 
1033   // If we have a primary base class, lay it out.
1034   if (PrimaryBase) {
1035     if (PrimaryBaseIsVirtual) {
1036       // If the primary virtual base was a primary virtual base of some other
1037       // base class we'll have to steal it.
1038       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039       PrimaryBaseInfo->Derived = nullptr;
1040 
1041       // We have a virtual primary base, insert it as an indirect primary base.
1042       IndirectPrimaryBases.insert(PrimaryBase);
1043 
1044       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045              "vbase already visited!");
1046       VisitedVirtualBases.insert(PrimaryBase);
1047 
1048       LayoutVirtualBase(PrimaryBaseInfo);
1049     } else {
1050       BaseSubobjectInfo *PrimaryBaseInfo =
1051         NonVirtualBaseInfo.lookup(PrimaryBase);
1052       assert(PrimaryBaseInfo &&
1053              "Did not find base info for non-virtual primary base!");
1054 
1055       LayoutNonVirtualBase(PrimaryBaseInfo);
1056     }
1057 
1058   // If this class needs a vtable/vf-table and didn't get one from a
1059   // primary base, add it in now.
1060   } else if (RD->isDynamicClass()) {
1061     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062     CharUnits PtrWidth =
1063       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1064     CharUnits PtrAlign =
1065       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1066     EnsureVTablePointerAlignment(PtrAlign);
1067     HasOwnVFPtr = true;
1068 
1069     assert(!IsUnion && "Unions cannot be dynamic classes.");
1070     HandledFirstNonOverlappingEmptyField = true;
1071 
1072     setSize(getSize() + PtrWidth);
1073     setDataSize(getSize());
1074   }
1075 
1076   // Now lay out the non-virtual bases.
1077   for (const auto &I : RD->bases()) {
1078 
1079     // Ignore virtual bases.
1080     if (I.isVirtual())
1081       continue;
1082 
1083     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084 
1085     // Skip the primary base, because we've already laid it out.  The
1086     // !PrimaryBaseIsVirtual check is required because we might have a
1087     // non-virtual base of the same type as a primary virtual base.
1088     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089       continue;
1090 
1091     // Lay out the base.
1092     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093     assert(BaseInfo && "Did not find base info for non-virtual base!");
1094 
1095     LayoutNonVirtualBase(BaseInfo);
1096   }
1097 }
1098 
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100     const BaseSubobjectInfo *Base) {
1101   // Layout the base.
1102   CharUnits Offset = LayoutBase(Base);
1103 
1104   // Add its base class offset.
1105   assert(!Bases.count(Base->Class) && "base offset already exists!");
1106   Bases.insert(std::make_pair(Base->Class, Offset));
1107 
1108   AddPrimaryVirtualBaseOffsets(Base, Offset);
1109 }
1110 
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112     const BaseSubobjectInfo *Info, CharUnits Offset) {
1113   // This base isn't interesting, it has no virtual bases.
1114   if (!Info->Class->getNumVBases())
1115     return;
1116 
1117   // First, check if we have a virtual primary base to add offsets for.
1118   if (Info->PrimaryVirtualBaseInfo) {
1119     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120            "Primary virtual base is not virtual!");
1121     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122       // Add the offset.
1123       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124              "primary vbase offset already exists!");
1125       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1127 
1128       // Traverse the primary virtual base.
1129       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130     }
1131   }
1132 
1133   // Now go through all direct non-virtual bases.
1134   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135   for (const BaseSubobjectInfo *Base : Info->Bases) {
1136     if (Base->IsVirtual)
1137       continue;
1138 
1139     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141   }
1142 }
1143 
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146   const CXXRecordDecl *PrimaryBase;
1147   bool PrimaryBaseIsVirtual;
1148 
1149   if (MostDerivedClass == RD) {
1150     PrimaryBase = this->PrimaryBase;
1151     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152   } else {
1153     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154     PrimaryBase = Layout.getPrimaryBase();
1155     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156   }
1157 
1158   for (const CXXBaseSpecifier &Base : RD->bases()) {
1159     assert(!Base.getType()->isDependentType() &&
1160            "Cannot layout class with dependent bases.");
1161 
1162     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163 
1164     if (Base.isVirtual()) {
1165       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167 
1168         // Only lay out the virtual base if it's not an indirect primary base.
1169         if (!IndirectPrimaryBase) {
1170           // Only visit virtual bases once.
1171           if (!VisitedVirtualBases.insert(BaseDecl).second)
1172             continue;
1173 
1174           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175           assert(BaseInfo && "Did not find virtual base info!");
1176           LayoutVirtualBase(BaseInfo);
1177         }
1178       }
1179     }
1180 
1181     if (!BaseDecl->getNumVBases()) {
1182       // This base isn't interesting since it doesn't have any virtual bases.
1183       continue;
1184     }
1185 
1186     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187   }
1188 }
1189 
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191     const BaseSubobjectInfo *Base) {
1192   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193 
1194   // Layout the base.
1195   CharUnits Offset = LayoutBase(Base);
1196 
1197   // Add its base class offset.
1198   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199   VBases.insert(std::make_pair(Base->Class,
1200                        ASTRecordLayout::VBaseInfo(Offset, false)));
1201 
1202   AddPrimaryVirtualBaseOffsets(Base, Offset);
1203 }
1204 
1205 CharUnits
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207   assert(!IsUnion && "Unions cannot have base classes.");
1208 
1209   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210   CharUnits Offset;
1211 
1212   // Query the external layout to see if it provides an offset.
1213   bool HasExternalLayout = false;
1214   if (UseExternalLayout) {
1215     if (Base->IsVirtual)
1216       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217     else
1218       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219   }
1220 
1221   auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222     // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223     // Per GCC's documentation, it only applies to non-static data members.
1224     return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225                         LangOptions::ClangABI::Ver6) ||
1226                        Context.getTargetInfo().getTriple().isPS4() ||
1227                        Context.getTargetInfo().getTriple().isOSAIX()))
1228                ? CharUnits::One()
1229                : UnpackedAlign;
1230   };
1231 
1232   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233   CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234   CharUnits BaseAlign =
1235       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236   CharUnits PreferredBaseAlign =
1237       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238 
1239   const bool DefaultsToAIXPowerAlignment =
1240       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241   if (DefaultsToAIXPowerAlignment) {
1242     // AIX `power` alignment does not apply the preferred alignment for
1243     // non-union classes if the source of the alignment (the current base in
1244     // this context) follows introduction of the first subobject with
1245     // exclusively allocated space or zero-extent array.
1246     if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247       // By handling a base class that is not empty, we're handling the
1248       // "first (inherited) member".
1249       HandledFirstNonOverlappingEmptyField = true;
1250     } else if (!IsNaturalAlign) {
1251       UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252       PreferredBaseAlign = BaseAlign;
1253     }
1254   }
1255 
1256   CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257                                   ? UnpackedBaseAlign
1258                                   : UnpackedPreferredBaseAlign;
1259   // If we have an empty base class, try to place it at offset 0.
1260   if (Base->Class->isEmpty() &&
1261       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263     setSize(std::max(getSize(), Layout.getSize()));
1264     UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1265 
1266     return CharUnits::Zero();
1267   }
1268 
1269   // The maximum field alignment overrides the base align/(AIX-only) preferred
1270   // base align.
1271   if (!MaxFieldAlignment.isZero()) {
1272     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1273     PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1274     UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1275   }
1276 
1277   CharUnits AlignTo =
1278       !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1279   if (!HasExternalLayout) {
1280     // Round up the current record size to the base's alignment boundary.
1281     Offset = getDataSize().alignTo(AlignTo);
1282 
1283     // Try to place the base.
1284     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1285       Offset += AlignTo;
1286   } else {
1287     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1288     (void)Allowed;
1289     assert(Allowed && "Base subobject externally placed at overlapping offset");
1290 
1291     if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1292       // The externally-supplied base offset is before the base offset we
1293       // computed. Assume that the structure is packed.
1294       Alignment = CharUnits::One();
1295       InferAlignment = false;
1296     }
1297   }
1298 
1299   if (!Base->Class->isEmpty()) {
1300     // Update the data size.
1301     setDataSize(Offset + Layout.getNonVirtualSize());
1302 
1303     setSize(std::max(getSize(), getDataSize()));
1304   } else
1305     setSize(std::max(getSize(), Offset + Layout.getSize()));
1306 
1307   // Remember max struct/class alignment.
1308   UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1309 
1310   return Offset;
1311 }
1312 
1313 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1314   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1315     IsUnion = RD->isUnion();
1316     IsMsStruct = RD->isMsStruct(Context);
1317   }
1318 
1319   Packed = D->hasAttr<PackedAttr>();
1320 
1321   // Honor the default struct packing maximum alignment flag.
1322   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1323     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1324   }
1325 
1326   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1327   // and forces all structures to have 2-byte alignment. The IBM docs on it
1328   // allude to additional (more complicated) semantics, especially with regard
1329   // to bit-fields, but gcc appears not to follow that.
1330   if (D->hasAttr<AlignMac68kAttr>()) {
1331     assert(
1332         !D->hasAttr<AlignNaturalAttr>() &&
1333         "Having both mac68k and natural alignment on a decl is not allowed.");
1334     IsMac68kAlign = true;
1335     MaxFieldAlignment = CharUnits::fromQuantity(2);
1336     Alignment = CharUnits::fromQuantity(2);
1337     PreferredAlignment = CharUnits::fromQuantity(2);
1338   } else {
1339     if (D->hasAttr<AlignNaturalAttr>())
1340       IsNaturalAlign = true;
1341 
1342     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1343       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1344 
1345     if (unsigned MaxAlign = D->getMaxAlignment())
1346       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1347   }
1348 
1349   HandledFirstNonOverlappingEmptyField =
1350       !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1351 
1352   // If there is an external AST source, ask it for the various offsets.
1353   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1354     if (ExternalASTSource *Source = Context.getExternalSource()) {
1355       UseExternalLayout = Source->layoutRecordType(
1356           RD, External.Size, External.Align, External.FieldOffsets,
1357           External.BaseOffsets, External.VirtualBaseOffsets);
1358 
1359       // Update based on external alignment.
1360       if (UseExternalLayout) {
1361         if (External.Align > 0) {
1362           Alignment = Context.toCharUnitsFromBits(External.Align);
1363           PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1364         } else {
1365           // The external source didn't have alignment information; infer it.
1366           InferAlignment = true;
1367         }
1368       }
1369     }
1370 }
1371 
1372 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1373   InitializeLayout(D);
1374   LayoutFields(D);
1375 
1376   // Finally, round the size of the total struct up to the alignment of the
1377   // struct itself.
1378   FinishLayout(D);
1379 }
1380 
1381 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1382   InitializeLayout(RD);
1383 
1384   // Lay out the vtable and the non-virtual bases.
1385   LayoutNonVirtualBases(RD);
1386 
1387   LayoutFields(RD);
1388 
1389   NonVirtualSize = Context.toCharUnitsFromBits(
1390       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1391   NonVirtualAlignment = Alignment;
1392   PreferredNVAlignment = PreferredAlignment;
1393 
1394   // Lay out the virtual bases and add the primary virtual base offsets.
1395   LayoutVirtualBases(RD, RD);
1396 
1397   // Finally, round the size of the total struct up to the alignment
1398   // of the struct itself.
1399   FinishLayout(RD);
1400 
1401 #ifndef NDEBUG
1402   // Check that we have base offsets for all bases.
1403   for (const CXXBaseSpecifier &Base : RD->bases()) {
1404     if (Base.isVirtual())
1405       continue;
1406 
1407     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1408 
1409     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1410   }
1411 
1412   // And all virtual bases.
1413   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1414     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1415 
1416     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1417   }
1418 #endif
1419 }
1420 
1421 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1422   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1423     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1424 
1425     UpdateAlignment(SL.getAlignment());
1426 
1427     // We start laying out ivars not at the end of the superclass
1428     // structure, but at the next byte following the last field.
1429     setDataSize(SL.getDataSize());
1430     setSize(getDataSize());
1431   }
1432 
1433   InitializeLayout(D);
1434   // Layout each ivar sequentially.
1435   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1436        IVD = IVD->getNextIvar())
1437     LayoutField(IVD, false);
1438 
1439   // Finally, round the size of the total struct up to the alignment of the
1440   // struct itself.
1441   FinishLayout(D);
1442 }
1443 
1444 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1445   // Layout each field, for now, just sequentially, respecting alignment.  In
1446   // the future, this will need to be tweakable by targets.
1447   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1448   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1449   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1450     auto Next(I);
1451     ++Next;
1452     LayoutField(*I,
1453                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1454   }
1455 }
1456 
1457 // Rounds the specified size to have it a multiple of the char size.
1458 static uint64_t
1459 roundUpSizeToCharAlignment(uint64_t Size,
1460                            const ASTContext &Context) {
1461   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1462   return llvm::alignTo(Size, CharAlignment);
1463 }
1464 
1465 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1466                                                     uint64_t StorageUnitSize,
1467                                                     bool FieldPacked,
1468                                                     const FieldDecl *D) {
1469   assert(Context.getLangOpts().CPlusPlus &&
1470          "Can only have wide bit-fields in C++!");
1471 
1472   // Itanium C++ ABI 2.4:
1473   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1474   //   sizeof(T')*8 <= n.
1475 
1476   QualType IntegralPODTypes[] = {
1477     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1478     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1479   };
1480 
1481   QualType Type;
1482   for (const QualType &QT : IntegralPODTypes) {
1483     uint64_t Size = Context.getTypeSize(QT);
1484 
1485     if (Size > FieldSize)
1486       break;
1487 
1488     Type = QT;
1489   }
1490   assert(!Type.isNull() && "Did not find a type!");
1491 
1492   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1493 
1494   // We're not going to use any of the unfilled bits in the last byte.
1495   UnfilledBitsInLastUnit = 0;
1496   LastBitfieldStorageUnitSize = 0;
1497 
1498   uint64_t FieldOffset;
1499   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1500 
1501   if (IsUnion) {
1502     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1503                                                            Context);
1504     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1505     FieldOffset = 0;
1506   } else {
1507     // The bitfield is allocated starting at the next offset aligned
1508     // appropriately for T', with length n bits.
1509     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1510 
1511     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1512 
1513     setDataSize(
1514         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1515     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1516   }
1517 
1518   // Place this field at the current location.
1519   FieldOffsets.push_back(FieldOffset);
1520 
1521   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1522                     Context.toBits(TypeAlign), FieldPacked, D);
1523 
1524   // Update the size.
1525   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1526 
1527   // Remember max struct/class alignment.
1528   UpdateAlignment(TypeAlign);
1529 }
1530 
1531 static bool isAIXLayout(const ASTContext &Context) {
1532   return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1533 }
1534 
1535 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1536   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1537   uint64_t FieldSize = D->getBitWidthValue(Context);
1538   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1539   uint64_t StorageUnitSize = FieldInfo.Width;
1540   unsigned FieldAlign = FieldInfo.Align;
1541   bool AlignIsRequired = FieldInfo.AlignIsRequired;
1542 
1543   // UnfilledBitsInLastUnit is the difference between the end of the
1544   // last allocated bitfield (i.e. the first bit offset available for
1545   // bitfields) and the end of the current data size in bits (i.e. the
1546   // first bit offset available for non-bitfields).  The current data
1547   // size in bits is always a multiple of the char size; additionally,
1548   // for ms_struct records it's also a multiple of the
1549   // LastBitfieldStorageUnitSize (if set).
1550 
1551   // The struct-layout algorithm is dictated by the platform ABI,
1552   // which in principle could use almost any rules it likes.  In
1553   // practice, UNIXy targets tend to inherit the algorithm described
1554   // in the System V generic ABI.  The basic bitfield layout rule in
1555   // System V is to place bitfields at the next available bit offset
1556   // where the entire bitfield would fit in an aligned storage unit of
1557   // the declared type; it's okay if an earlier or later non-bitfield
1558   // is allocated in the same storage unit.  However, some targets
1559   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1560   // require this storage unit to be aligned, and therefore always put
1561   // the bitfield at the next available bit offset.
1562 
1563   // ms_struct basically requests a complete replacement of the
1564   // platform ABI's struct-layout algorithm, with the high-level goal
1565   // of duplicating MSVC's layout.  For non-bitfields, this follows
1566   // the standard algorithm.  The basic bitfield layout rule is to
1567   // allocate an entire unit of the bitfield's declared type
1568   // (e.g. 'unsigned long'), then parcel it up among successive
1569   // bitfields whose declared types have the same size, making a new
1570   // unit as soon as the last can no longer store the whole value.
1571   // Since it completely replaces the platform ABI's algorithm,
1572   // settings like !useBitFieldTypeAlignment() do not apply.
1573 
1574   // A zero-width bitfield forces the use of a new storage unit for
1575   // later bitfields.  In general, this occurs by rounding up the
1576   // current size of the struct as if the algorithm were about to
1577   // place a non-bitfield of the field's formal type.  Usually this
1578   // does not change the alignment of the struct itself, but it does
1579   // on some targets (those that useZeroLengthBitfieldAlignment(),
1580   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1581   // ignored unless they follow a non-zero-width bitfield.
1582 
1583   // A field alignment restriction (e.g. from #pragma pack) or
1584   // specification (e.g. from __attribute__((aligned))) changes the
1585   // formal alignment of the field.  For System V, this alters the
1586   // required alignment of the notional storage unit that must contain
1587   // the bitfield.  For ms_struct, this only affects the placement of
1588   // new storage units.  In both cases, the effect of #pragma pack is
1589   // ignored on zero-width bitfields.
1590 
1591   // On System V, a packed field (e.g. from #pragma pack or
1592   // __attribute__((packed))) always uses the next available bit
1593   // offset.
1594 
1595   // In an ms_struct struct, the alignment of a fundamental type is
1596   // always equal to its size.  This is necessary in order to mimic
1597   // the i386 alignment rules on targets which might not fully align
1598   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1599 
1600   // First, some simple bookkeeping to perform for ms_struct structs.
1601   if (IsMsStruct) {
1602     // The field alignment for integer types is always the size.
1603     FieldAlign = StorageUnitSize;
1604 
1605     // If the previous field was not a bitfield, or was a bitfield
1606     // with a different storage unit size, or if this field doesn't fit into
1607     // the current storage unit, we're done with that storage unit.
1608     if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1609         UnfilledBitsInLastUnit < FieldSize) {
1610       // Also, ignore zero-length bitfields after non-bitfields.
1611       if (!LastBitfieldStorageUnitSize && !FieldSize)
1612         FieldAlign = 1;
1613 
1614       UnfilledBitsInLastUnit = 0;
1615       LastBitfieldStorageUnitSize = 0;
1616     }
1617   }
1618 
1619   if (isAIXLayout(Context)) {
1620     if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1621       // On AIX, [bool, char, short] bitfields have the same alignment
1622       // as [unsigned].
1623       StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1624     } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1625                Context.getTargetInfo().getTriple().isArch32Bit() &&
1626                FieldSize <= 32) {
1627       // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1628       // long long bitfield has length no greater than 32 bits.
1629       StorageUnitSize = 32;
1630 
1631       if (!AlignIsRequired)
1632         FieldAlign = 32;
1633     }
1634 
1635     if (FieldAlign < StorageUnitSize) {
1636       // The bitfield alignment should always be greater than or equal to
1637       // bitcontainer size.
1638       FieldAlign = StorageUnitSize;
1639     }
1640   }
1641 
1642   // If the field is wider than its declared type, it follows
1643   // different rules in all cases, except on AIX.
1644   // On AIX, wide bitfield follows the same rules as normal bitfield.
1645   if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1646     LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1647     return;
1648   }
1649 
1650   // Compute the next available bit offset.
1651   uint64_t FieldOffset =
1652     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1653 
1654   // Handle targets that don't honor bitfield type alignment.
1655   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1656     // Some such targets do honor it on zero-width bitfields.
1657     if (FieldSize == 0 &&
1658         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1659       // Some targets don't honor leading zero-width bitfield.
1660       if (!IsUnion && FieldOffset == 0 &&
1661           !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1662         FieldAlign = 1;
1663       else {
1664         // The alignment to round up to is the max of the field's natural
1665         // alignment and a target-specific fixed value (sometimes zero).
1666         unsigned ZeroLengthBitfieldBoundary =
1667             Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1668         FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1669       }
1670     // If that doesn't apply, just ignore the field alignment.
1671     } else {
1672       FieldAlign = 1;
1673     }
1674   }
1675 
1676   // Remember the alignment we would have used if the field were not packed.
1677   unsigned UnpackedFieldAlign = FieldAlign;
1678 
1679   // Ignore the field alignment if the field is packed unless it has zero-size.
1680   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1681     FieldAlign = 1;
1682 
1683   // But, if there's an 'aligned' attribute on the field, honor that.
1684   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1685   if (ExplicitFieldAlign) {
1686     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1687     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1688   }
1689 
1690   // But, if there's a #pragma pack in play, that takes precedent over
1691   // even the 'aligned' attribute, for non-zero-width bitfields.
1692   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1693   if (!MaxFieldAlignment.isZero() && FieldSize) {
1694     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1695     if (FieldPacked)
1696       FieldAlign = UnpackedFieldAlign;
1697     else
1698       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1699   }
1700 
1701   // But, ms_struct just ignores all of that in unions, even explicit
1702   // alignment attributes.
1703   if (IsMsStruct && IsUnion) {
1704     FieldAlign = UnpackedFieldAlign = 1;
1705   }
1706 
1707   // For purposes of diagnostics, we're going to simultaneously
1708   // compute the field offsets that we would have used if we weren't
1709   // adding any alignment padding or if the field weren't packed.
1710   uint64_t UnpaddedFieldOffset = FieldOffset;
1711   uint64_t UnpackedFieldOffset = FieldOffset;
1712 
1713   // Check if we need to add padding to fit the bitfield within an
1714   // allocation unit with the right size and alignment.  The rules are
1715   // somewhat different here for ms_struct structs.
1716   if (IsMsStruct) {
1717     // If it's not a zero-width bitfield, and we can fit the bitfield
1718     // into the active storage unit (and we haven't already decided to
1719     // start a new storage unit), just do so, regardless of any other
1720     // other consideration.  Otherwise, round up to the right alignment.
1721     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1722       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1723       UnpackedFieldOffset =
1724           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1725       UnfilledBitsInLastUnit = 0;
1726     }
1727 
1728   } else {
1729     // #pragma pack, with any value, suppresses the insertion of padding.
1730     bool AllowPadding = MaxFieldAlignment.isZero();
1731 
1732     // Compute the real offset.
1733     if (FieldSize == 0 ||
1734         (AllowPadding &&
1735          (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1736       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1737     } else if (ExplicitFieldAlign &&
1738                (MaxFieldAlignmentInBits == 0 ||
1739                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1740                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1741       // TODO: figure it out what needs to be done on targets that don't honor
1742       // bit-field type alignment like ARM APCS ABI.
1743       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1744     }
1745 
1746     // Repeat the computation for diagnostic purposes.
1747     if (FieldSize == 0 ||
1748         (AllowPadding &&
1749          (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1750              StorageUnitSize))
1751       UnpackedFieldOffset =
1752           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1753     else if (ExplicitFieldAlign &&
1754              (MaxFieldAlignmentInBits == 0 ||
1755               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1756              Context.getTargetInfo().useExplicitBitFieldAlignment())
1757       UnpackedFieldOffset =
1758           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1759   }
1760 
1761   // If we're using external layout, give the external layout a chance
1762   // to override this information.
1763   if (UseExternalLayout)
1764     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1765 
1766   // Okay, place the bitfield at the calculated offset.
1767   FieldOffsets.push_back(FieldOffset);
1768 
1769   // Bookkeeping:
1770 
1771   // Anonymous members don't affect the overall record alignment,
1772   // except on targets where they do.
1773   if (!IsMsStruct &&
1774       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1775       !D->getIdentifier())
1776     FieldAlign = UnpackedFieldAlign = 1;
1777 
1778   // On AIX, zero-width bitfields pad out to the alignment boundary, but then
1779   // do not affect overall record alignment if there is a pragma pack or
1780   // pragma align(packed).
1781   if (isAIXLayout(Context) && !MaxFieldAlignment.isZero() && !FieldSize)
1782     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1783 
1784   // Diagnose differences in layout due to padding or packing.
1785   if (!UseExternalLayout)
1786     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1787                       UnpackedFieldAlign, FieldPacked, D);
1788 
1789   // Update DataSize to include the last byte containing (part of) the bitfield.
1790 
1791   // For unions, this is just a max operation, as usual.
1792   if (IsUnion) {
1793     // For ms_struct, allocate the entire storage unit --- unless this
1794     // is a zero-width bitfield, in which case just use a size of 1.
1795     uint64_t RoundedFieldSize;
1796     if (IsMsStruct) {
1797       RoundedFieldSize = (FieldSize ? StorageUnitSize
1798                                     : Context.getTargetInfo().getCharWidth());
1799 
1800       // Otherwise, allocate just the number of bytes required to store
1801       // the bitfield.
1802     } else {
1803       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1804     }
1805     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1806 
1807   // For non-zero-width bitfields in ms_struct structs, allocate a new
1808   // storage unit if necessary.
1809   } else if (IsMsStruct && FieldSize) {
1810     // We should have cleared UnfilledBitsInLastUnit in every case
1811     // where we changed storage units.
1812     if (!UnfilledBitsInLastUnit) {
1813       setDataSize(FieldOffset + StorageUnitSize);
1814       UnfilledBitsInLastUnit = StorageUnitSize;
1815     }
1816     UnfilledBitsInLastUnit -= FieldSize;
1817     LastBitfieldStorageUnitSize = StorageUnitSize;
1818 
1819     // Otherwise, bump the data size up to include the bitfield,
1820     // including padding up to char alignment, and then remember how
1821     // bits we didn't use.
1822   } else {
1823     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1824     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1825     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1826     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1827 
1828     // The only time we can get here for an ms_struct is if this is a
1829     // zero-width bitfield, which doesn't count as anything for the
1830     // purposes of unfilled bits.
1831     LastBitfieldStorageUnitSize = 0;
1832   }
1833 
1834   // Update the size.
1835   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1836 
1837   // Remember max struct/class alignment.
1838   UnadjustedAlignment =
1839       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1840   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1841                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1842 }
1843 
1844 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1845                                              bool InsertExtraPadding) {
1846   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1847   bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1848   bool IsOverlappingEmptyField =
1849       PotentiallyOverlapping && FieldClass->isEmpty();
1850 
1851   CharUnits FieldOffset =
1852       (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1853 
1854   const bool DefaultsToAIXPowerAlignment =
1855       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1856   bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1857   if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1858     assert(FieldOffset == CharUnits::Zero() &&
1859            "The first non-overlapping empty field should have been handled.");
1860 
1861     if (!IsOverlappingEmptyField) {
1862       FoundFirstNonOverlappingEmptyFieldForAIX = true;
1863 
1864       // We're going to handle the "first member" based on
1865       // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1866       // invocation of this function; record it as handled for future
1867       // invocations (except for unions, because the current field does not
1868       // represent all "firsts").
1869       HandledFirstNonOverlappingEmptyField = !IsUnion;
1870     }
1871   }
1872 
1873   if (D->isBitField()) {
1874     LayoutBitField(D);
1875     return;
1876   }
1877 
1878   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1879   // Reset the unfilled bits.
1880   UnfilledBitsInLastUnit = 0;
1881   LastBitfieldStorageUnitSize = 0;
1882 
1883   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1884 
1885   bool AlignIsRequired = false;
1886   CharUnits FieldSize;
1887   CharUnits FieldAlign;
1888   // The amount of this class's dsize occupied by the field.
1889   // This is equal to FieldSize unless we're permitted to pack
1890   // into the field's tail padding.
1891   CharUnits EffectiveFieldSize;
1892 
1893   auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1894     auto TI = Context.getTypeInfoInChars(D->getType());
1895     FieldAlign = TI.Align;
1896     // Flexible array members don't have any size, but they have to be
1897     // aligned appropriately for their element type.
1898     EffectiveFieldSize = FieldSize =
1899         IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1900     AlignIsRequired = TI.AlignIsRequired;
1901   };
1902 
1903   if (D->getType()->isIncompleteArrayType()) {
1904     setDeclInfo(true /* IsIncompleteArrayType */);
1905   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1906     unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1907     EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1908         Context.getTargetInfo().getPointerWidth(AS));
1909     FieldAlign = Context.toCharUnitsFromBits(
1910         Context.getTargetInfo().getPointerAlign(AS));
1911   } else {
1912     setDeclInfo(false /* IsIncompleteArrayType */);
1913 
1914     // A potentially-overlapping field occupies its dsize or nvsize, whichever
1915     // is larger.
1916     if (PotentiallyOverlapping) {
1917       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1918       EffectiveFieldSize =
1919           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1920     }
1921 
1922     if (IsMsStruct) {
1923       // If MS bitfield layout is required, figure out what type is being
1924       // laid out and align the field to the width of that type.
1925 
1926       // Resolve all typedefs down to their base type and round up the field
1927       // alignment if necessary.
1928       QualType T = Context.getBaseElementType(D->getType());
1929       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1930         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1931 
1932         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1933           assert(
1934               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1935               "Non PowerOf2 size in MSVC mode");
1936           // Base types with sizes that aren't a power of two don't work
1937           // with the layout rules for MS structs. This isn't an issue in
1938           // MSVC itself since there are no such base data types there.
1939           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1940           // Any structs involving that data type obviously can't be ABI
1941           // compatible with MSVC regardless of how it is laid out.
1942 
1943           // Since ms_struct can be mass enabled (via a pragma or via the
1944           // -mms-bitfields command line parameter), this can trigger for
1945           // structs that don't actually need MSVC compatibility, so we
1946           // need to be able to sidestep the ms_struct layout for these types.
1947 
1948           // Since the combination of -mms-bitfields together with structs
1949           // like max_align_t (which contains a long double) for mingw is
1950           // quite comon (and GCC handles it silently), just handle it
1951           // silently there. For other targets that have ms_struct enabled
1952           // (most probably via a pragma or attribute), trigger a diagnostic
1953           // that defaults to an error.
1954           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1955             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1956         }
1957         if (TypeSize > FieldAlign &&
1958             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1959           FieldAlign = TypeSize;
1960       }
1961     }
1962   }
1963 
1964   // The AIX `power` alignment rules apply the natural alignment of the
1965   // "first member" if it is of a floating-point data type (or is an aggregate
1966   // whose recursively "first" member or element is such a type). The alignment
1967   // associated with these types for subsequent members use an alignment value
1968   // where the floating-point data type is considered to have 4-byte alignment.
1969   //
1970   // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1971   // and zero-width bit-fields count as prior members; members of empty class
1972   // types marked `no_unique_address` are not considered to be prior members.
1973   CharUnits PreferredAlign = FieldAlign;
1974   if (DefaultsToAIXPowerAlignment && !AlignIsRequired &&
1975       (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1976     auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1977       if (BTy->getKind() == BuiltinType::Double ||
1978           BTy->getKind() == BuiltinType::LongDouble) {
1979         assert(PreferredAlign == CharUnits::fromQuantity(4) &&
1980                "No need to upgrade the alignment value.");
1981         PreferredAlign = CharUnits::fromQuantity(8);
1982       }
1983     };
1984 
1985     const Type *Ty = D->getType()->getBaseElementTypeUnsafe();
1986     if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
1987       performBuiltinTypeAlignmentUpgrade(CTy->getElementType()->castAs<BuiltinType>());
1988     } else if (const BuiltinType *BTy = Ty->getAs<BuiltinType>()) {
1989       performBuiltinTypeAlignmentUpgrade(BTy);
1990     } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1991       const RecordDecl *RD = RT->getDecl();
1992       assert(RD && "Expected non-null RecordDecl.");
1993       const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
1994       PreferredAlign = FieldRecord.getPreferredAlignment();
1995     }
1996   }
1997 
1998   // The align if the field is not packed. This is to check if the attribute
1999   // was unnecessary (-Wpacked).
2000   CharUnits UnpackedFieldAlign =
2001       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2002   CharUnits UnpackedFieldOffset = FieldOffset;
2003 
2004   if (FieldPacked) {
2005     FieldAlign = CharUnits::One();
2006     PreferredAlign = CharUnits::One();
2007   }
2008   CharUnits MaxAlignmentInChars =
2009       Context.toCharUnitsFromBits(D->getMaxAlignment());
2010   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
2011   PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2012   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2013 
2014   // The maximum field alignment overrides the aligned attribute.
2015   if (!MaxFieldAlignment.isZero()) {
2016     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
2017     PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2018     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2019   }
2020 
2021   CharUnits AlignTo =
2022       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2023   // Round up the current record size to the field's alignment boundary.
2024   FieldOffset = FieldOffset.alignTo(AlignTo);
2025   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2026 
2027   if (UseExternalLayout) {
2028     FieldOffset = Context.toCharUnitsFromBits(
2029         updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2030 
2031     if (!IsUnion && EmptySubobjects) {
2032       // Record the fact that we're placing a field at this offset.
2033       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2034       (void)Allowed;
2035       assert(Allowed && "Externally-placed field cannot be placed here");
2036     }
2037   } else {
2038     if (!IsUnion && EmptySubobjects) {
2039       // Check if we can place the field at this offset.
2040       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2041         // We couldn't place the field at the offset. Try again at a new offset.
2042         // We try offset 0 (for an empty field) and then dsize(C) onwards.
2043         if (FieldOffset == CharUnits::Zero() &&
2044             getDataSize() != CharUnits::Zero())
2045           FieldOffset = getDataSize().alignTo(AlignTo);
2046         else
2047           FieldOffset += AlignTo;
2048       }
2049     }
2050   }
2051 
2052   // Place this field at the current location.
2053   FieldOffsets.push_back(Context.toBits(FieldOffset));
2054 
2055   if (!UseExternalLayout)
2056     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2057                       Context.toBits(UnpackedFieldOffset),
2058                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2059 
2060   if (InsertExtraPadding) {
2061     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2062     CharUnits ExtraSizeForAsan = ASanAlignment;
2063     if (FieldSize % ASanAlignment)
2064       ExtraSizeForAsan +=
2065           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2066     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2067   }
2068 
2069   // Reserve space for this field.
2070   if (!IsOverlappingEmptyField) {
2071     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2072     if (IsUnion)
2073       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2074     else
2075       setDataSize(FieldOffset + EffectiveFieldSize);
2076 
2077     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2078     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2079   } else {
2080     setSize(std::max(getSizeInBits(),
2081                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2082   }
2083 
2084   // Remember max struct/class ABI-specified alignment.
2085   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2086   UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2087 }
2088 
2089 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2090   // In C++, records cannot be of size 0.
2091   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2092     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2093       // Compatibility with gcc requires a class (pod or non-pod)
2094       // which is not empty but of size 0; such as having fields of
2095       // array of zero-length, remains of Size 0
2096       if (RD->isEmpty())
2097         setSize(CharUnits::One());
2098     }
2099     else
2100       setSize(CharUnits::One());
2101   }
2102 
2103   // If we have any remaining field tail padding, include that in the overall
2104   // size.
2105   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2106 
2107   // Finally, round the size of the record up to the alignment of the
2108   // record itself.
2109   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2110   uint64_t UnpackedSizeInBits =
2111       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2112 
2113   uint64_t RoundedSize = llvm::alignTo(
2114       getSizeInBits(),
2115       Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2116                          ? Alignment
2117                          : PreferredAlignment));
2118 
2119   if (UseExternalLayout) {
2120     // If we're inferring alignment, and the external size is smaller than
2121     // our size after we've rounded up to alignment, conservatively set the
2122     // alignment to 1.
2123     if (InferAlignment && External.Size < RoundedSize) {
2124       Alignment = CharUnits::One();
2125       PreferredAlignment = CharUnits::One();
2126       InferAlignment = false;
2127     }
2128     setSize(External.Size);
2129     return;
2130   }
2131 
2132   // Set the size to the final size.
2133   setSize(RoundedSize);
2134 
2135   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2136   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2137     // Warn if padding was introduced to the struct/class/union.
2138     if (getSizeInBits() > UnpaddedSize) {
2139       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2140       bool InBits = true;
2141       if (PadSize % CharBitNum == 0) {
2142         PadSize = PadSize / CharBitNum;
2143         InBits = false;
2144       }
2145       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2146           << Context.getTypeDeclType(RD)
2147           << PadSize
2148           << (InBits ? 1 : 0); // (byte|bit)
2149     }
2150 
2151     // Warn if we packed it unnecessarily, when the unpacked alignment is not
2152     // greater than the one after packing, the size in bits doesn't change and
2153     // the offset of each field is identical.
2154     if (Packed && UnpackedAlignment <= Alignment &&
2155         UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2156       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2157           << Context.getTypeDeclType(RD);
2158   }
2159 }
2160 
2161 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2162     CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2163     CharUnits PreferredNewAlignment) {
2164   // The alignment is not modified when using 'mac68k' alignment or when
2165   // we have an externally-supplied layout that also provides overall alignment.
2166   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2167     return;
2168 
2169   if (NewAlignment > Alignment) {
2170     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2171            "Alignment not a power of 2");
2172     Alignment = NewAlignment;
2173   }
2174 
2175   if (UnpackedNewAlignment > UnpackedAlignment) {
2176     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2177            "Alignment not a power of 2");
2178     UnpackedAlignment = UnpackedNewAlignment;
2179   }
2180 
2181   if (PreferredNewAlignment > PreferredAlignment) {
2182     assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2183            "Alignment not a power of 2");
2184     PreferredAlignment = PreferredNewAlignment;
2185   }
2186 }
2187 
2188 uint64_t
2189 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2190                                                       uint64_t ComputedOffset) {
2191   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2192 
2193   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2194     // The externally-supplied field offset is before the field offset we
2195     // computed. Assume that the structure is packed.
2196     Alignment = CharUnits::One();
2197     PreferredAlignment = CharUnits::One();
2198     InferAlignment = false;
2199   }
2200 
2201   // Use the externally-supplied field offset.
2202   return ExternalFieldOffset;
2203 }
2204 
2205 /// Get diagnostic %select index for tag kind for
2206 /// field padding diagnostic message.
2207 /// WARNING: Indexes apply to particular diagnostics only!
2208 ///
2209 /// \returns diagnostic %select index.
2210 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2211   switch (Tag) {
2212   case TTK_Struct: return 0;
2213   case TTK_Interface: return 1;
2214   case TTK_Class: return 2;
2215   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2216   }
2217 }
2218 
2219 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2220     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2221     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2222   // We let objc ivars without warning, objc interfaces generally are not used
2223   // for padding tricks.
2224   if (isa<ObjCIvarDecl>(D))
2225     return;
2226 
2227   // Don't warn about structs created without a SourceLocation.  This can
2228   // be done by clients of the AST, such as codegen.
2229   if (D->getLocation().isInvalid())
2230     return;
2231 
2232   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2233 
2234   // Warn if padding was introduced to the struct/class.
2235   if (!IsUnion && Offset > UnpaddedOffset) {
2236     unsigned PadSize = Offset - UnpaddedOffset;
2237     bool InBits = true;
2238     if (PadSize % CharBitNum == 0) {
2239       PadSize = PadSize / CharBitNum;
2240       InBits = false;
2241     }
2242     if (D->getIdentifier())
2243       Diag(D->getLocation(), diag::warn_padded_struct_field)
2244           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2245           << Context.getTypeDeclType(D->getParent())
2246           << PadSize
2247           << (InBits ? 1 : 0) // (byte|bit)
2248           << D->getIdentifier();
2249     else
2250       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2251           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2252           << Context.getTypeDeclType(D->getParent())
2253           << PadSize
2254           << (InBits ? 1 : 0); // (byte|bit)
2255  }
2256  if (isPacked && Offset != UnpackedOffset) {
2257    HasPackedField = true;
2258  }
2259 }
2260 
2261 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2262                                                const CXXRecordDecl *RD) {
2263   // If a class isn't polymorphic it doesn't have a key function.
2264   if (!RD->isPolymorphic())
2265     return nullptr;
2266 
2267   // A class that is not externally visible doesn't have a key function. (Or
2268   // at least, there's no point to assigning a key function to such a class;
2269   // this doesn't affect the ABI.)
2270   if (!RD->isExternallyVisible())
2271     return nullptr;
2272 
2273   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2274   // Same behavior as GCC.
2275   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2276   if (TSK == TSK_ImplicitInstantiation ||
2277       TSK == TSK_ExplicitInstantiationDeclaration ||
2278       TSK == TSK_ExplicitInstantiationDefinition)
2279     return nullptr;
2280 
2281   bool allowInlineFunctions =
2282     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2283 
2284   for (const CXXMethodDecl *MD : RD->methods()) {
2285     if (!MD->isVirtual())
2286       continue;
2287 
2288     if (MD->isPure())
2289       continue;
2290 
2291     // Ignore implicit member functions, they are always marked as inline, but
2292     // they don't have a body until they're defined.
2293     if (MD->isImplicit())
2294       continue;
2295 
2296     if (MD->isInlineSpecified() || MD->isConstexpr())
2297       continue;
2298 
2299     if (MD->hasInlineBody())
2300       continue;
2301 
2302     // Ignore inline deleted or defaulted functions.
2303     if (!MD->isUserProvided())
2304       continue;
2305 
2306     // In certain ABIs, ignore functions with out-of-line inline definitions.
2307     if (!allowInlineFunctions) {
2308       const FunctionDecl *Def;
2309       if (MD->hasBody(Def) && Def->isInlineSpecified())
2310         continue;
2311     }
2312 
2313     if (Context.getLangOpts().CUDA) {
2314       // While compiler may see key method in this TU, during CUDA
2315       // compilation we should ignore methods that are not accessible
2316       // on this side of compilation.
2317       if (Context.getLangOpts().CUDAIsDevice) {
2318         // In device mode ignore methods without __device__ attribute.
2319         if (!MD->hasAttr<CUDADeviceAttr>())
2320           continue;
2321       } else {
2322         // In host mode ignore __device__-only methods.
2323         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2324           continue;
2325       }
2326     }
2327 
2328     // If the key function is dllimport but the class isn't, then the class has
2329     // no key function. The DLL that exports the key function won't export the
2330     // vtable in this case.
2331     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2332         !Context.getTargetInfo().hasPS4DLLImportExport())
2333       return nullptr;
2334 
2335     // We found it.
2336     return MD;
2337   }
2338 
2339   return nullptr;
2340 }
2341 
2342 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2343                                                    unsigned DiagID) {
2344   return Context.getDiagnostics().Report(Loc, DiagID);
2345 }
2346 
2347 /// Does the target C++ ABI require us to skip over the tail-padding
2348 /// of the given class (considering it as a base class) when allocating
2349 /// objects?
2350 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2351   switch (ABI.getTailPaddingUseRules()) {
2352   case TargetCXXABI::AlwaysUseTailPadding:
2353     return false;
2354 
2355   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2356     // FIXME: To the extent that this is meant to cover the Itanium ABI
2357     // rules, we should implement the restrictions about over-sized
2358     // bitfields:
2359     //
2360     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2361     //   In general, a type is considered a POD for the purposes of
2362     //   layout if it is a POD type (in the sense of ISO C++
2363     //   [basic.types]). However, a POD-struct or POD-union (in the
2364     //   sense of ISO C++ [class]) with a bitfield member whose
2365     //   declared width is wider than the declared type of the
2366     //   bitfield is not a POD for the purpose of layout.  Similarly,
2367     //   an array type is not a POD for the purpose of layout if the
2368     //   element type of the array is not a POD for the purpose of
2369     //   layout.
2370     //
2371     //   Where references to the ISO C++ are made in this paragraph,
2372     //   the Technical Corrigendum 1 version of the standard is
2373     //   intended.
2374     return RD->isPOD();
2375 
2376   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2377     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2378     // but with a lot of abstraction penalty stripped off.  This does
2379     // assume that these properties are set correctly even in C++98
2380     // mode; fortunately, that is true because we want to assign
2381     // consistently semantics to the type-traits intrinsics (or at
2382     // least as many of them as possible).
2383     return RD->isTrivial() && RD->isCXX11StandardLayout();
2384   }
2385 
2386   llvm_unreachable("bad tail-padding use kind");
2387 }
2388 
2389 static bool isMsLayout(const ASTContext &Context) {
2390   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2391 }
2392 
2393 // This section contains an implementation of struct layout that is, up to the
2394 // included tests, compatible with cl.exe (2013).  The layout produced is
2395 // significantly different than those produced by the Itanium ABI.  Here we note
2396 // the most important differences.
2397 //
2398 // * The alignment of bitfields in unions is ignored when computing the
2399 //   alignment of the union.
2400 // * The existence of zero-width bitfield that occurs after anything other than
2401 //   a non-zero length bitfield is ignored.
2402 // * There is no explicit primary base for the purposes of layout.  All bases
2403 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2404 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2405 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2406 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2407 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2408 //   placed after the lexicographically last non-virtual base.  This placement
2409 //   is always before fields but can be in the middle of the non-virtual bases
2410 //   due to the two-pass layout scheme for non-virtual-bases.
2411 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2412 //   the virtual base and is used in conjunction with virtual overrides during
2413 //   construction and destruction.  This is always a 4 byte value and is used as
2414 //   an alternative to constructor vtables.
2415 // * vtordisps are allocated in a block of memory with size and alignment equal
2416 //   to the alignment of the completed structure (before applying __declspec(
2417 //   align())).  The vtordisp always occur at the end of the allocation block,
2418 //   immediately prior to the virtual base.
2419 // * vfptrs are injected after all bases and fields have been laid out.  In
2420 //   order to guarantee proper alignment of all fields, the vfptr injection
2421 //   pushes all bases and fields back by the alignment imposed by those bases
2422 //   and fields.  This can potentially add a significant amount of padding.
2423 //   vfptrs are always injected at offset 0.
2424 // * vbptrs are injected after all bases and fields have been laid out.  In
2425 //   order to guarantee proper alignment of all fields, the vfptr injection
2426 //   pushes all bases and fields back by the alignment imposed by those bases
2427 //   and fields.  This can potentially add a significant amount of padding.
2428 //   vbptrs are injected immediately after the last non-virtual base as
2429 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2430 //   the vbptr is placed at the next properly aligned location.  Enough padding
2431 //   is added to guarantee a fit.
2432 // * The last zero sized non-virtual base can be placed at the end of the
2433 //   struct (potentially aliasing another object), or may alias with the first
2434 //   field, even if they are of the same type.
2435 // * The last zero size virtual base may be placed at the end of the struct
2436 //   potentially aliasing another object.
2437 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2438 //   between bases or vbases with specific properties.  The criteria for
2439 //   additional padding between two bases is that the first base is zero sized
2440 //   or ends with a zero sized subobject and the second base is zero sized or
2441 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2442 //   layout of the so the leading base is not always the first one declared).
2443 //   This rule does take into account fields that are not records, so padding
2444 //   will occur even if the last field is, e.g. an int. The padding added for
2445 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2446 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2447 // * There is no concept of non-virtual alignment, non-virtual alignment and
2448 //   alignment are always identical.
2449 // * There is a distinction between alignment and required alignment.
2450 //   __declspec(align) changes the required alignment of a struct.  This
2451 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2452 //   record inherits required alignment from all of its fields and bases.
2453 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2454 //   alignment instead of its required alignment.  This is the only known way
2455 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2456 //   this alignment is also immune to the effects of #pragma pack and can be
2457 //   used to create structures with large alignment under #pragma pack.
2458 //   However, because it does not impact required alignment, such a structure,
2459 //   when used as a field or base, will not be aligned if #pragma pack is
2460 //   still active at the time of use.
2461 //
2462 // Known incompatibilities:
2463 // * all: #pragma pack between fields in a record
2464 // * 2010 and back: If the last field in a record is a bitfield, every object
2465 //   laid out after the record will have extra padding inserted before it.  The
2466 //   extra padding will have size equal to the size of the storage class of the
2467 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2468 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2469 //   sized bitfield.
2470 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2471 //   greater due to __declspec(align()) then a second layout phase occurs after
2472 //   The locations of the vf and vb pointers are known.  This layout phase
2473 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2474 //   _every_ field getting padding put in front of it, potentially including the
2475 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2476 //   anything tries to read the vftbl.  The second layout phase also treats
2477 //   bitfields as separate entities and gives them each storage rather than
2478 //   packing them.  Additionally, because this phase appears to perform a
2479 //   (an unstable) sort on the members before laying them out and because merged
2480 //   bitfields have the same address, the bitfields end up in whatever order
2481 //   the sort left them in, a behavior we could never hope to replicate.
2482 
2483 namespace {
2484 struct MicrosoftRecordLayoutBuilder {
2485   struct ElementInfo {
2486     CharUnits Size;
2487     CharUnits Alignment;
2488   };
2489   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2490   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2491 private:
2492   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2493   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2494 public:
2495   void layout(const RecordDecl *RD);
2496   void cxxLayout(const CXXRecordDecl *RD);
2497   /// Initializes size and alignment and honors some flags.
2498   void initializeLayout(const RecordDecl *RD);
2499   /// Initialized C++ layout, compute alignment and virtual alignment and
2500   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2501   /// laid out.
2502   void initializeCXXLayout(const CXXRecordDecl *RD);
2503   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2504   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2505                             const CXXRecordDecl *BaseDecl,
2506                             const ASTRecordLayout &BaseLayout,
2507                             const ASTRecordLayout *&PreviousBaseLayout);
2508   void injectVFPtr(const CXXRecordDecl *RD);
2509   void injectVBPtr(const CXXRecordDecl *RD);
2510   /// Lays out the fields of the record.  Also rounds size up to
2511   /// alignment.
2512   void layoutFields(const RecordDecl *RD);
2513   void layoutField(const FieldDecl *FD);
2514   void layoutBitField(const FieldDecl *FD);
2515   /// Lays out a single zero-width bit-field in the record and handles
2516   /// special cases associated with zero-width bit-fields.
2517   void layoutZeroWidthBitField(const FieldDecl *FD);
2518   void layoutVirtualBases(const CXXRecordDecl *RD);
2519   void finalizeLayout(const RecordDecl *RD);
2520   /// Gets the size and alignment of a base taking pragma pack and
2521   /// __declspec(align) into account.
2522   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2523   /// Gets the size and alignment of a field taking pragma  pack and
2524   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2525   /// side effect because it is most convenient to do so here.
2526   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2527   /// Places a field at an offset in CharUnits.
2528   void placeFieldAtOffset(CharUnits FieldOffset) {
2529     FieldOffsets.push_back(Context.toBits(FieldOffset));
2530   }
2531   /// Places a bitfield at a bit offset.
2532   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2533     FieldOffsets.push_back(FieldOffset);
2534   }
2535   /// Compute the set of virtual bases for which vtordisps are required.
2536   void computeVtorDispSet(
2537       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2538       const CXXRecordDecl *RD) const;
2539   const ASTContext &Context;
2540   /// The size of the record being laid out.
2541   CharUnits Size;
2542   /// The non-virtual size of the record layout.
2543   CharUnits NonVirtualSize;
2544   /// The data size of the record layout.
2545   CharUnits DataSize;
2546   /// The current alignment of the record layout.
2547   CharUnits Alignment;
2548   /// The maximum allowed field alignment. This is set by #pragma pack.
2549   CharUnits MaxFieldAlignment;
2550   /// The alignment that this record must obey.  This is imposed by
2551   /// __declspec(align()) on the record itself or one of its fields or bases.
2552   CharUnits RequiredAlignment;
2553   /// The size of the allocation of the currently active bitfield.
2554   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2555   /// is true.
2556   CharUnits CurrentBitfieldSize;
2557   /// Offset to the virtual base table pointer (if one exists).
2558   CharUnits VBPtrOffset;
2559   /// Minimum record size possible.
2560   CharUnits MinEmptyStructSize;
2561   /// The size and alignment info of a pointer.
2562   ElementInfo PointerInfo;
2563   /// The primary base class (if one exists).
2564   const CXXRecordDecl *PrimaryBase;
2565   /// The class we share our vb-pointer with.
2566   const CXXRecordDecl *SharedVBPtrBase;
2567   /// The collection of field offsets.
2568   SmallVector<uint64_t, 16> FieldOffsets;
2569   /// Base classes and their offsets in the record.
2570   BaseOffsetsMapTy Bases;
2571   /// virtual base classes and their offsets in the record.
2572   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2573   /// The number of remaining bits in our last bitfield allocation.
2574   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2575   /// true.
2576   unsigned RemainingBitsInField;
2577   bool IsUnion : 1;
2578   /// True if the last field laid out was a bitfield and was not 0
2579   /// width.
2580   bool LastFieldIsNonZeroWidthBitfield : 1;
2581   /// True if the class has its own vftable pointer.
2582   bool HasOwnVFPtr : 1;
2583   /// True if the class has a vbtable pointer.
2584   bool HasVBPtr : 1;
2585   /// True if the last sub-object within the type is zero sized or the
2586   /// object itself is zero sized.  This *does not* count members that are not
2587   /// records.  Only used for MS-ABI.
2588   bool EndsWithZeroSizedObject : 1;
2589   /// True if this class is zero sized or first base is zero sized or
2590   /// has this property.  Only used for MS-ABI.
2591   bool LeadsWithZeroSizedBase : 1;
2592 
2593   /// True if the external AST source provided a layout for this record.
2594   bool UseExternalLayout : 1;
2595 
2596   /// The layout provided by the external AST source. Only active if
2597   /// UseExternalLayout is true.
2598   ExternalLayout External;
2599 };
2600 } // namespace
2601 
2602 MicrosoftRecordLayoutBuilder::ElementInfo
2603 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2604     const ASTRecordLayout &Layout) {
2605   ElementInfo Info;
2606   Info.Alignment = Layout.getAlignment();
2607   // Respect pragma pack.
2608   if (!MaxFieldAlignment.isZero())
2609     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2610   // Track zero-sized subobjects here where it's already available.
2611   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2612   // Respect required alignment, this is necessary because we may have adjusted
2613   // the alignment in the case of pragam pack.  Note that the required alignment
2614   // doesn't actually apply to the struct alignment at this point.
2615   Alignment = std::max(Alignment, Info.Alignment);
2616   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2617   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2618   Info.Size = Layout.getNonVirtualSize();
2619   return Info;
2620 }
2621 
2622 MicrosoftRecordLayoutBuilder::ElementInfo
2623 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2624     const FieldDecl *FD) {
2625   // Get the alignment of the field type's natural alignment, ignore any
2626   // alignment attributes.
2627   auto TInfo =
2628       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2629   ElementInfo Info{TInfo.Width, TInfo.Align};
2630   // Respect align attributes on the field.
2631   CharUnits FieldRequiredAlignment =
2632       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2633   // Respect align attributes on the type.
2634   if (Context.isAlignmentRequired(FD->getType()))
2635     FieldRequiredAlignment = std::max(
2636         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2637   // Respect attributes applied to subobjects of the field.
2638   if (FD->isBitField())
2639     // For some reason __declspec align impacts alignment rather than required
2640     // alignment when it is applied to bitfields.
2641     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2642   else {
2643     if (auto RT =
2644             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2645       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2646       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2647       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2648                                         Layout.getRequiredAlignment());
2649     }
2650     // Capture required alignment as a side-effect.
2651     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2652   }
2653   // Respect pragma pack, attribute pack and declspec align
2654   if (!MaxFieldAlignment.isZero())
2655     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2656   if (FD->hasAttr<PackedAttr>())
2657     Info.Alignment = CharUnits::One();
2658   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2659   return Info;
2660 }
2661 
2662 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2663   // For C record layout, zero-sized records always have size 4.
2664   MinEmptyStructSize = CharUnits::fromQuantity(4);
2665   initializeLayout(RD);
2666   layoutFields(RD);
2667   DataSize = Size = Size.alignTo(Alignment);
2668   RequiredAlignment = std::max(
2669       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2670   finalizeLayout(RD);
2671 }
2672 
2673 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2674   // The C++ standard says that empty structs have size 1.
2675   MinEmptyStructSize = CharUnits::One();
2676   initializeLayout(RD);
2677   initializeCXXLayout(RD);
2678   layoutNonVirtualBases(RD);
2679   layoutFields(RD);
2680   injectVBPtr(RD);
2681   injectVFPtr(RD);
2682   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2683     Alignment = std::max(Alignment, PointerInfo.Alignment);
2684   auto RoundingAlignment = Alignment;
2685   if (!MaxFieldAlignment.isZero())
2686     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2687   if (!UseExternalLayout)
2688     Size = Size.alignTo(RoundingAlignment);
2689   NonVirtualSize = Size;
2690   RequiredAlignment = std::max(
2691       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2692   layoutVirtualBases(RD);
2693   finalizeLayout(RD);
2694 }
2695 
2696 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2697   IsUnion = RD->isUnion();
2698   Size = CharUnits::Zero();
2699   Alignment = CharUnits::One();
2700   // In 64-bit mode we always perform an alignment step after laying out vbases.
2701   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2702   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2703   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2704                           ? CharUnits::One()
2705                           : CharUnits::Zero();
2706   // Compute the maximum field alignment.
2707   MaxFieldAlignment = CharUnits::Zero();
2708   // Honor the default struct packing maximum alignment flag.
2709   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2710       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2711   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2712   // than the pointer size.
2713   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2714     unsigned PackedAlignment = MFAA->getAlignment();
2715     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2716       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2717   }
2718   // Packed attribute forces max field alignment to be 1.
2719   if (RD->hasAttr<PackedAttr>())
2720     MaxFieldAlignment = CharUnits::One();
2721 
2722   // Try to respect the external layout if present.
2723   UseExternalLayout = false;
2724   if (ExternalASTSource *Source = Context.getExternalSource())
2725     UseExternalLayout = Source->layoutRecordType(
2726         RD, External.Size, External.Align, External.FieldOffsets,
2727         External.BaseOffsets, External.VirtualBaseOffsets);
2728 }
2729 
2730 void
2731 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2732   EndsWithZeroSizedObject = false;
2733   LeadsWithZeroSizedBase = false;
2734   HasOwnVFPtr = false;
2735   HasVBPtr = false;
2736   PrimaryBase = nullptr;
2737   SharedVBPtrBase = nullptr;
2738   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2739   // injection.
2740   PointerInfo.Size =
2741       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2742   PointerInfo.Alignment =
2743       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2744   // Respect pragma pack.
2745   if (!MaxFieldAlignment.isZero())
2746     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2747 }
2748 
2749 void
2750 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2751   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2752   // out any bases that do not contain vfptrs.  We implement this as two passes
2753   // over the bases.  This approach guarantees that the primary base is laid out
2754   // first.  We use these passes to calculate some additional aggregated
2755   // information about the bases, such as required alignment and the presence of
2756   // zero sized members.
2757   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2758   bool HasPolymorphicBaseClass = false;
2759   // Iterate through the bases and lay out the non-virtual ones.
2760   for (const CXXBaseSpecifier &Base : RD->bases()) {
2761     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2762     HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2763     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2764     // Mark and skip virtual bases.
2765     if (Base.isVirtual()) {
2766       HasVBPtr = true;
2767       continue;
2768     }
2769     // Check for a base to share a VBPtr with.
2770     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2771       SharedVBPtrBase = BaseDecl;
2772       HasVBPtr = true;
2773     }
2774     // Only lay out bases with extendable VFPtrs on the first pass.
2775     if (!BaseLayout.hasExtendableVFPtr())
2776       continue;
2777     // If we don't have a primary base, this one qualifies.
2778     if (!PrimaryBase) {
2779       PrimaryBase = BaseDecl;
2780       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2781     }
2782     // Lay out the base.
2783     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2784   }
2785   // Figure out if we need a fresh VFPtr for this class.
2786   if (RD->isPolymorphic()) {
2787     if (!HasPolymorphicBaseClass)
2788       // This class introduces polymorphism, so we need a vftable to store the
2789       // RTTI information.
2790       HasOwnVFPtr = true;
2791     else if (!PrimaryBase) {
2792       // We have a polymorphic base class but can't extend its vftable. Add a
2793       // new vfptr if we would use any vftable slots.
2794       for (CXXMethodDecl *M : RD->methods()) {
2795         if (MicrosoftVTableContext::hasVtableSlot(M) &&
2796             M->size_overridden_methods() == 0) {
2797           HasOwnVFPtr = true;
2798           break;
2799         }
2800       }
2801     }
2802   }
2803   // If we don't have a primary base then we have a leading object that could
2804   // itself lead with a zero-sized object, something we track.
2805   bool CheckLeadingLayout = !PrimaryBase;
2806   // Iterate through the bases and lay out the non-virtual ones.
2807   for (const CXXBaseSpecifier &Base : RD->bases()) {
2808     if (Base.isVirtual())
2809       continue;
2810     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2811     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2812     // Only lay out bases without extendable VFPtrs on the second pass.
2813     if (BaseLayout.hasExtendableVFPtr()) {
2814       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2815       continue;
2816     }
2817     // If this is the first layout, check to see if it leads with a zero sized
2818     // object.  If it does, so do we.
2819     if (CheckLeadingLayout) {
2820       CheckLeadingLayout = false;
2821       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2822     }
2823     // Lay out the base.
2824     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2825     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2826   }
2827   // Set our VBPtroffset if we know it at this point.
2828   if (!HasVBPtr)
2829     VBPtrOffset = CharUnits::fromQuantity(-1);
2830   else if (SharedVBPtrBase) {
2831     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2832     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2833   }
2834 }
2835 
2836 static bool recordUsesEBO(const RecordDecl *RD) {
2837   if (!isa<CXXRecordDecl>(RD))
2838     return false;
2839   if (RD->hasAttr<EmptyBasesAttr>())
2840     return true;
2841   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2842     // TODO: Double check with the next version of MSVC.
2843     if (LVA->getVersion() <= LangOptions::MSVC2015)
2844       return false;
2845   // TODO: Some later version of MSVC will change the default behavior of the
2846   // compiler to enable EBO by default.  When this happens, we will need an
2847   // additional isCompatibleWithMSVC check.
2848   return false;
2849 }
2850 
2851 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2852     const CXXRecordDecl *RD,
2853     const CXXRecordDecl *BaseDecl,
2854     const ASTRecordLayout &BaseLayout,
2855     const ASTRecordLayout *&PreviousBaseLayout) {
2856   // Insert padding between two bases if the left first one is zero sized or
2857   // contains a zero sized subobject and the right is zero sized or one leads
2858   // with a zero sized base.
2859   bool MDCUsesEBO = recordUsesEBO(RD);
2860   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2861       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2862     Size++;
2863   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2864   CharUnits BaseOffset;
2865 
2866   // Respect the external AST source base offset, if present.
2867   bool FoundBase = false;
2868   if (UseExternalLayout) {
2869     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2870     if (FoundBase) {
2871       assert(BaseOffset >= Size && "base offset already allocated");
2872       Size = BaseOffset;
2873     }
2874   }
2875 
2876   if (!FoundBase) {
2877     if (MDCUsesEBO && BaseDecl->isEmpty()) {
2878       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2879       BaseOffset = CharUnits::Zero();
2880     } else {
2881       // Otherwise, lay the base out at the end of the MDC.
2882       BaseOffset = Size = Size.alignTo(Info.Alignment);
2883     }
2884   }
2885   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2886   Size += BaseLayout.getNonVirtualSize();
2887   PreviousBaseLayout = &BaseLayout;
2888 }
2889 
2890 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2891   LastFieldIsNonZeroWidthBitfield = false;
2892   for (const FieldDecl *Field : RD->fields())
2893     layoutField(Field);
2894 }
2895 
2896 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2897   if (FD->isBitField()) {
2898     layoutBitField(FD);
2899     return;
2900   }
2901   LastFieldIsNonZeroWidthBitfield = false;
2902   ElementInfo Info = getAdjustedElementInfo(FD);
2903   Alignment = std::max(Alignment, Info.Alignment);
2904   CharUnits FieldOffset;
2905   if (UseExternalLayout)
2906     FieldOffset =
2907         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2908   else if (IsUnion)
2909     FieldOffset = CharUnits::Zero();
2910   else
2911     FieldOffset = Size.alignTo(Info.Alignment);
2912   placeFieldAtOffset(FieldOffset);
2913   Size = std::max(Size, FieldOffset + Info.Size);
2914 }
2915 
2916 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2917   unsigned Width = FD->getBitWidthValue(Context);
2918   if (Width == 0) {
2919     layoutZeroWidthBitField(FD);
2920     return;
2921   }
2922   ElementInfo Info = getAdjustedElementInfo(FD);
2923   // Clamp the bitfield to a containable size for the sake of being able
2924   // to lay them out.  Sema will throw an error.
2925   if (Width > Context.toBits(Info.Size))
2926     Width = Context.toBits(Info.Size);
2927   // Check to see if this bitfield fits into an existing allocation.  Note:
2928   // MSVC refuses to pack bitfields of formal types with different sizes
2929   // into the same allocation.
2930   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2931       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2932     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2933     RemainingBitsInField -= Width;
2934     return;
2935   }
2936   LastFieldIsNonZeroWidthBitfield = true;
2937   CurrentBitfieldSize = Info.Size;
2938   if (UseExternalLayout) {
2939     auto FieldBitOffset = External.getExternalFieldOffset(FD);
2940     placeFieldAtBitOffset(FieldBitOffset);
2941     auto NewSize = Context.toCharUnitsFromBits(
2942         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2943         Context.toBits(Info.Size));
2944     Size = std::max(Size, NewSize);
2945     Alignment = std::max(Alignment, Info.Alignment);
2946   } else if (IsUnion) {
2947     placeFieldAtOffset(CharUnits::Zero());
2948     Size = std::max(Size, Info.Size);
2949     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2950   } else {
2951     // Allocate a new block of memory and place the bitfield in it.
2952     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2953     placeFieldAtOffset(FieldOffset);
2954     Size = FieldOffset + Info.Size;
2955     Alignment = std::max(Alignment, Info.Alignment);
2956     RemainingBitsInField = Context.toBits(Info.Size) - Width;
2957   }
2958 }
2959 
2960 void
2961 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2962   // Zero-width bitfields are ignored unless they follow a non-zero-width
2963   // bitfield.
2964   if (!LastFieldIsNonZeroWidthBitfield) {
2965     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2966     // TODO: Add a Sema warning that MS ignores alignment for zero
2967     // sized bitfields that occur after zero-size bitfields or non-bitfields.
2968     return;
2969   }
2970   LastFieldIsNonZeroWidthBitfield = false;
2971   ElementInfo Info = getAdjustedElementInfo(FD);
2972   if (IsUnion) {
2973     placeFieldAtOffset(CharUnits::Zero());
2974     Size = std::max(Size, Info.Size);
2975     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2976   } else {
2977     // Round up the current record size to the field's alignment boundary.
2978     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2979     placeFieldAtOffset(FieldOffset);
2980     Size = FieldOffset;
2981     Alignment = std::max(Alignment, Info.Alignment);
2982   }
2983 }
2984 
2985 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2986   if (!HasVBPtr || SharedVBPtrBase)
2987     return;
2988   // Inject the VBPointer at the injection site.
2989   CharUnits InjectionSite = VBPtrOffset;
2990   // But before we do, make sure it's properly aligned.
2991   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2992   // Determine where the first field should be laid out after the vbptr.
2993   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2994   // Shift everything after the vbptr down, unless we're using an external
2995   // layout.
2996   if (UseExternalLayout) {
2997     // It is possible that there were no fields or bases located after vbptr,
2998     // so the size was not adjusted before.
2999     if (Size < FieldStart)
3000       Size = FieldStart;
3001     return;
3002   }
3003   // Make sure that the amount we push the fields back by is a multiple of the
3004   // alignment.
3005   CharUnits Offset = (FieldStart - InjectionSite)
3006                          .alignTo(std::max(RequiredAlignment, Alignment));
3007   Size += Offset;
3008   for (uint64_t &FieldOffset : FieldOffsets)
3009     FieldOffset += Context.toBits(Offset);
3010   for (BaseOffsetsMapTy::value_type &Base : Bases)
3011     if (Base.second >= InjectionSite)
3012       Base.second += Offset;
3013 }
3014 
3015 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3016   if (!HasOwnVFPtr)
3017     return;
3018   // Make sure that the amount we push the struct back by is a multiple of the
3019   // alignment.
3020   CharUnits Offset =
3021       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3022   // Push back the vbptr, but increase the size of the object and push back
3023   // regular fields by the offset only if not using external record layout.
3024   if (HasVBPtr)
3025     VBPtrOffset += Offset;
3026 
3027   if (UseExternalLayout) {
3028     // The class may have no bases or fields, but still have a vfptr
3029     // (e.g. it's an interface class). The size was not correctly set before
3030     // in this case.
3031     if (FieldOffsets.empty() && Bases.empty())
3032       Size += Offset;
3033     return;
3034   }
3035 
3036   Size += Offset;
3037 
3038   // If we're using an external layout, the fields offsets have already
3039   // accounted for this adjustment.
3040   for (uint64_t &FieldOffset : FieldOffsets)
3041     FieldOffset += Context.toBits(Offset);
3042   for (BaseOffsetsMapTy::value_type &Base : Bases)
3043     Base.second += Offset;
3044 }
3045 
3046 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3047   if (!HasVBPtr)
3048     return;
3049   // Vtordisps are always 4 bytes (even in 64-bit mode)
3050   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3051   CharUnits VtorDispAlignment = VtorDispSize;
3052   // vtordisps respect pragma pack.
3053   if (!MaxFieldAlignment.isZero())
3054     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3055   // The alignment of the vtordisp is at least the required alignment of the
3056   // entire record.  This requirement may be present to support vtordisp
3057   // injection.
3058   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3059     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3060     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3061     RequiredAlignment =
3062         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3063   }
3064   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3065   // Compute the vtordisp set.
3066   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3067   computeVtorDispSet(HasVtorDispSet, RD);
3068   // Iterate through the virtual bases and lay them out.
3069   const ASTRecordLayout *PreviousBaseLayout = nullptr;
3070   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3071     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3072     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3073     bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
3074     // Insert padding between two bases if the left first one is zero sized or
3075     // contains a zero sized subobject and the right is zero sized or one leads
3076     // with a zero sized base.  The padding between virtual bases is 4
3077     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3078     // the required alignment, we don't know why.
3079     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3080          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3081         HasVtordisp) {
3082       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3083       Alignment = std::max(VtorDispAlignment, Alignment);
3084     }
3085     // Insert the virtual base.
3086     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3087     CharUnits BaseOffset;
3088 
3089     // Respect the external AST source base offset, if present.
3090     if (UseExternalLayout) {
3091       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3092         BaseOffset = Size;
3093     } else
3094       BaseOffset = Size.alignTo(Info.Alignment);
3095 
3096     assert(BaseOffset >= Size && "base offset already allocated");
3097 
3098     VBases.insert(std::make_pair(BaseDecl,
3099         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3100     Size = BaseOffset + BaseLayout.getNonVirtualSize();
3101     PreviousBaseLayout = &BaseLayout;
3102   }
3103 }
3104 
3105 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3106   // Respect required alignment.  Note that in 32-bit mode Required alignment
3107   // may be 0 and cause size not to be updated.
3108   DataSize = Size;
3109   if (!RequiredAlignment.isZero()) {
3110     Alignment = std::max(Alignment, RequiredAlignment);
3111     auto RoundingAlignment = Alignment;
3112     if (!MaxFieldAlignment.isZero())
3113       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3114     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3115     Size = Size.alignTo(RoundingAlignment);
3116   }
3117   if (Size.isZero()) {
3118     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3119       EndsWithZeroSizedObject = true;
3120       LeadsWithZeroSizedBase = true;
3121     }
3122     // Zero-sized structures have size equal to their alignment if a
3123     // __declspec(align) came into play.
3124     if (RequiredAlignment >= MinEmptyStructSize)
3125       Size = Alignment;
3126     else
3127       Size = MinEmptyStructSize;
3128   }
3129 
3130   if (UseExternalLayout) {
3131     Size = Context.toCharUnitsFromBits(External.Size);
3132     if (External.Align)
3133       Alignment = Context.toCharUnitsFromBits(External.Align);
3134   }
3135 }
3136 
3137 // Recursively walks the non-virtual bases of a class and determines if any of
3138 // them are in the bases with overridden methods set.
3139 static bool
3140 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3141                      BasesWithOverriddenMethods,
3142                  const CXXRecordDecl *RD) {
3143   if (BasesWithOverriddenMethods.count(RD))
3144     return true;
3145   // If any of a virtual bases non-virtual bases (recursively) requires a
3146   // vtordisp than so does this virtual base.
3147   for (const CXXBaseSpecifier &Base : RD->bases())
3148     if (!Base.isVirtual() &&
3149         RequiresVtordisp(BasesWithOverriddenMethods,
3150                          Base.getType()->getAsCXXRecordDecl()))
3151       return true;
3152   return false;
3153 }
3154 
3155 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3156     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3157     const CXXRecordDecl *RD) const {
3158   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3159   // vftables.
3160   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3161     for (const CXXBaseSpecifier &Base : RD->vbases()) {
3162       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3163       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3164       if (Layout.hasExtendableVFPtr())
3165         HasVtordispSet.insert(BaseDecl);
3166     }
3167     return;
3168   }
3169 
3170   // If any of our bases need a vtordisp for this type, so do we.  Check our
3171   // direct bases for vtordisp requirements.
3172   for (const CXXBaseSpecifier &Base : RD->bases()) {
3173     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3174     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3175     for (const auto &bi : Layout.getVBaseOffsetsMap())
3176       if (bi.second.hasVtorDisp())
3177         HasVtordispSet.insert(bi.first);
3178   }
3179   // We don't introduce any additional vtordisps if either:
3180   // * A user declared constructor or destructor aren't declared.
3181   // * #pragma vtordisp(0) or the /vd0 flag are in use.
3182   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3183       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3184     return;
3185   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3186   // possible for a partially constructed object with virtual base overrides to
3187   // escape a non-trivial constructor.
3188   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3189   // Compute a set of base classes which define methods we override.  A virtual
3190   // base in this set will require a vtordisp.  A virtual base that transitively
3191   // contains one of these bases as a non-virtual base will also require a
3192   // vtordisp.
3193   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3194   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3195   // Seed the working set with our non-destructor, non-pure virtual methods.
3196   for (const CXXMethodDecl *MD : RD->methods())
3197     if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3198         !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3199       Work.insert(MD);
3200   while (!Work.empty()) {
3201     const CXXMethodDecl *MD = *Work.begin();
3202     auto MethodRange = MD->overridden_methods();
3203     // If a virtual method has no-overrides it lives in its parent's vtable.
3204     if (MethodRange.begin() == MethodRange.end())
3205       BasesWithOverriddenMethods.insert(MD->getParent());
3206     else
3207       Work.insert(MethodRange.begin(), MethodRange.end());
3208     // We've finished processing this element, remove it from the working set.
3209     Work.erase(MD);
3210   }
3211   // For each of our virtual bases, check if it is in the set of overridden
3212   // bases or if it transitively contains a non-virtual base that is.
3213   for (const CXXBaseSpecifier &Base : RD->vbases()) {
3214     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3215     if (!HasVtordispSet.count(BaseDecl) &&
3216         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3217       HasVtordispSet.insert(BaseDecl);
3218   }
3219 }
3220 
3221 /// getASTRecordLayout - Get or compute information about the layout of the
3222 /// specified record (struct/union/class), which indicates its size and field
3223 /// position information.
3224 const ASTRecordLayout &
3225 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3226   // These asserts test different things.  A record has a definition
3227   // as soon as we begin to parse the definition.  That definition is
3228   // not a complete definition (which is what isDefinition() tests)
3229   // until we *finish* parsing the definition.
3230 
3231   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3232     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3233 
3234   D = D->getDefinition();
3235   assert(D && "Cannot get layout of forward declarations!");
3236   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3237   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3238 
3239   // Look up this layout, if already laid out, return what we have.
3240   // Note that we can't save a reference to the entry because this function
3241   // is recursive.
3242   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3243   if (Entry) return *Entry;
3244 
3245   const ASTRecordLayout *NewEntry = nullptr;
3246 
3247   if (isMsLayout(*this)) {
3248     MicrosoftRecordLayoutBuilder Builder(*this);
3249     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3250       Builder.cxxLayout(RD);
3251       NewEntry = new (*this) ASTRecordLayout(
3252           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3253           Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3254           Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3255           Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3256           Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3257           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3258           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3259           Builder.Bases, Builder.VBases);
3260     } else {
3261       Builder.layout(D);
3262       NewEntry = new (*this) ASTRecordLayout(
3263           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3264           Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3265           Builder.FieldOffsets);
3266     }
3267   } else {
3268     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3269       EmptySubobjectMap EmptySubobjects(*this, RD);
3270       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3271       Builder.Layout(RD);
3272 
3273       // In certain situations, we are allowed to lay out objects in the
3274       // tail-padding of base classes.  This is ABI-dependent.
3275       // FIXME: this should be stored in the record layout.
3276       bool skipTailPadding =
3277           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3278 
3279       // FIXME: This should be done in FinalizeLayout.
3280       CharUnits DataSize =
3281           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3282       CharUnits NonVirtualSize =
3283           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3284       NewEntry = new (*this) ASTRecordLayout(
3285           *this, Builder.getSize(), Builder.Alignment,
3286           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3287           /*RequiredAlignment : used by MS-ABI)*/
3288           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3289           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3290           NonVirtualSize, Builder.NonVirtualAlignment,
3291           Builder.PreferredNVAlignment,
3292           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3293           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3294           Builder.VBases);
3295     } else {
3296       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3297       Builder.Layout(D);
3298 
3299       NewEntry = new (*this) ASTRecordLayout(
3300           *this, Builder.getSize(), Builder.Alignment,
3301           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3302           /*RequiredAlignment : used by MS-ABI)*/
3303           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3304     }
3305   }
3306 
3307   ASTRecordLayouts[D] = NewEntry;
3308 
3309   if (getLangOpts().DumpRecordLayouts) {
3310     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3311     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3312   }
3313 
3314   return *NewEntry;
3315 }
3316 
3317 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3318   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3319     return nullptr;
3320 
3321   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3322   RD = RD->getDefinition();
3323 
3324   // Beware:
3325   //  1) computing the key function might trigger deserialization, which might
3326   //     invalidate iterators into KeyFunctions
3327   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3328   //     invalidate the LazyDeclPtr within the map itself
3329   LazyDeclPtr Entry = KeyFunctions[RD];
3330   const Decl *Result =
3331       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3332 
3333   // Store it back if it changed.
3334   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3335     KeyFunctions[RD] = const_cast<Decl*>(Result);
3336 
3337   return cast_or_null<CXXMethodDecl>(Result);
3338 }
3339 
3340 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3341   assert(Method == Method->getFirstDecl() &&
3342          "not working with method declaration from class definition");
3343 
3344   // Look up the cache entry.  Since we're working with the first
3345   // declaration, its parent must be the class definition, which is
3346   // the correct key for the KeyFunctions hash.
3347   const auto &Map = KeyFunctions;
3348   auto I = Map.find(Method->getParent());
3349 
3350   // If it's not cached, there's nothing to do.
3351   if (I == Map.end()) return;
3352 
3353   // If it is cached, check whether it's the target method, and if so,
3354   // remove it from the cache. Note, the call to 'get' might invalidate
3355   // the iterator and the LazyDeclPtr object within the map.
3356   LazyDeclPtr Ptr = I->second;
3357   if (Ptr.get(getExternalSource()) == Method) {
3358     // FIXME: remember that we did this for module / chained PCH state?
3359     KeyFunctions.erase(Method->getParent());
3360   }
3361 }
3362 
3363 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3364   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3365   return Layout.getFieldOffset(FD->getFieldIndex());
3366 }
3367 
3368 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3369   uint64_t OffsetInBits;
3370   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3371     OffsetInBits = ::getFieldOffset(*this, FD);
3372   } else {
3373     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3374 
3375     OffsetInBits = 0;
3376     for (const NamedDecl *ND : IFD->chain())
3377       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3378   }
3379 
3380   return OffsetInBits;
3381 }
3382 
3383 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3384                                           const ObjCImplementationDecl *ID,
3385                                           const ObjCIvarDecl *Ivar) const {
3386   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3387 
3388   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3389   // in here; it should never be necessary because that should be the lexical
3390   // decl context for the ivar.
3391 
3392   // If we know have an implementation (and the ivar is in it) then
3393   // look up in the implementation layout.
3394   const ASTRecordLayout *RL;
3395   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3396     RL = &getASTObjCImplementationLayout(ID);
3397   else
3398     RL = &getASTObjCInterfaceLayout(Container);
3399 
3400   // Compute field index.
3401   //
3402   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3403   // implemented. This should be fixed to get the information from the layout
3404   // directly.
3405   unsigned Index = 0;
3406 
3407   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3408        IVD; IVD = IVD->getNextIvar()) {
3409     if (Ivar == IVD)
3410       break;
3411     ++Index;
3412   }
3413   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3414 
3415   return RL->getFieldOffset(Index);
3416 }
3417 
3418 /// getObjCLayout - Get or compute information about the layout of the
3419 /// given interface.
3420 ///
3421 /// \param Impl - If given, also include the layout of the interface's
3422 /// implementation. This may differ by including synthesized ivars.
3423 const ASTRecordLayout &
3424 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3425                           const ObjCImplementationDecl *Impl) const {
3426   // Retrieve the definition
3427   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3428     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3429   D = D->getDefinition();
3430   assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3431          "Invalid interface decl!");
3432 
3433   // Look up this layout, if already laid out, return what we have.
3434   const ObjCContainerDecl *Key =
3435     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3436   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3437     return *Entry;
3438 
3439   // Add in synthesized ivar count if laying out an implementation.
3440   if (Impl) {
3441     unsigned SynthCount = CountNonClassIvars(D);
3442     // If there aren't any synthesized ivars then reuse the interface
3443     // entry. Note we can't cache this because we simply free all
3444     // entries later; however we shouldn't look up implementations
3445     // frequently.
3446     if (SynthCount == 0)
3447       return getObjCLayout(D, nullptr);
3448   }
3449 
3450   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3451   Builder.Layout(D);
3452 
3453   const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3454       *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3455       Builder.UnadjustedAlignment,
3456       /*RequiredAlignment : used by MS-ABI)*/
3457       Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3458 
3459   ObjCLayouts[Key] = NewEntry;
3460 
3461   return *NewEntry;
3462 }
3463 
3464 static void PrintOffset(raw_ostream &OS,
3465                         CharUnits Offset, unsigned IndentLevel) {
3466   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3467   OS.indent(IndentLevel * 2);
3468 }
3469 
3470 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3471                                 unsigned Begin, unsigned Width,
3472                                 unsigned IndentLevel) {
3473   llvm::SmallString<10> Buffer;
3474   {
3475     llvm::raw_svector_ostream BufferOS(Buffer);
3476     BufferOS << Offset.getQuantity() << ':';
3477     if (Width == 0) {
3478       BufferOS << '-';
3479     } else {
3480       BufferOS << Begin << '-' << (Begin + Width - 1);
3481     }
3482   }
3483 
3484   OS << llvm::right_justify(Buffer, 10) << " | ";
3485   OS.indent(IndentLevel * 2);
3486 }
3487 
3488 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3489   OS << "           | ";
3490   OS.indent(IndentLevel * 2);
3491 }
3492 
3493 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3494                              const ASTContext &C,
3495                              CharUnits Offset,
3496                              unsigned IndentLevel,
3497                              const char* Description,
3498                              bool PrintSizeInfo,
3499                              bool IncludeVirtualBases) {
3500   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3501   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3502 
3503   PrintOffset(OS, Offset, IndentLevel);
3504   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3505   if (Description)
3506     OS << ' ' << Description;
3507   if (CXXRD && CXXRD->isEmpty())
3508     OS << " (empty)";
3509   OS << '\n';
3510 
3511   IndentLevel++;
3512 
3513   // Dump bases.
3514   if (CXXRD) {
3515     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3516     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3517     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3518 
3519     // Vtable pointer.
3520     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3521       PrintOffset(OS, Offset, IndentLevel);
3522       OS << '(' << *RD << " vtable pointer)\n";
3523     } else if (HasOwnVFPtr) {
3524       PrintOffset(OS, Offset, IndentLevel);
3525       // vfptr (for Microsoft C++ ABI)
3526       OS << '(' << *RD << " vftable pointer)\n";
3527     }
3528 
3529     // Collect nvbases.
3530     SmallVector<const CXXRecordDecl *, 4> Bases;
3531     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3532       assert(!Base.getType()->isDependentType() &&
3533              "Cannot layout class with dependent bases.");
3534       if (!Base.isVirtual())
3535         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3536     }
3537 
3538     // Sort nvbases by offset.
3539     llvm::stable_sort(
3540         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3541           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3542         });
3543 
3544     // Dump (non-virtual) bases
3545     for (const CXXRecordDecl *Base : Bases) {
3546       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3547       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3548                        Base == PrimaryBase ? "(primary base)" : "(base)",
3549                        /*PrintSizeInfo=*/false,
3550                        /*IncludeVirtualBases=*/false);
3551     }
3552 
3553     // vbptr (for Microsoft C++ ABI)
3554     if (HasOwnVBPtr) {
3555       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3556       OS << '(' << *RD << " vbtable pointer)\n";
3557     }
3558   }
3559 
3560   // Dump fields.
3561   uint64_t FieldNo = 0;
3562   for (RecordDecl::field_iterator I = RD->field_begin(),
3563          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3564     const FieldDecl &Field = **I;
3565     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3566     CharUnits FieldOffset =
3567       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3568 
3569     // Recursively dump fields of record type.
3570     if (auto RT = Field.getType()->getAs<RecordType>()) {
3571       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3572                        Field.getName().data(),
3573                        /*PrintSizeInfo=*/false,
3574                        /*IncludeVirtualBases=*/true);
3575       continue;
3576     }
3577 
3578     if (Field.isBitField()) {
3579       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3580       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3581       unsigned Width = Field.getBitWidthValue(C);
3582       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3583     } else {
3584       PrintOffset(OS, FieldOffset, IndentLevel);
3585     }
3586     const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3587                                     ? Field.getType().getCanonicalType()
3588                                     : Field.getType();
3589     OS << FieldType.getAsString() << ' ' << Field << '\n';
3590   }
3591 
3592   // Dump virtual bases.
3593   if (CXXRD && IncludeVirtualBases) {
3594     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3595       Layout.getVBaseOffsetsMap();
3596 
3597     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3598       assert(Base.isVirtual() && "Found non-virtual class!");
3599       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3600 
3601       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3602 
3603       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3604         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3605         OS << "(vtordisp for vbase " << *VBase << ")\n";
3606       }
3607 
3608       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3609                        VBase == Layout.getPrimaryBase() ?
3610                          "(primary virtual base)" : "(virtual base)",
3611                        /*PrintSizeInfo=*/false,
3612                        /*IncludeVirtualBases=*/false);
3613     }
3614   }
3615 
3616   if (!PrintSizeInfo) return;
3617 
3618   PrintIndentNoOffset(OS, IndentLevel - 1);
3619   OS << "[sizeof=" << Layout.getSize().getQuantity();
3620   if (CXXRD && !isMsLayout(C))
3621     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3622   OS << ", align=" << Layout.getAlignment().getQuantity();
3623   if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3624     OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3625 
3626   if (CXXRD) {
3627     OS << ",\n";
3628     PrintIndentNoOffset(OS, IndentLevel - 1);
3629     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3630     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3631     if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3632       OS << ", preferrednvalign="
3633          << Layout.getPreferredNVAlignment().getQuantity();
3634   }
3635   OS << "]\n";
3636 }
3637 
3638 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3639                                   bool Simple) const {
3640   if (!Simple) {
3641     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3642                        /*PrintSizeInfo*/ true,
3643                        /*IncludeVirtualBases=*/true);
3644     return;
3645   }
3646 
3647   // The "simple" format is designed to be parsed by the
3648   // layout-override testing code.  There shouldn't be any external
3649   // uses of this format --- when LLDB overrides a layout, it sets up
3650   // the data structures directly --- so feel free to adjust this as
3651   // you like as long as you also update the rudimentary parser for it
3652   // in libFrontend.
3653 
3654   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3655   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3656   OS << "\nLayout: ";
3657   OS << "<ASTRecordLayout\n";
3658   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3659   if (!isMsLayout(*this))
3660     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3661   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3662   if (Target->defaultsToAIXPowerAlignment())
3663     OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3664        << "\n";
3665   OS << "  FieldOffsets: [";
3666   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3667     if (i)
3668       OS << ", ";
3669     OS << Info.getFieldOffset(i);
3670   }
3671   OS << "]>\n";
3672 }
3673