xref: /freebsd/contrib/llvm-project/clang/lib/AST/MicrosoftMangle.cpp (revision f2530c80db7b29b95368fce956b3a778f096b368)
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Mangle.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/JamCRC.h"
31 #include "llvm/Support/xxhash.h"
32 #include "llvm/Support/MD5.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/StringSaver.h"
35 
36 using namespace clang;
37 
38 namespace {
39 
40 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
41   raw_ostream &OS;
42   llvm::SmallString<64> Buffer;
43 
44   msvc_hashing_ostream(raw_ostream &OS)
45       : llvm::raw_svector_ostream(Buffer), OS(OS) {}
46   ~msvc_hashing_ostream() override {
47     StringRef MangledName = str();
48     bool StartsWithEscape = MangledName.startswith("\01");
49     if (StartsWithEscape)
50       MangledName = MangledName.drop_front(1);
51     if (MangledName.size() <= 4096) {
52       OS << str();
53       return;
54     }
55 
56     llvm::MD5 Hasher;
57     llvm::MD5::MD5Result Hash;
58     Hasher.update(MangledName);
59     Hasher.final(Hash);
60 
61     SmallString<32> HexString;
62     llvm::MD5::stringifyResult(Hash, HexString);
63 
64     if (StartsWithEscape)
65       OS << '\01';
66     OS << "??@" << HexString << '@';
67   }
68 };
69 
70 static const DeclContext *
71 getLambdaDefaultArgumentDeclContext(const Decl *D) {
72   if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
73     if (RD->isLambda())
74       if (const auto *Parm =
75               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
76         return Parm->getDeclContext();
77   return nullptr;
78 }
79 
80 /// Retrieve the declaration context that should be used when mangling
81 /// the given declaration.
82 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
83   // The ABI assumes that lambda closure types that occur within
84   // default arguments live in the context of the function. However, due to
85   // the way in which Clang parses and creates function declarations, this is
86   // not the case: the lambda closure type ends up living in the context
87   // where the function itself resides, because the function declaration itself
88   // had not yet been created. Fix the context here.
89   if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
90     return LDADC;
91 
92   // Perform the same check for block literals.
93   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
94     if (ParmVarDecl *ContextParam =
95             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
96       return ContextParam->getDeclContext();
97   }
98 
99   const DeclContext *DC = D->getDeclContext();
100   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
101       isa<OMPDeclareMapperDecl>(DC)) {
102     return getEffectiveDeclContext(cast<Decl>(DC));
103   }
104 
105   return DC->getRedeclContext();
106 }
107 
108 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
109   return getEffectiveDeclContext(cast<Decl>(DC));
110 }
111 
112 static const FunctionDecl *getStructor(const NamedDecl *ND) {
113   if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
114     return FTD->getTemplatedDecl()->getCanonicalDecl();
115 
116   const auto *FD = cast<FunctionDecl>(ND);
117   if (const auto *FTD = FD->getPrimaryTemplate())
118     return FTD->getTemplatedDecl()->getCanonicalDecl();
119 
120   return FD->getCanonicalDecl();
121 }
122 
123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
124 /// Microsoft Visual C++ ABI.
125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
126   typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
127   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
128   llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
129   llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
130   llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
131   llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
132   SmallString<16> AnonymousNamespaceHash;
133 
134 public:
135   MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags);
136   bool shouldMangleCXXName(const NamedDecl *D) override;
137   bool shouldMangleStringLiteral(const StringLiteral *SL) override;
138   void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
139   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
140                                 const MethodVFTableLocation &ML,
141                                 raw_ostream &Out) override;
142   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                    raw_ostream &) override;
144   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                           const ThisAdjustment &ThisAdjustment,
146                           raw_ostream &) override;
147   void mangleCXXVFTable(const CXXRecordDecl *Derived,
148                         ArrayRef<const CXXRecordDecl *> BasePath,
149                         raw_ostream &Out) override;
150   void mangleCXXVBTable(const CXXRecordDecl *Derived,
151                         ArrayRef<const CXXRecordDecl *> BasePath,
152                         raw_ostream &Out) override;
153   void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
154                                        const CXXRecordDecl *DstRD,
155                                        raw_ostream &Out) override;
156   void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
157                           bool IsUnaligned, uint32_t NumEntries,
158                           raw_ostream &Out) override;
159   void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
160                                    raw_ostream &Out) override;
161   void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
162                               CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
163                               int32_t VBPtrOffset, uint32_t VBIndex,
164                               raw_ostream &Out) override;
165   void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
166   void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
167   void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
168                                         uint32_t NVOffset, int32_t VBPtrOffset,
169                                         uint32_t VBTableOffset, uint32_t Flags,
170                                         raw_ostream &Out) override;
171   void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
172                                    raw_ostream &Out) override;
173   void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
174                                              raw_ostream &Out) override;
175   void
176   mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
177                                      ArrayRef<const CXXRecordDecl *> BasePath,
178                                      raw_ostream &Out) override;
179   void mangleTypeName(QualType T, raw_ostream &) override;
180   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
181                      raw_ostream &) override;
182   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
183                      raw_ostream &) override;
184   void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
185                                 raw_ostream &) override;
186   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
187   void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
188                                            raw_ostream &Out) override;
189   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
190   void mangleDynamicAtExitDestructor(const VarDecl *D,
191                                      raw_ostream &Out) override;
192   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
193                                  raw_ostream &Out) override;
194   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
195                              raw_ostream &Out) override;
196   void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
197   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
198     const DeclContext *DC = getEffectiveDeclContext(ND);
199     if (!DC->isFunctionOrMethod())
200       return false;
201 
202     // Lambda closure types are already numbered, give out a phony number so
203     // that they demangle nicely.
204     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
205       if (RD->isLambda()) {
206         disc = 1;
207         return true;
208       }
209     }
210 
211     // Use the canonical number for externally visible decls.
212     if (ND->isExternallyVisible()) {
213       disc = getASTContext().getManglingNumber(ND);
214       return true;
215     }
216 
217     // Anonymous tags are already numbered.
218     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
219       if (!Tag->hasNameForLinkage() &&
220           !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
221           !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
222         return false;
223     }
224 
225     // Make up a reasonable number for internal decls.
226     unsigned &discriminator = Uniquifier[ND];
227     if (!discriminator)
228       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
229     disc = discriminator + 1;
230     return true;
231   }
232 
233   unsigned getLambdaId(const CXXRecordDecl *RD) {
234     assert(RD->isLambda() && "RD must be a lambda!");
235     assert(!RD->isExternallyVisible() && "RD must not be visible!");
236     assert(RD->getLambdaManglingNumber() == 0 &&
237            "RD must not have a mangling number!");
238     std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
239         Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
240     return Result.first->second;
241   }
242 
243   /// Return a character sequence that is (somewhat) unique to the TU suitable
244   /// for mangling anonymous namespaces.
245   StringRef getAnonymousNamespaceHash() const {
246     return AnonymousNamespaceHash;
247   }
248 
249 private:
250   void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
251 };
252 
253 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
254 /// Microsoft Visual C++ ABI.
255 class MicrosoftCXXNameMangler {
256   MicrosoftMangleContextImpl &Context;
257   raw_ostream &Out;
258 
259   /// The "structor" is the top-level declaration being mangled, if
260   /// that's not a template specialization; otherwise it's the pattern
261   /// for that specialization.
262   const NamedDecl *Structor;
263   unsigned StructorType;
264 
265   typedef llvm::SmallVector<std::string, 10> BackRefVec;
266   BackRefVec NameBackReferences;
267 
268   typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
269   ArgBackRefMap FunArgBackReferences;
270   ArgBackRefMap TemplateArgBackReferences;
271 
272   typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
273   TemplateArgStringMap TemplateArgStrings;
274   llvm::StringSaver TemplateArgStringStorage;
275   llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
276 
277   typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
278   PassObjectSizeArgsSet PassObjectSizeArgs;
279 
280   ASTContext &getASTContext() const { return Context.getASTContext(); }
281 
282   // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
283   // this check into mangleQualifiers().
284   const bool PointersAre64Bit;
285 
286 public:
287   enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
288 
289   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
290       : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
291         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
292         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
293                          64) {}
294 
295   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
296                           const CXXConstructorDecl *D, CXXCtorType Type)
297       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
298         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
299         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
300                          64) {}
301 
302   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
303                           const CXXDestructorDecl *D, CXXDtorType Type)
304       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
305         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
306         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
307                          64) {}
308 
309   raw_ostream &getStream() const { return Out; }
310 
311   void mangle(const NamedDecl *D, StringRef Prefix = "?");
312   void mangleName(const NamedDecl *ND);
313   void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
314   void mangleVariableEncoding(const VarDecl *VD);
315   void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
316   void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
317                                    const CXXMethodDecl *MD);
318   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
319                                 const MethodVFTableLocation &ML);
320   void mangleNumber(int64_t Number);
321   void mangleTagTypeKind(TagTypeKind TK);
322   void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
323                               ArrayRef<StringRef> NestedNames = None);
324   void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
325   void mangleType(QualType T, SourceRange Range,
326                   QualifierMangleMode QMM = QMM_Mangle);
327   void mangleFunctionType(const FunctionType *T,
328                           const FunctionDecl *D = nullptr,
329                           bool ForceThisQuals = false,
330                           bool MangleExceptionSpec = true);
331   void mangleNestedName(const NamedDecl *ND);
332 
333 private:
334   bool isStructorDecl(const NamedDecl *ND) const {
335     return ND == Structor || getStructor(ND) == Structor;
336   }
337 
338   void mangleUnqualifiedName(const NamedDecl *ND) {
339     mangleUnqualifiedName(ND, ND->getDeclName());
340   }
341   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
342   void mangleSourceName(StringRef Name);
343   void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
344   void mangleCXXDtorType(CXXDtorType T);
345   void mangleQualifiers(Qualifiers Quals, bool IsMember);
346   void mangleRefQualifier(RefQualifierKind RefQualifier);
347   void manglePointerCVQualifiers(Qualifiers Quals);
348   void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
349 
350   void mangleUnscopedTemplateName(const TemplateDecl *ND);
351   void
352   mangleTemplateInstantiationName(const TemplateDecl *TD,
353                                   const TemplateArgumentList &TemplateArgs);
354   void mangleObjCMethodName(const ObjCMethodDecl *MD);
355 
356   void mangleFunctionArgumentType(QualType T, SourceRange Range);
357   void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
358 
359   bool isArtificialTagType(QualType T) const;
360 
361   // Declare manglers for every type class.
362 #define ABSTRACT_TYPE(CLASS, PARENT)
363 #define NON_CANONICAL_TYPE(CLASS, PARENT)
364 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
365                                             Qualifiers Quals, \
366                                             SourceRange Range);
367 #include "clang/AST/TypeNodes.def"
368 #undef ABSTRACT_TYPE
369 #undef NON_CANONICAL_TYPE
370 #undef TYPE
371 
372   void mangleType(const TagDecl *TD);
373   void mangleDecayedArrayType(const ArrayType *T);
374   void mangleArrayType(const ArrayType *T);
375   void mangleFunctionClass(const FunctionDecl *FD);
376   void mangleCallingConvention(CallingConv CC);
377   void mangleCallingConvention(const FunctionType *T);
378   void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
379   void mangleExpression(const Expr *E);
380   void mangleThrowSpecification(const FunctionProtoType *T);
381 
382   void mangleTemplateArgs(const TemplateDecl *TD,
383                           const TemplateArgumentList &TemplateArgs);
384   void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
385                          const NamedDecl *Parm);
386 
387   void mangleObjCProtocol(const ObjCProtocolDecl *PD);
388   void mangleObjCLifetime(const QualType T, Qualifiers Quals,
389                           SourceRange Range);
390   void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
391                             SourceRange Range);
392 };
393 }
394 
395 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
396                                                        DiagnosticsEngine &Diags)
397     : MicrosoftMangleContext(Context, Diags) {
398   // To mangle anonymous namespaces, hash the path to the main source file. The
399   // path should be whatever (probably relative) path was passed on the command
400   // line. The goal is for the compiler to produce the same output regardless of
401   // working directory, so use the uncanonicalized relative path.
402   //
403   // It's important to make the mangled names unique because, when CodeView
404   // debug info is in use, the debugger uses mangled type names to distinguish
405   // between otherwise identically named types in anonymous namespaces.
406   //
407   // These symbols are always internal, so there is no need for the hash to
408   // match what MSVC produces. For the same reason, clang is free to change the
409   // hash at any time without breaking compatibility with old versions of clang.
410   // The generated names are intended to look similar to what MSVC generates,
411   // which are something like "?A0x01234567@".
412   SourceManager &SM = Context.getSourceManager();
413   if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
414     // Truncate the hash so we get 8 characters of hexadecimal.
415     uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
416     AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
417   } else {
418     // If we don't have a path to the main file, we'll just use 0.
419     AnonymousNamespaceHash = "0";
420   }
421 }
422 
423 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
424   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
425     LanguageLinkage L = FD->getLanguageLinkage();
426     // Overloadable functions need mangling.
427     if (FD->hasAttr<OverloadableAttr>())
428       return true;
429 
430     // The ABI expects that we would never mangle "typical" user-defined entry
431     // points regardless of visibility or freestanding-ness.
432     //
433     // N.B. This is distinct from asking about "main".  "main" has a lot of
434     // special rules associated with it in the standard while these
435     // user-defined entry points are outside of the purview of the standard.
436     // For example, there can be only one definition for "main" in a standards
437     // compliant program; however nothing forbids the existence of wmain and
438     // WinMain in the same translation unit.
439     if (FD->isMSVCRTEntryPoint())
440       return false;
441 
442     // C++ functions and those whose names are not a simple identifier need
443     // mangling.
444     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
445       return true;
446 
447     // C functions are not mangled.
448     if (L == CLanguageLinkage)
449       return false;
450   }
451 
452   // Otherwise, no mangling is done outside C++ mode.
453   if (!getASTContext().getLangOpts().CPlusPlus)
454     return false;
455 
456   const VarDecl *VD = dyn_cast<VarDecl>(D);
457   if (VD && !isa<DecompositionDecl>(D)) {
458     // C variables are not mangled.
459     if (VD->isExternC())
460       return false;
461 
462     // Variables at global scope with non-internal linkage are not mangled.
463     const DeclContext *DC = getEffectiveDeclContext(D);
464     // Check for extern variable declared locally.
465     if (DC->isFunctionOrMethod() && D->hasLinkage())
466       while (!DC->isNamespace() && !DC->isTranslationUnit())
467         DC = getEffectiveParentContext(DC);
468 
469     if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
470         !isa<VarTemplateSpecializationDecl>(D) &&
471         D->getIdentifier() != nullptr)
472       return false;
473   }
474 
475   return true;
476 }
477 
478 bool
479 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
480   return true;
481 }
482 
483 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
484   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
485   // Therefore it's really important that we don't decorate the
486   // name with leading underscores or leading/trailing at signs. So, by
487   // default, we emit an asm marker at the start so we get the name right.
488   // Callers can override this with a custom prefix.
489 
490   // <mangled-name> ::= ? <name> <type-encoding>
491   Out << Prefix;
492   mangleName(D);
493   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
494     mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
495   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
496     mangleVariableEncoding(VD);
497   else
498     llvm_unreachable("Tried to mangle unexpected NamedDecl!");
499 }
500 
501 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
502                                                      bool ShouldMangle) {
503   // <type-encoding> ::= <function-class> <function-type>
504 
505   // Since MSVC operates on the type as written and not the canonical type, it
506   // actually matters which decl we have here.  MSVC appears to choose the
507   // first, since it is most likely to be the declaration in a header file.
508   FD = FD->getFirstDecl();
509 
510   // We should never ever see a FunctionNoProtoType at this point.
511   // We don't even know how to mangle their types anyway :).
512   const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
513 
514   // extern "C" functions can hold entities that must be mangled.
515   // As it stands, these functions still need to get expressed in the full
516   // external name.  They have their class and type omitted, replaced with '9'.
517   if (ShouldMangle) {
518     // We would like to mangle all extern "C" functions using this additional
519     // component but this would break compatibility with MSVC's behavior.
520     // Instead, do this when we know that compatibility isn't important (in
521     // other words, when it is an overloaded extern "C" function).
522     if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
523       Out << "$$J0";
524 
525     mangleFunctionClass(FD);
526 
527     mangleFunctionType(FT, FD, false, false);
528   } else {
529     Out << '9';
530   }
531 }
532 
533 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
534   // <type-encoding> ::= <storage-class> <variable-type>
535   // <storage-class> ::= 0  # private static member
536   //                 ::= 1  # protected static member
537   //                 ::= 2  # public static member
538   //                 ::= 3  # global
539   //                 ::= 4  # static local
540 
541   // The first character in the encoding (after the name) is the storage class.
542   if (VD->isStaticDataMember()) {
543     // If it's a static member, it also encodes the access level.
544     switch (VD->getAccess()) {
545       default:
546       case AS_private: Out << '0'; break;
547       case AS_protected: Out << '1'; break;
548       case AS_public: Out << '2'; break;
549     }
550   }
551   else if (!VD->isStaticLocal())
552     Out << '3';
553   else
554     Out << '4';
555   // Now mangle the type.
556   // <variable-type> ::= <type> <cvr-qualifiers>
557   //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
558   // Pointers and references are odd. The type of 'int * const foo;' gets
559   // mangled as 'QAHA' instead of 'PAHB', for example.
560   SourceRange SR = VD->getSourceRange();
561   QualType Ty = VD->getType();
562   if (Ty->isPointerType() || Ty->isReferenceType() ||
563       Ty->isMemberPointerType()) {
564     mangleType(Ty, SR, QMM_Drop);
565     manglePointerExtQualifiers(
566         Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
567     if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
568       mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
569       // Member pointers are suffixed with a back reference to the member
570       // pointer's class name.
571       mangleName(MPT->getClass()->getAsCXXRecordDecl());
572     } else
573       mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
574   } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
575     // Global arrays are funny, too.
576     mangleDecayedArrayType(AT);
577     if (AT->getElementType()->isArrayType())
578       Out << 'A';
579     else
580       mangleQualifiers(Ty.getQualifiers(), false);
581   } else {
582     mangleType(Ty, SR, QMM_Drop);
583     mangleQualifiers(Ty.getQualifiers(), false);
584   }
585 }
586 
587 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
588                                                       const ValueDecl *VD) {
589   // <member-data-pointer> ::= <integer-literal>
590   //                       ::= $F <number> <number>
591   //                       ::= $G <number> <number> <number>
592 
593   int64_t FieldOffset;
594   int64_t VBTableOffset;
595   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
596   if (VD) {
597     FieldOffset = getASTContext().getFieldOffset(VD);
598     assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
599            "cannot take address of bitfield");
600     FieldOffset /= getASTContext().getCharWidth();
601 
602     VBTableOffset = 0;
603 
604     if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
605       FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
606   } else {
607     FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
608 
609     VBTableOffset = -1;
610   }
611 
612   char Code = '\0';
613   switch (IM) {
614   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '0'; break;
615   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = '0'; break;
616   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'F'; break;
617   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
618   }
619 
620   Out << '$' << Code;
621 
622   mangleNumber(FieldOffset);
623 
624   // The C++ standard doesn't allow base-to-derived member pointer conversions
625   // in template parameter contexts, so the vbptr offset of data member pointers
626   // is always zero.
627   if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
628     mangleNumber(0);
629   if (MSInheritanceAttr::hasVBTableOffsetField(IM))
630     mangleNumber(VBTableOffset);
631 }
632 
633 void
634 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
635                                                      const CXXMethodDecl *MD) {
636   // <member-function-pointer> ::= $1? <name>
637   //                           ::= $H? <name> <number>
638   //                           ::= $I? <name> <number> <number>
639   //                           ::= $J? <name> <number> <number> <number>
640 
641   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
642 
643   char Code = '\0';
644   switch (IM) {
645   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '1'; break;
646   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = 'H'; break;
647   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'I'; break;
648   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
649   }
650 
651   // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
652   // thunk.
653   uint64_t NVOffset = 0;
654   uint64_t VBTableOffset = 0;
655   uint64_t VBPtrOffset = 0;
656   if (MD) {
657     Out << '$' << Code << '?';
658     if (MD->isVirtual()) {
659       MicrosoftVTableContext *VTContext =
660           cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
661       MethodVFTableLocation ML =
662           VTContext->getMethodVFTableLocation(GlobalDecl(MD));
663       mangleVirtualMemPtrThunk(MD, ML);
664       NVOffset = ML.VFPtrOffset.getQuantity();
665       VBTableOffset = ML.VBTableIndex * 4;
666       if (ML.VBase) {
667         const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
668         VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
669       }
670     } else {
671       mangleName(MD);
672       mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
673     }
674 
675     if (VBTableOffset == 0 &&
676         IM == MSInheritanceAttr::Keyword_virtual_inheritance)
677       NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
678   } else {
679     // Null single inheritance member functions are encoded as a simple nullptr.
680     if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
681       Out << "$0A@";
682       return;
683     }
684     if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
685       VBTableOffset = -1;
686     Out << '$' << Code;
687   }
688 
689   if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
690     mangleNumber(static_cast<uint32_t>(NVOffset));
691   if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
692     mangleNumber(VBPtrOffset);
693   if (MSInheritanceAttr::hasVBTableOffsetField(IM))
694     mangleNumber(VBTableOffset);
695 }
696 
697 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
698     const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
699   // Get the vftable offset.
700   CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
701       getASTContext().getTargetInfo().getPointerWidth(0));
702   uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
703 
704   Out << "?_9";
705   mangleName(MD->getParent());
706   Out << "$B";
707   mangleNumber(OffsetInVFTable);
708   Out << 'A';
709   mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
710 }
711 
712 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
713   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
714 
715   // Always start with the unqualified name.
716   mangleUnqualifiedName(ND);
717 
718   mangleNestedName(ND);
719 
720   // Terminate the whole name with an '@'.
721   Out << '@';
722 }
723 
724 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
725   // <non-negative integer> ::= A@              # when Number == 0
726   //                        ::= <decimal digit> # when 1 <= Number <= 10
727   //                        ::= <hex digit>+ @  # when Number >= 10
728   //
729   // <number>               ::= [?] <non-negative integer>
730 
731   uint64_t Value = static_cast<uint64_t>(Number);
732   if (Number < 0) {
733     Value = -Value;
734     Out << '?';
735   }
736 
737   if (Value == 0)
738     Out << "A@";
739   else if (Value >= 1 && Value <= 10)
740     Out << (Value - 1);
741   else {
742     // Numbers that are not encoded as decimal digits are represented as nibbles
743     // in the range of ASCII characters 'A' to 'P'.
744     // The number 0x123450 would be encoded as 'BCDEFA'
745     char EncodedNumberBuffer[sizeof(uint64_t) * 2];
746     MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
747     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
748     for (; Value != 0; Value >>= 4)
749       *I++ = 'A' + (Value & 0xf);
750     Out.write(I.base(), I - BufferRef.rbegin());
751     Out << '@';
752   }
753 }
754 
755 static const TemplateDecl *
756 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
757   // Check if we have a function template.
758   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
759     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
760       TemplateArgs = FD->getTemplateSpecializationArgs();
761       return TD;
762     }
763   }
764 
765   // Check if we have a class template.
766   if (const ClassTemplateSpecializationDecl *Spec =
767           dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
768     TemplateArgs = &Spec->getTemplateArgs();
769     return Spec->getSpecializedTemplate();
770   }
771 
772   // Check if we have a variable template.
773   if (const VarTemplateSpecializationDecl *Spec =
774           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
775     TemplateArgs = &Spec->getTemplateArgs();
776     return Spec->getSpecializedTemplate();
777   }
778 
779   return nullptr;
780 }
781 
782 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
783                                                     DeclarationName Name) {
784   //  <unqualified-name> ::= <operator-name>
785   //                     ::= <ctor-dtor-name>
786   //                     ::= <source-name>
787   //                     ::= <template-name>
788 
789   // Check if we have a template.
790   const TemplateArgumentList *TemplateArgs = nullptr;
791   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
792     // Function templates aren't considered for name back referencing.  This
793     // makes sense since function templates aren't likely to occur multiple
794     // times in a symbol.
795     if (isa<FunctionTemplateDecl>(TD)) {
796       mangleTemplateInstantiationName(TD, *TemplateArgs);
797       Out << '@';
798       return;
799     }
800 
801     // Here comes the tricky thing: if we need to mangle something like
802     //   void foo(A::X<Y>, B::X<Y>),
803     // the X<Y> part is aliased. However, if you need to mangle
804     //   void foo(A::X<A::Y>, A::X<B::Y>),
805     // the A::X<> part is not aliased.
806     // That is, from the mangler's perspective we have a structure like this:
807     //   namespace[s] -> type[ -> template-parameters]
808     // but from the Clang perspective we have
809     //   type [ -> template-parameters]
810     //      \-> namespace[s]
811     // What we do is we create a new mangler, mangle the same type (without
812     // a namespace suffix) to a string using the extra mangler and then use
813     // the mangled type name as a key to check the mangling of different types
814     // for aliasing.
815 
816     // It's important to key cache reads off ND, not TD -- the same TD can
817     // be used with different TemplateArgs, but ND uniquely identifies
818     // TD / TemplateArg pairs.
819     ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
820     if (Found == TemplateArgBackReferences.end()) {
821 
822       TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
823       if (Found == TemplateArgStrings.end()) {
824         // Mangle full template name into temporary buffer.
825         llvm::SmallString<64> TemplateMangling;
826         llvm::raw_svector_ostream Stream(TemplateMangling);
827         MicrosoftCXXNameMangler Extra(Context, Stream);
828         Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
829 
830         // Use the string backref vector to possibly get a back reference.
831         mangleSourceName(TemplateMangling);
832 
833         // Memoize back reference for this type if one exist, else memoize
834         // the mangling itself.
835         BackRefVec::iterator StringFound =
836             llvm::find(NameBackReferences, TemplateMangling);
837         if (StringFound != NameBackReferences.end()) {
838           TemplateArgBackReferences[ND] =
839               StringFound - NameBackReferences.begin();
840         } else {
841           TemplateArgStrings[ND] =
842               TemplateArgStringStorage.save(TemplateMangling.str());
843         }
844       } else {
845         Out << Found->second; // Outputs a StringRef.
846       }
847     } else {
848       Out << Found->second; // Outputs a back reference (an int).
849     }
850     return;
851   }
852 
853   switch (Name.getNameKind()) {
854     case DeclarationName::Identifier: {
855       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
856         mangleSourceName(II->getName());
857         break;
858       }
859 
860       // Otherwise, an anonymous entity.  We must have a declaration.
861       assert(ND && "mangling empty name without declaration");
862 
863       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
864         if (NS->isAnonymousNamespace()) {
865           Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
866           break;
867         }
868       }
869 
870       if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
871         // FIXME: Invented mangling for decomposition declarations:
872         //   [X,Y,Z]
873         // where X,Y,Z are the names of the bindings.
874         llvm::SmallString<128> Name("[");
875         for (auto *BD : DD->bindings()) {
876           if (Name.size() > 1)
877             Name += ',';
878           Name += BD->getDeclName().getAsIdentifierInfo()->getName();
879         }
880         Name += ']';
881         mangleSourceName(Name);
882         break;
883       }
884 
885       if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
886         // We must have an anonymous union or struct declaration.
887         const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
888         assert(RD && "expected variable decl to have a record type");
889         // Anonymous types with no tag or typedef get the name of their
890         // declarator mangled in.  If they have no declarator, number them with
891         // a $S prefix.
892         llvm::SmallString<64> Name("$S");
893         // Get a unique id for the anonymous struct.
894         Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
895         mangleSourceName(Name.str());
896         break;
897       }
898 
899       // We must have an anonymous struct.
900       const TagDecl *TD = cast<TagDecl>(ND);
901       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
902         assert(TD->getDeclContext() == D->getDeclContext() &&
903                "Typedef should not be in another decl context!");
904         assert(D->getDeclName().getAsIdentifierInfo() &&
905                "Typedef was not named!");
906         mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
907         break;
908       }
909 
910       if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
911         if (Record->isLambda()) {
912           llvm::SmallString<10> Name("<lambda_");
913 
914           Decl *LambdaContextDecl = Record->getLambdaContextDecl();
915           unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
916           unsigned LambdaId;
917           const ParmVarDecl *Parm =
918               dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
919           const FunctionDecl *Func =
920               Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
921 
922           if (Func) {
923             unsigned DefaultArgNo =
924                 Func->getNumParams() - Parm->getFunctionScopeIndex();
925             Name += llvm::utostr(DefaultArgNo);
926             Name += "_";
927           }
928 
929           if (LambdaManglingNumber)
930             LambdaId = LambdaManglingNumber;
931           else
932             LambdaId = Context.getLambdaId(Record);
933 
934           Name += llvm::utostr(LambdaId);
935           Name += ">";
936 
937           mangleSourceName(Name);
938 
939           // If the context of a closure type is an initializer for a class
940           // member (static or nonstatic), it is encoded in a qualified name.
941           if (LambdaManglingNumber && LambdaContextDecl) {
942             if ((isa<VarDecl>(LambdaContextDecl) ||
943                  isa<FieldDecl>(LambdaContextDecl)) &&
944                 LambdaContextDecl->getDeclContext()->isRecord()) {
945               mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
946             }
947           }
948           break;
949         }
950       }
951 
952       llvm::SmallString<64> Name;
953       if (DeclaratorDecl *DD =
954               Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
955         // Anonymous types without a name for linkage purposes have their
956         // declarator mangled in if they have one.
957         Name += "<unnamed-type-";
958         Name += DD->getName();
959       } else if (TypedefNameDecl *TND =
960                      Context.getASTContext().getTypedefNameForUnnamedTagDecl(
961                          TD)) {
962         // Anonymous types without a name for linkage purposes have their
963         // associate typedef mangled in if they have one.
964         Name += "<unnamed-type-";
965         Name += TND->getName();
966       } else if (isa<EnumDecl>(TD) &&
967                  cast<EnumDecl>(TD)->enumerator_begin() !=
968                      cast<EnumDecl>(TD)->enumerator_end()) {
969         // Anonymous non-empty enums mangle in the first enumerator.
970         auto *ED = cast<EnumDecl>(TD);
971         Name += "<unnamed-enum-";
972         Name += ED->enumerator_begin()->getName();
973       } else {
974         // Otherwise, number the types using a $S prefix.
975         Name += "<unnamed-type-$S";
976         Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
977       }
978       Name += ">";
979       mangleSourceName(Name.str());
980       break;
981     }
982 
983     case DeclarationName::ObjCZeroArgSelector:
984     case DeclarationName::ObjCOneArgSelector:
985     case DeclarationName::ObjCMultiArgSelector: {
986       // This is reachable only when constructing an outlined SEH finally
987       // block.  Nothing depends on this mangling and it's used only with
988       // functinos with internal linkage.
989       llvm::SmallString<64> Name;
990       mangleSourceName(Name.str());
991       break;
992     }
993 
994     case DeclarationName::CXXConstructorName:
995       if (isStructorDecl(ND)) {
996         if (StructorType == Ctor_CopyingClosure) {
997           Out << "?_O";
998           return;
999         }
1000         if (StructorType == Ctor_DefaultClosure) {
1001           Out << "?_F";
1002           return;
1003         }
1004       }
1005       Out << "?0";
1006       return;
1007 
1008     case DeclarationName::CXXDestructorName:
1009       if (isStructorDecl(ND))
1010         // If the named decl is the C++ destructor we're mangling,
1011         // use the type we were given.
1012         mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1013       else
1014         // Otherwise, use the base destructor name. This is relevant if a
1015         // class with a destructor is declared within a destructor.
1016         mangleCXXDtorType(Dtor_Base);
1017       break;
1018 
1019     case DeclarationName::CXXConversionFunctionName:
1020       // <operator-name> ::= ?B # (cast)
1021       // The target type is encoded as the return type.
1022       Out << "?B";
1023       break;
1024 
1025     case DeclarationName::CXXOperatorName:
1026       mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
1027       break;
1028 
1029     case DeclarationName::CXXLiteralOperatorName: {
1030       Out << "?__K";
1031       mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
1032       break;
1033     }
1034 
1035     case DeclarationName::CXXDeductionGuideName:
1036       llvm_unreachable("Can't mangle a deduction guide name!");
1037 
1038     case DeclarationName::CXXUsingDirective:
1039       llvm_unreachable("Can't mangle a using directive name!");
1040   }
1041 }
1042 
1043 // <postfix> ::= <unqualified-name> [<postfix>]
1044 //           ::= <substitution> [<postfix>]
1045 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
1046   const DeclContext *DC = getEffectiveDeclContext(ND);
1047   while (!DC->isTranslationUnit()) {
1048     if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1049       unsigned Disc;
1050       if (Context.getNextDiscriminator(ND, Disc)) {
1051         Out << '?';
1052         mangleNumber(Disc);
1053         Out << '?';
1054       }
1055     }
1056 
1057     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1058       auto Discriminate =
1059           [](StringRef Name, const unsigned Discriminator,
1060              const unsigned ParameterDiscriminator) -> std::string {
1061         std::string Buffer;
1062         llvm::raw_string_ostream Stream(Buffer);
1063         Stream << Name;
1064         if (Discriminator)
1065           Stream << '_' << Discriminator;
1066         if (ParameterDiscriminator)
1067           Stream << '_' << ParameterDiscriminator;
1068         return Stream.str();
1069       };
1070 
1071       unsigned Discriminator = BD->getBlockManglingNumber();
1072       if (!Discriminator)
1073         Discriminator = Context.getBlockId(BD, /*Local=*/false);
1074 
1075       // Mangle the parameter position as a discriminator to deal with unnamed
1076       // parameters.  Rather than mangling the unqualified parameter name,
1077       // always use the position to give a uniform mangling.
1078       unsigned ParameterDiscriminator = 0;
1079       if (const auto *MC = BD->getBlockManglingContextDecl())
1080         if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1081           if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1082             ParameterDiscriminator =
1083                 F->getNumParams() - P->getFunctionScopeIndex();
1084 
1085       DC = getEffectiveDeclContext(BD);
1086 
1087       Out << '?';
1088       mangleSourceName(Discriminate("_block_invoke", Discriminator,
1089                                     ParameterDiscriminator));
1090       // If we have a block mangling context, encode that now.  This allows us
1091       // to discriminate between named static data initializers in the same
1092       // scope.  This is handled differently from parameters, which use
1093       // positions to discriminate between multiple instances.
1094       if (const auto *MC = BD->getBlockManglingContextDecl())
1095         if (!isa<ParmVarDecl>(MC))
1096           if (const auto *ND = dyn_cast<NamedDecl>(MC))
1097             mangleUnqualifiedName(ND);
1098       // MS ABI and Itanium manglings are in inverted scopes.  In the case of a
1099       // RecordDecl, mangle the entire scope hierarchy at this point rather than
1100       // just the unqualified name to get the ordering correct.
1101       if (const auto *RD = dyn_cast<RecordDecl>(DC))
1102         mangleName(RD);
1103       else
1104         Out << '@';
1105       // void __cdecl
1106       Out << "YAX";
1107       // struct __block_literal *
1108       Out << 'P';
1109       // __ptr64
1110       if (PointersAre64Bit)
1111         Out << 'E';
1112       Out << 'A';
1113       mangleArtificialTagType(TTK_Struct,
1114                              Discriminate("__block_literal", Discriminator,
1115                                           ParameterDiscriminator));
1116       Out << "@Z";
1117 
1118       // If the effective context was a Record, we have fully mangled the
1119       // qualified name and do not need to continue.
1120       if (isa<RecordDecl>(DC))
1121         break;
1122       continue;
1123     } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1124       mangleObjCMethodName(Method);
1125     } else if (isa<NamedDecl>(DC)) {
1126       ND = cast<NamedDecl>(DC);
1127       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1128         mangle(FD, "?");
1129         break;
1130       } else {
1131         mangleUnqualifiedName(ND);
1132         // Lambdas in default arguments conceptually belong to the function the
1133         // parameter corresponds to.
1134         if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1135           DC = LDADC;
1136           continue;
1137         }
1138       }
1139     }
1140     DC = DC->getParent();
1141   }
1142 }
1143 
1144 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1145   // Microsoft uses the names on the case labels for these dtor variants.  Clang
1146   // uses the Itanium terminology internally.  Everything in this ABI delegates
1147   // towards the base dtor.
1148   switch (T) {
1149   // <operator-name> ::= ?1  # destructor
1150   case Dtor_Base: Out << "?1"; return;
1151   // <operator-name> ::= ?_D # vbase destructor
1152   case Dtor_Complete: Out << "?_D"; return;
1153   // <operator-name> ::= ?_G # scalar deleting destructor
1154   case Dtor_Deleting: Out << "?_G"; return;
1155   // <operator-name> ::= ?_E # vector deleting destructor
1156   // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
1157   // it.
1158   case Dtor_Comdat:
1159     llvm_unreachable("not expecting a COMDAT");
1160   }
1161   llvm_unreachable("Unsupported dtor type?");
1162 }
1163 
1164 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1165                                                  SourceLocation Loc) {
1166   switch (OO) {
1167   //                     ?0 # constructor
1168   //                     ?1 # destructor
1169   // <operator-name> ::= ?2 # new
1170   case OO_New: Out << "?2"; break;
1171   // <operator-name> ::= ?3 # delete
1172   case OO_Delete: Out << "?3"; break;
1173   // <operator-name> ::= ?4 # =
1174   case OO_Equal: Out << "?4"; break;
1175   // <operator-name> ::= ?5 # >>
1176   case OO_GreaterGreater: Out << "?5"; break;
1177   // <operator-name> ::= ?6 # <<
1178   case OO_LessLess: Out << "?6"; break;
1179   // <operator-name> ::= ?7 # !
1180   case OO_Exclaim: Out << "?7"; break;
1181   // <operator-name> ::= ?8 # ==
1182   case OO_EqualEqual: Out << "?8"; break;
1183   // <operator-name> ::= ?9 # !=
1184   case OO_ExclaimEqual: Out << "?9"; break;
1185   // <operator-name> ::= ?A # []
1186   case OO_Subscript: Out << "?A"; break;
1187   //                     ?B # conversion
1188   // <operator-name> ::= ?C # ->
1189   case OO_Arrow: Out << "?C"; break;
1190   // <operator-name> ::= ?D # *
1191   case OO_Star: Out << "?D"; break;
1192   // <operator-name> ::= ?E # ++
1193   case OO_PlusPlus: Out << "?E"; break;
1194   // <operator-name> ::= ?F # --
1195   case OO_MinusMinus: Out << "?F"; break;
1196   // <operator-name> ::= ?G # -
1197   case OO_Minus: Out << "?G"; break;
1198   // <operator-name> ::= ?H # +
1199   case OO_Plus: Out << "?H"; break;
1200   // <operator-name> ::= ?I # &
1201   case OO_Amp: Out << "?I"; break;
1202   // <operator-name> ::= ?J # ->*
1203   case OO_ArrowStar: Out << "?J"; break;
1204   // <operator-name> ::= ?K # /
1205   case OO_Slash: Out << "?K"; break;
1206   // <operator-name> ::= ?L # %
1207   case OO_Percent: Out << "?L"; break;
1208   // <operator-name> ::= ?M # <
1209   case OO_Less: Out << "?M"; break;
1210   // <operator-name> ::= ?N # <=
1211   case OO_LessEqual: Out << "?N"; break;
1212   // <operator-name> ::= ?O # >
1213   case OO_Greater: Out << "?O"; break;
1214   // <operator-name> ::= ?P # >=
1215   case OO_GreaterEqual: Out << "?P"; break;
1216   // <operator-name> ::= ?Q # ,
1217   case OO_Comma: Out << "?Q"; break;
1218   // <operator-name> ::= ?R # ()
1219   case OO_Call: Out << "?R"; break;
1220   // <operator-name> ::= ?S # ~
1221   case OO_Tilde: Out << "?S"; break;
1222   // <operator-name> ::= ?T # ^
1223   case OO_Caret: Out << "?T"; break;
1224   // <operator-name> ::= ?U # |
1225   case OO_Pipe: Out << "?U"; break;
1226   // <operator-name> ::= ?V # &&
1227   case OO_AmpAmp: Out << "?V"; break;
1228   // <operator-name> ::= ?W # ||
1229   case OO_PipePipe: Out << "?W"; break;
1230   // <operator-name> ::= ?X # *=
1231   case OO_StarEqual: Out << "?X"; break;
1232   // <operator-name> ::= ?Y # +=
1233   case OO_PlusEqual: Out << "?Y"; break;
1234   // <operator-name> ::= ?Z # -=
1235   case OO_MinusEqual: Out << "?Z"; break;
1236   // <operator-name> ::= ?_0 # /=
1237   case OO_SlashEqual: Out << "?_0"; break;
1238   // <operator-name> ::= ?_1 # %=
1239   case OO_PercentEqual: Out << "?_1"; break;
1240   // <operator-name> ::= ?_2 # >>=
1241   case OO_GreaterGreaterEqual: Out << "?_2"; break;
1242   // <operator-name> ::= ?_3 # <<=
1243   case OO_LessLessEqual: Out << "?_3"; break;
1244   // <operator-name> ::= ?_4 # &=
1245   case OO_AmpEqual: Out << "?_4"; break;
1246   // <operator-name> ::= ?_5 # |=
1247   case OO_PipeEqual: Out << "?_5"; break;
1248   // <operator-name> ::= ?_6 # ^=
1249   case OO_CaretEqual: Out << "?_6"; break;
1250   //                     ?_7 # vftable
1251   //                     ?_8 # vbtable
1252   //                     ?_9 # vcall
1253   //                     ?_A # typeof
1254   //                     ?_B # local static guard
1255   //                     ?_C # string
1256   //                     ?_D # vbase destructor
1257   //                     ?_E # vector deleting destructor
1258   //                     ?_F # default constructor closure
1259   //                     ?_G # scalar deleting destructor
1260   //                     ?_H # vector constructor iterator
1261   //                     ?_I # vector destructor iterator
1262   //                     ?_J # vector vbase constructor iterator
1263   //                     ?_K # virtual displacement map
1264   //                     ?_L # eh vector constructor iterator
1265   //                     ?_M # eh vector destructor iterator
1266   //                     ?_N # eh vector vbase constructor iterator
1267   //                     ?_O # copy constructor closure
1268   //                     ?_P<name> # udt returning <name>
1269   //                     ?_Q # <unknown>
1270   //                     ?_R0 # RTTI Type Descriptor
1271   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1272   //                     ?_R2 # RTTI Base Class Array
1273   //                     ?_R3 # RTTI Class Hierarchy Descriptor
1274   //                     ?_R4 # RTTI Complete Object Locator
1275   //                     ?_S # local vftable
1276   //                     ?_T # local vftable constructor closure
1277   // <operator-name> ::= ?_U # new[]
1278   case OO_Array_New: Out << "?_U"; break;
1279   // <operator-name> ::= ?_V # delete[]
1280   case OO_Array_Delete: Out << "?_V"; break;
1281   // <operator-name> ::= ?__L # co_await
1282   case OO_Coawait: Out << "?__L"; break;
1283   // <operator-name> ::= ?__M # <=>
1284   case OO_Spaceship: Out << "?__M"; break;
1285 
1286   case OO_Conditional: {
1287     DiagnosticsEngine &Diags = Context.getDiags();
1288     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1289       "cannot mangle this conditional operator yet");
1290     Diags.Report(Loc, DiagID);
1291     break;
1292   }
1293 
1294   case OO_None:
1295   case NUM_OVERLOADED_OPERATORS:
1296     llvm_unreachable("Not an overloaded operator");
1297   }
1298 }
1299 
1300 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1301   // <source name> ::= <identifier> @
1302   BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
1303   if (Found == NameBackReferences.end()) {
1304     if (NameBackReferences.size() < 10)
1305       NameBackReferences.push_back(Name);
1306     Out << Name << '@';
1307   } else {
1308     Out << (Found - NameBackReferences.begin());
1309   }
1310 }
1311 
1312 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1313   Context.mangleObjCMethodName(MD, Out);
1314 }
1315 
1316 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1317     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1318   // <template-name> ::= <unscoped-template-name> <template-args>
1319   //                 ::= <substitution>
1320   // Always start with the unqualified name.
1321 
1322   // Templates have their own context for back references.
1323   ArgBackRefMap OuterFunArgsContext;
1324   ArgBackRefMap OuterTemplateArgsContext;
1325   BackRefVec OuterTemplateContext;
1326   PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1327   NameBackReferences.swap(OuterTemplateContext);
1328   FunArgBackReferences.swap(OuterFunArgsContext);
1329   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1330   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1331 
1332   mangleUnscopedTemplateName(TD);
1333   mangleTemplateArgs(TD, TemplateArgs);
1334 
1335   // Restore the previous back reference contexts.
1336   NameBackReferences.swap(OuterTemplateContext);
1337   FunArgBackReferences.swap(OuterFunArgsContext);
1338   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1339   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1340 }
1341 
1342 void
1343 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1344   // <unscoped-template-name> ::= ?$ <unqualified-name>
1345   Out << "?$";
1346   mangleUnqualifiedName(TD);
1347 }
1348 
1349 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1350                                                    bool IsBoolean) {
1351   // <integer-literal> ::= $0 <number>
1352   Out << "$0";
1353   // Make sure booleans are encoded as 0/1.
1354   if (IsBoolean && Value.getBoolValue())
1355     mangleNumber(1);
1356   else if (Value.isSigned())
1357     mangleNumber(Value.getSExtValue());
1358   else
1359     mangleNumber(Value.getZExtValue());
1360 }
1361 
1362 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1363   // See if this is a constant expression.
1364   llvm::APSInt Value;
1365   if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1366     mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1367     return;
1368   }
1369 
1370   // Look through no-op casts like template parameter substitutions.
1371   E = E->IgnoreParenNoopCasts(Context.getASTContext());
1372 
1373   const CXXUuidofExpr *UE = nullptr;
1374   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1375     if (UO->getOpcode() == UO_AddrOf)
1376       UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1377   } else
1378     UE = dyn_cast<CXXUuidofExpr>(E);
1379 
1380   if (UE) {
1381     // If we had to peek through an address-of operator, treat this like we are
1382     // dealing with a pointer type.  Otherwise, treat it like a const reference.
1383     //
1384     // N.B. This matches up with the handling of TemplateArgument::Declaration
1385     // in mangleTemplateArg
1386     if (UE == E)
1387       Out << "$E?";
1388     else
1389       Out << "$1?";
1390 
1391     // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1392     // const __s_GUID _GUID_{lower case UUID with underscores}
1393     StringRef Uuid = UE->getUuidStr();
1394     std::string Name = "_GUID_" + Uuid.lower();
1395     std::replace(Name.begin(), Name.end(), '-', '_');
1396 
1397     mangleSourceName(Name);
1398     // Terminate the whole name with an '@'.
1399     Out << '@';
1400     // It's a global variable.
1401     Out << '3';
1402     // It's a struct called __s_GUID.
1403     mangleArtificialTagType(TTK_Struct, "__s_GUID");
1404     // It's const.
1405     Out << 'B';
1406     return;
1407   }
1408 
1409   // As bad as this diagnostic is, it's better than crashing.
1410   DiagnosticsEngine &Diags = Context.getDiags();
1411   unsigned DiagID = Diags.getCustomDiagID(
1412       DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1413   Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1414                                         << E->getSourceRange();
1415 }
1416 
1417 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1418     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1419   // <template-args> ::= <template-arg>+
1420   const TemplateParameterList *TPL = TD->getTemplateParameters();
1421   assert(TPL->size() == TemplateArgs.size() &&
1422          "size mismatch between args and parms!");
1423 
1424   for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1425     const TemplateArgument &TA = TemplateArgs[i];
1426 
1427     // Separate consecutive packs by $$Z.
1428     if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1429         TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1430       Out << "$$Z";
1431 
1432     mangleTemplateArg(TD, TA, TPL->getParam(i));
1433   }
1434 }
1435 
1436 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1437                                                 const TemplateArgument &TA,
1438                                                 const NamedDecl *Parm) {
1439   // <template-arg> ::= <type>
1440   //                ::= <integer-literal>
1441   //                ::= <member-data-pointer>
1442   //                ::= <member-function-pointer>
1443   //                ::= $E? <name> <type-encoding>
1444   //                ::= $1? <name> <type-encoding>
1445   //                ::= $0A@
1446   //                ::= <template-args>
1447 
1448   switch (TA.getKind()) {
1449   case TemplateArgument::Null:
1450     llvm_unreachable("Can't mangle null template arguments!");
1451   case TemplateArgument::TemplateExpansion:
1452     llvm_unreachable("Can't mangle template expansion arguments!");
1453   case TemplateArgument::Type: {
1454     QualType T = TA.getAsType();
1455     mangleType(T, SourceRange(), QMM_Escape);
1456     break;
1457   }
1458   case TemplateArgument::Declaration: {
1459     const NamedDecl *ND = TA.getAsDecl();
1460     if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1461       mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1462                                   ->getMostRecentNonInjectedDecl(),
1463                               cast<ValueDecl>(ND));
1464     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1465       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1466       if (MD && MD->isInstance()) {
1467         mangleMemberFunctionPointer(
1468             MD->getParent()->getMostRecentNonInjectedDecl(), MD);
1469       } else {
1470         Out << "$1?";
1471         mangleName(FD);
1472         mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1473       }
1474     } else {
1475       mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1476     }
1477     break;
1478   }
1479   case TemplateArgument::Integral:
1480     mangleIntegerLiteral(TA.getAsIntegral(),
1481                          TA.getIntegralType()->isBooleanType());
1482     break;
1483   case TemplateArgument::NullPtr: {
1484     QualType T = TA.getNullPtrType();
1485     if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1486       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1487       if (MPT->isMemberFunctionPointerType() &&
1488           !isa<FunctionTemplateDecl>(TD)) {
1489         mangleMemberFunctionPointer(RD, nullptr);
1490         return;
1491       }
1492       if (MPT->isMemberDataPointer()) {
1493         if (!isa<FunctionTemplateDecl>(TD)) {
1494           mangleMemberDataPointer(RD, nullptr);
1495           return;
1496         }
1497         // nullptr data pointers are always represented with a single field
1498         // which is initialized with either 0 or -1.  Why -1?  Well, we need to
1499         // distinguish the case where the data member is at offset zero in the
1500         // record.
1501         // However, we are free to use 0 *if* we would use multiple fields for
1502         // non-nullptr member pointers.
1503         if (!RD->nullFieldOffsetIsZero()) {
1504           mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1505           return;
1506         }
1507       }
1508     }
1509     mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1510     break;
1511   }
1512   case TemplateArgument::Expression:
1513     mangleExpression(TA.getAsExpr());
1514     break;
1515   case TemplateArgument::Pack: {
1516     ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1517     if (TemplateArgs.empty()) {
1518       if (isa<TemplateTypeParmDecl>(Parm) ||
1519           isa<TemplateTemplateParmDecl>(Parm))
1520         // MSVC 2015 changed the mangling for empty expanded template packs,
1521         // use the old mangling for link compatibility for old versions.
1522         Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1523                     LangOptions::MSVC2015)
1524                     ? "$$V"
1525                     : "$$$V");
1526       else if (isa<NonTypeTemplateParmDecl>(Parm))
1527         Out << "$S";
1528       else
1529         llvm_unreachable("unexpected template parameter decl!");
1530     } else {
1531       for (const TemplateArgument &PA : TemplateArgs)
1532         mangleTemplateArg(TD, PA, Parm);
1533     }
1534     break;
1535   }
1536   case TemplateArgument::Template: {
1537     const NamedDecl *ND =
1538         TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1539     if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1540       mangleType(TD);
1541     } else if (isa<TypeAliasDecl>(ND)) {
1542       Out << "$$Y";
1543       mangleName(ND);
1544     } else {
1545       llvm_unreachable("unexpected template template NamedDecl!");
1546     }
1547     break;
1548   }
1549   }
1550 }
1551 
1552 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1553   llvm::SmallString<64> TemplateMangling;
1554   llvm::raw_svector_ostream Stream(TemplateMangling);
1555   MicrosoftCXXNameMangler Extra(Context, Stream);
1556 
1557   Stream << "?$";
1558   Extra.mangleSourceName("Protocol");
1559   Extra.mangleArtificialTagType(TTK_Struct, PD->getName());
1560 
1561   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1562 }
1563 
1564 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1565                                                  Qualifiers Quals,
1566                                                  SourceRange Range) {
1567   llvm::SmallString<64> TemplateMangling;
1568   llvm::raw_svector_ostream Stream(TemplateMangling);
1569   MicrosoftCXXNameMangler Extra(Context, Stream);
1570 
1571   Stream << "?$";
1572   switch (Quals.getObjCLifetime()) {
1573   case Qualifiers::OCL_None:
1574   case Qualifiers::OCL_ExplicitNone:
1575     break;
1576   case Qualifiers::OCL_Autoreleasing:
1577     Extra.mangleSourceName("Autoreleasing");
1578     break;
1579   case Qualifiers::OCL_Strong:
1580     Extra.mangleSourceName("Strong");
1581     break;
1582   case Qualifiers::OCL_Weak:
1583     Extra.mangleSourceName("Weak");
1584     break;
1585   }
1586   Extra.manglePointerCVQualifiers(Quals);
1587   Extra.manglePointerExtQualifiers(Quals, Type);
1588   Extra.mangleType(Type, Range);
1589 
1590   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1591 }
1592 
1593 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
1594                                                    Qualifiers Quals,
1595                                                    SourceRange Range) {
1596   llvm::SmallString<64> TemplateMangling;
1597   llvm::raw_svector_ostream Stream(TemplateMangling);
1598   MicrosoftCXXNameMangler Extra(Context, Stream);
1599 
1600   Stream << "?$";
1601   Extra.mangleSourceName("KindOf");
1602   Extra.mangleType(QualType(T, 0)
1603                        .stripObjCKindOfType(getASTContext())
1604                        ->getAs<ObjCObjectType>(),
1605                    Quals, Range);
1606 
1607   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1608 }
1609 
1610 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1611                                                bool IsMember) {
1612   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1613   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1614   // 'I' means __restrict (32/64-bit).
1615   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1616   // keyword!
1617   // <base-cvr-qualifiers> ::= A  # near
1618   //                       ::= B  # near const
1619   //                       ::= C  # near volatile
1620   //                       ::= D  # near const volatile
1621   //                       ::= E  # far (16-bit)
1622   //                       ::= F  # far const (16-bit)
1623   //                       ::= G  # far volatile (16-bit)
1624   //                       ::= H  # far const volatile (16-bit)
1625   //                       ::= I  # huge (16-bit)
1626   //                       ::= J  # huge const (16-bit)
1627   //                       ::= K  # huge volatile (16-bit)
1628   //                       ::= L  # huge const volatile (16-bit)
1629   //                       ::= M <basis> # based
1630   //                       ::= N <basis> # based const
1631   //                       ::= O <basis> # based volatile
1632   //                       ::= P <basis> # based const volatile
1633   //                       ::= Q  # near member
1634   //                       ::= R  # near const member
1635   //                       ::= S  # near volatile member
1636   //                       ::= T  # near const volatile member
1637   //                       ::= U  # far member (16-bit)
1638   //                       ::= V  # far const member (16-bit)
1639   //                       ::= W  # far volatile member (16-bit)
1640   //                       ::= X  # far const volatile member (16-bit)
1641   //                       ::= Y  # huge member (16-bit)
1642   //                       ::= Z  # huge const member (16-bit)
1643   //                       ::= 0  # huge volatile member (16-bit)
1644   //                       ::= 1  # huge const volatile member (16-bit)
1645   //                       ::= 2 <basis> # based member
1646   //                       ::= 3 <basis> # based const member
1647   //                       ::= 4 <basis> # based volatile member
1648   //                       ::= 5 <basis> # based const volatile member
1649   //                       ::= 6  # near function (pointers only)
1650   //                       ::= 7  # far function (pointers only)
1651   //                       ::= 8  # near method (pointers only)
1652   //                       ::= 9  # far method (pointers only)
1653   //                       ::= _A <basis> # based function (pointers only)
1654   //                       ::= _B <basis> # based function (far?) (pointers only)
1655   //                       ::= _C <basis> # based method (pointers only)
1656   //                       ::= _D <basis> # based method (far?) (pointers only)
1657   //                       ::= _E # block (Clang)
1658   // <basis> ::= 0 # __based(void)
1659   //         ::= 1 # __based(segment)?
1660   //         ::= 2 <name> # __based(name)
1661   //         ::= 3 # ?
1662   //         ::= 4 # ?
1663   //         ::= 5 # not really based
1664   bool HasConst = Quals.hasConst(),
1665        HasVolatile = Quals.hasVolatile();
1666 
1667   if (!IsMember) {
1668     if (HasConst && HasVolatile) {
1669       Out << 'D';
1670     } else if (HasVolatile) {
1671       Out << 'C';
1672     } else if (HasConst) {
1673       Out << 'B';
1674     } else {
1675       Out << 'A';
1676     }
1677   } else {
1678     if (HasConst && HasVolatile) {
1679       Out << 'T';
1680     } else if (HasVolatile) {
1681       Out << 'S';
1682     } else if (HasConst) {
1683       Out << 'R';
1684     } else {
1685       Out << 'Q';
1686     }
1687   }
1688 
1689   // FIXME: For now, just drop all extension qualifiers on the floor.
1690 }
1691 
1692 void
1693 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1694   // <ref-qualifier> ::= G                # lvalue reference
1695   //                 ::= H                # rvalue-reference
1696   switch (RefQualifier) {
1697   case RQ_None:
1698     break;
1699 
1700   case RQ_LValue:
1701     Out << 'G';
1702     break;
1703 
1704   case RQ_RValue:
1705     Out << 'H';
1706     break;
1707   }
1708 }
1709 
1710 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1711                                                          QualType PointeeType) {
1712   if (PointersAre64Bit &&
1713       (PointeeType.isNull() || !PointeeType->isFunctionType()))
1714     Out << 'E';
1715 
1716   if (Quals.hasRestrict())
1717     Out << 'I';
1718 
1719   if (Quals.hasUnaligned() ||
1720       (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
1721     Out << 'F';
1722 }
1723 
1724 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1725   // <pointer-cv-qualifiers> ::= P  # no qualifiers
1726   //                         ::= Q  # const
1727   //                         ::= R  # volatile
1728   //                         ::= S  # const volatile
1729   bool HasConst = Quals.hasConst(),
1730        HasVolatile = Quals.hasVolatile();
1731 
1732   if (HasConst && HasVolatile) {
1733     Out << 'S';
1734   } else if (HasVolatile) {
1735     Out << 'R';
1736   } else if (HasConst) {
1737     Out << 'Q';
1738   } else {
1739     Out << 'P';
1740   }
1741 }
1742 
1743 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
1744                                                          SourceRange Range) {
1745   // MSVC will backreference two canonically equivalent types that have slightly
1746   // different manglings when mangled alone.
1747 
1748   // Decayed types do not match up with non-decayed versions of the same type.
1749   //
1750   // e.g.
1751   // void (*x)(void) will not form a backreference with void x(void)
1752   void *TypePtr;
1753   if (const auto *DT = T->getAs<DecayedType>()) {
1754     QualType OriginalType = DT->getOriginalType();
1755     // All decayed ArrayTypes should be treated identically; as-if they were
1756     // a decayed IncompleteArrayType.
1757     if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1758       OriginalType = getASTContext().getIncompleteArrayType(
1759           AT->getElementType(), AT->getSizeModifier(),
1760           AT->getIndexTypeCVRQualifiers());
1761 
1762     TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1763     // If the original parameter was textually written as an array,
1764     // instead treat the decayed parameter like it's const.
1765     //
1766     // e.g.
1767     // int [] -> int * const
1768     if (OriginalType->isArrayType())
1769       T = T.withConst();
1770   } else {
1771     TypePtr = T.getCanonicalType().getAsOpaquePtr();
1772   }
1773 
1774   ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
1775 
1776   if (Found == FunArgBackReferences.end()) {
1777     size_t OutSizeBefore = Out.tell();
1778 
1779     mangleType(T, Range, QMM_Drop);
1780 
1781     // See if it's worth creating a back reference.
1782     // Only types longer than 1 character are considered
1783     // and only 10 back references slots are available:
1784     bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1785     if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
1786       size_t Size = FunArgBackReferences.size();
1787       FunArgBackReferences[TypePtr] = Size;
1788     }
1789   } else {
1790     Out << Found->second;
1791   }
1792 }
1793 
1794 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1795     const PassObjectSizeAttr *POSA) {
1796   int Type = POSA->getType();
1797   bool Dynamic = POSA->isDynamic();
1798 
1799   auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
1800   auto *TypePtr = (const void *)&*Iter;
1801   ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
1802 
1803   if (Found == FunArgBackReferences.end()) {
1804     std::string Name =
1805         Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
1806     mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});
1807 
1808     if (FunArgBackReferences.size() < 10) {
1809       size_t Size = FunArgBackReferences.size();
1810       FunArgBackReferences[TypePtr] = Size;
1811     }
1812   } else {
1813     Out << Found->second;
1814   }
1815 }
1816 
1817 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
1818                                                      Qualifiers Quals,
1819                                                      SourceRange Range) {
1820   // Address space is mangled as an unqualified templated type in the __clang
1821   // namespace. The demangled version of this is:
1822   // In the case of a language specific address space:
1823   // __clang::struct _AS[language_addr_space]<Type>
1824   // where:
1825   //  <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
1826   //    <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
1827   //                                "private"| "generic" ]
1828   //    <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1829   //    Note that the above were chosen to match the Itanium mangling for this.
1830   //
1831   // In the case of a non-language specific address space:
1832   //  __clang::struct _AS<TargetAS, Type>
1833   assert(Quals.hasAddressSpace() && "Not valid without address space");
1834   llvm::SmallString<32> ASMangling;
1835   llvm::raw_svector_ostream Stream(ASMangling);
1836   MicrosoftCXXNameMangler Extra(Context, Stream);
1837   Stream << "?$";
1838 
1839   LangAS AS = Quals.getAddressSpace();
1840   if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1841     unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1842     Extra.mangleSourceName("_AS");
1843     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS),
1844                                /*IsBoolean*/ false);
1845   } else {
1846     switch (AS) {
1847     default:
1848       llvm_unreachable("Not a language specific address space");
1849     case LangAS::opencl_global:
1850       Extra.mangleSourceName("_ASCLglobal");
1851       break;
1852     case LangAS::opencl_local:
1853       Extra.mangleSourceName("_ASCLlocal");
1854       break;
1855     case LangAS::opencl_constant:
1856       Extra.mangleSourceName("_ASCLconstant");
1857       break;
1858     case LangAS::opencl_private:
1859       Extra.mangleSourceName("_ASCLprivate");
1860       break;
1861     case LangAS::opencl_generic:
1862       Extra.mangleSourceName("_ASCLgeneric");
1863       break;
1864     case LangAS::cuda_device:
1865       Extra.mangleSourceName("_ASCUdevice");
1866       break;
1867     case LangAS::cuda_constant:
1868       Extra.mangleSourceName("_ASCUconstant");
1869       break;
1870     case LangAS::cuda_shared:
1871       Extra.mangleSourceName("_ASCUshared");
1872       break;
1873     }
1874   }
1875 
1876   Extra.mangleType(T, Range, QMM_Escape);
1877   mangleQualifiers(Qualifiers(), false);
1878   mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
1879 }
1880 
1881 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1882                                          QualifierMangleMode QMM) {
1883   // Don't use the canonical types.  MSVC includes things like 'const' on
1884   // pointer arguments to function pointers that canonicalization strips away.
1885   T = T.getDesugaredType(getASTContext());
1886   Qualifiers Quals = T.getLocalQualifiers();
1887 
1888   if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1889     // If there were any Quals, getAsArrayType() pushed them onto the array
1890     // element type.
1891     if (QMM == QMM_Mangle)
1892       Out << 'A';
1893     else if (QMM == QMM_Escape || QMM == QMM_Result)
1894       Out << "$$B";
1895     mangleArrayType(AT);
1896     return;
1897   }
1898 
1899   bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1900                    T->isReferenceType() || T->isBlockPointerType();
1901 
1902   switch (QMM) {
1903   case QMM_Drop:
1904     if (Quals.hasObjCLifetime())
1905       Quals = Quals.withoutObjCLifetime();
1906     break;
1907   case QMM_Mangle:
1908     if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1909       Out << '6';
1910       mangleFunctionType(FT);
1911       return;
1912     }
1913     mangleQualifiers(Quals, false);
1914     break;
1915   case QMM_Escape:
1916     if (!IsPointer && Quals) {
1917       Out << "$$C";
1918       mangleQualifiers(Quals, false);
1919     }
1920     break;
1921   case QMM_Result:
1922     // Presence of __unaligned qualifier shouldn't affect mangling here.
1923     Quals.removeUnaligned();
1924     if (Quals.hasObjCLifetime())
1925       Quals = Quals.withoutObjCLifetime();
1926     if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
1927       Out << '?';
1928       mangleQualifiers(Quals, false);
1929     }
1930     break;
1931   }
1932 
1933   const Type *ty = T.getTypePtr();
1934 
1935   switch (ty->getTypeClass()) {
1936 #define ABSTRACT_TYPE(CLASS, PARENT)
1937 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1938   case Type::CLASS: \
1939     llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1940     return;
1941 #define TYPE(CLASS, PARENT) \
1942   case Type::CLASS: \
1943     mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1944     break;
1945 #include "clang/AST/TypeNodes.def"
1946 #undef ABSTRACT_TYPE
1947 #undef NON_CANONICAL_TYPE
1948 #undef TYPE
1949   }
1950 }
1951 
1952 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1953                                          SourceRange Range) {
1954   //  <type>         ::= <builtin-type>
1955   //  <builtin-type> ::= X  # void
1956   //                 ::= C  # signed char
1957   //                 ::= D  # char
1958   //                 ::= E  # unsigned char
1959   //                 ::= F  # short
1960   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
1961   //                 ::= H  # int
1962   //                 ::= I  # unsigned int
1963   //                 ::= J  # long
1964   //                 ::= K  # unsigned long
1965   //                     L  # <none>
1966   //                 ::= M  # float
1967   //                 ::= N  # double
1968   //                 ::= O  # long double (__float80 is mangled differently)
1969   //                 ::= _J # long long, __int64
1970   //                 ::= _K # unsigned long long, __int64
1971   //                 ::= _L # __int128
1972   //                 ::= _M # unsigned __int128
1973   //                 ::= _N # bool
1974   //                     _O # <array in parameter>
1975   //                 ::= _Q # char8_t
1976   //                 ::= _S # char16_t
1977   //                 ::= _T # __float80 (Intel)
1978   //                 ::= _U # char32_t
1979   //                 ::= _W # wchar_t
1980   //                 ::= _Z # __float80 (Digital Mars)
1981   switch (T->getKind()) {
1982   case BuiltinType::Void:
1983     Out << 'X';
1984     break;
1985   case BuiltinType::SChar:
1986     Out << 'C';
1987     break;
1988   case BuiltinType::Char_U:
1989   case BuiltinType::Char_S:
1990     Out << 'D';
1991     break;
1992   case BuiltinType::UChar:
1993     Out << 'E';
1994     break;
1995   case BuiltinType::Short:
1996     Out << 'F';
1997     break;
1998   case BuiltinType::UShort:
1999     Out << 'G';
2000     break;
2001   case BuiltinType::Int:
2002     Out << 'H';
2003     break;
2004   case BuiltinType::UInt:
2005     Out << 'I';
2006     break;
2007   case BuiltinType::Long:
2008     Out << 'J';
2009     break;
2010   case BuiltinType::ULong:
2011     Out << 'K';
2012     break;
2013   case BuiltinType::Float:
2014     Out << 'M';
2015     break;
2016   case BuiltinType::Double:
2017     Out << 'N';
2018     break;
2019   // TODO: Determine size and mangle accordingly
2020   case BuiltinType::LongDouble:
2021     Out << 'O';
2022     break;
2023   case BuiltinType::LongLong:
2024     Out << "_J";
2025     break;
2026   case BuiltinType::ULongLong:
2027     Out << "_K";
2028     break;
2029   case BuiltinType::Int128:
2030     Out << "_L";
2031     break;
2032   case BuiltinType::UInt128:
2033     Out << "_M";
2034     break;
2035   case BuiltinType::Bool:
2036     Out << "_N";
2037     break;
2038   case BuiltinType::Char8:
2039     Out << "_Q";
2040     break;
2041   case BuiltinType::Char16:
2042     Out << "_S";
2043     break;
2044   case BuiltinType::Char32:
2045     Out << "_U";
2046     break;
2047   case BuiltinType::WChar_S:
2048   case BuiltinType::WChar_U:
2049     Out << "_W";
2050     break;
2051 
2052 #define BUILTIN_TYPE(Id, SingletonId)
2053 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2054   case BuiltinType::Id:
2055 #include "clang/AST/BuiltinTypes.def"
2056   case BuiltinType::Dependent:
2057     llvm_unreachable("placeholder types shouldn't get to name mangling");
2058 
2059   case BuiltinType::ObjCId:
2060     mangleArtificialTagType(TTK_Struct, "objc_object");
2061     break;
2062   case BuiltinType::ObjCClass:
2063     mangleArtificialTagType(TTK_Struct, "objc_class");
2064     break;
2065   case BuiltinType::ObjCSel:
2066     mangleArtificialTagType(TTK_Struct, "objc_selector");
2067     break;
2068 
2069 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2070   case BuiltinType::Id: \
2071     Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2072     break;
2073 #include "clang/Basic/OpenCLImageTypes.def"
2074   case BuiltinType::OCLSampler:
2075     Out << "PA";
2076     mangleArtificialTagType(TTK_Struct, "ocl_sampler");
2077     break;
2078   case BuiltinType::OCLEvent:
2079     Out << "PA";
2080     mangleArtificialTagType(TTK_Struct, "ocl_event");
2081     break;
2082   case BuiltinType::OCLClkEvent:
2083     Out << "PA";
2084     mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
2085     break;
2086   case BuiltinType::OCLQueue:
2087     Out << "PA";
2088     mangleArtificialTagType(TTK_Struct, "ocl_queue");
2089     break;
2090   case BuiltinType::OCLReserveID:
2091     Out << "PA";
2092     mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
2093     break;
2094 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2095   case BuiltinType::Id: \
2096     mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
2097     break;
2098 #include "clang/Basic/OpenCLExtensionTypes.def"
2099 
2100   case BuiltinType::NullPtr:
2101     Out << "$$T";
2102     break;
2103 
2104   case BuiltinType::Float16:
2105     mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
2106     break;
2107 
2108   case BuiltinType::Half:
2109     mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
2110     break;
2111 
2112   case BuiltinType::ShortAccum:
2113   case BuiltinType::Accum:
2114   case BuiltinType::LongAccum:
2115   case BuiltinType::UShortAccum:
2116   case BuiltinType::UAccum:
2117   case BuiltinType::ULongAccum:
2118   case BuiltinType::ShortFract:
2119   case BuiltinType::Fract:
2120   case BuiltinType::LongFract:
2121   case BuiltinType::UShortFract:
2122   case BuiltinType::UFract:
2123   case BuiltinType::ULongFract:
2124   case BuiltinType::SatShortAccum:
2125   case BuiltinType::SatAccum:
2126   case BuiltinType::SatLongAccum:
2127   case BuiltinType::SatUShortAccum:
2128   case BuiltinType::SatUAccum:
2129   case BuiltinType::SatULongAccum:
2130   case BuiltinType::SatShortFract:
2131   case BuiltinType::SatFract:
2132   case BuiltinType::SatLongFract:
2133   case BuiltinType::SatUShortFract:
2134   case BuiltinType::SatUFract:
2135   case BuiltinType::SatULongFract:
2136   case BuiltinType::Float128: {
2137     DiagnosticsEngine &Diags = Context.getDiags();
2138     unsigned DiagID = Diags.getCustomDiagID(
2139         DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2140     Diags.Report(Range.getBegin(), DiagID)
2141         << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2142     break;
2143   }
2144   }
2145 }
2146 
2147 // <type>          ::= <function-type>
2148 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2149                                          SourceRange) {
2150   // Structors only appear in decls, so at this point we know it's not a
2151   // structor type.
2152   // FIXME: This may not be lambda-friendly.
2153   if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2154     Out << "$$A8@@";
2155     mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2156   } else {
2157     Out << "$$A6";
2158     mangleFunctionType(T);
2159   }
2160 }
2161 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2162                                          Qualifiers, SourceRange) {
2163   Out << "$$A6";
2164   mangleFunctionType(T);
2165 }
2166 
2167 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2168                                                  const FunctionDecl *D,
2169                                                  bool ForceThisQuals,
2170                                                  bool MangleExceptionSpec) {
2171   // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2172   //                     <return-type> <argument-list> <throw-spec>
2173   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2174 
2175   SourceRange Range;
2176   if (D) Range = D->getSourceRange();
2177 
2178   bool IsInLambda = false;
2179   bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2180   CallingConv CC = T->getCallConv();
2181   if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2182     if (MD->getParent()->isLambda())
2183       IsInLambda = true;
2184     if (MD->isInstance())
2185       HasThisQuals = true;
2186     if (isa<CXXDestructorDecl>(MD)) {
2187       IsStructor = true;
2188     } else if (isa<CXXConstructorDecl>(MD)) {
2189       IsStructor = true;
2190       IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2191                        StructorType == Ctor_DefaultClosure) &&
2192                       isStructorDecl(MD);
2193       if (IsCtorClosure)
2194         CC = getASTContext().getDefaultCallingConvention(
2195             /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2196     }
2197   }
2198 
2199   // If this is a C++ instance method, mangle the CVR qualifiers for the
2200   // this pointer.
2201   if (HasThisQuals) {
2202     Qualifiers Quals = Proto->getMethodQuals();
2203     manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2204     mangleRefQualifier(Proto->getRefQualifier());
2205     mangleQualifiers(Quals, /*IsMember=*/false);
2206   }
2207 
2208   mangleCallingConvention(CC);
2209 
2210   // <return-type> ::= <type>
2211   //               ::= @ # structors (they have no declared return type)
2212   if (IsStructor) {
2213     if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2214       // The scalar deleting destructor takes an extra int argument which is not
2215       // reflected in the AST.
2216       if (StructorType == Dtor_Deleting) {
2217         Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2218         return;
2219       }
2220       // The vbase destructor returns void which is not reflected in the AST.
2221       if (StructorType == Dtor_Complete) {
2222         Out << "XXZ";
2223         return;
2224       }
2225     }
2226     if (IsCtorClosure) {
2227       // Default constructor closure and copy constructor closure both return
2228       // void.
2229       Out << 'X';
2230 
2231       if (StructorType == Ctor_DefaultClosure) {
2232         // Default constructor closure always has no arguments.
2233         Out << 'X';
2234       } else if (StructorType == Ctor_CopyingClosure) {
2235         // Copy constructor closure always takes an unqualified reference.
2236         mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
2237                                        Proto->getParamType(0)
2238                                            ->getAs<LValueReferenceType>()
2239                                            ->getPointeeType(),
2240                                        /*SpelledAsLValue=*/true),
2241                                    Range);
2242         Out << '@';
2243       } else {
2244         llvm_unreachable("unexpected constructor closure!");
2245       }
2246       Out << 'Z';
2247       return;
2248     }
2249     Out << '@';
2250   } else {
2251     QualType ResultType = T->getReturnType();
2252     if (const auto *AT =
2253             dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
2254       Out << '?';
2255       mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2256       Out << '?';
2257       assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2258              "shouldn't need to mangle __auto_type!");
2259       mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2260       Out << '@';
2261     } else if (IsInLambda) {
2262       Out << '@';
2263     } else {
2264       if (ResultType->isVoidType())
2265         ResultType = ResultType.getUnqualifiedType();
2266       mangleType(ResultType, Range, QMM_Result);
2267     }
2268   }
2269 
2270   // <argument-list> ::= X # void
2271   //                 ::= <type>+ @
2272   //                 ::= <type>* Z # varargs
2273   if (!Proto) {
2274     // Function types without prototypes can arise when mangling a function type
2275     // within an overloadable function in C. We mangle these as the absence of
2276     // any parameter types (not even an empty parameter list).
2277     Out << '@';
2278   } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2279     Out << 'X';
2280   } else {
2281     // Happens for function pointer type arguments for example.
2282     for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2283       mangleFunctionArgumentType(Proto->getParamType(I), Range);
2284       // Mangle each pass_object_size parameter as if it's a parameter of enum
2285       // type passed directly after the parameter with the pass_object_size
2286       // attribute. The aforementioned enum's name is __pass_object_size, and we
2287       // pretend it resides in a top-level namespace called __clang.
2288       //
2289       // FIXME: Is there a defined extension notation for the MS ABI, or is it
2290       // necessary to just cross our fingers and hope this type+namespace
2291       // combination doesn't conflict with anything?
2292       if (D)
2293         if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2294           manglePassObjectSizeArg(P);
2295     }
2296     // <builtin-type>      ::= Z  # ellipsis
2297     if (Proto->isVariadic())
2298       Out << 'Z';
2299     else
2300       Out << '@';
2301   }
2302 
2303   if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
2304       getASTContext().getLangOpts().isCompatibleWithMSVC(
2305           LangOptions::MSVC2017_5))
2306     mangleThrowSpecification(Proto);
2307   else
2308     Out << 'Z';
2309 }
2310 
2311 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2312   // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
2313   //                                            # pointer. in 64-bit mode *all*
2314   //                                            # 'this' pointers are 64-bit.
2315   //                   ::= <global-function>
2316   // <member-function> ::= A # private: near
2317   //                   ::= B # private: far
2318   //                   ::= C # private: static near
2319   //                   ::= D # private: static far
2320   //                   ::= E # private: virtual near
2321   //                   ::= F # private: virtual far
2322   //                   ::= I # protected: near
2323   //                   ::= J # protected: far
2324   //                   ::= K # protected: static near
2325   //                   ::= L # protected: static far
2326   //                   ::= M # protected: virtual near
2327   //                   ::= N # protected: virtual far
2328   //                   ::= Q # public: near
2329   //                   ::= R # public: far
2330   //                   ::= S # public: static near
2331   //                   ::= T # public: static far
2332   //                   ::= U # public: virtual near
2333   //                   ::= V # public: virtual far
2334   // <global-function> ::= Y # global near
2335   //                   ::= Z # global far
2336   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2337     bool IsVirtual = MD->isVirtual();
2338     // When mangling vbase destructor variants, ignore whether or not the
2339     // underlying destructor was defined to be virtual.
2340     if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2341         StructorType == Dtor_Complete) {
2342       IsVirtual = false;
2343     }
2344     switch (MD->getAccess()) {
2345       case AS_none:
2346         llvm_unreachable("Unsupported access specifier");
2347       case AS_private:
2348         if (MD->isStatic())
2349           Out << 'C';
2350         else if (IsVirtual)
2351           Out << 'E';
2352         else
2353           Out << 'A';
2354         break;
2355       case AS_protected:
2356         if (MD->isStatic())
2357           Out << 'K';
2358         else if (IsVirtual)
2359           Out << 'M';
2360         else
2361           Out << 'I';
2362         break;
2363       case AS_public:
2364         if (MD->isStatic())
2365           Out << 'S';
2366         else if (IsVirtual)
2367           Out << 'U';
2368         else
2369           Out << 'Q';
2370     }
2371   } else {
2372     Out << 'Y';
2373   }
2374 }
2375 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2376   // <calling-convention> ::= A # __cdecl
2377   //                      ::= B # __export __cdecl
2378   //                      ::= C # __pascal
2379   //                      ::= D # __export __pascal
2380   //                      ::= E # __thiscall
2381   //                      ::= F # __export __thiscall
2382   //                      ::= G # __stdcall
2383   //                      ::= H # __export __stdcall
2384   //                      ::= I # __fastcall
2385   //                      ::= J # __export __fastcall
2386   //                      ::= Q # __vectorcall
2387   //                      ::= w # __regcall
2388   // The 'export' calling conventions are from a bygone era
2389   // (*cough*Win16*cough*) when functions were declared for export with
2390   // that keyword. (It didn't actually export them, it just made them so
2391   // that they could be in a DLL and somebody from another module could call
2392   // them.)
2393 
2394   switch (CC) {
2395     default:
2396       llvm_unreachable("Unsupported CC for mangling");
2397     case CC_Win64:
2398     case CC_X86_64SysV:
2399     case CC_C: Out << 'A'; break;
2400     case CC_X86Pascal: Out << 'C'; break;
2401     case CC_X86ThisCall: Out << 'E'; break;
2402     case CC_X86StdCall: Out << 'G'; break;
2403     case CC_X86FastCall: Out << 'I'; break;
2404     case CC_X86VectorCall: Out << 'Q'; break;
2405     case CC_Swift: Out << 'S'; break;
2406     case CC_PreserveMost: Out << 'U'; break;
2407     case CC_X86RegCall: Out << 'w'; break;
2408   }
2409 }
2410 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2411   mangleCallingConvention(T->getCallConv());
2412 }
2413 
2414 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2415                                                 const FunctionProtoType *FT) {
2416   // <throw-spec> ::= Z # (default)
2417   //              ::= _E # noexcept
2418   if (FT->canThrow())
2419     Out << 'Z';
2420   else
2421     Out << "_E";
2422 }
2423 
2424 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2425                                          Qualifiers, SourceRange Range) {
2426   // Probably should be mangled as a template instantiation; need to see what
2427   // VC does first.
2428   DiagnosticsEngine &Diags = Context.getDiags();
2429   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2430     "cannot mangle this unresolved dependent type yet");
2431   Diags.Report(Range.getBegin(), DiagID)
2432     << Range;
2433 }
2434 
2435 // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2436 // <union-type>  ::= T <name>
2437 // <struct-type> ::= U <name>
2438 // <class-type>  ::= V <name>
2439 // <enum-type>   ::= W4 <name>
2440 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2441   switch (TTK) {
2442     case TTK_Union:
2443       Out << 'T';
2444       break;
2445     case TTK_Struct:
2446     case TTK_Interface:
2447       Out << 'U';
2448       break;
2449     case TTK_Class:
2450       Out << 'V';
2451       break;
2452     case TTK_Enum:
2453       Out << "W4";
2454       break;
2455   }
2456 }
2457 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2458                                          SourceRange) {
2459   mangleType(cast<TagType>(T)->getDecl());
2460 }
2461 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2462                                          SourceRange) {
2463   mangleType(cast<TagType>(T)->getDecl());
2464 }
2465 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2466   mangleTagTypeKind(TD->getTagKind());
2467   mangleName(TD);
2468 }
2469 
2470 // If you add a call to this, consider updating isArtificialTagType() too.
2471 void MicrosoftCXXNameMangler::mangleArtificialTagType(
2472     TagTypeKind TK, StringRef UnqualifiedName,
2473     ArrayRef<StringRef> NestedNames) {
2474   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2475   mangleTagTypeKind(TK);
2476 
2477   // Always start with the unqualified name.
2478   mangleSourceName(UnqualifiedName);
2479 
2480   for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2481     mangleSourceName(*I);
2482 
2483   // Terminate the whole name with an '@'.
2484   Out << '@';
2485 }
2486 
2487 // <type>       ::= <array-type>
2488 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2489 //                  [Y <dimension-count> <dimension>+]
2490 //                  <element-type> # as global, E is never required
2491 // It's supposed to be the other way around, but for some strange reason, it
2492 // isn't. Today this behavior is retained for the sole purpose of backwards
2493 // compatibility.
2494 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2495   // This isn't a recursive mangling, so now we have to do it all in this
2496   // one call.
2497   manglePointerCVQualifiers(T->getElementType().getQualifiers());
2498   mangleType(T->getElementType(), SourceRange());
2499 }
2500 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2501                                          SourceRange) {
2502   llvm_unreachable("Should have been special cased");
2503 }
2504 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2505                                          SourceRange) {
2506   llvm_unreachable("Should have been special cased");
2507 }
2508 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2509                                          Qualifiers, SourceRange) {
2510   llvm_unreachable("Should have been special cased");
2511 }
2512 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2513                                          Qualifiers, SourceRange) {
2514   llvm_unreachable("Should have been special cased");
2515 }
2516 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2517   QualType ElementTy(T, 0);
2518   SmallVector<llvm::APInt, 3> Dimensions;
2519   for (;;) {
2520     if (ElementTy->isConstantArrayType()) {
2521       const ConstantArrayType *CAT =
2522           getASTContext().getAsConstantArrayType(ElementTy);
2523       Dimensions.push_back(CAT->getSize());
2524       ElementTy = CAT->getElementType();
2525     } else if (ElementTy->isIncompleteArrayType()) {
2526       const IncompleteArrayType *IAT =
2527           getASTContext().getAsIncompleteArrayType(ElementTy);
2528       Dimensions.push_back(llvm::APInt(32, 0));
2529       ElementTy = IAT->getElementType();
2530     } else if (ElementTy->isVariableArrayType()) {
2531       const VariableArrayType *VAT =
2532         getASTContext().getAsVariableArrayType(ElementTy);
2533       Dimensions.push_back(llvm::APInt(32, 0));
2534       ElementTy = VAT->getElementType();
2535     } else if (ElementTy->isDependentSizedArrayType()) {
2536       // The dependent expression has to be folded into a constant (TODO).
2537       const DependentSizedArrayType *DSAT =
2538         getASTContext().getAsDependentSizedArrayType(ElementTy);
2539       DiagnosticsEngine &Diags = Context.getDiags();
2540       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2541         "cannot mangle this dependent-length array yet");
2542       Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2543         << DSAT->getBracketsRange();
2544       return;
2545     } else {
2546       break;
2547     }
2548   }
2549   Out << 'Y';
2550   // <dimension-count> ::= <number> # number of extra dimensions
2551   mangleNumber(Dimensions.size());
2552   for (const llvm::APInt &Dimension : Dimensions)
2553     mangleNumber(Dimension.getLimitedValue());
2554   mangleType(ElementTy, SourceRange(), QMM_Escape);
2555 }
2556 
2557 // <type>                   ::= <pointer-to-member-type>
2558 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2559 //                                                          <class name> <type>
2560 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2561                                          Qualifiers Quals, SourceRange Range) {
2562   QualType PointeeType = T->getPointeeType();
2563   manglePointerCVQualifiers(Quals);
2564   manglePointerExtQualifiers(Quals, PointeeType);
2565   if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2566     Out << '8';
2567     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2568     mangleFunctionType(FPT, nullptr, true);
2569   } else {
2570     mangleQualifiers(PointeeType.getQualifiers(), true);
2571     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2572     mangleType(PointeeType, Range, QMM_Drop);
2573   }
2574 }
2575 
2576 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2577                                          Qualifiers, SourceRange Range) {
2578   DiagnosticsEngine &Diags = Context.getDiags();
2579   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2580     "cannot mangle this template type parameter type yet");
2581   Diags.Report(Range.getBegin(), DiagID)
2582     << Range;
2583 }
2584 
2585 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2586                                          Qualifiers, SourceRange Range) {
2587   DiagnosticsEngine &Diags = Context.getDiags();
2588   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2589     "cannot mangle this substituted parameter pack yet");
2590   Diags.Report(Range.getBegin(), DiagID)
2591     << Range;
2592 }
2593 
2594 // <type> ::= <pointer-type>
2595 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2596 //                       # the E is required for 64-bit non-static pointers
2597 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2598                                          SourceRange Range) {
2599   QualType PointeeType = T->getPointeeType();
2600   manglePointerCVQualifiers(Quals);
2601   manglePointerExtQualifiers(Quals, PointeeType);
2602 
2603   if (PointeeType.getQualifiers().hasAddressSpace())
2604     mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
2605   else
2606     mangleType(PointeeType, Range);
2607 }
2608 
2609 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2610                                          Qualifiers Quals, SourceRange Range) {
2611   QualType PointeeType = T->getPointeeType();
2612   switch (Quals.getObjCLifetime()) {
2613   case Qualifiers::OCL_None:
2614   case Qualifiers::OCL_ExplicitNone:
2615     break;
2616   case Qualifiers::OCL_Autoreleasing:
2617   case Qualifiers::OCL_Strong:
2618   case Qualifiers::OCL_Weak:
2619     return mangleObjCLifetime(PointeeType, Quals, Range);
2620   }
2621   manglePointerCVQualifiers(Quals);
2622   manglePointerExtQualifiers(Quals, PointeeType);
2623   mangleType(PointeeType, Range);
2624 }
2625 
2626 // <type> ::= <reference-type>
2627 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2628 //                 # the E is required for 64-bit non-static lvalue references
2629 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2630                                          Qualifiers Quals, SourceRange Range) {
2631   QualType PointeeType = T->getPointeeType();
2632   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2633   Out << 'A';
2634   manglePointerExtQualifiers(Quals, PointeeType);
2635   mangleType(PointeeType, Range);
2636 }
2637 
2638 // <type> ::= <r-value-reference-type>
2639 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2640 //                 # the E is required for 64-bit non-static rvalue references
2641 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2642                                          Qualifiers Quals, SourceRange Range) {
2643   QualType PointeeType = T->getPointeeType();
2644   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2645   Out << "$$Q";
2646   manglePointerExtQualifiers(Quals, PointeeType);
2647   mangleType(PointeeType, Range);
2648 }
2649 
2650 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2651                                          SourceRange Range) {
2652   QualType ElementType = T->getElementType();
2653 
2654   llvm::SmallString<64> TemplateMangling;
2655   llvm::raw_svector_ostream Stream(TemplateMangling);
2656   MicrosoftCXXNameMangler Extra(Context, Stream);
2657   Stream << "?$";
2658   Extra.mangleSourceName("_Complex");
2659   Extra.mangleType(ElementType, Range, QMM_Escape);
2660 
2661   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2662 }
2663 
2664 // Returns true for types that mangleArtificialTagType() gets called for with
2665 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
2666 // mangling matters.
2667 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't
2668 // support.)
2669 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
2670   const Type *ty = T.getTypePtr();
2671   switch (ty->getTypeClass()) {
2672   default:
2673     return false;
2674 
2675   case Type::Vector: {
2676     // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
2677     // but since mangleType(VectorType*) always calls mangleArtificialTagType()
2678     // just always return true (the other vector types are clang-only).
2679     return true;
2680   }
2681   }
2682 }
2683 
2684 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2685                                          SourceRange Range) {
2686   const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2687   assert(ET && "vectors with non-builtin elements are unsupported");
2688   uint64_t Width = getASTContext().getTypeSize(T);
2689   // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
2690   // doesn't match the Intel types uses a custom mangling below.
2691   size_t OutSizeBefore = Out.tell();
2692   if (!isa<ExtVectorType>(T)) {
2693     llvm::Triple::ArchType AT =
2694         getASTContext().getTargetInfo().getTriple().getArch();
2695     if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2696       if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2697         mangleArtificialTagType(TTK_Union, "__m64");
2698       } else if (Width >= 128) {
2699         if (ET->getKind() == BuiltinType::Float)
2700           mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
2701         else if (ET->getKind() == BuiltinType::LongLong)
2702           mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2703         else if (ET->getKind() == BuiltinType::Double)
2704           mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2705       }
2706     }
2707   }
2708 
2709   bool IsBuiltin = Out.tell() != OutSizeBefore;
2710   if (!IsBuiltin) {
2711     // The MS ABI doesn't have a special mangling for vector types, so we define
2712     // our own mangling to handle uses of __vector_size__ on user-specified
2713     // types, and for extensions like __v4sf.
2714 
2715     llvm::SmallString<64> TemplateMangling;
2716     llvm::raw_svector_ostream Stream(TemplateMangling);
2717     MicrosoftCXXNameMangler Extra(Context, Stream);
2718     Stream << "?$";
2719     Extra.mangleSourceName("__vector");
2720     Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2721     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2722                                /*IsBoolean=*/false);
2723 
2724     mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
2725   }
2726 }
2727 
2728 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2729                                          Qualifiers Quals, SourceRange Range) {
2730   mangleType(static_cast<const VectorType *>(T), Quals, Range);
2731 }
2732 
2733 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
2734                                          Qualifiers, SourceRange Range) {
2735   DiagnosticsEngine &Diags = Context.getDiags();
2736   unsigned DiagID = Diags.getCustomDiagID(
2737       DiagnosticsEngine::Error,
2738       "cannot mangle this dependent-sized vector type yet");
2739   Diags.Report(Range.getBegin(), DiagID) << Range;
2740 }
2741 
2742 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2743                                          Qualifiers, SourceRange Range) {
2744   DiagnosticsEngine &Diags = Context.getDiags();
2745   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2746     "cannot mangle this dependent-sized extended vector type yet");
2747   Diags.Report(Range.getBegin(), DiagID)
2748     << Range;
2749 }
2750 
2751 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
2752                                          Qualifiers, SourceRange Range) {
2753   DiagnosticsEngine &Diags = Context.getDiags();
2754   unsigned DiagID = Diags.getCustomDiagID(
2755       DiagnosticsEngine::Error,
2756       "cannot mangle this dependent address space type yet");
2757   Diags.Report(Range.getBegin(), DiagID) << Range;
2758 }
2759 
2760 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2761                                          SourceRange) {
2762   // ObjC interfaces have structs underlying them.
2763   mangleTagTypeKind(TTK_Struct);
2764   mangleName(T->getDecl());
2765 }
2766 
2767 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
2768                                          Qualifiers Quals, SourceRange Range) {
2769   if (T->isKindOfType())
2770     return mangleObjCKindOfType(T, Quals, Range);
2771 
2772   if (T->qual_empty() && !T->isSpecialized())
2773     return mangleType(T->getBaseType(), Range, QMM_Drop);
2774 
2775   ArgBackRefMap OuterFunArgsContext;
2776   ArgBackRefMap OuterTemplateArgsContext;
2777   BackRefVec OuterTemplateContext;
2778 
2779   FunArgBackReferences.swap(OuterFunArgsContext);
2780   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
2781   NameBackReferences.swap(OuterTemplateContext);
2782 
2783   mangleTagTypeKind(TTK_Struct);
2784 
2785   Out << "?$";
2786   if (T->isObjCId())
2787     mangleSourceName("objc_object");
2788   else if (T->isObjCClass())
2789     mangleSourceName("objc_class");
2790   else
2791     mangleSourceName(T->getInterface()->getName());
2792 
2793   for (const auto &Q : T->quals())
2794     mangleObjCProtocol(Q);
2795 
2796   if (T->isSpecialized())
2797     for (const auto &TA : T->getTypeArgs())
2798       mangleType(TA, Range, QMM_Drop);
2799 
2800   Out << '@';
2801 
2802   Out << '@';
2803 
2804   FunArgBackReferences.swap(OuterFunArgsContext);
2805   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
2806   NameBackReferences.swap(OuterTemplateContext);
2807 }
2808 
2809 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2810                                          Qualifiers Quals, SourceRange Range) {
2811   QualType PointeeType = T->getPointeeType();
2812   manglePointerCVQualifiers(Quals);
2813   manglePointerExtQualifiers(Quals, PointeeType);
2814 
2815   Out << "_E";
2816 
2817   mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2818 }
2819 
2820 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2821                                          Qualifiers, SourceRange) {
2822   llvm_unreachable("Cannot mangle injected class name type.");
2823 }
2824 
2825 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2826                                          Qualifiers, SourceRange Range) {
2827   DiagnosticsEngine &Diags = Context.getDiags();
2828   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2829     "cannot mangle this template specialization type yet");
2830   Diags.Report(Range.getBegin(), DiagID)
2831     << Range;
2832 }
2833 
2834 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2835                                          SourceRange Range) {
2836   DiagnosticsEngine &Diags = Context.getDiags();
2837   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2838     "cannot mangle this dependent name type yet");
2839   Diags.Report(Range.getBegin(), DiagID)
2840     << Range;
2841 }
2842 
2843 void MicrosoftCXXNameMangler::mangleType(
2844     const DependentTemplateSpecializationType *T, Qualifiers,
2845     SourceRange Range) {
2846   DiagnosticsEngine &Diags = Context.getDiags();
2847   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2848     "cannot mangle this dependent template specialization type yet");
2849   Diags.Report(Range.getBegin(), DiagID)
2850     << Range;
2851 }
2852 
2853 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2854                                          SourceRange Range) {
2855   DiagnosticsEngine &Diags = Context.getDiags();
2856   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2857     "cannot mangle this pack expansion yet");
2858   Diags.Report(Range.getBegin(), DiagID)
2859     << Range;
2860 }
2861 
2862 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2863                                          SourceRange Range) {
2864   DiagnosticsEngine &Diags = Context.getDiags();
2865   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2866     "cannot mangle this typeof(type) yet");
2867   Diags.Report(Range.getBegin(), DiagID)
2868     << Range;
2869 }
2870 
2871 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2872                                          SourceRange Range) {
2873   DiagnosticsEngine &Diags = Context.getDiags();
2874   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2875     "cannot mangle this typeof(expression) yet");
2876   Diags.Report(Range.getBegin(), DiagID)
2877     << Range;
2878 }
2879 
2880 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2881                                          SourceRange Range) {
2882   DiagnosticsEngine &Diags = Context.getDiags();
2883   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2884     "cannot mangle this decltype() yet");
2885   Diags.Report(Range.getBegin(), DiagID)
2886     << Range;
2887 }
2888 
2889 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2890                                          Qualifiers, SourceRange Range) {
2891   DiagnosticsEngine &Diags = Context.getDiags();
2892   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2893     "cannot mangle this unary transform type yet");
2894   Diags.Report(Range.getBegin(), DiagID)
2895     << Range;
2896 }
2897 
2898 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2899                                          SourceRange Range) {
2900   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2901 
2902   DiagnosticsEngine &Diags = Context.getDiags();
2903   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2904     "cannot mangle this 'auto' type yet");
2905   Diags.Report(Range.getBegin(), DiagID)
2906     << Range;
2907 }
2908 
2909 void MicrosoftCXXNameMangler::mangleType(
2910     const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
2911   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2912 
2913   DiagnosticsEngine &Diags = Context.getDiags();
2914   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2915     "cannot mangle this deduced class template specialization type yet");
2916   Diags.Report(Range.getBegin(), DiagID)
2917     << Range;
2918 }
2919 
2920 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2921                                          SourceRange Range) {
2922   QualType ValueType = T->getValueType();
2923 
2924   llvm::SmallString<64> TemplateMangling;
2925   llvm::raw_svector_ostream Stream(TemplateMangling);
2926   MicrosoftCXXNameMangler Extra(Context, Stream);
2927   Stream << "?$";
2928   Extra.mangleSourceName("_Atomic");
2929   Extra.mangleType(ValueType, Range, QMM_Escape);
2930 
2931   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2932 }
2933 
2934 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2935                                          SourceRange Range) {
2936   DiagnosticsEngine &Diags = Context.getDiags();
2937   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2938     "cannot mangle this OpenCL pipe type yet");
2939   Diags.Report(Range.getBegin(), DiagID)
2940     << Range;
2941 }
2942 
2943 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2944                                                raw_ostream &Out) {
2945   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2946          "Invalid mangleName() call, argument is not a variable or function!");
2947   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2948          "Invalid mangleName() call on 'structor decl!");
2949 
2950   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2951                                  getASTContext().getSourceManager(),
2952                                  "Mangling declaration");
2953 
2954   msvc_hashing_ostream MHO(Out);
2955   MicrosoftCXXNameMangler Mangler(*this, MHO);
2956   return Mangler.mangle(D);
2957 }
2958 
2959 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2960 //                       <virtual-adjustment>
2961 // <no-adjustment>      ::= A # private near
2962 //                      ::= B # private far
2963 //                      ::= I # protected near
2964 //                      ::= J # protected far
2965 //                      ::= Q # public near
2966 //                      ::= R # public far
2967 // <static-adjustment>  ::= G <static-offset> # private near
2968 //                      ::= H <static-offset> # private far
2969 //                      ::= O <static-offset> # protected near
2970 //                      ::= P <static-offset> # protected far
2971 //                      ::= W <static-offset> # public near
2972 //                      ::= X <static-offset> # public far
2973 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2974 //                      ::= $1 <virtual-shift> <static-offset> # private far
2975 //                      ::= $2 <virtual-shift> <static-offset> # protected near
2976 //                      ::= $3 <virtual-shift> <static-offset> # protected far
2977 //                      ::= $4 <virtual-shift> <static-offset> # public near
2978 //                      ::= $5 <virtual-shift> <static-offset> # public far
2979 // <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
2980 // <vtordisp-shift>     ::= <offset-to-vtordisp>
2981 // <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
2982 //                          <offset-to-vtordisp>
2983 static void mangleThunkThisAdjustment(AccessSpecifier AS,
2984                                       const ThisAdjustment &Adjustment,
2985                                       MicrosoftCXXNameMangler &Mangler,
2986                                       raw_ostream &Out) {
2987   if (!Adjustment.Virtual.isEmpty()) {
2988     Out << '$';
2989     char AccessSpec;
2990     switch (AS) {
2991     case AS_none:
2992       llvm_unreachable("Unsupported access specifier");
2993     case AS_private:
2994       AccessSpec = '0';
2995       break;
2996     case AS_protected:
2997       AccessSpec = '2';
2998       break;
2999     case AS_public:
3000       AccessSpec = '4';
3001     }
3002     if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3003       Out << 'R' << AccessSpec;
3004       Mangler.mangleNumber(
3005           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3006       Mangler.mangleNumber(
3007           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3008       Mangler.mangleNumber(
3009           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3010       Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
3011     } else {
3012       Out << AccessSpec;
3013       Mangler.mangleNumber(
3014           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3015       Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3016     }
3017   } else if (Adjustment.NonVirtual != 0) {
3018     switch (AS) {
3019     case AS_none:
3020       llvm_unreachable("Unsupported access specifier");
3021     case AS_private:
3022       Out << 'G';
3023       break;
3024     case AS_protected:
3025       Out << 'O';
3026       break;
3027     case AS_public:
3028       Out << 'W';
3029     }
3030     Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3031   } else {
3032     switch (AS) {
3033     case AS_none:
3034       llvm_unreachable("Unsupported access specifier");
3035     case AS_private:
3036       Out << 'A';
3037       break;
3038     case AS_protected:
3039       Out << 'I';
3040       break;
3041     case AS_public:
3042       Out << 'Q';
3043     }
3044   }
3045 }
3046 
3047 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3048     const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3049     raw_ostream &Out) {
3050   msvc_hashing_ostream MHO(Out);
3051   MicrosoftCXXNameMangler Mangler(*this, MHO);
3052   Mangler.getStream() << '?';
3053   Mangler.mangleVirtualMemPtrThunk(MD, ML);
3054 }
3055 
3056 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3057                                              const ThunkInfo &Thunk,
3058                                              raw_ostream &Out) {
3059   msvc_hashing_ostream MHO(Out);
3060   MicrosoftCXXNameMangler Mangler(*this, MHO);
3061   Mangler.getStream() << '?';
3062   Mangler.mangleName(MD);
3063 
3064   // Usually the thunk uses the access specifier of the new method, but if this
3065   // is a covariant return thunk, then MSVC always uses the public access
3066   // specifier, and we do the same.
3067   AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3068   mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);
3069 
3070   if (!Thunk.Return.isEmpty())
3071     assert(Thunk.Method != nullptr &&
3072            "Thunk info should hold the overridee decl");
3073 
3074   const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3075   Mangler.mangleFunctionType(
3076       DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
3077 }
3078 
3079 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
3080     const CXXDestructorDecl *DD, CXXDtorType Type,
3081     const ThisAdjustment &Adjustment, raw_ostream &Out) {
3082   // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3083   // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3084   // mangling manually until we support both deleting dtor types.
3085   assert(Type == Dtor_Deleting);
3086   msvc_hashing_ostream MHO(Out);
3087   MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3088   Mangler.getStream() << "??_E";
3089   Mangler.mangleName(DD->getParent());
3090   mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
3091   Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
3092 }
3093 
3094 void MicrosoftMangleContextImpl::mangleCXXVFTable(
3095     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3096     raw_ostream &Out) {
3097   // <mangled-name> ::= ?_7 <class-name> <storage-class>
3098   //                    <cvr-qualifiers> [<name>] @
3099   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3100   // is always '6' for vftables.
3101   msvc_hashing_ostream MHO(Out);
3102   MicrosoftCXXNameMangler Mangler(*this, MHO);
3103   if (Derived->hasAttr<DLLImportAttr>())
3104     Mangler.getStream() << "??_S";
3105   else
3106     Mangler.getStream() << "??_7";
3107   Mangler.mangleName(Derived);
3108   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3109   for (const CXXRecordDecl *RD : BasePath)
3110     Mangler.mangleName(RD);
3111   Mangler.getStream() << '@';
3112 }
3113 
3114 void MicrosoftMangleContextImpl::mangleCXXVBTable(
3115     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3116     raw_ostream &Out) {
3117   // <mangled-name> ::= ?_8 <class-name> <storage-class>
3118   //                    <cvr-qualifiers> [<name>] @
3119   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3120   // is always '7' for vbtables.
3121   msvc_hashing_ostream MHO(Out);
3122   MicrosoftCXXNameMangler Mangler(*this, MHO);
3123   Mangler.getStream() << "??_8";
3124   Mangler.mangleName(Derived);
3125   Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
3126   for (const CXXRecordDecl *RD : BasePath)
3127     Mangler.mangleName(RD);
3128   Mangler.getStream() << '@';
3129 }
3130 
3131 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3132   msvc_hashing_ostream MHO(Out);
3133   MicrosoftCXXNameMangler Mangler(*this, MHO);
3134   Mangler.getStream() << "??_R0";
3135   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3136   Mangler.getStream() << "@8";
3137 }
3138 
3139 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
3140                                                    raw_ostream &Out) {
3141   MicrosoftCXXNameMangler Mangler(*this, Out);
3142   Mangler.getStream() << '.';
3143   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3144 }
3145 
3146 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3147     const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3148   msvc_hashing_ostream MHO(Out);
3149   MicrosoftCXXNameMangler Mangler(*this, MHO);
3150   Mangler.getStream() << "??_K";
3151   Mangler.mangleName(SrcRD);
3152   Mangler.getStream() << "$C";
3153   Mangler.mangleName(DstRD);
3154 }
3155 
3156 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3157                                                     bool IsVolatile,
3158                                                     bool IsUnaligned,
3159                                                     uint32_t NumEntries,
3160                                                     raw_ostream &Out) {
3161   msvc_hashing_ostream MHO(Out);
3162   MicrosoftCXXNameMangler Mangler(*this, MHO);
3163   Mangler.getStream() << "_TI";
3164   if (IsConst)
3165     Mangler.getStream() << 'C';
3166   if (IsVolatile)
3167     Mangler.getStream() << 'V';
3168   if (IsUnaligned)
3169     Mangler.getStream() << 'U';
3170   Mangler.getStream() << NumEntries;
3171   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3172 }
3173 
3174 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3175     QualType T, uint32_t NumEntries, raw_ostream &Out) {
3176   msvc_hashing_ostream MHO(Out);
3177   MicrosoftCXXNameMangler Mangler(*this, MHO);
3178   Mangler.getStream() << "_CTA";
3179   Mangler.getStream() << NumEntries;
3180   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3181 }
3182 
3183 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3184     QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3185     uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3186     raw_ostream &Out) {
3187   MicrosoftCXXNameMangler Mangler(*this, Out);
3188   Mangler.getStream() << "_CT";
3189 
3190   llvm::SmallString<64> RTTIMangling;
3191   {
3192     llvm::raw_svector_ostream Stream(RTTIMangling);
3193     msvc_hashing_ostream MHO(Stream);
3194     mangleCXXRTTI(T, MHO);
3195   }
3196   Mangler.getStream() << RTTIMangling;
3197 
3198   // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
3199   // both older and newer versions include it.
3200   // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
3201   // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
3202   // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
3203   // Or 1912, 1913 aleady?).
3204   bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
3205                           LangOptions::MSVC2015) &&
3206                       !getASTContext().getLangOpts().isCompatibleWithMSVC(
3207                           LangOptions::MSVC2017_7);
3208   llvm::SmallString<64> CopyCtorMangling;
3209   if (!OmitCopyCtor && CD) {
3210     llvm::raw_svector_ostream Stream(CopyCtorMangling);
3211     msvc_hashing_ostream MHO(Stream);
3212     mangleCXXCtor(CD, CT, MHO);
3213   }
3214   Mangler.getStream() << CopyCtorMangling;
3215 
3216   Mangler.getStream() << Size;
3217   if (VBPtrOffset == -1) {
3218     if (NVOffset) {
3219       Mangler.getStream() << NVOffset;
3220     }
3221   } else {
3222     Mangler.getStream() << NVOffset;
3223     Mangler.getStream() << VBPtrOffset;
3224     Mangler.getStream() << VBIndex;
3225   }
3226 }
3227 
3228 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3229     const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3230     uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3231   msvc_hashing_ostream MHO(Out);
3232   MicrosoftCXXNameMangler Mangler(*this, MHO);
3233   Mangler.getStream() << "??_R1";
3234   Mangler.mangleNumber(NVOffset);
3235   Mangler.mangleNumber(VBPtrOffset);
3236   Mangler.mangleNumber(VBTableOffset);
3237   Mangler.mangleNumber(Flags);
3238   Mangler.mangleName(Derived);
3239   Mangler.getStream() << "8";
3240 }
3241 
3242 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3243     const CXXRecordDecl *Derived, raw_ostream &Out) {
3244   msvc_hashing_ostream MHO(Out);
3245   MicrosoftCXXNameMangler Mangler(*this, MHO);
3246   Mangler.getStream() << "??_R2";
3247   Mangler.mangleName(Derived);
3248   Mangler.getStream() << "8";
3249 }
3250 
3251 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3252     const CXXRecordDecl *Derived, raw_ostream &Out) {
3253   msvc_hashing_ostream MHO(Out);
3254   MicrosoftCXXNameMangler Mangler(*this, MHO);
3255   Mangler.getStream() << "??_R3";
3256   Mangler.mangleName(Derived);
3257   Mangler.getStream() << "8";
3258 }
3259 
3260 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3261     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3262     raw_ostream &Out) {
3263   // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3264   //                    <cvr-qualifiers> [<name>] @
3265   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3266   // is always '6' for vftables.
3267   llvm::SmallString<64> VFTableMangling;
3268   llvm::raw_svector_ostream Stream(VFTableMangling);
3269   mangleCXXVFTable(Derived, BasePath, Stream);
3270 
3271   if (VFTableMangling.startswith("??@")) {
3272     assert(VFTableMangling.endswith("@"));
3273     Out << VFTableMangling << "??_R4@";
3274     return;
3275   }
3276 
3277   assert(VFTableMangling.startswith("??_7") ||
3278          VFTableMangling.startswith("??_S"));
3279 
3280   Out << "??_R4" << StringRef(VFTableMangling).drop_front(4);
3281 }
3282 
3283 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3284     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3285   msvc_hashing_ostream MHO(Out);
3286   MicrosoftCXXNameMangler Mangler(*this, MHO);
3287   // The function body is in the same comdat as the function with the handler,
3288   // so the numbering here doesn't have to be the same across TUs.
3289   //
3290   // <mangled-name> ::= ?filt$ <filter-number> @0
3291   Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3292   Mangler.mangleName(EnclosingDecl);
3293 }
3294 
3295 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3296     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3297   msvc_hashing_ostream MHO(Out);
3298   MicrosoftCXXNameMangler Mangler(*this, MHO);
3299   // The function body is in the same comdat as the function with the handler,
3300   // so the numbering here doesn't have to be the same across TUs.
3301   //
3302   // <mangled-name> ::= ?fin$ <filter-number> @0
3303   Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3304   Mangler.mangleName(EnclosingDecl);
3305 }
3306 
3307 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3308   // This is just a made up unique string for the purposes of tbaa.  undname
3309   // does *not* know how to demangle it.
3310   MicrosoftCXXNameMangler Mangler(*this, Out);
3311   Mangler.getStream() << '?';
3312   Mangler.mangleType(T, SourceRange());
3313 }
3314 
3315 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3316                                                CXXCtorType Type,
3317                                                raw_ostream &Out) {
3318   msvc_hashing_ostream MHO(Out);
3319   MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
3320   mangler.mangle(D);
3321 }
3322 
3323 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3324                                                CXXDtorType Type,
3325                                                raw_ostream &Out) {
3326   msvc_hashing_ostream MHO(Out);
3327   MicrosoftCXXNameMangler mangler(*this, MHO, D, Type);
3328   mangler.mangle(D);
3329 }
3330 
3331 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3332     const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3333   msvc_hashing_ostream MHO(Out);
3334   MicrosoftCXXNameMangler Mangler(*this, MHO);
3335 
3336   Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3337   Mangler.mangle(VD, "");
3338 }
3339 
3340 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3341     const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3342   msvc_hashing_ostream MHO(Out);
3343   MicrosoftCXXNameMangler Mangler(*this, MHO);
3344 
3345   Mangler.getStream() << "?$TSS" << GuardNum << '@';
3346   Mangler.mangleNestedName(VD);
3347   Mangler.getStream() << "@4HA";
3348 }
3349 
3350 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3351                                                            raw_ostream &Out) {
3352   // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3353   //              ::= ?__J <postfix> @5 <scope-depth>
3354   //              ::= ?$S <guard-num> @ <postfix> @4IA
3355 
3356   // The first mangling is what MSVC uses to guard static locals in inline
3357   // functions.  It uses a different mangling in external functions to support
3358   // guarding more than 32 variables.  MSVC rejects inline functions with more
3359   // than 32 static locals.  We don't fully implement the second mangling
3360   // because those guards are not externally visible, and instead use LLVM's
3361   // default renaming when creating a new guard variable.
3362   msvc_hashing_ostream MHO(Out);
3363   MicrosoftCXXNameMangler Mangler(*this, MHO);
3364 
3365   bool Visible = VD->isExternallyVisible();
3366   if (Visible) {
3367     Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3368   } else {
3369     Mangler.getStream() << "?$S1@";
3370   }
3371   unsigned ScopeDepth = 0;
3372   if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3373     // If we do not have a discriminator and are emitting a guard variable for
3374     // use at global scope, then mangling the nested name will not be enough to
3375     // remove ambiguities.
3376     Mangler.mangle(VD, "");
3377   else
3378     Mangler.mangleNestedName(VD);
3379   Mangler.getStream() << (Visible ? "@5" : "@4IA");
3380   if (ScopeDepth)
3381     Mangler.mangleNumber(ScopeDepth);
3382 }
3383 
3384 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3385                                                     char CharCode,
3386                                                     raw_ostream &Out) {
3387   msvc_hashing_ostream MHO(Out);
3388   MicrosoftCXXNameMangler Mangler(*this, MHO);
3389   Mangler.getStream() << "??__" << CharCode;
3390   if (D->isStaticDataMember()) {
3391     Mangler.getStream() << '?';
3392     Mangler.mangleName(D);
3393     Mangler.mangleVariableEncoding(D);
3394     Mangler.getStream() << "@@";
3395   } else {
3396     Mangler.mangleName(D);
3397   }
3398   // This is the function class mangling.  These stubs are global, non-variadic,
3399   // cdecl functions that return void and take no args.
3400   Mangler.getStream() << "YAXXZ";
3401 }
3402 
3403 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3404                                                           raw_ostream &Out) {
3405   // <initializer-name> ::= ?__E <name> YAXXZ
3406   mangleInitFiniStub(D, 'E', Out);
3407 }
3408 
3409 void
3410 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3411                                                           raw_ostream &Out) {
3412   // <destructor-name> ::= ?__F <name> YAXXZ
3413   mangleInitFiniStub(D, 'F', Out);
3414 }
3415 
3416 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3417                                                      raw_ostream &Out) {
3418   // <char-type> ::= 0   # char, char16_t, char32_t
3419   //                     # (little endian char data in mangling)
3420   //             ::= 1   # wchar_t (big endian char data in mangling)
3421   //
3422   // <literal-length> ::= <non-negative integer>  # the length of the literal
3423   //
3424   // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
3425   //                                              # trailing null bytes
3426   //
3427   // <encoded-string> ::= <simple character>           # uninteresting character
3428   //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
3429   //                                                   # encode the byte for the
3430   //                                                   # character
3431   //                  ::= '?' [a-z]                    # \xe1 - \xfa
3432   //                  ::= '?' [A-Z]                    # \xc1 - \xda
3433   //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
3434   //
3435   // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3436   //               <encoded-string> '@'
3437   MicrosoftCXXNameMangler Mangler(*this, Out);
3438   Mangler.getStream() << "??_C@_";
3439 
3440   // The actual string length might be different from that of the string literal
3441   // in cases like:
3442   // char foo[3] = "foobar";
3443   // char bar[42] = "foobar";
3444   // Where it is truncated or zero-padded to fit the array. This is the length
3445   // used for mangling, and any trailing null-bytes also need to be mangled.
3446   unsigned StringLength = getASTContext()
3447                               .getAsConstantArrayType(SL->getType())
3448                               ->getSize()
3449                               .getZExtValue();
3450   unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3451 
3452   // <char-type>: The "kind" of string literal is encoded into the mangled name.
3453   if (SL->isWide())
3454     Mangler.getStream() << '1';
3455   else
3456     Mangler.getStream() << '0';
3457 
3458   // <literal-length>: The next part of the mangled name consists of the length
3459   // of the string in bytes.
3460   Mangler.mangleNumber(StringByteLength);
3461 
3462   auto GetLittleEndianByte = [&SL](unsigned Index) {
3463     unsigned CharByteWidth = SL->getCharByteWidth();
3464     if (Index / CharByteWidth >= SL->getLength())
3465       return static_cast<char>(0);
3466     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3467     unsigned OffsetInCodeUnit = Index % CharByteWidth;
3468     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3469   };
3470 
3471   auto GetBigEndianByte = [&SL](unsigned Index) {
3472     unsigned CharByteWidth = SL->getCharByteWidth();
3473     if (Index / CharByteWidth >= SL->getLength())
3474       return static_cast<char>(0);
3475     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3476     unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3477     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3478   };
3479 
3480   // CRC all the bytes of the StringLiteral.
3481   llvm::JamCRC JC;
3482   for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3483     JC.update(GetLittleEndianByte(I));
3484 
3485   // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3486   // scheme.
3487   Mangler.mangleNumber(JC.getCRC());
3488 
3489   // <encoded-string>: The mangled name also contains the first 32 bytes
3490   // (including null-terminator bytes) of the encoded StringLiteral.
3491   // Each character is encoded by splitting them into bytes and then encoding
3492   // the constituent bytes.
3493   auto MangleByte = [&Mangler](char Byte) {
3494     // There are five different manglings for characters:
3495     // - [a-zA-Z0-9_$]: A one-to-one mapping.
3496     // - ?[a-z]: The range from \xe1 to \xfa.
3497     // - ?[A-Z]: The range from \xc1 to \xda.
3498     // - ?[0-9]: The set of [,/\:. \n\t'-].
3499     // - ?$XX: A fallback which maps nibbles.
3500     if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
3501       Mangler.getStream() << Byte;
3502     } else if (isLetter(Byte & 0x7f)) {
3503       Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3504     } else {
3505       const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
3506                                    ' ', '\n', '\t', '\'', '-'};
3507       const char *Pos = llvm::find(SpecialChars, Byte);
3508       if (Pos != std::end(SpecialChars)) {
3509         Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3510       } else {
3511         Mangler.getStream() << "?$";
3512         Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3513         Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3514       }
3515     }
3516   };
3517 
3518   // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3519   unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3520   unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3521   for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3522     if (SL->isWide())
3523       MangleByte(GetBigEndianByte(I));
3524     else
3525       MangleByte(GetLittleEndianByte(I));
3526   }
3527 
3528   Mangler.getStream() << '@';
3529 }
3530 
3531 MicrosoftMangleContext *
3532 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3533   return new MicrosoftMangleContextImpl(Context, Diags);
3534 }
3535