1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Mangle.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/VTableBuilder.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/DiagnosticOptions.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/Support/JamCRC.h" 31 #include "llvm/Support/xxhash.h" 32 #include "llvm/Support/MD5.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/StringSaver.h" 35 36 using namespace clang; 37 38 namespace { 39 40 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 41 raw_ostream &OS; 42 llvm::SmallString<64> Buffer; 43 44 msvc_hashing_ostream(raw_ostream &OS) 45 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 46 ~msvc_hashing_ostream() override { 47 StringRef MangledName = str(); 48 bool StartsWithEscape = MangledName.startswith("\01"); 49 if (StartsWithEscape) 50 MangledName = MangledName.drop_front(1); 51 if (MangledName.size() <= 4096) { 52 OS << str(); 53 return; 54 } 55 56 llvm::MD5 Hasher; 57 llvm::MD5::MD5Result Hash; 58 Hasher.update(MangledName); 59 Hasher.final(Hash); 60 61 SmallString<32> HexString; 62 llvm::MD5::stringifyResult(Hash, HexString); 63 64 if (StartsWithEscape) 65 OS << '\01'; 66 OS << "??@" << HexString << '@'; 67 } 68 }; 69 70 static const DeclContext * 71 getLambdaDefaultArgumentDeclContext(const Decl *D) { 72 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 73 if (RD->isLambda()) 74 if (const auto *Parm = 75 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 76 return Parm->getDeclContext(); 77 return nullptr; 78 } 79 80 /// Retrieve the declaration context that should be used when mangling 81 /// the given declaration. 82 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 83 // The ABI assumes that lambda closure types that occur within 84 // default arguments live in the context of the function. However, due to 85 // the way in which Clang parses and creates function declarations, this is 86 // not the case: the lambda closure type ends up living in the context 87 // where the function itself resides, because the function declaration itself 88 // had not yet been created. Fix the context here. 89 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 90 return LDADC; 91 92 // Perform the same check for block literals. 93 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 94 if (ParmVarDecl *ContextParam = 95 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 96 return ContextParam->getDeclContext(); 97 } 98 99 const DeclContext *DC = D->getDeclContext(); 100 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 101 isa<OMPDeclareMapperDecl>(DC)) { 102 return getEffectiveDeclContext(cast<Decl>(DC)); 103 } 104 105 return DC->getRedeclContext(); 106 } 107 108 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 109 return getEffectiveDeclContext(cast<Decl>(DC)); 110 } 111 112 static const FunctionDecl *getStructor(const NamedDecl *ND) { 113 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 114 return FTD->getTemplatedDecl()->getCanonicalDecl(); 115 116 const auto *FD = cast<FunctionDecl>(ND); 117 if (const auto *FTD = FD->getPrimaryTemplate()) 118 return FTD->getTemplatedDecl()->getCanonicalDecl(); 119 120 return FD->getCanonicalDecl(); 121 } 122 123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 124 /// Microsoft Visual C++ ABI. 125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 126 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 127 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 128 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 129 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 130 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; 131 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; 132 SmallString<16> AnonymousNamespaceHash; 133 134 public: 135 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags); 136 bool shouldMangleCXXName(const NamedDecl *D) override; 137 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 138 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override; 139 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 140 const MethodVFTableLocation &ML, 141 raw_ostream &Out) override; 142 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 143 raw_ostream &) override; 144 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 145 const ThisAdjustment &ThisAdjustment, 146 raw_ostream &) override; 147 void mangleCXXVFTable(const CXXRecordDecl *Derived, 148 ArrayRef<const CXXRecordDecl *> BasePath, 149 raw_ostream &Out) override; 150 void mangleCXXVBTable(const CXXRecordDecl *Derived, 151 ArrayRef<const CXXRecordDecl *> BasePath, 152 raw_ostream &Out) override; 153 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 154 const CXXRecordDecl *DstRD, 155 raw_ostream &Out) override; 156 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 157 bool IsUnaligned, uint32_t NumEntries, 158 raw_ostream &Out) override; 159 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 160 raw_ostream &Out) override; 161 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 162 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 163 int32_t VBPtrOffset, uint32_t VBIndex, 164 raw_ostream &Out) override; 165 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 166 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; 167 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 168 uint32_t NVOffset, int32_t VBPtrOffset, 169 uint32_t VBTableOffset, uint32_t Flags, 170 raw_ostream &Out) override; 171 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 172 raw_ostream &Out) override; 173 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 174 raw_ostream &Out) override; 175 void 176 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 177 ArrayRef<const CXXRecordDecl *> BasePath, 178 raw_ostream &Out) override; 179 void mangleTypeName(QualType T, raw_ostream &) override; 180 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 181 raw_ostream &) override; 182 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 183 raw_ostream &) override; 184 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 185 raw_ostream &) override; 186 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 187 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 188 raw_ostream &Out) override; 189 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 190 void mangleDynamicAtExitDestructor(const VarDecl *D, 191 raw_ostream &Out) override; 192 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 193 raw_ostream &Out) override; 194 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 195 raw_ostream &Out) override; 196 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 197 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 198 const DeclContext *DC = getEffectiveDeclContext(ND); 199 if (!DC->isFunctionOrMethod()) 200 return false; 201 202 // Lambda closure types are already numbered, give out a phony number so 203 // that they demangle nicely. 204 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 205 if (RD->isLambda()) { 206 disc = 1; 207 return true; 208 } 209 } 210 211 // Use the canonical number for externally visible decls. 212 if (ND->isExternallyVisible()) { 213 disc = getASTContext().getManglingNumber(ND); 214 return true; 215 } 216 217 // Anonymous tags are already numbered. 218 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 219 if (!Tag->hasNameForLinkage() && 220 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 221 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 222 return false; 223 } 224 225 // Make up a reasonable number for internal decls. 226 unsigned &discriminator = Uniquifier[ND]; 227 if (!discriminator) 228 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 229 disc = discriminator + 1; 230 return true; 231 } 232 233 unsigned getLambdaId(const CXXRecordDecl *RD) { 234 assert(RD->isLambda() && "RD must be a lambda!"); 235 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 236 assert(RD->getLambdaManglingNumber() == 0 && 237 "RD must not have a mangling number!"); 238 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 239 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 240 return Result.first->second; 241 } 242 243 /// Return a character sequence that is (somewhat) unique to the TU suitable 244 /// for mangling anonymous namespaces. 245 StringRef getAnonymousNamespaceHash() const { 246 return AnonymousNamespaceHash; 247 } 248 249 private: 250 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 251 }; 252 253 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 254 /// Microsoft Visual C++ ABI. 255 class MicrosoftCXXNameMangler { 256 MicrosoftMangleContextImpl &Context; 257 raw_ostream &Out; 258 259 /// The "structor" is the top-level declaration being mangled, if 260 /// that's not a template specialization; otherwise it's the pattern 261 /// for that specialization. 262 const NamedDecl *Structor; 263 unsigned StructorType; 264 265 typedef llvm::SmallVector<std::string, 10> BackRefVec; 266 BackRefVec NameBackReferences; 267 268 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 269 ArgBackRefMap FunArgBackReferences; 270 ArgBackRefMap TemplateArgBackReferences; 271 272 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 273 TemplateArgStringMap TemplateArgStrings; 274 llvm::StringSaver TemplateArgStringStorage; 275 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 276 277 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 278 PassObjectSizeArgsSet PassObjectSizeArgs; 279 280 ASTContext &getASTContext() const { return Context.getASTContext(); } 281 282 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push 283 // this check into mangleQualifiers(). 284 const bool PointersAre64Bit; 285 286 public: 287 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 288 289 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 290 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 291 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 292 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 293 64) {} 294 295 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 296 const CXXConstructorDecl *D, CXXCtorType Type) 297 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 298 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 299 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 300 64) {} 301 302 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 303 const CXXDestructorDecl *D, CXXDtorType Type) 304 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 305 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 306 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 307 64) {} 308 309 raw_ostream &getStream() const { return Out; } 310 311 void mangle(const NamedDecl *D, StringRef Prefix = "?"); 312 void mangleName(const NamedDecl *ND); 313 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle); 314 void mangleVariableEncoding(const VarDecl *VD); 315 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD); 316 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 317 const CXXMethodDecl *MD); 318 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 319 const MethodVFTableLocation &ML); 320 void mangleNumber(int64_t Number); 321 void mangleTagTypeKind(TagTypeKind TK); 322 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 323 ArrayRef<StringRef> NestedNames = None); 324 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 325 void mangleType(QualType T, SourceRange Range, 326 QualifierMangleMode QMM = QMM_Mangle); 327 void mangleFunctionType(const FunctionType *T, 328 const FunctionDecl *D = nullptr, 329 bool ForceThisQuals = false, 330 bool MangleExceptionSpec = true); 331 void mangleNestedName(const NamedDecl *ND); 332 333 private: 334 bool isStructorDecl(const NamedDecl *ND) const { 335 return ND == Structor || getStructor(ND) == Structor; 336 } 337 338 void mangleUnqualifiedName(const NamedDecl *ND) { 339 mangleUnqualifiedName(ND, ND->getDeclName()); 340 } 341 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); 342 void mangleSourceName(StringRef Name); 343 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 344 void mangleCXXDtorType(CXXDtorType T); 345 void mangleQualifiers(Qualifiers Quals, bool IsMember); 346 void mangleRefQualifier(RefQualifierKind RefQualifier); 347 void manglePointerCVQualifiers(Qualifiers Quals); 348 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 349 350 void mangleUnscopedTemplateName(const TemplateDecl *ND); 351 void 352 mangleTemplateInstantiationName(const TemplateDecl *TD, 353 const TemplateArgumentList &TemplateArgs); 354 void mangleObjCMethodName(const ObjCMethodDecl *MD); 355 356 void mangleFunctionArgumentType(QualType T, SourceRange Range); 357 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 358 359 bool isArtificialTagType(QualType T) const; 360 361 // Declare manglers for every type class. 362 #define ABSTRACT_TYPE(CLASS, PARENT) 363 #define NON_CANONICAL_TYPE(CLASS, PARENT) 364 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 365 Qualifiers Quals, \ 366 SourceRange Range); 367 #include "clang/AST/TypeNodes.def" 368 #undef ABSTRACT_TYPE 369 #undef NON_CANONICAL_TYPE 370 #undef TYPE 371 372 void mangleType(const TagDecl *TD); 373 void mangleDecayedArrayType(const ArrayType *T); 374 void mangleArrayType(const ArrayType *T); 375 void mangleFunctionClass(const FunctionDecl *FD); 376 void mangleCallingConvention(CallingConv CC); 377 void mangleCallingConvention(const FunctionType *T); 378 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean); 379 void mangleExpression(const Expr *E); 380 void mangleThrowSpecification(const FunctionProtoType *T); 381 382 void mangleTemplateArgs(const TemplateDecl *TD, 383 const TemplateArgumentList &TemplateArgs); 384 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 385 const NamedDecl *Parm); 386 387 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 388 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 389 SourceRange Range); 390 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 391 SourceRange Range); 392 }; 393 } 394 395 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 396 DiagnosticsEngine &Diags) 397 : MicrosoftMangleContext(Context, Diags) { 398 // To mangle anonymous namespaces, hash the path to the main source file. The 399 // path should be whatever (probably relative) path was passed on the command 400 // line. The goal is for the compiler to produce the same output regardless of 401 // working directory, so use the uncanonicalized relative path. 402 // 403 // It's important to make the mangled names unique because, when CodeView 404 // debug info is in use, the debugger uses mangled type names to distinguish 405 // between otherwise identically named types in anonymous namespaces. 406 // 407 // These symbols are always internal, so there is no need for the hash to 408 // match what MSVC produces. For the same reason, clang is free to change the 409 // hash at any time without breaking compatibility with old versions of clang. 410 // The generated names are intended to look similar to what MSVC generates, 411 // which are something like "?A0x01234567@". 412 SourceManager &SM = Context.getSourceManager(); 413 if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { 414 // Truncate the hash so we get 8 characters of hexadecimal. 415 uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName())); 416 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 417 } else { 418 // If we don't have a path to the main file, we'll just use 0. 419 AnonymousNamespaceHash = "0"; 420 } 421 } 422 423 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 424 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 425 LanguageLinkage L = FD->getLanguageLinkage(); 426 // Overloadable functions need mangling. 427 if (FD->hasAttr<OverloadableAttr>()) 428 return true; 429 430 // The ABI expects that we would never mangle "typical" user-defined entry 431 // points regardless of visibility or freestanding-ness. 432 // 433 // N.B. This is distinct from asking about "main". "main" has a lot of 434 // special rules associated with it in the standard while these 435 // user-defined entry points are outside of the purview of the standard. 436 // For example, there can be only one definition for "main" in a standards 437 // compliant program; however nothing forbids the existence of wmain and 438 // WinMain in the same translation unit. 439 if (FD->isMSVCRTEntryPoint()) 440 return false; 441 442 // C++ functions and those whose names are not a simple identifier need 443 // mangling. 444 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 445 return true; 446 447 // C functions are not mangled. 448 if (L == CLanguageLinkage) 449 return false; 450 } 451 452 // Otherwise, no mangling is done outside C++ mode. 453 if (!getASTContext().getLangOpts().CPlusPlus) 454 return false; 455 456 const VarDecl *VD = dyn_cast<VarDecl>(D); 457 if (VD && !isa<DecompositionDecl>(D)) { 458 // C variables are not mangled. 459 if (VD->isExternC()) 460 return false; 461 462 // Variables at global scope with non-internal linkage are not mangled. 463 const DeclContext *DC = getEffectiveDeclContext(D); 464 // Check for extern variable declared locally. 465 if (DC->isFunctionOrMethod() && D->hasLinkage()) 466 while (!DC->isNamespace() && !DC->isTranslationUnit()) 467 DC = getEffectiveParentContext(DC); 468 469 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && 470 !isa<VarTemplateSpecializationDecl>(D) && 471 D->getIdentifier() != nullptr) 472 return false; 473 } 474 475 return true; 476 } 477 478 bool 479 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 480 return true; 481 } 482 483 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { 484 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 485 // Therefore it's really important that we don't decorate the 486 // name with leading underscores or leading/trailing at signs. So, by 487 // default, we emit an asm marker at the start so we get the name right. 488 // Callers can override this with a custom prefix. 489 490 // <mangled-name> ::= ? <name> <type-encoding> 491 Out << Prefix; 492 mangleName(D); 493 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 494 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD)); 495 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 496 mangleVariableEncoding(VD); 497 else 498 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 499 } 500 501 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD, 502 bool ShouldMangle) { 503 // <type-encoding> ::= <function-class> <function-type> 504 505 // Since MSVC operates on the type as written and not the canonical type, it 506 // actually matters which decl we have here. MSVC appears to choose the 507 // first, since it is most likely to be the declaration in a header file. 508 FD = FD->getFirstDecl(); 509 510 // We should never ever see a FunctionNoProtoType at this point. 511 // We don't even know how to mangle their types anyway :). 512 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 513 514 // extern "C" functions can hold entities that must be mangled. 515 // As it stands, these functions still need to get expressed in the full 516 // external name. They have their class and type omitted, replaced with '9'. 517 if (ShouldMangle) { 518 // We would like to mangle all extern "C" functions using this additional 519 // component but this would break compatibility with MSVC's behavior. 520 // Instead, do this when we know that compatibility isn't important (in 521 // other words, when it is an overloaded extern "C" function). 522 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 523 Out << "$$J0"; 524 525 mangleFunctionClass(FD); 526 527 mangleFunctionType(FT, FD, false, false); 528 } else { 529 Out << '9'; 530 } 531 } 532 533 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 534 // <type-encoding> ::= <storage-class> <variable-type> 535 // <storage-class> ::= 0 # private static member 536 // ::= 1 # protected static member 537 // ::= 2 # public static member 538 // ::= 3 # global 539 // ::= 4 # static local 540 541 // The first character in the encoding (after the name) is the storage class. 542 if (VD->isStaticDataMember()) { 543 // If it's a static member, it also encodes the access level. 544 switch (VD->getAccess()) { 545 default: 546 case AS_private: Out << '0'; break; 547 case AS_protected: Out << '1'; break; 548 case AS_public: Out << '2'; break; 549 } 550 } 551 else if (!VD->isStaticLocal()) 552 Out << '3'; 553 else 554 Out << '4'; 555 // Now mangle the type. 556 // <variable-type> ::= <type> <cvr-qualifiers> 557 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 558 // Pointers and references are odd. The type of 'int * const foo;' gets 559 // mangled as 'QAHA' instead of 'PAHB', for example. 560 SourceRange SR = VD->getSourceRange(); 561 QualType Ty = VD->getType(); 562 if (Ty->isPointerType() || Ty->isReferenceType() || 563 Ty->isMemberPointerType()) { 564 mangleType(Ty, SR, QMM_Drop); 565 manglePointerExtQualifiers( 566 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 567 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 568 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 569 // Member pointers are suffixed with a back reference to the member 570 // pointer's class name. 571 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 572 } else 573 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 574 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 575 // Global arrays are funny, too. 576 mangleDecayedArrayType(AT); 577 if (AT->getElementType()->isArrayType()) 578 Out << 'A'; 579 else 580 mangleQualifiers(Ty.getQualifiers(), false); 581 } else { 582 mangleType(Ty, SR, QMM_Drop); 583 mangleQualifiers(Ty.getQualifiers(), false); 584 } 585 } 586 587 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 588 const ValueDecl *VD) { 589 // <member-data-pointer> ::= <integer-literal> 590 // ::= $F <number> <number> 591 // ::= $G <number> <number> <number> 592 593 int64_t FieldOffset; 594 int64_t VBTableOffset; 595 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); 596 if (VD) { 597 FieldOffset = getASTContext().getFieldOffset(VD); 598 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 599 "cannot take address of bitfield"); 600 FieldOffset /= getASTContext().getCharWidth(); 601 602 VBTableOffset = 0; 603 604 if (IM == MSInheritanceAttr::Keyword_virtual_inheritance) 605 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 606 } else { 607 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 608 609 VBTableOffset = -1; 610 } 611 612 char Code = '\0'; 613 switch (IM) { 614 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break; 615 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break; 616 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break; 617 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break; 618 } 619 620 Out << '$' << Code; 621 622 mangleNumber(FieldOffset); 623 624 // The C++ standard doesn't allow base-to-derived member pointer conversions 625 // in template parameter contexts, so the vbptr offset of data member pointers 626 // is always zero. 627 if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) 628 mangleNumber(0); 629 if (MSInheritanceAttr::hasVBTableOffsetField(IM)) 630 mangleNumber(VBTableOffset); 631 } 632 633 void 634 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 635 const CXXMethodDecl *MD) { 636 // <member-function-pointer> ::= $1? <name> 637 // ::= $H? <name> <number> 638 // ::= $I? <name> <number> <number> 639 // ::= $J? <name> <number> <number> <number> 640 641 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); 642 643 char Code = '\0'; 644 switch (IM) { 645 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break; 646 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break; 647 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break; 648 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break; 649 } 650 651 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 652 // thunk. 653 uint64_t NVOffset = 0; 654 uint64_t VBTableOffset = 0; 655 uint64_t VBPtrOffset = 0; 656 if (MD) { 657 Out << '$' << Code << '?'; 658 if (MD->isVirtual()) { 659 MicrosoftVTableContext *VTContext = 660 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 661 MethodVFTableLocation ML = 662 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 663 mangleVirtualMemPtrThunk(MD, ML); 664 NVOffset = ML.VFPtrOffset.getQuantity(); 665 VBTableOffset = ML.VBTableIndex * 4; 666 if (ML.VBase) { 667 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 668 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 669 } 670 } else { 671 mangleName(MD); 672 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 673 } 674 675 if (VBTableOffset == 0 && 676 IM == MSInheritanceAttr::Keyword_virtual_inheritance) 677 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 678 } else { 679 // Null single inheritance member functions are encoded as a simple nullptr. 680 if (IM == MSInheritanceAttr::Keyword_single_inheritance) { 681 Out << "$0A@"; 682 return; 683 } 684 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance) 685 VBTableOffset = -1; 686 Out << '$' << Code; 687 } 688 689 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM)) 690 mangleNumber(static_cast<uint32_t>(NVOffset)); 691 if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) 692 mangleNumber(VBPtrOffset); 693 if (MSInheritanceAttr::hasVBTableOffsetField(IM)) 694 mangleNumber(VBTableOffset); 695 } 696 697 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 698 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 699 // Get the vftable offset. 700 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 701 getASTContext().getTargetInfo().getPointerWidth(0)); 702 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 703 704 Out << "?_9"; 705 mangleName(MD->getParent()); 706 Out << "$B"; 707 mangleNumber(OffsetInVFTable); 708 Out << 'A'; 709 mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>()); 710 } 711 712 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { 713 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 714 715 // Always start with the unqualified name. 716 mangleUnqualifiedName(ND); 717 718 mangleNestedName(ND); 719 720 // Terminate the whole name with an '@'. 721 Out << '@'; 722 } 723 724 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 725 // <non-negative integer> ::= A@ # when Number == 0 726 // ::= <decimal digit> # when 1 <= Number <= 10 727 // ::= <hex digit>+ @ # when Number >= 10 728 // 729 // <number> ::= [?] <non-negative integer> 730 731 uint64_t Value = static_cast<uint64_t>(Number); 732 if (Number < 0) { 733 Value = -Value; 734 Out << '?'; 735 } 736 737 if (Value == 0) 738 Out << "A@"; 739 else if (Value >= 1 && Value <= 10) 740 Out << (Value - 1); 741 else { 742 // Numbers that are not encoded as decimal digits are represented as nibbles 743 // in the range of ASCII characters 'A' to 'P'. 744 // The number 0x123450 would be encoded as 'BCDEFA' 745 char EncodedNumberBuffer[sizeof(uint64_t) * 2]; 746 MutableArrayRef<char> BufferRef(EncodedNumberBuffer); 747 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 748 for (; Value != 0; Value >>= 4) 749 *I++ = 'A' + (Value & 0xf); 750 Out.write(I.base(), I - BufferRef.rbegin()); 751 Out << '@'; 752 } 753 } 754 755 static const TemplateDecl * 756 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 757 // Check if we have a function template. 758 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 759 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 760 TemplateArgs = FD->getTemplateSpecializationArgs(); 761 return TD; 762 } 763 } 764 765 // Check if we have a class template. 766 if (const ClassTemplateSpecializationDecl *Spec = 767 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 768 TemplateArgs = &Spec->getTemplateArgs(); 769 return Spec->getSpecializedTemplate(); 770 } 771 772 // Check if we have a variable template. 773 if (const VarTemplateSpecializationDecl *Spec = 774 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 775 TemplateArgs = &Spec->getTemplateArgs(); 776 return Spec->getSpecializedTemplate(); 777 } 778 779 return nullptr; 780 } 781 782 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 783 DeclarationName Name) { 784 // <unqualified-name> ::= <operator-name> 785 // ::= <ctor-dtor-name> 786 // ::= <source-name> 787 // ::= <template-name> 788 789 // Check if we have a template. 790 const TemplateArgumentList *TemplateArgs = nullptr; 791 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 792 // Function templates aren't considered for name back referencing. This 793 // makes sense since function templates aren't likely to occur multiple 794 // times in a symbol. 795 if (isa<FunctionTemplateDecl>(TD)) { 796 mangleTemplateInstantiationName(TD, *TemplateArgs); 797 Out << '@'; 798 return; 799 } 800 801 // Here comes the tricky thing: if we need to mangle something like 802 // void foo(A::X<Y>, B::X<Y>), 803 // the X<Y> part is aliased. However, if you need to mangle 804 // void foo(A::X<A::Y>, A::X<B::Y>), 805 // the A::X<> part is not aliased. 806 // That is, from the mangler's perspective we have a structure like this: 807 // namespace[s] -> type[ -> template-parameters] 808 // but from the Clang perspective we have 809 // type [ -> template-parameters] 810 // \-> namespace[s] 811 // What we do is we create a new mangler, mangle the same type (without 812 // a namespace suffix) to a string using the extra mangler and then use 813 // the mangled type name as a key to check the mangling of different types 814 // for aliasing. 815 816 // It's important to key cache reads off ND, not TD -- the same TD can 817 // be used with different TemplateArgs, but ND uniquely identifies 818 // TD / TemplateArg pairs. 819 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 820 if (Found == TemplateArgBackReferences.end()) { 821 822 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 823 if (Found == TemplateArgStrings.end()) { 824 // Mangle full template name into temporary buffer. 825 llvm::SmallString<64> TemplateMangling; 826 llvm::raw_svector_ostream Stream(TemplateMangling); 827 MicrosoftCXXNameMangler Extra(Context, Stream); 828 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 829 830 // Use the string backref vector to possibly get a back reference. 831 mangleSourceName(TemplateMangling); 832 833 // Memoize back reference for this type if one exist, else memoize 834 // the mangling itself. 835 BackRefVec::iterator StringFound = 836 llvm::find(NameBackReferences, TemplateMangling); 837 if (StringFound != NameBackReferences.end()) { 838 TemplateArgBackReferences[ND] = 839 StringFound - NameBackReferences.begin(); 840 } else { 841 TemplateArgStrings[ND] = 842 TemplateArgStringStorage.save(TemplateMangling.str()); 843 } 844 } else { 845 Out << Found->second; // Outputs a StringRef. 846 } 847 } else { 848 Out << Found->second; // Outputs a back reference (an int). 849 } 850 return; 851 } 852 853 switch (Name.getNameKind()) { 854 case DeclarationName::Identifier: { 855 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 856 mangleSourceName(II->getName()); 857 break; 858 } 859 860 // Otherwise, an anonymous entity. We must have a declaration. 861 assert(ND && "mangling empty name without declaration"); 862 863 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 864 if (NS->isAnonymousNamespace()) { 865 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 866 break; 867 } 868 } 869 870 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 871 // FIXME: Invented mangling for decomposition declarations: 872 // [X,Y,Z] 873 // where X,Y,Z are the names of the bindings. 874 llvm::SmallString<128> Name("["); 875 for (auto *BD : DD->bindings()) { 876 if (Name.size() > 1) 877 Name += ','; 878 Name += BD->getDeclName().getAsIdentifierInfo()->getName(); 879 } 880 Name += ']'; 881 mangleSourceName(Name); 882 break; 883 } 884 885 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 886 // We must have an anonymous union or struct declaration. 887 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 888 assert(RD && "expected variable decl to have a record type"); 889 // Anonymous types with no tag or typedef get the name of their 890 // declarator mangled in. If they have no declarator, number them with 891 // a $S prefix. 892 llvm::SmallString<64> Name("$S"); 893 // Get a unique id for the anonymous struct. 894 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 895 mangleSourceName(Name.str()); 896 break; 897 } 898 899 // We must have an anonymous struct. 900 const TagDecl *TD = cast<TagDecl>(ND); 901 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 902 assert(TD->getDeclContext() == D->getDeclContext() && 903 "Typedef should not be in another decl context!"); 904 assert(D->getDeclName().getAsIdentifierInfo() && 905 "Typedef was not named!"); 906 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 907 break; 908 } 909 910 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 911 if (Record->isLambda()) { 912 llvm::SmallString<10> Name("<lambda_"); 913 914 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 915 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 916 unsigned LambdaId; 917 const ParmVarDecl *Parm = 918 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 919 const FunctionDecl *Func = 920 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 921 922 if (Func) { 923 unsigned DefaultArgNo = 924 Func->getNumParams() - Parm->getFunctionScopeIndex(); 925 Name += llvm::utostr(DefaultArgNo); 926 Name += "_"; 927 } 928 929 if (LambdaManglingNumber) 930 LambdaId = LambdaManglingNumber; 931 else 932 LambdaId = Context.getLambdaId(Record); 933 934 Name += llvm::utostr(LambdaId); 935 Name += ">"; 936 937 mangleSourceName(Name); 938 939 // If the context of a closure type is an initializer for a class 940 // member (static or nonstatic), it is encoded in a qualified name. 941 if (LambdaManglingNumber && LambdaContextDecl) { 942 if ((isa<VarDecl>(LambdaContextDecl) || 943 isa<FieldDecl>(LambdaContextDecl)) && 944 LambdaContextDecl->getDeclContext()->isRecord()) { 945 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 946 } 947 } 948 break; 949 } 950 } 951 952 llvm::SmallString<64> Name; 953 if (DeclaratorDecl *DD = 954 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 955 // Anonymous types without a name for linkage purposes have their 956 // declarator mangled in if they have one. 957 Name += "<unnamed-type-"; 958 Name += DD->getName(); 959 } else if (TypedefNameDecl *TND = 960 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 961 TD)) { 962 // Anonymous types without a name for linkage purposes have their 963 // associate typedef mangled in if they have one. 964 Name += "<unnamed-type-"; 965 Name += TND->getName(); 966 } else if (isa<EnumDecl>(TD) && 967 cast<EnumDecl>(TD)->enumerator_begin() != 968 cast<EnumDecl>(TD)->enumerator_end()) { 969 // Anonymous non-empty enums mangle in the first enumerator. 970 auto *ED = cast<EnumDecl>(TD); 971 Name += "<unnamed-enum-"; 972 Name += ED->enumerator_begin()->getName(); 973 } else { 974 // Otherwise, number the types using a $S prefix. 975 Name += "<unnamed-type-$S"; 976 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 977 } 978 Name += ">"; 979 mangleSourceName(Name.str()); 980 break; 981 } 982 983 case DeclarationName::ObjCZeroArgSelector: 984 case DeclarationName::ObjCOneArgSelector: 985 case DeclarationName::ObjCMultiArgSelector: { 986 // This is reachable only when constructing an outlined SEH finally 987 // block. Nothing depends on this mangling and it's used only with 988 // functinos with internal linkage. 989 llvm::SmallString<64> Name; 990 mangleSourceName(Name.str()); 991 break; 992 } 993 994 case DeclarationName::CXXConstructorName: 995 if (isStructorDecl(ND)) { 996 if (StructorType == Ctor_CopyingClosure) { 997 Out << "?_O"; 998 return; 999 } 1000 if (StructorType == Ctor_DefaultClosure) { 1001 Out << "?_F"; 1002 return; 1003 } 1004 } 1005 Out << "?0"; 1006 return; 1007 1008 case DeclarationName::CXXDestructorName: 1009 if (isStructorDecl(ND)) 1010 // If the named decl is the C++ destructor we're mangling, 1011 // use the type we were given. 1012 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1013 else 1014 // Otherwise, use the base destructor name. This is relevant if a 1015 // class with a destructor is declared within a destructor. 1016 mangleCXXDtorType(Dtor_Base); 1017 break; 1018 1019 case DeclarationName::CXXConversionFunctionName: 1020 // <operator-name> ::= ?B # (cast) 1021 // The target type is encoded as the return type. 1022 Out << "?B"; 1023 break; 1024 1025 case DeclarationName::CXXOperatorName: 1026 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1027 break; 1028 1029 case DeclarationName::CXXLiteralOperatorName: { 1030 Out << "?__K"; 1031 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1032 break; 1033 } 1034 1035 case DeclarationName::CXXDeductionGuideName: 1036 llvm_unreachable("Can't mangle a deduction guide name!"); 1037 1038 case DeclarationName::CXXUsingDirective: 1039 llvm_unreachable("Can't mangle a using directive name!"); 1040 } 1041 } 1042 1043 // <postfix> ::= <unqualified-name> [<postfix>] 1044 // ::= <substitution> [<postfix>] 1045 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) { 1046 const DeclContext *DC = getEffectiveDeclContext(ND); 1047 while (!DC->isTranslationUnit()) { 1048 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1049 unsigned Disc; 1050 if (Context.getNextDiscriminator(ND, Disc)) { 1051 Out << '?'; 1052 mangleNumber(Disc); 1053 Out << '?'; 1054 } 1055 } 1056 1057 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1058 auto Discriminate = 1059 [](StringRef Name, const unsigned Discriminator, 1060 const unsigned ParameterDiscriminator) -> std::string { 1061 std::string Buffer; 1062 llvm::raw_string_ostream Stream(Buffer); 1063 Stream << Name; 1064 if (Discriminator) 1065 Stream << '_' << Discriminator; 1066 if (ParameterDiscriminator) 1067 Stream << '_' << ParameterDiscriminator; 1068 return Stream.str(); 1069 }; 1070 1071 unsigned Discriminator = BD->getBlockManglingNumber(); 1072 if (!Discriminator) 1073 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1074 1075 // Mangle the parameter position as a discriminator to deal with unnamed 1076 // parameters. Rather than mangling the unqualified parameter name, 1077 // always use the position to give a uniform mangling. 1078 unsigned ParameterDiscriminator = 0; 1079 if (const auto *MC = BD->getBlockManglingContextDecl()) 1080 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1081 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1082 ParameterDiscriminator = 1083 F->getNumParams() - P->getFunctionScopeIndex(); 1084 1085 DC = getEffectiveDeclContext(BD); 1086 1087 Out << '?'; 1088 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1089 ParameterDiscriminator)); 1090 // If we have a block mangling context, encode that now. This allows us 1091 // to discriminate between named static data initializers in the same 1092 // scope. This is handled differently from parameters, which use 1093 // positions to discriminate between multiple instances. 1094 if (const auto *MC = BD->getBlockManglingContextDecl()) 1095 if (!isa<ParmVarDecl>(MC)) 1096 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1097 mangleUnqualifiedName(ND); 1098 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1099 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1100 // just the unqualified name to get the ordering correct. 1101 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1102 mangleName(RD); 1103 else 1104 Out << '@'; 1105 // void __cdecl 1106 Out << "YAX"; 1107 // struct __block_literal * 1108 Out << 'P'; 1109 // __ptr64 1110 if (PointersAre64Bit) 1111 Out << 'E'; 1112 Out << 'A'; 1113 mangleArtificialTagType(TTK_Struct, 1114 Discriminate("__block_literal", Discriminator, 1115 ParameterDiscriminator)); 1116 Out << "@Z"; 1117 1118 // If the effective context was a Record, we have fully mangled the 1119 // qualified name and do not need to continue. 1120 if (isa<RecordDecl>(DC)) 1121 break; 1122 continue; 1123 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1124 mangleObjCMethodName(Method); 1125 } else if (isa<NamedDecl>(DC)) { 1126 ND = cast<NamedDecl>(DC); 1127 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1128 mangle(FD, "?"); 1129 break; 1130 } else { 1131 mangleUnqualifiedName(ND); 1132 // Lambdas in default arguments conceptually belong to the function the 1133 // parameter corresponds to. 1134 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1135 DC = LDADC; 1136 continue; 1137 } 1138 } 1139 } 1140 DC = DC->getParent(); 1141 } 1142 } 1143 1144 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1145 // Microsoft uses the names on the case labels for these dtor variants. Clang 1146 // uses the Itanium terminology internally. Everything in this ABI delegates 1147 // towards the base dtor. 1148 switch (T) { 1149 // <operator-name> ::= ?1 # destructor 1150 case Dtor_Base: Out << "?1"; return; 1151 // <operator-name> ::= ?_D # vbase destructor 1152 case Dtor_Complete: Out << "?_D"; return; 1153 // <operator-name> ::= ?_G # scalar deleting destructor 1154 case Dtor_Deleting: Out << "?_G"; return; 1155 // <operator-name> ::= ?_E # vector deleting destructor 1156 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1157 // it. 1158 case Dtor_Comdat: 1159 llvm_unreachable("not expecting a COMDAT"); 1160 } 1161 llvm_unreachable("Unsupported dtor type?"); 1162 } 1163 1164 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1165 SourceLocation Loc) { 1166 switch (OO) { 1167 // ?0 # constructor 1168 // ?1 # destructor 1169 // <operator-name> ::= ?2 # new 1170 case OO_New: Out << "?2"; break; 1171 // <operator-name> ::= ?3 # delete 1172 case OO_Delete: Out << "?3"; break; 1173 // <operator-name> ::= ?4 # = 1174 case OO_Equal: Out << "?4"; break; 1175 // <operator-name> ::= ?5 # >> 1176 case OO_GreaterGreater: Out << "?5"; break; 1177 // <operator-name> ::= ?6 # << 1178 case OO_LessLess: Out << "?6"; break; 1179 // <operator-name> ::= ?7 # ! 1180 case OO_Exclaim: Out << "?7"; break; 1181 // <operator-name> ::= ?8 # == 1182 case OO_EqualEqual: Out << "?8"; break; 1183 // <operator-name> ::= ?9 # != 1184 case OO_ExclaimEqual: Out << "?9"; break; 1185 // <operator-name> ::= ?A # [] 1186 case OO_Subscript: Out << "?A"; break; 1187 // ?B # conversion 1188 // <operator-name> ::= ?C # -> 1189 case OO_Arrow: Out << "?C"; break; 1190 // <operator-name> ::= ?D # * 1191 case OO_Star: Out << "?D"; break; 1192 // <operator-name> ::= ?E # ++ 1193 case OO_PlusPlus: Out << "?E"; break; 1194 // <operator-name> ::= ?F # -- 1195 case OO_MinusMinus: Out << "?F"; break; 1196 // <operator-name> ::= ?G # - 1197 case OO_Minus: Out << "?G"; break; 1198 // <operator-name> ::= ?H # + 1199 case OO_Plus: Out << "?H"; break; 1200 // <operator-name> ::= ?I # & 1201 case OO_Amp: Out << "?I"; break; 1202 // <operator-name> ::= ?J # ->* 1203 case OO_ArrowStar: Out << "?J"; break; 1204 // <operator-name> ::= ?K # / 1205 case OO_Slash: Out << "?K"; break; 1206 // <operator-name> ::= ?L # % 1207 case OO_Percent: Out << "?L"; break; 1208 // <operator-name> ::= ?M # < 1209 case OO_Less: Out << "?M"; break; 1210 // <operator-name> ::= ?N # <= 1211 case OO_LessEqual: Out << "?N"; break; 1212 // <operator-name> ::= ?O # > 1213 case OO_Greater: Out << "?O"; break; 1214 // <operator-name> ::= ?P # >= 1215 case OO_GreaterEqual: Out << "?P"; break; 1216 // <operator-name> ::= ?Q # , 1217 case OO_Comma: Out << "?Q"; break; 1218 // <operator-name> ::= ?R # () 1219 case OO_Call: Out << "?R"; break; 1220 // <operator-name> ::= ?S # ~ 1221 case OO_Tilde: Out << "?S"; break; 1222 // <operator-name> ::= ?T # ^ 1223 case OO_Caret: Out << "?T"; break; 1224 // <operator-name> ::= ?U # | 1225 case OO_Pipe: Out << "?U"; break; 1226 // <operator-name> ::= ?V # && 1227 case OO_AmpAmp: Out << "?V"; break; 1228 // <operator-name> ::= ?W # || 1229 case OO_PipePipe: Out << "?W"; break; 1230 // <operator-name> ::= ?X # *= 1231 case OO_StarEqual: Out << "?X"; break; 1232 // <operator-name> ::= ?Y # += 1233 case OO_PlusEqual: Out << "?Y"; break; 1234 // <operator-name> ::= ?Z # -= 1235 case OO_MinusEqual: Out << "?Z"; break; 1236 // <operator-name> ::= ?_0 # /= 1237 case OO_SlashEqual: Out << "?_0"; break; 1238 // <operator-name> ::= ?_1 # %= 1239 case OO_PercentEqual: Out << "?_1"; break; 1240 // <operator-name> ::= ?_2 # >>= 1241 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1242 // <operator-name> ::= ?_3 # <<= 1243 case OO_LessLessEqual: Out << "?_3"; break; 1244 // <operator-name> ::= ?_4 # &= 1245 case OO_AmpEqual: Out << "?_4"; break; 1246 // <operator-name> ::= ?_5 # |= 1247 case OO_PipeEqual: Out << "?_5"; break; 1248 // <operator-name> ::= ?_6 # ^= 1249 case OO_CaretEqual: Out << "?_6"; break; 1250 // ?_7 # vftable 1251 // ?_8 # vbtable 1252 // ?_9 # vcall 1253 // ?_A # typeof 1254 // ?_B # local static guard 1255 // ?_C # string 1256 // ?_D # vbase destructor 1257 // ?_E # vector deleting destructor 1258 // ?_F # default constructor closure 1259 // ?_G # scalar deleting destructor 1260 // ?_H # vector constructor iterator 1261 // ?_I # vector destructor iterator 1262 // ?_J # vector vbase constructor iterator 1263 // ?_K # virtual displacement map 1264 // ?_L # eh vector constructor iterator 1265 // ?_M # eh vector destructor iterator 1266 // ?_N # eh vector vbase constructor iterator 1267 // ?_O # copy constructor closure 1268 // ?_P<name> # udt returning <name> 1269 // ?_Q # <unknown> 1270 // ?_R0 # RTTI Type Descriptor 1271 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1272 // ?_R2 # RTTI Base Class Array 1273 // ?_R3 # RTTI Class Hierarchy Descriptor 1274 // ?_R4 # RTTI Complete Object Locator 1275 // ?_S # local vftable 1276 // ?_T # local vftable constructor closure 1277 // <operator-name> ::= ?_U # new[] 1278 case OO_Array_New: Out << "?_U"; break; 1279 // <operator-name> ::= ?_V # delete[] 1280 case OO_Array_Delete: Out << "?_V"; break; 1281 // <operator-name> ::= ?__L # co_await 1282 case OO_Coawait: Out << "?__L"; break; 1283 // <operator-name> ::= ?__M # <=> 1284 case OO_Spaceship: Out << "?__M"; break; 1285 1286 case OO_Conditional: { 1287 DiagnosticsEngine &Diags = Context.getDiags(); 1288 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1289 "cannot mangle this conditional operator yet"); 1290 Diags.Report(Loc, DiagID); 1291 break; 1292 } 1293 1294 case OO_None: 1295 case NUM_OVERLOADED_OPERATORS: 1296 llvm_unreachable("Not an overloaded operator"); 1297 } 1298 } 1299 1300 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1301 // <source name> ::= <identifier> @ 1302 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1303 if (Found == NameBackReferences.end()) { 1304 if (NameBackReferences.size() < 10) 1305 NameBackReferences.push_back(Name); 1306 Out << Name << '@'; 1307 } else { 1308 Out << (Found - NameBackReferences.begin()); 1309 } 1310 } 1311 1312 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1313 Context.mangleObjCMethodName(MD, Out); 1314 } 1315 1316 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1317 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1318 // <template-name> ::= <unscoped-template-name> <template-args> 1319 // ::= <substitution> 1320 // Always start with the unqualified name. 1321 1322 // Templates have their own context for back references. 1323 ArgBackRefMap OuterFunArgsContext; 1324 ArgBackRefMap OuterTemplateArgsContext; 1325 BackRefVec OuterTemplateContext; 1326 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1327 NameBackReferences.swap(OuterTemplateContext); 1328 FunArgBackReferences.swap(OuterFunArgsContext); 1329 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1330 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1331 1332 mangleUnscopedTemplateName(TD); 1333 mangleTemplateArgs(TD, TemplateArgs); 1334 1335 // Restore the previous back reference contexts. 1336 NameBackReferences.swap(OuterTemplateContext); 1337 FunArgBackReferences.swap(OuterFunArgsContext); 1338 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1339 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1340 } 1341 1342 void 1343 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { 1344 // <unscoped-template-name> ::= ?$ <unqualified-name> 1345 Out << "?$"; 1346 mangleUnqualifiedName(TD); 1347 } 1348 1349 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value, 1350 bool IsBoolean) { 1351 // <integer-literal> ::= $0 <number> 1352 Out << "$0"; 1353 // Make sure booleans are encoded as 0/1. 1354 if (IsBoolean && Value.getBoolValue()) 1355 mangleNumber(1); 1356 else if (Value.isSigned()) 1357 mangleNumber(Value.getSExtValue()); 1358 else 1359 mangleNumber(Value.getZExtValue()); 1360 } 1361 1362 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { 1363 // See if this is a constant expression. 1364 llvm::APSInt Value; 1365 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { 1366 mangleIntegerLiteral(Value, E->getType()->isBooleanType()); 1367 return; 1368 } 1369 1370 // Look through no-op casts like template parameter substitutions. 1371 E = E->IgnoreParenNoopCasts(Context.getASTContext()); 1372 1373 const CXXUuidofExpr *UE = nullptr; 1374 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1375 if (UO->getOpcode() == UO_AddrOf) 1376 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr()); 1377 } else 1378 UE = dyn_cast<CXXUuidofExpr>(E); 1379 1380 if (UE) { 1381 // If we had to peek through an address-of operator, treat this like we are 1382 // dealing with a pointer type. Otherwise, treat it like a const reference. 1383 // 1384 // N.B. This matches up with the handling of TemplateArgument::Declaration 1385 // in mangleTemplateArg 1386 if (UE == E) 1387 Out << "$E?"; 1388 else 1389 Out << "$1?"; 1390 1391 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from 1392 // const __s_GUID _GUID_{lower case UUID with underscores} 1393 StringRef Uuid = UE->getUuidStr(); 1394 std::string Name = "_GUID_" + Uuid.lower(); 1395 std::replace(Name.begin(), Name.end(), '-', '_'); 1396 1397 mangleSourceName(Name); 1398 // Terminate the whole name with an '@'. 1399 Out << '@'; 1400 // It's a global variable. 1401 Out << '3'; 1402 // It's a struct called __s_GUID. 1403 mangleArtificialTagType(TTK_Struct, "__s_GUID"); 1404 // It's const. 1405 Out << 'B'; 1406 return; 1407 } 1408 1409 // As bad as this diagnostic is, it's better than crashing. 1410 DiagnosticsEngine &Diags = Context.getDiags(); 1411 unsigned DiagID = Diags.getCustomDiagID( 1412 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1413 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1414 << E->getSourceRange(); 1415 } 1416 1417 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1418 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1419 // <template-args> ::= <template-arg>+ 1420 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1421 assert(TPL->size() == TemplateArgs.size() && 1422 "size mismatch between args and parms!"); 1423 1424 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1425 const TemplateArgument &TA = TemplateArgs[i]; 1426 1427 // Separate consecutive packs by $$Z. 1428 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1429 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1430 Out << "$$Z"; 1431 1432 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1433 } 1434 } 1435 1436 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1437 const TemplateArgument &TA, 1438 const NamedDecl *Parm) { 1439 // <template-arg> ::= <type> 1440 // ::= <integer-literal> 1441 // ::= <member-data-pointer> 1442 // ::= <member-function-pointer> 1443 // ::= $E? <name> <type-encoding> 1444 // ::= $1? <name> <type-encoding> 1445 // ::= $0A@ 1446 // ::= <template-args> 1447 1448 switch (TA.getKind()) { 1449 case TemplateArgument::Null: 1450 llvm_unreachable("Can't mangle null template arguments!"); 1451 case TemplateArgument::TemplateExpansion: 1452 llvm_unreachable("Can't mangle template expansion arguments!"); 1453 case TemplateArgument::Type: { 1454 QualType T = TA.getAsType(); 1455 mangleType(T, SourceRange(), QMM_Escape); 1456 break; 1457 } 1458 case TemplateArgument::Declaration: { 1459 const NamedDecl *ND = TA.getAsDecl(); 1460 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1461 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1462 ->getMostRecentNonInjectedDecl(), 1463 cast<ValueDecl>(ND)); 1464 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1465 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1466 if (MD && MD->isInstance()) { 1467 mangleMemberFunctionPointer( 1468 MD->getParent()->getMostRecentNonInjectedDecl(), MD); 1469 } else { 1470 Out << "$1?"; 1471 mangleName(FD); 1472 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1473 } 1474 } else { 1475 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); 1476 } 1477 break; 1478 } 1479 case TemplateArgument::Integral: 1480 mangleIntegerLiteral(TA.getAsIntegral(), 1481 TA.getIntegralType()->isBooleanType()); 1482 break; 1483 case TemplateArgument::NullPtr: { 1484 QualType T = TA.getNullPtrType(); 1485 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1486 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1487 if (MPT->isMemberFunctionPointerType() && 1488 !isa<FunctionTemplateDecl>(TD)) { 1489 mangleMemberFunctionPointer(RD, nullptr); 1490 return; 1491 } 1492 if (MPT->isMemberDataPointer()) { 1493 if (!isa<FunctionTemplateDecl>(TD)) { 1494 mangleMemberDataPointer(RD, nullptr); 1495 return; 1496 } 1497 // nullptr data pointers are always represented with a single field 1498 // which is initialized with either 0 or -1. Why -1? Well, we need to 1499 // distinguish the case where the data member is at offset zero in the 1500 // record. 1501 // However, we are free to use 0 *if* we would use multiple fields for 1502 // non-nullptr member pointers. 1503 if (!RD->nullFieldOffsetIsZero()) { 1504 mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false); 1505 return; 1506 } 1507 } 1508 } 1509 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false); 1510 break; 1511 } 1512 case TemplateArgument::Expression: 1513 mangleExpression(TA.getAsExpr()); 1514 break; 1515 case TemplateArgument::Pack: { 1516 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1517 if (TemplateArgs.empty()) { 1518 if (isa<TemplateTypeParmDecl>(Parm) || 1519 isa<TemplateTemplateParmDecl>(Parm)) 1520 // MSVC 2015 changed the mangling for empty expanded template packs, 1521 // use the old mangling for link compatibility for old versions. 1522 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1523 LangOptions::MSVC2015) 1524 ? "$$V" 1525 : "$$$V"); 1526 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1527 Out << "$S"; 1528 else 1529 llvm_unreachable("unexpected template parameter decl!"); 1530 } else { 1531 for (const TemplateArgument &PA : TemplateArgs) 1532 mangleTemplateArg(TD, PA, Parm); 1533 } 1534 break; 1535 } 1536 case TemplateArgument::Template: { 1537 const NamedDecl *ND = 1538 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1539 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1540 mangleType(TD); 1541 } else if (isa<TypeAliasDecl>(ND)) { 1542 Out << "$$Y"; 1543 mangleName(ND); 1544 } else { 1545 llvm_unreachable("unexpected template template NamedDecl!"); 1546 } 1547 break; 1548 } 1549 } 1550 } 1551 1552 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 1553 llvm::SmallString<64> TemplateMangling; 1554 llvm::raw_svector_ostream Stream(TemplateMangling); 1555 MicrosoftCXXNameMangler Extra(Context, Stream); 1556 1557 Stream << "?$"; 1558 Extra.mangleSourceName("Protocol"); 1559 Extra.mangleArtificialTagType(TTK_Struct, PD->getName()); 1560 1561 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1562 } 1563 1564 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 1565 Qualifiers Quals, 1566 SourceRange Range) { 1567 llvm::SmallString<64> TemplateMangling; 1568 llvm::raw_svector_ostream Stream(TemplateMangling); 1569 MicrosoftCXXNameMangler Extra(Context, Stream); 1570 1571 Stream << "?$"; 1572 switch (Quals.getObjCLifetime()) { 1573 case Qualifiers::OCL_None: 1574 case Qualifiers::OCL_ExplicitNone: 1575 break; 1576 case Qualifiers::OCL_Autoreleasing: 1577 Extra.mangleSourceName("Autoreleasing"); 1578 break; 1579 case Qualifiers::OCL_Strong: 1580 Extra.mangleSourceName("Strong"); 1581 break; 1582 case Qualifiers::OCL_Weak: 1583 Extra.mangleSourceName("Weak"); 1584 break; 1585 } 1586 Extra.manglePointerCVQualifiers(Quals); 1587 Extra.manglePointerExtQualifiers(Quals, Type); 1588 Extra.mangleType(Type, Range); 1589 1590 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1591 } 1592 1593 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 1594 Qualifiers Quals, 1595 SourceRange Range) { 1596 llvm::SmallString<64> TemplateMangling; 1597 llvm::raw_svector_ostream Stream(TemplateMangling); 1598 MicrosoftCXXNameMangler Extra(Context, Stream); 1599 1600 Stream << "?$"; 1601 Extra.mangleSourceName("KindOf"); 1602 Extra.mangleType(QualType(T, 0) 1603 .stripObjCKindOfType(getASTContext()) 1604 ->getAs<ObjCObjectType>(), 1605 Quals, Range); 1606 1607 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1608 } 1609 1610 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 1611 bool IsMember) { 1612 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 1613 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 1614 // 'I' means __restrict (32/64-bit). 1615 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 1616 // keyword! 1617 // <base-cvr-qualifiers> ::= A # near 1618 // ::= B # near const 1619 // ::= C # near volatile 1620 // ::= D # near const volatile 1621 // ::= E # far (16-bit) 1622 // ::= F # far const (16-bit) 1623 // ::= G # far volatile (16-bit) 1624 // ::= H # far const volatile (16-bit) 1625 // ::= I # huge (16-bit) 1626 // ::= J # huge const (16-bit) 1627 // ::= K # huge volatile (16-bit) 1628 // ::= L # huge const volatile (16-bit) 1629 // ::= M <basis> # based 1630 // ::= N <basis> # based const 1631 // ::= O <basis> # based volatile 1632 // ::= P <basis> # based const volatile 1633 // ::= Q # near member 1634 // ::= R # near const member 1635 // ::= S # near volatile member 1636 // ::= T # near const volatile member 1637 // ::= U # far member (16-bit) 1638 // ::= V # far const member (16-bit) 1639 // ::= W # far volatile member (16-bit) 1640 // ::= X # far const volatile member (16-bit) 1641 // ::= Y # huge member (16-bit) 1642 // ::= Z # huge const member (16-bit) 1643 // ::= 0 # huge volatile member (16-bit) 1644 // ::= 1 # huge const volatile member (16-bit) 1645 // ::= 2 <basis> # based member 1646 // ::= 3 <basis> # based const member 1647 // ::= 4 <basis> # based volatile member 1648 // ::= 5 <basis> # based const volatile member 1649 // ::= 6 # near function (pointers only) 1650 // ::= 7 # far function (pointers only) 1651 // ::= 8 # near method (pointers only) 1652 // ::= 9 # far method (pointers only) 1653 // ::= _A <basis> # based function (pointers only) 1654 // ::= _B <basis> # based function (far?) (pointers only) 1655 // ::= _C <basis> # based method (pointers only) 1656 // ::= _D <basis> # based method (far?) (pointers only) 1657 // ::= _E # block (Clang) 1658 // <basis> ::= 0 # __based(void) 1659 // ::= 1 # __based(segment)? 1660 // ::= 2 <name> # __based(name) 1661 // ::= 3 # ? 1662 // ::= 4 # ? 1663 // ::= 5 # not really based 1664 bool HasConst = Quals.hasConst(), 1665 HasVolatile = Quals.hasVolatile(); 1666 1667 if (!IsMember) { 1668 if (HasConst && HasVolatile) { 1669 Out << 'D'; 1670 } else if (HasVolatile) { 1671 Out << 'C'; 1672 } else if (HasConst) { 1673 Out << 'B'; 1674 } else { 1675 Out << 'A'; 1676 } 1677 } else { 1678 if (HasConst && HasVolatile) { 1679 Out << 'T'; 1680 } else if (HasVolatile) { 1681 Out << 'S'; 1682 } else if (HasConst) { 1683 Out << 'R'; 1684 } else { 1685 Out << 'Q'; 1686 } 1687 } 1688 1689 // FIXME: For now, just drop all extension qualifiers on the floor. 1690 } 1691 1692 void 1693 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 1694 // <ref-qualifier> ::= G # lvalue reference 1695 // ::= H # rvalue-reference 1696 switch (RefQualifier) { 1697 case RQ_None: 1698 break; 1699 1700 case RQ_LValue: 1701 Out << 'G'; 1702 break; 1703 1704 case RQ_RValue: 1705 Out << 'H'; 1706 break; 1707 } 1708 } 1709 1710 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 1711 QualType PointeeType) { 1712 if (PointersAre64Bit && 1713 (PointeeType.isNull() || !PointeeType->isFunctionType())) 1714 Out << 'E'; 1715 1716 if (Quals.hasRestrict()) 1717 Out << 'I'; 1718 1719 if (Quals.hasUnaligned() || 1720 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 1721 Out << 'F'; 1722 } 1723 1724 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 1725 // <pointer-cv-qualifiers> ::= P # no qualifiers 1726 // ::= Q # const 1727 // ::= R # volatile 1728 // ::= S # const volatile 1729 bool HasConst = Quals.hasConst(), 1730 HasVolatile = Quals.hasVolatile(); 1731 1732 if (HasConst && HasVolatile) { 1733 Out << 'S'; 1734 } else if (HasVolatile) { 1735 Out << 'R'; 1736 } else if (HasConst) { 1737 Out << 'Q'; 1738 } else { 1739 Out << 'P'; 1740 } 1741 } 1742 1743 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 1744 SourceRange Range) { 1745 // MSVC will backreference two canonically equivalent types that have slightly 1746 // different manglings when mangled alone. 1747 1748 // Decayed types do not match up with non-decayed versions of the same type. 1749 // 1750 // e.g. 1751 // void (*x)(void) will not form a backreference with void x(void) 1752 void *TypePtr; 1753 if (const auto *DT = T->getAs<DecayedType>()) { 1754 QualType OriginalType = DT->getOriginalType(); 1755 // All decayed ArrayTypes should be treated identically; as-if they were 1756 // a decayed IncompleteArrayType. 1757 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 1758 OriginalType = getASTContext().getIncompleteArrayType( 1759 AT->getElementType(), AT->getSizeModifier(), 1760 AT->getIndexTypeCVRQualifiers()); 1761 1762 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 1763 // If the original parameter was textually written as an array, 1764 // instead treat the decayed parameter like it's const. 1765 // 1766 // e.g. 1767 // int [] -> int * const 1768 if (OriginalType->isArrayType()) 1769 T = T.withConst(); 1770 } else { 1771 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 1772 } 1773 1774 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 1775 1776 if (Found == FunArgBackReferences.end()) { 1777 size_t OutSizeBefore = Out.tell(); 1778 1779 mangleType(T, Range, QMM_Drop); 1780 1781 // See if it's worth creating a back reference. 1782 // Only types longer than 1 character are considered 1783 // and only 10 back references slots are available: 1784 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 1785 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 1786 size_t Size = FunArgBackReferences.size(); 1787 FunArgBackReferences[TypePtr] = Size; 1788 } 1789 } else { 1790 Out << Found->second; 1791 } 1792 } 1793 1794 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 1795 const PassObjectSizeAttr *POSA) { 1796 int Type = POSA->getType(); 1797 bool Dynamic = POSA->isDynamic(); 1798 1799 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 1800 auto *TypePtr = (const void *)&*Iter; 1801 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 1802 1803 if (Found == FunArgBackReferences.end()) { 1804 std::string Name = 1805 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 1806 mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"}); 1807 1808 if (FunArgBackReferences.size() < 10) { 1809 size_t Size = FunArgBackReferences.size(); 1810 FunArgBackReferences[TypePtr] = Size; 1811 } 1812 } else { 1813 Out << Found->second; 1814 } 1815 } 1816 1817 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 1818 Qualifiers Quals, 1819 SourceRange Range) { 1820 // Address space is mangled as an unqualified templated type in the __clang 1821 // namespace. The demangled version of this is: 1822 // In the case of a language specific address space: 1823 // __clang::struct _AS[language_addr_space]<Type> 1824 // where: 1825 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 1826 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 1827 // "private"| "generic" ] 1828 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 1829 // Note that the above were chosen to match the Itanium mangling for this. 1830 // 1831 // In the case of a non-language specific address space: 1832 // __clang::struct _AS<TargetAS, Type> 1833 assert(Quals.hasAddressSpace() && "Not valid without address space"); 1834 llvm::SmallString<32> ASMangling; 1835 llvm::raw_svector_ostream Stream(ASMangling); 1836 MicrosoftCXXNameMangler Extra(Context, Stream); 1837 Stream << "?$"; 1838 1839 LangAS AS = Quals.getAddressSpace(); 1840 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 1841 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 1842 Extra.mangleSourceName("_AS"); 1843 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS), 1844 /*IsBoolean*/ false); 1845 } else { 1846 switch (AS) { 1847 default: 1848 llvm_unreachable("Not a language specific address space"); 1849 case LangAS::opencl_global: 1850 Extra.mangleSourceName("_ASCLglobal"); 1851 break; 1852 case LangAS::opencl_local: 1853 Extra.mangleSourceName("_ASCLlocal"); 1854 break; 1855 case LangAS::opencl_constant: 1856 Extra.mangleSourceName("_ASCLconstant"); 1857 break; 1858 case LangAS::opencl_private: 1859 Extra.mangleSourceName("_ASCLprivate"); 1860 break; 1861 case LangAS::opencl_generic: 1862 Extra.mangleSourceName("_ASCLgeneric"); 1863 break; 1864 case LangAS::cuda_device: 1865 Extra.mangleSourceName("_ASCUdevice"); 1866 break; 1867 case LangAS::cuda_constant: 1868 Extra.mangleSourceName("_ASCUconstant"); 1869 break; 1870 case LangAS::cuda_shared: 1871 Extra.mangleSourceName("_ASCUshared"); 1872 break; 1873 } 1874 } 1875 1876 Extra.mangleType(T, Range, QMM_Escape); 1877 mangleQualifiers(Qualifiers(), false); 1878 mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"}); 1879 } 1880 1881 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 1882 QualifierMangleMode QMM) { 1883 // Don't use the canonical types. MSVC includes things like 'const' on 1884 // pointer arguments to function pointers that canonicalization strips away. 1885 T = T.getDesugaredType(getASTContext()); 1886 Qualifiers Quals = T.getLocalQualifiers(); 1887 1888 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 1889 // If there were any Quals, getAsArrayType() pushed them onto the array 1890 // element type. 1891 if (QMM == QMM_Mangle) 1892 Out << 'A'; 1893 else if (QMM == QMM_Escape || QMM == QMM_Result) 1894 Out << "$$B"; 1895 mangleArrayType(AT); 1896 return; 1897 } 1898 1899 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 1900 T->isReferenceType() || T->isBlockPointerType(); 1901 1902 switch (QMM) { 1903 case QMM_Drop: 1904 if (Quals.hasObjCLifetime()) 1905 Quals = Quals.withoutObjCLifetime(); 1906 break; 1907 case QMM_Mangle: 1908 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 1909 Out << '6'; 1910 mangleFunctionType(FT); 1911 return; 1912 } 1913 mangleQualifiers(Quals, false); 1914 break; 1915 case QMM_Escape: 1916 if (!IsPointer && Quals) { 1917 Out << "$$C"; 1918 mangleQualifiers(Quals, false); 1919 } 1920 break; 1921 case QMM_Result: 1922 // Presence of __unaligned qualifier shouldn't affect mangling here. 1923 Quals.removeUnaligned(); 1924 if (Quals.hasObjCLifetime()) 1925 Quals = Quals.withoutObjCLifetime(); 1926 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 1927 Out << '?'; 1928 mangleQualifiers(Quals, false); 1929 } 1930 break; 1931 } 1932 1933 const Type *ty = T.getTypePtr(); 1934 1935 switch (ty->getTypeClass()) { 1936 #define ABSTRACT_TYPE(CLASS, PARENT) 1937 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 1938 case Type::CLASS: \ 1939 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 1940 return; 1941 #define TYPE(CLASS, PARENT) \ 1942 case Type::CLASS: \ 1943 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 1944 break; 1945 #include "clang/AST/TypeNodes.def" 1946 #undef ABSTRACT_TYPE 1947 #undef NON_CANONICAL_TYPE 1948 #undef TYPE 1949 } 1950 } 1951 1952 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 1953 SourceRange Range) { 1954 // <type> ::= <builtin-type> 1955 // <builtin-type> ::= X # void 1956 // ::= C # signed char 1957 // ::= D # char 1958 // ::= E # unsigned char 1959 // ::= F # short 1960 // ::= G # unsigned short (or wchar_t if it's not a builtin) 1961 // ::= H # int 1962 // ::= I # unsigned int 1963 // ::= J # long 1964 // ::= K # unsigned long 1965 // L # <none> 1966 // ::= M # float 1967 // ::= N # double 1968 // ::= O # long double (__float80 is mangled differently) 1969 // ::= _J # long long, __int64 1970 // ::= _K # unsigned long long, __int64 1971 // ::= _L # __int128 1972 // ::= _M # unsigned __int128 1973 // ::= _N # bool 1974 // _O # <array in parameter> 1975 // ::= _Q # char8_t 1976 // ::= _S # char16_t 1977 // ::= _T # __float80 (Intel) 1978 // ::= _U # char32_t 1979 // ::= _W # wchar_t 1980 // ::= _Z # __float80 (Digital Mars) 1981 switch (T->getKind()) { 1982 case BuiltinType::Void: 1983 Out << 'X'; 1984 break; 1985 case BuiltinType::SChar: 1986 Out << 'C'; 1987 break; 1988 case BuiltinType::Char_U: 1989 case BuiltinType::Char_S: 1990 Out << 'D'; 1991 break; 1992 case BuiltinType::UChar: 1993 Out << 'E'; 1994 break; 1995 case BuiltinType::Short: 1996 Out << 'F'; 1997 break; 1998 case BuiltinType::UShort: 1999 Out << 'G'; 2000 break; 2001 case BuiltinType::Int: 2002 Out << 'H'; 2003 break; 2004 case BuiltinType::UInt: 2005 Out << 'I'; 2006 break; 2007 case BuiltinType::Long: 2008 Out << 'J'; 2009 break; 2010 case BuiltinType::ULong: 2011 Out << 'K'; 2012 break; 2013 case BuiltinType::Float: 2014 Out << 'M'; 2015 break; 2016 case BuiltinType::Double: 2017 Out << 'N'; 2018 break; 2019 // TODO: Determine size and mangle accordingly 2020 case BuiltinType::LongDouble: 2021 Out << 'O'; 2022 break; 2023 case BuiltinType::LongLong: 2024 Out << "_J"; 2025 break; 2026 case BuiltinType::ULongLong: 2027 Out << "_K"; 2028 break; 2029 case BuiltinType::Int128: 2030 Out << "_L"; 2031 break; 2032 case BuiltinType::UInt128: 2033 Out << "_M"; 2034 break; 2035 case BuiltinType::Bool: 2036 Out << "_N"; 2037 break; 2038 case BuiltinType::Char8: 2039 Out << "_Q"; 2040 break; 2041 case BuiltinType::Char16: 2042 Out << "_S"; 2043 break; 2044 case BuiltinType::Char32: 2045 Out << "_U"; 2046 break; 2047 case BuiltinType::WChar_S: 2048 case BuiltinType::WChar_U: 2049 Out << "_W"; 2050 break; 2051 2052 #define BUILTIN_TYPE(Id, SingletonId) 2053 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2054 case BuiltinType::Id: 2055 #include "clang/AST/BuiltinTypes.def" 2056 case BuiltinType::Dependent: 2057 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2058 2059 case BuiltinType::ObjCId: 2060 mangleArtificialTagType(TTK_Struct, "objc_object"); 2061 break; 2062 case BuiltinType::ObjCClass: 2063 mangleArtificialTagType(TTK_Struct, "objc_class"); 2064 break; 2065 case BuiltinType::ObjCSel: 2066 mangleArtificialTagType(TTK_Struct, "objc_selector"); 2067 break; 2068 2069 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2070 case BuiltinType::Id: \ 2071 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2072 break; 2073 #include "clang/Basic/OpenCLImageTypes.def" 2074 case BuiltinType::OCLSampler: 2075 Out << "PA"; 2076 mangleArtificialTagType(TTK_Struct, "ocl_sampler"); 2077 break; 2078 case BuiltinType::OCLEvent: 2079 Out << "PA"; 2080 mangleArtificialTagType(TTK_Struct, "ocl_event"); 2081 break; 2082 case BuiltinType::OCLClkEvent: 2083 Out << "PA"; 2084 mangleArtificialTagType(TTK_Struct, "ocl_clkevent"); 2085 break; 2086 case BuiltinType::OCLQueue: 2087 Out << "PA"; 2088 mangleArtificialTagType(TTK_Struct, "ocl_queue"); 2089 break; 2090 case BuiltinType::OCLReserveID: 2091 Out << "PA"; 2092 mangleArtificialTagType(TTK_Struct, "ocl_reserveid"); 2093 break; 2094 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2095 case BuiltinType::Id: \ 2096 mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \ 2097 break; 2098 #include "clang/Basic/OpenCLExtensionTypes.def" 2099 2100 case BuiltinType::NullPtr: 2101 Out << "$$T"; 2102 break; 2103 2104 case BuiltinType::Float16: 2105 mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"}); 2106 break; 2107 2108 case BuiltinType::Half: 2109 mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"}); 2110 break; 2111 2112 case BuiltinType::ShortAccum: 2113 case BuiltinType::Accum: 2114 case BuiltinType::LongAccum: 2115 case BuiltinType::UShortAccum: 2116 case BuiltinType::UAccum: 2117 case BuiltinType::ULongAccum: 2118 case BuiltinType::ShortFract: 2119 case BuiltinType::Fract: 2120 case BuiltinType::LongFract: 2121 case BuiltinType::UShortFract: 2122 case BuiltinType::UFract: 2123 case BuiltinType::ULongFract: 2124 case BuiltinType::SatShortAccum: 2125 case BuiltinType::SatAccum: 2126 case BuiltinType::SatLongAccum: 2127 case BuiltinType::SatUShortAccum: 2128 case BuiltinType::SatUAccum: 2129 case BuiltinType::SatULongAccum: 2130 case BuiltinType::SatShortFract: 2131 case BuiltinType::SatFract: 2132 case BuiltinType::SatLongFract: 2133 case BuiltinType::SatUShortFract: 2134 case BuiltinType::SatUFract: 2135 case BuiltinType::SatULongFract: 2136 case BuiltinType::Float128: { 2137 DiagnosticsEngine &Diags = Context.getDiags(); 2138 unsigned DiagID = Diags.getCustomDiagID( 2139 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2140 Diags.Report(Range.getBegin(), DiagID) 2141 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2142 break; 2143 } 2144 } 2145 } 2146 2147 // <type> ::= <function-type> 2148 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2149 SourceRange) { 2150 // Structors only appear in decls, so at this point we know it's not a 2151 // structor type. 2152 // FIXME: This may not be lambda-friendly. 2153 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2154 Out << "$$A8@@"; 2155 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2156 } else { 2157 Out << "$$A6"; 2158 mangleFunctionType(T); 2159 } 2160 } 2161 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2162 Qualifiers, SourceRange) { 2163 Out << "$$A6"; 2164 mangleFunctionType(T); 2165 } 2166 2167 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2168 const FunctionDecl *D, 2169 bool ForceThisQuals, 2170 bool MangleExceptionSpec) { 2171 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2172 // <return-type> <argument-list> <throw-spec> 2173 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2174 2175 SourceRange Range; 2176 if (D) Range = D->getSourceRange(); 2177 2178 bool IsInLambda = false; 2179 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2180 CallingConv CC = T->getCallConv(); 2181 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2182 if (MD->getParent()->isLambda()) 2183 IsInLambda = true; 2184 if (MD->isInstance()) 2185 HasThisQuals = true; 2186 if (isa<CXXDestructorDecl>(MD)) { 2187 IsStructor = true; 2188 } else if (isa<CXXConstructorDecl>(MD)) { 2189 IsStructor = true; 2190 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2191 StructorType == Ctor_DefaultClosure) && 2192 isStructorDecl(MD); 2193 if (IsCtorClosure) 2194 CC = getASTContext().getDefaultCallingConvention( 2195 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2196 } 2197 } 2198 2199 // If this is a C++ instance method, mangle the CVR qualifiers for the 2200 // this pointer. 2201 if (HasThisQuals) { 2202 Qualifiers Quals = Proto->getMethodQuals(); 2203 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2204 mangleRefQualifier(Proto->getRefQualifier()); 2205 mangleQualifiers(Quals, /*IsMember=*/false); 2206 } 2207 2208 mangleCallingConvention(CC); 2209 2210 // <return-type> ::= <type> 2211 // ::= @ # structors (they have no declared return type) 2212 if (IsStructor) { 2213 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2214 // The scalar deleting destructor takes an extra int argument which is not 2215 // reflected in the AST. 2216 if (StructorType == Dtor_Deleting) { 2217 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2218 return; 2219 } 2220 // The vbase destructor returns void which is not reflected in the AST. 2221 if (StructorType == Dtor_Complete) { 2222 Out << "XXZ"; 2223 return; 2224 } 2225 } 2226 if (IsCtorClosure) { 2227 // Default constructor closure and copy constructor closure both return 2228 // void. 2229 Out << 'X'; 2230 2231 if (StructorType == Ctor_DefaultClosure) { 2232 // Default constructor closure always has no arguments. 2233 Out << 'X'; 2234 } else if (StructorType == Ctor_CopyingClosure) { 2235 // Copy constructor closure always takes an unqualified reference. 2236 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2237 Proto->getParamType(0) 2238 ->getAs<LValueReferenceType>() 2239 ->getPointeeType(), 2240 /*SpelledAsLValue=*/true), 2241 Range); 2242 Out << '@'; 2243 } else { 2244 llvm_unreachable("unexpected constructor closure!"); 2245 } 2246 Out << 'Z'; 2247 return; 2248 } 2249 Out << '@'; 2250 } else { 2251 QualType ResultType = T->getReturnType(); 2252 if (const auto *AT = 2253 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) { 2254 Out << '?'; 2255 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2256 Out << '?'; 2257 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2258 "shouldn't need to mangle __auto_type!"); 2259 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2260 Out << '@'; 2261 } else if (IsInLambda) { 2262 Out << '@'; 2263 } else { 2264 if (ResultType->isVoidType()) 2265 ResultType = ResultType.getUnqualifiedType(); 2266 mangleType(ResultType, Range, QMM_Result); 2267 } 2268 } 2269 2270 // <argument-list> ::= X # void 2271 // ::= <type>+ @ 2272 // ::= <type>* Z # varargs 2273 if (!Proto) { 2274 // Function types without prototypes can arise when mangling a function type 2275 // within an overloadable function in C. We mangle these as the absence of 2276 // any parameter types (not even an empty parameter list). 2277 Out << '@'; 2278 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2279 Out << 'X'; 2280 } else { 2281 // Happens for function pointer type arguments for example. 2282 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2283 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2284 // Mangle each pass_object_size parameter as if it's a parameter of enum 2285 // type passed directly after the parameter with the pass_object_size 2286 // attribute. The aforementioned enum's name is __pass_object_size, and we 2287 // pretend it resides in a top-level namespace called __clang. 2288 // 2289 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2290 // necessary to just cross our fingers and hope this type+namespace 2291 // combination doesn't conflict with anything? 2292 if (D) 2293 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2294 manglePassObjectSizeArg(P); 2295 } 2296 // <builtin-type> ::= Z # ellipsis 2297 if (Proto->isVariadic()) 2298 Out << 'Z'; 2299 else 2300 Out << '@'; 2301 } 2302 2303 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2304 getASTContext().getLangOpts().isCompatibleWithMSVC( 2305 LangOptions::MSVC2017_5)) 2306 mangleThrowSpecification(Proto); 2307 else 2308 Out << 'Z'; 2309 } 2310 2311 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2312 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2313 // # pointer. in 64-bit mode *all* 2314 // # 'this' pointers are 64-bit. 2315 // ::= <global-function> 2316 // <member-function> ::= A # private: near 2317 // ::= B # private: far 2318 // ::= C # private: static near 2319 // ::= D # private: static far 2320 // ::= E # private: virtual near 2321 // ::= F # private: virtual far 2322 // ::= I # protected: near 2323 // ::= J # protected: far 2324 // ::= K # protected: static near 2325 // ::= L # protected: static far 2326 // ::= M # protected: virtual near 2327 // ::= N # protected: virtual far 2328 // ::= Q # public: near 2329 // ::= R # public: far 2330 // ::= S # public: static near 2331 // ::= T # public: static far 2332 // ::= U # public: virtual near 2333 // ::= V # public: virtual far 2334 // <global-function> ::= Y # global near 2335 // ::= Z # global far 2336 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2337 bool IsVirtual = MD->isVirtual(); 2338 // When mangling vbase destructor variants, ignore whether or not the 2339 // underlying destructor was defined to be virtual. 2340 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2341 StructorType == Dtor_Complete) { 2342 IsVirtual = false; 2343 } 2344 switch (MD->getAccess()) { 2345 case AS_none: 2346 llvm_unreachable("Unsupported access specifier"); 2347 case AS_private: 2348 if (MD->isStatic()) 2349 Out << 'C'; 2350 else if (IsVirtual) 2351 Out << 'E'; 2352 else 2353 Out << 'A'; 2354 break; 2355 case AS_protected: 2356 if (MD->isStatic()) 2357 Out << 'K'; 2358 else if (IsVirtual) 2359 Out << 'M'; 2360 else 2361 Out << 'I'; 2362 break; 2363 case AS_public: 2364 if (MD->isStatic()) 2365 Out << 'S'; 2366 else if (IsVirtual) 2367 Out << 'U'; 2368 else 2369 Out << 'Q'; 2370 } 2371 } else { 2372 Out << 'Y'; 2373 } 2374 } 2375 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 2376 // <calling-convention> ::= A # __cdecl 2377 // ::= B # __export __cdecl 2378 // ::= C # __pascal 2379 // ::= D # __export __pascal 2380 // ::= E # __thiscall 2381 // ::= F # __export __thiscall 2382 // ::= G # __stdcall 2383 // ::= H # __export __stdcall 2384 // ::= I # __fastcall 2385 // ::= J # __export __fastcall 2386 // ::= Q # __vectorcall 2387 // ::= w # __regcall 2388 // The 'export' calling conventions are from a bygone era 2389 // (*cough*Win16*cough*) when functions were declared for export with 2390 // that keyword. (It didn't actually export them, it just made them so 2391 // that they could be in a DLL and somebody from another module could call 2392 // them.) 2393 2394 switch (CC) { 2395 default: 2396 llvm_unreachable("Unsupported CC for mangling"); 2397 case CC_Win64: 2398 case CC_X86_64SysV: 2399 case CC_C: Out << 'A'; break; 2400 case CC_X86Pascal: Out << 'C'; break; 2401 case CC_X86ThisCall: Out << 'E'; break; 2402 case CC_X86StdCall: Out << 'G'; break; 2403 case CC_X86FastCall: Out << 'I'; break; 2404 case CC_X86VectorCall: Out << 'Q'; break; 2405 case CC_Swift: Out << 'S'; break; 2406 case CC_PreserveMost: Out << 'U'; break; 2407 case CC_X86RegCall: Out << 'w'; break; 2408 } 2409 } 2410 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 2411 mangleCallingConvention(T->getCallConv()); 2412 } 2413 2414 void MicrosoftCXXNameMangler::mangleThrowSpecification( 2415 const FunctionProtoType *FT) { 2416 // <throw-spec> ::= Z # (default) 2417 // ::= _E # noexcept 2418 if (FT->canThrow()) 2419 Out << 'Z'; 2420 else 2421 Out << "_E"; 2422 } 2423 2424 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 2425 Qualifiers, SourceRange Range) { 2426 // Probably should be mangled as a template instantiation; need to see what 2427 // VC does first. 2428 DiagnosticsEngine &Diags = Context.getDiags(); 2429 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2430 "cannot mangle this unresolved dependent type yet"); 2431 Diags.Report(Range.getBegin(), DiagID) 2432 << Range; 2433 } 2434 2435 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 2436 // <union-type> ::= T <name> 2437 // <struct-type> ::= U <name> 2438 // <class-type> ::= V <name> 2439 // <enum-type> ::= W4 <name> 2440 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 2441 switch (TTK) { 2442 case TTK_Union: 2443 Out << 'T'; 2444 break; 2445 case TTK_Struct: 2446 case TTK_Interface: 2447 Out << 'U'; 2448 break; 2449 case TTK_Class: 2450 Out << 'V'; 2451 break; 2452 case TTK_Enum: 2453 Out << "W4"; 2454 break; 2455 } 2456 } 2457 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 2458 SourceRange) { 2459 mangleType(cast<TagType>(T)->getDecl()); 2460 } 2461 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 2462 SourceRange) { 2463 mangleType(cast<TagType>(T)->getDecl()); 2464 } 2465 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 2466 mangleTagTypeKind(TD->getTagKind()); 2467 mangleName(TD); 2468 } 2469 2470 // If you add a call to this, consider updating isArtificialTagType() too. 2471 void MicrosoftCXXNameMangler::mangleArtificialTagType( 2472 TagTypeKind TK, StringRef UnqualifiedName, 2473 ArrayRef<StringRef> NestedNames) { 2474 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 2475 mangleTagTypeKind(TK); 2476 2477 // Always start with the unqualified name. 2478 mangleSourceName(UnqualifiedName); 2479 2480 for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I) 2481 mangleSourceName(*I); 2482 2483 // Terminate the whole name with an '@'. 2484 Out << '@'; 2485 } 2486 2487 // <type> ::= <array-type> 2488 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2489 // [Y <dimension-count> <dimension>+] 2490 // <element-type> # as global, E is never required 2491 // It's supposed to be the other way around, but for some strange reason, it 2492 // isn't. Today this behavior is retained for the sole purpose of backwards 2493 // compatibility. 2494 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2495 // This isn't a recursive mangling, so now we have to do it all in this 2496 // one call. 2497 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2498 mangleType(T->getElementType(), SourceRange()); 2499 } 2500 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2501 SourceRange) { 2502 llvm_unreachable("Should have been special cased"); 2503 } 2504 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2505 SourceRange) { 2506 llvm_unreachable("Should have been special cased"); 2507 } 2508 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2509 Qualifiers, SourceRange) { 2510 llvm_unreachable("Should have been special cased"); 2511 } 2512 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2513 Qualifiers, SourceRange) { 2514 llvm_unreachable("Should have been special cased"); 2515 } 2516 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2517 QualType ElementTy(T, 0); 2518 SmallVector<llvm::APInt, 3> Dimensions; 2519 for (;;) { 2520 if (ElementTy->isConstantArrayType()) { 2521 const ConstantArrayType *CAT = 2522 getASTContext().getAsConstantArrayType(ElementTy); 2523 Dimensions.push_back(CAT->getSize()); 2524 ElementTy = CAT->getElementType(); 2525 } else if (ElementTy->isIncompleteArrayType()) { 2526 const IncompleteArrayType *IAT = 2527 getASTContext().getAsIncompleteArrayType(ElementTy); 2528 Dimensions.push_back(llvm::APInt(32, 0)); 2529 ElementTy = IAT->getElementType(); 2530 } else if (ElementTy->isVariableArrayType()) { 2531 const VariableArrayType *VAT = 2532 getASTContext().getAsVariableArrayType(ElementTy); 2533 Dimensions.push_back(llvm::APInt(32, 0)); 2534 ElementTy = VAT->getElementType(); 2535 } else if (ElementTy->isDependentSizedArrayType()) { 2536 // The dependent expression has to be folded into a constant (TODO). 2537 const DependentSizedArrayType *DSAT = 2538 getASTContext().getAsDependentSizedArrayType(ElementTy); 2539 DiagnosticsEngine &Diags = Context.getDiags(); 2540 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2541 "cannot mangle this dependent-length array yet"); 2542 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 2543 << DSAT->getBracketsRange(); 2544 return; 2545 } else { 2546 break; 2547 } 2548 } 2549 Out << 'Y'; 2550 // <dimension-count> ::= <number> # number of extra dimensions 2551 mangleNumber(Dimensions.size()); 2552 for (const llvm::APInt &Dimension : Dimensions) 2553 mangleNumber(Dimension.getLimitedValue()); 2554 mangleType(ElementTy, SourceRange(), QMM_Escape); 2555 } 2556 2557 // <type> ::= <pointer-to-member-type> 2558 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2559 // <class name> <type> 2560 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 2561 Qualifiers Quals, SourceRange Range) { 2562 QualType PointeeType = T->getPointeeType(); 2563 manglePointerCVQualifiers(Quals); 2564 manglePointerExtQualifiers(Quals, PointeeType); 2565 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 2566 Out << '8'; 2567 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2568 mangleFunctionType(FPT, nullptr, true); 2569 } else { 2570 mangleQualifiers(PointeeType.getQualifiers(), true); 2571 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2572 mangleType(PointeeType, Range, QMM_Drop); 2573 } 2574 } 2575 2576 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 2577 Qualifiers, SourceRange Range) { 2578 DiagnosticsEngine &Diags = Context.getDiags(); 2579 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2580 "cannot mangle this template type parameter type yet"); 2581 Diags.Report(Range.getBegin(), DiagID) 2582 << Range; 2583 } 2584 2585 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 2586 Qualifiers, SourceRange Range) { 2587 DiagnosticsEngine &Diags = Context.getDiags(); 2588 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2589 "cannot mangle this substituted parameter pack yet"); 2590 Diags.Report(Range.getBegin(), DiagID) 2591 << Range; 2592 } 2593 2594 // <type> ::= <pointer-type> 2595 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 2596 // # the E is required for 64-bit non-static pointers 2597 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 2598 SourceRange Range) { 2599 QualType PointeeType = T->getPointeeType(); 2600 manglePointerCVQualifiers(Quals); 2601 manglePointerExtQualifiers(Quals, PointeeType); 2602 2603 if (PointeeType.getQualifiers().hasAddressSpace()) 2604 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 2605 else 2606 mangleType(PointeeType, Range); 2607 } 2608 2609 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 2610 Qualifiers Quals, SourceRange Range) { 2611 QualType PointeeType = T->getPointeeType(); 2612 switch (Quals.getObjCLifetime()) { 2613 case Qualifiers::OCL_None: 2614 case Qualifiers::OCL_ExplicitNone: 2615 break; 2616 case Qualifiers::OCL_Autoreleasing: 2617 case Qualifiers::OCL_Strong: 2618 case Qualifiers::OCL_Weak: 2619 return mangleObjCLifetime(PointeeType, Quals, Range); 2620 } 2621 manglePointerCVQualifiers(Quals); 2622 manglePointerExtQualifiers(Quals, PointeeType); 2623 mangleType(PointeeType, Range); 2624 } 2625 2626 // <type> ::= <reference-type> 2627 // <reference-type> ::= A E? <cvr-qualifiers> <type> 2628 // # the E is required for 64-bit non-static lvalue references 2629 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 2630 Qualifiers Quals, SourceRange Range) { 2631 QualType PointeeType = T->getPointeeType(); 2632 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2633 Out << 'A'; 2634 manglePointerExtQualifiers(Quals, PointeeType); 2635 mangleType(PointeeType, Range); 2636 } 2637 2638 // <type> ::= <r-value-reference-type> 2639 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 2640 // # the E is required for 64-bit non-static rvalue references 2641 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 2642 Qualifiers Quals, SourceRange Range) { 2643 QualType PointeeType = T->getPointeeType(); 2644 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2645 Out << "$$Q"; 2646 manglePointerExtQualifiers(Quals, PointeeType); 2647 mangleType(PointeeType, Range); 2648 } 2649 2650 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 2651 SourceRange Range) { 2652 QualType ElementType = T->getElementType(); 2653 2654 llvm::SmallString<64> TemplateMangling; 2655 llvm::raw_svector_ostream Stream(TemplateMangling); 2656 MicrosoftCXXNameMangler Extra(Context, Stream); 2657 Stream << "?$"; 2658 Extra.mangleSourceName("_Complex"); 2659 Extra.mangleType(ElementType, Range, QMM_Escape); 2660 2661 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2662 } 2663 2664 // Returns true for types that mangleArtificialTagType() gets called for with 2665 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's 2666 // mangling matters. 2667 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 2668 // support.) 2669 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 2670 const Type *ty = T.getTypePtr(); 2671 switch (ty->getTypeClass()) { 2672 default: 2673 return false; 2674 2675 case Type::Vector: { 2676 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 2677 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 2678 // just always return true (the other vector types are clang-only). 2679 return true; 2680 } 2681 } 2682 } 2683 2684 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 2685 SourceRange Range) { 2686 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); 2687 assert(ET && "vectors with non-builtin elements are unsupported"); 2688 uint64_t Width = getASTContext().getTypeSize(T); 2689 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 2690 // doesn't match the Intel types uses a custom mangling below. 2691 size_t OutSizeBefore = Out.tell(); 2692 if (!isa<ExtVectorType>(T)) { 2693 llvm::Triple::ArchType AT = 2694 getASTContext().getTargetInfo().getTriple().getArch(); 2695 if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) { 2696 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 2697 mangleArtificialTagType(TTK_Union, "__m64"); 2698 } else if (Width >= 128) { 2699 if (ET->getKind() == BuiltinType::Float) 2700 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width)); 2701 else if (ET->getKind() == BuiltinType::LongLong) 2702 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); 2703 else if (ET->getKind() == BuiltinType::Double) 2704 mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); 2705 } 2706 } 2707 } 2708 2709 bool IsBuiltin = Out.tell() != OutSizeBefore; 2710 if (!IsBuiltin) { 2711 // The MS ABI doesn't have a special mangling for vector types, so we define 2712 // our own mangling to handle uses of __vector_size__ on user-specified 2713 // types, and for extensions like __v4sf. 2714 2715 llvm::SmallString<64> TemplateMangling; 2716 llvm::raw_svector_ostream Stream(TemplateMangling); 2717 MicrosoftCXXNameMangler Extra(Context, Stream); 2718 Stream << "?$"; 2719 Extra.mangleSourceName("__vector"); 2720 Extra.mangleType(QualType(ET, 0), Range, QMM_Escape); 2721 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()), 2722 /*IsBoolean=*/false); 2723 2724 mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"}); 2725 } 2726 } 2727 2728 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 2729 Qualifiers Quals, SourceRange Range) { 2730 mangleType(static_cast<const VectorType *>(T), Quals, Range); 2731 } 2732 2733 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 2734 Qualifiers, SourceRange Range) { 2735 DiagnosticsEngine &Diags = Context.getDiags(); 2736 unsigned DiagID = Diags.getCustomDiagID( 2737 DiagnosticsEngine::Error, 2738 "cannot mangle this dependent-sized vector type yet"); 2739 Diags.Report(Range.getBegin(), DiagID) << Range; 2740 } 2741 2742 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 2743 Qualifiers, SourceRange Range) { 2744 DiagnosticsEngine &Diags = Context.getDiags(); 2745 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2746 "cannot mangle this dependent-sized extended vector type yet"); 2747 Diags.Report(Range.getBegin(), DiagID) 2748 << Range; 2749 } 2750 2751 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 2752 Qualifiers, SourceRange Range) { 2753 DiagnosticsEngine &Diags = Context.getDiags(); 2754 unsigned DiagID = Diags.getCustomDiagID( 2755 DiagnosticsEngine::Error, 2756 "cannot mangle this dependent address space type yet"); 2757 Diags.Report(Range.getBegin(), DiagID) << Range; 2758 } 2759 2760 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 2761 SourceRange) { 2762 // ObjC interfaces have structs underlying them. 2763 mangleTagTypeKind(TTK_Struct); 2764 mangleName(T->getDecl()); 2765 } 2766 2767 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 2768 Qualifiers Quals, SourceRange Range) { 2769 if (T->isKindOfType()) 2770 return mangleObjCKindOfType(T, Quals, Range); 2771 2772 if (T->qual_empty() && !T->isSpecialized()) 2773 return mangleType(T->getBaseType(), Range, QMM_Drop); 2774 2775 ArgBackRefMap OuterFunArgsContext; 2776 ArgBackRefMap OuterTemplateArgsContext; 2777 BackRefVec OuterTemplateContext; 2778 2779 FunArgBackReferences.swap(OuterFunArgsContext); 2780 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 2781 NameBackReferences.swap(OuterTemplateContext); 2782 2783 mangleTagTypeKind(TTK_Struct); 2784 2785 Out << "?$"; 2786 if (T->isObjCId()) 2787 mangleSourceName("objc_object"); 2788 else if (T->isObjCClass()) 2789 mangleSourceName("objc_class"); 2790 else 2791 mangleSourceName(T->getInterface()->getName()); 2792 2793 for (const auto &Q : T->quals()) 2794 mangleObjCProtocol(Q); 2795 2796 if (T->isSpecialized()) 2797 for (const auto &TA : T->getTypeArgs()) 2798 mangleType(TA, Range, QMM_Drop); 2799 2800 Out << '@'; 2801 2802 Out << '@'; 2803 2804 FunArgBackReferences.swap(OuterFunArgsContext); 2805 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 2806 NameBackReferences.swap(OuterTemplateContext); 2807 } 2808 2809 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 2810 Qualifiers Quals, SourceRange Range) { 2811 QualType PointeeType = T->getPointeeType(); 2812 manglePointerCVQualifiers(Quals); 2813 manglePointerExtQualifiers(Quals, PointeeType); 2814 2815 Out << "_E"; 2816 2817 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 2818 } 2819 2820 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 2821 Qualifiers, SourceRange) { 2822 llvm_unreachable("Cannot mangle injected class name type."); 2823 } 2824 2825 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 2826 Qualifiers, SourceRange Range) { 2827 DiagnosticsEngine &Diags = Context.getDiags(); 2828 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2829 "cannot mangle this template specialization type yet"); 2830 Diags.Report(Range.getBegin(), DiagID) 2831 << Range; 2832 } 2833 2834 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 2835 SourceRange Range) { 2836 DiagnosticsEngine &Diags = Context.getDiags(); 2837 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2838 "cannot mangle this dependent name type yet"); 2839 Diags.Report(Range.getBegin(), DiagID) 2840 << Range; 2841 } 2842 2843 void MicrosoftCXXNameMangler::mangleType( 2844 const DependentTemplateSpecializationType *T, Qualifiers, 2845 SourceRange Range) { 2846 DiagnosticsEngine &Diags = Context.getDiags(); 2847 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2848 "cannot mangle this dependent template specialization type yet"); 2849 Diags.Report(Range.getBegin(), DiagID) 2850 << Range; 2851 } 2852 2853 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 2854 SourceRange Range) { 2855 DiagnosticsEngine &Diags = Context.getDiags(); 2856 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2857 "cannot mangle this pack expansion yet"); 2858 Diags.Report(Range.getBegin(), DiagID) 2859 << Range; 2860 } 2861 2862 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 2863 SourceRange Range) { 2864 DiagnosticsEngine &Diags = Context.getDiags(); 2865 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2866 "cannot mangle this typeof(type) yet"); 2867 Diags.Report(Range.getBegin(), DiagID) 2868 << Range; 2869 } 2870 2871 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 2872 SourceRange Range) { 2873 DiagnosticsEngine &Diags = Context.getDiags(); 2874 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2875 "cannot mangle this typeof(expression) yet"); 2876 Diags.Report(Range.getBegin(), DiagID) 2877 << Range; 2878 } 2879 2880 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 2881 SourceRange Range) { 2882 DiagnosticsEngine &Diags = Context.getDiags(); 2883 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2884 "cannot mangle this decltype() yet"); 2885 Diags.Report(Range.getBegin(), DiagID) 2886 << Range; 2887 } 2888 2889 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 2890 Qualifiers, SourceRange Range) { 2891 DiagnosticsEngine &Diags = Context.getDiags(); 2892 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2893 "cannot mangle this unary transform type yet"); 2894 Diags.Report(Range.getBegin(), DiagID) 2895 << Range; 2896 } 2897 2898 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 2899 SourceRange Range) { 2900 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2901 2902 DiagnosticsEngine &Diags = Context.getDiags(); 2903 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2904 "cannot mangle this 'auto' type yet"); 2905 Diags.Report(Range.getBegin(), DiagID) 2906 << Range; 2907 } 2908 2909 void MicrosoftCXXNameMangler::mangleType( 2910 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 2911 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2912 2913 DiagnosticsEngine &Diags = Context.getDiags(); 2914 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2915 "cannot mangle this deduced class template specialization type yet"); 2916 Diags.Report(Range.getBegin(), DiagID) 2917 << Range; 2918 } 2919 2920 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 2921 SourceRange Range) { 2922 QualType ValueType = T->getValueType(); 2923 2924 llvm::SmallString<64> TemplateMangling; 2925 llvm::raw_svector_ostream Stream(TemplateMangling); 2926 MicrosoftCXXNameMangler Extra(Context, Stream); 2927 Stream << "?$"; 2928 Extra.mangleSourceName("_Atomic"); 2929 Extra.mangleType(ValueType, Range, QMM_Escape); 2930 2931 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2932 } 2933 2934 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 2935 SourceRange Range) { 2936 DiagnosticsEngine &Diags = Context.getDiags(); 2937 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2938 "cannot mangle this OpenCL pipe type yet"); 2939 Diags.Report(Range.getBegin(), DiagID) 2940 << Range; 2941 } 2942 2943 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D, 2944 raw_ostream &Out) { 2945 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 2946 "Invalid mangleName() call, argument is not a variable or function!"); 2947 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 2948 "Invalid mangleName() call on 'structor decl!"); 2949 2950 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 2951 getASTContext().getSourceManager(), 2952 "Mangling declaration"); 2953 2954 msvc_hashing_ostream MHO(Out); 2955 MicrosoftCXXNameMangler Mangler(*this, MHO); 2956 return Mangler.mangle(D); 2957 } 2958 2959 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 2960 // <virtual-adjustment> 2961 // <no-adjustment> ::= A # private near 2962 // ::= B # private far 2963 // ::= I # protected near 2964 // ::= J # protected far 2965 // ::= Q # public near 2966 // ::= R # public far 2967 // <static-adjustment> ::= G <static-offset> # private near 2968 // ::= H <static-offset> # private far 2969 // ::= O <static-offset> # protected near 2970 // ::= P <static-offset> # protected far 2971 // ::= W <static-offset> # public near 2972 // ::= X <static-offset> # public far 2973 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 2974 // ::= $1 <virtual-shift> <static-offset> # private far 2975 // ::= $2 <virtual-shift> <static-offset> # protected near 2976 // ::= $3 <virtual-shift> <static-offset> # protected far 2977 // ::= $4 <virtual-shift> <static-offset> # public near 2978 // ::= $5 <virtual-shift> <static-offset> # public far 2979 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 2980 // <vtordisp-shift> ::= <offset-to-vtordisp> 2981 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 2982 // <offset-to-vtordisp> 2983 static void mangleThunkThisAdjustment(AccessSpecifier AS, 2984 const ThisAdjustment &Adjustment, 2985 MicrosoftCXXNameMangler &Mangler, 2986 raw_ostream &Out) { 2987 if (!Adjustment.Virtual.isEmpty()) { 2988 Out << '$'; 2989 char AccessSpec; 2990 switch (AS) { 2991 case AS_none: 2992 llvm_unreachable("Unsupported access specifier"); 2993 case AS_private: 2994 AccessSpec = '0'; 2995 break; 2996 case AS_protected: 2997 AccessSpec = '2'; 2998 break; 2999 case AS_public: 3000 AccessSpec = '4'; 3001 } 3002 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3003 Out << 'R' << AccessSpec; 3004 Mangler.mangleNumber( 3005 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3006 Mangler.mangleNumber( 3007 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3008 Mangler.mangleNumber( 3009 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3010 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3011 } else { 3012 Out << AccessSpec; 3013 Mangler.mangleNumber( 3014 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3015 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3016 } 3017 } else if (Adjustment.NonVirtual != 0) { 3018 switch (AS) { 3019 case AS_none: 3020 llvm_unreachable("Unsupported access specifier"); 3021 case AS_private: 3022 Out << 'G'; 3023 break; 3024 case AS_protected: 3025 Out << 'O'; 3026 break; 3027 case AS_public: 3028 Out << 'W'; 3029 } 3030 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3031 } else { 3032 switch (AS) { 3033 case AS_none: 3034 llvm_unreachable("Unsupported access specifier"); 3035 case AS_private: 3036 Out << 'A'; 3037 break; 3038 case AS_protected: 3039 Out << 'I'; 3040 break; 3041 case AS_public: 3042 Out << 'Q'; 3043 } 3044 } 3045 } 3046 3047 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3048 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3049 raw_ostream &Out) { 3050 msvc_hashing_ostream MHO(Out); 3051 MicrosoftCXXNameMangler Mangler(*this, MHO); 3052 Mangler.getStream() << '?'; 3053 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3054 } 3055 3056 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3057 const ThunkInfo &Thunk, 3058 raw_ostream &Out) { 3059 msvc_hashing_ostream MHO(Out); 3060 MicrosoftCXXNameMangler Mangler(*this, MHO); 3061 Mangler.getStream() << '?'; 3062 Mangler.mangleName(MD); 3063 3064 // Usually the thunk uses the access specifier of the new method, but if this 3065 // is a covariant return thunk, then MSVC always uses the public access 3066 // specifier, and we do the same. 3067 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3068 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3069 3070 if (!Thunk.Return.isEmpty()) 3071 assert(Thunk.Method != nullptr && 3072 "Thunk info should hold the overridee decl"); 3073 3074 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3075 Mangler.mangleFunctionType( 3076 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3077 } 3078 3079 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 3080 const CXXDestructorDecl *DD, CXXDtorType Type, 3081 const ThisAdjustment &Adjustment, raw_ostream &Out) { 3082 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3083 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3084 // mangling manually until we support both deleting dtor types. 3085 assert(Type == Dtor_Deleting); 3086 msvc_hashing_ostream MHO(Out); 3087 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3088 Mangler.getStream() << "??_E"; 3089 Mangler.mangleName(DD->getParent()); 3090 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3091 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3092 } 3093 3094 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3095 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3096 raw_ostream &Out) { 3097 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3098 // <cvr-qualifiers> [<name>] @ 3099 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3100 // is always '6' for vftables. 3101 msvc_hashing_ostream MHO(Out); 3102 MicrosoftCXXNameMangler Mangler(*this, MHO); 3103 if (Derived->hasAttr<DLLImportAttr>()) 3104 Mangler.getStream() << "??_S"; 3105 else 3106 Mangler.getStream() << "??_7"; 3107 Mangler.mangleName(Derived); 3108 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3109 for (const CXXRecordDecl *RD : BasePath) 3110 Mangler.mangleName(RD); 3111 Mangler.getStream() << '@'; 3112 } 3113 3114 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3115 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3116 raw_ostream &Out) { 3117 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3118 // <cvr-qualifiers> [<name>] @ 3119 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3120 // is always '7' for vbtables. 3121 msvc_hashing_ostream MHO(Out); 3122 MicrosoftCXXNameMangler Mangler(*this, MHO); 3123 Mangler.getStream() << "??_8"; 3124 Mangler.mangleName(Derived); 3125 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3126 for (const CXXRecordDecl *RD : BasePath) 3127 Mangler.mangleName(RD); 3128 Mangler.getStream() << '@'; 3129 } 3130 3131 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3132 msvc_hashing_ostream MHO(Out); 3133 MicrosoftCXXNameMangler Mangler(*this, MHO); 3134 Mangler.getStream() << "??_R0"; 3135 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3136 Mangler.getStream() << "@8"; 3137 } 3138 3139 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, 3140 raw_ostream &Out) { 3141 MicrosoftCXXNameMangler Mangler(*this, Out); 3142 Mangler.getStream() << '.'; 3143 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3144 } 3145 3146 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3147 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3148 msvc_hashing_ostream MHO(Out); 3149 MicrosoftCXXNameMangler Mangler(*this, MHO); 3150 Mangler.getStream() << "??_K"; 3151 Mangler.mangleName(SrcRD); 3152 Mangler.getStream() << "$C"; 3153 Mangler.mangleName(DstRD); 3154 } 3155 3156 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3157 bool IsVolatile, 3158 bool IsUnaligned, 3159 uint32_t NumEntries, 3160 raw_ostream &Out) { 3161 msvc_hashing_ostream MHO(Out); 3162 MicrosoftCXXNameMangler Mangler(*this, MHO); 3163 Mangler.getStream() << "_TI"; 3164 if (IsConst) 3165 Mangler.getStream() << 'C'; 3166 if (IsVolatile) 3167 Mangler.getStream() << 'V'; 3168 if (IsUnaligned) 3169 Mangler.getStream() << 'U'; 3170 Mangler.getStream() << NumEntries; 3171 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3172 } 3173 3174 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3175 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3176 msvc_hashing_ostream MHO(Out); 3177 MicrosoftCXXNameMangler Mangler(*this, MHO); 3178 Mangler.getStream() << "_CTA"; 3179 Mangler.getStream() << NumEntries; 3180 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3181 } 3182 3183 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3184 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3185 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3186 raw_ostream &Out) { 3187 MicrosoftCXXNameMangler Mangler(*this, Out); 3188 Mangler.getStream() << "_CT"; 3189 3190 llvm::SmallString<64> RTTIMangling; 3191 { 3192 llvm::raw_svector_ostream Stream(RTTIMangling); 3193 msvc_hashing_ostream MHO(Stream); 3194 mangleCXXRTTI(T, MHO); 3195 } 3196 Mangler.getStream() << RTTIMangling; 3197 3198 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3199 // both older and newer versions include it. 3200 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3201 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3202 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3203 // Or 1912, 1913 aleady?). 3204 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3205 LangOptions::MSVC2015) && 3206 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3207 LangOptions::MSVC2017_7); 3208 llvm::SmallString<64> CopyCtorMangling; 3209 if (!OmitCopyCtor && CD) { 3210 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3211 msvc_hashing_ostream MHO(Stream); 3212 mangleCXXCtor(CD, CT, MHO); 3213 } 3214 Mangler.getStream() << CopyCtorMangling; 3215 3216 Mangler.getStream() << Size; 3217 if (VBPtrOffset == -1) { 3218 if (NVOffset) { 3219 Mangler.getStream() << NVOffset; 3220 } 3221 } else { 3222 Mangler.getStream() << NVOffset; 3223 Mangler.getStream() << VBPtrOffset; 3224 Mangler.getStream() << VBIndex; 3225 } 3226 } 3227 3228 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3229 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3230 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3231 msvc_hashing_ostream MHO(Out); 3232 MicrosoftCXXNameMangler Mangler(*this, MHO); 3233 Mangler.getStream() << "??_R1"; 3234 Mangler.mangleNumber(NVOffset); 3235 Mangler.mangleNumber(VBPtrOffset); 3236 Mangler.mangleNumber(VBTableOffset); 3237 Mangler.mangleNumber(Flags); 3238 Mangler.mangleName(Derived); 3239 Mangler.getStream() << "8"; 3240 } 3241 3242 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3243 const CXXRecordDecl *Derived, raw_ostream &Out) { 3244 msvc_hashing_ostream MHO(Out); 3245 MicrosoftCXXNameMangler Mangler(*this, MHO); 3246 Mangler.getStream() << "??_R2"; 3247 Mangler.mangleName(Derived); 3248 Mangler.getStream() << "8"; 3249 } 3250 3251 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3252 const CXXRecordDecl *Derived, raw_ostream &Out) { 3253 msvc_hashing_ostream MHO(Out); 3254 MicrosoftCXXNameMangler Mangler(*this, MHO); 3255 Mangler.getStream() << "??_R3"; 3256 Mangler.mangleName(Derived); 3257 Mangler.getStream() << "8"; 3258 } 3259 3260 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 3261 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3262 raw_ostream &Out) { 3263 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 3264 // <cvr-qualifiers> [<name>] @ 3265 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3266 // is always '6' for vftables. 3267 llvm::SmallString<64> VFTableMangling; 3268 llvm::raw_svector_ostream Stream(VFTableMangling); 3269 mangleCXXVFTable(Derived, BasePath, Stream); 3270 3271 if (VFTableMangling.startswith("??@")) { 3272 assert(VFTableMangling.endswith("@")); 3273 Out << VFTableMangling << "??_R4@"; 3274 return; 3275 } 3276 3277 assert(VFTableMangling.startswith("??_7") || 3278 VFTableMangling.startswith("??_S")); 3279 3280 Out << "??_R4" << StringRef(VFTableMangling).drop_front(4); 3281 } 3282 3283 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 3284 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3285 msvc_hashing_ostream MHO(Out); 3286 MicrosoftCXXNameMangler Mangler(*this, MHO); 3287 // The function body is in the same comdat as the function with the handler, 3288 // so the numbering here doesn't have to be the same across TUs. 3289 // 3290 // <mangled-name> ::= ?filt$ <filter-number> @0 3291 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 3292 Mangler.mangleName(EnclosingDecl); 3293 } 3294 3295 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 3296 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3297 msvc_hashing_ostream MHO(Out); 3298 MicrosoftCXXNameMangler Mangler(*this, MHO); 3299 // The function body is in the same comdat as the function with the handler, 3300 // so the numbering here doesn't have to be the same across TUs. 3301 // 3302 // <mangled-name> ::= ?fin$ <filter-number> @0 3303 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 3304 Mangler.mangleName(EnclosingDecl); 3305 } 3306 3307 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { 3308 // This is just a made up unique string for the purposes of tbaa. undname 3309 // does *not* know how to demangle it. 3310 MicrosoftCXXNameMangler Mangler(*this, Out); 3311 Mangler.getStream() << '?'; 3312 Mangler.mangleType(T, SourceRange()); 3313 } 3314 3315 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, 3316 CXXCtorType Type, 3317 raw_ostream &Out) { 3318 msvc_hashing_ostream MHO(Out); 3319 MicrosoftCXXNameMangler mangler(*this, MHO, D, Type); 3320 mangler.mangle(D); 3321 } 3322 3323 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, 3324 CXXDtorType Type, 3325 raw_ostream &Out) { 3326 msvc_hashing_ostream MHO(Out); 3327 MicrosoftCXXNameMangler mangler(*this, MHO, D, Type); 3328 mangler.mangle(D); 3329 } 3330 3331 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 3332 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 3333 msvc_hashing_ostream MHO(Out); 3334 MicrosoftCXXNameMangler Mangler(*this, MHO); 3335 3336 Mangler.getStream() << "?$RT" << ManglingNumber << '@'; 3337 Mangler.mangle(VD, ""); 3338 } 3339 3340 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 3341 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 3342 msvc_hashing_ostream MHO(Out); 3343 MicrosoftCXXNameMangler Mangler(*this, MHO); 3344 3345 Mangler.getStream() << "?$TSS" << GuardNum << '@'; 3346 Mangler.mangleNestedName(VD); 3347 Mangler.getStream() << "@4HA"; 3348 } 3349 3350 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 3351 raw_ostream &Out) { 3352 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 3353 // ::= ?__J <postfix> @5 <scope-depth> 3354 // ::= ?$S <guard-num> @ <postfix> @4IA 3355 3356 // The first mangling is what MSVC uses to guard static locals in inline 3357 // functions. It uses a different mangling in external functions to support 3358 // guarding more than 32 variables. MSVC rejects inline functions with more 3359 // than 32 static locals. We don't fully implement the second mangling 3360 // because those guards are not externally visible, and instead use LLVM's 3361 // default renaming when creating a new guard variable. 3362 msvc_hashing_ostream MHO(Out); 3363 MicrosoftCXXNameMangler Mangler(*this, MHO); 3364 3365 bool Visible = VD->isExternallyVisible(); 3366 if (Visible) { 3367 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 3368 } else { 3369 Mangler.getStream() << "?$S1@"; 3370 } 3371 unsigned ScopeDepth = 0; 3372 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 3373 // If we do not have a discriminator and are emitting a guard variable for 3374 // use at global scope, then mangling the nested name will not be enough to 3375 // remove ambiguities. 3376 Mangler.mangle(VD, ""); 3377 else 3378 Mangler.mangleNestedName(VD); 3379 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 3380 if (ScopeDepth) 3381 Mangler.mangleNumber(ScopeDepth); 3382 } 3383 3384 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 3385 char CharCode, 3386 raw_ostream &Out) { 3387 msvc_hashing_ostream MHO(Out); 3388 MicrosoftCXXNameMangler Mangler(*this, MHO); 3389 Mangler.getStream() << "??__" << CharCode; 3390 if (D->isStaticDataMember()) { 3391 Mangler.getStream() << '?'; 3392 Mangler.mangleName(D); 3393 Mangler.mangleVariableEncoding(D); 3394 Mangler.getStream() << "@@"; 3395 } else { 3396 Mangler.mangleName(D); 3397 } 3398 // This is the function class mangling. These stubs are global, non-variadic, 3399 // cdecl functions that return void and take no args. 3400 Mangler.getStream() << "YAXXZ"; 3401 } 3402 3403 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 3404 raw_ostream &Out) { 3405 // <initializer-name> ::= ?__E <name> YAXXZ 3406 mangleInitFiniStub(D, 'E', Out); 3407 } 3408 3409 void 3410 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 3411 raw_ostream &Out) { 3412 // <destructor-name> ::= ?__F <name> YAXXZ 3413 mangleInitFiniStub(D, 'F', Out); 3414 } 3415 3416 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 3417 raw_ostream &Out) { 3418 // <char-type> ::= 0 # char, char16_t, char32_t 3419 // # (little endian char data in mangling) 3420 // ::= 1 # wchar_t (big endian char data in mangling) 3421 // 3422 // <literal-length> ::= <non-negative integer> # the length of the literal 3423 // 3424 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 3425 // # trailing null bytes 3426 // 3427 // <encoded-string> ::= <simple character> # uninteresting character 3428 // ::= '?$' <hex digit> <hex digit> # these two nibbles 3429 // # encode the byte for the 3430 // # character 3431 // ::= '?' [a-z] # \xe1 - \xfa 3432 // ::= '?' [A-Z] # \xc1 - \xda 3433 // ::= '?' [0-9] # [,/\:. \n\t'-] 3434 // 3435 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 3436 // <encoded-string> '@' 3437 MicrosoftCXXNameMangler Mangler(*this, Out); 3438 Mangler.getStream() << "??_C@_"; 3439 3440 // The actual string length might be different from that of the string literal 3441 // in cases like: 3442 // char foo[3] = "foobar"; 3443 // char bar[42] = "foobar"; 3444 // Where it is truncated or zero-padded to fit the array. This is the length 3445 // used for mangling, and any trailing null-bytes also need to be mangled. 3446 unsigned StringLength = getASTContext() 3447 .getAsConstantArrayType(SL->getType()) 3448 ->getSize() 3449 .getZExtValue(); 3450 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 3451 3452 // <char-type>: The "kind" of string literal is encoded into the mangled name. 3453 if (SL->isWide()) 3454 Mangler.getStream() << '1'; 3455 else 3456 Mangler.getStream() << '0'; 3457 3458 // <literal-length>: The next part of the mangled name consists of the length 3459 // of the string in bytes. 3460 Mangler.mangleNumber(StringByteLength); 3461 3462 auto GetLittleEndianByte = [&SL](unsigned Index) { 3463 unsigned CharByteWidth = SL->getCharByteWidth(); 3464 if (Index / CharByteWidth >= SL->getLength()) 3465 return static_cast<char>(0); 3466 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3467 unsigned OffsetInCodeUnit = Index % CharByteWidth; 3468 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3469 }; 3470 3471 auto GetBigEndianByte = [&SL](unsigned Index) { 3472 unsigned CharByteWidth = SL->getCharByteWidth(); 3473 if (Index / CharByteWidth >= SL->getLength()) 3474 return static_cast<char>(0); 3475 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3476 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 3477 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3478 }; 3479 3480 // CRC all the bytes of the StringLiteral. 3481 llvm::JamCRC JC; 3482 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 3483 JC.update(GetLittleEndianByte(I)); 3484 3485 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 3486 // scheme. 3487 Mangler.mangleNumber(JC.getCRC()); 3488 3489 // <encoded-string>: The mangled name also contains the first 32 bytes 3490 // (including null-terminator bytes) of the encoded StringLiteral. 3491 // Each character is encoded by splitting them into bytes and then encoding 3492 // the constituent bytes. 3493 auto MangleByte = [&Mangler](char Byte) { 3494 // There are five different manglings for characters: 3495 // - [a-zA-Z0-9_$]: A one-to-one mapping. 3496 // - ?[a-z]: The range from \xe1 to \xfa. 3497 // - ?[A-Z]: The range from \xc1 to \xda. 3498 // - ?[0-9]: The set of [,/\:. \n\t'-]. 3499 // - ?$XX: A fallback which maps nibbles. 3500 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) { 3501 Mangler.getStream() << Byte; 3502 } else if (isLetter(Byte & 0x7f)) { 3503 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 3504 } else { 3505 const char SpecialChars[] = {',', '/', '\\', ':', '.', 3506 ' ', '\n', '\t', '\'', '-'}; 3507 const char *Pos = llvm::find(SpecialChars, Byte); 3508 if (Pos != std::end(SpecialChars)) { 3509 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 3510 } else { 3511 Mangler.getStream() << "?$"; 3512 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 3513 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 3514 } 3515 } 3516 }; 3517 3518 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 3519 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 3520 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 3521 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 3522 if (SL->isWide()) 3523 MangleByte(GetBigEndianByte(I)); 3524 else 3525 MangleByte(GetLittleEndianByte(I)); 3526 } 3527 3528 Mangler.getStream() << '@'; 3529 } 3530 3531 MicrosoftMangleContext * 3532 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 3533 return new MicrosoftMangleContextImpl(Context, Diags); 3534 } 3535