1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/Mangle.h" 25 #include "clang/AST/VTableBuilder.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/DiagnosticOptions.h" 28 #include "clang/Basic/FileManager.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Support/CRC.h" 33 #include "llvm/Support/MD5.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/StringSaver.h" 36 #include "llvm/Support/xxhash.h" 37 38 using namespace clang; 39 40 namespace { 41 42 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 43 raw_ostream &OS; 44 llvm::SmallString<64> Buffer; 45 46 msvc_hashing_ostream(raw_ostream &OS) 47 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 48 ~msvc_hashing_ostream() override { 49 StringRef MangledName = str(); 50 bool StartsWithEscape = MangledName.startswith("\01"); 51 if (StartsWithEscape) 52 MangledName = MangledName.drop_front(1); 53 if (MangledName.size() <= 4096) { 54 OS << str(); 55 return; 56 } 57 58 llvm::MD5 Hasher; 59 llvm::MD5::MD5Result Hash; 60 Hasher.update(MangledName); 61 Hasher.final(Hash); 62 63 SmallString<32> HexString; 64 llvm::MD5::stringifyResult(Hash, HexString); 65 66 if (StartsWithEscape) 67 OS << '\01'; 68 OS << "??@" << HexString << '@'; 69 } 70 }; 71 72 static const DeclContext * 73 getLambdaDefaultArgumentDeclContext(const Decl *D) { 74 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 75 if (RD->isLambda()) 76 if (const auto *Parm = 77 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 78 return Parm->getDeclContext(); 79 return nullptr; 80 } 81 82 /// Retrieve the declaration context that should be used when mangling 83 /// the given declaration. 84 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 85 // The ABI assumes that lambda closure types that occur within 86 // default arguments live in the context of the function. However, due to 87 // the way in which Clang parses and creates function declarations, this is 88 // not the case: the lambda closure type ends up living in the context 89 // where the function itself resides, because the function declaration itself 90 // had not yet been created. Fix the context here. 91 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 92 return LDADC; 93 94 // Perform the same check for block literals. 95 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 96 if (ParmVarDecl *ContextParam = 97 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 98 return ContextParam->getDeclContext(); 99 } 100 101 const DeclContext *DC = D->getDeclContext(); 102 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 103 isa<OMPDeclareMapperDecl>(DC)) { 104 return getEffectiveDeclContext(cast<Decl>(DC)); 105 } 106 107 return DC->getRedeclContext(); 108 } 109 110 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 111 return getEffectiveDeclContext(cast<Decl>(DC)); 112 } 113 114 static const FunctionDecl *getStructor(const NamedDecl *ND) { 115 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 116 return FTD->getTemplatedDecl()->getCanonicalDecl(); 117 118 const auto *FD = cast<FunctionDecl>(ND); 119 if (const auto *FTD = FD->getPrimaryTemplate()) 120 return FTD->getTemplatedDecl()->getCanonicalDecl(); 121 122 return FD->getCanonicalDecl(); 123 } 124 125 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 126 /// Microsoft Visual C++ ABI. 127 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 128 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 129 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 130 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 131 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 132 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; 133 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; 134 SmallString<16> AnonymousNamespaceHash; 135 136 public: 137 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags); 138 bool shouldMangleCXXName(const NamedDecl *D) override; 139 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 140 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; 141 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 142 const MethodVFTableLocation &ML, 143 raw_ostream &Out) override; 144 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 145 raw_ostream &) override; 146 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 147 const ThisAdjustment &ThisAdjustment, 148 raw_ostream &) override; 149 void mangleCXXVFTable(const CXXRecordDecl *Derived, 150 ArrayRef<const CXXRecordDecl *> BasePath, 151 raw_ostream &Out) override; 152 void mangleCXXVBTable(const CXXRecordDecl *Derived, 153 ArrayRef<const CXXRecordDecl *> BasePath, 154 raw_ostream &Out) override; 155 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 156 const CXXRecordDecl *DstRD, 157 raw_ostream &Out) override; 158 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 159 bool IsUnaligned, uint32_t NumEntries, 160 raw_ostream &Out) override; 161 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 162 raw_ostream &Out) override; 163 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 164 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 165 int32_t VBPtrOffset, uint32_t VBIndex, 166 raw_ostream &Out) override; 167 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 168 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; 169 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 170 uint32_t NVOffset, int32_t VBPtrOffset, 171 uint32_t VBTableOffset, uint32_t Flags, 172 raw_ostream &Out) override; 173 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 174 raw_ostream &Out) override; 175 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 176 raw_ostream &Out) override; 177 void 178 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 179 ArrayRef<const CXXRecordDecl *> BasePath, 180 raw_ostream &Out) override; 181 void mangleTypeName(QualType T, raw_ostream &) override; 182 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 183 raw_ostream &) override; 184 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 185 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 186 raw_ostream &Out) override; 187 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 188 void mangleDynamicAtExitDestructor(const VarDecl *D, 189 raw_ostream &Out) override; 190 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 191 raw_ostream &Out) override; 192 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 193 raw_ostream &Out) override; 194 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 195 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 196 const DeclContext *DC = getEffectiveDeclContext(ND); 197 if (!DC->isFunctionOrMethod()) 198 return false; 199 200 // Lambda closure types are already numbered, give out a phony number so 201 // that they demangle nicely. 202 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 203 if (RD->isLambda()) { 204 disc = 1; 205 return true; 206 } 207 } 208 209 // Use the canonical number for externally visible decls. 210 if (ND->isExternallyVisible()) { 211 disc = getASTContext().getManglingNumber(ND); 212 return true; 213 } 214 215 // Anonymous tags are already numbered. 216 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 217 if (!Tag->hasNameForLinkage() && 218 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 219 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 220 return false; 221 } 222 223 // Make up a reasonable number for internal decls. 224 unsigned &discriminator = Uniquifier[ND]; 225 if (!discriminator) 226 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 227 disc = discriminator + 1; 228 return true; 229 } 230 231 unsigned getLambdaId(const CXXRecordDecl *RD) { 232 assert(RD->isLambda() && "RD must be a lambda!"); 233 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 234 assert(RD->getLambdaManglingNumber() == 0 && 235 "RD must not have a mangling number!"); 236 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 237 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 238 return Result.first->second; 239 } 240 241 /// Return a character sequence that is (somewhat) unique to the TU suitable 242 /// for mangling anonymous namespaces. 243 StringRef getAnonymousNamespaceHash() const { 244 return AnonymousNamespaceHash; 245 } 246 247 private: 248 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 249 }; 250 251 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 252 /// Microsoft Visual C++ ABI. 253 class MicrosoftCXXNameMangler { 254 MicrosoftMangleContextImpl &Context; 255 raw_ostream &Out; 256 257 /// The "structor" is the top-level declaration being mangled, if 258 /// that's not a template specialization; otherwise it's the pattern 259 /// for that specialization. 260 const NamedDecl *Structor; 261 unsigned StructorType; 262 263 typedef llvm::SmallVector<std::string, 10> BackRefVec; 264 BackRefVec NameBackReferences; 265 266 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 267 ArgBackRefMap FunArgBackReferences; 268 ArgBackRefMap TemplateArgBackReferences; 269 270 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 271 TemplateArgStringMap TemplateArgStrings; 272 llvm::StringSaver TemplateArgStringStorage; 273 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 274 275 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 276 PassObjectSizeArgsSet PassObjectSizeArgs; 277 278 ASTContext &getASTContext() const { return Context.getASTContext(); } 279 280 const bool PointersAre64Bit; 281 282 public: 283 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 284 285 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 286 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 287 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 288 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 289 64) {} 290 291 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 292 const CXXConstructorDecl *D, CXXCtorType Type) 293 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 294 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 295 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 296 64) {} 297 298 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 299 const CXXDestructorDecl *D, CXXDtorType Type) 300 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 301 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 302 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 303 64) {} 304 305 raw_ostream &getStream() const { return Out; } 306 307 void mangle(const NamedDecl *D, StringRef Prefix = "?"); 308 void mangleName(const NamedDecl *ND); 309 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle); 310 void mangleVariableEncoding(const VarDecl *VD); 311 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD); 312 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 313 const CXXMethodDecl *MD); 314 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 315 const MethodVFTableLocation &ML); 316 void mangleNumber(int64_t Number); 317 void mangleTagTypeKind(TagTypeKind TK); 318 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 319 ArrayRef<StringRef> NestedNames = None); 320 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 321 void mangleType(QualType T, SourceRange Range, 322 QualifierMangleMode QMM = QMM_Mangle); 323 void mangleFunctionType(const FunctionType *T, 324 const FunctionDecl *D = nullptr, 325 bool ForceThisQuals = false, 326 bool MangleExceptionSpec = true); 327 void mangleNestedName(const NamedDecl *ND); 328 329 private: 330 bool isStructorDecl(const NamedDecl *ND) const { 331 return ND == Structor || getStructor(ND) == Structor; 332 } 333 334 bool is64BitPointer(Qualifiers Quals) const { 335 LangAS AddrSpace = Quals.getAddressSpace(); 336 return AddrSpace == LangAS::ptr64 || 337 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || 338 AddrSpace == LangAS::ptr32_uptr)); 339 } 340 341 void mangleUnqualifiedName(const NamedDecl *ND) { 342 mangleUnqualifiedName(ND, ND->getDeclName()); 343 } 344 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); 345 void mangleSourceName(StringRef Name); 346 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 347 void mangleCXXDtorType(CXXDtorType T); 348 void mangleQualifiers(Qualifiers Quals, bool IsMember); 349 void mangleRefQualifier(RefQualifierKind RefQualifier); 350 void manglePointerCVQualifiers(Qualifiers Quals); 351 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 352 353 void mangleUnscopedTemplateName(const TemplateDecl *ND); 354 void 355 mangleTemplateInstantiationName(const TemplateDecl *TD, 356 const TemplateArgumentList &TemplateArgs); 357 void mangleObjCMethodName(const ObjCMethodDecl *MD); 358 359 void mangleFunctionArgumentType(QualType T, SourceRange Range); 360 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 361 362 bool isArtificialTagType(QualType T) const; 363 364 // Declare manglers for every type class. 365 #define ABSTRACT_TYPE(CLASS, PARENT) 366 #define NON_CANONICAL_TYPE(CLASS, PARENT) 367 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 368 Qualifiers Quals, \ 369 SourceRange Range); 370 #include "clang/AST/TypeNodes.inc" 371 #undef ABSTRACT_TYPE 372 #undef NON_CANONICAL_TYPE 373 #undef TYPE 374 375 void mangleType(const TagDecl *TD); 376 void mangleDecayedArrayType(const ArrayType *T); 377 void mangleArrayType(const ArrayType *T); 378 void mangleFunctionClass(const FunctionDecl *FD); 379 void mangleCallingConvention(CallingConv CC); 380 void mangleCallingConvention(const FunctionType *T); 381 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean); 382 void mangleExpression(const Expr *E); 383 void mangleThrowSpecification(const FunctionProtoType *T); 384 385 void mangleTemplateArgs(const TemplateDecl *TD, 386 const TemplateArgumentList &TemplateArgs); 387 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 388 const NamedDecl *Parm); 389 390 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 391 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 392 SourceRange Range); 393 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 394 SourceRange Range); 395 }; 396 } 397 398 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 399 DiagnosticsEngine &Diags) 400 : MicrosoftMangleContext(Context, Diags) { 401 // To mangle anonymous namespaces, hash the path to the main source file. The 402 // path should be whatever (probably relative) path was passed on the command 403 // line. The goal is for the compiler to produce the same output regardless of 404 // working directory, so use the uncanonicalized relative path. 405 // 406 // It's important to make the mangled names unique because, when CodeView 407 // debug info is in use, the debugger uses mangled type names to distinguish 408 // between otherwise identically named types in anonymous namespaces. 409 // 410 // These symbols are always internal, so there is no need for the hash to 411 // match what MSVC produces. For the same reason, clang is free to change the 412 // hash at any time without breaking compatibility with old versions of clang. 413 // The generated names are intended to look similar to what MSVC generates, 414 // which are something like "?A0x01234567@". 415 SourceManager &SM = Context.getSourceManager(); 416 if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { 417 // Truncate the hash so we get 8 characters of hexadecimal. 418 uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName())); 419 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 420 } else { 421 // If we don't have a path to the main file, we'll just use 0. 422 AnonymousNamespaceHash = "0"; 423 } 424 } 425 426 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 427 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 428 LanguageLinkage L = FD->getLanguageLinkage(); 429 // Overloadable functions need mangling. 430 if (FD->hasAttr<OverloadableAttr>()) 431 return true; 432 433 // The ABI expects that we would never mangle "typical" user-defined entry 434 // points regardless of visibility or freestanding-ness. 435 // 436 // N.B. This is distinct from asking about "main". "main" has a lot of 437 // special rules associated with it in the standard while these 438 // user-defined entry points are outside of the purview of the standard. 439 // For example, there can be only one definition for "main" in a standards 440 // compliant program; however nothing forbids the existence of wmain and 441 // WinMain in the same translation unit. 442 if (FD->isMSVCRTEntryPoint()) 443 return false; 444 445 // C++ functions and those whose names are not a simple identifier need 446 // mangling. 447 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 448 return true; 449 450 // C functions are not mangled. 451 if (L == CLanguageLinkage) 452 return false; 453 } 454 455 // Otherwise, no mangling is done outside C++ mode. 456 if (!getASTContext().getLangOpts().CPlusPlus) 457 return false; 458 459 const VarDecl *VD = dyn_cast<VarDecl>(D); 460 if (VD && !isa<DecompositionDecl>(D)) { 461 // C variables are not mangled. 462 if (VD->isExternC()) 463 return false; 464 465 // Variables at global scope with internal linkage are not mangled. 466 const DeclContext *DC = getEffectiveDeclContext(D); 467 // Check for extern variable declared locally. 468 if (DC->isFunctionOrMethod() && D->hasLinkage()) 469 while (!DC->isNamespace() && !DC->isTranslationUnit()) 470 DC = getEffectiveParentContext(DC); 471 472 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && 473 !isa<VarTemplateSpecializationDecl>(D) && 474 D->getIdentifier() != nullptr) 475 return false; 476 } 477 478 return true; 479 } 480 481 bool 482 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 483 return true; 484 } 485 486 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { 487 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 488 // Therefore it's really important that we don't decorate the 489 // name with leading underscores or leading/trailing at signs. So, by 490 // default, we emit an asm marker at the start so we get the name right. 491 // Callers can override this with a custom prefix. 492 493 // <mangled-name> ::= ? <name> <type-encoding> 494 Out << Prefix; 495 mangleName(D); 496 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 497 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD)); 498 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 499 mangleVariableEncoding(VD); 500 else if (isa<MSGuidDecl>(D)) 501 // MSVC appears to mangle GUIDs as if they were variables of type 502 // 'const struct __s_GUID'. 503 Out << "3U__s_GUID@@B"; 504 else 505 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 506 } 507 508 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD, 509 bool ShouldMangle) { 510 // <type-encoding> ::= <function-class> <function-type> 511 512 // Since MSVC operates on the type as written and not the canonical type, it 513 // actually matters which decl we have here. MSVC appears to choose the 514 // first, since it is most likely to be the declaration in a header file. 515 FD = FD->getFirstDecl(); 516 517 // We should never ever see a FunctionNoProtoType at this point. 518 // We don't even know how to mangle their types anyway :). 519 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 520 521 // extern "C" functions can hold entities that must be mangled. 522 // As it stands, these functions still need to get expressed in the full 523 // external name. They have their class and type omitted, replaced with '9'. 524 if (ShouldMangle) { 525 // We would like to mangle all extern "C" functions using this additional 526 // component but this would break compatibility with MSVC's behavior. 527 // Instead, do this when we know that compatibility isn't important (in 528 // other words, when it is an overloaded extern "C" function). 529 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 530 Out << "$$J0"; 531 532 mangleFunctionClass(FD); 533 534 mangleFunctionType(FT, FD, false, false); 535 } else { 536 Out << '9'; 537 } 538 } 539 540 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 541 // <type-encoding> ::= <storage-class> <variable-type> 542 // <storage-class> ::= 0 # private static member 543 // ::= 1 # protected static member 544 // ::= 2 # public static member 545 // ::= 3 # global 546 // ::= 4 # static local 547 548 // The first character in the encoding (after the name) is the storage class. 549 if (VD->isStaticDataMember()) { 550 // If it's a static member, it also encodes the access level. 551 switch (VD->getAccess()) { 552 default: 553 case AS_private: Out << '0'; break; 554 case AS_protected: Out << '1'; break; 555 case AS_public: Out << '2'; break; 556 } 557 } 558 else if (!VD->isStaticLocal()) 559 Out << '3'; 560 else 561 Out << '4'; 562 // Now mangle the type. 563 // <variable-type> ::= <type> <cvr-qualifiers> 564 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 565 // Pointers and references are odd. The type of 'int * const foo;' gets 566 // mangled as 'QAHA' instead of 'PAHB', for example. 567 SourceRange SR = VD->getSourceRange(); 568 QualType Ty = VD->getType(); 569 if (Ty->isPointerType() || Ty->isReferenceType() || 570 Ty->isMemberPointerType()) { 571 mangleType(Ty, SR, QMM_Drop); 572 manglePointerExtQualifiers( 573 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 574 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 575 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 576 // Member pointers are suffixed with a back reference to the member 577 // pointer's class name. 578 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 579 } else 580 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 581 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 582 // Global arrays are funny, too. 583 mangleDecayedArrayType(AT); 584 if (AT->getElementType()->isArrayType()) 585 Out << 'A'; 586 else 587 mangleQualifiers(Ty.getQualifiers(), false); 588 } else { 589 mangleType(Ty, SR, QMM_Drop); 590 mangleQualifiers(Ty.getQualifiers(), false); 591 } 592 } 593 594 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 595 const ValueDecl *VD) { 596 // <member-data-pointer> ::= <integer-literal> 597 // ::= $F <number> <number> 598 // ::= $G <number> <number> <number> 599 600 int64_t FieldOffset; 601 int64_t VBTableOffset; 602 MSInheritanceModel IM = RD->getMSInheritanceModel(); 603 if (VD) { 604 FieldOffset = getASTContext().getFieldOffset(VD); 605 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 606 "cannot take address of bitfield"); 607 FieldOffset /= getASTContext().getCharWidth(); 608 609 VBTableOffset = 0; 610 611 if (IM == MSInheritanceModel::Virtual) 612 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 613 } else { 614 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 615 616 VBTableOffset = -1; 617 } 618 619 char Code = '\0'; 620 switch (IM) { 621 case MSInheritanceModel::Single: Code = '0'; break; 622 case MSInheritanceModel::Multiple: Code = '0'; break; 623 case MSInheritanceModel::Virtual: Code = 'F'; break; 624 case MSInheritanceModel::Unspecified: Code = 'G'; break; 625 } 626 627 Out << '$' << Code; 628 629 mangleNumber(FieldOffset); 630 631 // The C++ standard doesn't allow base-to-derived member pointer conversions 632 // in template parameter contexts, so the vbptr offset of data member pointers 633 // is always zero. 634 if (inheritanceModelHasVBPtrOffsetField(IM)) 635 mangleNumber(0); 636 if (inheritanceModelHasVBTableOffsetField(IM)) 637 mangleNumber(VBTableOffset); 638 } 639 640 void 641 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 642 const CXXMethodDecl *MD) { 643 // <member-function-pointer> ::= $1? <name> 644 // ::= $H? <name> <number> 645 // ::= $I? <name> <number> <number> 646 // ::= $J? <name> <number> <number> <number> 647 648 MSInheritanceModel IM = RD->getMSInheritanceModel(); 649 650 char Code = '\0'; 651 switch (IM) { 652 case MSInheritanceModel::Single: Code = '1'; break; 653 case MSInheritanceModel::Multiple: Code = 'H'; break; 654 case MSInheritanceModel::Virtual: Code = 'I'; break; 655 case MSInheritanceModel::Unspecified: Code = 'J'; break; 656 } 657 658 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 659 // thunk. 660 uint64_t NVOffset = 0; 661 uint64_t VBTableOffset = 0; 662 uint64_t VBPtrOffset = 0; 663 if (MD) { 664 Out << '$' << Code << '?'; 665 if (MD->isVirtual()) { 666 MicrosoftVTableContext *VTContext = 667 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 668 MethodVFTableLocation ML = 669 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 670 mangleVirtualMemPtrThunk(MD, ML); 671 NVOffset = ML.VFPtrOffset.getQuantity(); 672 VBTableOffset = ML.VBTableIndex * 4; 673 if (ML.VBase) { 674 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 675 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 676 } 677 } else { 678 mangleName(MD); 679 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 680 } 681 682 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) 683 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 684 } else { 685 // Null single inheritance member functions are encoded as a simple nullptr. 686 if (IM == MSInheritanceModel::Single) { 687 Out << "$0A@"; 688 return; 689 } 690 if (IM == MSInheritanceModel::Unspecified) 691 VBTableOffset = -1; 692 Out << '$' << Code; 693 } 694 695 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM)) 696 mangleNumber(static_cast<uint32_t>(NVOffset)); 697 if (inheritanceModelHasVBPtrOffsetField(IM)) 698 mangleNumber(VBPtrOffset); 699 if (inheritanceModelHasVBTableOffsetField(IM)) 700 mangleNumber(VBTableOffset); 701 } 702 703 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 704 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 705 // Get the vftable offset. 706 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 707 getASTContext().getTargetInfo().getPointerWidth(0)); 708 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 709 710 Out << "?_9"; 711 mangleName(MD->getParent()); 712 Out << "$B"; 713 mangleNumber(OffsetInVFTable); 714 Out << 'A'; 715 mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>()); 716 } 717 718 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { 719 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 720 721 // Always start with the unqualified name. 722 mangleUnqualifiedName(ND); 723 724 mangleNestedName(ND); 725 726 // Terminate the whole name with an '@'. 727 Out << '@'; 728 } 729 730 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 731 // <non-negative integer> ::= A@ # when Number == 0 732 // ::= <decimal digit> # when 1 <= Number <= 10 733 // ::= <hex digit>+ @ # when Number >= 10 734 // 735 // <number> ::= [?] <non-negative integer> 736 737 uint64_t Value = static_cast<uint64_t>(Number); 738 if (Number < 0) { 739 Value = -Value; 740 Out << '?'; 741 } 742 743 if (Value == 0) 744 Out << "A@"; 745 else if (Value >= 1 && Value <= 10) 746 Out << (Value - 1); 747 else { 748 // Numbers that are not encoded as decimal digits are represented as nibbles 749 // in the range of ASCII characters 'A' to 'P'. 750 // The number 0x123450 would be encoded as 'BCDEFA' 751 char EncodedNumberBuffer[sizeof(uint64_t) * 2]; 752 MutableArrayRef<char> BufferRef(EncodedNumberBuffer); 753 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 754 for (; Value != 0; Value >>= 4) 755 *I++ = 'A' + (Value & 0xf); 756 Out.write(I.base(), I - BufferRef.rbegin()); 757 Out << '@'; 758 } 759 } 760 761 static const TemplateDecl * 762 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 763 // Check if we have a function template. 764 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 765 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 766 TemplateArgs = FD->getTemplateSpecializationArgs(); 767 return TD; 768 } 769 } 770 771 // Check if we have a class template. 772 if (const ClassTemplateSpecializationDecl *Spec = 773 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 774 TemplateArgs = &Spec->getTemplateArgs(); 775 return Spec->getSpecializedTemplate(); 776 } 777 778 // Check if we have a variable template. 779 if (const VarTemplateSpecializationDecl *Spec = 780 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 781 TemplateArgs = &Spec->getTemplateArgs(); 782 return Spec->getSpecializedTemplate(); 783 } 784 785 return nullptr; 786 } 787 788 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 789 DeclarationName Name) { 790 // <unqualified-name> ::= <operator-name> 791 // ::= <ctor-dtor-name> 792 // ::= <source-name> 793 // ::= <template-name> 794 795 // Check if we have a template. 796 const TemplateArgumentList *TemplateArgs = nullptr; 797 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 798 // Function templates aren't considered for name back referencing. This 799 // makes sense since function templates aren't likely to occur multiple 800 // times in a symbol. 801 if (isa<FunctionTemplateDecl>(TD)) { 802 mangleTemplateInstantiationName(TD, *TemplateArgs); 803 Out << '@'; 804 return; 805 } 806 807 // Here comes the tricky thing: if we need to mangle something like 808 // void foo(A::X<Y>, B::X<Y>), 809 // the X<Y> part is aliased. However, if you need to mangle 810 // void foo(A::X<A::Y>, A::X<B::Y>), 811 // the A::X<> part is not aliased. 812 // That is, from the mangler's perspective we have a structure like this: 813 // namespace[s] -> type[ -> template-parameters] 814 // but from the Clang perspective we have 815 // type [ -> template-parameters] 816 // \-> namespace[s] 817 // What we do is we create a new mangler, mangle the same type (without 818 // a namespace suffix) to a string using the extra mangler and then use 819 // the mangled type name as a key to check the mangling of different types 820 // for aliasing. 821 822 // It's important to key cache reads off ND, not TD -- the same TD can 823 // be used with different TemplateArgs, but ND uniquely identifies 824 // TD / TemplateArg pairs. 825 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 826 if (Found == TemplateArgBackReferences.end()) { 827 828 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 829 if (Found == TemplateArgStrings.end()) { 830 // Mangle full template name into temporary buffer. 831 llvm::SmallString<64> TemplateMangling; 832 llvm::raw_svector_ostream Stream(TemplateMangling); 833 MicrosoftCXXNameMangler Extra(Context, Stream); 834 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 835 836 // Use the string backref vector to possibly get a back reference. 837 mangleSourceName(TemplateMangling); 838 839 // Memoize back reference for this type if one exist, else memoize 840 // the mangling itself. 841 BackRefVec::iterator StringFound = 842 llvm::find(NameBackReferences, TemplateMangling); 843 if (StringFound != NameBackReferences.end()) { 844 TemplateArgBackReferences[ND] = 845 StringFound - NameBackReferences.begin(); 846 } else { 847 TemplateArgStrings[ND] = 848 TemplateArgStringStorage.save(TemplateMangling.str()); 849 } 850 } else { 851 Out << Found->second << '@'; // Outputs a StringRef. 852 } 853 } else { 854 Out << Found->second; // Outputs a back reference (an int). 855 } 856 return; 857 } 858 859 switch (Name.getNameKind()) { 860 case DeclarationName::Identifier: { 861 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 862 mangleSourceName(II->getName()); 863 break; 864 } 865 866 // Otherwise, an anonymous entity. We must have a declaration. 867 assert(ND && "mangling empty name without declaration"); 868 869 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 870 if (NS->isAnonymousNamespace()) { 871 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 872 break; 873 } 874 } 875 876 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 877 // Decomposition declarations are considered anonymous, and get 878 // numbered with a $S prefix. 879 llvm::SmallString<64> Name("$S"); 880 // Get a unique id for the anonymous struct. 881 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); 882 mangleSourceName(Name); 883 break; 884 } 885 886 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 887 // We must have an anonymous union or struct declaration. 888 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 889 assert(RD && "expected variable decl to have a record type"); 890 // Anonymous types with no tag or typedef get the name of their 891 // declarator mangled in. If they have no declarator, number them with 892 // a $S prefix. 893 llvm::SmallString<64> Name("$S"); 894 // Get a unique id for the anonymous struct. 895 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 896 mangleSourceName(Name.str()); 897 break; 898 } 899 900 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) { 901 // Mangle a GUID object as if it were a variable with the corresponding 902 // mangled name. 903 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 904 llvm::raw_svector_ostream GUIDOS(GUID); 905 Context.mangleMSGuidDecl(GD, GUIDOS); 906 mangleSourceName(GUID); 907 break; 908 } 909 910 // We must have an anonymous struct. 911 const TagDecl *TD = cast<TagDecl>(ND); 912 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 913 assert(TD->getDeclContext() == D->getDeclContext() && 914 "Typedef should not be in another decl context!"); 915 assert(D->getDeclName().getAsIdentifierInfo() && 916 "Typedef was not named!"); 917 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 918 break; 919 } 920 921 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 922 if (Record->isLambda()) { 923 llvm::SmallString<10> Name("<lambda_"); 924 925 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 926 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 927 unsigned LambdaId; 928 const ParmVarDecl *Parm = 929 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 930 const FunctionDecl *Func = 931 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 932 933 if (Func) { 934 unsigned DefaultArgNo = 935 Func->getNumParams() - Parm->getFunctionScopeIndex(); 936 Name += llvm::utostr(DefaultArgNo); 937 Name += "_"; 938 } 939 940 if (LambdaManglingNumber) 941 LambdaId = LambdaManglingNumber; 942 else 943 LambdaId = Context.getLambdaId(Record); 944 945 Name += llvm::utostr(LambdaId); 946 Name += ">"; 947 948 mangleSourceName(Name); 949 950 // If the context is a variable or a class member and not a parameter, 951 // it is encoded in a qualified name. 952 if (LambdaManglingNumber && LambdaContextDecl) { 953 if ((isa<VarDecl>(LambdaContextDecl) || 954 isa<FieldDecl>(LambdaContextDecl)) && 955 !isa<ParmVarDecl>(LambdaContextDecl)) { 956 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 957 } 958 } 959 break; 960 } 961 } 962 963 llvm::SmallString<64> Name; 964 if (DeclaratorDecl *DD = 965 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 966 // Anonymous types without a name for linkage purposes have their 967 // declarator mangled in if they have one. 968 Name += "<unnamed-type-"; 969 Name += DD->getName(); 970 } else if (TypedefNameDecl *TND = 971 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 972 TD)) { 973 // Anonymous types without a name for linkage purposes have their 974 // associate typedef mangled in if they have one. 975 Name += "<unnamed-type-"; 976 Name += TND->getName(); 977 } else if (isa<EnumDecl>(TD) && 978 cast<EnumDecl>(TD)->enumerator_begin() != 979 cast<EnumDecl>(TD)->enumerator_end()) { 980 // Anonymous non-empty enums mangle in the first enumerator. 981 auto *ED = cast<EnumDecl>(TD); 982 Name += "<unnamed-enum-"; 983 Name += ED->enumerator_begin()->getName(); 984 } else { 985 // Otherwise, number the types using a $S prefix. 986 Name += "<unnamed-type-$S"; 987 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 988 } 989 Name += ">"; 990 mangleSourceName(Name.str()); 991 break; 992 } 993 994 case DeclarationName::ObjCZeroArgSelector: 995 case DeclarationName::ObjCOneArgSelector: 996 case DeclarationName::ObjCMultiArgSelector: { 997 // This is reachable only when constructing an outlined SEH finally 998 // block. Nothing depends on this mangling and it's used only with 999 // functinos with internal linkage. 1000 llvm::SmallString<64> Name; 1001 mangleSourceName(Name.str()); 1002 break; 1003 } 1004 1005 case DeclarationName::CXXConstructorName: 1006 if (isStructorDecl(ND)) { 1007 if (StructorType == Ctor_CopyingClosure) { 1008 Out << "?_O"; 1009 return; 1010 } 1011 if (StructorType == Ctor_DefaultClosure) { 1012 Out << "?_F"; 1013 return; 1014 } 1015 } 1016 Out << "?0"; 1017 return; 1018 1019 case DeclarationName::CXXDestructorName: 1020 if (isStructorDecl(ND)) 1021 // If the named decl is the C++ destructor we're mangling, 1022 // use the type we were given. 1023 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1024 else 1025 // Otherwise, use the base destructor name. This is relevant if a 1026 // class with a destructor is declared within a destructor. 1027 mangleCXXDtorType(Dtor_Base); 1028 break; 1029 1030 case DeclarationName::CXXConversionFunctionName: 1031 // <operator-name> ::= ?B # (cast) 1032 // The target type is encoded as the return type. 1033 Out << "?B"; 1034 break; 1035 1036 case DeclarationName::CXXOperatorName: 1037 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1038 break; 1039 1040 case DeclarationName::CXXLiteralOperatorName: { 1041 Out << "?__K"; 1042 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1043 break; 1044 } 1045 1046 case DeclarationName::CXXDeductionGuideName: 1047 llvm_unreachable("Can't mangle a deduction guide name!"); 1048 1049 case DeclarationName::CXXUsingDirective: 1050 llvm_unreachable("Can't mangle a using directive name!"); 1051 } 1052 } 1053 1054 // <postfix> ::= <unqualified-name> [<postfix>] 1055 // ::= <substitution> [<postfix>] 1056 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) { 1057 const DeclContext *DC = getEffectiveDeclContext(ND); 1058 while (!DC->isTranslationUnit()) { 1059 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1060 unsigned Disc; 1061 if (Context.getNextDiscriminator(ND, Disc)) { 1062 Out << '?'; 1063 mangleNumber(Disc); 1064 Out << '?'; 1065 } 1066 } 1067 1068 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1069 auto Discriminate = 1070 [](StringRef Name, const unsigned Discriminator, 1071 const unsigned ParameterDiscriminator) -> std::string { 1072 std::string Buffer; 1073 llvm::raw_string_ostream Stream(Buffer); 1074 Stream << Name; 1075 if (Discriminator) 1076 Stream << '_' << Discriminator; 1077 if (ParameterDiscriminator) 1078 Stream << '_' << ParameterDiscriminator; 1079 return Stream.str(); 1080 }; 1081 1082 unsigned Discriminator = BD->getBlockManglingNumber(); 1083 if (!Discriminator) 1084 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1085 1086 // Mangle the parameter position as a discriminator to deal with unnamed 1087 // parameters. Rather than mangling the unqualified parameter name, 1088 // always use the position to give a uniform mangling. 1089 unsigned ParameterDiscriminator = 0; 1090 if (const auto *MC = BD->getBlockManglingContextDecl()) 1091 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1092 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1093 ParameterDiscriminator = 1094 F->getNumParams() - P->getFunctionScopeIndex(); 1095 1096 DC = getEffectiveDeclContext(BD); 1097 1098 Out << '?'; 1099 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1100 ParameterDiscriminator)); 1101 // If we have a block mangling context, encode that now. This allows us 1102 // to discriminate between named static data initializers in the same 1103 // scope. This is handled differently from parameters, which use 1104 // positions to discriminate between multiple instances. 1105 if (const auto *MC = BD->getBlockManglingContextDecl()) 1106 if (!isa<ParmVarDecl>(MC)) 1107 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1108 mangleUnqualifiedName(ND); 1109 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1110 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1111 // just the unqualified name to get the ordering correct. 1112 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1113 mangleName(RD); 1114 else 1115 Out << '@'; 1116 // void __cdecl 1117 Out << "YAX"; 1118 // struct __block_literal * 1119 Out << 'P'; 1120 // __ptr64 1121 if (PointersAre64Bit) 1122 Out << 'E'; 1123 Out << 'A'; 1124 mangleArtificialTagType(TTK_Struct, 1125 Discriminate("__block_literal", Discriminator, 1126 ParameterDiscriminator)); 1127 Out << "@Z"; 1128 1129 // If the effective context was a Record, we have fully mangled the 1130 // qualified name and do not need to continue. 1131 if (isa<RecordDecl>(DC)) 1132 break; 1133 continue; 1134 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1135 mangleObjCMethodName(Method); 1136 } else if (isa<NamedDecl>(DC)) { 1137 ND = cast<NamedDecl>(DC); 1138 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1139 mangle(FD, "?"); 1140 break; 1141 } else { 1142 mangleUnqualifiedName(ND); 1143 // Lambdas in default arguments conceptually belong to the function the 1144 // parameter corresponds to. 1145 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1146 DC = LDADC; 1147 continue; 1148 } 1149 } 1150 } 1151 DC = DC->getParent(); 1152 } 1153 } 1154 1155 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1156 // Microsoft uses the names on the case labels for these dtor variants. Clang 1157 // uses the Itanium terminology internally. Everything in this ABI delegates 1158 // towards the base dtor. 1159 switch (T) { 1160 // <operator-name> ::= ?1 # destructor 1161 case Dtor_Base: Out << "?1"; return; 1162 // <operator-name> ::= ?_D # vbase destructor 1163 case Dtor_Complete: Out << "?_D"; return; 1164 // <operator-name> ::= ?_G # scalar deleting destructor 1165 case Dtor_Deleting: Out << "?_G"; return; 1166 // <operator-name> ::= ?_E # vector deleting destructor 1167 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1168 // it. 1169 case Dtor_Comdat: 1170 llvm_unreachable("not expecting a COMDAT"); 1171 } 1172 llvm_unreachable("Unsupported dtor type?"); 1173 } 1174 1175 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1176 SourceLocation Loc) { 1177 switch (OO) { 1178 // ?0 # constructor 1179 // ?1 # destructor 1180 // <operator-name> ::= ?2 # new 1181 case OO_New: Out << "?2"; break; 1182 // <operator-name> ::= ?3 # delete 1183 case OO_Delete: Out << "?3"; break; 1184 // <operator-name> ::= ?4 # = 1185 case OO_Equal: Out << "?4"; break; 1186 // <operator-name> ::= ?5 # >> 1187 case OO_GreaterGreater: Out << "?5"; break; 1188 // <operator-name> ::= ?6 # << 1189 case OO_LessLess: Out << "?6"; break; 1190 // <operator-name> ::= ?7 # ! 1191 case OO_Exclaim: Out << "?7"; break; 1192 // <operator-name> ::= ?8 # == 1193 case OO_EqualEqual: Out << "?8"; break; 1194 // <operator-name> ::= ?9 # != 1195 case OO_ExclaimEqual: Out << "?9"; break; 1196 // <operator-name> ::= ?A # [] 1197 case OO_Subscript: Out << "?A"; break; 1198 // ?B # conversion 1199 // <operator-name> ::= ?C # -> 1200 case OO_Arrow: Out << "?C"; break; 1201 // <operator-name> ::= ?D # * 1202 case OO_Star: Out << "?D"; break; 1203 // <operator-name> ::= ?E # ++ 1204 case OO_PlusPlus: Out << "?E"; break; 1205 // <operator-name> ::= ?F # -- 1206 case OO_MinusMinus: Out << "?F"; break; 1207 // <operator-name> ::= ?G # - 1208 case OO_Minus: Out << "?G"; break; 1209 // <operator-name> ::= ?H # + 1210 case OO_Plus: Out << "?H"; break; 1211 // <operator-name> ::= ?I # & 1212 case OO_Amp: Out << "?I"; break; 1213 // <operator-name> ::= ?J # ->* 1214 case OO_ArrowStar: Out << "?J"; break; 1215 // <operator-name> ::= ?K # / 1216 case OO_Slash: Out << "?K"; break; 1217 // <operator-name> ::= ?L # % 1218 case OO_Percent: Out << "?L"; break; 1219 // <operator-name> ::= ?M # < 1220 case OO_Less: Out << "?M"; break; 1221 // <operator-name> ::= ?N # <= 1222 case OO_LessEqual: Out << "?N"; break; 1223 // <operator-name> ::= ?O # > 1224 case OO_Greater: Out << "?O"; break; 1225 // <operator-name> ::= ?P # >= 1226 case OO_GreaterEqual: Out << "?P"; break; 1227 // <operator-name> ::= ?Q # , 1228 case OO_Comma: Out << "?Q"; break; 1229 // <operator-name> ::= ?R # () 1230 case OO_Call: Out << "?R"; break; 1231 // <operator-name> ::= ?S # ~ 1232 case OO_Tilde: Out << "?S"; break; 1233 // <operator-name> ::= ?T # ^ 1234 case OO_Caret: Out << "?T"; break; 1235 // <operator-name> ::= ?U # | 1236 case OO_Pipe: Out << "?U"; break; 1237 // <operator-name> ::= ?V # && 1238 case OO_AmpAmp: Out << "?V"; break; 1239 // <operator-name> ::= ?W # || 1240 case OO_PipePipe: Out << "?W"; break; 1241 // <operator-name> ::= ?X # *= 1242 case OO_StarEqual: Out << "?X"; break; 1243 // <operator-name> ::= ?Y # += 1244 case OO_PlusEqual: Out << "?Y"; break; 1245 // <operator-name> ::= ?Z # -= 1246 case OO_MinusEqual: Out << "?Z"; break; 1247 // <operator-name> ::= ?_0 # /= 1248 case OO_SlashEqual: Out << "?_0"; break; 1249 // <operator-name> ::= ?_1 # %= 1250 case OO_PercentEqual: Out << "?_1"; break; 1251 // <operator-name> ::= ?_2 # >>= 1252 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1253 // <operator-name> ::= ?_3 # <<= 1254 case OO_LessLessEqual: Out << "?_3"; break; 1255 // <operator-name> ::= ?_4 # &= 1256 case OO_AmpEqual: Out << "?_4"; break; 1257 // <operator-name> ::= ?_5 # |= 1258 case OO_PipeEqual: Out << "?_5"; break; 1259 // <operator-name> ::= ?_6 # ^= 1260 case OO_CaretEqual: Out << "?_6"; break; 1261 // ?_7 # vftable 1262 // ?_8 # vbtable 1263 // ?_9 # vcall 1264 // ?_A # typeof 1265 // ?_B # local static guard 1266 // ?_C # string 1267 // ?_D # vbase destructor 1268 // ?_E # vector deleting destructor 1269 // ?_F # default constructor closure 1270 // ?_G # scalar deleting destructor 1271 // ?_H # vector constructor iterator 1272 // ?_I # vector destructor iterator 1273 // ?_J # vector vbase constructor iterator 1274 // ?_K # virtual displacement map 1275 // ?_L # eh vector constructor iterator 1276 // ?_M # eh vector destructor iterator 1277 // ?_N # eh vector vbase constructor iterator 1278 // ?_O # copy constructor closure 1279 // ?_P<name> # udt returning <name> 1280 // ?_Q # <unknown> 1281 // ?_R0 # RTTI Type Descriptor 1282 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1283 // ?_R2 # RTTI Base Class Array 1284 // ?_R3 # RTTI Class Hierarchy Descriptor 1285 // ?_R4 # RTTI Complete Object Locator 1286 // ?_S # local vftable 1287 // ?_T # local vftable constructor closure 1288 // <operator-name> ::= ?_U # new[] 1289 case OO_Array_New: Out << "?_U"; break; 1290 // <operator-name> ::= ?_V # delete[] 1291 case OO_Array_Delete: Out << "?_V"; break; 1292 // <operator-name> ::= ?__L # co_await 1293 case OO_Coawait: Out << "?__L"; break; 1294 // <operator-name> ::= ?__M # <=> 1295 case OO_Spaceship: Out << "?__M"; break; 1296 1297 case OO_Conditional: { 1298 DiagnosticsEngine &Diags = Context.getDiags(); 1299 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1300 "cannot mangle this conditional operator yet"); 1301 Diags.Report(Loc, DiagID); 1302 break; 1303 } 1304 1305 case OO_None: 1306 case NUM_OVERLOADED_OPERATORS: 1307 llvm_unreachable("Not an overloaded operator"); 1308 } 1309 } 1310 1311 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1312 // <source name> ::= <identifier> @ 1313 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1314 if (Found == NameBackReferences.end()) { 1315 if (NameBackReferences.size() < 10) 1316 NameBackReferences.push_back(std::string(Name)); 1317 Out << Name << '@'; 1318 } else { 1319 Out << (Found - NameBackReferences.begin()); 1320 } 1321 } 1322 1323 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1324 Context.mangleObjCMethodName(MD, Out); 1325 } 1326 1327 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1328 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1329 // <template-name> ::= <unscoped-template-name> <template-args> 1330 // ::= <substitution> 1331 // Always start with the unqualified name. 1332 1333 // Templates have their own context for back references. 1334 ArgBackRefMap OuterFunArgsContext; 1335 ArgBackRefMap OuterTemplateArgsContext; 1336 BackRefVec OuterTemplateContext; 1337 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1338 NameBackReferences.swap(OuterTemplateContext); 1339 FunArgBackReferences.swap(OuterFunArgsContext); 1340 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1341 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1342 1343 mangleUnscopedTemplateName(TD); 1344 mangleTemplateArgs(TD, TemplateArgs); 1345 1346 // Restore the previous back reference contexts. 1347 NameBackReferences.swap(OuterTemplateContext); 1348 FunArgBackReferences.swap(OuterFunArgsContext); 1349 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1350 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1351 } 1352 1353 void 1354 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { 1355 // <unscoped-template-name> ::= ?$ <unqualified-name> 1356 Out << "?$"; 1357 mangleUnqualifiedName(TD); 1358 } 1359 1360 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value, 1361 bool IsBoolean) { 1362 // <integer-literal> ::= $0 <number> 1363 Out << "$0"; 1364 // Make sure booleans are encoded as 0/1. 1365 if (IsBoolean && Value.getBoolValue()) 1366 mangleNumber(1); 1367 else if (Value.isSigned()) 1368 mangleNumber(Value.getSExtValue()); 1369 else 1370 mangleNumber(Value.getZExtValue()); 1371 } 1372 1373 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { 1374 // See if this is a constant expression. 1375 llvm::APSInt Value; 1376 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { 1377 mangleIntegerLiteral(Value, E->getType()->isBooleanType()); 1378 return; 1379 } 1380 1381 // As bad as this diagnostic is, it's better than crashing. 1382 DiagnosticsEngine &Diags = Context.getDiags(); 1383 unsigned DiagID = Diags.getCustomDiagID( 1384 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1385 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1386 << E->getSourceRange(); 1387 } 1388 1389 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1390 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1391 // <template-args> ::= <template-arg>+ 1392 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1393 assert(TPL->size() == TemplateArgs.size() && 1394 "size mismatch between args and parms!"); 1395 1396 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1397 const TemplateArgument &TA = TemplateArgs[i]; 1398 1399 // Separate consecutive packs by $$Z. 1400 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1401 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1402 Out << "$$Z"; 1403 1404 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1405 } 1406 } 1407 1408 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1409 const TemplateArgument &TA, 1410 const NamedDecl *Parm) { 1411 // <template-arg> ::= <type> 1412 // ::= <integer-literal> 1413 // ::= <member-data-pointer> 1414 // ::= <member-function-pointer> 1415 // ::= $E? <name> <type-encoding> 1416 // ::= $1? <name> <type-encoding> 1417 // ::= $0A@ 1418 // ::= <template-args> 1419 1420 switch (TA.getKind()) { 1421 case TemplateArgument::Null: 1422 llvm_unreachable("Can't mangle null template arguments!"); 1423 case TemplateArgument::TemplateExpansion: 1424 llvm_unreachable("Can't mangle template expansion arguments!"); 1425 case TemplateArgument::Type: { 1426 QualType T = TA.getAsType(); 1427 mangleType(T, SourceRange(), QMM_Escape); 1428 break; 1429 } 1430 case TemplateArgument::Declaration: { 1431 const NamedDecl *ND = TA.getAsDecl(); 1432 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1433 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1434 ->getMostRecentNonInjectedDecl(), 1435 cast<ValueDecl>(ND)); 1436 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1437 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1438 if (MD && MD->isInstance()) { 1439 mangleMemberFunctionPointer( 1440 MD->getParent()->getMostRecentNonInjectedDecl(), MD); 1441 } else { 1442 Out << "$1?"; 1443 mangleName(FD); 1444 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1445 } 1446 } else { 1447 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); 1448 } 1449 break; 1450 } 1451 case TemplateArgument::Integral: 1452 mangleIntegerLiteral(TA.getAsIntegral(), 1453 TA.getIntegralType()->isBooleanType()); 1454 break; 1455 case TemplateArgument::NullPtr: { 1456 QualType T = TA.getNullPtrType(); 1457 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1458 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1459 if (MPT->isMemberFunctionPointerType() && 1460 !isa<FunctionTemplateDecl>(TD)) { 1461 mangleMemberFunctionPointer(RD, nullptr); 1462 return; 1463 } 1464 if (MPT->isMemberDataPointer()) { 1465 if (!isa<FunctionTemplateDecl>(TD)) { 1466 mangleMemberDataPointer(RD, nullptr); 1467 return; 1468 } 1469 // nullptr data pointers are always represented with a single field 1470 // which is initialized with either 0 or -1. Why -1? Well, we need to 1471 // distinguish the case where the data member is at offset zero in the 1472 // record. 1473 // However, we are free to use 0 *if* we would use multiple fields for 1474 // non-nullptr member pointers. 1475 if (!RD->nullFieldOffsetIsZero()) { 1476 mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false); 1477 return; 1478 } 1479 } 1480 } 1481 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false); 1482 break; 1483 } 1484 case TemplateArgument::Expression: 1485 mangleExpression(TA.getAsExpr()); 1486 break; 1487 case TemplateArgument::Pack: { 1488 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1489 if (TemplateArgs.empty()) { 1490 if (isa<TemplateTypeParmDecl>(Parm) || 1491 isa<TemplateTemplateParmDecl>(Parm)) 1492 // MSVC 2015 changed the mangling for empty expanded template packs, 1493 // use the old mangling for link compatibility for old versions. 1494 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1495 LangOptions::MSVC2015) 1496 ? "$$V" 1497 : "$$$V"); 1498 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1499 Out << "$S"; 1500 else 1501 llvm_unreachable("unexpected template parameter decl!"); 1502 } else { 1503 for (const TemplateArgument &PA : TemplateArgs) 1504 mangleTemplateArg(TD, PA, Parm); 1505 } 1506 break; 1507 } 1508 case TemplateArgument::Template: { 1509 const NamedDecl *ND = 1510 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1511 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1512 mangleType(TD); 1513 } else if (isa<TypeAliasDecl>(ND)) { 1514 Out << "$$Y"; 1515 mangleName(ND); 1516 } else { 1517 llvm_unreachable("unexpected template template NamedDecl!"); 1518 } 1519 break; 1520 } 1521 } 1522 } 1523 1524 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 1525 llvm::SmallString<64> TemplateMangling; 1526 llvm::raw_svector_ostream Stream(TemplateMangling); 1527 MicrosoftCXXNameMangler Extra(Context, Stream); 1528 1529 Stream << "?$"; 1530 Extra.mangleSourceName("Protocol"); 1531 Extra.mangleArtificialTagType(TTK_Struct, PD->getName()); 1532 1533 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1534 } 1535 1536 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 1537 Qualifiers Quals, 1538 SourceRange Range) { 1539 llvm::SmallString<64> TemplateMangling; 1540 llvm::raw_svector_ostream Stream(TemplateMangling); 1541 MicrosoftCXXNameMangler Extra(Context, Stream); 1542 1543 Stream << "?$"; 1544 switch (Quals.getObjCLifetime()) { 1545 case Qualifiers::OCL_None: 1546 case Qualifiers::OCL_ExplicitNone: 1547 break; 1548 case Qualifiers::OCL_Autoreleasing: 1549 Extra.mangleSourceName("Autoreleasing"); 1550 break; 1551 case Qualifiers::OCL_Strong: 1552 Extra.mangleSourceName("Strong"); 1553 break; 1554 case Qualifiers::OCL_Weak: 1555 Extra.mangleSourceName("Weak"); 1556 break; 1557 } 1558 Extra.manglePointerCVQualifiers(Quals); 1559 Extra.manglePointerExtQualifiers(Quals, Type); 1560 Extra.mangleType(Type, Range); 1561 1562 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1563 } 1564 1565 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 1566 Qualifiers Quals, 1567 SourceRange Range) { 1568 llvm::SmallString<64> TemplateMangling; 1569 llvm::raw_svector_ostream Stream(TemplateMangling); 1570 MicrosoftCXXNameMangler Extra(Context, Stream); 1571 1572 Stream << "?$"; 1573 Extra.mangleSourceName("KindOf"); 1574 Extra.mangleType(QualType(T, 0) 1575 .stripObjCKindOfType(getASTContext()) 1576 ->getAs<ObjCObjectType>(), 1577 Quals, Range); 1578 1579 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1580 } 1581 1582 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 1583 bool IsMember) { 1584 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 1585 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 1586 // 'I' means __restrict (32/64-bit). 1587 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 1588 // keyword! 1589 // <base-cvr-qualifiers> ::= A # near 1590 // ::= B # near const 1591 // ::= C # near volatile 1592 // ::= D # near const volatile 1593 // ::= E # far (16-bit) 1594 // ::= F # far const (16-bit) 1595 // ::= G # far volatile (16-bit) 1596 // ::= H # far const volatile (16-bit) 1597 // ::= I # huge (16-bit) 1598 // ::= J # huge const (16-bit) 1599 // ::= K # huge volatile (16-bit) 1600 // ::= L # huge const volatile (16-bit) 1601 // ::= M <basis> # based 1602 // ::= N <basis> # based const 1603 // ::= O <basis> # based volatile 1604 // ::= P <basis> # based const volatile 1605 // ::= Q # near member 1606 // ::= R # near const member 1607 // ::= S # near volatile member 1608 // ::= T # near const volatile member 1609 // ::= U # far member (16-bit) 1610 // ::= V # far const member (16-bit) 1611 // ::= W # far volatile member (16-bit) 1612 // ::= X # far const volatile member (16-bit) 1613 // ::= Y # huge member (16-bit) 1614 // ::= Z # huge const member (16-bit) 1615 // ::= 0 # huge volatile member (16-bit) 1616 // ::= 1 # huge const volatile member (16-bit) 1617 // ::= 2 <basis> # based member 1618 // ::= 3 <basis> # based const member 1619 // ::= 4 <basis> # based volatile member 1620 // ::= 5 <basis> # based const volatile member 1621 // ::= 6 # near function (pointers only) 1622 // ::= 7 # far function (pointers only) 1623 // ::= 8 # near method (pointers only) 1624 // ::= 9 # far method (pointers only) 1625 // ::= _A <basis> # based function (pointers only) 1626 // ::= _B <basis> # based function (far?) (pointers only) 1627 // ::= _C <basis> # based method (pointers only) 1628 // ::= _D <basis> # based method (far?) (pointers only) 1629 // ::= _E # block (Clang) 1630 // <basis> ::= 0 # __based(void) 1631 // ::= 1 # __based(segment)? 1632 // ::= 2 <name> # __based(name) 1633 // ::= 3 # ? 1634 // ::= 4 # ? 1635 // ::= 5 # not really based 1636 bool HasConst = Quals.hasConst(), 1637 HasVolatile = Quals.hasVolatile(); 1638 1639 if (!IsMember) { 1640 if (HasConst && HasVolatile) { 1641 Out << 'D'; 1642 } else if (HasVolatile) { 1643 Out << 'C'; 1644 } else if (HasConst) { 1645 Out << 'B'; 1646 } else { 1647 Out << 'A'; 1648 } 1649 } else { 1650 if (HasConst && HasVolatile) { 1651 Out << 'T'; 1652 } else if (HasVolatile) { 1653 Out << 'S'; 1654 } else if (HasConst) { 1655 Out << 'R'; 1656 } else { 1657 Out << 'Q'; 1658 } 1659 } 1660 1661 // FIXME: For now, just drop all extension qualifiers on the floor. 1662 } 1663 1664 void 1665 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 1666 // <ref-qualifier> ::= G # lvalue reference 1667 // ::= H # rvalue-reference 1668 switch (RefQualifier) { 1669 case RQ_None: 1670 break; 1671 1672 case RQ_LValue: 1673 Out << 'G'; 1674 break; 1675 1676 case RQ_RValue: 1677 Out << 'H'; 1678 break; 1679 } 1680 } 1681 1682 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 1683 QualType PointeeType) { 1684 // Check if this is a default 64-bit pointer or has __ptr64 qualifier. 1685 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : 1686 is64BitPointer(PointeeType.getQualifiers()); 1687 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) 1688 Out << 'E'; 1689 1690 if (Quals.hasRestrict()) 1691 Out << 'I'; 1692 1693 if (Quals.hasUnaligned() || 1694 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 1695 Out << 'F'; 1696 } 1697 1698 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 1699 // <pointer-cv-qualifiers> ::= P # no qualifiers 1700 // ::= Q # const 1701 // ::= R # volatile 1702 // ::= S # const volatile 1703 bool HasConst = Quals.hasConst(), 1704 HasVolatile = Quals.hasVolatile(); 1705 1706 if (HasConst && HasVolatile) { 1707 Out << 'S'; 1708 } else if (HasVolatile) { 1709 Out << 'R'; 1710 } else if (HasConst) { 1711 Out << 'Q'; 1712 } else { 1713 Out << 'P'; 1714 } 1715 } 1716 1717 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 1718 SourceRange Range) { 1719 // MSVC will backreference two canonically equivalent types that have slightly 1720 // different manglings when mangled alone. 1721 1722 // Decayed types do not match up with non-decayed versions of the same type. 1723 // 1724 // e.g. 1725 // void (*x)(void) will not form a backreference with void x(void) 1726 void *TypePtr; 1727 if (const auto *DT = T->getAs<DecayedType>()) { 1728 QualType OriginalType = DT->getOriginalType(); 1729 // All decayed ArrayTypes should be treated identically; as-if they were 1730 // a decayed IncompleteArrayType. 1731 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 1732 OriginalType = getASTContext().getIncompleteArrayType( 1733 AT->getElementType(), AT->getSizeModifier(), 1734 AT->getIndexTypeCVRQualifiers()); 1735 1736 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 1737 // If the original parameter was textually written as an array, 1738 // instead treat the decayed parameter like it's const. 1739 // 1740 // e.g. 1741 // int [] -> int * const 1742 if (OriginalType->isArrayType()) 1743 T = T.withConst(); 1744 } else { 1745 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 1746 } 1747 1748 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 1749 1750 if (Found == FunArgBackReferences.end()) { 1751 size_t OutSizeBefore = Out.tell(); 1752 1753 mangleType(T, Range, QMM_Drop); 1754 1755 // See if it's worth creating a back reference. 1756 // Only types longer than 1 character are considered 1757 // and only 10 back references slots are available: 1758 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 1759 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 1760 size_t Size = FunArgBackReferences.size(); 1761 FunArgBackReferences[TypePtr] = Size; 1762 } 1763 } else { 1764 Out << Found->second; 1765 } 1766 } 1767 1768 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 1769 const PassObjectSizeAttr *POSA) { 1770 int Type = POSA->getType(); 1771 bool Dynamic = POSA->isDynamic(); 1772 1773 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 1774 auto *TypePtr = (const void *)&*Iter; 1775 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 1776 1777 if (Found == FunArgBackReferences.end()) { 1778 std::string Name = 1779 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 1780 mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"}); 1781 1782 if (FunArgBackReferences.size() < 10) { 1783 size_t Size = FunArgBackReferences.size(); 1784 FunArgBackReferences[TypePtr] = Size; 1785 } 1786 } else { 1787 Out << Found->second; 1788 } 1789 } 1790 1791 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 1792 Qualifiers Quals, 1793 SourceRange Range) { 1794 // Address space is mangled as an unqualified templated type in the __clang 1795 // namespace. The demangled version of this is: 1796 // In the case of a language specific address space: 1797 // __clang::struct _AS[language_addr_space]<Type> 1798 // where: 1799 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 1800 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 1801 // "private"| "generic" ] 1802 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 1803 // Note that the above were chosen to match the Itanium mangling for this. 1804 // 1805 // In the case of a non-language specific address space: 1806 // __clang::struct _AS<TargetAS, Type> 1807 assert(Quals.hasAddressSpace() && "Not valid without address space"); 1808 llvm::SmallString<32> ASMangling; 1809 llvm::raw_svector_ostream Stream(ASMangling); 1810 MicrosoftCXXNameMangler Extra(Context, Stream); 1811 Stream << "?$"; 1812 1813 LangAS AS = Quals.getAddressSpace(); 1814 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 1815 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 1816 Extra.mangleSourceName("_AS"); 1817 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS), 1818 /*IsBoolean*/ false); 1819 } else { 1820 switch (AS) { 1821 default: 1822 llvm_unreachable("Not a language specific address space"); 1823 case LangAS::opencl_global: 1824 Extra.mangleSourceName("_ASCLglobal"); 1825 break; 1826 case LangAS::opencl_local: 1827 Extra.mangleSourceName("_ASCLlocal"); 1828 break; 1829 case LangAS::opencl_constant: 1830 Extra.mangleSourceName("_ASCLconstant"); 1831 break; 1832 case LangAS::opencl_private: 1833 Extra.mangleSourceName("_ASCLprivate"); 1834 break; 1835 case LangAS::opencl_generic: 1836 Extra.mangleSourceName("_ASCLgeneric"); 1837 break; 1838 case LangAS::cuda_device: 1839 Extra.mangleSourceName("_ASCUdevice"); 1840 break; 1841 case LangAS::cuda_constant: 1842 Extra.mangleSourceName("_ASCUconstant"); 1843 break; 1844 case LangAS::cuda_shared: 1845 Extra.mangleSourceName("_ASCUshared"); 1846 break; 1847 case LangAS::ptr32_sptr: 1848 case LangAS::ptr32_uptr: 1849 case LangAS::ptr64: 1850 llvm_unreachable("don't mangle ptr address spaces with _AS"); 1851 } 1852 } 1853 1854 Extra.mangleType(T, Range, QMM_Escape); 1855 mangleQualifiers(Qualifiers(), false); 1856 mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"}); 1857 } 1858 1859 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 1860 QualifierMangleMode QMM) { 1861 // Don't use the canonical types. MSVC includes things like 'const' on 1862 // pointer arguments to function pointers that canonicalization strips away. 1863 T = T.getDesugaredType(getASTContext()); 1864 Qualifiers Quals = T.getLocalQualifiers(); 1865 1866 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 1867 // If there were any Quals, getAsArrayType() pushed them onto the array 1868 // element type. 1869 if (QMM == QMM_Mangle) 1870 Out << 'A'; 1871 else if (QMM == QMM_Escape || QMM == QMM_Result) 1872 Out << "$$B"; 1873 mangleArrayType(AT); 1874 return; 1875 } 1876 1877 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 1878 T->isReferenceType() || T->isBlockPointerType(); 1879 1880 switch (QMM) { 1881 case QMM_Drop: 1882 if (Quals.hasObjCLifetime()) 1883 Quals = Quals.withoutObjCLifetime(); 1884 break; 1885 case QMM_Mangle: 1886 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 1887 Out << '6'; 1888 mangleFunctionType(FT); 1889 return; 1890 } 1891 mangleQualifiers(Quals, false); 1892 break; 1893 case QMM_Escape: 1894 if (!IsPointer && Quals) { 1895 Out << "$$C"; 1896 mangleQualifiers(Quals, false); 1897 } 1898 break; 1899 case QMM_Result: 1900 // Presence of __unaligned qualifier shouldn't affect mangling here. 1901 Quals.removeUnaligned(); 1902 if (Quals.hasObjCLifetime()) 1903 Quals = Quals.withoutObjCLifetime(); 1904 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 1905 Out << '?'; 1906 mangleQualifiers(Quals, false); 1907 } 1908 break; 1909 } 1910 1911 const Type *ty = T.getTypePtr(); 1912 1913 switch (ty->getTypeClass()) { 1914 #define ABSTRACT_TYPE(CLASS, PARENT) 1915 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 1916 case Type::CLASS: \ 1917 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 1918 return; 1919 #define TYPE(CLASS, PARENT) \ 1920 case Type::CLASS: \ 1921 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 1922 break; 1923 #include "clang/AST/TypeNodes.inc" 1924 #undef ABSTRACT_TYPE 1925 #undef NON_CANONICAL_TYPE 1926 #undef TYPE 1927 } 1928 } 1929 1930 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 1931 SourceRange Range) { 1932 // <type> ::= <builtin-type> 1933 // <builtin-type> ::= X # void 1934 // ::= C # signed char 1935 // ::= D # char 1936 // ::= E # unsigned char 1937 // ::= F # short 1938 // ::= G # unsigned short (or wchar_t if it's not a builtin) 1939 // ::= H # int 1940 // ::= I # unsigned int 1941 // ::= J # long 1942 // ::= K # unsigned long 1943 // L # <none> 1944 // ::= M # float 1945 // ::= N # double 1946 // ::= O # long double (__float80 is mangled differently) 1947 // ::= _J # long long, __int64 1948 // ::= _K # unsigned long long, __int64 1949 // ::= _L # __int128 1950 // ::= _M # unsigned __int128 1951 // ::= _N # bool 1952 // _O # <array in parameter> 1953 // ::= _Q # char8_t 1954 // ::= _S # char16_t 1955 // ::= _T # __float80 (Intel) 1956 // ::= _U # char32_t 1957 // ::= _W # wchar_t 1958 // ::= _Z # __float80 (Digital Mars) 1959 switch (T->getKind()) { 1960 case BuiltinType::Void: 1961 Out << 'X'; 1962 break; 1963 case BuiltinType::SChar: 1964 Out << 'C'; 1965 break; 1966 case BuiltinType::Char_U: 1967 case BuiltinType::Char_S: 1968 Out << 'D'; 1969 break; 1970 case BuiltinType::UChar: 1971 Out << 'E'; 1972 break; 1973 case BuiltinType::Short: 1974 Out << 'F'; 1975 break; 1976 case BuiltinType::UShort: 1977 Out << 'G'; 1978 break; 1979 case BuiltinType::Int: 1980 Out << 'H'; 1981 break; 1982 case BuiltinType::UInt: 1983 Out << 'I'; 1984 break; 1985 case BuiltinType::Long: 1986 Out << 'J'; 1987 break; 1988 case BuiltinType::ULong: 1989 Out << 'K'; 1990 break; 1991 case BuiltinType::Float: 1992 Out << 'M'; 1993 break; 1994 case BuiltinType::Double: 1995 Out << 'N'; 1996 break; 1997 // TODO: Determine size and mangle accordingly 1998 case BuiltinType::LongDouble: 1999 Out << 'O'; 2000 break; 2001 case BuiltinType::LongLong: 2002 Out << "_J"; 2003 break; 2004 case BuiltinType::ULongLong: 2005 Out << "_K"; 2006 break; 2007 case BuiltinType::Int128: 2008 Out << "_L"; 2009 break; 2010 case BuiltinType::UInt128: 2011 Out << "_M"; 2012 break; 2013 case BuiltinType::Bool: 2014 Out << "_N"; 2015 break; 2016 case BuiltinType::Char8: 2017 Out << "_Q"; 2018 break; 2019 case BuiltinType::Char16: 2020 Out << "_S"; 2021 break; 2022 case BuiltinType::Char32: 2023 Out << "_U"; 2024 break; 2025 case BuiltinType::WChar_S: 2026 case BuiltinType::WChar_U: 2027 Out << "_W"; 2028 break; 2029 2030 #define BUILTIN_TYPE(Id, SingletonId) 2031 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2032 case BuiltinType::Id: 2033 #include "clang/AST/BuiltinTypes.def" 2034 case BuiltinType::Dependent: 2035 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2036 2037 case BuiltinType::ObjCId: 2038 mangleArtificialTagType(TTK_Struct, "objc_object"); 2039 break; 2040 case BuiltinType::ObjCClass: 2041 mangleArtificialTagType(TTK_Struct, "objc_class"); 2042 break; 2043 case BuiltinType::ObjCSel: 2044 mangleArtificialTagType(TTK_Struct, "objc_selector"); 2045 break; 2046 2047 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2048 case BuiltinType::Id: \ 2049 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2050 break; 2051 #include "clang/Basic/OpenCLImageTypes.def" 2052 case BuiltinType::OCLSampler: 2053 Out << "PA"; 2054 mangleArtificialTagType(TTK_Struct, "ocl_sampler"); 2055 break; 2056 case BuiltinType::OCLEvent: 2057 Out << "PA"; 2058 mangleArtificialTagType(TTK_Struct, "ocl_event"); 2059 break; 2060 case BuiltinType::OCLClkEvent: 2061 Out << "PA"; 2062 mangleArtificialTagType(TTK_Struct, "ocl_clkevent"); 2063 break; 2064 case BuiltinType::OCLQueue: 2065 Out << "PA"; 2066 mangleArtificialTagType(TTK_Struct, "ocl_queue"); 2067 break; 2068 case BuiltinType::OCLReserveID: 2069 Out << "PA"; 2070 mangleArtificialTagType(TTK_Struct, "ocl_reserveid"); 2071 break; 2072 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2073 case BuiltinType::Id: \ 2074 mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \ 2075 break; 2076 #include "clang/Basic/OpenCLExtensionTypes.def" 2077 2078 case BuiltinType::NullPtr: 2079 Out << "$$T"; 2080 break; 2081 2082 case BuiltinType::Float16: 2083 mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"}); 2084 break; 2085 2086 case BuiltinType::Half: 2087 mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"}); 2088 break; 2089 2090 #define SVE_TYPE(Name, Id, SingletonId) \ 2091 case BuiltinType::Id: 2092 #include "clang/Basic/AArch64SVEACLETypes.def" 2093 case BuiltinType::ShortAccum: 2094 case BuiltinType::Accum: 2095 case BuiltinType::LongAccum: 2096 case BuiltinType::UShortAccum: 2097 case BuiltinType::UAccum: 2098 case BuiltinType::ULongAccum: 2099 case BuiltinType::ShortFract: 2100 case BuiltinType::Fract: 2101 case BuiltinType::LongFract: 2102 case BuiltinType::UShortFract: 2103 case BuiltinType::UFract: 2104 case BuiltinType::ULongFract: 2105 case BuiltinType::SatShortAccum: 2106 case BuiltinType::SatAccum: 2107 case BuiltinType::SatLongAccum: 2108 case BuiltinType::SatUShortAccum: 2109 case BuiltinType::SatUAccum: 2110 case BuiltinType::SatULongAccum: 2111 case BuiltinType::SatShortFract: 2112 case BuiltinType::SatFract: 2113 case BuiltinType::SatLongFract: 2114 case BuiltinType::SatUShortFract: 2115 case BuiltinType::SatUFract: 2116 case BuiltinType::SatULongFract: 2117 case BuiltinType::BFloat16: 2118 case BuiltinType::Float128: { 2119 DiagnosticsEngine &Diags = Context.getDiags(); 2120 unsigned DiagID = Diags.getCustomDiagID( 2121 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2122 Diags.Report(Range.getBegin(), DiagID) 2123 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2124 break; 2125 } 2126 } 2127 } 2128 2129 // <type> ::= <function-type> 2130 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2131 SourceRange) { 2132 // Structors only appear in decls, so at this point we know it's not a 2133 // structor type. 2134 // FIXME: This may not be lambda-friendly. 2135 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2136 Out << "$$A8@@"; 2137 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2138 } else { 2139 Out << "$$A6"; 2140 mangleFunctionType(T); 2141 } 2142 } 2143 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2144 Qualifiers, SourceRange) { 2145 Out << "$$A6"; 2146 mangleFunctionType(T); 2147 } 2148 2149 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2150 const FunctionDecl *D, 2151 bool ForceThisQuals, 2152 bool MangleExceptionSpec) { 2153 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2154 // <return-type> <argument-list> <throw-spec> 2155 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2156 2157 SourceRange Range; 2158 if (D) Range = D->getSourceRange(); 2159 2160 bool IsInLambda = false; 2161 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2162 CallingConv CC = T->getCallConv(); 2163 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2164 if (MD->getParent()->isLambda()) 2165 IsInLambda = true; 2166 if (MD->isInstance()) 2167 HasThisQuals = true; 2168 if (isa<CXXDestructorDecl>(MD)) { 2169 IsStructor = true; 2170 } else if (isa<CXXConstructorDecl>(MD)) { 2171 IsStructor = true; 2172 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2173 StructorType == Ctor_DefaultClosure) && 2174 isStructorDecl(MD); 2175 if (IsCtorClosure) 2176 CC = getASTContext().getDefaultCallingConvention( 2177 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2178 } 2179 } 2180 2181 // If this is a C++ instance method, mangle the CVR qualifiers for the 2182 // this pointer. 2183 if (HasThisQuals) { 2184 Qualifiers Quals = Proto->getMethodQuals(); 2185 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2186 mangleRefQualifier(Proto->getRefQualifier()); 2187 mangleQualifiers(Quals, /*IsMember=*/false); 2188 } 2189 2190 mangleCallingConvention(CC); 2191 2192 // <return-type> ::= <type> 2193 // ::= @ # structors (they have no declared return type) 2194 if (IsStructor) { 2195 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2196 // The scalar deleting destructor takes an extra int argument which is not 2197 // reflected in the AST. 2198 if (StructorType == Dtor_Deleting) { 2199 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2200 return; 2201 } 2202 // The vbase destructor returns void which is not reflected in the AST. 2203 if (StructorType == Dtor_Complete) { 2204 Out << "XXZ"; 2205 return; 2206 } 2207 } 2208 if (IsCtorClosure) { 2209 // Default constructor closure and copy constructor closure both return 2210 // void. 2211 Out << 'X'; 2212 2213 if (StructorType == Ctor_DefaultClosure) { 2214 // Default constructor closure always has no arguments. 2215 Out << 'X'; 2216 } else if (StructorType == Ctor_CopyingClosure) { 2217 // Copy constructor closure always takes an unqualified reference. 2218 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2219 Proto->getParamType(0) 2220 ->getAs<LValueReferenceType>() 2221 ->getPointeeType(), 2222 /*SpelledAsLValue=*/true), 2223 Range); 2224 Out << '@'; 2225 } else { 2226 llvm_unreachable("unexpected constructor closure!"); 2227 } 2228 Out << 'Z'; 2229 return; 2230 } 2231 Out << '@'; 2232 } else { 2233 QualType ResultType = T->getReturnType(); 2234 if (const auto *AT = 2235 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) { 2236 Out << '?'; 2237 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2238 Out << '?'; 2239 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2240 "shouldn't need to mangle __auto_type!"); 2241 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2242 Out << '@'; 2243 } else if (IsInLambda) { 2244 Out << '@'; 2245 } else { 2246 if (ResultType->isVoidType()) 2247 ResultType = ResultType.getUnqualifiedType(); 2248 mangleType(ResultType, Range, QMM_Result); 2249 } 2250 } 2251 2252 // <argument-list> ::= X # void 2253 // ::= <type>+ @ 2254 // ::= <type>* Z # varargs 2255 if (!Proto) { 2256 // Function types without prototypes can arise when mangling a function type 2257 // within an overloadable function in C. We mangle these as the absence of 2258 // any parameter types (not even an empty parameter list). 2259 Out << '@'; 2260 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2261 Out << 'X'; 2262 } else { 2263 // Happens for function pointer type arguments for example. 2264 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2265 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2266 // Mangle each pass_object_size parameter as if it's a parameter of enum 2267 // type passed directly after the parameter with the pass_object_size 2268 // attribute. The aforementioned enum's name is __pass_object_size, and we 2269 // pretend it resides in a top-level namespace called __clang. 2270 // 2271 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2272 // necessary to just cross our fingers and hope this type+namespace 2273 // combination doesn't conflict with anything? 2274 if (D) 2275 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2276 manglePassObjectSizeArg(P); 2277 } 2278 // <builtin-type> ::= Z # ellipsis 2279 if (Proto->isVariadic()) 2280 Out << 'Z'; 2281 else 2282 Out << '@'; 2283 } 2284 2285 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2286 getASTContext().getLangOpts().isCompatibleWithMSVC( 2287 LangOptions::MSVC2017_5)) 2288 mangleThrowSpecification(Proto); 2289 else 2290 Out << 'Z'; 2291 } 2292 2293 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2294 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2295 // # pointer. in 64-bit mode *all* 2296 // # 'this' pointers are 64-bit. 2297 // ::= <global-function> 2298 // <member-function> ::= A # private: near 2299 // ::= B # private: far 2300 // ::= C # private: static near 2301 // ::= D # private: static far 2302 // ::= E # private: virtual near 2303 // ::= F # private: virtual far 2304 // ::= I # protected: near 2305 // ::= J # protected: far 2306 // ::= K # protected: static near 2307 // ::= L # protected: static far 2308 // ::= M # protected: virtual near 2309 // ::= N # protected: virtual far 2310 // ::= Q # public: near 2311 // ::= R # public: far 2312 // ::= S # public: static near 2313 // ::= T # public: static far 2314 // ::= U # public: virtual near 2315 // ::= V # public: virtual far 2316 // <global-function> ::= Y # global near 2317 // ::= Z # global far 2318 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2319 bool IsVirtual = MD->isVirtual(); 2320 // When mangling vbase destructor variants, ignore whether or not the 2321 // underlying destructor was defined to be virtual. 2322 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2323 StructorType == Dtor_Complete) { 2324 IsVirtual = false; 2325 } 2326 switch (MD->getAccess()) { 2327 case AS_none: 2328 llvm_unreachable("Unsupported access specifier"); 2329 case AS_private: 2330 if (MD->isStatic()) 2331 Out << 'C'; 2332 else if (IsVirtual) 2333 Out << 'E'; 2334 else 2335 Out << 'A'; 2336 break; 2337 case AS_protected: 2338 if (MD->isStatic()) 2339 Out << 'K'; 2340 else if (IsVirtual) 2341 Out << 'M'; 2342 else 2343 Out << 'I'; 2344 break; 2345 case AS_public: 2346 if (MD->isStatic()) 2347 Out << 'S'; 2348 else if (IsVirtual) 2349 Out << 'U'; 2350 else 2351 Out << 'Q'; 2352 } 2353 } else { 2354 Out << 'Y'; 2355 } 2356 } 2357 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 2358 // <calling-convention> ::= A # __cdecl 2359 // ::= B # __export __cdecl 2360 // ::= C # __pascal 2361 // ::= D # __export __pascal 2362 // ::= E # __thiscall 2363 // ::= F # __export __thiscall 2364 // ::= G # __stdcall 2365 // ::= H # __export __stdcall 2366 // ::= I # __fastcall 2367 // ::= J # __export __fastcall 2368 // ::= Q # __vectorcall 2369 // ::= w # __regcall 2370 // The 'export' calling conventions are from a bygone era 2371 // (*cough*Win16*cough*) when functions were declared for export with 2372 // that keyword. (It didn't actually export them, it just made them so 2373 // that they could be in a DLL and somebody from another module could call 2374 // them.) 2375 2376 switch (CC) { 2377 default: 2378 llvm_unreachable("Unsupported CC for mangling"); 2379 case CC_Win64: 2380 case CC_X86_64SysV: 2381 case CC_C: Out << 'A'; break; 2382 case CC_X86Pascal: Out << 'C'; break; 2383 case CC_X86ThisCall: Out << 'E'; break; 2384 case CC_X86StdCall: Out << 'G'; break; 2385 case CC_X86FastCall: Out << 'I'; break; 2386 case CC_X86VectorCall: Out << 'Q'; break; 2387 case CC_Swift: Out << 'S'; break; 2388 case CC_PreserveMost: Out << 'U'; break; 2389 case CC_X86RegCall: Out << 'w'; break; 2390 } 2391 } 2392 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 2393 mangleCallingConvention(T->getCallConv()); 2394 } 2395 2396 void MicrosoftCXXNameMangler::mangleThrowSpecification( 2397 const FunctionProtoType *FT) { 2398 // <throw-spec> ::= Z # (default) 2399 // ::= _E # noexcept 2400 if (FT->canThrow()) 2401 Out << 'Z'; 2402 else 2403 Out << "_E"; 2404 } 2405 2406 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 2407 Qualifiers, SourceRange Range) { 2408 // Probably should be mangled as a template instantiation; need to see what 2409 // VC does first. 2410 DiagnosticsEngine &Diags = Context.getDiags(); 2411 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2412 "cannot mangle this unresolved dependent type yet"); 2413 Diags.Report(Range.getBegin(), DiagID) 2414 << Range; 2415 } 2416 2417 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 2418 // <union-type> ::= T <name> 2419 // <struct-type> ::= U <name> 2420 // <class-type> ::= V <name> 2421 // <enum-type> ::= W4 <name> 2422 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 2423 switch (TTK) { 2424 case TTK_Union: 2425 Out << 'T'; 2426 break; 2427 case TTK_Struct: 2428 case TTK_Interface: 2429 Out << 'U'; 2430 break; 2431 case TTK_Class: 2432 Out << 'V'; 2433 break; 2434 case TTK_Enum: 2435 Out << "W4"; 2436 break; 2437 } 2438 } 2439 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 2440 SourceRange) { 2441 mangleType(cast<TagType>(T)->getDecl()); 2442 } 2443 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 2444 SourceRange) { 2445 mangleType(cast<TagType>(T)->getDecl()); 2446 } 2447 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 2448 mangleTagTypeKind(TD->getTagKind()); 2449 mangleName(TD); 2450 } 2451 2452 // If you add a call to this, consider updating isArtificialTagType() too. 2453 void MicrosoftCXXNameMangler::mangleArtificialTagType( 2454 TagTypeKind TK, StringRef UnqualifiedName, 2455 ArrayRef<StringRef> NestedNames) { 2456 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 2457 mangleTagTypeKind(TK); 2458 2459 // Always start with the unqualified name. 2460 mangleSourceName(UnqualifiedName); 2461 2462 for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I) 2463 mangleSourceName(*I); 2464 2465 // Terminate the whole name with an '@'. 2466 Out << '@'; 2467 } 2468 2469 // <type> ::= <array-type> 2470 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2471 // [Y <dimension-count> <dimension>+] 2472 // <element-type> # as global, E is never required 2473 // It's supposed to be the other way around, but for some strange reason, it 2474 // isn't. Today this behavior is retained for the sole purpose of backwards 2475 // compatibility. 2476 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2477 // This isn't a recursive mangling, so now we have to do it all in this 2478 // one call. 2479 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2480 mangleType(T->getElementType(), SourceRange()); 2481 } 2482 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2483 SourceRange) { 2484 llvm_unreachable("Should have been special cased"); 2485 } 2486 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2487 SourceRange) { 2488 llvm_unreachable("Should have been special cased"); 2489 } 2490 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2491 Qualifiers, SourceRange) { 2492 llvm_unreachable("Should have been special cased"); 2493 } 2494 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2495 Qualifiers, SourceRange) { 2496 llvm_unreachable("Should have been special cased"); 2497 } 2498 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2499 QualType ElementTy(T, 0); 2500 SmallVector<llvm::APInt, 3> Dimensions; 2501 for (;;) { 2502 if (ElementTy->isConstantArrayType()) { 2503 const ConstantArrayType *CAT = 2504 getASTContext().getAsConstantArrayType(ElementTy); 2505 Dimensions.push_back(CAT->getSize()); 2506 ElementTy = CAT->getElementType(); 2507 } else if (ElementTy->isIncompleteArrayType()) { 2508 const IncompleteArrayType *IAT = 2509 getASTContext().getAsIncompleteArrayType(ElementTy); 2510 Dimensions.push_back(llvm::APInt(32, 0)); 2511 ElementTy = IAT->getElementType(); 2512 } else if (ElementTy->isVariableArrayType()) { 2513 const VariableArrayType *VAT = 2514 getASTContext().getAsVariableArrayType(ElementTy); 2515 Dimensions.push_back(llvm::APInt(32, 0)); 2516 ElementTy = VAT->getElementType(); 2517 } else if (ElementTy->isDependentSizedArrayType()) { 2518 // The dependent expression has to be folded into a constant (TODO). 2519 const DependentSizedArrayType *DSAT = 2520 getASTContext().getAsDependentSizedArrayType(ElementTy); 2521 DiagnosticsEngine &Diags = Context.getDiags(); 2522 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2523 "cannot mangle this dependent-length array yet"); 2524 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 2525 << DSAT->getBracketsRange(); 2526 return; 2527 } else { 2528 break; 2529 } 2530 } 2531 Out << 'Y'; 2532 // <dimension-count> ::= <number> # number of extra dimensions 2533 mangleNumber(Dimensions.size()); 2534 for (const llvm::APInt &Dimension : Dimensions) 2535 mangleNumber(Dimension.getLimitedValue()); 2536 mangleType(ElementTy, SourceRange(), QMM_Escape); 2537 } 2538 2539 // <type> ::= <pointer-to-member-type> 2540 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2541 // <class name> <type> 2542 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 2543 Qualifiers Quals, SourceRange Range) { 2544 QualType PointeeType = T->getPointeeType(); 2545 manglePointerCVQualifiers(Quals); 2546 manglePointerExtQualifiers(Quals, PointeeType); 2547 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 2548 Out << '8'; 2549 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2550 mangleFunctionType(FPT, nullptr, true); 2551 } else { 2552 mangleQualifiers(PointeeType.getQualifiers(), true); 2553 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2554 mangleType(PointeeType, Range, QMM_Drop); 2555 } 2556 } 2557 2558 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 2559 Qualifiers, SourceRange Range) { 2560 DiagnosticsEngine &Diags = Context.getDiags(); 2561 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2562 "cannot mangle this template type parameter type yet"); 2563 Diags.Report(Range.getBegin(), DiagID) 2564 << Range; 2565 } 2566 2567 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 2568 Qualifiers, SourceRange Range) { 2569 DiagnosticsEngine &Diags = Context.getDiags(); 2570 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2571 "cannot mangle this substituted parameter pack yet"); 2572 Diags.Report(Range.getBegin(), DiagID) 2573 << Range; 2574 } 2575 2576 // <type> ::= <pointer-type> 2577 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 2578 // # the E is required for 64-bit non-static pointers 2579 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 2580 SourceRange Range) { 2581 QualType PointeeType = T->getPointeeType(); 2582 manglePointerCVQualifiers(Quals); 2583 manglePointerExtQualifiers(Quals, PointeeType); 2584 2585 // For pointer size address spaces, go down the same type mangling path as 2586 // non address space types. 2587 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); 2588 if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default) 2589 mangleType(PointeeType, Range); 2590 else 2591 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 2592 } 2593 2594 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 2595 Qualifiers Quals, SourceRange Range) { 2596 QualType PointeeType = T->getPointeeType(); 2597 switch (Quals.getObjCLifetime()) { 2598 case Qualifiers::OCL_None: 2599 case Qualifiers::OCL_ExplicitNone: 2600 break; 2601 case Qualifiers::OCL_Autoreleasing: 2602 case Qualifiers::OCL_Strong: 2603 case Qualifiers::OCL_Weak: 2604 return mangleObjCLifetime(PointeeType, Quals, Range); 2605 } 2606 manglePointerCVQualifiers(Quals); 2607 manglePointerExtQualifiers(Quals, PointeeType); 2608 mangleType(PointeeType, Range); 2609 } 2610 2611 // <type> ::= <reference-type> 2612 // <reference-type> ::= A E? <cvr-qualifiers> <type> 2613 // # the E is required for 64-bit non-static lvalue references 2614 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 2615 Qualifiers Quals, SourceRange Range) { 2616 QualType PointeeType = T->getPointeeType(); 2617 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2618 Out << 'A'; 2619 manglePointerExtQualifiers(Quals, PointeeType); 2620 mangleType(PointeeType, Range); 2621 } 2622 2623 // <type> ::= <r-value-reference-type> 2624 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 2625 // # the E is required for 64-bit non-static rvalue references 2626 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 2627 Qualifiers Quals, SourceRange Range) { 2628 QualType PointeeType = T->getPointeeType(); 2629 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2630 Out << "$$Q"; 2631 manglePointerExtQualifiers(Quals, PointeeType); 2632 mangleType(PointeeType, Range); 2633 } 2634 2635 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 2636 SourceRange Range) { 2637 QualType ElementType = T->getElementType(); 2638 2639 llvm::SmallString<64> TemplateMangling; 2640 llvm::raw_svector_ostream Stream(TemplateMangling); 2641 MicrosoftCXXNameMangler Extra(Context, Stream); 2642 Stream << "?$"; 2643 Extra.mangleSourceName("_Complex"); 2644 Extra.mangleType(ElementType, Range, QMM_Escape); 2645 2646 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2647 } 2648 2649 // Returns true for types that mangleArtificialTagType() gets called for with 2650 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's 2651 // mangling matters. 2652 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 2653 // support.) 2654 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 2655 const Type *ty = T.getTypePtr(); 2656 switch (ty->getTypeClass()) { 2657 default: 2658 return false; 2659 2660 case Type::Vector: { 2661 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 2662 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 2663 // just always return true (the other vector types are clang-only). 2664 return true; 2665 } 2666 } 2667 } 2668 2669 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 2670 SourceRange Range) { 2671 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); 2672 assert(ET && "vectors with non-builtin elements are unsupported"); 2673 uint64_t Width = getASTContext().getTypeSize(T); 2674 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 2675 // doesn't match the Intel types uses a custom mangling below. 2676 size_t OutSizeBefore = Out.tell(); 2677 if (!isa<ExtVectorType>(T)) { 2678 if (getASTContext().getTargetInfo().getTriple().isX86()) { 2679 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 2680 mangleArtificialTagType(TTK_Union, "__m64"); 2681 } else if (Width >= 128) { 2682 if (ET->getKind() == BuiltinType::Float) 2683 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width)); 2684 else if (ET->getKind() == BuiltinType::LongLong) 2685 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); 2686 else if (ET->getKind() == BuiltinType::Double) 2687 mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); 2688 } 2689 } 2690 } 2691 2692 bool IsBuiltin = Out.tell() != OutSizeBefore; 2693 if (!IsBuiltin) { 2694 // The MS ABI doesn't have a special mangling for vector types, so we define 2695 // our own mangling to handle uses of __vector_size__ on user-specified 2696 // types, and for extensions like __v4sf. 2697 2698 llvm::SmallString<64> TemplateMangling; 2699 llvm::raw_svector_ostream Stream(TemplateMangling); 2700 MicrosoftCXXNameMangler Extra(Context, Stream); 2701 Stream << "?$"; 2702 Extra.mangleSourceName("__vector"); 2703 Extra.mangleType(QualType(ET, 0), Range, QMM_Escape); 2704 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()), 2705 /*IsBoolean=*/false); 2706 2707 mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"}); 2708 } 2709 } 2710 2711 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 2712 Qualifiers Quals, SourceRange Range) { 2713 mangleType(static_cast<const VectorType *>(T), Quals, Range); 2714 } 2715 2716 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 2717 Qualifiers, SourceRange Range) { 2718 DiagnosticsEngine &Diags = Context.getDiags(); 2719 unsigned DiagID = Diags.getCustomDiagID( 2720 DiagnosticsEngine::Error, 2721 "cannot mangle this dependent-sized vector type yet"); 2722 Diags.Report(Range.getBegin(), DiagID) << Range; 2723 } 2724 2725 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 2726 Qualifiers, SourceRange Range) { 2727 DiagnosticsEngine &Diags = Context.getDiags(); 2728 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2729 "cannot mangle this dependent-sized extended vector type yet"); 2730 Diags.Report(Range.getBegin(), DiagID) 2731 << Range; 2732 } 2733 2734 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, 2735 Qualifiers quals, SourceRange Range) { 2736 DiagnosticsEngine &Diags = Context.getDiags(); 2737 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2738 "Cannot mangle this matrix type yet"); 2739 Diags.Report(Range.getBegin(), DiagID) << Range; 2740 } 2741 2742 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, 2743 Qualifiers quals, SourceRange Range) { 2744 DiagnosticsEngine &Diags = Context.getDiags(); 2745 unsigned DiagID = Diags.getCustomDiagID( 2746 DiagnosticsEngine::Error, 2747 "Cannot mangle this dependent-sized matrix type yet"); 2748 Diags.Report(Range.getBegin(), DiagID) << Range; 2749 } 2750 2751 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 2752 Qualifiers, SourceRange Range) { 2753 DiagnosticsEngine &Diags = Context.getDiags(); 2754 unsigned DiagID = Diags.getCustomDiagID( 2755 DiagnosticsEngine::Error, 2756 "cannot mangle this dependent address space type yet"); 2757 Diags.Report(Range.getBegin(), DiagID) << Range; 2758 } 2759 2760 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 2761 SourceRange) { 2762 // ObjC interfaces have structs underlying them. 2763 mangleTagTypeKind(TTK_Struct); 2764 mangleName(T->getDecl()); 2765 } 2766 2767 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 2768 Qualifiers Quals, SourceRange Range) { 2769 if (T->isKindOfType()) 2770 return mangleObjCKindOfType(T, Quals, Range); 2771 2772 if (T->qual_empty() && !T->isSpecialized()) 2773 return mangleType(T->getBaseType(), Range, QMM_Drop); 2774 2775 ArgBackRefMap OuterFunArgsContext; 2776 ArgBackRefMap OuterTemplateArgsContext; 2777 BackRefVec OuterTemplateContext; 2778 2779 FunArgBackReferences.swap(OuterFunArgsContext); 2780 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 2781 NameBackReferences.swap(OuterTemplateContext); 2782 2783 mangleTagTypeKind(TTK_Struct); 2784 2785 Out << "?$"; 2786 if (T->isObjCId()) 2787 mangleSourceName("objc_object"); 2788 else if (T->isObjCClass()) 2789 mangleSourceName("objc_class"); 2790 else 2791 mangleSourceName(T->getInterface()->getName()); 2792 2793 for (const auto &Q : T->quals()) 2794 mangleObjCProtocol(Q); 2795 2796 if (T->isSpecialized()) 2797 for (const auto &TA : T->getTypeArgs()) 2798 mangleType(TA, Range, QMM_Drop); 2799 2800 Out << '@'; 2801 2802 Out << '@'; 2803 2804 FunArgBackReferences.swap(OuterFunArgsContext); 2805 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 2806 NameBackReferences.swap(OuterTemplateContext); 2807 } 2808 2809 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 2810 Qualifiers Quals, SourceRange Range) { 2811 QualType PointeeType = T->getPointeeType(); 2812 manglePointerCVQualifiers(Quals); 2813 manglePointerExtQualifiers(Quals, PointeeType); 2814 2815 Out << "_E"; 2816 2817 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 2818 } 2819 2820 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 2821 Qualifiers, SourceRange) { 2822 llvm_unreachable("Cannot mangle injected class name type."); 2823 } 2824 2825 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 2826 Qualifiers, SourceRange Range) { 2827 DiagnosticsEngine &Diags = Context.getDiags(); 2828 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2829 "cannot mangle this template specialization type yet"); 2830 Diags.Report(Range.getBegin(), DiagID) 2831 << Range; 2832 } 2833 2834 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 2835 SourceRange Range) { 2836 DiagnosticsEngine &Diags = Context.getDiags(); 2837 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2838 "cannot mangle this dependent name type yet"); 2839 Diags.Report(Range.getBegin(), DiagID) 2840 << Range; 2841 } 2842 2843 void MicrosoftCXXNameMangler::mangleType( 2844 const DependentTemplateSpecializationType *T, Qualifiers, 2845 SourceRange Range) { 2846 DiagnosticsEngine &Diags = Context.getDiags(); 2847 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2848 "cannot mangle this dependent template specialization type yet"); 2849 Diags.Report(Range.getBegin(), DiagID) 2850 << Range; 2851 } 2852 2853 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 2854 SourceRange Range) { 2855 DiagnosticsEngine &Diags = Context.getDiags(); 2856 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2857 "cannot mangle this pack expansion yet"); 2858 Diags.Report(Range.getBegin(), DiagID) 2859 << Range; 2860 } 2861 2862 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 2863 SourceRange Range) { 2864 DiagnosticsEngine &Diags = Context.getDiags(); 2865 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2866 "cannot mangle this typeof(type) yet"); 2867 Diags.Report(Range.getBegin(), DiagID) 2868 << Range; 2869 } 2870 2871 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 2872 SourceRange Range) { 2873 DiagnosticsEngine &Diags = Context.getDiags(); 2874 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2875 "cannot mangle this typeof(expression) yet"); 2876 Diags.Report(Range.getBegin(), DiagID) 2877 << Range; 2878 } 2879 2880 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 2881 SourceRange Range) { 2882 DiagnosticsEngine &Diags = Context.getDiags(); 2883 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2884 "cannot mangle this decltype() yet"); 2885 Diags.Report(Range.getBegin(), DiagID) 2886 << Range; 2887 } 2888 2889 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 2890 Qualifiers, SourceRange Range) { 2891 DiagnosticsEngine &Diags = Context.getDiags(); 2892 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2893 "cannot mangle this unary transform type yet"); 2894 Diags.Report(Range.getBegin(), DiagID) 2895 << Range; 2896 } 2897 2898 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 2899 SourceRange Range) { 2900 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2901 2902 DiagnosticsEngine &Diags = Context.getDiags(); 2903 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2904 "cannot mangle this 'auto' type yet"); 2905 Diags.Report(Range.getBegin(), DiagID) 2906 << Range; 2907 } 2908 2909 void MicrosoftCXXNameMangler::mangleType( 2910 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 2911 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2912 2913 DiagnosticsEngine &Diags = Context.getDiags(); 2914 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2915 "cannot mangle this deduced class template specialization type yet"); 2916 Diags.Report(Range.getBegin(), DiagID) 2917 << Range; 2918 } 2919 2920 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 2921 SourceRange Range) { 2922 QualType ValueType = T->getValueType(); 2923 2924 llvm::SmallString<64> TemplateMangling; 2925 llvm::raw_svector_ostream Stream(TemplateMangling); 2926 MicrosoftCXXNameMangler Extra(Context, Stream); 2927 Stream << "?$"; 2928 Extra.mangleSourceName("_Atomic"); 2929 Extra.mangleType(ValueType, Range, QMM_Escape); 2930 2931 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2932 } 2933 2934 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 2935 SourceRange Range) { 2936 QualType ElementType = T->getElementType(); 2937 2938 llvm::SmallString<64> TemplateMangling; 2939 llvm::raw_svector_ostream Stream(TemplateMangling); 2940 MicrosoftCXXNameMangler Extra(Context, Stream); 2941 Stream << "?$"; 2942 Extra.mangleSourceName("ocl_pipe"); 2943 Extra.mangleType(ElementType, Range, QMM_Escape); 2944 Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly()), true); 2945 2946 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2947 } 2948 2949 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, 2950 raw_ostream &Out) { 2951 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 2952 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 2953 getASTContext().getSourceManager(), 2954 "Mangling declaration"); 2955 2956 msvc_hashing_ostream MHO(Out); 2957 2958 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 2959 auto Type = GD.getCtorType(); 2960 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); 2961 return mangler.mangle(D); 2962 } 2963 2964 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 2965 auto Type = GD.getDtorType(); 2966 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); 2967 return mangler.mangle(D); 2968 } 2969 2970 MicrosoftCXXNameMangler Mangler(*this, MHO); 2971 return Mangler.mangle(D); 2972 } 2973 2974 void MicrosoftCXXNameMangler::mangleType(const ExtIntType *T, Qualifiers, 2975 SourceRange Range) { 2976 llvm::SmallString<64> TemplateMangling; 2977 llvm::raw_svector_ostream Stream(TemplateMangling); 2978 MicrosoftCXXNameMangler Extra(Context, Stream); 2979 Stream << "?$"; 2980 if (T->isUnsigned()) 2981 Extra.mangleSourceName("_UExtInt"); 2982 else 2983 Extra.mangleSourceName("_ExtInt"); 2984 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits()), 2985 /*IsBoolean=*/false); 2986 2987 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2988 } 2989 2990 void MicrosoftCXXNameMangler::mangleType(const DependentExtIntType *T, 2991 Qualifiers, SourceRange Range) { 2992 DiagnosticsEngine &Diags = Context.getDiags(); 2993 unsigned DiagID = Diags.getCustomDiagID( 2994 DiagnosticsEngine::Error, "cannot mangle this DependentExtInt type yet"); 2995 Diags.Report(Range.getBegin(), DiagID) << Range; 2996 } 2997 2998 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 2999 // <virtual-adjustment> 3000 // <no-adjustment> ::= A # private near 3001 // ::= B # private far 3002 // ::= I # protected near 3003 // ::= J # protected far 3004 // ::= Q # public near 3005 // ::= R # public far 3006 // <static-adjustment> ::= G <static-offset> # private near 3007 // ::= H <static-offset> # private far 3008 // ::= O <static-offset> # protected near 3009 // ::= P <static-offset> # protected far 3010 // ::= W <static-offset> # public near 3011 // ::= X <static-offset> # public far 3012 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 3013 // ::= $1 <virtual-shift> <static-offset> # private far 3014 // ::= $2 <virtual-shift> <static-offset> # protected near 3015 // ::= $3 <virtual-shift> <static-offset> # protected far 3016 // ::= $4 <virtual-shift> <static-offset> # public near 3017 // ::= $5 <virtual-shift> <static-offset> # public far 3018 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 3019 // <vtordisp-shift> ::= <offset-to-vtordisp> 3020 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 3021 // <offset-to-vtordisp> 3022 static void mangleThunkThisAdjustment(AccessSpecifier AS, 3023 const ThisAdjustment &Adjustment, 3024 MicrosoftCXXNameMangler &Mangler, 3025 raw_ostream &Out) { 3026 if (!Adjustment.Virtual.isEmpty()) { 3027 Out << '$'; 3028 char AccessSpec; 3029 switch (AS) { 3030 case AS_none: 3031 llvm_unreachable("Unsupported access specifier"); 3032 case AS_private: 3033 AccessSpec = '0'; 3034 break; 3035 case AS_protected: 3036 AccessSpec = '2'; 3037 break; 3038 case AS_public: 3039 AccessSpec = '4'; 3040 } 3041 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3042 Out << 'R' << AccessSpec; 3043 Mangler.mangleNumber( 3044 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3045 Mangler.mangleNumber( 3046 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3047 Mangler.mangleNumber( 3048 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3049 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3050 } else { 3051 Out << AccessSpec; 3052 Mangler.mangleNumber( 3053 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3054 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3055 } 3056 } else if (Adjustment.NonVirtual != 0) { 3057 switch (AS) { 3058 case AS_none: 3059 llvm_unreachable("Unsupported access specifier"); 3060 case AS_private: 3061 Out << 'G'; 3062 break; 3063 case AS_protected: 3064 Out << 'O'; 3065 break; 3066 case AS_public: 3067 Out << 'W'; 3068 } 3069 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3070 } else { 3071 switch (AS) { 3072 case AS_none: 3073 llvm_unreachable("Unsupported access specifier"); 3074 case AS_private: 3075 Out << 'A'; 3076 break; 3077 case AS_protected: 3078 Out << 'I'; 3079 break; 3080 case AS_public: 3081 Out << 'Q'; 3082 } 3083 } 3084 } 3085 3086 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3087 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3088 raw_ostream &Out) { 3089 msvc_hashing_ostream MHO(Out); 3090 MicrosoftCXXNameMangler Mangler(*this, MHO); 3091 Mangler.getStream() << '?'; 3092 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3093 } 3094 3095 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3096 const ThunkInfo &Thunk, 3097 raw_ostream &Out) { 3098 msvc_hashing_ostream MHO(Out); 3099 MicrosoftCXXNameMangler Mangler(*this, MHO); 3100 Mangler.getStream() << '?'; 3101 Mangler.mangleName(MD); 3102 3103 // Usually the thunk uses the access specifier of the new method, but if this 3104 // is a covariant return thunk, then MSVC always uses the public access 3105 // specifier, and we do the same. 3106 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3107 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3108 3109 if (!Thunk.Return.isEmpty()) 3110 assert(Thunk.Method != nullptr && 3111 "Thunk info should hold the overridee decl"); 3112 3113 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3114 Mangler.mangleFunctionType( 3115 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3116 } 3117 3118 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 3119 const CXXDestructorDecl *DD, CXXDtorType Type, 3120 const ThisAdjustment &Adjustment, raw_ostream &Out) { 3121 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3122 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3123 // mangling manually until we support both deleting dtor types. 3124 assert(Type == Dtor_Deleting); 3125 msvc_hashing_ostream MHO(Out); 3126 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3127 Mangler.getStream() << "??_E"; 3128 Mangler.mangleName(DD->getParent()); 3129 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3130 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3131 } 3132 3133 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3134 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3135 raw_ostream &Out) { 3136 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3137 // <cvr-qualifiers> [<name>] @ 3138 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3139 // is always '6' for vftables. 3140 msvc_hashing_ostream MHO(Out); 3141 MicrosoftCXXNameMangler Mangler(*this, MHO); 3142 if (Derived->hasAttr<DLLImportAttr>()) 3143 Mangler.getStream() << "??_S"; 3144 else 3145 Mangler.getStream() << "??_7"; 3146 Mangler.mangleName(Derived); 3147 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3148 for (const CXXRecordDecl *RD : BasePath) 3149 Mangler.mangleName(RD); 3150 Mangler.getStream() << '@'; 3151 } 3152 3153 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3154 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3155 raw_ostream &Out) { 3156 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3157 // <cvr-qualifiers> [<name>] @ 3158 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3159 // is always '7' for vbtables. 3160 msvc_hashing_ostream MHO(Out); 3161 MicrosoftCXXNameMangler Mangler(*this, MHO); 3162 Mangler.getStream() << "??_8"; 3163 Mangler.mangleName(Derived); 3164 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3165 for (const CXXRecordDecl *RD : BasePath) 3166 Mangler.mangleName(RD); 3167 Mangler.getStream() << '@'; 3168 } 3169 3170 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3171 msvc_hashing_ostream MHO(Out); 3172 MicrosoftCXXNameMangler Mangler(*this, MHO); 3173 Mangler.getStream() << "??_R0"; 3174 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3175 Mangler.getStream() << "@8"; 3176 } 3177 3178 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, 3179 raw_ostream &Out) { 3180 MicrosoftCXXNameMangler Mangler(*this, Out); 3181 Mangler.getStream() << '.'; 3182 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3183 } 3184 3185 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3186 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3187 msvc_hashing_ostream MHO(Out); 3188 MicrosoftCXXNameMangler Mangler(*this, MHO); 3189 Mangler.getStream() << "??_K"; 3190 Mangler.mangleName(SrcRD); 3191 Mangler.getStream() << "$C"; 3192 Mangler.mangleName(DstRD); 3193 } 3194 3195 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3196 bool IsVolatile, 3197 bool IsUnaligned, 3198 uint32_t NumEntries, 3199 raw_ostream &Out) { 3200 msvc_hashing_ostream MHO(Out); 3201 MicrosoftCXXNameMangler Mangler(*this, MHO); 3202 Mangler.getStream() << "_TI"; 3203 if (IsConst) 3204 Mangler.getStream() << 'C'; 3205 if (IsVolatile) 3206 Mangler.getStream() << 'V'; 3207 if (IsUnaligned) 3208 Mangler.getStream() << 'U'; 3209 Mangler.getStream() << NumEntries; 3210 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3211 } 3212 3213 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3214 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3215 msvc_hashing_ostream MHO(Out); 3216 MicrosoftCXXNameMangler Mangler(*this, MHO); 3217 Mangler.getStream() << "_CTA"; 3218 Mangler.getStream() << NumEntries; 3219 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3220 } 3221 3222 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3223 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3224 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3225 raw_ostream &Out) { 3226 MicrosoftCXXNameMangler Mangler(*this, Out); 3227 Mangler.getStream() << "_CT"; 3228 3229 llvm::SmallString<64> RTTIMangling; 3230 { 3231 llvm::raw_svector_ostream Stream(RTTIMangling); 3232 msvc_hashing_ostream MHO(Stream); 3233 mangleCXXRTTI(T, MHO); 3234 } 3235 Mangler.getStream() << RTTIMangling; 3236 3237 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3238 // both older and newer versions include it. 3239 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3240 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3241 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3242 // Or 1912, 1913 aleady?). 3243 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3244 LangOptions::MSVC2015) && 3245 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3246 LangOptions::MSVC2017_7); 3247 llvm::SmallString<64> CopyCtorMangling; 3248 if (!OmitCopyCtor && CD) { 3249 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3250 msvc_hashing_ostream MHO(Stream); 3251 mangleCXXName(GlobalDecl(CD, CT), MHO); 3252 } 3253 Mangler.getStream() << CopyCtorMangling; 3254 3255 Mangler.getStream() << Size; 3256 if (VBPtrOffset == -1) { 3257 if (NVOffset) { 3258 Mangler.getStream() << NVOffset; 3259 } 3260 } else { 3261 Mangler.getStream() << NVOffset; 3262 Mangler.getStream() << VBPtrOffset; 3263 Mangler.getStream() << VBIndex; 3264 } 3265 } 3266 3267 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3268 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3269 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3270 msvc_hashing_ostream MHO(Out); 3271 MicrosoftCXXNameMangler Mangler(*this, MHO); 3272 Mangler.getStream() << "??_R1"; 3273 Mangler.mangleNumber(NVOffset); 3274 Mangler.mangleNumber(VBPtrOffset); 3275 Mangler.mangleNumber(VBTableOffset); 3276 Mangler.mangleNumber(Flags); 3277 Mangler.mangleName(Derived); 3278 Mangler.getStream() << "8"; 3279 } 3280 3281 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3282 const CXXRecordDecl *Derived, raw_ostream &Out) { 3283 msvc_hashing_ostream MHO(Out); 3284 MicrosoftCXXNameMangler Mangler(*this, MHO); 3285 Mangler.getStream() << "??_R2"; 3286 Mangler.mangleName(Derived); 3287 Mangler.getStream() << "8"; 3288 } 3289 3290 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3291 const CXXRecordDecl *Derived, raw_ostream &Out) { 3292 msvc_hashing_ostream MHO(Out); 3293 MicrosoftCXXNameMangler Mangler(*this, MHO); 3294 Mangler.getStream() << "??_R3"; 3295 Mangler.mangleName(Derived); 3296 Mangler.getStream() << "8"; 3297 } 3298 3299 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 3300 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3301 raw_ostream &Out) { 3302 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 3303 // <cvr-qualifiers> [<name>] @ 3304 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3305 // is always '6' for vftables. 3306 llvm::SmallString<64> VFTableMangling; 3307 llvm::raw_svector_ostream Stream(VFTableMangling); 3308 mangleCXXVFTable(Derived, BasePath, Stream); 3309 3310 if (VFTableMangling.startswith("??@")) { 3311 assert(VFTableMangling.endswith("@")); 3312 Out << VFTableMangling << "??_R4@"; 3313 return; 3314 } 3315 3316 assert(VFTableMangling.startswith("??_7") || 3317 VFTableMangling.startswith("??_S")); 3318 3319 Out << "??_R4" << StringRef(VFTableMangling).drop_front(4); 3320 } 3321 3322 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 3323 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3324 msvc_hashing_ostream MHO(Out); 3325 MicrosoftCXXNameMangler Mangler(*this, MHO); 3326 // The function body is in the same comdat as the function with the handler, 3327 // so the numbering here doesn't have to be the same across TUs. 3328 // 3329 // <mangled-name> ::= ?filt$ <filter-number> @0 3330 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 3331 Mangler.mangleName(EnclosingDecl); 3332 } 3333 3334 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 3335 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3336 msvc_hashing_ostream MHO(Out); 3337 MicrosoftCXXNameMangler Mangler(*this, MHO); 3338 // The function body is in the same comdat as the function with the handler, 3339 // so the numbering here doesn't have to be the same across TUs. 3340 // 3341 // <mangled-name> ::= ?fin$ <filter-number> @0 3342 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 3343 Mangler.mangleName(EnclosingDecl); 3344 } 3345 3346 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { 3347 // This is just a made up unique string for the purposes of tbaa. undname 3348 // does *not* know how to demangle it. 3349 MicrosoftCXXNameMangler Mangler(*this, Out); 3350 Mangler.getStream() << '?'; 3351 Mangler.mangleType(T, SourceRange()); 3352 } 3353 3354 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 3355 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 3356 msvc_hashing_ostream MHO(Out); 3357 MicrosoftCXXNameMangler Mangler(*this, MHO); 3358 3359 Mangler.getStream() << "?$RT" << ManglingNumber << '@'; 3360 Mangler.mangle(VD, ""); 3361 } 3362 3363 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 3364 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 3365 msvc_hashing_ostream MHO(Out); 3366 MicrosoftCXXNameMangler Mangler(*this, MHO); 3367 3368 Mangler.getStream() << "?$TSS" << GuardNum << '@'; 3369 Mangler.mangleNestedName(VD); 3370 Mangler.getStream() << "@4HA"; 3371 } 3372 3373 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 3374 raw_ostream &Out) { 3375 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 3376 // ::= ?__J <postfix> @5 <scope-depth> 3377 // ::= ?$S <guard-num> @ <postfix> @4IA 3378 3379 // The first mangling is what MSVC uses to guard static locals in inline 3380 // functions. It uses a different mangling in external functions to support 3381 // guarding more than 32 variables. MSVC rejects inline functions with more 3382 // than 32 static locals. We don't fully implement the second mangling 3383 // because those guards are not externally visible, and instead use LLVM's 3384 // default renaming when creating a new guard variable. 3385 msvc_hashing_ostream MHO(Out); 3386 MicrosoftCXXNameMangler Mangler(*this, MHO); 3387 3388 bool Visible = VD->isExternallyVisible(); 3389 if (Visible) { 3390 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 3391 } else { 3392 Mangler.getStream() << "?$S1@"; 3393 } 3394 unsigned ScopeDepth = 0; 3395 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 3396 // If we do not have a discriminator and are emitting a guard variable for 3397 // use at global scope, then mangling the nested name will not be enough to 3398 // remove ambiguities. 3399 Mangler.mangle(VD, ""); 3400 else 3401 Mangler.mangleNestedName(VD); 3402 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 3403 if (ScopeDepth) 3404 Mangler.mangleNumber(ScopeDepth); 3405 } 3406 3407 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 3408 char CharCode, 3409 raw_ostream &Out) { 3410 msvc_hashing_ostream MHO(Out); 3411 MicrosoftCXXNameMangler Mangler(*this, MHO); 3412 Mangler.getStream() << "??__" << CharCode; 3413 if (D->isStaticDataMember()) { 3414 Mangler.getStream() << '?'; 3415 Mangler.mangleName(D); 3416 Mangler.mangleVariableEncoding(D); 3417 Mangler.getStream() << "@@"; 3418 } else { 3419 Mangler.mangleName(D); 3420 } 3421 // This is the function class mangling. These stubs are global, non-variadic, 3422 // cdecl functions that return void and take no args. 3423 Mangler.getStream() << "YAXXZ"; 3424 } 3425 3426 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 3427 raw_ostream &Out) { 3428 // <initializer-name> ::= ?__E <name> YAXXZ 3429 mangleInitFiniStub(D, 'E', Out); 3430 } 3431 3432 void 3433 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 3434 raw_ostream &Out) { 3435 // <destructor-name> ::= ?__F <name> YAXXZ 3436 mangleInitFiniStub(D, 'F', Out); 3437 } 3438 3439 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 3440 raw_ostream &Out) { 3441 // <char-type> ::= 0 # char, char16_t, char32_t 3442 // # (little endian char data in mangling) 3443 // ::= 1 # wchar_t (big endian char data in mangling) 3444 // 3445 // <literal-length> ::= <non-negative integer> # the length of the literal 3446 // 3447 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 3448 // # trailing null bytes 3449 // 3450 // <encoded-string> ::= <simple character> # uninteresting character 3451 // ::= '?$' <hex digit> <hex digit> # these two nibbles 3452 // # encode the byte for the 3453 // # character 3454 // ::= '?' [a-z] # \xe1 - \xfa 3455 // ::= '?' [A-Z] # \xc1 - \xda 3456 // ::= '?' [0-9] # [,/\:. \n\t'-] 3457 // 3458 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 3459 // <encoded-string> '@' 3460 MicrosoftCXXNameMangler Mangler(*this, Out); 3461 Mangler.getStream() << "??_C@_"; 3462 3463 // The actual string length might be different from that of the string literal 3464 // in cases like: 3465 // char foo[3] = "foobar"; 3466 // char bar[42] = "foobar"; 3467 // Where it is truncated or zero-padded to fit the array. This is the length 3468 // used for mangling, and any trailing null-bytes also need to be mangled. 3469 unsigned StringLength = getASTContext() 3470 .getAsConstantArrayType(SL->getType()) 3471 ->getSize() 3472 .getZExtValue(); 3473 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 3474 3475 // <char-type>: The "kind" of string literal is encoded into the mangled name. 3476 if (SL->isWide()) 3477 Mangler.getStream() << '1'; 3478 else 3479 Mangler.getStream() << '0'; 3480 3481 // <literal-length>: The next part of the mangled name consists of the length 3482 // of the string in bytes. 3483 Mangler.mangleNumber(StringByteLength); 3484 3485 auto GetLittleEndianByte = [&SL](unsigned Index) { 3486 unsigned CharByteWidth = SL->getCharByteWidth(); 3487 if (Index / CharByteWidth >= SL->getLength()) 3488 return static_cast<char>(0); 3489 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3490 unsigned OffsetInCodeUnit = Index % CharByteWidth; 3491 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3492 }; 3493 3494 auto GetBigEndianByte = [&SL](unsigned Index) { 3495 unsigned CharByteWidth = SL->getCharByteWidth(); 3496 if (Index / CharByteWidth >= SL->getLength()) 3497 return static_cast<char>(0); 3498 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3499 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 3500 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3501 }; 3502 3503 // CRC all the bytes of the StringLiteral. 3504 llvm::JamCRC JC; 3505 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 3506 JC.update(GetLittleEndianByte(I)); 3507 3508 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 3509 // scheme. 3510 Mangler.mangleNumber(JC.getCRC()); 3511 3512 // <encoded-string>: The mangled name also contains the first 32 bytes 3513 // (including null-terminator bytes) of the encoded StringLiteral. 3514 // Each character is encoded by splitting them into bytes and then encoding 3515 // the constituent bytes. 3516 auto MangleByte = [&Mangler](char Byte) { 3517 // There are five different manglings for characters: 3518 // - [a-zA-Z0-9_$]: A one-to-one mapping. 3519 // - ?[a-z]: The range from \xe1 to \xfa. 3520 // - ?[A-Z]: The range from \xc1 to \xda. 3521 // - ?[0-9]: The set of [,/\:. \n\t'-]. 3522 // - ?$XX: A fallback which maps nibbles. 3523 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) { 3524 Mangler.getStream() << Byte; 3525 } else if (isLetter(Byte & 0x7f)) { 3526 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 3527 } else { 3528 const char SpecialChars[] = {',', '/', '\\', ':', '.', 3529 ' ', '\n', '\t', '\'', '-'}; 3530 const char *Pos = llvm::find(SpecialChars, Byte); 3531 if (Pos != std::end(SpecialChars)) { 3532 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 3533 } else { 3534 Mangler.getStream() << "?$"; 3535 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 3536 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 3537 } 3538 } 3539 }; 3540 3541 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 3542 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 3543 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 3544 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 3545 if (SL->isWide()) 3546 MangleByte(GetBigEndianByte(I)); 3547 else 3548 MangleByte(GetLittleEndianByte(I)); 3549 } 3550 3551 Mangler.getStream() << '@'; 3552 } 3553 3554 MicrosoftMangleContext * 3555 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 3556 return new MicrosoftMangleContextImpl(Context, Diags); 3557 } 3558