1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Mangle.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/VTableBuilder.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/DiagnosticOptions.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/Support/CRC.h" 31 #include "llvm/Support/MD5.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/StringSaver.h" 34 #include "llvm/Support/xxhash.h" 35 36 using namespace clang; 37 38 namespace { 39 40 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 41 raw_ostream &OS; 42 llvm::SmallString<64> Buffer; 43 44 msvc_hashing_ostream(raw_ostream &OS) 45 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 46 ~msvc_hashing_ostream() override { 47 StringRef MangledName = str(); 48 bool StartsWithEscape = MangledName.startswith("\01"); 49 if (StartsWithEscape) 50 MangledName = MangledName.drop_front(1); 51 if (MangledName.size() <= 4096) { 52 OS << str(); 53 return; 54 } 55 56 llvm::MD5 Hasher; 57 llvm::MD5::MD5Result Hash; 58 Hasher.update(MangledName); 59 Hasher.final(Hash); 60 61 SmallString<32> HexString; 62 llvm::MD5::stringifyResult(Hash, HexString); 63 64 if (StartsWithEscape) 65 OS << '\01'; 66 OS << "??@" << HexString << '@'; 67 } 68 }; 69 70 static const DeclContext * 71 getLambdaDefaultArgumentDeclContext(const Decl *D) { 72 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 73 if (RD->isLambda()) 74 if (const auto *Parm = 75 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 76 return Parm->getDeclContext(); 77 return nullptr; 78 } 79 80 /// Retrieve the declaration context that should be used when mangling 81 /// the given declaration. 82 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 83 // The ABI assumes that lambda closure types that occur within 84 // default arguments live in the context of the function. However, due to 85 // the way in which Clang parses and creates function declarations, this is 86 // not the case: the lambda closure type ends up living in the context 87 // where the function itself resides, because the function declaration itself 88 // had not yet been created. Fix the context here. 89 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 90 return LDADC; 91 92 // Perform the same check for block literals. 93 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 94 if (ParmVarDecl *ContextParam = 95 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 96 return ContextParam->getDeclContext(); 97 } 98 99 const DeclContext *DC = D->getDeclContext(); 100 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 101 isa<OMPDeclareMapperDecl>(DC)) { 102 return getEffectiveDeclContext(cast<Decl>(DC)); 103 } 104 105 return DC->getRedeclContext(); 106 } 107 108 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 109 return getEffectiveDeclContext(cast<Decl>(DC)); 110 } 111 112 static const FunctionDecl *getStructor(const NamedDecl *ND) { 113 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 114 return FTD->getTemplatedDecl()->getCanonicalDecl(); 115 116 const auto *FD = cast<FunctionDecl>(ND); 117 if (const auto *FTD = FD->getPrimaryTemplate()) 118 return FTD->getTemplatedDecl()->getCanonicalDecl(); 119 120 return FD->getCanonicalDecl(); 121 } 122 123 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 124 /// Microsoft Visual C++ ABI. 125 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 126 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 127 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 128 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 129 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 130 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; 131 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; 132 SmallString<16> AnonymousNamespaceHash; 133 134 public: 135 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags); 136 bool shouldMangleCXXName(const NamedDecl *D) override; 137 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 138 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override; 139 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 140 const MethodVFTableLocation &ML, 141 raw_ostream &Out) override; 142 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 143 raw_ostream &) override; 144 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 145 const ThisAdjustment &ThisAdjustment, 146 raw_ostream &) override; 147 void mangleCXXVFTable(const CXXRecordDecl *Derived, 148 ArrayRef<const CXXRecordDecl *> BasePath, 149 raw_ostream &Out) override; 150 void mangleCXXVBTable(const CXXRecordDecl *Derived, 151 ArrayRef<const CXXRecordDecl *> BasePath, 152 raw_ostream &Out) override; 153 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 154 const CXXRecordDecl *DstRD, 155 raw_ostream &Out) override; 156 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 157 bool IsUnaligned, uint32_t NumEntries, 158 raw_ostream &Out) override; 159 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 160 raw_ostream &Out) override; 161 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 162 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 163 int32_t VBPtrOffset, uint32_t VBIndex, 164 raw_ostream &Out) override; 165 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 166 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; 167 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 168 uint32_t NVOffset, int32_t VBPtrOffset, 169 uint32_t VBTableOffset, uint32_t Flags, 170 raw_ostream &Out) override; 171 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 172 raw_ostream &Out) override; 173 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 174 raw_ostream &Out) override; 175 void 176 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 177 ArrayRef<const CXXRecordDecl *> BasePath, 178 raw_ostream &Out) override; 179 void mangleTypeName(QualType T, raw_ostream &) override; 180 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 181 raw_ostream &) override; 182 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 183 raw_ostream &) override; 184 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 185 raw_ostream &) override; 186 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 187 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 188 raw_ostream &Out) override; 189 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 190 void mangleDynamicAtExitDestructor(const VarDecl *D, 191 raw_ostream &Out) override; 192 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 193 raw_ostream &Out) override; 194 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 195 raw_ostream &Out) override; 196 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 197 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 198 const DeclContext *DC = getEffectiveDeclContext(ND); 199 if (!DC->isFunctionOrMethod()) 200 return false; 201 202 // Lambda closure types are already numbered, give out a phony number so 203 // that they demangle nicely. 204 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 205 if (RD->isLambda()) { 206 disc = 1; 207 return true; 208 } 209 } 210 211 // Use the canonical number for externally visible decls. 212 if (ND->isExternallyVisible()) { 213 disc = getASTContext().getManglingNumber(ND); 214 return true; 215 } 216 217 // Anonymous tags are already numbered. 218 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 219 if (!Tag->hasNameForLinkage() && 220 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 221 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 222 return false; 223 } 224 225 // Make up a reasonable number for internal decls. 226 unsigned &discriminator = Uniquifier[ND]; 227 if (!discriminator) 228 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 229 disc = discriminator + 1; 230 return true; 231 } 232 233 unsigned getLambdaId(const CXXRecordDecl *RD) { 234 assert(RD->isLambda() && "RD must be a lambda!"); 235 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 236 assert(RD->getLambdaManglingNumber() == 0 && 237 "RD must not have a mangling number!"); 238 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 239 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 240 return Result.first->second; 241 } 242 243 /// Return a character sequence that is (somewhat) unique to the TU suitable 244 /// for mangling anonymous namespaces. 245 StringRef getAnonymousNamespaceHash() const { 246 return AnonymousNamespaceHash; 247 } 248 249 private: 250 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 251 }; 252 253 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 254 /// Microsoft Visual C++ ABI. 255 class MicrosoftCXXNameMangler { 256 MicrosoftMangleContextImpl &Context; 257 raw_ostream &Out; 258 259 /// The "structor" is the top-level declaration being mangled, if 260 /// that's not a template specialization; otherwise it's the pattern 261 /// for that specialization. 262 const NamedDecl *Structor; 263 unsigned StructorType; 264 265 typedef llvm::SmallVector<std::string, 10> BackRefVec; 266 BackRefVec NameBackReferences; 267 268 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 269 ArgBackRefMap FunArgBackReferences; 270 ArgBackRefMap TemplateArgBackReferences; 271 272 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 273 TemplateArgStringMap TemplateArgStrings; 274 llvm::StringSaver TemplateArgStringStorage; 275 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 276 277 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 278 PassObjectSizeArgsSet PassObjectSizeArgs; 279 280 ASTContext &getASTContext() const { return Context.getASTContext(); } 281 282 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push 283 // this check into mangleQualifiers(). 284 const bool PointersAre64Bit; 285 286 public: 287 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 288 289 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 290 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 291 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 292 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 293 64) {} 294 295 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 296 const CXXConstructorDecl *D, CXXCtorType Type) 297 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 298 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 299 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 300 64) {} 301 302 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 303 const CXXDestructorDecl *D, CXXDtorType Type) 304 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 305 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 306 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 307 64) {} 308 309 raw_ostream &getStream() const { return Out; } 310 311 void mangle(const NamedDecl *D, StringRef Prefix = "?"); 312 void mangleName(const NamedDecl *ND); 313 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle); 314 void mangleVariableEncoding(const VarDecl *VD); 315 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD); 316 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 317 const CXXMethodDecl *MD); 318 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 319 const MethodVFTableLocation &ML); 320 void mangleNumber(int64_t Number); 321 void mangleTagTypeKind(TagTypeKind TK); 322 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 323 ArrayRef<StringRef> NestedNames = None); 324 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 325 void mangleType(QualType T, SourceRange Range, 326 QualifierMangleMode QMM = QMM_Mangle); 327 void mangleFunctionType(const FunctionType *T, 328 const FunctionDecl *D = nullptr, 329 bool ForceThisQuals = false, 330 bool MangleExceptionSpec = true); 331 void mangleNestedName(const NamedDecl *ND); 332 333 private: 334 bool isStructorDecl(const NamedDecl *ND) const { 335 return ND == Structor || getStructor(ND) == Structor; 336 } 337 338 void mangleUnqualifiedName(const NamedDecl *ND) { 339 mangleUnqualifiedName(ND, ND->getDeclName()); 340 } 341 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); 342 void mangleSourceName(StringRef Name); 343 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 344 void mangleCXXDtorType(CXXDtorType T); 345 void mangleQualifiers(Qualifiers Quals, bool IsMember); 346 void mangleRefQualifier(RefQualifierKind RefQualifier); 347 void manglePointerCVQualifiers(Qualifiers Quals); 348 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 349 350 void mangleUnscopedTemplateName(const TemplateDecl *ND); 351 void 352 mangleTemplateInstantiationName(const TemplateDecl *TD, 353 const TemplateArgumentList &TemplateArgs); 354 void mangleObjCMethodName(const ObjCMethodDecl *MD); 355 356 void mangleFunctionArgumentType(QualType T, SourceRange Range); 357 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 358 359 bool isArtificialTagType(QualType T) const; 360 361 // Declare manglers for every type class. 362 #define ABSTRACT_TYPE(CLASS, PARENT) 363 #define NON_CANONICAL_TYPE(CLASS, PARENT) 364 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 365 Qualifiers Quals, \ 366 SourceRange Range); 367 #include "clang/AST/TypeNodes.inc" 368 #undef ABSTRACT_TYPE 369 #undef NON_CANONICAL_TYPE 370 #undef TYPE 371 372 void mangleType(const TagDecl *TD); 373 void mangleDecayedArrayType(const ArrayType *T); 374 void mangleArrayType(const ArrayType *T); 375 void mangleFunctionClass(const FunctionDecl *FD); 376 void mangleCallingConvention(CallingConv CC); 377 void mangleCallingConvention(const FunctionType *T); 378 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean); 379 void mangleExpression(const Expr *E); 380 void mangleThrowSpecification(const FunctionProtoType *T); 381 382 void mangleTemplateArgs(const TemplateDecl *TD, 383 const TemplateArgumentList &TemplateArgs); 384 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 385 const NamedDecl *Parm); 386 387 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 388 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 389 SourceRange Range); 390 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 391 SourceRange Range); 392 }; 393 } 394 395 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 396 DiagnosticsEngine &Diags) 397 : MicrosoftMangleContext(Context, Diags) { 398 // To mangle anonymous namespaces, hash the path to the main source file. The 399 // path should be whatever (probably relative) path was passed on the command 400 // line. The goal is for the compiler to produce the same output regardless of 401 // working directory, so use the uncanonicalized relative path. 402 // 403 // It's important to make the mangled names unique because, when CodeView 404 // debug info is in use, the debugger uses mangled type names to distinguish 405 // between otherwise identically named types in anonymous namespaces. 406 // 407 // These symbols are always internal, so there is no need for the hash to 408 // match what MSVC produces. For the same reason, clang is free to change the 409 // hash at any time without breaking compatibility with old versions of clang. 410 // The generated names are intended to look similar to what MSVC generates, 411 // which are something like "?A0x01234567@". 412 SourceManager &SM = Context.getSourceManager(); 413 if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { 414 // Truncate the hash so we get 8 characters of hexadecimal. 415 uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName())); 416 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 417 } else { 418 // If we don't have a path to the main file, we'll just use 0. 419 AnonymousNamespaceHash = "0"; 420 } 421 } 422 423 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 424 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 425 LanguageLinkage L = FD->getLanguageLinkage(); 426 // Overloadable functions need mangling. 427 if (FD->hasAttr<OverloadableAttr>()) 428 return true; 429 430 // The ABI expects that we would never mangle "typical" user-defined entry 431 // points regardless of visibility or freestanding-ness. 432 // 433 // N.B. This is distinct from asking about "main". "main" has a lot of 434 // special rules associated with it in the standard while these 435 // user-defined entry points are outside of the purview of the standard. 436 // For example, there can be only one definition for "main" in a standards 437 // compliant program; however nothing forbids the existence of wmain and 438 // WinMain in the same translation unit. 439 if (FD->isMSVCRTEntryPoint()) 440 return false; 441 442 // C++ functions and those whose names are not a simple identifier need 443 // mangling. 444 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 445 return true; 446 447 // C functions are not mangled. 448 if (L == CLanguageLinkage) 449 return false; 450 } 451 452 // Otherwise, no mangling is done outside C++ mode. 453 if (!getASTContext().getLangOpts().CPlusPlus) 454 return false; 455 456 const VarDecl *VD = dyn_cast<VarDecl>(D); 457 if (VD && !isa<DecompositionDecl>(D)) { 458 // C variables are not mangled. 459 if (VD->isExternC()) 460 return false; 461 462 // Variables at global scope with non-internal linkage are not mangled. 463 const DeclContext *DC = getEffectiveDeclContext(D); 464 // Check for extern variable declared locally. 465 if (DC->isFunctionOrMethod() && D->hasLinkage()) 466 while (!DC->isNamespace() && !DC->isTranslationUnit()) 467 DC = getEffectiveParentContext(DC); 468 469 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && 470 !isa<VarTemplateSpecializationDecl>(D) && 471 D->getIdentifier() != nullptr) 472 return false; 473 } 474 475 return true; 476 } 477 478 bool 479 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 480 return true; 481 } 482 483 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { 484 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 485 // Therefore it's really important that we don't decorate the 486 // name with leading underscores or leading/trailing at signs. So, by 487 // default, we emit an asm marker at the start so we get the name right. 488 // Callers can override this with a custom prefix. 489 490 // <mangled-name> ::= ? <name> <type-encoding> 491 Out << Prefix; 492 mangleName(D); 493 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 494 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD)); 495 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 496 mangleVariableEncoding(VD); 497 else 498 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 499 } 500 501 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD, 502 bool ShouldMangle) { 503 // <type-encoding> ::= <function-class> <function-type> 504 505 // Since MSVC operates on the type as written and not the canonical type, it 506 // actually matters which decl we have here. MSVC appears to choose the 507 // first, since it is most likely to be the declaration in a header file. 508 FD = FD->getFirstDecl(); 509 510 // We should never ever see a FunctionNoProtoType at this point. 511 // We don't even know how to mangle their types anyway :). 512 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 513 514 // extern "C" functions can hold entities that must be mangled. 515 // As it stands, these functions still need to get expressed in the full 516 // external name. They have their class and type omitted, replaced with '9'. 517 if (ShouldMangle) { 518 // We would like to mangle all extern "C" functions using this additional 519 // component but this would break compatibility with MSVC's behavior. 520 // Instead, do this when we know that compatibility isn't important (in 521 // other words, when it is an overloaded extern "C" function). 522 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 523 Out << "$$J0"; 524 525 mangleFunctionClass(FD); 526 527 mangleFunctionType(FT, FD, false, false); 528 } else { 529 Out << '9'; 530 } 531 } 532 533 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 534 // <type-encoding> ::= <storage-class> <variable-type> 535 // <storage-class> ::= 0 # private static member 536 // ::= 1 # protected static member 537 // ::= 2 # public static member 538 // ::= 3 # global 539 // ::= 4 # static local 540 541 // The first character in the encoding (after the name) is the storage class. 542 if (VD->isStaticDataMember()) { 543 // If it's a static member, it also encodes the access level. 544 switch (VD->getAccess()) { 545 default: 546 case AS_private: Out << '0'; break; 547 case AS_protected: Out << '1'; break; 548 case AS_public: Out << '2'; break; 549 } 550 } 551 else if (!VD->isStaticLocal()) 552 Out << '3'; 553 else 554 Out << '4'; 555 // Now mangle the type. 556 // <variable-type> ::= <type> <cvr-qualifiers> 557 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 558 // Pointers and references are odd. The type of 'int * const foo;' gets 559 // mangled as 'QAHA' instead of 'PAHB', for example. 560 SourceRange SR = VD->getSourceRange(); 561 QualType Ty = VD->getType(); 562 if (Ty->isPointerType() || Ty->isReferenceType() || 563 Ty->isMemberPointerType()) { 564 mangleType(Ty, SR, QMM_Drop); 565 manglePointerExtQualifiers( 566 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 567 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 568 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 569 // Member pointers are suffixed with a back reference to the member 570 // pointer's class name. 571 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 572 } else 573 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 574 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 575 // Global arrays are funny, too. 576 mangleDecayedArrayType(AT); 577 if (AT->getElementType()->isArrayType()) 578 Out << 'A'; 579 else 580 mangleQualifiers(Ty.getQualifiers(), false); 581 } else { 582 mangleType(Ty, SR, QMM_Drop); 583 mangleQualifiers(Ty.getQualifiers(), false); 584 } 585 } 586 587 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 588 const ValueDecl *VD) { 589 // <member-data-pointer> ::= <integer-literal> 590 // ::= $F <number> <number> 591 // ::= $G <number> <number> <number> 592 593 int64_t FieldOffset; 594 int64_t VBTableOffset; 595 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); 596 if (VD) { 597 FieldOffset = getASTContext().getFieldOffset(VD); 598 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 599 "cannot take address of bitfield"); 600 FieldOffset /= getASTContext().getCharWidth(); 601 602 VBTableOffset = 0; 603 604 if (IM == MSInheritanceAttr::Keyword_virtual_inheritance) 605 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 606 } else { 607 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 608 609 VBTableOffset = -1; 610 } 611 612 char Code = '\0'; 613 switch (IM) { 614 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break; 615 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break; 616 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break; 617 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break; 618 case MSInheritanceAttr::SpellingNotCalculated: 619 llvm_unreachable("not reachable"); 620 } 621 622 Out << '$' << Code; 623 624 mangleNumber(FieldOffset); 625 626 // The C++ standard doesn't allow base-to-derived member pointer conversions 627 // in template parameter contexts, so the vbptr offset of data member pointers 628 // is always zero. 629 if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) 630 mangleNumber(0); 631 if (MSInheritanceAttr::hasVBTableOffsetField(IM)) 632 mangleNumber(VBTableOffset); 633 } 634 635 void 636 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 637 const CXXMethodDecl *MD) { 638 // <member-function-pointer> ::= $1? <name> 639 // ::= $H? <name> <number> 640 // ::= $I? <name> <number> <number> 641 // ::= $J? <name> <number> <number> <number> 642 643 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); 644 645 char Code = '\0'; 646 switch (IM) { 647 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break; 648 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break; 649 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break; 650 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break; 651 case MSInheritanceAttr::SpellingNotCalculated: 652 llvm_unreachable("not reachable"); 653 } 654 655 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 656 // thunk. 657 uint64_t NVOffset = 0; 658 uint64_t VBTableOffset = 0; 659 uint64_t VBPtrOffset = 0; 660 if (MD) { 661 Out << '$' << Code << '?'; 662 if (MD->isVirtual()) { 663 MicrosoftVTableContext *VTContext = 664 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 665 MethodVFTableLocation ML = 666 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 667 mangleVirtualMemPtrThunk(MD, ML); 668 NVOffset = ML.VFPtrOffset.getQuantity(); 669 VBTableOffset = ML.VBTableIndex * 4; 670 if (ML.VBase) { 671 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 672 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 673 } 674 } else { 675 mangleName(MD); 676 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 677 } 678 679 if (VBTableOffset == 0 && 680 IM == MSInheritanceAttr::Keyword_virtual_inheritance) 681 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 682 } else { 683 // Null single inheritance member functions are encoded as a simple nullptr. 684 if (IM == MSInheritanceAttr::Keyword_single_inheritance) { 685 Out << "$0A@"; 686 return; 687 } 688 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance) 689 VBTableOffset = -1; 690 Out << '$' << Code; 691 } 692 693 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM)) 694 mangleNumber(static_cast<uint32_t>(NVOffset)); 695 if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) 696 mangleNumber(VBPtrOffset); 697 if (MSInheritanceAttr::hasVBTableOffsetField(IM)) 698 mangleNumber(VBTableOffset); 699 } 700 701 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 702 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 703 // Get the vftable offset. 704 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 705 getASTContext().getTargetInfo().getPointerWidth(0)); 706 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 707 708 Out << "?_9"; 709 mangleName(MD->getParent()); 710 Out << "$B"; 711 mangleNumber(OffsetInVFTable); 712 Out << 'A'; 713 mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>()); 714 } 715 716 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { 717 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 718 719 // Always start with the unqualified name. 720 mangleUnqualifiedName(ND); 721 722 mangleNestedName(ND); 723 724 // Terminate the whole name with an '@'. 725 Out << '@'; 726 } 727 728 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 729 // <non-negative integer> ::= A@ # when Number == 0 730 // ::= <decimal digit> # when 1 <= Number <= 10 731 // ::= <hex digit>+ @ # when Number >= 10 732 // 733 // <number> ::= [?] <non-negative integer> 734 735 uint64_t Value = static_cast<uint64_t>(Number); 736 if (Number < 0) { 737 Value = -Value; 738 Out << '?'; 739 } 740 741 if (Value == 0) 742 Out << "A@"; 743 else if (Value >= 1 && Value <= 10) 744 Out << (Value - 1); 745 else { 746 // Numbers that are not encoded as decimal digits are represented as nibbles 747 // in the range of ASCII characters 'A' to 'P'. 748 // The number 0x123450 would be encoded as 'BCDEFA' 749 char EncodedNumberBuffer[sizeof(uint64_t) * 2]; 750 MutableArrayRef<char> BufferRef(EncodedNumberBuffer); 751 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 752 for (; Value != 0; Value >>= 4) 753 *I++ = 'A' + (Value & 0xf); 754 Out.write(I.base(), I - BufferRef.rbegin()); 755 Out << '@'; 756 } 757 } 758 759 static const TemplateDecl * 760 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 761 // Check if we have a function template. 762 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 763 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 764 TemplateArgs = FD->getTemplateSpecializationArgs(); 765 return TD; 766 } 767 } 768 769 // Check if we have a class template. 770 if (const ClassTemplateSpecializationDecl *Spec = 771 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 772 TemplateArgs = &Spec->getTemplateArgs(); 773 return Spec->getSpecializedTemplate(); 774 } 775 776 // Check if we have a variable template. 777 if (const VarTemplateSpecializationDecl *Spec = 778 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 779 TemplateArgs = &Spec->getTemplateArgs(); 780 return Spec->getSpecializedTemplate(); 781 } 782 783 return nullptr; 784 } 785 786 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 787 DeclarationName Name) { 788 // <unqualified-name> ::= <operator-name> 789 // ::= <ctor-dtor-name> 790 // ::= <source-name> 791 // ::= <template-name> 792 793 // Check if we have a template. 794 const TemplateArgumentList *TemplateArgs = nullptr; 795 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 796 // Function templates aren't considered for name back referencing. This 797 // makes sense since function templates aren't likely to occur multiple 798 // times in a symbol. 799 if (isa<FunctionTemplateDecl>(TD)) { 800 mangleTemplateInstantiationName(TD, *TemplateArgs); 801 Out << '@'; 802 return; 803 } 804 805 // Here comes the tricky thing: if we need to mangle something like 806 // void foo(A::X<Y>, B::X<Y>), 807 // the X<Y> part is aliased. However, if you need to mangle 808 // void foo(A::X<A::Y>, A::X<B::Y>), 809 // the A::X<> part is not aliased. 810 // That is, from the mangler's perspective we have a structure like this: 811 // namespace[s] -> type[ -> template-parameters] 812 // but from the Clang perspective we have 813 // type [ -> template-parameters] 814 // \-> namespace[s] 815 // What we do is we create a new mangler, mangle the same type (without 816 // a namespace suffix) to a string using the extra mangler and then use 817 // the mangled type name as a key to check the mangling of different types 818 // for aliasing. 819 820 // It's important to key cache reads off ND, not TD -- the same TD can 821 // be used with different TemplateArgs, but ND uniquely identifies 822 // TD / TemplateArg pairs. 823 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 824 if (Found == TemplateArgBackReferences.end()) { 825 826 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 827 if (Found == TemplateArgStrings.end()) { 828 // Mangle full template name into temporary buffer. 829 llvm::SmallString<64> TemplateMangling; 830 llvm::raw_svector_ostream Stream(TemplateMangling); 831 MicrosoftCXXNameMangler Extra(Context, Stream); 832 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 833 834 // Use the string backref vector to possibly get a back reference. 835 mangleSourceName(TemplateMangling); 836 837 // Memoize back reference for this type if one exist, else memoize 838 // the mangling itself. 839 BackRefVec::iterator StringFound = 840 llvm::find(NameBackReferences, TemplateMangling); 841 if (StringFound != NameBackReferences.end()) { 842 TemplateArgBackReferences[ND] = 843 StringFound - NameBackReferences.begin(); 844 } else { 845 TemplateArgStrings[ND] = 846 TemplateArgStringStorage.save(TemplateMangling.str()); 847 } 848 } else { 849 Out << Found->second << '@'; // Outputs a StringRef. 850 } 851 } else { 852 Out << Found->second; // Outputs a back reference (an int). 853 } 854 return; 855 } 856 857 switch (Name.getNameKind()) { 858 case DeclarationName::Identifier: { 859 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 860 mangleSourceName(II->getName()); 861 break; 862 } 863 864 // Otherwise, an anonymous entity. We must have a declaration. 865 assert(ND && "mangling empty name without declaration"); 866 867 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 868 if (NS->isAnonymousNamespace()) { 869 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 870 break; 871 } 872 } 873 874 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 875 // Decomposition declarations are considered anonymous, and get 876 // numbered with a $S prefix. 877 llvm::SmallString<64> Name("$S"); 878 // Get a unique id for the anonymous struct. 879 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); 880 mangleSourceName(Name); 881 break; 882 } 883 884 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 885 // We must have an anonymous union or struct declaration. 886 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 887 assert(RD && "expected variable decl to have a record type"); 888 // Anonymous types with no tag or typedef get the name of their 889 // declarator mangled in. If they have no declarator, number them with 890 // a $S prefix. 891 llvm::SmallString<64> Name("$S"); 892 // Get a unique id for the anonymous struct. 893 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 894 mangleSourceName(Name.str()); 895 break; 896 } 897 898 // We must have an anonymous struct. 899 const TagDecl *TD = cast<TagDecl>(ND); 900 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 901 assert(TD->getDeclContext() == D->getDeclContext() && 902 "Typedef should not be in another decl context!"); 903 assert(D->getDeclName().getAsIdentifierInfo() && 904 "Typedef was not named!"); 905 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 906 break; 907 } 908 909 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 910 if (Record->isLambda()) { 911 llvm::SmallString<10> Name("<lambda_"); 912 913 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 914 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 915 unsigned LambdaId; 916 const ParmVarDecl *Parm = 917 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 918 const FunctionDecl *Func = 919 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 920 921 if (Func) { 922 unsigned DefaultArgNo = 923 Func->getNumParams() - Parm->getFunctionScopeIndex(); 924 Name += llvm::utostr(DefaultArgNo); 925 Name += "_"; 926 } 927 928 if (LambdaManglingNumber) 929 LambdaId = LambdaManglingNumber; 930 else 931 LambdaId = Context.getLambdaId(Record); 932 933 Name += llvm::utostr(LambdaId); 934 Name += ">"; 935 936 mangleSourceName(Name); 937 938 // If the context of a closure type is an initializer for a class 939 // member (static or nonstatic), it is encoded in a qualified name. 940 if (LambdaManglingNumber && LambdaContextDecl) { 941 if ((isa<VarDecl>(LambdaContextDecl) || 942 isa<FieldDecl>(LambdaContextDecl)) && 943 LambdaContextDecl->getDeclContext()->isRecord()) { 944 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 945 } 946 } 947 break; 948 } 949 } 950 951 llvm::SmallString<64> Name; 952 if (DeclaratorDecl *DD = 953 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 954 // Anonymous types without a name for linkage purposes have their 955 // declarator mangled in if they have one. 956 Name += "<unnamed-type-"; 957 Name += DD->getName(); 958 } else if (TypedefNameDecl *TND = 959 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 960 TD)) { 961 // Anonymous types without a name for linkage purposes have their 962 // associate typedef mangled in if they have one. 963 Name += "<unnamed-type-"; 964 Name += TND->getName(); 965 } else if (isa<EnumDecl>(TD) && 966 cast<EnumDecl>(TD)->enumerator_begin() != 967 cast<EnumDecl>(TD)->enumerator_end()) { 968 // Anonymous non-empty enums mangle in the first enumerator. 969 auto *ED = cast<EnumDecl>(TD); 970 Name += "<unnamed-enum-"; 971 Name += ED->enumerator_begin()->getName(); 972 } else { 973 // Otherwise, number the types using a $S prefix. 974 Name += "<unnamed-type-$S"; 975 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 976 } 977 Name += ">"; 978 mangleSourceName(Name.str()); 979 break; 980 } 981 982 case DeclarationName::ObjCZeroArgSelector: 983 case DeclarationName::ObjCOneArgSelector: 984 case DeclarationName::ObjCMultiArgSelector: { 985 // This is reachable only when constructing an outlined SEH finally 986 // block. Nothing depends on this mangling and it's used only with 987 // functinos with internal linkage. 988 llvm::SmallString<64> Name; 989 mangleSourceName(Name.str()); 990 break; 991 } 992 993 case DeclarationName::CXXConstructorName: 994 if (isStructorDecl(ND)) { 995 if (StructorType == Ctor_CopyingClosure) { 996 Out << "?_O"; 997 return; 998 } 999 if (StructorType == Ctor_DefaultClosure) { 1000 Out << "?_F"; 1001 return; 1002 } 1003 } 1004 Out << "?0"; 1005 return; 1006 1007 case DeclarationName::CXXDestructorName: 1008 if (isStructorDecl(ND)) 1009 // If the named decl is the C++ destructor we're mangling, 1010 // use the type we were given. 1011 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1012 else 1013 // Otherwise, use the base destructor name. This is relevant if a 1014 // class with a destructor is declared within a destructor. 1015 mangleCXXDtorType(Dtor_Base); 1016 break; 1017 1018 case DeclarationName::CXXConversionFunctionName: 1019 // <operator-name> ::= ?B # (cast) 1020 // The target type is encoded as the return type. 1021 Out << "?B"; 1022 break; 1023 1024 case DeclarationName::CXXOperatorName: 1025 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1026 break; 1027 1028 case DeclarationName::CXXLiteralOperatorName: { 1029 Out << "?__K"; 1030 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1031 break; 1032 } 1033 1034 case DeclarationName::CXXDeductionGuideName: 1035 llvm_unreachable("Can't mangle a deduction guide name!"); 1036 1037 case DeclarationName::CXXUsingDirective: 1038 llvm_unreachable("Can't mangle a using directive name!"); 1039 } 1040 } 1041 1042 // <postfix> ::= <unqualified-name> [<postfix>] 1043 // ::= <substitution> [<postfix>] 1044 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) { 1045 const DeclContext *DC = getEffectiveDeclContext(ND); 1046 while (!DC->isTranslationUnit()) { 1047 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1048 unsigned Disc; 1049 if (Context.getNextDiscriminator(ND, Disc)) { 1050 Out << '?'; 1051 mangleNumber(Disc); 1052 Out << '?'; 1053 } 1054 } 1055 1056 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1057 auto Discriminate = 1058 [](StringRef Name, const unsigned Discriminator, 1059 const unsigned ParameterDiscriminator) -> std::string { 1060 std::string Buffer; 1061 llvm::raw_string_ostream Stream(Buffer); 1062 Stream << Name; 1063 if (Discriminator) 1064 Stream << '_' << Discriminator; 1065 if (ParameterDiscriminator) 1066 Stream << '_' << ParameterDiscriminator; 1067 return Stream.str(); 1068 }; 1069 1070 unsigned Discriminator = BD->getBlockManglingNumber(); 1071 if (!Discriminator) 1072 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1073 1074 // Mangle the parameter position as a discriminator to deal with unnamed 1075 // parameters. Rather than mangling the unqualified parameter name, 1076 // always use the position to give a uniform mangling. 1077 unsigned ParameterDiscriminator = 0; 1078 if (const auto *MC = BD->getBlockManglingContextDecl()) 1079 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1080 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1081 ParameterDiscriminator = 1082 F->getNumParams() - P->getFunctionScopeIndex(); 1083 1084 DC = getEffectiveDeclContext(BD); 1085 1086 Out << '?'; 1087 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1088 ParameterDiscriminator)); 1089 // If we have a block mangling context, encode that now. This allows us 1090 // to discriminate between named static data initializers in the same 1091 // scope. This is handled differently from parameters, which use 1092 // positions to discriminate between multiple instances. 1093 if (const auto *MC = BD->getBlockManglingContextDecl()) 1094 if (!isa<ParmVarDecl>(MC)) 1095 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1096 mangleUnqualifiedName(ND); 1097 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1098 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1099 // just the unqualified name to get the ordering correct. 1100 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1101 mangleName(RD); 1102 else 1103 Out << '@'; 1104 // void __cdecl 1105 Out << "YAX"; 1106 // struct __block_literal * 1107 Out << 'P'; 1108 // __ptr64 1109 if (PointersAre64Bit) 1110 Out << 'E'; 1111 Out << 'A'; 1112 mangleArtificialTagType(TTK_Struct, 1113 Discriminate("__block_literal", Discriminator, 1114 ParameterDiscriminator)); 1115 Out << "@Z"; 1116 1117 // If the effective context was a Record, we have fully mangled the 1118 // qualified name and do not need to continue. 1119 if (isa<RecordDecl>(DC)) 1120 break; 1121 continue; 1122 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1123 mangleObjCMethodName(Method); 1124 } else if (isa<NamedDecl>(DC)) { 1125 ND = cast<NamedDecl>(DC); 1126 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1127 mangle(FD, "?"); 1128 break; 1129 } else { 1130 mangleUnqualifiedName(ND); 1131 // Lambdas in default arguments conceptually belong to the function the 1132 // parameter corresponds to. 1133 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1134 DC = LDADC; 1135 continue; 1136 } 1137 } 1138 } 1139 DC = DC->getParent(); 1140 } 1141 } 1142 1143 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1144 // Microsoft uses the names on the case labels for these dtor variants. Clang 1145 // uses the Itanium terminology internally. Everything in this ABI delegates 1146 // towards the base dtor. 1147 switch (T) { 1148 // <operator-name> ::= ?1 # destructor 1149 case Dtor_Base: Out << "?1"; return; 1150 // <operator-name> ::= ?_D # vbase destructor 1151 case Dtor_Complete: Out << "?_D"; return; 1152 // <operator-name> ::= ?_G # scalar deleting destructor 1153 case Dtor_Deleting: Out << "?_G"; return; 1154 // <operator-name> ::= ?_E # vector deleting destructor 1155 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1156 // it. 1157 case Dtor_Comdat: 1158 llvm_unreachable("not expecting a COMDAT"); 1159 } 1160 llvm_unreachable("Unsupported dtor type?"); 1161 } 1162 1163 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1164 SourceLocation Loc) { 1165 switch (OO) { 1166 // ?0 # constructor 1167 // ?1 # destructor 1168 // <operator-name> ::= ?2 # new 1169 case OO_New: Out << "?2"; break; 1170 // <operator-name> ::= ?3 # delete 1171 case OO_Delete: Out << "?3"; break; 1172 // <operator-name> ::= ?4 # = 1173 case OO_Equal: Out << "?4"; break; 1174 // <operator-name> ::= ?5 # >> 1175 case OO_GreaterGreater: Out << "?5"; break; 1176 // <operator-name> ::= ?6 # << 1177 case OO_LessLess: Out << "?6"; break; 1178 // <operator-name> ::= ?7 # ! 1179 case OO_Exclaim: Out << "?7"; break; 1180 // <operator-name> ::= ?8 # == 1181 case OO_EqualEqual: Out << "?8"; break; 1182 // <operator-name> ::= ?9 # != 1183 case OO_ExclaimEqual: Out << "?9"; break; 1184 // <operator-name> ::= ?A # [] 1185 case OO_Subscript: Out << "?A"; break; 1186 // ?B # conversion 1187 // <operator-name> ::= ?C # -> 1188 case OO_Arrow: Out << "?C"; break; 1189 // <operator-name> ::= ?D # * 1190 case OO_Star: Out << "?D"; break; 1191 // <operator-name> ::= ?E # ++ 1192 case OO_PlusPlus: Out << "?E"; break; 1193 // <operator-name> ::= ?F # -- 1194 case OO_MinusMinus: Out << "?F"; break; 1195 // <operator-name> ::= ?G # - 1196 case OO_Minus: Out << "?G"; break; 1197 // <operator-name> ::= ?H # + 1198 case OO_Plus: Out << "?H"; break; 1199 // <operator-name> ::= ?I # & 1200 case OO_Amp: Out << "?I"; break; 1201 // <operator-name> ::= ?J # ->* 1202 case OO_ArrowStar: Out << "?J"; break; 1203 // <operator-name> ::= ?K # / 1204 case OO_Slash: Out << "?K"; break; 1205 // <operator-name> ::= ?L # % 1206 case OO_Percent: Out << "?L"; break; 1207 // <operator-name> ::= ?M # < 1208 case OO_Less: Out << "?M"; break; 1209 // <operator-name> ::= ?N # <= 1210 case OO_LessEqual: Out << "?N"; break; 1211 // <operator-name> ::= ?O # > 1212 case OO_Greater: Out << "?O"; break; 1213 // <operator-name> ::= ?P # >= 1214 case OO_GreaterEqual: Out << "?P"; break; 1215 // <operator-name> ::= ?Q # , 1216 case OO_Comma: Out << "?Q"; break; 1217 // <operator-name> ::= ?R # () 1218 case OO_Call: Out << "?R"; break; 1219 // <operator-name> ::= ?S # ~ 1220 case OO_Tilde: Out << "?S"; break; 1221 // <operator-name> ::= ?T # ^ 1222 case OO_Caret: Out << "?T"; break; 1223 // <operator-name> ::= ?U # | 1224 case OO_Pipe: Out << "?U"; break; 1225 // <operator-name> ::= ?V # && 1226 case OO_AmpAmp: Out << "?V"; break; 1227 // <operator-name> ::= ?W # || 1228 case OO_PipePipe: Out << "?W"; break; 1229 // <operator-name> ::= ?X # *= 1230 case OO_StarEqual: Out << "?X"; break; 1231 // <operator-name> ::= ?Y # += 1232 case OO_PlusEqual: Out << "?Y"; break; 1233 // <operator-name> ::= ?Z # -= 1234 case OO_MinusEqual: Out << "?Z"; break; 1235 // <operator-name> ::= ?_0 # /= 1236 case OO_SlashEqual: Out << "?_0"; break; 1237 // <operator-name> ::= ?_1 # %= 1238 case OO_PercentEqual: Out << "?_1"; break; 1239 // <operator-name> ::= ?_2 # >>= 1240 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1241 // <operator-name> ::= ?_3 # <<= 1242 case OO_LessLessEqual: Out << "?_3"; break; 1243 // <operator-name> ::= ?_4 # &= 1244 case OO_AmpEqual: Out << "?_4"; break; 1245 // <operator-name> ::= ?_5 # |= 1246 case OO_PipeEqual: Out << "?_5"; break; 1247 // <operator-name> ::= ?_6 # ^= 1248 case OO_CaretEqual: Out << "?_6"; break; 1249 // ?_7 # vftable 1250 // ?_8 # vbtable 1251 // ?_9 # vcall 1252 // ?_A # typeof 1253 // ?_B # local static guard 1254 // ?_C # string 1255 // ?_D # vbase destructor 1256 // ?_E # vector deleting destructor 1257 // ?_F # default constructor closure 1258 // ?_G # scalar deleting destructor 1259 // ?_H # vector constructor iterator 1260 // ?_I # vector destructor iterator 1261 // ?_J # vector vbase constructor iterator 1262 // ?_K # virtual displacement map 1263 // ?_L # eh vector constructor iterator 1264 // ?_M # eh vector destructor iterator 1265 // ?_N # eh vector vbase constructor iterator 1266 // ?_O # copy constructor closure 1267 // ?_P<name> # udt returning <name> 1268 // ?_Q # <unknown> 1269 // ?_R0 # RTTI Type Descriptor 1270 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1271 // ?_R2 # RTTI Base Class Array 1272 // ?_R3 # RTTI Class Hierarchy Descriptor 1273 // ?_R4 # RTTI Complete Object Locator 1274 // ?_S # local vftable 1275 // ?_T # local vftable constructor closure 1276 // <operator-name> ::= ?_U # new[] 1277 case OO_Array_New: Out << "?_U"; break; 1278 // <operator-name> ::= ?_V # delete[] 1279 case OO_Array_Delete: Out << "?_V"; break; 1280 // <operator-name> ::= ?__L # co_await 1281 case OO_Coawait: Out << "?__L"; break; 1282 // <operator-name> ::= ?__M # <=> 1283 case OO_Spaceship: Out << "?__M"; break; 1284 1285 case OO_Conditional: { 1286 DiagnosticsEngine &Diags = Context.getDiags(); 1287 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1288 "cannot mangle this conditional operator yet"); 1289 Diags.Report(Loc, DiagID); 1290 break; 1291 } 1292 1293 case OO_None: 1294 case NUM_OVERLOADED_OPERATORS: 1295 llvm_unreachable("Not an overloaded operator"); 1296 } 1297 } 1298 1299 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1300 // <source name> ::= <identifier> @ 1301 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1302 if (Found == NameBackReferences.end()) { 1303 if (NameBackReferences.size() < 10) 1304 NameBackReferences.push_back(Name); 1305 Out << Name << '@'; 1306 } else { 1307 Out << (Found - NameBackReferences.begin()); 1308 } 1309 } 1310 1311 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1312 Context.mangleObjCMethodName(MD, Out); 1313 } 1314 1315 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1316 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1317 // <template-name> ::= <unscoped-template-name> <template-args> 1318 // ::= <substitution> 1319 // Always start with the unqualified name. 1320 1321 // Templates have their own context for back references. 1322 ArgBackRefMap OuterFunArgsContext; 1323 ArgBackRefMap OuterTemplateArgsContext; 1324 BackRefVec OuterTemplateContext; 1325 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1326 NameBackReferences.swap(OuterTemplateContext); 1327 FunArgBackReferences.swap(OuterFunArgsContext); 1328 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1329 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1330 1331 mangleUnscopedTemplateName(TD); 1332 mangleTemplateArgs(TD, TemplateArgs); 1333 1334 // Restore the previous back reference contexts. 1335 NameBackReferences.swap(OuterTemplateContext); 1336 FunArgBackReferences.swap(OuterFunArgsContext); 1337 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1338 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1339 } 1340 1341 void 1342 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { 1343 // <unscoped-template-name> ::= ?$ <unqualified-name> 1344 Out << "?$"; 1345 mangleUnqualifiedName(TD); 1346 } 1347 1348 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value, 1349 bool IsBoolean) { 1350 // <integer-literal> ::= $0 <number> 1351 Out << "$0"; 1352 // Make sure booleans are encoded as 0/1. 1353 if (IsBoolean && Value.getBoolValue()) 1354 mangleNumber(1); 1355 else if (Value.isSigned()) 1356 mangleNumber(Value.getSExtValue()); 1357 else 1358 mangleNumber(Value.getZExtValue()); 1359 } 1360 1361 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { 1362 // See if this is a constant expression. 1363 llvm::APSInt Value; 1364 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { 1365 mangleIntegerLiteral(Value, E->getType()->isBooleanType()); 1366 return; 1367 } 1368 1369 // Look through no-op casts like template parameter substitutions. 1370 E = E->IgnoreParenNoopCasts(Context.getASTContext()); 1371 1372 const CXXUuidofExpr *UE = nullptr; 1373 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1374 if (UO->getOpcode() == UO_AddrOf) 1375 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr()); 1376 } else 1377 UE = dyn_cast<CXXUuidofExpr>(E); 1378 1379 if (UE) { 1380 // If we had to peek through an address-of operator, treat this like we are 1381 // dealing with a pointer type. Otherwise, treat it like a const reference. 1382 // 1383 // N.B. This matches up with the handling of TemplateArgument::Declaration 1384 // in mangleTemplateArg 1385 if (UE == E) 1386 Out << "$E?"; 1387 else 1388 Out << "$1?"; 1389 1390 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from 1391 // const __s_GUID _GUID_{lower case UUID with underscores} 1392 StringRef Uuid = UE->getUuidStr(); 1393 std::string Name = "_GUID_" + Uuid.lower(); 1394 std::replace(Name.begin(), Name.end(), '-', '_'); 1395 1396 mangleSourceName(Name); 1397 // Terminate the whole name with an '@'. 1398 Out << '@'; 1399 // It's a global variable. 1400 Out << '3'; 1401 // It's a struct called __s_GUID. 1402 mangleArtificialTagType(TTK_Struct, "__s_GUID"); 1403 // It's const. 1404 Out << 'B'; 1405 return; 1406 } 1407 1408 // As bad as this diagnostic is, it's better than crashing. 1409 DiagnosticsEngine &Diags = Context.getDiags(); 1410 unsigned DiagID = Diags.getCustomDiagID( 1411 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1412 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1413 << E->getSourceRange(); 1414 } 1415 1416 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1417 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1418 // <template-args> ::= <template-arg>+ 1419 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1420 assert(TPL->size() == TemplateArgs.size() && 1421 "size mismatch between args and parms!"); 1422 1423 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1424 const TemplateArgument &TA = TemplateArgs[i]; 1425 1426 // Separate consecutive packs by $$Z. 1427 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1428 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1429 Out << "$$Z"; 1430 1431 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1432 } 1433 } 1434 1435 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1436 const TemplateArgument &TA, 1437 const NamedDecl *Parm) { 1438 // <template-arg> ::= <type> 1439 // ::= <integer-literal> 1440 // ::= <member-data-pointer> 1441 // ::= <member-function-pointer> 1442 // ::= $E? <name> <type-encoding> 1443 // ::= $1? <name> <type-encoding> 1444 // ::= $0A@ 1445 // ::= <template-args> 1446 1447 switch (TA.getKind()) { 1448 case TemplateArgument::Null: 1449 llvm_unreachable("Can't mangle null template arguments!"); 1450 case TemplateArgument::TemplateExpansion: 1451 llvm_unreachable("Can't mangle template expansion arguments!"); 1452 case TemplateArgument::Type: { 1453 QualType T = TA.getAsType(); 1454 mangleType(T, SourceRange(), QMM_Escape); 1455 break; 1456 } 1457 case TemplateArgument::Declaration: { 1458 const NamedDecl *ND = TA.getAsDecl(); 1459 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1460 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1461 ->getMostRecentNonInjectedDecl(), 1462 cast<ValueDecl>(ND)); 1463 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1464 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1465 if (MD && MD->isInstance()) { 1466 mangleMemberFunctionPointer( 1467 MD->getParent()->getMostRecentNonInjectedDecl(), MD); 1468 } else { 1469 Out << "$1?"; 1470 mangleName(FD); 1471 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1472 } 1473 } else { 1474 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); 1475 } 1476 break; 1477 } 1478 case TemplateArgument::Integral: 1479 mangleIntegerLiteral(TA.getAsIntegral(), 1480 TA.getIntegralType()->isBooleanType()); 1481 break; 1482 case TemplateArgument::NullPtr: { 1483 QualType T = TA.getNullPtrType(); 1484 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1485 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1486 if (MPT->isMemberFunctionPointerType() && 1487 !isa<FunctionTemplateDecl>(TD)) { 1488 mangleMemberFunctionPointer(RD, nullptr); 1489 return; 1490 } 1491 if (MPT->isMemberDataPointer()) { 1492 if (!isa<FunctionTemplateDecl>(TD)) { 1493 mangleMemberDataPointer(RD, nullptr); 1494 return; 1495 } 1496 // nullptr data pointers are always represented with a single field 1497 // which is initialized with either 0 or -1. Why -1? Well, we need to 1498 // distinguish the case where the data member is at offset zero in the 1499 // record. 1500 // However, we are free to use 0 *if* we would use multiple fields for 1501 // non-nullptr member pointers. 1502 if (!RD->nullFieldOffsetIsZero()) { 1503 mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false); 1504 return; 1505 } 1506 } 1507 } 1508 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false); 1509 break; 1510 } 1511 case TemplateArgument::Expression: 1512 mangleExpression(TA.getAsExpr()); 1513 break; 1514 case TemplateArgument::Pack: { 1515 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1516 if (TemplateArgs.empty()) { 1517 if (isa<TemplateTypeParmDecl>(Parm) || 1518 isa<TemplateTemplateParmDecl>(Parm)) 1519 // MSVC 2015 changed the mangling for empty expanded template packs, 1520 // use the old mangling for link compatibility for old versions. 1521 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1522 LangOptions::MSVC2015) 1523 ? "$$V" 1524 : "$$$V"); 1525 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1526 Out << "$S"; 1527 else 1528 llvm_unreachable("unexpected template parameter decl!"); 1529 } else { 1530 for (const TemplateArgument &PA : TemplateArgs) 1531 mangleTemplateArg(TD, PA, Parm); 1532 } 1533 break; 1534 } 1535 case TemplateArgument::Template: { 1536 const NamedDecl *ND = 1537 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1538 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1539 mangleType(TD); 1540 } else if (isa<TypeAliasDecl>(ND)) { 1541 Out << "$$Y"; 1542 mangleName(ND); 1543 } else { 1544 llvm_unreachable("unexpected template template NamedDecl!"); 1545 } 1546 break; 1547 } 1548 } 1549 } 1550 1551 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 1552 llvm::SmallString<64> TemplateMangling; 1553 llvm::raw_svector_ostream Stream(TemplateMangling); 1554 MicrosoftCXXNameMangler Extra(Context, Stream); 1555 1556 Stream << "?$"; 1557 Extra.mangleSourceName("Protocol"); 1558 Extra.mangleArtificialTagType(TTK_Struct, PD->getName()); 1559 1560 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1561 } 1562 1563 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 1564 Qualifiers Quals, 1565 SourceRange Range) { 1566 llvm::SmallString<64> TemplateMangling; 1567 llvm::raw_svector_ostream Stream(TemplateMangling); 1568 MicrosoftCXXNameMangler Extra(Context, Stream); 1569 1570 Stream << "?$"; 1571 switch (Quals.getObjCLifetime()) { 1572 case Qualifiers::OCL_None: 1573 case Qualifiers::OCL_ExplicitNone: 1574 break; 1575 case Qualifiers::OCL_Autoreleasing: 1576 Extra.mangleSourceName("Autoreleasing"); 1577 break; 1578 case Qualifiers::OCL_Strong: 1579 Extra.mangleSourceName("Strong"); 1580 break; 1581 case Qualifiers::OCL_Weak: 1582 Extra.mangleSourceName("Weak"); 1583 break; 1584 } 1585 Extra.manglePointerCVQualifiers(Quals); 1586 Extra.manglePointerExtQualifiers(Quals, Type); 1587 Extra.mangleType(Type, Range); 1588 1589 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1590 } 1591 1592 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 1593 Qualifiers Quals, 1594 SourceRange Range) { 1595 llvm::SmallString<64> TemplateMangling; 1596 llvm::raw_svector_ostream Stream(TemplateMangling); 1597 MicrosoftCXXNameMangler Extra(Context, Stream); 1598 1599 Stream << "?$"; 1600 Extra.mangleSourceName("KindOf"); 1601 Extra.mangleType(QualType(T, 0) 1602 .stripObjCKindOfType(getASTContext()) 1603 ->getAs<ObjCObjectType>(), 1604 Quals, Range); 1605 1606 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1607 } 1608 1609 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 1610 bool IsMember) { 1611 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 1612 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 1613 // 'I' means __restrict (32/64-bit). 1614 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 1615 // keyword! 1616 // <base-cvr-qualifiers> ::= A # near 1617 // ::= B # near const 1618 // ::= C # near volatile 1619 // ::= D # near const volatile 1620 // ::= E # far (16-bit) 1621 // ::= F # far const (16-bit) 1622 // ::= G # far volatile (16-bit) 1623 // ::= H # far const volatile (16-bit) 1624 // ::= I # huge (16-bit) 1625 // ::= J # huge const (16-bit) 1626 // ::= K # huge volatile (16-bit) 1627 // ::= L # huge const volatile (16-bit) 1628 // ::= M <basis> # based 1629 // ::= N <basis> # based const 1630 // ::= O <basis> # based volatile 1631 // ::= P <basis> # based const volatile 1632 // ::= Q # near member 1633 // ::= R # near const member 1634 // ::= S # near volatile member 1635 // ::= T # near const volatile member 1636 // ::= U # far member (16-bit) 1637 // ::= V # far const member (16-bit) 1638 // ::= W # far volatile member (16-bit) 1639 // ::= X # far const volatile member (16-bit) 1640 // ::= Y # huge member (16-bit) 1641 // ::= Z # huge const member (16-bit) 1642 // ::= 0 # huge volatile member (16-bit) 1643 // ::= 1 # huge const volatile member (16-bit) 1644 // ::= 2 <basis> # based member 1645 // ::= 3 <basis> # based const member 1646 // ::= 4 <basis> # based volatile member 1647 // ::= 5 <basis> # based const volatile member 1648 // ::= 6 # near function (pointers only) 1649 // ::= 7 # far function (pointers only) 1650 // ::= 8 # near method (pointers only) 1651 // ::= 9 # far method (pointers only) 1652 // ::= _A <basis> # based function (pointers only) 1653 // ::= _B <basis> # based function (far?) (pointers only) 1654 // ::= _C <basis> # based method (pointers only) 1655 // ::= _D <basis> # based method (far?) (pointers only) 1656 // ::= _E # block (Clang) 1657 // <basis> ::= 0 # __based(void) 1658 // ::= 1 # __based(segment)? 1659 // ::= 2 <name> # __based(name) 1660 // ::= 3 # ? 1661 // ::= 4 # ? 1662 // ::= 5 # not really based 1663 bool HasConst = Quals.hasConst(), 1664 HasVolatile = Quals.hasVolatile(); 1665 1666 if (!IsMember) { 1667 if (HasConst && HasVolatile) { 1668 Out << 'D'; 1669 } else if (HasVolatile) { 1670 Out << 'C'; 1671 } else if (HasConst) { 1672 Out << 'B'; 1673 } else { 1674 Out << 'A'; 1675 } 1676 } else { 1677 if (HasConst && HasVolatile) { 1678 Out << 'T'; 1679 } else if (HasVolatile) { 1680 Out << 'S'; 1681 } else if (HasConst) { 1682 Out << 'R'; 1683 } else { 1684 Out << 'Q'; 1685 } 1686 } 1687 1688 // FIXME: For now, just drop all extension qualifiers on the floor. 1689 } 1690 1691 void 1692 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 1693 // <ref-qualifier> ::= G # lvalue reference 1694 // ::= H # rvalue-reference 1695 switch (RefQualifier) { 1696 case RQ_None: 1697 break; 1698 1699 case RQ_LValue: 1700 Out << 'G'; 1701 break; 1702 1703 case RQ_RValue: 1704 Out << 'H'; 1705 break; 1706 } 1707 } 1708 1709 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 1710 QualType PointeeType) { 1711 if (PointersAre64Bit && 1712 (PointeeType.isNull() || !PointeeType->isFunctionType())) 1713 Out << 'E'; 1714 1715 if (Quals.hasRestrict()) 1716 Out << 'I'; 1717 1718 if (Quals.hasUnaligned() || 1719 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 1720 Out << 'F'; 1721 } 1722 1723 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 1724 // <pointer-cv-qualifiers> ::= P # no qualifiers 1725 // ::= Q # const 1726 // ::= R # volatile 1727 // ::= S # const volatile 1728 bool HasConst = Quals.hasConst(), 1729 HasVolatile = Quals.hasVolatile(); 1730 1731 if (HasConst && HasVolatile) { 1732 Out << 'S'; 1733 } else if (HasVolatile) { 1734 Out << 'R'; 1735 } else if (HasConst) { 1736 Out << 'Q'; 1737 } else { 1738 Out << 'P'; 1739 } 1740 } 1741 1742 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 1743 SourceRange Range) { 1744 // MSVC will backreference two canonically equivalent types that have slightly 1745 // different manglings when mangled alone. 1746 1747 // Decayed types do not match up with non-decayed versions of the same type. 1748 // 1749 // e.g. 1750 // void (*x)(void) will not form a backreference with void x(void) 1751 void *TypePtr; 1752 if (const auto *DT = T->getAs<DecayedType>()) { 1753 QualType OriginalType = DT->getOriginalType(); 1754 // All decayed ArrayTypes should be treated identically; as-if they were 1755 // a decayed IncompleteArrayType. 1756 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 1757 OriginalType = getASTContext().getIncompleteArrayType( 1758 AT->getElementType(), AT->getSizeModifier(), 1759 AT->getIndexTypeCVRQualifiers()); 1760 1761 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 1762 // If the original parameter was textually written as an array, 1763 // instead treat the decayed parameter like it's const. 1764 // 1765 // e.g. 1766 // int [] -> int * const 1767 if (OriginalType->isArrayType()) 1768 T = T.withConst(); 1769 } else { 1770 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 1771 } 1772 1773 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 1774 1775 if (Found == FunArgBackReferences.end()) { 1776 size_t OutSizeBefore = Out.tell(); 1777 1778 mangleType(T, Range, QMM_Drop); 1779 1780 // See if it's worth creating a back reference. 1781 // Only types longer than 1 character are considered 1782 // and only 10 back references slots are available: 1783 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 1784 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 1785 size_t Size = FunArgBackReferences.size(); 1786 FunArgBackReferences[TypePtr] = Size; 1787 } 1788 } else { 1789 Out << Found->second; 1790 } 1791 } 1792 1793 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 1794 const PassObjectSizeAttr *POSA) { 1795 int Type = POSA->getType(); 1796 bool Dynamic = POSA->isDynamic(); 1797 1798 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 1799 auto *TypePtr = (const void *)&*Iter; 1800 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 1801 1802 if (Found == FunArgBackReferences.end()) { 1803 std::string Name = 1804 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 1805 mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"}); 1806 1807 if (FunArgBackReferences.size() < 10) { 1808 size_t Size = FunArgBackReferences.size(); 1809 FunArgBackReferences[TypePtr] = Size; 1810 } 1811 } else { 1812 Out << Found->second; 1813 } 1814 } 1815 1816 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 1817 Qualifiers Quals, 1818 SourceRange Range) { 1819 // Address space is mangled as an unqualified templated type in the __clang 1820 // namespace. The demangled version of this is: 1821 // In the case of a language specific address space: 1822 // __clang::struct _AS[language_addr_space]<Type> 1823 // where: 1824 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 1825 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 1826 // "private"| "generic" ] 1827 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 1828 // Note that the above were chosen to match the Itanium mangling for this. 1829 // 1830 // In the case of a non-language specific address space: 1831 // __clang::struct _AS<TargetAS, Type> 1832 assert(Quals.hasAddressSpace() && "Not valid without address space"); 1833 llvm::SmallString<32> ASMangling; 1834 llvm::raw_svector_ostream Stream(ASMangling); 1835 MicrosoftCXXNameMangler Extra(Context, Stream); 1836 Stream << "?$"; 1837 1838 LangAS AS = Quals.getAddressSpace(); 1839 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 1840 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 1841 Extra.mangleSourceName("_AS"); 1842 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS), 1843 /*IsBoolean*/ false); 1844 } else { 1845 switch (AS) { 1846 default: 1847 llvm_unreachable("Not a language specific address space"); 1848 case LangAS::opencl_global: 1849 Extra.mangleSourceName("_ASCLglobal"); 1850 break; 1851 case LangAS::opencl_local: 1852 Extra.mangleSourceName("_ASCLlocal"); 1853 break; 1854 case LangAS::opencl_constant: 1855 Extra.mangleSourceName("_ASCLconstant"); 1856 break; 1857 case LangAS::opencl_private: 1858 Extra.mangleSourceName("_ASCLprivate"); 1859 break; 1860 case LangAS::opencl_generic: 1861 Extra.mangleSourceName("_ASCLgeneric"); 1862 break; 1863 case LangAS::cuda_device: 1864 Extra.mangleSourceName("_ASCUdevice"); 1865 break; 1866 case LangAS::cuda_constant: 1867 Extra.mangleSourceName("_ASCUconstant"); 1868 break; 1869 case LangAS::cuda_shared: 1870 Extra.mangleSourceName("_ASCUshared"); 1871 break; 1872 } 1873 } 1874 1875 Extra.mangleType(T, Range, QMM_Escape); 1876 mangleQualifiers(Qualifiers(), false); 1877 mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"}); 1878 } 1879 1880 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 1881 QualifierMangleMode QMM) { 1882 // Don't use the canonical types. MSVC includes things like 'const' on 1883 // pointer arguments to function pointers that canonicalization strips away. 1884 T = T.getDesugaredType(getASTContext()); 1885 Qualifiers Quals = T.getLocalQualifiers(); 1886 1887 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 1888 // If there were any Quals, getAsArrayType() pushed them onto the array 1889 // element type. 1890 if (QMM == QMM_Mangle) 1891 Out << 'A'; 1892 else if (QMM == QMM_Escape || QMM == QMM_Result) 1893 Out << "$$B"; 1894 mangleArrayType(AT); 1895 return; 1896 } 1897 1898 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 1899 T->isReferenceType() || T->isBlockPointerType(); 1900 1901 switch (QMM) { 1902 case QMM_Drop: 1903 if (Quals.hasObjCLifetime()) 1904 Quals = Quals.withoutObjCLifetime(); 1905 break; 1906 case QMM_Mangle: 1907 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 1908 Out << '6'; 1909 mangleFunctionType(FT); 1910 return; 1911 } 1912 mangleQualifiers(Quals, false); 1913 break; 1914 case QMM_Escape: 1915 if (!IsPointer && Quals) { 1916 Out << "$$C"; 1917 mangleQualifiers(Quals, false); 1918 } 1919 break; 1920 case QMM_Result: 1921 // Presence of __unaligned qualifier shouldn't affect mangling here. 1922 Quals.removeUnaligned(); 1923 if (Quals.hasObjCLifetime()) 1924 Quals = Quals.withoutObjCLifetime(); 1925 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 1926 Out << '?'; 1927 mangleQualifiers(Quals, false); 1928 } 1929 break; 1930 } 1931 1932 const Type *ty = T.getTypePtr(); 1933 1934 switch (ty->getTypeClass()) { 1935 #define ABSTRACT_TYPE(CLASS, PARENT) 1936 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 1937 case Type::CLASS: \ 1938 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 1939 return; 1940 #define TYPE(CLASS, PARENT) \ 1941 case Type::CLASS: \ 1942 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 1943 break; 1944 #include "clang/AST/TypeNodes.inc" 1945 #undef ABSTRACT_TYPE 1946 #undef NON_CANONICAL_TYPE 1947 #undef TYPE 1948 } 1949 } 1950 1951 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 1952 SourceRange Range) { 1953 // <type> ::= <builtin-type> 1954 // <builtin-type> ::= X # void 1955 // ::= C # signed char 1956 // ::= D # char 1957 // ::= E # unsigned char 1958 // ::= F # short 1959 // ::= G # unsigned short (or wchar_t if it's not a builtin) 1960 // ::= H # int 1961 // ::= I # unsigned int 1962 // ::= J # long 1963 // ::= K # unsigned long 1964 // L # <none> 1965 // ::= M # float 1966 // ::= N # double 1967 // ::= O # long double (__float80 is mangled differently) 1968 // ::= _J # long long, __int64 1969 // ::= _K # unsigned long long, __int64 1970 // ::= _L # __int128 1971 // ::= _M # unsigned __int128 1972 // ::= _N # bool 1973 // _O # <array in parameter> 1974 // ::= _Q # char8_t 1975 // ::= _S # char16_t 1976 // ::= _T # __float80 (Intel) 1977 // ::= _U # char32_t 1978 // ::= _W # wchar_t 1979 // ::= _Z # __float80 (Digital Mars) 1980 switch (T->getKind()) { 1981 case BuiltinType::Void: 1982 Out << 'X'; 1983 break; 1984 case BuiltinType::SChar: 1985 Out << 'C'; 1986 break; 1987 case BuiltinType::Char_U: 1988 case BuiltinType::Char_S: 1989 Out << 'D'; 1990 break; 1991 case BuiltinType::UChar: 1992 Out << 'E'; 1993 break; 1994 case BuiltinType::Short: 1995 Out << 'F'; 1996 break; 1997 case BuiltinType::UShort: 1998 Out << 'G'; 1999 break; 2000 case BuiltinType::Int: 2001 Out << 'H'; 2002 break; 2003 case BuiltinType::UInt: 2004 Out << 'I'; 2005 break; 2006 case BuiltinType::Long: 2007 Out << 'J'; 2008 break; 2009 case BuiltinType::ULong: 2010 Out << 'K'; 2011 break; 2012 case BuiltinType::Float: 2013 Out << 'M'; 2014 break; 2015 case BuiltinType::Double: 2016 Out << 'N'; 2017 break; 2018 // TODO: Determine size and mangle accordingly 2019 case BuiltinType::LongDouble: 2020 Out << 'O'; 2021 break; 2022 case BuiltinType::LongLong: 2023 Out << "_J"; 2024 break; 2025 case BuiltinType::ULongLong: 2026 Out << "_K"; 2027 break; 2028 case BuiltinType::Int128: 2029 Out << "_L"; 2030 break; 2031 case BuiltinType::UInt128: 2032 Out << "_M"; 2033 break; 2034 case BuiltinType::Bool: 2035 Out << "_N"; 2036 break; 2037 case BuiltinType::Char8: 2038 Out << "_Q"; 2039 break; 2040 case BuiltinType::Char16: 2041 Out << "_S"; 2042 break; 2043 case BuiltinType::Char32: 2044 Out << "_U"; 2045 break; 2046 case BuiltinType::WChar_S: 2047 case BuiltinType::WChar_U: 2048 Out << "_W"; 2049 break; 2050 2051 #define BUILTIN_TYPE(Id, SingletonId) 2052 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2053 case BuiltinType::Id: 2054 #include "clang/AST/BuiltinTypes.def" 2055 case BuiltinType::Dependent: 2056 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2057 2058 case BuiltinType::ObjCId: 2059 mangleArtificialTagType(TTK_Struct, "objc_object"); 2060 break; 2061 case BuiltinType::ObjCClass: 2062 mangleArtificialTagType(TTK_Struct, "objc_class"); 2063 break; 2064 case BuiltinType::ObjCSel: 2065 mangleArtificialTagType(TTK_Struct, "objc_selector"); 2066 break; 2067 2068 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2069 case BuiltinType::Id: \ 2070 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2071 break; 2072 #include "clang/Basic/OpenCLImageTypes.def" 2073 case BuiltinType::OCLSampler: 2074 Out << "PA"; 2075 mangleArtificialTagType(TTK_Struct, "ocl_sampler"); 2076 break; 2077 case BuiltinType::OCLEvent: 2078 Out << "PA"; 2079 mangleArtificialTagType(TTK_Struct, "ocl_event"); 2080 break; 2081 case BuiltinType::OCLClkEvent: 2082 Out << "PA"; 2083 mangleArtificialTagType(TTK_Struct, "ocl_clkevent"); 2084 break; 2085 case BuiltinType::OCLQueue: 2086 Out << "PA"; 2087 mangleArtificialTagType(TTK_Struct, "ocl_queue"); 2088 break; 2089 case BuiltinType::OCLReserveID: 2090 Out << "PA"; 2091 mangleArtificialTagType(TTK_Struct, "ocl_reserveid"); 2092 break; 2093 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2094 case BuiltinType::Id: \ 2095 mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \ 2096 break; 2097 #include "clang/Basic/OpenCLExtensionTypes.def" 2098 2099 case BuiltinType::NullPtr: 2100 Out << "$$T"; 2101 break; 2102 2103 case BuiltinType::Float16: 2104 mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"}); 2105 break; 2106 2107 case BuiltinType::Half: 2108 mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"}); 2109 break; 2110 2111 #define SVE_TYPE(Name, Id, SingletonId) \ 2112 case BuiltinType::Id: 2113 #include "clang/Basic/AArch64SVEACLETypes.def" 2114 case BuiltinType::ShortAccum: 2115 case BuiltinType::Accum: 2116 case BuiltinType::LongAccum: 2117 case BuiltinType::UShortAccum: 2118 case BuiltinType::UAccum: 2119 case BuiltinType::ULongAccum: 2120 case BuiltinType::ShortFract: 2121 case BuiltinType::Fract: 2122 case BuiltinType::LongFract: 2123 case BuiltinType::UShortFract: 2124 case BuiltinType::UFract: 2125 case BuiltinType::ULongFract: 2126 case BuiltinType::SatShortAccum: 2127 case BuiltinType::SatAccum: 2128 case BuiltinType::SatLongAccum: 2129 case BuiltinType::SatUShortAccum: 2130 case BuiltinType::SatUAccum: 2131 case BuiltinType::SatULongAccum: 2132 case BuiltinType::SatShortFract: 2133 case BuiltinType::SatFract: 2134 case BuiltinType::SatLongFract: 2135 case BuiltinType::SatUShortFract: 2136 case BuiltinType::SatUFract: 2137 case BuiltinType::SatULongFract: 2138 case BuiltinType::Float128: { 2139 DiagnosticsEngine &Diags = Context.getDiags(); 2140 unsigned DiagID = Diags.getCustomDiagID( 2141 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2142 Diags.Report(Range.getBegin(), DiagID) 2143 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2144 break; 2145 } 2146 } 2147 } 2148 2149 // <type> ::= <function-type> 2150 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2151 SourceRange) { 2152 // Structors only appear in decls, so at this point we know it's not a 2153 // structor type. 2154 // FIXME: This may not be lambda-friendly. 2155 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2156 Out << "$$A8@@"; 2157 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2158 } else { 2159 Out << "$$A6"; 2160 mangleFunctionType(T); 2161 } 2162 } 2163 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2164 Qualifiers, SourceRange) { 2165 Out << "$$A6"; 2166 mangleFunctionType(T); 2167 } 2168 2169 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2170 const FunctionDecl *D, 2171 bool ForceThisQuals, 2172 bool MangleExceptionSpec) { 2173 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2174 // <return-type> <argument-list> <throw-spec> 2175 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2176 2177 SourceRange Range; 2178 if (D) Range = D->getSourceRange(); 2179 2180 bool IsInLambda = false; 2181 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2182 CallingConv CC = T->getCallConv(); 2183 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2184 if (MD->getParent()->isLambda()) 2185 IsInLambda = true; 2186 if (MD->isInstance()) 2187 HasThisQuals = true; 2188 if (isa<CXXDestructorDecl>(MD)) { 2189 IsStructor = true; 2190 } else if (isa<CXXConstructorDecl>(MD)) { 2191 IsStructor = true; 2192 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2193 StructorType == Ctor_DefaultClosure) && 2194 isStructorDecl(MD); 2195 if (IsCtorClosure) 2196 CC = getASTContext().getDefaultCallingConvention( 2197 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2198 } 2199 } 2200 2201 // If this is a C++ instance method, mangle the CVR qualifiers for the 2202 // this pointer. 2203 if (HasThisQuals) { 2204 Qualifiers Quals = Proto->getMethodQuals(); 2205 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2206 mangleRefQualifier(Proto->getRefQualifier()); 2207 mangleQualifiers(Quals, /*IsMember=*/false); 2208 } 2209 2210 mangleCallingConvention(CC); 2211 2212 // <return-type> ::= <type> 2213 // ::= @ # structors (they have no declared return type) 2214 if (IsStructor) { 2215 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2216 // The scalar deleting destructor takes an extra int argument which is not 2217 // reflected in the AST. 2218 if (StructorType == Dtor_Deleting) { 2219 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2220 return; 2221 } 2222 // The vbase destructor returns void which is not reflected in the AST. 2223 if (StructorType == Dtor_Complete) { 2224 Out << "XXZ"; 2225 return; 2226 } 2227 } 2228 if (IsCtorClosure) { 2229 // Default constructor closure and copy constructor closure both return 2230 // void. 2231 Out << 'X'; 2232 2233 if (StructorType == Ctor_DefaultClosure) { 2234 // Default constructor closure always has no arguments. 2235 Out << 'X'; 2236 } else if (StructorType == Ctor_CopyingClosure) { 2237 // Copy constructor closure always takes an unqualified reference. 2238 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2239 Proto->getParamType(0) 2240 ->getAs<LValueReferenceType>() 2241 ->getPointeeType(), 2242 /*SpelledAsLValue=*/true), 2243 Range); 2244 Out << '@'; 2245 } else { 2246 llvm_unreachable("unexpected constructor closure!"); 2247 } 2248 Out << 'Z'; 2249 return; 2250 } 2251 Out << '@'; 2252 } else { 2253 QualType ResultType = T->getReturnType(); 2254 if (const auto *AT = 2255 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) { 2256 Out << '?'; 2257 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2258 Out << '?'; 2259 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2260 "shouldn't need to mangle __auto_type!"); 2261 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2262 Out << '@'; 2263 } else if (IsInLambda) { 2264 Out << '@'; 2265 } else { 2266 if (ResultType->isVoidType()) 2267 ResultType = ResultType.getUnqualifiedType(); 2268 mangleType(ResultType, Range, QMM_Result); 2269 } 2270 } 2271 2272 // <argument-list> ::= X # void 2273 // ::= <type>+ @ 2274 // ::= <type>* Z # varargs 2275 if (!Proto) { 2276 // Function types without prototypes can arise when mangling a function type 2277 // within an overloadable function in C. We mangle these as the absence of 2278 // any parameter types (not even an empty parameter list). 2279 Out << '@'; 2280 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2281 Out << 'X'; 2282 } else { 2283 // Happens for function pointer type arguments for example. 2284 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2285 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2286 // Mangle each pass_object_size parameter as if it's a parameter of enum 2287 // type passed directly after the parameter with the pass_object_size 2288 // attribute. The aforementioned enum's name is __pass_object_size, and we 2289 // pretend it resides in a top-level namespace called __clang. 2290 // 2291 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2292 // necessary to just cross our fingers and hope this type+namespace 2293 // combination doesn't conflict with anything? 2294 if (D) 2295 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2296 manglePassObjectSizeArg(P); 2297 } 2298 // <builtin-type> ::= Z # ellipsis 2299 if (Proto->isVariadic()) 2300 Out << 'Z'; 2301 else 2302 Out << '@'; 2303 } 2304 2305 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2306 getASTContext().getLangOpts().isCompatibleWithMSVC( 2307 LangOptions::MSVC2017_5)) 2308 mangleThrowSpecification(Proto); 2309 else 2310 Out << 'Z'; 2311 } 2312 2313 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2314 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2315 // # pointer. in 64-bit mode *all* 2316 // # 'this' pointers are 64-bit. 2317 // ::= <global-function> 2318 // <member-function> ::= A # private: near 2319 // ::= B # private: far 2320 // ::= C # private: static near 2321 // ::= D # private: static far 2322 // ::= E # private: virtual near 2323 // ::= F # private: virtual far 2324 // ::= I # protected: near 2325 // ::= J # protected: far 2326 // ::= K # protected: static near 2327 // ::= L # protected: static far 2328 // ::= M # protected: virtual near 2329 // ::= N # protected: virtual far 2330 // ::= Q # public: near 2331 // ::= R # public: far 2332 // ::= S # public: static near 2333 // ::= T # public: static far 2334 // ::= U # public: virtual near 2335 // ::= V # public: virtual far 2336 // <global-function> ::= Y # global near 2337 // ::= Z # global far 2338 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2339 bool IsVirtual = MD->isVirtual(); 2340 // When mangling vbase destructor variants, ignore whether or not the 2341 // underlying destructor was defined to be virtual. 2342 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2343 StructorType == Dtor_Complete) { 2344 IsVirtual = false; 2345 } 2346 switch (MD->getAccess()) { 2347 case AS_none: 2348 llvm_unreachable("Unsupported access specifier"); 2349 case AS_private: 2350 if (MD->isStatic()) 2351 Out << 'C'; 2352 else if (IsVirtual) 2353 Out << 'E'; 2354 else 2355 Out << 'A'; 2356 break; 2357 case AS_protected: 2358 if (MD->isStatic()) 2359 Out << 'K'; 2360 else if (IsVirtual) 2361 Out << 'M'; 2362 else 2363 Out << 'I'; 2364 break; 2365 case AS_public: 2366 if (MD->isStatic()) 2367 Out << 'S'; 2368 else if (IsVirtual) 2369 Out << 'U'; 2370 else 2371 Out << 'Q'; 2372 } 2373 } else { 2374 Out << 'Y'; 2375 } 2376 } 2377 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 2378 // <calling-convention> ::= A # __cdecl 2379 // ::= B # __export __cdecl 2380 // ::= C # __pascal 2381 // ::= D # __export __pascal 2382 // ::= E # __thiscall 2383 // ::= F # __export __thiscall 2384 // ::= G # __stdcall 2385 // ::= H # __export __stdcall 2386 // ::= I # __fastcall 2387 // ::= J # __export __fastcall 2388 // ::= Q # __vectorcall 2389 // ::= w # __regcall 2390 // The 'export' calling conventions are from a bygone era 2391 // (*cough*Win16*cough*) when functions were declared for export with 2392 // that keyword. (It didn't actually export them, it just made them so 2393 // that they could be in a DLL and somebody from another module could call 2394 // them.) 2395 2396 switch (CC) { 2397 default: 2398 llvm_unreachable("Unsupported CC for mangling"); 2399 case CC_Win64: 2400 case CC_X86_64SysV: 2401 case CC_C: Out << 'A'; break; 2402 case CC_X86Pascal: Out << 'C'; break; 2403 case CC_X86ThisCall: Out << 'E'; break; 2404 case CC_X86StdCall: Out << 'G'; break; 2405 case CC_X86FastCall: Out << 'I'; break; 2406 case CC_X86VectorCall: Out << 'Q'; break; 2407 case CC_Swift: Out << 'S'; break; 2408 case CC_PreserveMost: Out << 'U'; break; 2409 case CC_X86RegCall: Out << 'w'; break; 2410 } 2411 } 2412 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 2413 mangleCallingConvention(T->getCallConv()); 2414 } 2415 2416 void MicrosoftCXXNameMangler::mangleThrowSpecification( 2417 const FunctionProtoType *FT) { 2418 // <throw-spec> ::= Z # (default) 2419 // ::= _E # noexcept 2420 if (FT->canThrow()) 2421 Out << 'Z'; 2422 else 2423 Out << "_E"; 2424 } 2425 2426 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 2427 Qualifiers, SourceRange Range) { 2428 // Probably should be mangled as a template instantiation; need to see what 2429 // VC does first. 2430 DiagnosticsEngine &Diags = Context.getDiags(); 2431 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2432 "cannot mangle this unresolved dependent type yet"); 2433 Diags.Report(Range.getBegin(), DiagID) 2434 << Range; 2435 } 2436 2437 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 2438 // <union-type> ::= T <name> 2439 // <struct-type> ::= U <name> 2440 // <class-type> ::= V <name> 2441 // <enum-type> ::= W4 <name> 2442 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 2443 switch (TTK) { 2444 case TTK_Union: 2445 Out << 'T'; 2446 break; 2447 case TTK_Struct: 2448 case TTK_Interface: 2449 Out << 'U'; 2450 break; 2451 case TTK_Class: 2452 Out << 'V'; 2453 break; 2454 case TTK_Enum: 2455 Out << "W4"; 2456 break; 2457 } 2458 } 2459 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 2460 SourceRange) { 2461 mangleType(cast<TagType>(T)->getDecl()); 2462 } 2463 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 2464 SourceRange) { 2465 mangleType(cast<TagType>(T)->getDecl()); 2466 } 2467 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 2468 mangleTagTypeKind(TD->getTagKind()); 2469 mangleName(TD); 2470 } 2471 2472 // If you add a call to this, consider updating isArtificialTagType() too. 2473 void MicrosoftCXXNameMangler::mangleArtificialTagType( 2474 TagTypeKind TK, StringRef UnqualifiedName, 2475 ArrayRef<StringRef> NestedNames) { 2476 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 2477 mangleTagTypeKind(TK); 2478 2479 // Always start with the unqualified name. 2480 mangleSourceName(UnqualifiedName); 2481 2482 for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I) 2483 mangleSourceName(*I); 2484 2485 // Terminate the whole name with an '@'. 2486 Out << '@'; 2487 } 2488 2489 // <type> ::= <array-type> 2490 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2491 // [Y <dimension-count> <dimension>+] 2492 // <element-type> # as global, E is never required 2493 // It's supposed to be the other way around, but for some strange reason, it 2494 // isn't. Today this behavior is retained for the sole purpose of backwards 2495 // compatibility. 2496 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2497 // This isn't a recursive mangling, so now we have to do it all in this 2498 // one call. 2499 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2500 mangleType(T->getElementType(), SourceRange()); 2501 } 2502 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2503 SourceRange) { 2504 llvm_unreachable("Should have been special cased"); 2505 } 2506 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2507 SourceRange) { 2508 llvm_unreachable("Should have been special cased"); 2509 } 2510 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2511 Qualifiers, SourceRange) { 2512 llvm_unreachable("Should have been special cased"); 2513 } 2514 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2515 Qualifiers, SourceRange) { 2516 llvm_unreachable("Should have been special cased"); 2517 } 2518 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2519 QualType ElementTy(T, 0); 2520 SmallVector<llvm::APInt, 3> Dimensions; 2521 for (;;) { 2522 if (ElementTy->isConstantArrayType()) { 2523 const ConstantArrayType *CAT = 2524 getASTContext().getAsConstantArrayType(ElementTy); 2525 Dimensions.push_back(CAT->getSize()); 2526 ElementTy = CAT->getElementType(); 2527 } else if (ElementTy->isIncompleteArrayType()) { 2528 const IncompleteArrayType *IAT = 2529 getASTContext().getAsIncompleteArrayType(ElementTy); 2530 Dimensions.push_back(llvm::APInt(32, 0)); 2531 ElementTy = IAT->getElementType(); 2532 } else if (ElementTy->isVariableArrayType()) { 2533 const VariableArrayType *VAT = 2534 getASTContext().getAsVariableArrayType(ElementTy); 2535 Dimensions.push_back(llvm::APInt(32, 0)); 2536 ElementTy = VAT->getElementType(); 2537 } else if (ElementTy->isDependentSizedArrayType()) { 2538 // The dependent expression has to be folded into a constant (TODO). 2539 const DependentSizedArrayType *DSAT = 2540 getASTContext().getAsDependentSizedArrayType(ElementTy); 2541 DiagnosticsEngine &Diags = Context.getDiags(); 2542 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2543 "cannot mangle this dependent-length array yet"); 2544 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 2545 << DSAT->getBracketsRange(); 2546 return; 2547 } else { 2548 break; 2549 } 2550 } 2551 Out << 'Y'; 2552 // <dimension-count> ::= <number> # number of extra dimensions 2553 mangleNumber(Dimensions.size()); 2554 for (const llvm::APInt &Dimension : Dimensions) 2555 mangleNumber(Dimension.getLimitedValue()); 2556 mangleType(ElementTy, SourceRange(), QMM_Escape); 2557 } 2558 2559 // <type> ::= <pointer-to-member-type> 2560 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2561 // <class name> <type> 2562 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 2563 Qualifiers Quals, SourceRange Range) { 2564 QualType PointeeType = T->getPointeeType(); 2565 manglePointerCVQualifiers(Quals); 2566 manglePointerExtQualifiers(Quals, PointeeType); 2567 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 2568 Out << '8'; 2569 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2570 mangleFunctionType(FPT, nullptr, true); 2571 } else { 2572 mangleQualifiers(PointeeType.getQualifiers(), true); 2573 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2574 mangleType(PointeeType, Range, QMM_Drop); 2575 } 2576 } 2577 2578 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 2579 Qualifiers, SourceRange Range) { 2580 DiagnosticsEngine &Diags = Context.getDiags(); 2581 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2582 "cannot mangle this template type parameter type yet"); 2583 Diags.Report(Range.getBegin(), DiagID) 2584 << Range; 2585 } 2586 2587 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 2588 Qualifiers, SourceRange Range) { 2589 DiagnosticsEngine &Diags = Context.getDiags(); 2590 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2591 "cannot mangle this substituted parameter pack yet"); 2592 Diags.Report(Range.getBegin(), DiagID) 2593 << Range; 2594 } 2595 2596 // <type> ::= <pointer-type> 2597 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 2598 // # the E is required for 64-bit non-static pointers 2599 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 2600 SourceRange Range) { 2601 QualType PointeeType = T->getPointeeType(); 2602 manglePointerCVQualifiers(Quals); 2603 manglePointerExtQualifiers(Quals, PointeeType); 2604 2605 if (PointeeType.getQualifiers().hasAddressSpace()) 2606 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 2607 else 2608 mangleType(PointeeType, Range); 2609 } 2610 2611 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 2612 Qualifiers Quals, SourceRange Range) { 2613 QualType PointeeType = T->getPointeeType(); 2614 switch (Quals.getObjCLifetime()) { 2615 case Qualifiers::OCL_None: 2616 case Qualifiers::OCL_ExplicitNone: 2617 break; 2618 case Qualifiers::OCL_Autoreleasing: 2619 case Qualifiers::OCL_Strong: 2620 case Qualifiers::OCL_Weak: 2621 return mangleObjCLifetime(PointeeType, Quals, Range); 2622 } 2623 manglePointerCVQualifiers(Quals); 2624 manglePointerExtQualifiers(Quals, PointeeType); 2625 mangleType(PointeeType, Range); 2626 } 2627 2628 // <type> ::= <reference-type> 2629 // <reference-type> ::= A E? <cvr-qualifiers> <type> 2630 // # the E is required for 64-bit non-static lvalue references 2631 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 2632 Qualifiers Quals, SourceRange Range) { 2633 QualType PointeeType = T->getPointeeType(); 2634 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2635 Out << 'A'; 2636 manglePointerExtQualifiers(Quals, PointeeType); 2637 mangleType(PointeeType, Range); 2638 } 2639 2640 // <type> ::= <r-value-reference-type> 2641 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 2642 // # the E is required for 64-bit non-static rvalue references 2643 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 2644 Qualifiers Quals, SourceRange Range) { 2645 QualType PointeeType = T->getPointeeType(); 2646 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2647 Out << "$$Q"; 2648 manglePointerExtQualifiers(Quals, PointeeType); 2649 mangleType(PointeeType, Range); 2650 } 2651 2652 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 2653 SourceRange Range) { 2654 QualType ElementType = T->getElementType(); 2655 2656 llvm::SmallString<64> TemplateMangling; 2657 llvm::raw_svector_ostream Stream(TemplateMangling); 2658 MicrosoftCXXNameMangler Extra(Context, Stream); 2659 Stream << "?$"; 2660 Extra.mangleSourceName("_Complex"); 2661 Extra.mangleType(ElementType, Range, QMM_Escape); 2662 2663 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2664 } 2665 2666 // Returns true for types that mangleArtificialTagType() gets called for with 2667 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's 2668 // mangling matters. 2669 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 2670 // support.) 2671 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 2672 const Type *ty = T.getTypePtr(); 2673 switch (ty->getTypeClass()) { 2674 default: 2675 return false; 2676 2677 case Type::Vector: { 2678 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 2679 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 2680 // just always return true (the other vector types are clang-only). 2681 return true; 2682 } 2683 } 2684 } 2685 2686 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 2687 SourceRange Range) { 2688 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); 2689 assert(ET && "vectors with non-builtin elements are unsupported"); 2690 uint64_t Width = getASTContext().getTypeSize(T); 2691 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 2692 // doesn't match the Intel types uses a custom mangling below. 2693 size_t OutSizeBefore = Out.tell(); 2694 if (!isa<ExtVectorType>(T)) { 2695 llvm::Triple::ArchType AT = 2696 getASTContext().getTargetInfo().getTriple().getArch(); 2697 if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) { 2698 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 2699 mangleArtificialTagType(TTK_Union, "__m64"); 2700 } else if (Width >= 128) { 2701 if (ET->getKind() == BuiltinType::Float) 2702 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width)); 2703 else if (ET->getKind() == BuiltinType::LongLong) 2704 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); 2705 else if (ET->getKind() == BuiltinType::Double) 2706 mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); 2707 } 2708 } 2709 } 2710 2711 bool IsBuiltin = Out.tell() != OutSizeBefore; 2712 if (!IsBuiltin) { 2713 // The MS ABI doesn't have a special mangling for vector types, so we define 2714 // our own mangling to handle uses of __vector_size__ on user-specified 2715 // types, and for extensions like __v4sf. 2716 2717 llvm::SmallString<64> TemplateMangling; 2718 llvm::raw_svector_ostream Stream(TemplateMangling); 2719 MicrosoftCXXNameMangler Extra(Context, Stream); 2720 Stream << "?$"; 2721 Extra.mangleSourceName("__vector"); 2722 Extra.mangleType(QualType(ET, 0), Range, QMM_Escape); 2723 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()), 2724 /*IsBoolean=*/false); 2725 2726 mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"}); 2727 } 2728 } 2729 2730 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 2731 Qualifiers Quals, SourceRange Range) { 2732 mangleType(static_cast<const VectorType *>(T), Quals, Range); 2733 } 2734 2735 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 2736 Qualifiers, SourceRange Range) { 2737 DiagnosticsEngine &Diags = Context.getDiags(); 2738 unsigned DiagID = Diags.getCustomDiagID( 2739 DiagnosticsEngine::Error, 2740 "cannot mangle this dependent-sized vector type yet"); 2741 Diags.Report(Range.getBegin(), DiagID) << Range; 2742 } 2743 2744 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 2745 Qualifiers, SourceRange Range) { 2746 DiagnosticsEngine &Diags = Context.getDiags(); 2747 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2748 "cannot mangle this dependent-sized extended vector type yet"); 2749 Diags.Report(Range.getBegin(), DiagID) 2750 << Range; 2751 } 2752 2753 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 2754 Qualifiers, SourceRange Range) { 2755 DiagnosticsEngine &Diags = Context.getDiags(); 2756 unsigned DiagID = Diags.getCustomDiagID( 2757 DiagnosticsEngine::Error, 2758 "cannot mangle this dependent address space type yet"); 2759 Diags.Report(Range.getBegin(), DiagID) << Range; 2760 } 2761 2762 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 2763 SourceRange) { 2764 // ObjC interfaces have structs underlying them. 2765 mangleTagTypeKind(TTK_Struct); 2766 mangleName(T->getDecl()); 2767 } 2768 2769 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 2770 Qualifiers Quals, SourceRange Range) { 2771 if (T->isKindOfType()) 2772 return mangleObjCKindOfType(T, Quals, Range); 2773 2774 if (T->qual_empty() && !T->isSpecialized()) 2775 return mangleType(T->getBaseType(), Range, QMM_Drop); 2776 2777 ArgBackRefMap OuterFunArgsContext; 2778 ArgBackRefMap OuterTemplateArgsContext; 2779 BackRefVec OuterTemplateContext; 2780 2781 FunArgBackReferences.swap(OuterFunArgsContext); 2782 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 2783 NameBackReferences.swap(OuterTemplateContext); 2784 2785 mangleTagTypeKind(TTK_Struct); 2786 2787 Out << "?$"; 2788 if (T->isObjCId()) 2789 mangleSourceName("objc_object"); 2790 else if (T->isObjCClass()) 2791 mangleSourceName("objc_class"); 2792 else 2793 mangleSourceName(T->getInterface()->getName()); 2794 2795 for (const auto &Q : T->quals()) 2796 mangleObjCProtocol(Q); 2797 2798 if (T->isSpecialized()) 2799 for (const auto &TA : T->getTypeArgs()) 2800 mangleType(TA, Range, QMM_Drop); 2801 2802 Out << '@'; 2803 2804 Out << '@'; 2805 2806 FunArgBackReferences.swap(OuterFunArgsContext); 2807 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 2808 NameBackReferences.swap(OuterTemplateContext); 2809 } 2810 2811 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 2812 Qualifiers Quals, SourceRange Range) { 2813 QualType PointeeType = T->getPointeeType(); 2814 manglePointerCVQualifiers(Quals); 2815 manglePointerExtQualifiers(Quals, PointeeType); 2816 2817 Out << "_E"; 2818 2819 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 2820 } 2821 2822 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 2823 Qualifiers, SourceRange) { 2824 llvm_unreachable("Cannot mangle injected class name type."); 2825 } 2826 2827 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 2828 Qualifiers, SourceRange Range) { 2829 DiagnosticsEngine &Diags = Context.getDiags(); 2830 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2831 "cannot mangle this template specialization type yet"); 2832 Diags.Report(Range.getBegin(), DiagID) 2833 << Range; 2834 } 2835 2836 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 2837 SourceRange Range) { 2838 DiagnosticsEngine &Diags = Context.getDiags(); 2839 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2840 "cannot mangle this dependent name type yet"); 2841 Diags.Report(Range.getBegin(), DiagID) 2842 << Range; 2843 } 2844 2845 void MicrosoftCXXNameMangler::mangleType( 2846 const DependentTemplateSpecializationType *T, Qualifiers, 2847 SourceRange Range) { 2848 DiagnosticsEngine &Diags = Context.getDiags(); 2849 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2850 "cannot mangle this dependent template specialization type yet"); 2851 Diags.Report(Range.getBegin(), DiagID) 2852 << Range; 2853 } 2854 2855 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 2856 SourceRange Range) { 2857 DiagnosticsEngine &Diags = Context.getDiags(); 2858 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2859 "cannot mangle this pack expansion yet"); 2860 Diags.Report(Range.getBegin(), DiagID) 2861 << Range; 2862 } 2863 2864 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 2865 SourceRange Range) { 2866 DiagnosticsEngine &Diags = Context.getDiags(); 2867 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2868 "cannot mangle this typeof(type) yet"); 2869 Diags.Report(Range.getBegin(), DiagID) 2870 << Range; 2871 } 2872 2873 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 2874 SourceRange Range) { 2875 DiagnosticsEngine &Diags = Context.getDiags(); 2876 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2877 "cannot mangle this typeof(expression) yet"); 2878 Diags.Report(Range.getBegin(), DiagID) 2879 << Range; 2880 } 2881 2882 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 2883 SourceRange Range) { 2884 DiagnosticsEngine &Diags = Context.getDiags(); 2885 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2886 "cannot mangle this decltype() yet"); 2887 Diags.Report(Range.getBegin(), DiagID) 2888 << Range; 2889 } 2890 2891 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 2892 Qualifiers, SourceRange Range) { 2893 DiagnosticsEngine &Diags = Context.getDiags(); 2894 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2895 "cannot mangle this unary transform type yet"); 2896 Diags.Report(Range.getBegin(), DiagID) 2897 << Range; 2898 } 2899 2900 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 2901 SourceRange Range) { 2902 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2903 2904 DiagnosticsEngine &Diags = Context.getDiags(); 2905 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2906 "cannot mangle this 'auto' type yet"); 2907 Diags.Report(Range.getBegin(), DiagID) 2908 << Range; 2909 } 2910 2911 void MicrosoftCXXNameMangler::mangleType( 2912 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 2913 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 2914 2915 DiagnosticsEngine &Diags = Context.getDiags(); 2916 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2917 "cannot mangle this deduced class template specialization type yet"); 2918 Diags.Report(Range.getBegin(), DiagID) 2919 << Range; 2920 } 2921 2922 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 2923 SourceRange Range) { 2924 QualType ValueType = T->getValueType(); 2925 2926 llvm::SmallString<64> TemplateMangling; 2927 llvm::raw_svector_ostream Stream(TemplateMangling); 2928 MicrosoftCXXNameMangler Extra(Context, Stream); 2929 Stream << "?$"; 2930 Extra.mangleSourceName("_Atomic"); 2931 Extra.mangleType(ValueType, Range, QMM_Escape); 2932 2933 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 2934 } 2935 2936 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 2937 SourceRange Range) { 2938 DiagnosticsEngine &Diags = Context.getDiags(); 2939 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2940 "cannot mangle this OpenCL pipe type yet"); 2941 Diags.Report(Range.getBegin(), DiagID) 2942 << Range; 2943 } 2944 2945 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D, 2946 raw_ostream &Out) { 2947 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 2948 "Invalid mangleName() call, argument is not a variable or function!"); 2949 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 2950 "Invalid mangleName() call on 'structor decl!"); 2951 2952 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 2953 getASTContext().getSourceManager(), 2954 "Mangling declaration"); 2955 2956 msvc_hashing_ostream MHO(Out); 2957 MicrosoftCXXNameMangler Mangler(*this, MHO); 2958 return Mangler.mangle(D); 2959 } 2960 2961 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 2962 // <virtual-adjustment> 2963 // <no-adjustment> ::= A # private near 2964 // ::= B # private far 2965 // ::= I # protected near 2966 // ::= J # protected far 2967 // ::= Q # public near 2968 // ::= R # public far 2969 // <static-adjustment> ::= G <static-offset> # private near 2970 // ::= H <static-offset> # private far 2971 // ::= O <static-offset> # protected near 2972 // ::= P <static-offset> # protected far 2973 // ::= W <static-offset> # public near 2974 // ::= X <static-offset> # public far 2975 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 2976 // ::= $1 <virtual-shift> <static-offset> # private far 2977 // ::= $2 <virtual-shift> <static-offset> # protected near 2978 // ::= $3 <virtual-shift> <static-offset> # protected far 2979 // ::= $4 <virtual-shift> <static-offset> # public near 2980 // ::= $5 <virtual-shift> <static-offset> # public far 2981 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 2982 // <vtordisp-shift> ::= <offset-to-vtordisp> 2983 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 2984 // <offset-to-vtordisp> 2985 static void mangleThunkThisAdjustment(AccessSpecifier AS, 2986 const ThisAdjustment &Adjustment, 2987 MicrosoftCXXNameMangler &Mangler, 2988 raw_ostream &Out) { 2989 if (!Adjustment.Virtual.isEmpty()) { 2990 Out << '$'; 2991 char AccessSpec; 2992 switch (AS) { 2993 case AS_none: 2994 llvm_unreachable("Unsupported access specifier"); 2995 case AS_private: 2996 AccessSpec = '0'; 2997 break; 2998 case AS_protected: 2999 AccessSpec = '2'; 3000 break; 3001 case AS_public: 3002 AccessSpec = '4'; 3003 } 3004 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3005 Out << 'R' << AccessSpec; 3006 Mangler.mangleNumber( 3007 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3008 Mangler.mangleNumber( 3009 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3010 Mangler.mangleNumber( 3011 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3012 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3013 } else { 3014 Out << AccessSpec; 3015 Mangler.mangleNumber( 3016 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3017 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3018 } 3019 } else if (Adjustment.NonVirtual != 0) { 3020 switch (AS) { 3021 case AS_none: 3022 llvm_unreachable("Unsupported access specifier"); 3023 case AS_private: 3024 Out << 'G'; 3025 break; 3026 case AS_protected: 3027 Out << 'O'; 3028 break; 3029 case AS_public: 3030 Out << 'W'; 3031 } 3032 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3033 } else { 3034 switch (AS) { 3035 case AS_none: 3036 llvm_unreachable("Unsupported access specifier"); 3037 case AS_private: 3038 Out << 'A'; 3039 break; 3040 case AS_protected: 3041 Out << 'I'; 3042 break; 3043 case AS_public: 3044 Out << 'Q'; 3045 } 3046 } 3047 } 3048 3049 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3050 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3051 raw_ostream &Out) { 3052 msvc_hashing_ostream MHO(Out); 3053 MicrosoftCXXNameMangler Mangler(*this, MHO); 3054 Mangler.getStream() << '?'; 3055 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3056 } 3057 3058 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3059 const ThunkInfo &Thunk, 3060 raw_ostream &Out) { 3061 msvc_hashing_ostream MHO(Out); 3062 MicrosoftCXXNameMangler Mangler(*this, MHO); 3063 Mangler.getStream() << '?'; 3064 Mangler.mangleName(MD); 3065 3066 // Usually the thunk uses the access specifier of the new method, but if this 3067 // is a covariant return thunk, then MSVC always uses the public access 3068 // specifier, and we do the same. 3069 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3070 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3071 3072 if (!Thunk.Return.isEmpty()) 3073 assert(Thunk.Method != nullptr && 3074 "Thunk info should hold the overridee decl"); 3075 3076 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3077 Mangler.mangleFunctionType( 3078 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3079 } 3080 3081 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 3082 const CXXDestructorDecl *DD, CXXDtorType Type, 3083 const ThisAdjustment &Adjustment, raw_ostream &Out) { 3084 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3085 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3086 // mangling manually until we support both deleting dtor types. 3087 assert(Type == Dtor_Deleting); 3088 msvc_hashing_ostream MHO(Out); 3089 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3090 Mangler.getStream() << "??_E"; 3091 Mangler.mangleName(DD->getParent()); 3092 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3093 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3094 } 3095 3096 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3097 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3098 raw_ostream &Out) { 3099 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3100 // <cvr-qualifiers> [<name>] @ 3101 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3102 // is always '6' for vftables. 3103 msvc_hashing_ostream MHO(Out); 3104 MicrosoftCXXNameMangler Mangler(*this, MHO); 3105 if (Derived->hasAttr<DLLImportAttr>()) 3106 Mangler.getStream() << "??_S"; 3107 else 3108 Mangler.getStream() << "??_7"; 3109 Mangler.mangleName(Derived); 3110 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3111 for (const CXXRecordDecl *RD : BasePath) 3112 Mangler.mangleName(RD); 3113 Mangler.getStream() << '@'; 3114 } 3115 3116 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3117 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3118 raw_ostream &Out) { 3119 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3120 // <cvr-qualifiers> [<name>] @ 3121 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3122 // is always '7' for vbtables. 3123 msvc_hashing_ostream MHO(Out); 3124 MicrosoftCXXNameMangler Mangler(*this, MHO); 3125 Mangler.getStream() << "??_8"; 3126 Mangler.mangleName(Derived); 3127 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3128 for (const CXXRecordDecl *RD : BasePath) 3129 Mangler.mangleName(RD); 3130 Mangler.getStream() << '@'; 3131 } 3132 3133 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3134 msvc_hashing_ostream MHO(Out); 3135 MicrosoftCXXNameMangler Mangler(*this, MHO); 3136 Mangler.getStream() << "??_R0"; 3137 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3138 Mangler.getStream() << "@8"; 3139 } 3140 3141 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, 3142 raw_ostream &Out) { 3143 MicrosoftCXXNameMangler Mangler(*this, Out); 3144 Mangler.getStream() << '.'; 3145 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3146 } 3147 3148 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3149 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3150 msvc_hashing_ostream MHO(Out); 3151 MicrosoftCXXNameMangler Mangler(*this, MHO); 3152 Mangler.getStream() << "??_K"; 3153 Mangler.mangleName(SrcRD); 3154 Mangler.getStream() << "$C"; 3155 Mangler.mangleName(DstRD); 3156 } 3157 3158 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3159 bool IsVolatile, 3160 bool IsUnaligned, 3161 uint32_t NumEntries, 3162 raw_ostream &Out) { 3163 msvc_hashing_ostream MHO(Out); 3164 MicrosoftCXXNameMangler Mangler(*this, MHO); 3165 Mangler.getStream() << "_TI"; 3166 if (IsConst) 3167 Mangler.getStream() << 'C'; 3168 if (IsVolatile) 3169 Mangler.getStream() << 'V'; 3170 if (IsUnaligned) 3171 Mangler.getStream() << 'U'; 3172 Mangler.getStream() << NumEntries; 3173 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3174 } 3175 3176 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3177 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3178 msvc_hashing_ostream MHO(Out); 3179 MicrosoftCXXNameMangler Mangler(*this, MHO); 3180 Mangler.getStream() << "_CTA"; 3181 Mangler.getStream() << NumEntries; 3182 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3183 } 3184 3185 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3186 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3187 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3188 raw_ostream &Out) { 3189 MicrosoftCXXNameMangler Mangler(*this, Out); 3190 Mangler.getStream() << "_CT"; 3191 3192 llvm::SmallString<64> RTTIMangling; 3193 { 3194 llvm::raw_svector_ostream Stream(RTTIMangling); 3195 msvc_hashing_ostream MHO(Stream); 3196 mangleCXXRTTI(T, MHO); 3197 } 3198 Mangler.getStream() << RTTIMangling; 3199 3200 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3201 // both older and newer versions include it. 3202 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3203 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3204 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3205 // Or 1912, 1913 aleady?). 3206 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3207 LangOptions::MSVC2015) && 3208 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3209 LangOptions::MSVC2017_7); 3210 llvm::SmallString<64> CopyCtorMangling; 3211 if (!OmitCopyCtor && CD) { 3212 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3213 msvc_hashing_ostream MHO(Stream); 3214 mangleCXXCtor(CD, CT, MHO); 3215 } 3216 Mangler.getStream() << CopyCtorMangling; 3217 3218 Mangler.getStream() << Size; 3219 if (VBPtrOffset == -1) { 3220 if (NVOffset) { 3221 Mangler.getStream() << NVOffset; 3222 } 3223 } else { 3224 Mangler.getStream() << NVOffset; 3225 Mangler.getStream() << VBPtrOffset; 3226 Mangler.getStream() << VBIndex; 3227 } 3228 } 3229 3230 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3231 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3232 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3233 msvc_hashing_ostream MHO(Out); 3234 MicrosoftCXXNameMangler Mangler(*this, MHO); 3235 Mangler.getStream() << "??_R1"; 3236 Mangler.mangleNumber(NVOffset); 3237 Mangler.mangleNumber(VBPtrOffset); 3238 Mangler.mangleNumber(VBTableOffset); 3239 Mangler.mangleNumber(Flags); 3240 Mangler.mangleName(Derived); 3241 Mangler.getStream() << "8"; 3242 } 3243 3244 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3245 const CXXRecordDecl *Derived, raw_ostream &Out) { 3246 msvc_hashing_ostream MHO(Out); 3247 MicrosoftCXXNameMangler Mangler(*this, MHO); 3248 Mangler.getStream() << "??_R2"; 3249 Mangler.mangleName(Derived); 3250 Mangler.getStream() << "8"; 3251 } 3252 3253 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3254 const CXXRecordDecl *Derived, raw_ostream &Out) { 3255 msvc_hashing_ostream MHO(Out); 3256 MicrosoftCXXNameMangler Mangler(*this, MHO); 3257 Mangler.getStream() << "??_R3"; 3258 Mangler.mangleName(Derived); 3259 Mangler.getStream() << "8"; 3260 } 3261 3262 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 3263 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3264 raw_ostream &Out) { 3265 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 3266 // <cvr-qualifiers> [<name>] @ 3267 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3268 // is always '6' for vftables. 3269 llvm::SmallString<64> VFTableMangling; 3270 llvm::raw_svector_ostream Stream(VFTableMangling); 3271 mangleCXXVFTable(Derived, BasePath, Stream); 3272 3273 if (VFTableMangling.startswith("??@")) { 3274 assert(VFTableMangling.endswith("@")); 3275 Out << VFTableMangling << "??_R4@"; 3276 return; 3277 } 3278 3279 assert(VFTableMangling.startswith("??_7") || 3280 VFTableMangling.startswith("??_S")); 3281 3282 Out << "??_R4" << StringRef(VFTableMangling).drop_front(4); 3283 } 3284 3285 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 3286 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3287 msvc_hashing_ostream MHO(Out); 3288 MicrosoftCXXNameMangler Mangler(*this, MHO); 3289 // The function body is in the same comdat as the function with the handler, 3290 // so the numbering here doesn't have to be the same across TUs. 3291 // 3292 // <mangled-name> ::= ?filt$ <filter-number> @0 3293 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 3294 Mangler.mangleName(EnclosingDecl); 3295 } 3296 3297 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 3298 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3299 msvc_hashing_ostream MHO(Out); 3300 MicrosoftCXXNameMangler Mangler(*this, MHO); 3301 // The function body is in the same comdat as the function with the handler, 3302 // so the numbering here doesn't have to be the same across TUs. 3303 // 3304 // <mangled-name> ::= ?fin$ <filter-number> @0 3305 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 3306 Mangler.mangleName(EnclosingDecl); 3307 } 3308 3309 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { 3310 // This is just a made up unique string for the purposes of tbaa. undname 3311 // does *not* know how to demangle it. 3312 MicrosoftCXXNameMangler Mangler(*this, Out); 3313 Mangler.getStream() << '?'; 3314 Mangler.mangleType(T, SourceRange()); 3315 } 3316 3317 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, 3318 CXXCtorType Type, 3319 raw_ostream &Out) { 3320 msvc_hashing_ostream MHO(Out); 3321 MicrosoftCXXNameMangler mangler(*this, MHO, D, Type); 3322 mangler.mangle(D); 3323 } 3324 3325 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, 3326 CXXDtorType Type, 3327 raw_ostream &Out) { 3328 msvc_hashing_ostream MHO(Out); 3329 MicrosoftCXXNameMangler mangler(*this, MHO, D, Type); 3330 mangler.mangle(D); 3331 } 3332 3333 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 3334 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 3335 msvc_hashing_ostream MHO(Out); 3336 MicrosoftCXXNameMangler Mangler(*this, MHO); 3337 3338 Mangler.getStream() << "?$RT" << ManglingNumber << '@'; 3339 Mangler.mangle(VD, ""); 3340 } 3341 3342 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 3343 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 3344 msvc_hashing_ostream MHO(Out); 3345 MicrosoftCXXNameMangler Mangler(*this, MHO); 3346 3347 Mangler.getStream() << "?$TSS" << GuardNum << '@'; 3348 Mangler.mangleNestedName(VD); 3349 Mangler.getStream() << "@4HA"; 3350 } 3351 3352 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 3353 raw_ostream &Out) { 3354 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 3355 // ::= ?__J <postfix> @5 <scope-depth> 3356 // ::= ?$S <guard-num> @ <postfix> @4IA 3357 3358 // The first mangling is what MSVC uses to guard static locals in inline 3359 // functions. It uses a different mangling in external functions to support 3360 // guarding more than 32 variables. MSVC rejects inline functions with more 3361 // than 32 static locals. We don't fully implement the second mangling 3362 // because those guards are not externally visible, and instead use LLVM's 3363 // default renaming when creating a new guard variable. 3364 msvc_hashing_ostream MHO(Out); 3365 MicrosoftCXXNameMangler Mangler(*this, MHO); 3366 3367 bool Visible = VD->isExternallyVisible(); 3368 if (Visible) { 3369 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 3370 } else { 3371 Mangler.getStream() << "?$S1@"; 3372 } 3373 unsigned ScopeDepth = 0; 3374 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 3375 // If we do not have a discriminator and are emitting a guard variable for 3376 // use at global scope, then mangling the nested name will not be enough to 3377 // remove ambiguities. 3378 Mangler.mangle(VD, ""); 3379 else 3380 Mangler.mangleNestedName(VD); 3381 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 3382 if (ScopeDepth) 3383 Mangler.mangleNumber(ScopeDepth); 3384 } 3385 3386 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 3387 char CharCode, 3388 raw_ostream &Out) { 3389 msvc_hashing_ostream MHO(Out); 3390 MicrosoftCXXNameMangler Mangler(*this, MHO); 3391 Mangler.getStream() << "??__" << CharCode; 3392 if (D->isStaticDataMember()) { 3393 Mangler.getStream() << '?'; 3394 Mangler.mangleName(D); 3395 Mangler.mangleVariableEncoding(D); 3396 Mangler.getStream() << "@@"; 3397 } else { 3398 Mangler.mangleName(D); 3399 } 3400 // This is the function class mangling. These stubs are global, non-variadic, 3401 // cdecl functions that return void and take no args. 3402 Mangler.getStream() << "YAXXZ"; 3403 } 3404 3405 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 3406 raw_ostream &Out) { 3407 // <initializer-name> ::= ?__E <name> YAXXZ 3408 mangleInitFiniStub(D, 'E', Out); 3409 } 3410 3411 void 3412 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 3413 raw_ostream &Out) { 3414 // <destructor-name> ::= ?__F <name> YAXXZ 3415 mangleInitFiniStub(D, 'F', Out); 3416 } 3417 3418 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 3419 raw_ostream &Out) { 3420 // <char-type> ::= 0 # char, char16_t, char32_t 3421 // # (little endian char data in mangling) 3422 // ::= 1 # wchar_t (big endian char data in mangling) 3423 // 3424 // <literal-length> ::= <non-negative integer> # the length of the literal 3425 // 3426 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 3427 // # trailing null bytes 3428 // 3429 // <encoded-string> ::= <simple character> # uninteresting character 3430 // ::= '?$' <hex digit> <hex digit> # these two nibbles 3431 // # encode the byte for the 3432 // # character 3433 // ::= '?' [a-z] # \xe1 - \xfa 3434 // ::= '?' [A-Z] # \xc1 - \xda 3435 // ::= '?' [0-9] # [,/\:. \n\t'-] 3436 // 3437 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 3438 // <encoded-string> '@' 3439 MicrosoftCXXNameMangler Mangler(*this, Out); 3440 Mangler.getStream() << "??_C@_"; 3441 3442 // The actual string length might be different from that of the string literal 3443 // in cases like: 3444 // char foo[3] = "foobar"; 3445 // char bar[42] = "foobar"; 3446 // Where it is truncated or zero-padded to fit the array. This is the length 3447 // used for mangling, and any trailing null-bytes also need to be mangled. 3448 unsigned StringLength = getASTContext() 3449 .getAsConstantArrayType(SL->getType()) 3450 ->getSize() 3451 .getZExtValue(); 3452 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 3453 3454 // <char-type>: The "kind" of string literal is encoded into the mangled name. 3455 if (SL->isWide()) 3456 Mangler.getStream() << '1'; 3457 else 3458 Mangler.getStream() << '0'; 3459 3460 // <literal-length>: The next part of the mangled name consists of the length 3461 // of the string in bytes. 3462 Mangler.mangleNumber(StringByteLength); 3463 3464 auto GetLittleEndianByte = [&SL](unsigned Index) { 3465 unsigned CharByteWidth = SL->getCharByteWidth(); 3466 if (Index / CharByteWidth >= SL->getLength()) 3467 return static_cast<char>(0); 3468 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3469 unsigned OffsetInCodeUnit = Index % CharByteWidth; 3470 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3471 }; 3472 3473 auto GetBigEndianByte = [&SL](unsigned Index) { 3474 unsigned CharByteWidth = SL->getCharByteWidth(); 3475 if (Index / CharByteWidth >= SL->getLength()) 3476 return static_cast<char>(0); 3477 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3478 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 3479 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3480 }; 3481 3482 // CRC all the bytes of the StringLiteral. 3483 llvm::JamCRC JC; 3484 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 3485 JC.update(GetLittleEndianByte(I)); 3486 3487 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 3488 // scheme. 3489 Mangler.mangleNumber(JC.getCRC()); 3490 3491 // <encoded-string>: The mangled name also contains the first 32 bytes 3492 // (including null-terminator bytes) of the encoded StringLiteral. 3493 // Each character is encoded by splitting them into bytes and then encoding 3494 // the constituent bytes. 3495 auto MangleByte = [&Mangler](char Byte) { 3496 // There are five different manglings for characters: 3497 // - [a-zA-Z0-9_$]: A one-to-one mapping. 3498 // - ?[a-z]: The range from \xe1 to \xfa. 3499 // - ?[A-Z]: The range from \xc1 to \xda. 3500 // - ?[0-9]: The set of [,/\:. \n\t'-]. 3501 // - ?$XX: A fallback which maps nibbles. 3502 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) { 3503 Mangler.getStream() << Byte; 3504 } else if (isLetter(Byte & 0x7f)) { 3505 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 3506 } else { 3507 const char SpecialChars[] = {',', '/', '\\', ':', '.', 3508 ' ', '\n', '\t', '\'', '-'}; 3509 const char *Pos = llvm::find(SpecialChars, Byte); 3510 if (Pos != std::end(SpecialChars)) { 3511 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 3512 } else { 3513 Mangler.getStream() << "?$"; 3514 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 3515 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 3516 } 3517 } 3518 }; 3519 3520 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 3521 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 3522 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 3523 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 3524 if (SL->isWide()) 3525 MangleByte(GetBigEndianByte(I)); 3526 else 3527 MangleByte(GetLittleEndianByte(I)); 3528 } 3529 3530 Mangler.getStream() << '@'; 3531 } 3532 3533 MicrosoftMangleContext * 3534 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 3535 return new MicrosoftMangleContextImpl(Context, Diags); 3536 } 3537