1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/GlobalDecl.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/VTableBuilder.h" 27 #include "clang/Basic/ABI.h" 28 #include "clang/Basic/DiagnosticOptions.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/Support/CRC.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/StringSaver.h" 38 #include "llvm/Support/xxhash.h" 39 #include <functional> 40 #include <optional> 41 42 using namespace clang; 43 44 namespace { 45 46 // Get GlobalDecl of DeclContext of local entities. 47 static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) { 48 GlobalDecl GD; 49 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 50 GD = GlobalDecl(CD, Ctor_Complete); 51 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 52 GD = GlobalDecl(DD, Dtor_Complete); 53 else 54 GD = GlobalDecl(cast<FunctionDecl>(DC)); 55 return GD; 56 } 57 58 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 59 raw_ostream &OS; 60 llvm::SmallString<64> Buffer; 61 62 msvc_hashing_ostream(raw_ostream &OS) 63 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 64 ~msvc_hashing_ostream() override { 65 StringRef MangledName = str(); 66 bool StartsWithEscape = MangledName.starts_with("\01"); 67 if (StartsWithEscape) 68 MangledName = MangledName.drop_front(1); 69 if (MangledName.size() < 4096) { 70 OS << str(); 71 return; 72 } 73 74 llvm::MD5 Hasher; 75 llvm::MD5::MD5Result Hash; 76 Hasher.update(MangledName); 77 Hasher.final(Hash); 78 79 SmallString<32> HexString; 80 llvm::MD5::stringifyResult(Hash, HexString); 81 82 if (StartsWithEscape) 83 OS << '\01'; 84 OS << "??@" << HexString << '@'; 85 } 86 }; 87 88 static const DeclContext * 89 getLambdaDefaultArgumentDeclContext(const Decl *D) { 90 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 91 if (RD->isLambda()) 92 if (const auto *Parm = 93 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 94 return Parm->getDeclContext(); 95 return nullptr; 96 } 97 98 /// Retrieve the declaration context that should be used when mangling 99 /// the given declaration. 100 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 101 // The ABI assumes that lambda closure types that occur within 102 // default arguments live in the context of the function. However, due to 103 // the way in which Clang parses and creates function declarations, this is 104 // not the case: the lambda closure type ends up living in the context 105 // where the function itself resides, because the function declaration itself 106 // had not yet been created. Fix the context here. 107 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 108 return LDADC; 109 110 // Perform the same check for block literals. 111 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 112 if (ParmVarDecl *ContextParam = 113 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 114 return ContextParam->getDeclContext(); 115 } 116 117 const DeclContext *DC = D->getDeclContext(); 118 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 119 isa<OMPDeclareMapperDecl>(DC)) { 120 return getEffectiveDeclContext(cast<Decl>(DC)); 121 } 122 123 return DC->getRedeclContext(); 124 } 125 126 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 127 return getEffectiveDeclContext(cast<Decl>(DC)); 128 } 129 130 static const FunctionDecl *getStructor(const NamedDecl *ND) { 131 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 132 return FTD->getTemplatedDecl()->getCanonicalDecl(); 133 134 const auto *FD = cast<FunctionDecl>(ND); 135 if (const auto *FTD = FD->getPrimaryTemplate()) 136 return FTD->getTemplatedDecl()->getCanonicalDecl(); 137 138 return FD->getCanonicalDecl(); 139 } 140 141 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 142 /// Microsoft Visual C++ ABI. 143 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 144 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 145 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 146 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 147 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 148 llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds; 149 llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds; 150 SmallString<16> AnonymousNamespaceHash; 151 152 public: 153 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags, 154 bool IsAux = false); 155 bool shouldMangleCXXName(const NamedDecl *D) override; 156 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 157 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; 158 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 159 const MethodVFTableLocation &ML, 160 raw_ostream &Out) override; 161 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 162 bool ElideOverrideInfo, raw_ostream &) override; 163 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 164 const ThunkInfo &Thunk, bool ElideOverrideInfo, 165 raw_ostream &) override; 166 void mangleCXXVFTable(const CXXRecordDecl *Derived, 167 ArrayRef<const CXXRecordDecl *> BasePath, 168 raw_ostream &Out) override; 169 void mangleCXXVBTable(const CXXRecordDecl *Derived, 170 ArrayRef<const CXXRecordDecl *> BasePath, 171 raw_ostream &Out) override; 172 173 void mangleCXXVTable(const CXXRecordDecl *, raw_ostream &) override; 174 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 175 const CXXRecordDecl *DstRD, 176 raw_ostream &Out) override; 177 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 178 bool IsUnaligned, uint32_t NumEntries, 179 raw_ostream &Out) override; 180 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 181 raw_ostream &Out) override; 182 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 183 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 184 int32_t VBPtrOffset, uint32_t VBIndex, 185 raw_ostream &Out) override; 186 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 187 void mangleCXXRTTIName(QualType T, raw_ostream &Out, 188 bool NormalizeIntegers) override; 189 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 190 uint32_t NVOffset, int32_t VBPtrOffset, 191 uint32_t VBTableOffset, uint32_t Flags, 192 raw_ostream &Out) override; 193 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 194 raw_ostream &Out) override; 195 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 196 raw_ostream &Out) override; 197 void 198 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 199 ArrayRef<const CXXRecordDecl *> BasePath, 200 raw_ostream &Out) override; 201 void mangleCanonicalTypeName(QualType T, raw_ostream &, 202 bool NormalizeIntegers) override; 203 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 204 raw_ostream &) override; 205 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 206 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 207 raw_ostream &Out) override; 208 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 209 void mangleDynamicAtExitDestructor(const VarDecl *D, 210 raw_ostream &Out) override; 211 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, 212 raw_ostream &Out) override; 213 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, 214 raw_ostream &Out) override; 215 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 216 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 217 const DeclContext *DC = getEffectiveDeclContext(ND); 218 if (!DC->isFunctionOrMethod()) 219 return false; 220 221 // Lambda closure types are already numbered, give out a phony number so 222 // that they demangle nicely. 223 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 224 if (RD->isLambda()) { 225 disc = 1; 226 return true; 227 } 228 } 229 230 // Use the canonical number for externally visible decls. 231 if (ND->isExternallyVisible()) { 232 disc = getASTContext().getManglingNumber(ND, isAux()); 233 return true; 234 } 235 236 // Anonymous tags are already numbered. 237 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 238 if (!Tag->hasNameForLinkage() && 239 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 240 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 241 return false; 242 } 243 244 // Make up a reasonable number for internal decls. 245 unsigned &discriminator = Uniquifier[ND]; 246 if (!discriminator) 247 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 248 disc = discriminator + 1; 249 return true; 250 } 251 252 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 253 assert(Lambda->isLambda() && "RD must be a lambda!"); 254 std::string Name("<lambda_"); 255 256 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 257 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 258 unsigned LambdaId; 259 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 260 const FunctionDecl *Func = 261 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 262 263 if (Func) { 264 unsigned DefaultArgNo = 265 Func->getNumParams() - Parm->getFunctionScopeIndex(); 266 Name += llvm::utostr(DefaultArgNo); 267 Name += "_"; 268 } 269 270 if (LambdaManglingNumber) 271 LambdaId = LambdaManglingNumber; 272 else 273 LambdaId = getLambdaIdForDebugInfo(Lambda); 274 275 Name += llvm::utostr(LambdaId); 276 Name += ">"; 277 return Name; 278 } 279 280 unsigned getLambdaId(const CXXRecordDecl *RD) { 281 assert(RD->isLambda() && "RD must be a lambda!"); 282 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 283 assert(RD->getLambdaManglingNumber() == 0 && 284 "RD must not have a mangling number!"); 285 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 286 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 287 return Result.first->second; 288 } 289 290 unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { 291 assert(RD->isLambda() && "RD must be a lambda!"); 292 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 293 assert(RD->getLambdaManglingNumber() == 0 && 294 "RD must not have a mangling number!"); 295 // The lambda should exist, but return 0 in case it doesn't. 296 return LambdaIds.lookup(RD); 297 } 298 299 /// Return a character sequence that is (somewhat) unique to the TU suitable 300 /// for mangling anonymous namespaces. 301 StringRef getAnonymousNamespaceHash() const { 302 return AnonymousNamespaceHash; 303 } 304 305 private: 306 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 307 }; 308 309 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 310 /// Microsoft Visual C++ ABI. 311 class MicrosoftCXXNameMangler { 312 MicrosoftMangleContextImpl &Context; 313 raw_ostream &Out; 314 315 /// The "structor" is the top-level declaration being mangled, if 316 /// that's not a template specialization; otherwise it's the pattern 317 /// for that specialization. 318 const NamedDecl *Structor; 319 unsigned StructorType; 320 321 typedef llvm::SmallVector<std::string, 10> BackRefVec; 322 BackRefVec NameBackReferences; 323 324 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 325 ArgBackRefMap FunArgBackReferences; 326 ArgBackRefMap TemplateArgBackReferences; 327 328 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 329 TemplateArgStringMap TemplateArgStrings; 330 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 331 llvm::StringSaver TemplateArgStringStorage; 332 333 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 334 PassObjectSizeArgsSet PassObjectSizeArgs; 335 336 ASTContext &getASTContext() const { return Context.getASTContext(); } 337 338 const bool PointersAre64Bit; 339 340 public: 341 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 342 enum class TplArgKind { ClassNTTP, StructuralValue }; 343 344 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 345 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 346 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 347 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 348 LangAS::Default) == 64) {} 349 350 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 351 const CXXConstructorDecl *D, CXXCtorType Type) 352 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 353 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 354 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 355 LangAS::Default) == 64) {} 356 357 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 358 const CXXDestructorDecl *D, CXXDtorType Type) 359 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 360 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 361 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 362 LangAS::Default) == 64) {} 363 364 raw_ostream &getStream() const { return Out; } 365 366 void mangle(GlobalDecl GD, StringRef Prefix = "?"); 367 void mangleName(GlobalDecl GD); 368 void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle); 369 void mangleVariableEncoding(const VarDecl *VD); 370 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, 371 const NonTypeTemplateParmDecl *PD, 372 QualType TemplateArgType, 373 StringRef Prefix = "$"); 374 void mangleMemberDataPointerInClassNTTP(const CXXRecordDecl *, 375 const ValueDecl *); 376 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 377 const CXXMethodDecl *MD, 378 const NonTypeTemplateParmDecl *PD, 379 QualType TemplateArgType, 380 StringRef Prefix = "$"); 381 void mangleFunctionPointer(const FunctionDecl *FD, 382 const NonTypeTemplateParmDecl *PD, 383 QualType TemplateArgType); 384 void mangleVarDecl(const VarDecl *VD, const NonTypeTemplateParmDecl *PD, 385 QualType TemplateArgType); 386 void mangleMemberFunctionPointerInClassNTTP(const CXXRecordDecl *RD, 387 const CXXMethodDecl *MD); 388 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 389 const MethodVFTableLocation &ML); 390 void mangleNumber(int64_t Number); 391 void mangleNumber(llvm::APSInt Number); 392 void mangleFloat(llvm::APFloat Number); 393 void mangleBits(llvm::APInt Number); 394 void mangleTagTypeKind(TagTypeKind TK); 395 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 396 ArrayRef<StringRef> NestedNames = std::nullopt); 397 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 398 void mangleType(QualType T, SourceRange Range, 399 QualifierMangleMode QMM = QMM_Mangle); 400 void mangleFunctionType(const FunctionType *T, 401 const FunctionDecl *D = nullptr, 402 bool ForceThisQuals = false, 403 bool MangleExceptionSpec = true); 404 void mangleSourceName(StringRef Name); 405 void mangleNestedName(GlobalDecl GD); 406 407 private: 408 bool isStructorDecl(const NamedDecl *ND) const { 409 return ND == Structor || getStructor(ND) == Structor; 410 } 411 412 bool is64BitPointer(Qualifiers Quals) const { 413 LangAS AddrSpace = Quals.getAddressSpace(); 414 return AddrSpace == LangAS::ptr64 || 415 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || 416 AddrSpace == LangAS::ptr32_uptr)); 417 } 418 419 void mangleUnqualifiedName(GlobalDecl GD) { 420 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName()); 421 } 422 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name); 423 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 424 void mangleCXXDtorType(CXXDtorType T); 425 void mangleQualifiers(Qualifiers Quals, bool IsMember); 426 void mangleRefQualifier(RefQualifierKind RefQualifier); 427 void manglePointerCVQualifiers(Qualifiers Quals); 428 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 429 430 void mangleUnscopedTemplateName(GlobalDecl GD); 431 void 432 mangleTemplateInstantiationName(GlobalDecl GD, 433 const TemplateArgumentList &TemplateArgs); 434 void mangleObjCMethodName(const ObjCMethodDecl *MD); 435 436 void mangleFunctionArgumentType(QualType T, SourceRange Range); 437 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 438 439 bool isArtificialTagType(QualType T) const; 440 441 // Declare manglers for every type class. 442 #define ABSTRACT_TYPE(CLASS, PARENT) 443 #define NON_CANONICAL_TYPE(CLASS, PARENT) 444 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 445 Qualifiers Quals, \ 446 SourceRange Range); 447 #include "clang/AST/TypeNodes.inc" 448 #undef ABSTRACT_TYPE 449 #undef NON_CANONICAL_TYPE 450 #undef TYPE 451 452 void mangleType(const TagDecl *TD); 453 void mangleDecayedArrayType(const ArrayType *T); 454 void mangleArrayType(const ArrayType *T); 455 void mangleFunctionClass(const FunctionDecl *FD); 456 void mangleCallingConvention(CallingConv CC, SourceRange Range); 457 void mangleCallingConvention(const FunctionType *T, SourceRange Range); 458 void mangleIntegerLiteral(const llvm::APSInt &Number, 459 const NonTypeTemplateParmDecl *PD = nullptr, 460 QualType TemplateArgType = QualType()); 461 void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); 462 void mangleThrowSpecification(const FunctionProtoType *T); 463 464 void mangleTemplateArgs(const TemplateDecl *TD, 465 const TemplateArgumentList &TemplateArgs); 466 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 467 const NamedDecl *Parm); 468 void mangleTemplateArgValue(QualType T, const APValue &V, TplArgKind, 469 bool WithScalarType = false); 470 471 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 472 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 473 SourceRange Range); 474 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 475 SourceRange Range); 476 }; 477 } 478 479 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 480 DiagnosticsEngine &Diags, 481 bool IsAux) 482 : MicrosoftMangleContext(Context, Diags, IsAux) { 483 // To mangle anonymous namespaces, hash the path to the main source file. The 484 // path should be whatever (probably relative) path was passed on the command 485 // line. The goal is for the compiler to produce the same output regardless of 486 // working directory, so use the uncanonicalized relative path. 487 // 488 // It's important to make the mangled names unique because, when CodeView 489 // debug info is in use, the debugger uses mangled type names to distinguish 490 // between otherwise identically named types in anonymous namespaces. 491 // 492 // These symbols are always internal, so there is no need for the hash to 493 // match what MSVC produces. For the same reason, clang is free to change the 494 // hash at any time without breaking compatibility with old versions of clang. 495 // The generated names are intended to look similar to what MSVC generates, 496 // which are something like "?A0x01234567@". 497 SourceManager &SM = Context.getSourceManager(); 498 if (OptionalFileEntryRef FE = SM.getFileEntryRefForID(SM.getMainFileID())) { 499 // Truncate the hash so we get 8 characters of hexadecimal. 500 uint32_t TruncatedHash = uint32_t(xxh3_64bits(FE->getName())); 501 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 502 } else { 503 // If we don't have a path to the main file, we'll just use 0. 504 AnonymousNamespaceHash = "0"; 505 } 506 } 507 508 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 509 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 510 LanguageLinkage L = FD->getLanguageLinkage(); 511 // Overloadable functions need mangling. 512 if (FD->hasAttr<OverloadableAttr>()) 513 return true; 514 515 // The ABI expects that we would never mangle "typical" user-defined entry 516 // points regardless of visibility or freestanding-ness. 517 // 518 // N.B. This is distinct from asking about "main". "main" has a lot of 519 // special rules associated with it in the standard while these 520 // user-defined entry points are outside of the purview of the standard. 521 // For example, there can be only one definition for "main" in a standards 522 // compliant program; however nothing forbids the existence of wmain and 523 // WinMain in the same translation unit. 524 if (FD->isMSVCRTEntryPoint()) 525 return false; 526 527 // C++ functions and those whose names are not a simple identifier need 528 // mangling. 529 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 530 return true; 531 532 // C functions are not mangled. 533 if (L == CLanguageLinkage) 534 return false; 535 } 536 537 // Otherwise, no mangling is done outside C++ mode. 538 if (!getASTContext().getLangOpts().CPlusPlus) 539 return false; 540 541 const VarDecl *VD = dyn_cast<VarDecl>(D); 542 if (VD && !isa<DecompositionDecl>(D)) { 543 // C variables are not mangled. 544 if (VD->isExternC()) 545 return false; 546 547 // Variables at global scope with internal linkage are not mangled. 548 const DeclContext *DC = getEffectiveDeclContext(D); 549 // Check for extern variable declared locally. 550 if (DC->isFunctionOrMethod() && D->hasLinkage()) 551 while (!DC->isNamespace() && !DC->isTranslationUnit()) 552 DC = getEffectiveParentContext(DC); 553 554 if (DC->isTranslationUnit() && D->getFormalLinkage() == Linkage::Internal && 555 !isa<VarTemplateSpecializationDecl>(D) && D->getIdentifier() != nullptr) 556 return false; 557 } 558 559 return true; 560 } 561 562 bool 563 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 564 return true; 565 } 566 567 void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) { 568 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 569 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 570 // Therefore it's really important that we don't decorate the 571 // name with leading underscores or leading/trailing at signs. So, by 572 // default, we emit an asm marker at the start so we get the name right. 573 // Callers can override this with a custom prefix. 574 575 // <mangled-name> ::= ? <name> <type-encoding> 576 Out << Prefix; 577 mangleName(GD); 578 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 579 mangleFunctionEncoding(GD, Context.shouldMangleDeclName(FD)); 580 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 581 mangleVariableEncoding(VD); 582 else if (isa<MSGuidDecl>(D)) 583 // MSVC appears to mangle GUIDs as if they were variables of type 584 // 'const struct __s_GUID'. 585 Out << "3U__s_GUID@@B"; 586 else if (isa<TemplateParamObjectDecl>(D)) { 587 // Template parameter objects don't get a <type-encoding>; their type is 588 // specified as part of their value. 589 } else 590 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 591 } 592 593 void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD, 594 bool ShouldMangle) { 595 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 596 // <type-encoding> ::= <function-class> <function-type> 597 598 // Since MSVC operates on the type as written and not the canonical type, it 599 // actually matters which decl we have here. MSVC appears to choose the 600 // first, since it is most likely to be the declaration in a header file. 601 FD = FD->getFirstDecl(); 602 603 // We should never ever see a FunctionNoProtoType at this point. 604 // We don't even know how to mangle their types anyway :). 605 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 606 607 // extern "C" functions can hold entities that must be mangled. 608 // As it stands, these functions still need to get expressed in the full 609 // external name. They have their class and type omitted, replaced with '9'. 610 if (ShouldMangle) { 611 // We would like to mangle all extern "C" functions using this additional 612 // component but this would break compatibility with MSVC's behavior. 613 // Instead, do this when we know that compatibility isn't important (in 614 // other words, when it is an overloaded extern "C" function). 615 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 616 Out << "$$J0"; 617 618 mangleFunctionClass(FD); 619 620 mangleFunctionType(FT, FD, false, false); 621 } else { 622 Out << '9'; 623 } 624 } 625 626 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 627 // <type-encoding> ::= <storage-class> <variable-type> 628 // <storage-class> ::= 0 # private static member 629 // ::= 1 # protected static member 630 // ::= 2 # public static member 631 // ::= 3 # global 632 // ::= 4 # static local 633 634 // The first character in the encoding (after the name) is the storage class. 635 if (VD->isStaticDataMember()) { 636 // If it's a static member, it also encodes the access level. 637 switch (VD->getAccess()) { 638 default: 639 case AS_private: Out << '0'; break; 640 case AS_protected: Out << '1'; break; 641 case AS_public: Out << '2'; break; 642 } 643 } 644 else if (!VD->isStaticLocal()) 645 Out << '3'; 646 else 647 Out << '4'; 648 // Now mangle the type. 649 // <variable-type> ::= <type> <cvr-qualifiers> 650 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 651 // Pointers and references are odd. The type of 'int * const foo;' gets 652 // mangled as 'QAHA' instead of 'PAHB', for example. 653 SourceRange SR = VD->getSourceRange(); 654 QualType Ty = VD->getType(); 655 if (Ty->isPointerType() || Ty->isReferenceType() || 656 Ty->isMemberPointerType()) { 657 mangleType(Ty, SR, QMM_Drop); 658 manglePointerExtQualifiers( 659 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 660 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 661 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 662 // Member pointers are suffixed with a back reference to the member 663 // pointer's class name. 664 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 665 } else 666 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 667 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 668 // Global arrays are funny, too. 669 mangleDecayedArrayType(AT); 670 if (AT->getElementType()->isArrayType()) 671 Out << 'A'; 672 else 673 mangleQualifiers(Ty.getQualifiers(), false); 674 } else { 675 mangleType(Ty, SR, QMM_Drop); 676 mangleQualifiers(Ty.getQualifiers(), false); 677 } 678 } 679 680 void MicrosoftCXXNameMangler::mangleMemberDataPointer( 681 const CXXRecordDecl *RD, const ValueDecl *VD, 682 const NonTypeTemplateParmDecl *PD, QualType TemplateArgType, 683 StringRef Prefix) { 684 // <member-data-pointer> ::= <integer-literal> 685 // ::= $F <number> <number> 686 // ::= $G <number> <number> <number> 687 // 688 // <auto-nttp> ::= $ M <type> <integer-literal> 689 // <auto-nttp> ::= $ M <type> F <name> <number> 690 // <auto-nttp> ::= $ M <type> G <name> <number> <number> 691 692 int64_t FieldOffset; 693 int64_t VBTableOffset; 694 MSInheritanceModel IM = RD->getMSInheritanceModel(); 695 if (VD) { 696 FieldOffset = getASTContext().getFieldOffset(VD); 697 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 698 "cannot take address of bitfield"); 699 FieldOffset /= getASTContext().getCharWidth(); 700 701 VBTableOffset = 0; 702 703 if (IM == MSInheritanceModel::Virtual) 704 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 705 } else { 706 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 707 708 VBTableOffset = -1; 709 } 710 711 char Code = '\0'; 712 switch (IM) { 713 case MSInheritanceModel::Single: Code = '0'; break; 714 case MSInheritanceModel::Multiple: Code = '0'; break; 715 case MSInheritanceModel::Virtual: Code = 'F'; break; 716 case MSInheritanceModel::Unspecified: Code = 'G'; break; 717 } 718 719 Out << Prefix; 720 721 if (VD && 722 getASTContext().getLangOpts().isCompatibleWithMSVC( 723 LangOptions::MSVC2019) && 724 PD && PD->getType()->getTypeClass() == Type::Auto && 725 !TemplateArgType.isNull()) { 726 Out << "M"; 727 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 728 } 729 730 Out << Code; 731 732 mangleNumber(FieldOffset); 733 734 // The C++ standard doesn't allow base-to-derived member pointer conversions 735 // in template parameter contexts, so the vbptr offset of data member pointers 736 // is always zero. 737 if (inheritanceModelHasVBPtrOffsetField(IM)) 738 mangleNumber(0); 739 if (inheritanceModelHasVBTableOffsetField(IM)) 740 mangleNumber(VBTableOffset); 741 } 742 743 void MicrosoftCXXNameMangler::mangleMemberDataPointerInClassNTTP( 744 const CXXRecordDecl *RD, const ValueDecl *VD) { 745 MSInheritanceModel IM = RD->getMSInheritanceModel(); 746 // <nttp-class-member-data-pointer> ::= <member-data-pointer> 747 // ::= N 748 // ::= 8 <postfix> @ <unqualified-name> @ 749 750 if (IM != MSInheritanceModel::Single && IM != MSInheritanceModel::Multiple) 751 return mangleMemberDataPointer(RD, VD, nullptr, QualType(), ""); 752 753 if (!VD) { 754 Out << 'N'; 755 return; 756 } 757 758 Out << '8'; 759 mangleNestedName(VD); 760 Out << '@'; 761 mangleUnqualifiedName(VD); 762 Out << '@'; 763 } 764 765 void MicrosoftCXXNameMangler::mangleMemberFunctionPointer( 766 const CXXRecordDecl *RD, const CXXMethodDecl *MD, 767 const NonTypeTemplateParmDecl *PD, QualType TemplateArgType, 768 StringRef Prefix) { 769 // <member-function-pointer> ::= $1? <name> 770 // ::= $H? <name> <number> 771 // ::= $I? <name> <number> <number> 772 // ::= $J? <name> <number> <number> <number> 773 // 774 // <auto-nttp> ::= $ M <type> 1? <name> 775 // <auto-nttp> ::= $ M <type> H? <name> <number> 776 // <auto-nttp> ::= $ M <type> I? <name> <number> <number> 777 // <auto-nttp> ::= $ M <type> J? <name> <number> <number> <number> 778 779 MSInheritanceModel IM = RD->getMSInheritanceModel(); 780 781 char Code = '\0'; 782 switch (IM) { 783 case MSInheritanceModel::Single: Code = '1'; break; 784 case MSInheritanceModel::Multiple: Code = 'H'; break; 785 case MSInheritanceModel::Virtual: Code = 'I'; break; 786 case MSInheritanceModel::Unspecified: Code = 'J'; break; 787 } 788 789 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 790 // thunk. 791 uint64_t NVOffset = 0; 792 uint64_t VBTableOffset = 0; 793 uint64_t VBPtrOffset = 0; 794 if (MD) { 795 Out << Prefix; 796 797 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 798 LangOptions::MSVC2019) && 799 PD && PD->getType()->getTypeClass() == Type::Auto && 800 !TemplateArgType.isNull()) { 801 Out << "M"; 802 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 803 } 804 805 Out << Code << '?'; 806 if (MD->isVirtual()) { 807 MicrosoftVTableContext *VTContext = 808 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 809 MethodVFTableLocation ML = 810 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 811 mangleVirtualMemPtrThunk(MD, ML); 812 NVOffset = ML.VFPtrOffset.getQuantity(); 813 VBTableOffset = ML.VBTableIndex * 4; 814 if (ML.VBase) { 815 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 816 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 817 } 818 } else { 819 mangleName(MD); 820 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 821 } 822 823 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) 824 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 825 } else { 826 // Null single inheritance member functions are encoded as a simple nullptr. 827 if (IM == MSInheritanceModel::Single) { 828 Out << Prefix << "0A@"; 829 return; 830 } 831 if (IM == MSInheritanceModel::Unspecified) 832 VBTableOffset = -1; 833 Out << Prefix << Code; 834 } 835 836 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM)) 837 mangleNumber(static_cast<uint32_t>(NVOffset)); 838 if (inheritanceModelHasVBPtrOffsetField(IM)) 839 mangleNumber(VBPtrOffset); 840 if (inheritanceModelHasVBTableOffsetField(IM)) 841 mangleNumber(VBTableOffset); 842 } 843 844 void MicrosoftCXXNameMangler::mangleFunctionPointer( 845 const FunctionDecl *FD, const NonTypeTemplateParmDecl *PD, 846 QualType TemplateArgType) { 847 // <func-ptr> ::= $1? <mangled-name> 848 // <func-ptr> ::= <auto-nttp> 849 // 850 // <auto-nttp> ::= $ M <type> 1? <mangled-name> 851 Out << '$'; 852 853 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 854 LangOptions::MSVC2019) && 855 PD && PD->getType()->getTypeClass() == Type::Auto && 856 !TemplateArgType.isNull()) { 857 Out << "M"; 858 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 859 } 860 861 Out << "1?"; 862 mangleName(FD); 863 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 864 } 865 866 void MicrosoftCXXNameMangler::mangleVarDecl(const VarDecl *VD, 867 const NonTypeTemplateParmDecl *PD, 868 QualType TemplateArgType) { 869 // <var-ptr> ::= $1? <mangled-name> 870 // <var-ptr> ::= <auto-nttp> 871 // 872 // <auto-nttp> ::= $ M <type> 1? <mangled-name> 873 Out << '$'; 874 875 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 876 LangOptions::MSVC2019) && 877 PD && PD->getType()->getTypeClass() == Type::Auto && 878 !TemplateArgType.isNull()) { 879 Out << "M"; 880 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 881 } 882 883 Out << "1?"; 884 mangleName(VD); 885 mangleVariableEncoding(VD); 886 } 887 888 void MicrosoftCXXNameMangler::mangleMemberFunctionPointerInClassNTTP( 889 const CXXRecordDecl *RD, const CXXMethodDecl *MD) { 890 // <nttp-class-member-function-pointer> ::= <member-function-pointer> 891 // ::= N 892 // ::= E? <virtual-mem-ptr-thunk> 893 // ::= E? <mangled-name> <type-encoding> 894 895 if (!MD) { 896 if (RD->getMSInheritanceModel() != MSInheritanceModel::Single) 897 return mangleMemberFunctionPointer(RD, MD, nullptr, QualType(), ""); 898 899 Out << 'N'; 900 return; 901 } 902 903 Out << "E?"; 904 if (MD->isVirtual()) { 905 MicrosoftVTableContext *VTContext = 906 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 907 MethodVFTableLocation ML = 908 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 909 mangleVirtualMemPtrThunk(MD, ML); 910 } else { 911 mangleName(MD); 912 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 913 } 914 } 915 916 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 917 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 918 // Get the vftable offset. 919 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 920 getASTContext().getTargetInfo().getPointerWidth(LangAS::Default)); 921 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 922 923 Out << "?_9"; 924 mangleName(MD->getParent()); 925 Out << "$B"; 926 mangleNumber(OffsetInVFTable); 927 Out << 'A'; 928 mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>(), 929 MD->getSourceRange()); 930 } 931 932 void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) { 933 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 934 935 // Always start with the unqualified name. 936 mangleUnqualifiedName(GD); 937 938 mangleNestedName(GD); 939 940 // Terminate the whole name with an '@'. 941 Out << '@'; 942 } 943 944 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 945 mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); 946 } 947 948 void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { 949 // MSVC never mangles any integer wider than 64 bits. In general it appears 950 // to convert every integer to signed 64 bit before mangling (including 951 // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom 952 // 64. 953 unsigned Width = std::max(Number.getBitWidth(), 64U); 954 llvm::APInt Value = Number.extend(Width); 955 956 // <non-negative integer> ::= A@ # when Number == 0 957 // ::= <decimal digit> # when 1 <= Number <= 10 958 // ::= <hex digit>+ @ # when Number >= 10 959 // 960 // <number> ::= [?] <non-negative integer> 961 962 if (Value.isNegative()) { 963 Value = -Value; 964 Out << '?'; 965 } 966 mangleBits(Value); 967 } 968 969 void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { 970 using llvm::APFloat; 971 972 switch (APFloat::SemanticsToEnum(Number.getSemantics())) { 973 case APFloat::S_IEEEsingle: Out << 'A'; break; 974 case APFloat::S_IEEEdouble: Out << 'B'; break; 975 976 // The following are all Clang extensions. We try to pick manglings that are 977 // unlikely to conflict with MSVC's scheme. 978 case APFloat::S_IEEEhalf: Out << 'V'; break; 979 case APFloat::S_BFloat: Out << 'W'; break; 980 case APFloat::S_x87DoubleExtended: Out << 'X'; break; 981 case APFloat::S_IEEEquad: Out << 'Y'; break; 982 case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; 983 case APFloat::S_Float8E5M2: 984 case APFloat::S_Float8E4M3: 985 case APFloat::S_Float8E4M3FN: 986 case APFloat::S_Float8E5M2FNUZ: 987 case APFloat::S_Float8E4M3FNUZ: 988 case APFloat::S_Float8E4M3B11FNUZ: 989 case APFloat::S_FloatTF32: 990 case APFloat::S_Float6E3M2FN: 991 case APFloat::S_Float6E2M3FN: 992 case APFloat::S_Float4E2M1FN: 993 llvm_unreachable("Tried to mangle unexpected APFloat semantics"); 994 } 995 996 mangleBits(Number.bitcastToAPInt()); 997 } 998 999 void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { 1000 if (Value == 0) 1001 Out << "A@"; 1002 else if (Value.uge(1) && Value.ule(10)) 1003 Out << (Value - 1); 1004 else { 1005 // Numbers that are not encoded as decimal digits are represented as nibbles 1006 // in the range of ASCII characters 'A' to 'P'. 1007 // The number 0x123450 would be encoded as 'BCDEFA' 1008 llvm::SmallString<32> EncodedNumberBuffer; 1009 for (; Value != 0; Value.lshrInPlace(4)) 1010 EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue()); 1011 std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end()); 1012 Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size()); 1013 Out << '@'; 1014 } 1015 } 1016 1017 static GlobalDecl isTemplate(GlobalDecl GD, 1018 const TemplateArgumentList *&TemplateArgs) { 1019 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1020 // Check if we have a function template. 1021 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1022 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 1023 TemplateArgs = FD->getTemplateSpecializationArgs(); 1024 return GD.getWithDecl(TD); 1025 } 1026 } 1027 1028 // Check if we have a class template. 1029 if (const ClassTemplateSpecializationDecl *Spec = 1030 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1031 TemplateArgs = &Spec->getTemplateArgs(); 1032 return GD.getWithDecl(Spec->getSpecializedTemplate()); 1033 } 1034 1035 // Check if we have a variable template. 1036 if (const VarTemplateSpecializationDecl *Spec = 1037 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 1038 TemplateArgs = &Spec->getTemplateArgs(); 1039 return GD.getWithDecl(Spec->getSpecializedTemplate()); 1040 } 1041 1042 return GlobalDecl(); 1043 } 1044 1045 void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, 1046 DeclarationName Name) { 1047 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1048 // <unqualified-name> ::= <operator-name> 1049 // ::= <ctor-dtor-name> 1050 // ::= <source-name> 1051 // ::= <template-name> 1052 1053 // Check if we have a template. 1054 const TemplateArgumentList *TemplateArgs = nullptr; 1055 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1056 // Function templates aren't considered for name back referencing. This 1057 // makes sense since function templates aren't likely to occur multiple 1058 // times in a symbol. 1059 if (isa<FunctionTemplateDecl>(TD.getDecl())) { 1060 mangleTemplateInstantiationName(TD, *TemplateArgs); 1061 Out << '@'; 1062 return; 1063 } 1064 1065 // Here comes the tricky thing: if we need to mangle something like 1066 // void foo(A::X<Y>, B::X<Y>), 1067 // the X<Y> part is aliased. However, if you need to mangle 1068 // void foo(A::X<A::Y>, A::X<B::Y>), 1069 // the A::X<> part is not aliased. 1070 // That is, from the mangler's perspective we have a structure like this: 1071 // namespace[s] -> type[ -> template-parameters] 1072 // but from the Clang perspective we have 1073 // type [ -> template-parameters] 1074 // \-> namespace[s] 1075 // What we do is we create a new mangler, mangle the same type (without 1076 // a namespace suffix) to a string using the extra mangler and then use 1077 // the mangled type name as a key to check the mangling of different types 1078 // for aliasing. 1079 1080 // It's important to key cache reads off ND, not TD -- the same TD can 1081 // be used with different TemplateArgs, but ND uniquely identifies 1082 // TD / TemplateArg pairs. 1083 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 1084 if (Found == TemplateArgBackReferences.end()) { 1085 1086 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 1087 if (Found == TemplateArgStrings.end()) { 1088 // Mangle full template name into temporary buffer. 1089 llvm::SmallString<64> TemplateMangling; 1090 llvm::raw_svector_ostream Stream(TemplateMangling); 1091 MicrosoftCXXNameMangler Extra(Context, Stream); 1092 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 1093 1094 // Use the string backref vector to possibly get a back reference. 1095 mangleSourceName(TemplateMangling); 1096 1097 // Memoize back reference for this type if one exist, else memoize 1098 // the mangling itself. 1099 BackRefVec::iterator StringFound = 1100 llvm::find(NameBackReferences, TemplateMangling); 1101 if (StringFound != NameBackReferences.end()) { 1102 TemplateArgBackReferences[ND] = 1103 StringFound - NameBackReferences.begin(); 1104 } else { 1105 TemplateArgStrings[ND] = 1106 TemplateArgStringStorage.save(TemplateMangling.str()); 1107 } 1108 } else { 1109 Out << Found->second << '@'; // Outputs a StringRef. 1110 } 1111 } else { 1112 Out << Found->second; // Outputs a back reference (an int). 1113 } 1114 return; 1115 } 1116 1117 switch (Name.getNameKind()) { 1118 case DeclarationName::Identifier: { 1119 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 1120 bool IsDeviceStub = 1121 ND && 1122 ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) || 1123 (isa<FunctionTemplateDecl>(ND) && 1124 cast<FunctionTemplateDecl>(ND) 1125 ->getTemplatedDecl() 1126 ->hasAttr<CUDAGlobalAttr>())) && 1127 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1128 if (IsDeviceStub) 1129 mangleSourceName( 1130 (llvm::Twine("__device_stub__") + II->getName()).str()); 1131 else 1132 mangleSourceName(II->getName()); 1133 break; 1134 } 1135 1136 // Otherwise, an anonymous entity. We must have a declaration. 1137 assert(ND && "mangling empty name without declaration"); 1138 1139 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1140 if (NS->isAnonymousNamespace()) { 1141 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 1142 break; 1143 } 1144 } 1145 1146 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 1147 // Decomposition declarations are considered anonymous, and get 1148 // numbered with a $S prefix. 1149 llvm::SmallString<64> Name("$S"); 1150 // Get a unique id for the anonymous struct. 1151 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); 1152 mangleSourceName(Name); 1153 break; 1154 } 1155 1156 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1157 // We must have an anonymous union or struct declaration. 1158 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 1159 assert(RD && "expected variable decl to have a record type"); 1160 // Anonymous types with no tag or typedef get the name of their 1161 // declarator mangled in. If they have no declarator, number them with 1162 // a $S prefix. 1163 llvm::SmallString<64> Name("$S"); 1164 // Get a unique id for the anonymous struct. 1165 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 1166 mangleSourceName(Name.str()); 1167 break; 1168 } 1169 1170 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) { 1171 // Mangle a GUID object as if it were a variable with the corresponding 1172 // mangled name. 1173 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1174 llvm::raw_svector_ostream GUIDOS(GUID); 1175 Context.mangleMSGuidDecl(GD, GUIDOS); 1176 mangleSourceName(GUID); 1177 break; 1178 } 1179 1180 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1181 Out << "?__N"; 1182 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1183 TPO->getValue(), TplArgKind::ClassNTTP); 1184 break; 1185 } 1186 1187 // We must have an anonymous struct. 1188 const TagDecl *TD = cast<TagDecl>(ND); 1189 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1190 assert(TD->getDeclContext() == D->getDeclContext() && 1191 "Typedef should not be in another decl context!"); 1192 assert(D->getDeclName().getAsIdentifierInfo() && 1193 "Typedef was not named!"); 1194 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 1195 break; 1196 } 1197 1198 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1199 if (Record->isLambda()) { 1200 llvm::SmallString<10> Name("<lambda_"); 1201 1202 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 1203 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 1204 unsigned LambdaId; 1205 const ParmVarDecl *Parm = 1206 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 1207 const FunctionDecl *Func = 1208 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 1209 1210 if (Func) { 1211 unsigned DefaultArgNo = 1212 Func->getNumParams() - Parm->getFunctionScopeIndex(); 1213 Name += llvm::utostr(DefaultArgNo); 1214 Name += "_"; 1215 } 1216 1217 if (LambdaManglingNumber) 1218 LambdaId = LambdaManglingNumber; 1219 else 1220 LambdaId = Context.getLambdaId(Record); 1221 1222 Name += llvm::utostr(LambdaId); 1223 Name += ">"; 1224 1225 mangleSourceName(Name); 1226 1227 // If the context is a variable or a class member and not a parameter, 1228 // it is encoded in a qualified name. 1229 if (LambdaManglingNumber && LambdaContextDecl) { 1230 if ((isa<VarDecl>(LambdaContextDecl) || 1231 isa<FieldDecl>(LambdaContextDecl)) && 1232 !isa<ParmVarDecl>(LambdaContextDecl)) { 1233 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 1234 } 1235 } 1236 break; 1237 } 1238 } 1239 1240 llvm::SmallString<64> Name; 1241 if (DeclaratorDecl *DD = 1242 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 1243 // Anonymous types without a name for linkage purposes have their 1244 // declarator mangled in if they have one. 1245 Name += "<unnamed-type-"; 1246 Name += DD->getName(); 1247 } else if (TypedefNameDecl *TND = 1248 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 1249 TD)) { 1250 // Anonymous types without a name for linkage purposes have their 1251 // associate typedef mangled in if they have one. 1252 Name += "<unnamed-type-"; 1253 Name += TND->getName(); 1254 } else if (isa<EnumDecl>(TD) && 1255 cast<EnumDecl>(TD)->enumerator_begin() != 1256 cast<EnumDecl>(TD)->enumerator_end()) { 1257 // Anonymous non-empty enums mangle in the first enumerator. 1258 auto *ED = cast<EnumDecl>(TD); 1259 Name += "<unnamed-enum-"; 1260 Name += ED->enumerator_begin()->getName(); 1261 } else { 1262 // Otherwise, number the types using a $S prefix. 1263 Name += "<unnamed-type-$S"; 1264 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 1265 } 1266 Name += ">"; 1267 mangleSourceName(Name.str()); 1268 break; 1269 } 1270 1271 case DeclarationName::ObjCZeroArgSelector: 1272 case DeclarationName::ObjCOneArgSelector: 1273 case DeclarationName::ObjCMultiArgSelector: { 1274 // This is reachable only when constructing an outlined SEH finally 1275 // block. Nothing depends on this mangling and it's used only with 1276 // functinos with internal linkage. 1277 llvm::SmallString<64> Name; 1278 mangleSourceName(Name.str()); 1279 break; 1280 } 1281 1282 case DeclarationName::CXXConstructorName: 1283 if (isStructorDecl(ND)) { 1284 if (StructorType == Ctor_CopyingClosure) { 1285 Out << "?_O"; 1286 return; 1287 } 1288 if (StructorType == Ctor_DefaultClosure) { 1289 Out << "?_F"; 1290 return; 1291 } 1292 } 1293 Out << "?0"; 1294 return; 1295 1296 case DeclarationName::CXXDestructorName: 1297 if (isStructorDecl(ND)) 1298 // If the named decl is the C++ destructor we're mangling, 1299 // use the type we were given. 1300 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1301 else 1302 // Otherwise, use the base destructor name. This is relevant if a 1303 // class with a destructor is declared within a destructor. 1304 mangleCXXDtorType(Dtor_Base); 1305 break; 1306 1307 case DeclarationName::CXXConversionFunctionName: 1308 // <operator-name> ::= ?B # (cast) 1309 // The target type is encoded as the return type. 1310 Out << "?B"; 1311 break; 1312 1313 case DeclarationName::CXXOperatorName: 1314 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1315 break; 1316 1317 case DeclarationName::CXXLiteralOperatorName: { 1318 Out << "?__K"; 1319 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1320 break; 1321 } 1322 1323 case DeclarationName::CXXDeductionGuideName: 1324 llvm_unreachable("Can't mangle a deduction guide name!"); 1325 1326 case DeclarationName::CXXUsingDirective: 1327 llvm_unreachable("Can't mangle a using directive name!"); 1328 } 1329 } 1330 1331 // <postfix> ::= <unqualified-name> [<postfix>] 1332 // ::= <substitution> [<postfix>] 1333 void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) { 1334 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1335 1336 if (const auto *ID = dyn_cast<IndirectFieldDecl>(ND)) 1337 for (unsigned I = 1, IE = ID->getChainingSize(); I < IE; ++I) 1338 mangleSourceName("<unnamed-tag>"); 1339 1340 const DeclContext *DC = getEffectiveDeclContext(ND); 1341 while (!DC->isTranslationUnit()) { 1342 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1343 unsigned Disc; 1344 if (Context.getNextDiscriminator(ND, Disc)) { 1345 Out << '?'; 1346 mangleNumber(Disc); 1347 Out << '?'; 1348 } 1349 } 1350 1351 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1352 auto Discriminate = 1353 [](StringRef Name, const unsigned Discriminator, 1354 const unsigned ParameterDiscriminator) -> std::string { 1355 std::string Buffer; 1356 llvm::raw_string_ostream Stream(Buffer); 1357 Stream << Name; 1358 if (Discriminator) 1359 Stream << '_' << Discriminator; 1360 if (ParameterDiscriminator) 1361 Stream << '_' << ParameterDiscriminator; 1362 return Stream.str(); 1363 }; 1364 1365 unsigned Discriminator = BD->getBlockManglingNumber(); 1366 if (!Discriminator) 1367 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1368 1369 // Mangle the parameter position as a discriminator to deal with unnamed 1370 // parameters. Rather than mangling the unqualified parameter name, 1371 // always use the position to give a uniform mangling. 1372 unsigned ParameterDiscriminator = 0; 1373 if (const auto *MC = BD->getBlockManglingContextDecl()) 1374 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1375 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1376 ParameterDiscriminator = 1377 F->getNumParams() - P->getFunctionScopeIndex(); 1378 1379 DC = getEffectiveDeclContext(BD); 1380 1381 Out << '?'; 1382 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1383 ParameterDiscriminator)); 1384 // If we have a block mangling context, encode that now. This allows us 1385 // to discriminate between named static data initializers in the same 1386 // scope. This is handled differently from parameters, which use 1387 // positions to discriminate between multiple instances. 1388 if (const auto *MC = BD->getBlockManglingContextDecl()) 1389 if (!isa<ParmVarDecl>(MC)) 1390 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1391 mangleUnqualifiedName(ND); 1392 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1393 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1394 // just the unqualified name to get the ordering correct. 1395 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1396 mangleName(RD); 1397 else 1398 Out << '@'; 1399 // void __cdecl 1400 Out << "YAX"; 1401 // struct __block_literal * 1402 Out << 'P'; 1403 // __ptr64 1404 if (PointersAre64Bit) 1405 Out << 'E'; 1406 Out << 'A'; 1407 mangleArtificialTagType(TagTypeKind::Struct, 1408 Discriminate("__block_literal", Discriminator, 1409 ParameterDiscriminator)); 1410 Out << "@Z"; 1411 1412 // If the effective context was a Record, we have fully mangled the 1413 // qualified name and do not need to continue. 1414 if (isa<RecordDecl>(DC)) 1415 break; 1416 continue; 1417 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1418 mangleObjCMethodName(Method); 1419 } else if (isa<NamedDecl>(DC)) { 1420 ND = cast<NamedDecl>(DC); 1421 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1422 mangle(getGlobalDeclAsDeclContext(FD), "?"); 1423 break; 1424 } else { 1425 mangleUnqualifiedName(ND); 1426 // Lambdas in default arguments conceptually belong to the function the 1427 // parameter corresponds to. 1428 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1429 DC = LDADC; 1430 continue; 1431 } 1432 } 1433 } 1434 DC = DC->getParent(); 1435 } 1436 } 1437 1438 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1439 // Microsoft uses the names on the case labels for these dtor variants. Clang 1440 // uses the Itanium terminology internally. Everything in this ABI delegates 1441 // towards the base dtor. 1442 switch (T) { 1443 // <operator-name> ::= ?1 # destructor 1444 case Dtor_Base: Out << "?1"; return; 1445 // <operator-name> ::= ?_D # vbase destructor 1446 case Dtor_Complete: Out << "?_D"; return; 1447 // <operator-name> ::= ?_G # scalar deleting destructor 1448 case Dtor_Deleting: Out << "?_G"; return; 1449 // <operator-name> ::= ?_E # vector deleting destructor 1450 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1451 // it. 1452 case Dtor_Comdat: 1453 llvm_unreachable("not expecting a COMDAT"); 1454 } 1455 llvm_unreachable("Unsupported dtor type?"); 1456 } 1457 1458 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1459 SourceLocation Loc) { 1460 switch (OO) { 1461 // ?0 # constructor 1462 // ?1 # destructor 1463 // <operator-name> ::= ?2 # new 1464 case OO_New: Out << "?2"; break; 1465 // <operator-name> ::= ?3 # delete 1466 case OO_Delete: Out << "?3"; break; 1467 // <operator-name> ::= ?4 # = 1468 case OO_Equal: Out << "?4"; break; 1469 // <operator-name> ::= ?5 # >> 1470 case OO_GreaterGreater: Out << "?5"; break; 1471 // <operator-name> ::= ?6 # << 1472 case OO_LessLess: Out << "?6"; break; 1473 // <operator-name> ::= ?7 # ! 1474 case OO_Exclaim: Out << "?7"; break; 1475 // <operator-name> ::= ?8 # == 1476 case OO_EqualEqual: Out << "?8"; break; 1477 // <operator-name> ::= ?9 # != 1478 case OO_ExclaimEqual: Out << "?9"; break; 1479 // <operator-name> ::= ?A # [] 1480 case OO_Subscript: Out << "?A"; break; 1481 // ?B # conversion 1482 // <operator-name> ::= ?C # -> 1483 case OO_Arrow: Out << "?C"; break; 1484 // <operator-name> ::= ?D # * 1485 case OO_Star: Out << "?D"; break; 1486 // <operator-name> ::= ?E # ++ 1487 case OO_PlusPlus: Out << "?E"; break; 1488 // <operator-name> ::= ?F # -- 1489 case OO_MinusMinus: Out << "?F"; break; 1490 // <operator-name> ::= ?G # - 1491 case OO_Minus: Out << "?G"; break; 1492 // <operator-name> ::= ?H # + 1493 case OO_Plus: Out << "?H"; break; 1494 // <operator-name> ::= ?I # & 1495 case OO_Amp: Out << "?I"; break; 1496 // <operator-name> ::= ?J # ->* 1497 case OO_ArrowStar: Out << "?J"; break; 1498 // <operator-name> ::= ?K # / 1499 case OO_Slash: Out << "?K"; break; 1500 // <operator-name> ::= ?L # % 1501 case OO_Percent: Out << "?L"; break; 1502 // <operator-name> ::= ?M # < 1503 case OO_Less: Out << "?M"; break; 1504 // <operator-name> ::= ?N # <= 1505 case OO_LessEqual: Out << "?N"; break; 1506 // <operator-name> ::= ?O # > 1507 case OO_Greater: Out << "?O"; break; 1508 // <operator-name> ::= ?P # >= 1509 case OO_GreaterEqual: Out << "?P"; break; 1510 // <operator-name> ::= ?Q # , 1511 case OO_Comma: Out << "?Q"; break; 1512 // <operator-name> ::= ?R # () 1513 case OO_Call: Out << "?R"; break; 1514 // <operator-name> ::= ?S # ~ 1515 case OO_Tilde: Out << "?S"; break; 1516 // <operator-name> ::= ?T # ^ 1517 case OO_Caret: Out << "?T"; break; 1518 // <operator-name> ::= ?U # | 1519 case OO_Pipe: Out << "?U"; break; 1520 // <operator-name> ::= ?V # && 1521 case OO_AmpAmp: Out << "?V"; break; 1522 // <operator-name> ::= ?W # || 1523 case OO_PipePipe: Out << "?W"; break; 1524 // <operator-name> ::= ?X # *= 1525 case OO_StarEqual: Out << "?X"; break; 1526 // <operator-name> ::= ?Y # += 1527 case OO_PlusEqual: Out << "?Y"; break; 1528 // <operator-name> ::= ?Z # -= 1529 case OO_MinusEqual: Out << "?Z"; break; 1530 // <operator-name> ::= ?_0 # /= 1531 case OO_SlashEqual: Out << "?_0"; break; 1532 // <operator-name> ::= ?_1 # %= 1533 case OO_PercentEqual: Out << "?_1"; break; 1534 // <operator-name> ::= ?_2 # >>= 1535 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1536 // <operator-name> ::= ?_3 # <<= 1537 case OO_LessLessEqual: Out << "?_3"; break; 1538 // <operator-name> ::= ?_4 # &= 1539 case OO_AmpEqual: Out << "?_4"; break; 1540 // <operator-name> ::= ?_5 # |= 1541 case OO_PipeEqual: Out << "?_5"; break; 1542 // <operator-name> ::= ?_6 # ^= 1543 case OO_CaretEqual: Out << "?_6"; break; 1544 // ?_7 # vftable 1545 // ?_8 # vbtable 1546 // ?_9 # vcall 1547 // ?_A # typeof 1548 // ?_B # local static guard 1549 // ?_C # string 1550 // ?_D # vbase destructor 1551 // ?_E # vector deleting destructor 1552 // ?_F # default constructor closure 1553 // ?_G # scalar deleting destructor 1554 // ?_H # vector constructor iterator 1555 // ?_I # vector destructor iterator 1556 // ?_J # vector vbase constructor iterator 1557 // ?_K # virtual displacement map 1558 // ?_L # eh vector constructor iterator 1559 // ?_M # eh vector destructor iterator 1560 // ?_N # eh vector vbase constructor iterator 1561 // ?_O # copy constructor closure 1562 // ?_P<name> # udt returning <name> 1563 // ?_Q # <unknown> 1564 // ?_R0 # RTTI Type Descriptor 1565 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1566 // ?_R2 # RTTI Base Class Array 1567 // ?_R3 # RTTI Class Hierarchy Descriptor 1568 // ?_R4 # RTTI Complete Object Locator 1569 // ?_S # local vftable 1570 // ?_T # local vftable constructor closure 1571 // <operator-name> ::= ?_U # new[] 1572 case OO_Array_New: Out << "?_U"; break; 1573 // <operator-name> ::= ?_V # delete[] 1574 case OO_Array_Delete: Out << "?_V"; break; 1575 // <operator-name> ::= ?__L # co_await 1576 case OO_Coawait: Out << "?__L"; break; 1577 // <operator-name> ::= ?__M # <=> 1578 case OO_Spaceship: Out << "?__M"; break; 1579 1580 case OO_Conditional: { 1581 DiagnosticsEngine &Diags = Context.getDiags(); 1582 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1583 "cannot mangle this conditional operator yet"); 1584 Diags.Report(Loc, DiagID); 1585 break; 1586 } 1587 1588 case OO_None: 1589 case NUM_OVERLOADED_OPERATORS: 1590 llvm_unreachable("Not an overloaded operator"); 1591 } 1592 } 1593 1594 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1595 // <source name> ::= <identifier> @ 1596 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1597 if (Found == NameBackReferences.end()) { 1598 if (NameBackReferences.size() < 10) 1599 NameBackReferences.push_back(std::string(Name)); 1600 Out << Name << '@'; 1601 } else { 1602 Out << (Found - NameBackReferences.begin()); 1603 } 1604 } 1605 1606 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1607 Context.mangleObjCMethodNameAsSourceName(MD, Out); 1608 } 1609 1610 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1611 GlobalDecl GD, const TemplateArgumentList &TemplateArgs) { 1612 // <template-name> ::= <unscoped-template-name> <template-args> 1613 // ::= <substitution> 1614 // Always start with the unqualified name. 1615 1616 // Templates have their own context for back references. 1617 ArgBackRefMap OuterFunArgsContext; 1618 ArgBackRefMap OuterTemplateArgsContext; 1619 BackRefVec OuterTemplateContext; 1620 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1621 NameBackReferences.swap(OuterTemplateContext); 1622 FunArgBackReferences.swap(OuterFunArgsContext); 1623 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1624 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1625 1626 mangleUnscopedTemplateName(GD); 1627 mangleTemplateArgs(cast<TemplateDecl>(GD.getDecl()), TemplateArgs); 1628 1629 // Restore the previous back reference contexts. 1630 NameBackReferences.swap(OuterTemplateContext); 1631 FunArgBackReferences.swap(OuterFunArgsContext); 1632 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1633 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1634 } 1635 1636 void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) { 1637 // <unscoped-template-name> ::= ?$ <unqualified-name> 1638 Out << "?$"; 1639 mangleUnqualifiedName(GD); 1640 } 1641 1642 void MicrosoftCXXNameMangler::mangleIntegerLiteral( 1643 const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, 1644 QualType TemplateArgType) { 1645 // <integer-literal> ::= $0 <number> 1646 // <integer-literal> ::= <auto-nttp> 1647 // 1648 // <auto-nttp> ::= $ M <type> 0 <number> 1649 Out << "$"; 1650 1651 // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when 1652 // argument is integer. 1653 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 1654 LangOptions::MSVC2019) && 1655 PD && PD->getType()->getTypeClass() == Type::Auto && 1656 !TemplateArgType.isNull()) { 1657 Out << "M"; 1658 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 1659 } 1660 1661 Out << "0"; 1662 1663 mangleNumber(Value); 1664 } 1665 1666 void MicrosoftCXXNameMangler::mangleExpression( 1667 const Expr *E, const NonTypeTemplateParmDecl *PD) { 1668 // See if this is a constant expression. 1669 if (std::optional<llvm::APSInt> Value = 1670 E->getIntegerConstantExpr(Context.getASTContext())) { 1671 mangleIntegerLiteral(*Value, PD, E->getType()); 1672 return; 1673 } 1674 1675 // As bad as this diagnostic is, it's better than crashing. 1676 DiagnosticsEngine &Diags = Context.getDiags(); 1677 unsigned DiagID = Diags.getCustomDiagID( 1678 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1679 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1680 << E->getSourceRange(); 1681 } 1682 1683 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1684 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1685 // <template-args> ::= <template-arg>+ 1686 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1687 assert(TPL->size() == TemplateArgs.size() && 1688 "size mismatch between args and parms!"); 1689 1690 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1691 const TemplateArgument &TA = TemplateArgs[i]; 1692 1693 // Separate consecutive packs by $$Z. 1694 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1695 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1696 Out << "$$Z"; 1697 1698 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1699 } 1700 } 1701 1702 /// If value V (with type T) represents a decayed pointer to the first element 1703 /// of an array, return that array. 1704 static ValueDecl *getAsArrayToPointerDecayedDecl(QualType T, const APValue &V) { 1705 // Must be a pointer... 1706 if (!T->isPointerType() || !V.isLValue() || !V.hasLValuePath() || 1707 !V.getLValueBase()) 1708 return nullptr; 1709 // ... to element 0 of an array. 1710 QualType BaseT = V.getLValueBase().getType(); 1711 if (!BaseT->isArrayType() || V.getLValuePath().size() != 1 || 1712 V.getLValuePath()[0].getAsArrayIndex() != 0) 1713 return nullptr; 1714 return const_cast<ValueDecl *>( 1715 V.getLValueBase().dyn_cast<const ValueDecl *>()); 1716 } 1717 1718 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1719 const TemplateArgument &TA, 1720 const NamedDecl *Parm) { 1721 // <template-arg> ::= <type> 1722 // ::= <integer-literal> 1723 // ::= <member-data-pointer> 1724 // ::= <member-function-pointer> 1725 // ::= $ <constant-value> 1726 // ::= $ <auto-nttp-constant-value> 1727 // ::= <template-args> 1728 // 1729 // <auto-nttp-constant-value> ::= M <type> <constant-value> 1730 // 1731 // <constant-value> ::= 0 <number> # integer 1732 // ::= 1 <mangled-name> # address of D 1733 // ::= 2 <type> <typed-constant-value>* @ # struct 1734 // ::= 3 <type> <constant-value>* @ # array 1735 // ::= 4 ??? # string 1736 // ::= 5 <constant-value> @ # address of subobject 1737 // ::= 6 <constant-value> <unqualified-name> @ # a.b 1738 // ::= 7 <type> [<unqualified-name> <constant-value>] @ 1739 // # union, with or without an active member 1740 // # pointer to member, symbolically 1741 // ::= 8 <class> <unqualified-name> @ 1742 // ::= A <type> <non-negative integer> # float 1743 // ::= B <type> <non-negative integer> # double 1744 // # pointer to member, by component value 1745 // ::= F <number> <number> 1746 // ::= G <number> <number> <number> 1747 // ::= H <mangled-name> <number> 1748 // ::= I <mangled-name> <number> <number> 1749 // ::= J <mangled-name> <number> <number> <number> 1750 // 1751 // <typed-constant-value> ::= [<type>] <constant-value> 1752 // 1753 // The <type> appears to be included in a <typed-constant-value> only in the 1754 // '0', '1', '8', 'A', 'B', and 'E' cases. 1755 1756 switch (TA.getKind()) { 1757 case TemplateArgument::Null: 1758 llvm_unreachable("Can't mangle null template arguments!"); 1759 case TemplateArgument::TemplateExpansion: 1760 llvm_unreachable("Can't mangle template expansion arguments!"); 1761 case TemplateArgument::Type: { 1762 QualType T = TA.getAsType(); 1763 mangleType(T, SourceRange(), QMM_Escape); 1764 break; 1765 } 1766 case TemplateArgument::Declaration: { 1767 const NamedDecl *ND = TA.getAsDecl(); 1768 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1769 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1770 ->getMostRecentNonInjectedDecl(), 1771 cast<ValueDecl>(ND), 1772 cast<NonTypeTemplateParmDecl>(Parm), 1773 TA.getParamTypeForDecl()); 1774 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1775 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1776 if (MD && MD->isInstance()) { 1777 mangleMemberFunctionPointer( 1778 MD->getParent()->getMostRecentNonInjectedDecl(), MD, 1779 cast<NonTypeTemplateParmDecl>(Parm), TA.getParamTypeForDecl()); 1780 } else { 1781 mangleFunctionPointer(FD, cast<NonTypeTemplateParmDecl>(Parm), 1782 TA.getParamTypeForDecl()); 1783 } 1784 } else if (TA.getParamTypeForDecl()->isRecordType()) { 1785 Out << "$"; 1786 auto *TPO = cast<TemplateParamObjectDecl>(ND); 1787 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1788 TPO->getValue(), TplArgKind::ClassNTTP); 1789 } else if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1790 mangleVarDecl(VD, cast<NonTypeTemplateParmDecl>(Parm), 1791 TA.getParamTypeForDecl()); 1792 } else { 1793 mangle(ND, "$1?"); 1794 } 1795 break; 1796 } 1797 case TemplateArgument::Integral: { 1798 QualType T = TA.getIntegralType(); 1799 mangleIntegerLiteral(TA.getAsIntegral(), 1800 cast<NonTypeTemplateParmDecl>(Parm), T); 1801 break; 1802 } 1803 case TemplateArgument::NullPtr: { 1804 QualType T = TA.getNullPtrType(); 1805 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1806 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1807 if (MPT->isMemberFunctionPointerType() && 1808 !isa<FunctionTemplateDecl>(TD)) { 1809 mangleMemberFunctionPointer(RD, nullptr, nullptr, QualType()); 1810 return; 1811 } 1812 if (MPT->isMemberDataPointer()) { 1813 if (!isa<FunctionTemplateDecl>(TD)) { 1814 mangleMemberDataPointer(RD, nullptr, nullptr, QualType()); 1815 return; 1816 } 1817 // nullptr data pointers are always represented with a single field 1818 // which is initialized with either 0 or -1. Why -1? Well, we need to 1819 // distinguish the case where the data member is at offset zero in the 1820 // record. 1821 // However, we are free to use 0 *if* we would use multiple fields for 1822 // non-nullptr member pointers. 1823 if (!RD->nullFieldOffsetIsZero()) { 1824 mangleIntegerLiteral(llvm::APSInt::get(-1), 1825 cast<NonTypeTemplateParmDecl>(Parm), T); 1826 return; 1827 } 1828 } 1829 } 1830 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), 1831 cast<NonTypeTemplateParmDecl>(Parm), T); 1832 break; 1833 } 1834 case TemplateArgument::StructuralValue: 1835 if (ValueDecl *D = getAsArrayToPointerDecayedDecl( 1836 TA.getStructuralValueType(), TA.getAsStructuralValue())) { 1837 // Mangle the result of array-to-pointer decay as if it were a reference 1838 // to the original declaration, to match MSVC's behavior. This can result 1839 // in mangling collisions in some cases! 1840 return mangleTemplateArg( 1841 TD, TemplateArgument(D, TA.getStructuralValueType()), Parm); 1842 } 1843 Out << "$"; 1844 if (cast<NonTypeTemplateParmDecl>(Parm) 1845 ->getType() 1846 ->getContainedDeducedType()) { 1847 Out << "M"; 1848 mangleType(TA.getNonTypeTemplateArgumentType(), SourceRange(), QMM_Drop); 1849 } 1850 mangleTemplateArgValue(TA.getStructuralValueType(), 1851 TA.getAsStructuralValue(), 1852 TplArgKind::StructuralValue, 1853 /*WithScalarType=*/false); 1854 break; 1855 case TemplateArgument::Expression: 1856 mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm)); 1857 break; 1858 case TemplateArgument::Pack: { 1859 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1860 if (TemplateArgs.empty()) { 1861 if (isa<TemplateTypeParmDecl>(Parm) || 1862 isa<TemplateTemplateParmDecl>(Parm)) 1863 // MSVC 2015 changed the mangling for empty expanded template packs, 1864 // use the old mangling for link compatibility for old versions. 1865 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1866 LangOptions::MSVC2015) 1867 ? "$$V" 1868 : "$$$V"); 1869 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1870 Out << "$S"; 1871 else 1872 llvm_unreachable("unexpected template parameter decl!"); 1873 } else { 1874 for (const TemplateArgument &PA : TemplateArgs) 1875 mangleTemplateArg(TD, PA, Parm); 1876 } 1877 break; 1878 } 1879 case TemplateArgument::Template: { 1880 const NamedDecl *ND = 1881 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1882 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1883 mangleType(TD); 1884 } else if (isa<TypeAliasDecl>(ND)) { 1885 Out << "$$Y"; 1886 mangleName(ND); 1887 } else { 1888 llvm_unreachable("unexpected template template NamedDecl!"); 1889 } 1890 break; 1891 } 1892 } 1893 } 1894 1895 void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, 1896 const APValue &V, 1897 TplArgKind TAK, 1898 bool WithScalarType) { 1899 switch (V.getKind()) { 1900 case APValue::None: 1901 case APValue::Indeterminate: 1902 // FIXME: MSVC doesn't allow this, so we can't be sure how it should be 1903 // mangled. 1904 if (WithScalarType) 1905 mangleType(T, SourceRange(), QMM_Escape); 1906 Out << '@'; 1907 return; 1908 1909 case APValue::Int: 1910 if (WithScalarType) 1911 mangleType(T, SourceRange(), QMM_Escape); 1912 Out << '0'; 1913 mangleNumber(V.getInt()); 1914 return; 1915 1916 case APValue::Float: 1917 if (WithScalarType) 1918 mangleType(T, SourceRange(), QMM_Escape); 1919 mangleFloat(V.getFloat()); 1920 return; 1921 1922 case APValue::LValue: { 1923 if (WithScalarType) 1924 mangleType(T, SourceRange(), QMM_Escape); 1925 1926 // We don't know how to mangle past-the-end pointers yet. 1927 if (V.isLValueOnePastTheEnd()) 1928 break; 1929 1930 APValue::LValueBase Base = V.getLValueBase(); 1931 if (!V.hasLValuePath() || V.getLValuePath().empty()) { 1932 // Taking the address of a complete object has a special-case mangling. 1933 if (Base.isNull()) { 1934 // MSVC emits 0A@ for null pointers. Generalize this for arbitrary 1935 // integers cast to pointers. 1936 // FIXME: This mangles 0 cast to a pointer the same as a null pointer, 1937 // even in cases where the two are different values. 1938 Out << "0"; 1939 mangleNumber(V.getLValueOffset().getQuantity()); 1940 } else if (!V.hasLValuePath()) { 1941 // FIXME: This can only happen as an extension. Invent a mangling. 1942 break; 1943 } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { 1944 Out << "E"; 1945 mangle(VD); 1946 } else { 1947 break; 1948 } 1949 } else { 1950 if (TAK == TplArgKind::ClassNTTP && T->isPointerType()) 1951 Out << "5"; 1952 1953 SmallVector<char, 2> EntryTypes; 1954 SmallVector<std::function<void()>, 2> EntryManglers; 1955 QualType ET = Base.getType(); 1956 for (APValue::LValuePathEntry E : V.getLValuePath()) { 1957 if (auto *AT = ET->getAsArrayTypeUnsafe()) { 1958 EntryTypes.push_back('C'); 1959 EntryManglers.push_back([this, I = E.getAsArrayIndex()] { 1960 Out << '0'; 1961 mangleNumber(I); 1962 Out << '@'; 1963 }); 1964 ET = AT->getElementType(); 1965 continue; 1966 } 1967 1968 const Decl *D = E.getAsBaseOrMember().getPointer(); 1969 if (auto *FD = dyn_cast<FieldDecl>(D)) { 1970 ET = FD->getType(); 1971 if (const auto *RD = ET->getAsRecordDecl()) 1972 if (RD->isAnonymousStructOrUnion()) 1973 continue; 1974 } else { 1975 ET = getASTContext().getRecordType(cast<CXXRecordDecl>(D)); 1976 // Bug in MSVC: fully qualified name of base class should be used for 1977 // mangling to prevent collisions e.g. on base classes with same names 1978 // in different namespaces. 1979 } 1980 1981 EntryTypes.push_back('6'); 1982 EntryManglers.push_back([this, D] { 1983 mangleUnqualifiedName(cast<NamedDecl>(D)); 1984 Out << '@'; 1985 }); 1986 } 1987 1988 for (auto I = EntryTypes.rbegin(), E = EntryTypes.rend(); I != E; ++I) 1989 Out << *I; 1990 1991 auto *VD = Base.dyn_cast<const ValueDecl*>(); 1992 if (!VD) 1993 break; 1994 Out << (TAK == TplArgKind::ClassNTTP ? 'E' : '1'); 1995 mangle(VD); 1996 1997 for (const std::function<void()> &Mangler : EntryManglers) 1998 Mangler(); 1999 if (TAK == TplArgKind::ClassNTTP && T->isPointerType()) 2000 Out << '@'; 2001 } 2002 2003 return; 2004 } 2005 2006 case APValue::MemberPointer: { 2007 if (WithScalarType) 2008 mangleType(T, SourceRange(), QMM_Escape); 2009 2010 const CXXRecordDecl *RD = 2011 T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); 2012 const ValueDecl *D = V.getMemberPointerDecl(); 2013 if (TAK == TplArgKind::ClassNTTP) { 2014 if (T->isMemberDataPointerType()) 2015 mangleMemberDataPointerInClassNTTP(RD, D); 2016 else 2017 mangleMemberFunctionPointerInClassNTTP(RD, 2018 cast_or_null<CXXMethodDecl>(D)); 2019 } else { 2020 if (T->isMemberDataPointerType()) 2021 mangleMemberDataPointer(RD, D, nullptr, QualType(), ""); 2022 else 2023 mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), nullptr, 2024 QualType(), ""); 2025 } 2026 return; 2027 } 2028 2029 case APValue::Struct: { 2030 Out << '2'; 2031 mangleType(T, SourceRange(), QMM_Escape); 2032 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 2033 assert(RD && "unexpected type for record value"); 2034 2035 unsigned BaseIndex = 0; 2036 for (const CXXBaseSpecifier &B : RD->bases()) 2037 mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++), TAK); 2038 for (const FieldDecl *FD : RD->fields()) 2039 if (!FD->isUnnamedBitField()) 2040 mangleTemplateArgValue(FD->getType(), 2041 V.getStructField(FD->getFieldIndex()), TAK, 2042 /*WithScalarType*/ true); 2043 Out << '@'; 2044 return; 2045 } 2046 2047 case APValue::Union: 2048 Out << '7'; 2049 mangleType(T, SourceRange(), QMM_Escape); 2050 if (const FieldDecl *FD = V.getUnionField()) { 2051 mangleUnqualifiedName(FD); 2052 mangleTemplateArgValue(FD->getType(), V.getUnionValue(), TAK); 2053 } 2054 Out << '@'; 2055 return; 2056 2057 case APValue::ComplexInt: 2058 // We mangle complex types as structs, so mangle the value as a struct too. 2059 Out << '2'; 2060 mangleType(T, SourceRange(), QMM_Escape); 2061 Out << '0'; 2062 mangleNumber(V.getComplexIntReal()); 2063 Out << '0'; 2064 mangleNumber(V.getComplexIntImag()); 2065 Out << '@'; 2066 return; 2067 2068 case APValue::ComplexFloat: 2069 Out << '2'; 2070 mangleType(T, SourceRange(), QMM_Escape); 2071 mangleFloat(V.getComplexFloatReal()); 2072 mangleFloat(V.getComplexFloatImag()); 2073 Out << '@'; 2074 return; 2075 2076 case APValue::Array: { 2077 Out << '3'; 2078 QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); 2079 mangleType(ElemT, SourceRange(), QMM_Escape); 2080 for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { 2081 const APValue &ElemV = I < V.getArrayInitializedElts() 2082 ? V.getArrayInitializedElt(I) 2083 : V.getArrayFiller(); 2084 mangleTemplateArgValue(ElemT, ElemV, TAK); 2085 Out << '@'; 2086 } 2087 Out << '@'; 2088 return; 2089 } 2090 2091 case APValue::Vector: { 2092 // __m128 is mangled as a struct containing an array. We follow this 2093 // approach for all vector types. 2094 Out << '2'; 2095 mangleType(T, SourceRange(), QMM_Escape); 2096 Out << '3'; 2097 QualType ElemT = T->castAs<VectorType>()->getElementType(); 2098 mangleType(ElemT, SourceRange(), QMM_Escape); 2099 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { 2100 const APValue &ElemV = V.getVectorElt(I); 2101 mangleTemplateArgValue(ElemT, ElemV, TAK); 2102 Out << '@'; 2103 } 2104 Out << "@@"; 2105 return; 2106 } 2107 2108 case APValue::AddrLabelDiff: 2109 case APValue::FixedPoint: 2110 break; 2111 } 2112 2113 DiagnosticsEngine &Diags = Context.getDiags(); 2114 unsigned DiagID = Diags.getCustomDiagID( 2115 DiagnosticsEngine::Error, "cannot mangle this template argument yet"); 2116 Diags.Report(DiagID); 2117 } 2118 2119 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 2120 llvm::SmallString<64> TemplateMangling; 2121 llvm::raw_svector_ostream Stream(TemplateMangling); 2122 MicrosoftCXXNameMangler Extra(Context, Stream); 2123 2124 Stream << "?$"; 2125 Extra.mangleSourceName("Protocol"); 2126 Extra.mangleArtificialTagType(TagTypeKind::Struct, PD->getName()); 2127 2128 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__ObjC"}); 2129 } 2130 2131 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 2132 Qualifiers Quals, 2133 SourceRange Range) { 2134 llvm::SmallString<64> TemplateMangling; 2135 llvm::raw_svector_ostream Stream(TemplateMangling); 2136 MicrosoftCXXNameMangler Extra(Context, Stream); 2137 2138 Stream << "?$"; 2139 switch (Quals.getObjCLifetime()) { 2140 case Qualifiers::OCL_None: 2141 case Qualifiers::OCL_ExplicitNone: 2142 break; 2143 case Qualifiers::OCL_Autoreleasing: 2144 Extra.mangleSourceName("Autoreleasing"); 2145 break; 2146 case Qualifiers::OCL_Strong: 2147 Extra.mangleSourceName("Strong"); 2148 break; 2149 case Qualifiers::OCL_Weak: 2150 Extra.mangleSourceName("Weak"); 2151 break; 2152 } 2153 Extra.manglePointerCVQualifiers(Quals); 2154 Extra.manglePointerExtQualifiers(Quals, Type); 2155 Extra.mangleType(Type, Range); 2156 2157 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__ObjC"}); 2158 } 2159 2160 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 2161 Qualifiers Quals, 2162 SourceRange Range) { 2163 llvm::SmallString<64> TemplateMangling; 2164 llvm::raw_svector_ostream Stream(TemplateMangling); 2165 MicrosoftCXXNameMangler Extra(Context, Stream); 2166 2167 Stream << "?$"; 2168 Extra.mangleSourceName("KindOf"); 2169 Extra.mangleType(QualType(T, 0) 2170 .stripObjCKindOfType(getASTContext()) 2171 ->castAs<ObjCObjectType>(), 2172 Quals, Range); 2173 2174 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__ObjC"}); 2175 } 2176 2177 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 2178 bool IsMember) { 2179 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 2180 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 2181 // 'I' means __restrict (32/64-bit). 2182 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 2183 // keyword! 2184 // <base-cvr-qualifiers> ::= A # near 2185 // ::= B # near const 2186 // ::= C # near volatile 2187 // ::= D # near const volatile 2188 // ::= E # far (16-bit) 2189 // ::= F # far const (16-bit) 2190 // ::= G # far volatile (16-bit) 2191 // ::= H # far const volatile (16-bit) 2192 // ::= I # huge (16-bit) 2193 // ::= J # huge const (16-bit) 2194 // ::= K # huge volatile (16-bit) 2195 // ::= L # huge const volatile (16-bit) 2196 // ::= M <basis> # based 2197 // ::= N <basis> # based const 2198 // ::= O <basis> # based volatile 2199 // ::= P <basis> # based const volatile 2200 // ::= Q # near member 2201 // ::= R # near const member 2202 // ::= S # near volatile member 2203 // ::= T # near const volatile member 2204 // ::= U # far member (16-bit) 2205 // ::= V # far const member (16-bit) 2206 // ::= W # far volatile member (16-bit) 2207 // ::= X # far const volatile member (16-bit) 2208 // ::= Y # huge member (16-bit) 2209 // ::= Z # huge const member (16-bit) 2210 // ::= 0 # huge volatile member (16-bit) 2211 // ::= 1 # huge const volatile member (16-bit) 2212 // ::= 2 <basis> # based member 2213 // ::= 3 <basis> # based const member 2214 // ::= 4 <basis> # based volatile member 2215 // ::= 5 <basis> # based const volatile member 2216 // ::= 6 # near function (pointers only) 2217 // ::= 7 # far function (pointers only) 2218 // ::= 8 # near method (pointers only) 2219 // ::= 9 # far method (pointers only) 2220 // ::= _A <basis> # based function (pointers only) 2221 // ::= _B <basis> # based function (far?) (pointers only) 2222 // ::= _C <basis> # based method (pointers only) 2223 // ::= _D <basis> # based method (far?) (pointers only) 2224 // ::= _E # block (Clang) 2225 // <basis> ::= 0 # __based(void) 2226 // ::= 1 # __based(segment)? 2227 // ::= 2 <name> # __based(name) 2228 // ::= 3 # ? 2229 // ::= 4 # ? 2230 // ::= 5 # not really based 2231 bool HasConst = Quals.hasConst(), 2232 HasVolatile = Quals.hasVolatile(); 2233 2234 if (!IsMember) { 2235 if (HasConst && HasVolatile) { 2236 Out << 'D'; 2237 } else if (HasVolatile) { 2238 Out << 'C'; 2239 } else if (HasConst) { 2240 Out << 'B'; 2241 } else { 2242 Out << 'A'; 2243 } 2244 } else { 2245 if (HasConst && HasVolatile) { 2246 Out << 'T'; 2247 } else if (HasVolatile) { 2248 Out << 'S'; 2249 } else if (HasConst) { 2250 Out << 'R'; 2251 } else { 2252 Out << 'Q'; 2253 } 2254 } 2255 2256 // FIXME: For now, just drop all extension qualifiers on the floor. 2257 } 2258 2259 void 2260 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2261 // <ref-qualifier> ::= G # lvalue reference 2262 // ::= H # rvalue-reference 2263 switch (RefQualifier) { 2264 case RQ_None: 2265 break; 2266 2267 case RQ_LValue: 2268 Out << 'G'; 2269 break; 2270 2271 case RQ_RValue: 2272 Out << 'H'; 2273 break; 2274 } 2275 } 2276 2277 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 2278 QualType PointeeType) { 2279 // Check if this is a default 64-bit pointer or has __ptr64 qualifier. 2280 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : 2281 is64BitPointer(PointeeType.getQualifiers()); 2282 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) 2283 Out << 'E'; 2284 2285 if (Quals.hasRestrict()) 2286 Out << 'I'; 2287 2288 if (Quals.hasUnaligned() || 2289 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 2290 Out << 'F'; 2291 } 2292 2293 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 2294 // <pointer-cv-qualifiers> ::= P # no qualifiers 2295 // ::= Q # const 2296 // ::= R # volatile 2297 // ::= S # const volatile 2298 bool HasConst = Quals.hasConst(), 2299 HasVolatile = Quals.hasVolatile(); 2300 2301 if (HasConst && HasVolatile) { 2302 Out << 'S'; 2303 } else if (HasVolatile) { 2304 Out << 'R'; 2305 } else if (HasConst) { 2306 Out << 'Q'; 2307 } else { 2308 Out << 'P'; 2309 } 2310 } 2311 2312 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 2313 SourceRange Range) { 2314 // MSVC will backreference two canonically equivalent types that have slightly 2315 // different manglings when mangled alone. 2316 2317 // Decayed types do not match up with non-decayed versions of the same type. 2318 // 2319 // e.g. 2320 // void (*x)(void) will not form a backreference with void x(void) 2321 void *TypePtr; 2322 if (const auto *DT = T->getAs<DecayedType>()) { 2323 QualType OriginalType = DT->getOriginalType(); 2324 // All decayed ArrayTypes should be treated identically; as-if they were 2325 // a decayed IncompleteArrayType. 2326 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 2327 OriginalType = getASTContext().getIncompleteArrayType( 2328 AT->getElementType(), AT->getSizeModifier(), 2329 AT->getIndexTypeCVRQualifiers()); 2330 2331 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 2332 // If the original parameter was textually written as an array, 2333 // instead treat the decayed parameter like it's const. 2334 // 2335 // e.g. 2336 // int [] -> int * const 2337 if (OriginalType->isArrayType()) 2338 T = T.withConst(); 2339 } else { 2340 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 2341 } 2342 2343 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2344 2345 if (Found == FunArgBackReferences.end()) { 2346 size_t OutSizeBefore = Out.tell(); 2347 2348 mangleType(T, Range, QMM_Drop); 2349 2350 // See if it's worth creating a back reference. 2351 // Only types longer than 1 character are considered 2352 // and only 10 back references slots are available: 2353 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 2354 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 2355 size_t Size = FunArgBackReferences.size(); 2356 FunArgBackReferences[TypePtr] = Size; 2357 } 2358 } else { 2359 Out << Found->second; 2360 } 2361 } 2362 2363 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 2364 const PassObjectSizeAttr *POSA) { 2365 int Type = POSA->getType(); 2366 bool Dynamic = POSA->isDynamic(); 2367 2368 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 2369 auto *TypePtr = (const void *)&*Iter; 2370 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2371 2372 if (Found == FunArgBackReferences.end()) { 2373 std::string Name = 2374 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 2375 mangleArtificialTagType(TagTypeKind::Enum, Name + llvm::utostr(Type), 2376 {"__clang"}); 2377 2378 if (FunArgBackReferences.size() < 10) { 2379 size_t Size = FunArgBackReferences.size(); 2380 FunArgBackReferences[TypePtr] = Size; 2381 } 2382 } else { 2383 Out << Found->second; 2384 } 2385 } 2386 2387 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 2388 Qualifiers Quals, 2389 SourceRange Range) { 2390 // Address space is mangled as an unqualified templated type in the __clang 2391 // namespace. The demangled version of this is: 2392 // In the case of a language specific address space: 2393 // __clang::struct _AS[language_addr_space]<Type> 2394 // where: 2395 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 2396 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2397 // "private"| "generic" | "device" | "host" ] 2398 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2399 // Note that the above were chosen to match the Itanium mangling for this. 2400 // 2401 // In the case of a non-language specific address space: 2402 // __clang::struct _AS<TargetAS, Type> 2403 assert(Quals.hasAddressSpace() && "Not valid without address space"); 2404 llvm::SmallString<32> ASMangling; 2405 llvm::raw_svector_ostream Stream(ASMangling); 2406 MicrosoftCXXNameMangler Extra(Context, Stream); 2407 Stream << "?$"; 2408 2409 LangAS AS = Quals.getAddressSpace(); 2410 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2411 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2412 Extra.mangleSourceName("_AS"); 2413 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS)); 2414 } else { 2415 switch (AS) { 2416 default: 2417 llvm_unreachable("Not a language specific address space"); 2418 case LangAS::opencl_global: 2419 Extra.mangleSourceName("_ASCLglobal"); 2420 break; 2421 case LangAS::opencl_global_device: 2422 Extra.mangleSourceName("_ASCLdevice"); 2423 break; 2424 case LangAS::opencl_global_host: 2425 Extra.mangleSourceName("_ASCLhost"); 2426 break; 2427 case LangAS::opencl_local: 2428 Extra.mangleSourceName("_ASCLlocal"); 2429 break; 2430 case LangAS::opencl_constant: 2431 Extra.mangleSourceName("_ASCLconstant"); 2432 break; 2433 case LangAS::opencl_private: 2434 Extra.mangleSourceName("_ASCLprivate"); 2435 break; 2436 case LangAS::opencl_generic: 2437 Extra.mangleSourceName("_ASCLgeneric"); 2438 break; 2439 case LangAS::cuda_device: 2440 Extra.mangleSourceName("_ASCUdevice"); 2441 break; 2442 case LangAS::cuda_constant: 2443 Extra.mangleSourceName("_ASCUconstant"); 2444 break; 2445 case LangAS::cuda_shared: 2446 Extra.mangleSourceName("_ASCUshared"); 2447 break; 2448 case LangAS::ptr32_sptr: 2449 case LangAS::ptr32_uptr: 2450 case LangAS::ptr64: 2451 llvm_unreachable("don't mangle ptr address spaces with _AS"); 2452 } 2453 } 2454 2455 Extra.mangleType(T, Range, QMM_Escape); 2456 mangleQualifiers(Qualifiers(), false); 2457 mangleArtificialTagType(TagTypeKind::Struct, ASMangling, {"__clang"}); 2458 } 2459 2460 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 2461 QualifierMangleMode QMM) { 2462 // Don't use the canonical types. MSVC includes things like 'const' on 2463 // pointer arguments to function pointers that canonicalization strips away. 2464 T = T.getDesugaredType(getASTContext()); 2465 Qualifiers Quals = T.getLocalQualifiers(); 2466 2467 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 2468 // If there were any Quals, getAsArrayType() pushed them onto the array 2469 // element type. 2470 if (QMM == QMM_Mangle) 2471 Out << 'A'; 2472 else if (QMM == QMM_Escape || QMM == QMM_Result) 2473 Out << "$$B"; 2474 mangleArrayType(AT); 2475 return; 2476 } 2477 2478 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 2479 T->isReferenceType() || T->isBlockPointerType(); 2480 2481 switch (QMM) { 2482 case QMM_Drop: 2483 if (Quals.hasObjCLifetime()) 2484 Quals = Quals.withoutObjCLifetime(); 2485 break; 2486 case QMM_Mangle: 2487 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 2488 Out << '6'; 2489 mangleFunctionType(FT); 2490 return; 2491 } 2492 mangleQualifiers(Quals, false); 2493 break; 2494 case QMM_Escape: 2495 if (!IsPointer && Quals) { 2496 Out << "$$C"; 2497 mangleQualifiers(Quals, false); 2498 } 2499 break; 2500 case QMM_Result: 2501 // Presence of __unaligned qualifier shouldn't affect mangling here. 2502 Quals.removeUnaligned(); 2503 if (Quals.hasObjCLifetime()) 2504 Quals = Quals.withoutObjCLifetime(); 2505 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 2506 Out << '?'; 2507 mangleQualifiers(Quals, false); 2508 } 2509 break; 2510 } 2511 2512 const Type *ty = T.getTypePtr(); 2513 2514 switch (ty->getTypeClass()) { 2515 #define ABSTRACT_TYPE(CLASS, PARENT) 2516 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2517 case Type::CLASS: \ 2518 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2519 return; 2520 #define TYPE(CLASS, PARENT) \ 2521 case Type::CLASS: \ 2522 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 2523 break; 2524 #include "clang/AST/TypeNodes.inc" 2525 #undef ABSTRACT_TYPE 2526 #undef NON_CANONICAL_TYPE 2527 #undef TYPE 2528 } 2529 } 2530 2531 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 2532 SourceRange Range) { 2533 // <type> ::= <builtin-type> 2534 // <builtin-type> ::= X # void 2535 // ::= C # signed char 2536 // ::= D # char 2537 // ::= E # unsigned char 2538 // ::= F # short 2539 // ::= G # unsigned short (or wchar_t if it's not a builtin) 2540 // ::= H # int 2541 // ::= I # unsigned int 2542 // ::= J # long 2543 // ::= K # unsigned long 2544 // L # <none> 2545 // ::= M # float 2546 // ::= N # double 2547 // ::= O # long double (__float80 is mangled differently) 2548 // ::= _J # long long, __int64 2549 // ::= _K # unsigned long long, __int64 2550 // ::= _L # __int128 2551 // ::= _M # unsigned __int128 2552 // ::= _N # bool 2553 // _O # <array in parameter> 2554 // ::= _Q # char8_t 2555 // ::= _S # char16_t 2556 // ::= _T # __float80 (Intel) 2557 // ::= _U # char32_t 2558 // ::= _W # wchar_t 2559 // ::= _Z # __float80 (Digital Mars) 2560 switch (T->getKind()) { 2561 case BuiltinType::Void: 2562 Out << 'X'; 2563 break; 2564 case BuiltinType::SChar: 2565 Out << 'C'; 2566 break; 2567 case BuiltinType::Char_U: 2568 case BuiltinType::Char_S: 2569 Out << 'D'; 2570 break; 2571 case BuiltinType::UChar: 2572 Out << 'E'; 2573 break; 2574 case BuiltinType::Short: 2575 Out << 'F'; 2576 break; 2577 case BuiltinType::UShort: 2578 Out << 'G'; 2579 break; 2580 case BuiltinType::Int: 2581 Out << 'H'; 2582 break; 2583 case BuiltinType::UInt: 2584 Out << 'I'; 2585 break; 2586 case BuiltinType::Long: 2587 Out << 'J'; 2588 break; 2589 case BuiltinType::ULong: 2590 Out << 'K'; 2591 break; 2592 case BuiltinType::Float: 2593 Out << 'M'; 2594 break; 2595 case BuiltinType::Double: 2596 Out << 'N'; 2597 break; 2598 // TODO: Determine size and mangle accordingly 2599 case BuiltinType::LongDouble: 2600 Out << 'O'; 2601 break; 2602 case BuiltinType::LongLong: 2603 Out << "_J"; 2604 break; 2605 case BuiltinType::ULongLong: 2606 Out << "_K"; 2607 break; 2608 case BuiltinType::Int128: 2609 Out << "_L"; 2610 break; 2611 case BuiltinType::UInt128: 2612 Out << "_M"; 2613 break; 2614 case BuiltinType::Bool: 2615 Out << "_N"; 2616 break; 2617 case BuiltinType::Char8: 2618 Out << "_Q"; 2619 break; 2620 case BuiltinType::Char16: 2621 Out << "_S"; 2622 break; 2623 case BuiltinType::Char32: 2624 Out << "_U"; 2625 break; 2626 case BuiltinType::WChar_S: 2627 case BuiltinType::WChar_U: 2628 Out << "_W"; 2629 break; 2630 2631 #define BUILTIN_TYPE(Id, SingletonId) 2632 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2633 case BuiltinType::Id: 2634 #include "clang/AST/BuiltinTypes.def" 2635 case BuiltinType::Dependent: 2636 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2637 2638 case BuiltinType::ObjCId: 2639 mangleArtificialTagType(TagTypeKind::Struct, "objc_object"); 2640 break; 2641 case BuiltinType::ObjCClass: 2642 mangleArtificialTagType(TagTypeKind::Struct, "objc_class"); 2643 break; 2644 case BuiltinType::ObjCSel: 2645 mangleArtificialTagType(TagTypeKind::Struct, "objc_selector"); 2646 break; 2647 2648 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2649 case BuiltinType::Id: \ 2650 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2651 break; 2652 #include "clang/Basic/OpenCLImageTypes.def" 2653 case BuiltinType::OCLSampler: 2654 Out << "PA"; 2655 mangleArtificialTagType(TagTypeKind::Struct, "ocl_sampler"); 2656 break; 2657 case BuiltinType::OCLEvent: 2658 Out << "PA"; 2659 mangleArtificialTagType(TagTypeKind::Struct, "ocl_event"); 2660 break; 2661 case BuiltinType::OCLClkEvent: 2662 Out << "PA"; 2663 mangleArtificialTagType(TagTypeKind::Struct, "ocl_clkevent"); 2664 break; 2665 case BuiltinType::OCLQueue: 2666 Out << "PA"; 2667 mangleArtificialTagType(TagTypeKind::Struct, "ocl_queue"); 2668 break; 2669 case BuiltinType::OCLReserveID: 2670 Out << "PA"; 2671 mangleArtificialTagType(TagTypeKind::Struct, "ocl_reserveid"); 2672 break; 2673 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2674 case BuiltinType::Id: \ 2675 mangleArtificialTagType(TagTypeKind::Struct, "ocl_" #ExtType); \ 2676 break; 2677 #include "clang/Basic/OpenCLExtensionTypes.def" 2678 2679 case BuiltinType::NullPtr: 2680 Out << "$$T"; 2681 break; 2682 2683 case BuiltinType::Float16: 2684 mangleArtificialTagType(TagTypeKind::Struct, "_Float16", {"__clang"}); 2685 break; 2686 2687 case BuiltinType::Half: 2688 if (!getASTContext().getLangOpts().HLSL) 2689 mangleArtificialTagType(TagTypeKind::Struct, "_Half", {"__clang"}); 2690 else if (getASTContext().getLangOpts().NativeHalfType) 2691 Out << "$f16@"; 2692 else 2693 Out << "$halff@"; 2694 break; 2695 2696 case BuiltinType::BFloat16: 2697 mangleArtificialTagType(TagTypeKind::Struct, "__bf16", {"__clang"}); 2698 break; 2699 2700 #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ 2701 case BuiltinType::Id: \ 2702 mangleArtificialTagType(TagTypeKind::Struct, MangledName); \ 2703 mangleArtificialTagType(TagTypeKind::Struct, MangledName, {"__clang"}); \ 2704 break; 2705 2706 #include "clang/Basic/WebAssemblyReferenceTypes.def" 2707 #define SVE_TYPE(Name, Id, SingletonId) \ 2708 case BuiltinType::Id: 2709 #include "clang/Basic/AArch64SVEACLETypes.def" 2710 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 2711 case BuiltinType::Id: 2712 #include "clang/Basic/PPCTypes.def" 2713 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 2714 #include "clang/Basic/RISCVVTypes.def" 2715 #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 2716 #include "clang/Basic/AMDGPUTypes.def" 2717 case BuiltinType::ShortAccum: 2718 case BuiltinType::Accum: 2719 case BuiltinType::LongAccum: 2720 case BuiltinType::UShortAccum: 2721 case BuiltinType::UAccum: 2722 case BuiltinType::ULongAccum: 2723 case BuiltinType::ShortFract: 2724 case BuiltinType::Fract: 2725 case BuiltinType::LongFract: 2726 case BuiltinType::UShortFract: 2727 case BuiltinType::UFract: 2728 case BuiltinType::ULongFract: 2729 case BuiltinType::SatShortAccum: 2730 case BuiltinType::SatAccum: 2731 case BuiltinType::SatLongAccum: 2732 case BuiltinType::SatUShortAccum: 2733 case BuiltinType::SatUAccum: 2734 case BuiltinType::SatULongAccum: 2735 case BuiltinType::SatShortFract: 2736 case BuiltinType::SatFract: 2737 case BuiltinType::SatLongFract: 2738 case BuiltinType::SatUShortFract: 2739 case BuiltinType::SatUFract: 2740 case BuiltinType::SatULongFract: 2741 case BuiltinType::Ibm128: 2742 case BuiltinType::Float128: { 2743 DiagnosticsEngine &Diags = Context.getDiags(); 2744 unsigned DiagID = Diags.getCustomDiagID( 2745 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2746 Diags.Report(Range.getBegin(), DiagID) 2747 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2748 break; 2749 } 2750 } 2751 } 2752 2753 // <type> ::= <function-type> 2754 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2755 SourceRange) { 2756 // Structors only appear in decls, so at this point we know it's not a 2757 // structor type. 2758 // FIXME: This may not be lambda-friendly. 2759 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2760 Out << "$$A8@@"; 2761 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2762 } else { 2763 Out << "$$A6"; 2764 mangleFunctionType(T); 2765 } 2766 } 2767 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2768 Qualifiers, SourceRange) { 2769 Out << "$$A6"; 2770 mangleFunctionType(T); 2771 } 2772 2773 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2774 const FunctionDecl *D, 2775 bool ForceThisQuals, 2776 bool MangleExceptionSpec) { 2777 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2778 // <return-type> <argument-list> <throw-spec> 2779 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2780 2781 SourceRange Range; 2782 if (D) Range = D->getSourceRange(); 2783 2784 bool IsInLambda = false; 2785 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2786 CallingConv CC = T->getCallConv(); 2787 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2788 if (MD->getParent()->isLambda()) 2789 IsInLambda = true; 2790 if (MD->isImplicitObjectMemberFunction()) 2791 HasThisQuals = true; 2792 if (isa<CXXDestructorDecl>(MD)) { 2793 IsStructor = true; 2794 } else if (isa<CXXConstructorDecl>(MD)) { 2795 IsStructor = true; 2796 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2797 StructorType == Ctor_DefaultClosure) && 2798 isStructorDecl(MD); 2799 if (IsCtorClosure) 2800 CC = getASTContext().getDefaultCallingConvention( 2801 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2802 } 2803 } 2804 2805 // If this is a C++ instance method, mangle the CVR qualifiers for the 2806 // this pointer. 2807 if (HasThisQuals) { 2808 Qualifiers Quals = Proto->getMethodQuals(); 2809 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2810 mangleRefQualifier(Proto->getRefQualifier()); 2811 mangleQualifiers(Quals, /*IsMember=*/false); 2812 } 2813 2814 mangleCallingConvention(CC, Range); 2815 2816 // <return-type> ::= <type> 2817 // ::= @ # structors (they have no declared return type) 2818 if (IsStructor) { 2819 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2820 // The scalar deleting destructor takes an extra int argument which is not 2821 // reflected in the AST. 2822 if (StructorType == Dtor_Deleting) { 2823 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2824 return; 2825 } 2826 // The vbase destructor returns void which is not reflected in the AST. 2827 if (StructorType == Dtor_Complete) { 2828 Out << "XXZ"; 2829 return; 2830 } 2831 } 2832 if (IsCtorClosure) { 2833 // Default constructor closure and copy constructor closure both return 2834 // void. 2835 Out << 'X'; 2836 2837 if (StructorType == Ctor_DefaultClosure) { 2838 // Default constructor closure always has no arguments. 2839 Out << 'X'; 2840 } else if (StructorType == Ctor_CopyingClosure) { 2841 // Copy constructor closure always takes an unqualified reference. 2842 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2843 Proto->getParamType(0) 2844 ->castAs<LValueReferenceType>() 2845 ->getPointeeType(), 2846 /*SpelledAsLValue=*/true), 2847 Range); 2848 Out << '@'; 2849 } else { 2850 llvm_unreachable("unexpected constructor closure!"); 2851 } 2852 Out << 'Z'; 2853 return; 2854 } 2855 Out << '@'; 2856 } else if (IsInLambda && isa_and_nonnull<CXXConversionDecl>(D)) { 2857 // The only lambda conversion operators are to function pointers, which 2858 // can differ by their calling convention and are typically deduced. So 2859 // we make sure that this type gets mangled properly. 2860 mangleType(T->getReturnType(), Range, QMM_Result); 2861 } else { 2862 QualType ResultType = T->getReturnType(); 2863 if (IsInLambda && isa<CXXConversionDecl>(D)) { 2864 // The only lambda conversion operators are to function pointers, which 2865 // can differ by their calling convention and are typically deduced. So 2866 // we make sure that this type gets mangled properly. 2867 mangleType(ResultType, Range, QMM_Result); 2868 } else if (const auto *AT = dyn_cast_or_null<AutoType>( 2869 ResultType->getContainedAutoType())) { 2870 Out << '?'; 2871 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2872 Out << '?'; 2873 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2874 "shouldn't need to mangle __auto_type!"); 2875 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2876 Out << '@'; 2877 } else if (IsInLambda) { 2878 Out << '@'; 2879 } else { 2880 if (ResultType->isVoidType()) 2881 ResultType = ResultType.getUnqualifiedType(); 2882 mangleType(ResultType, Range, QMM_Result); 2883 } 2884 } 2885 2886 // <argument-list> ::= X # void 2887 // ::= <type>+ @ 2888 // ::= <type>* Z # varargs 2889 if (!Proto) { 2890 // Function types without prototypes can arise when mangling a function type 2891 // within an overloadable function in C. We mangle these as the absence of 2892 // any parameter types (not even an empty parameter list). 2893 Out << '@'; 2894 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2895 Out << 'X'; 2896 } else { 2897 // Happens for function pointer type arguments for example. 2898 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2899 // Explicit object parameters are prefixed by "_V". 2900 if (I == 0 && D && D->getParamDecl(I)->isExplicitObjectParameter()) 2901 Out << "_V"; 2902 2903 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2904 // Mangle each pass_object_size parameter as if it's a parameter of enum 2905 // type passed directly after the parameter with the pass_object_size 2906 // attribute. The aforementioned enum's name is __pass_object_size, and we 2907 // pretend it resides in a top-level namespace called __clang. 2908 // 2909 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2910 // necessary to just cross our fingers and hope this type+namespace 2911 // combination doesn't conflict with anything? 2912 if (D) 2913 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2914 manglePassObjectSizeArg(P); 2915 } 2916 // <builtin-type> ::= Z # ellipsis 2917 if (Proto->isVariadic()) 2918 Out << 'Z'; 2919 else 2920 Out << '@'; 2921 } 2922 2923 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2924 getASTContext().getLangOpts().isCompatibleWithMSVC( 2925 LangOptions::MSVC2017_5)) 2926 mangleThrowSpecification(Proto); 2927 else 2928 Out << 'Z'; 2929 } 2930 2931 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2932 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2933 // # pointer. in 64-bit mode *all* 2934 // # 'this' pointers are 64-bit. 2935 // ::= <global-function> 2936 // <member-function> ::= A # private: near 2937 // ::= B # private: far 2938 // ::= C # private: static near 2939 // ::= D # private: static far 2940 // ::= E # private: virtual near 2941 // ::= F # private: virtual far 2942 // ::= I # protected: near 2943 // ::= J # protected: far 2944 // ::= K # protected: static near 2945 // ::= L # protected: static far 2946 // ::= M # protected: virtual near 2947 // ::= N # protected: virtual far 2948 // ::= Q # public: near 2949 // ::= R # public: far 2950 // ::= S # public: static near 2951 // ::= T # public: static far 2952 // ::= U # public: virtual near 2953 // ::= V # public: virtual far 2954 // <global-function> ::= Y # global near 2955 // ::= Z # global far 2956 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2957 bool IsVirtual = MD->isVirtual(); 2958 // When mangling vbase destructor variants, ignore whether or not the 2959 // underlying destructor was defined to be virtual. 2960 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2961 StructorType == Dtor_Complete) { 2962 IsVirtual = false; 2963 } 2964 switch (MD->getAccess()) { 2965 case AS_none: 2966 llvm_unreachable("Unsupported access specifier"); 2967 case AS_private: 2968 if (!MD->isImplicitObjectMemberFunction()) 2969 Out << 'C'; 2970 else if (IsVirtual) 2971 Out << 'E'; 2972 else 2973 Out << 'A'; 2974 break; 2975 case AS_protected: 2976 if (!MD->isImplicitObjectMemberFunction()) 2977 Out << 'K'; 2978 else if (IsVirtual) 2979 Out << 'M'; 2980 else 2981 Out << 'I'; 2982 break; 2983 case AS_public: 2984 if (!MD->isImplicitObjectMemberFunction()) 2985 Out << 'S'; 2986 else if (IsVirtual) 2987 Out << 'U'; 2988 else 2989 Out << 'Q'; 2990 } 2991 } else { 2992 Out << 'Y'; 2993 } 2994 } 2995 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC, 2996 SourceRange Range) { 2997 // <calling-convention> ::= A # __cdecl 2998 // ::= B # __export __cdecl 2999 // ::= C # __pascal 3000 // ::= D # __export __pascal 3001 // ::= E # __thiscall 3002 // ::= F # __export __thiscall 3003 // ::= G # __stdcall 3004 // ::= H # __export __stdcall 3005 // ::= I # __fastcall 3006 // ::= J # __export __fastcall 3007 // ::= Q # __vectorcall 3008 // ::= S # __attribute__((__swiftcall__)) // Clang-only 3009 // ::= W # __attribute__((__swiftasynccall__)) 3010 // ::= U # __attribute__((__preserve_most__)) 3011 // ::= V # __attribute__((__preserve_none__)) // 3012 // Clang-only 3013 // // Clang-only 3014 // ::= w # __regcall 3015 // ::= x # __regcall4 3016 // The 'export' calling conventions are from a bygone era 3017 // (*cough*Win16*cough*) when functions were declared for export with 3018 // that keyword. (It didn't actually export them, it just made them so 3019 // that they could be in a DLL and somebody from another module could call 3020 // them.) 3021 3022 switch (CC) { 3023 default: 3024 break; 3025 case CC_Win64: 3026 case CC_X86_64SysV: 3027 case CC_C: 3028 Out << 'A'; 3029 return; 3030 case CC_X86Pascal: 3031 Out << 'C'; 3032 return; 3033 case CC_X86ThisCall: 3034 Out << 'E'; 3035 return; 3036 case CC_X86StdCall: 3037 Out << 'G'; 3038 return; 3039 case CC_X86FastCall: 3040 Out << 'I'; 3041 return; 3042 case CC_X86VectorCall: 3043 Out << 'Q'; 3044 return; 3045 case CC_Swift: 3046 Out << 'S'; 3047 return; 3048 case CC_SwiftAsync: 3049 Out << 'W'; 3050 return; 3051 case CC_PreserveMost: 3052 Out << 'U'; 3053 return; 3054 case CC_PreserveNone: 3055 Out << 'V'; 3056 return; 3057 case CC_X86RegCall: 3058 if (getASTContext().getLangOpts().RegCall4) 3059 Out << "x"; 3060 else 3061 Out << "w"; 3062 return; 3063 } 3064 3065 DiagnosticsEngine &Diags = Context.getDiags(); 3066 unsigned DiagID = Diags.getCustomDiagID( 3067 DiagnosticsEngine::Error, "cannot mangle this calling convention yet"); 3068 Diags.Report(Range.getBegin(), DiagID) << Range; 3069 } 3070 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T, 3071 SourceRange Range) { 3072 mangleCallingConvention(T->getCallConv(), Range); 3073 } 3074 3075 void MicrosoftCXXNameMangler::mangleThrowSpecification( 3076 const FunctionProtoType *FT) { 3077 // <throw-spec> ::= Z # (default) 3078 // ::= _E # noexcept 3079 if (FT->canThrow()) 3080 Out << 'Z'; 3081 else 3082 Out << "_E"; 3083 } 3084 3085 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 3086 Qualifiers, SourceRange Range) { 3087 // Probably should be mangled as a template instantiation; need to see what 3088 // VC does first. 3089 DiagnosticsEngine &Diags = Context.getDiags(); 3090 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3091 "cannot mangle this unresolved dependent type yet"); 3092 Diags.Report(Range.getBegin(), DiagID) 3093 << Range; 3094 } 3095 3096 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 3097 // <union-type> ::= T <name> 3098 // <struct-type> ::= U <name> 3099 // <class-type> ::= V <name> 3100 // <enum-type> ::= W4 <name> 3101 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 3102 switch (TTK) { 3103 case TagTypeKind::Union: 3104 Out << 'T'; 3105 break; 3106 case TagTypeKind::Struct: 3107 case TagTypeKind::Interface: 3108 Out << 'U'; 3109 break; 3110 case TagTypeKind::Class: 3111 Out << 'V'; 3112 break; 3113 case TagTypeKind::Enum: 3114 Out << "W4"; 3115 break; 3116 } 3117 } 3118 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 3119 SourceRange) { 3120 mangleType(cast<TagType>(T)->getDecl()); 3121 } 3122 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 3123 SourceRange) { 3124 mangleType(cast<TagType>(T)->getDecl()); 3125 } 3126 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 3127 mangleTagTypeKind(TD->getTagKind()); 3128 mangleName(TD); 3129 } 3130 3131 // If you add a call to this, consider updating isArtificialTagType() too. 3132 void MicrosoftCXXNameMangler::mangleArtificialTagType( 3133 TagTypeKind TK, StringRef UnqualifiedName, 3134 ArrayRef<StringRef> NestedNames) { 3135 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 3136 mangleTagTypeKind(TK); 3137 3138 // Always start with the unqualified name. 3139 mangleSourceName(UnqualifiedName); 3140 3141 for (StringRef N : llvm::reverse(NestedNames)) 3142 mangleSourceName(N); 3143 3144 // Terminate the whole name with an '@'. 3145 Out << '@'; 3146 } 3147 3148 // <type> ::= <array-type> 3149 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 3150 // [Y <dimension-count> <dimension>+] 3151 // <element-type> # as global, E is never required 3152 // It's supposed to be the other way around, but for some strange reason, it 3153 // isn't. Today this behavior is retained for the sole purpose of backwards 3154 // compatibility. 3155 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 3156 // This isn't a recursive mangling, so now we have to do it all in this 3157 // one call. 3158 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 3159 mangleType(T->getElementType(), SourceRange()); 3160 } 3161 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 3162 SourceRange) { 3163 llvm_unreachable("Should have been special cased"); 3164 } 3165 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 3166 SourceRange) { 3167 llvm_unreachable("Should have been special cased"); 3168 } 3169 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 3170 Qualifiers, SourceRange) { 3171 llvm_unreachable("Should have been special cased"); 3172 } 3173 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 3174 Qualifiers, SourceRange) { 3175 llvm_unreachable("Should have been special cased"); 3176 } 3177 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 3178 QualType ElementTy(T, 0); 3179 SmallVector<llvm::APInt, 3> Dimensions; 3180 for (;;) { 3181 if (ElementTy->isConstantArrayType()) { 3182 const ConstantArrayType *CAT = 3183 getASTContext().getAsConstantArrayType(ElementTy); 3184 Dimensions.push_back(CAT->getSize()); 3185 ElementTy = CAT->getElementType(); 3186 } else if (ElementTy->isIncompleteArrayType()) { 3187 const IncompleteArrayType *IAT = 3188 getASTContext().getAsIncompleteArrayType(ElementTy); 3189 Dimensions.push_back(llvm::APInt(32, 0)); 3190 ElementTy = IAT->getElementType(); 3191 } else if (ElementTy->isVariableArrayType()) { 3192 const VariableArrayType *VAT = 3193 getASTContext().getAsVariableArrayType(ElementTy); 3194 Dimensions.push_back(llvm::APInt(32, 0)); 3195 ElementTy = VAT->getElementType(); 3196 } else if (ElementTy->isDependentSizedArrayType()) { 3197 // The dependent expression has to be folded into a constant (TODO). 3198 const DependentSizedArrayType *DSAT = 3199 getASTContext().getAsDependentSizedArrayType(ElementTy); 3200 DiagnosticsEngine &Diags = Context.getDiags(); 3201 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3202 "cannot mangle this dependent-length array yet"); 3203 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 3204 << DSAT->getBracketsRange(); 3205 return; 3206 } else { 3207 break; 3208 } 3209 } 3210 Out << 'Y'; 3211 // <dimension-count> ::= <number> # number of extra dimensions 3212 mangleNumber(Dimensions.size()); 3213 for (const llvm::APInt &Dimension : Dimensions) 3214 mangleNumber(Dimension.getLimitedValue()); 3215 mangleType(ElementTy, SourceRange(), QMM_Escape); 3216 } 3217 3218 void MicrosoftCXXNameMangler::mangleType(const ArrayParameterType *T, 3219 Qualifiers, SourceRange) { 3220 mangleArrayType(cast<ConstantArrayType>(T)); 3221 } 3222 3223 // <type> ::= <pointer-to-member-type> 3224 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 3225 // <class name> <type> 3226 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 3227 Qualifiers Quals, SourceRange Range) { 3228 QualType PointeeType = T->getPointeeType(); 3229 manglePointerCVQualifiers(Quals); 3230 manglePointerExtQualifiers(Quals, PointeeType); 3231 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 3232 Out << '8'; 3233 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 3234 mangleFunctionType(FPT, nullptr, true); 3235 } else { 3236 mangleQualifiers(PointeeType.getQualifiers(), true); 3237 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 3238 mangleType(PointeeType, Range, QMM_Drop); 3239 } 3240 } 3241 3242 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 3243 Qualifiers, SourceRange Range) { 3244 DiagnosticsEngine &Diags = Context.getDiags(); 3245 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3246 "cannot mangle this template type parameter type yet"); 3247 Diags.Report(Range.getBegin(), DiagID) 3248 << Range; 3249 } 3250 3251 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 3252 Qualifiers, SourceRange Range) { 3253 DiagnosticsEngine &Diags = Context.getDiags(); 3254 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3255 "cannot mangle this substituted parameter pack yet"); 3256 Diags.Report(Range.getBegin(), DiagID) 3257 << Range; 3258 } 3259 3260 // <type> ::= <pointer-type> 3261 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 3262 // # the E is required for 64-bit non-static pointers 3263 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 3264 SourceRange Range) { 3265 QualType PointeeType = T->getPointeeType(); 3266 manglePointerCVQualifiers(Quals); 3267 manglePointerExtQualifiers(Quals, PointeeType); 3268 3269 // For pointer size address spaces, go down the same type mangling path as 3270 // non address space types. 3271 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); 3272 if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default) 3273 mangleType(PointeeType, Range); 3274 else 3275 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 3276 } 3277 3278 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 3279 Qualifiers Quals, SourceRange Range) { 3280 QualType PointeeType = T->getPointeeType(); 3281 switch (Quals.getObjCLifetime()) { 3282 case Qualifiers::OCL_None: 3283 case Qualifiers::OCL_ExplicitNone: 3284 break; 3285 case Qualifiers::OCL_Autoreleasing: 3286 case Qualifiers::OCL_Strong: 3287 case Qualifiers::OCL_Weak: 3288 return mangleObjCLifetime(PointeeType, Quals, Range); 3289 } 3290 manglePointerCVQualifiers(Quals); 3291 manglePointerExtQualifiers(Quals, PointeeType); 3292 mangleType(PointeeType, Range); 3293 } 3294 3295 // <type> ::= <reference-type> 3296 // <reference-type> ::= A E? <cvr-qualifiers> <type> 3297 // # the E is required for 64-bit non-static lvalue references 3298 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 3299 Qualifiers Quals, SourceRange Range) { 3300 QualType PointeeType = T->getPointeeType(); 3301 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 3302 Out << 'A'; 3303 manglePointerExtQualifiers(Quals, PointeeType); 3304 mangleType(PointeeType, Range); 3305 } 3306 3307 // <type> ::= <r-value-reference-type> 3308 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 3309 // # the E is required for 64-bit non-static rvalue references 3310 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 3311 Qualifiers Quals, SourceRange Range) { 3312 QualType PointeeType = T->getPointeeType(); 3313 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 3314 Out << "$$Q"; 3315 manglePointerExtQualifiers(Quals, PointeeType); 3316 mangleType(PointeeType, Range); 3317 } 3318 3319 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 3320 SourceRange Range) { 3321 QualType ElementType = T->getElementType(); 3322 3323 llvm::SmallString<64> TemplateMangling; 3324 llvm::raw_svector_ostream Stream(TemplateMangling); 3325 MicrosoftCXXNameMangler Extra(Context, Stream); 3326 Stream << "?$"; 3327 Extra.mangleSourceName("_Complex"); 3328 Extra.mangleType(ElementType, Range, QMM_Escape); 3329 3330 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3331 } 3332 3333 // Returns true for types that mangleArtificialTagType() gets called for with 3334 // TagTypeKind Union, Struct, Class and where compatibility with MSVC's 3335 // mangling matters. 3336 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 3337 // support.) 3338 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 3339 const Type *ty = T.getTypePtr(); 3340 switch (ty->getTypeClass()) { 3341 default: 3342 return false; 3343 3344 case Type::Vector: { 3345 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 3346 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 3347 // just always return true (the other vector types are clang-only). 3348 return true; 3349 } 3350 } 3351 } 3352 3353 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 3354 SourceRange Range) { 3355 QualType EltTy = T->getElementType(); 3356 const BuiltinType *ET = EltTy->getAs<BuiltinType>(); 3357 const BitIntType *BitIntTy = EltTy->getAs<BitIntType>(); 3358 assert((ET || BitIntTy) && 3359 "vectors with non-builtin/_BitInt elements are unsupported"); 3360 uint64_t Width = getASTContext().getTypeSize(T); 3361 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 3362 // doesn't match the Intel types uses a custom mangling below. 3363 size_t OutSizeBefore = Out.tell(); 3364 if (!isa<ExtVectorType>(T)) { 3365 if (getASTContext().getTargetInfo().getTriple().isX86() && ET) { 3366 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 3367 mangleArtificialTagType(TagTypeKind::Union, "__m64"); 3368 } else if (Width >= 128) { 3369 if (ET->getKind() == BuiltinType::Float) 3370 mangleArtificialTagType(TagTypeKind::Union, 3371 "__m" + llvm::utostr(Width)); 3372 else if (ET->getKind() == BuiltinType::LongLong) 3373 mangleArtificialTagType(TagTypeKind::Union, 3374 "__m" + llvm::utostr(Width) + 'i'); 3375 else if (ET->getKind() == BuiltinType::Double) 3376 mangleArtificialTagType(TagTypeKind::Struct, 3377 "__m" + llvm::utostr(Width) + 'd'); 3378 } 3379 } 3380 } 3381 3382 bool IsBuiltin = Out.tell() != OutSizeBefore; 3383 if (!IsBuiltin) { 3384 // The MS ABI doesn't have a special mangling for vector types, so we define 3385 // our own mangling to handle uses of __vector_size__ on user-specified 3386 // types, and for extensions like __v4sf. 3387 3388 llvm::SmallString<64> TemplateMangling; 3389 llvm::raw_svector_ostream Stream(TemplateMangling); 3390 MicrosoftCXXNameMangler Extra(Context, Stream); 3391 Stream << "?$"; 3392 Extra.mangleSourceName("__vector"); 3393 Extra.mangleType(QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0), 3394 Range, QMM_Escape); 3395 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements())); 3396 3397 mangleArtificialTagType(TagTypeKind::Union, TemplateMangling, {"__clang"}); 3398 } 3399 } 3400 3401 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 3402 Qualifiers Quals, SourceRange Range) { 3403 mangleType(static_cast<const VectorType *>(T), Quals, Range); 3404 } 3405 3406 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 3407 Qualifiers, SourceRange Range) { 3408 DiagnosticsEngine &Diags = Context.getDiags(); 3409 unsigned DiagID = Diags.getCustomDiagID( 3410 DiagnosticsEngine::Error, 3411 "cannot mangle this dependent-sized vector type yet"); 3412 Diags.Report(Range.getBegin(), DiagID) << Range; 3413 } 3414 3415 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 3416 Qualifiers, SourceRange Range) { 3417 DiagnosticsEngine &Diags = Context.getDiags(); 3418 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3419 "cannot mangle this dependent-sized extended vector type yet"); 3420 Diags.Report(Range.getBegin(), DiagID) 3421 << Range; 3422 } 3423 3424 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, 3425 Qualifiers quals, SourceRange Range) { 3426 DiagnosticsEngine &Diags = Context.getDiags(); 3427 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3428 "Cannot mangle this matrix type yet"); 3429 Diags.Report(Range.getBegin(), DiagID) << Range; 3430 } 3431 3432 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, 3433 Qualifiers quals, SourceRange Range) { 3434 DiagnosticsEngine &Diags = Context.getDiags(); 3435 unsigned DiagID = Diags.getCustomDiagID( 3436 DiagnosticsEngine::Error, 3437 "Cannot mangle this dependent-sized matrix type yet"); 3438 Diags.Report(Range.getBegin(), DiagID) << Range; 3439 } 3440 3441 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 3442 Qualifiers, SourceRange Range) { 3443 DiagnosticsEngine &Diags = Context.getDiags(); 3444 unsigned DiagID = Diags.getCustomDiagID( 3445 DiagnosticsEngine::Error, 3446 "cannot mangle this dependent address space type yet"); 3447 Diags.Report(Range.getBegin(), DiagID) << Range; 3448 } 3449 3450 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 3451 SourceRange) { 3452 // ObjC interfaces have structs underlying them. 3453 mangleTagTypeKind(TagTypeKind::Struct); 3454 mangleName(T->getDecl()); 3455 } 3456 3457 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 3458 Qualifiers Quals, SourceRange Range) { 3459 if (T->isKindOfType()) 3460 return mangleObjCKindOfType(T, Quals, Range); 3461 3462 if (T->qual_empty() && !T->isSpecialized()) 3463 return mangleType(T->getBaseType(), Range, QMM_Drop); 3464 3465 ArgBackRefMap OuterFunArgsContext; 3466 ArgBackRefMap OuterTemplateArgsContext; 3467 BackRefVec OuterTemplateContext; 3468 3469 FunArgBackReferences.swap(OuterFunArgsContext); 3470 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3471 NameBackReferences.swap(OuterTemplateContext); 3472 3473 mangleTagTypeKind(TagTypeKind::Struct); 3474 3475 Out << "?$"; 3476 if (T->isObjCId()) 3477 mangleSourceName("objc_object"); 3478 else if (T->isObjCClass()) 3479 mangleSourceName("objc_class"); 3480 else 3481 mangleSourceName(T->getInterface()->getName()); 3482 3483 for (const auto &Q : T->quals()) 3484 mangleObjCProtocol(Q); 3485 3486 if (T->isSpecialized()) 3487 for (const auto &TA : T->getTypeArgs()) 3488 mangleType(TA, Range, QMM_Drop); 3489 3490 Out << '@'; 3491 3492 Out << '@'; 3493 3494 FunArgBackReferences.swap(OuterFunArgsContext); 3495 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3496 NameBackReferences.swap(OuterTemplateContext); 3497 } 3498 3499 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 3500 Qualifiers Quals, SourceRange Range) { 3501 QualType PointeeType = T->getPointeeType(); 3502 manglePointerCVQualifiers(Quals); 3503 manglePointerExtQualifiers(Quals, PointeeType); 3504 3505 Out << "_E"; 3506 3507 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 3508 } 3509 3510 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 3511 Qualifiers, SourceRange) { 3512 llvm_unreachable("Cannot mangle injected class name type."); 3513 } 3514 3515 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 3516 Qualifiers, SourceRange Range) { 3517 DiagnosticsEngine &Diags = Context.getDiags(); 3518 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3519 "cannot mangle this template specialization type yet"); 3520 Diags.Report(Range.getBegin(), DiagID) 3521 << Range; 3522 } 3523 3524 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 3525 SourceRange Range) { 3526 DiagnosticsEngine &Diags = Context.getDiags(); 3527 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3528 "cannot mangle this dependent name type yet"); 3529 Diags.Report(Range.getBegin(), DiagID) 3530 << Range; 3531 } 3532 3533 void MicrosoftCXXNameMangler::mangleType( 3534 const DependentTemplateSpecializationType *T, Qualifiers, 3535 SourceRange Range) { 3536 DiagnosticsEngine &Diags = Context.getDiags(); 3537 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3538 "cannot mangle this dependent template specialization type yet"); 3539 Diags.Report(Range.getBegin(), DiagID) 3540 << Range; 3541 } 3542 3543 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 3544 SourceRange Range) { 3545 DiagnosticsEngine &Diags = Context.getDiags(); 3546 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3547 "cannot mangle this pack expansion yet"); 3548 Diags.Report(Range.getBegin(), DiagID) 3549 << Range; 3550 } 3551 3552 void MicrosoftCXXNameMangler::mangleType(const PackIndexingType *T, 3553 Qualifiers Quals, SourceRange Range) { 3554 manglePointerCVQualifiers(Quals); 3555 mangleType(T->getSelectedType(), Range); 3556 } 3557 3558 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 3559 SourceRange Range) { 3560 DiagnosticsEngine &Diags = Context.getDiags(); 3561 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3562 "cannot mangle this typeof(type) yet"); 3563 Diags.Report(Range.getBegin(), DiagID) 3564 << Range; 3565 } 3566 3567 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 3568 SourceRange Range) { 3569 DiagnosticsEngine &Diags = Context.getDiags(); 3570 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3571 "cannot mangle this typeof(expression) yet"); 3572 Diags.Report(Range.getBegin(), DiagID) 3573 << Range; 3574 } 3575 3576 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 3577 SourceRange Range) { 3578 DiagnosticsEngine &Diags = Context.getDiags(); 3579 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3580 "cannot mangle this decltype() yet"); 3581 Diags.Report(Range.getBegin(), DiagID) 3582 << Range; 3583 } 3584 3585 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 3586 Qualifiers, SourceRange Range) { 3587 DiagnosticsEngine &Diags = Context.getDiags(); 3588 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3589 "cannot mangle this unary transform type yet"); 3590 Diags.Report(Range.getBegin(), DiagID) 3591 << Range; 3592 } 3593 3594 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 3595 SourceRange Range) { 3596 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3597 3598 DiagnosticsEngine &Diags = Context.getDiags(); 3599 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3600 "cannot mangle this 'auto' type yet"); 3601 Diags.Report(Range.getBegin(), DiagID) 3602 << Range; 3603 } 3604 3605 void MicrosoftCXXNameMangler::mangleType( 3606 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 3607 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3608 3609 DiagnosticsEngine &Diags = Context.getDiags(); 3610 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3611 "cannot mangle this deduced class template specialization type yet"); 3612 Diags.Report(Range.getBegin(), DiagID) 3613 << Range; 3614 } 3615 3616 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 3617 SourceRange Range) { 3618 QualType ValueType = T->getValueType(); 3619 3620 llvm::SmallString<64> TemplateMangling; 3621 llvm::raw_svector_ostream Stream(TemplateMangling); 3622 MicrosoftCXXNameMangler Extra(Context, Stream); 3623 Stream << "?$"; 3624 Extra.mangleSourceName("_Atomic"); 3625 Extra.mangleType(ValueType, Range, QMM_Escape); 3626 3627 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3628 } 3629 3630 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 3631 SourceRange Range) { 3632 QualType ElementType = T->getElementType(); 3633 3634 llvm::SmallString<64> TemplateMangling; 3635 llvm::raw_svector_ostream Stream(TemplateMangling); 3636 MicrosoftCXXNameMangler Extra(Context, Stream); 3637 Stream << "?$"; 3638 Extra.mangleSourceName("ocl_pipe"); 3639 Extra.mangleType(ElementType, Range, QMM_Escape); 3640 Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly())); 3641 3642 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3643 } 3644 3645 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, 3646 raw_ostream &Out) { 3647 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 3648 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 3649 getASTContext().getSourceManager(), 3650 "Mangling declaration"); 3651 3652 msvc_hashing_ostream MHO(Out); 3653 3654 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 3655 auto Type = GD.getCtorType(); 3656 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); 3657 return mangler.mangle(GD); 3658 } 3659 3660 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 3661 auto Type = GD.getDtorType(); 3662 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); 3663 return mangler.mangle(GD); 3664 } 3665 3666 MicrosoftCXXNameMangler Mangler(*this, MHO); 3667 return Mangler.mangle(GD); 3668 } 3669 3670 void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers, 3671 SourceRange Range) { 3672 llvm::SmallString<64> TemplateMangling; 3673 llvm::raw_svector_ostream Stream(TemplateMangling); 3674 MicrosoftCXXNameMangler Extra(Context, Stream); 3675 Stream << "?$"; 3676 if (T->isUnsigned()) 3677 Extra.mangleSourceName("_UBitInt"); 3678 else 3679 Extra.mangleSourceName("_BitInt"); 3680 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits())); 3681 3682 mangleArtificialTagType(TagTypeKind::Struct, TemplateMangling, {"__clang"}); 3683 } 3684 3685 void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T, 3686 Qualifiers, SourceRange Range) { 3687 DiagnosticsEngine &Diags = Context.getDiags(); 3688 unsigned DiagID = Diags.getCustomDiagID( 3689 DiagnosticsEngine::Error, "cannot mangle this DependentBitInt type yet"); 3690 Diags.Report(Range.getBegin(), DiagID) << Range; 3691 } 3692 3693 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 3694 // <virtual-adjustment> 3695 // <no-adjustment> ::= A # private near 3696 // ::= B # private far 3697 // ::= I # protected near 3698 // ::= J # protected far 3699 // ::= Q # public near 3700 // ::= R # public far 3701 // <static-adjustment> ::= G <static-offset> # private near 3702 // ::= H <static-offset> # private far 3703 // ::= O <static-offset> # protected near 3704 // ::= P <static-offset> # protected far 3705 // ::= W <static-offset> # public near 3706 // ::= X <static-offset> # public far 3707 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 3708 // ::= $1 <virtual-shift> <static-offset> # private far 3709 // ::= $2 <virtual-shift> <static-offset> # protected near 3710 // ::= $3 <virtual-shift> <static-offset> # protected far 3711 // ::= $4 <virtual-shift> <static-offset> # public near 3712 // ::= $5 <virtual-shift> <static-offset> # public far 3713 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 3714 // <vtordisp-shift> ::= <offset-to-vtordisp> 3715 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 3716 // <offset-to-vtordisp> 3717 static void mangleThunkThisAdjustment(AccessSpecifier AS, 3718 const ThisAdjustment &Adjustment, 3719 MicrosoftCXXNameMangler &Mangler, 3720 raw_ostream &Out) { 3721 if (!Adjustment.Virtual.isEmpty()) { 3722 Out << '$'; 3723 char AccessSpec; 3724 switch (AS) { 3725 case AS_none: 3726 llvm_unreachable("Unsupported access specifier"); 3727 case AS_private: 3728 AccessSpec = '0'; 3729 break; 3730 case AS_protected: 3731 AccessSpec = '2'; 3732 break; 3733 case AS_public: 3734 AccessSpec = '4'; 3735 } 3736 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3737 Out << 'R' << AccessSpec; 3738 Mangler.mangleNumber( 3739 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3740 Mangler.mangleNumber( 3741 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3742 Mangler.mangleNumber( 3743 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3744 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3745 } else { 3746 Out << AccessSpec; 3747 Mangler.mangleNumber( 3748 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3749 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3750 } 3751 } else if (Adjustment.NonVirtual != 0) { 3752 switch (AS) { 3753 case AS_none: 3754 llvm_unreachable("Unsupported access specifier"); 3755 case AS_private: 3756 Out << 'G'; 3757 break; 3758 case AS_protected: 3759 Out << 'O'; 3760 break; 3761 case AS_public: 3762 Out << 'W'; 3763 } 3764 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3765 } else { 3766 switch (AS) { 3767 case AS_none: 3768 llvm_unreachable("Unsupported access specifier"); 3769 case AS_private: 3770 Out << 'A'; 3771 break; 3772 case AS_protected: 3773 Out << 'I'; 3774 break; 3775 case AS_public: 3776 Out << 'Q'; 3777 } 3778 } 3779 } 3780 3781 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3782 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3783 raw_ostream &Out) { 3784 msvc_hashing_ostream MHO(Out); 3785 MicrosoftCXXNameMangler Mangler(*this, MHO); 3786 Mangler.getStream() << '?'; 3787 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3788 } 3789 3790 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3791 const ThunkInfo &Thunk, 3792 bool /*ElideOverrideInfo*/, 3793 raw_ostream &Out) { 3794 msvc_hashing_ostream MHO(Out); 3795 MicrosoftCXXNameMangler Mangler(*this, MHO); 3796 Mangler.getStream() << '?'; 3797 Mangler.mangleName(MD); 3798 3799 // Usually the thunk uses the access specifier of the new method, but if this 3800 // is a covariant return thunk, then MSVC always uses the public access 3801 // specifier, and we do the same. 3802 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3803 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3804 3805 if (!Thunk.Return.isEmpty()) 3806 assert(Thunk.Method != nullptr && 3807 "Thunk info should hold the overridee decl"); 3808 3809 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3810 Mangler.mangleFunctionType( 3811 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3812 } 3813 3814 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD, 3815 CXXDtorType Type, 3816 const ThunkInfo &Thunk, 3817 bool /*ElideOverrideInfo*/, 3818 raw_ostream &Out) { 3819 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3820 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3821 // mangling manually until we support both deleting dtor types. 3822 assert(Type == Dtor_Deleting); 3823 msvc_hashing_ostream MHO(Out); 3824 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3825 Mangler.getStream() << "??_E"; 3826 Mangler.mangleName(DD->getParent()); 3827 auto &Adjustment = Thunk.This; 3828 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3829 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3830 } 3831 3832 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3833 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3834 raw_ostream &Out) { 3835 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3836 // <cvr-qualifiers> [<name>] @ 3837 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3838 // is always '6' for vftables. 3839 msvc_hashing_ostream MHO(Out); 3840 MicrosoftCXXNameMangler Mangler(*this, MHO); 3841 if (Derived->hasAttr<DLLImportAttr>()) 3842 Mangler.getStream() << "??_S"; 3843 else 3844 Mangler.getStream() << "??_7"; 3845 Mangler.mangleName(Derived); 3846 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3847 for (const CXXRecordDecl *RD : BasePath) 3848 Mangler.mangleName(RD); 3849 Mangler.getStream() << '@'; 3850 } 3851 3852 void MicrosoftMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *Derived, 3853 raw_ostream &Out) { 3854 // TODO: Determine appropriate mangling for MSABI 3855 mangleCXXVFTable(Derived, {}, Out); 3856 } 3857 3858 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3859 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3860 raw_ostream &Out) { 3861 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3862 // <cvr-qualifiers> [<name>] @ 3863 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3864 // is always '7' for vbtables. 3865 msvc_hashing_ostream MHO(Out); 3866 MicrosoftCXXNameMangler Mangler(*this, MHO); 3867 Mangler.getStream() << "??_8"; 3868 Mangler.mangleName(Derived); 3869 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3870 for (const CXXRecordDecl *RD : BasePath) 3871 Mangler.mangleName(RD); 3872 Mangler.getStream() << '@'; 3873 } 3874 3875 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3876 msvc_hashing_ostream MHO(Out); 3877 MicrosoftCXXNameMangler Mangler(*this, MHO); 3878 Mangler.getStream() << "??_R0"; 3879 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3880 Mangler.getStream() << "@8"; 3881 } 3882 3883 void MicrosoftMangleContextImpl::mangleCXXRTTIName( 3884 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { 3885 MicrosoftCXXNameMangler Mangler(*this, Out); 3886 Mangler.getStream() << '.'; 3887 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3888 } 3889 3890 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3891 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3892 msvc_hashing_ostream MHO(Out); 3893 MicrosoftCXXNameMangler Mangler(*this, MHO); 3894 Mangler.getStream() << "??_K"; 3895 Mangler.mangleName(SrcRD); 3896 Mangler.getStream() << "$C"; 3897 Mangler.mangleName(DstRD); 3898 } 3899 3900 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3901 bool IsVolatile, 3902 bool IsUnaligned, 3903 uint32_t NumEntries, 3904 raw_ostream &Out) { 3905 msvc_hashing_ostream MHO(Out); 3906 MicrosoftCXXNameMangler Mangler(*this, MHO); 3907 Mangler.getStream() << "_TI"; 3908 if (IsConst) 3909 Mangler.getStream() << 'C'; 3910 if (IsVolatile) 3911 Mangler.getStream() << 'V'; 3912 if (IsUnaligned) 3913 Mangler.getStream() << 'U'; 3914 Mangler.getStream() << NumEntries; 3915 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3916 } 3917 3918 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3919 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3920 msvc_hashing_ostream MHO(Out); 3921 MicrosoftCXXNameMangler Mangler(*this, MHO); 3922 Mangler.getStream() << "_CTA"; 3923 Mangler.getStream() << NumEntries; 3924 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3925 } 3926 3927 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3928 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3929 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3930 raw_ostream &Out) { 3931 MicrosoftCXXNameMangler Mangler(*this, Out); 3932 Mangler.getStream() << "_CT"; 3933 3934 llvm::SmallString<64> RTTIMangling; 3935 { 3936 llvm::raw_svector_ostream Stream(RTTIMangling); 3937 msvc_hashing_ostream MHO(Stream); 3938 mangleCXXRTTI(T, MHO); 3939 } 3940 Mangler.getStream() << RTTIMangling; 3941 3942 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3943 // both older and newer versions include it. 3944 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3945 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3946 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3947 // Or 1912, 1913 already?). 3948 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3949 LangOptions::MSVC2015) && 3950 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3951 LangOptions::MSVC2017_7); 3952 llvm::SmallString<64> CopyCtorMangling; 3953 if (!OmitCopyCtor && CD) { 3954 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3955 msvc_hashing_ostream MHO(Stream); 3956 mangleCXXName(GlobalDecl(CD, CT), MHO); 3957 } 3958 Mangler.getStream() << CopyCtorMangling; 3959 3960 Mangler.getStream() << Size; 3961 if (VBPtrOffset == -1) { 3962 if (NVOffset) { 3963 Mangler.getStream() << NVOffset; 3964 } 3965 } else { 3966 Mangler.getStream() << NVOffset; 3967 Mangler.getStream() << VBPtrOffset; 3968 Mangler.getStream() << VBIndex; 3969 } 3970 } 3971 3972 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3973 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3974 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3975 msvc_hashing_ostream MHO(Out); 3976 MicrosoftCXXNameMangler Mangler(*this, MHO); 3977 Mangler.getStream() << "??_R1"; 3978 Mangler.mangleNumber(NVOffset); 3979 Mangler.mangleNumber(VBPtrOffset); 3980 Mangler.mangleNumber(VBTableOffset); 3981 Mangler.mangleNumber(Flags); 3982 Mangler.mangleName(Derived); 3983 Mangler.getStream() << "8"; 3984 } 3985 3986 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3987 const CXXRecordDecl *Derived, raw_ostream &Out) { 3988 msvc_hashing_ostream MHO(Out); 3989 MicrosoftCXXNameMangler Mangler(*this, MHO); 3990 Mangler.getStream() << "??_R2"; 3991 Mangler.mangleName(Derived); 3992 Mangler.getStream() << "8"; 3993 } 3994 3995 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3996 const CXXRecordDecl *Derived, raw_ostream &Out) { 3997 msvc_hashing_ostream MHO(Out); 3998 MicrosoftCXXNameMangler Mangler(*this, MHO); 3999 Mangler.getStream() << "??_R3"; 4000 Mangler.mangleName(Derived); 4001 Mangler.getStream() << "8"; 4002 } 4003 4004 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 4005 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 4006 raw_ostream &Out) { 4007 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 4008 // <cvr-qualifiers> [<name>] @ 4009 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 4010 // is always '6' for vftables. 4011 llvm::SmallString<64> VFTableMangling; 4012 llvm::raw_svector_ostream Stream(VFTableMangling); 4013 mangleCXXVFTable(Derived, BasePath, Stream); 4014 4015 if (VFTableMangling.starts_with("??@")) { 4016 assert(VFTableMangling.ends_with("@")); 4017 Out << VFTableMangling << "??_R4@"; 4018 return; 4019 } 4020 4021 assert(VFTableMangling.starts_with("??_7") || 4022 VFTableMangling.starts_with("??_S")); 4023 4024 Out << "??_R4" << VFTableMangling.str().drop_front(4); 4025 } 4026 4027 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 4028 GlobalDecl EnclosingDecl, raw_ostream &Out) { 4029 msvc_hashing_ostream MHO(Out); 4030 MicrosoftCXXNameMangler Mangler(*this, MHO); 4031 // The function body is in the same comdat as the function with the handler, 4032 // so the numbering here doesn't have to be the same across TUs. 4033 // 4034 // <mangled-name> ::= ?filt$ <filter-number> @0 4035 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 4036 Mangler.mangleName(EnclosingDecl); 4037 } 4038 4039 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 4040 GlobalDecl EnclosingDecl, raw_ostream &Out) { 4041 msvc_hashing_ostream MHO(Out); 4042 MicrosoftCXXNameMangler Mangler(*this, MHO); 4043 // The function body is in the same comdat as the function with the handler, 4044 // so the numbering here doesn't have to be the same across TUs. 4045 // 4046 // <mangled-name> ::= ?fin$ <filter-number> @0 4047 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 4048 Mangler.mangleName(EnclosingDecl); 4049 } 4050 4051 void MicrosoftMangleContextImpl::mangleCanonicalTypeName( 4052 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { 4053 // This is just a made up unique string for the purposes of tbaa. undname 4054 // does *not* know how to demangle it. 4055 MicrosoftCXXNameMangler Mangler(*this, Out); 4056 Mangler.getStream() << '?'; 4057 Mangler.mangleType(T.getCanonicalType(), SourceRange()); 4058 } 4059 4060 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 4061 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 4062 msvc_hashing_ostream MHO(Out); 4063 MicrosoftCXXNameMangler Mangler(*this, MHO); 4064 4065 Mangler.getStream() << "?"; 4066 Mangler.mangleSourceName("$RT" + llvm::utostr(ManglingNumber)); 4067 Mangler.mangle(VD, ""); 4068 } 4069 4070 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 4071 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 4072 msvc_hashing_ostream MHO(Out); 4073 MicrosoftCXXNameMangler Mangler(*this, MHO); 4074 4075 Mangler.getStream() << "?"; 4076 Mangler.mangleSourceName("$TSS" + llvm::utostr(GuardNum)); 4077 Mangler.mangleNestedName(VD); 4078 Mangler.getStream() << "@4HA"; 4079 } 4080 4081 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 4082 raw_ostream &Out) { 4083 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 4084 // ::= ?__J <postfix> @5 <scope-depth> 4085 // ::= ?$S <guard-num> @ <postfix> @4IA 4086 4087 // The first mangling is what MSVC uses to guard static locals in inline 4088 // functions. It uses a different mangling in external functions to support 4089 // guarding more than 32 variables. MSVC rejects inline functions with more 4090 // than 32 static locals. We don't fully implement the second mangling 4091 // because those guards are not externally visible, and instead use LLVM's 4092 // default renaming when creating a new guard variable. 4093 msvc_hashing_ostream MHO(Out); 4094 MicrosoftCXXNameMangler Mangler(*this, MHO); 4095 4096 bool Visible = VD->isExternallyVisible(); 4097 if (Visible) { 4098 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 4099 } else { 4100 Mangler.getStream() << "?$S1@"; 4101 } 4102 unsigned ScopeDepth = 0; 4103 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 4104 // If we do not have a discriminator and are emitting a guard variable for 4105 // use at global scope, then mangling the nested name will not be enough to 4106 // remove ambiguities. 4107 Mangler.mangle(VD, ""); 4108 else 4109 Mangler.mangleNestedName(VD); 4110 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 4111 if (ScopeDepth) 4112 Mangler.mangleNumber(ScopeDepth); 4113 } 4114 4115 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 4116 char CharCode, 4117 raw_ostream &Out) { 4118 msvc_hashing_ostream MHO(Out); 4119 MicrosoftCXXNameMangler Mangler(*this, MHO); 4120 Mangler.getStream() << "??__" << CharCode; 4121 if (D->isStaticDataMember()) { 4122 Mangler.getStream() << '?'; 4123 Mangler.mangleName(D); 4124 Mangler.mangleVariableEncoding(D); 4125 Mangler.getStream() << "@@"; 4126 } else { 4127 Mangler.mangleName(D); 4128 } 4129 // This is the function class mangling. These stubs are global, non-variadic, 4130 // cdecl functions that return void and take no args. 4131 Mangler.getStream() << "YAXXZ"; 4132 } 4133 4134 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 4135 raw_ostream &Out) { 4136 // <initializer-name> ::= ?__E <name> YAXXZ 4137 mangleInitFiniStub(D, 'E', Out); 4138 } 4139 4140 void 4141 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 4142 raw_ostream &Out) { 4143 // <destructor-name> ::= ?__F <name> YAXXZ 4144 mangleInitFiniStub(D, 'F', Out); 4145 } 4146 4147 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 4148 raw_ostream &Out) { 4149 // <char-type> ::= 0 # char, char16_t, char32_t 4150 // # (little endian char data in mangling) 4151 // ::= 1 # wchar_t (big endian char data in mangling) 4152 // 4153 // <literal-length> ::= <non-negative integer> # the length of the literal 4154 // 4155 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 4156 // # trailing null bytes 4157 // 4158 // <encoded-string> ::= <simple character> # uninteresting character 4159 // ::= '?$' <hex digit> <hex digit> # these two nibbles 4160 // # encode the byte for the 4161 // # character 4162 // ::= '?' [a-z] # \xe1 - \xfa 4163 // ::= '?' [A-Z] # \xc1 - \xda 4164 // ::= '?' [0-9] # [,/\:. \n\t'-] 4165 // 4166 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 4167 // <encoded-string> '@' 4168 MicrosoftCXXNameMangler Mangler(*this, Out); 4169 Mangler.getStream() << "??_C@_"; 4170 4171 // The actual string length might be different from that of the string literal 4172 // in cases like: 4173 // char foo[3] = "foobar"; 4174 // char bar[42] = "foobar"; 4175 // Where it is truncated or zero-padded to fit the array. This is the length 4176 // used for mangling, and any trailing null-bytes also need to be mangled. 4177 unsigned StringLength = 4178 getASTContext().getAsConstantArrayType(SL->getType())->getZExtSize(); 4179 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 4180 4181 // <char-type>: The "kind" of string literal is encoded into the mangled name. 4182 if (SL->isWide()) 4183 Mangler.getStream() << '1'; 4184 else 4185 Mangler.getStream() << '0'; 4186 4187 // <literal-length>: The next part of the mangled name consists of the length 4188 // of the string in bytes. 4189 Mangler.mangleNumber(StringByteLength); 4190 4191 auto GetLittleEndianByte = [&SL](unsigned Index) { 4192 unsigned CharByteWidth = SL->getCharByteWidth(); 4193 if (Index / CharByteWidth >= SL->getLength()) 4194 return static_cast<char>(0); 4195 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 4196 unsigned OffsetInCodeUnit = Index % CharByteWidth; 4197 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 4198 }; 4199 4200 auto GetBigEndianByte = [&SL](unsigned Index) { 4201 unsigned CharByteWidth = SL->getCharByteWidth(); 4202 if (Index / CharByteWidth >= SL->getLength()) 4203 return static_cast<char>(0); 4204 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 4205 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 4206 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 4207 }; 4208 4209 // CRC all the bytes of the StringLiteral. 4210 llvm::JamCRC JC; 4211 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 4212 JC.update(GetLittleEndianByte(I)); 4213 4214 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 4215 // scheme. 4216 Mangler.mangleNumber(JC.getCRC()); 4217 4218 // <encoded-string>: The mangled name also contains the first 32 bytes 4219 // (including null-terminator bytes) of the encoded StringLiteral. 4220 // Each character is encoded by splitting them into bytes and then encoding 4221 // the constituent bytes. 4222 auto MangleByte = [&Mangler](char Byte) { 4223 // There are five different manglings for characters: 4224 // - [a-zA-Z0-9_$]: A one-to-one mapping. 4225 // - ?[a-z]: The range from \xe1 to \xfa. 4226 // - ?[A-Z]: The range from \xc1 to \xda. 4227 // - ?[0-9]: The set of [,/\:. \n\t'-]. 4228 // - ?$XX: A fallback which maps nibbles. 4229 if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) { 4230 Mangler.getStream() << Byte; 4231 } else if (isLetter(Byte & 0x7f)) { 4232 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 4233 } else { 4234 const char SpecialChars[] = {',', '/', '\\', ':', '.', 4235 ' ', '\n', '\t', '\'', '-'}; 4236 const char *Pos = llvm::find(SpecialChars, Byte); 4237 if (Pos != std::end(SpecialChars)) { 4238 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 4239 } else { 4240 Mangler.getStream() << "?$"; 4241 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 4242 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 4243 } 4244 } 4245 }; 4246 4247 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 4248 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 4249 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 4250 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 4251 if (SL->isWide()) 4252 MangleByte(GetBigEndianByte(I)); 4253 else 4254 MangleByte(GetLittleEndianByte(I)); 4255 } 4256 4257 Mangler.getStream() << '@'; 4258 } 4259 4260 MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context, 4261 DiagnosticsEngine &Diags, 4262 bool IsAux) { 4263 return new MicrosoftMangleContextImpl(Context, Diags, IsAux); 4264 } 4265