1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/GlobalDecl.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/VTableBuilder.h" 27 #include "clang/Basic/ABI.h" 28 #include "clang/Basic/DiagnosticOptions.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/Support/CRC.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/StringSaver.h" 38 #include "llvm/Support/xxhash.h" 39 #include <functional> 40 #include <optional> 41 42 using namespace clang; 43 44 namespace { 45 46 // Get GlobalDecl of DeclContext of local entities. 47 static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) { 48 GlobalDecl GD; 49 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 50 GD = GlobalDecl(CD, Ctor_Complete); 51 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 52 GD = GlobalDecl(DD, Dtor_Complete); 53 else 54 GD = GlobalDecl(cast<FunctionDecl>(DC)); 55 return GD; 56 } 57 58 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 59 raw_ostream &OS; 60 llvm::SmallString<64> Buffer; 61 62 msvc_hashing_ostream(raw_ostream &OS) 63 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 64 ~msvc_hashing_ostream() override { 65 StringRef MangledName = str(); 66 bool StartsWithEscape = MangledName.startswith("\01"); 67 if (StartsWithEscape) 68 MangledName = MangledName.drop_front(1); 69 if (MangledName.size() < 4096) { 70 OS << str(); 71 return; 72 } 73 74 llvm::MD5 Hasher; 75 llvm::MD5::MD5Result Hash; 76 Hasher.update(MangledName); 77 Hasher.final(Hash); 78 79 SmallString<32> HexString; 80 llvm::MD5::stringifyResult(Hash, HexString); 81 82 if (StartsWithEscape) 83 OS << '\01'; 84 OS << "??@" << HexString << '@'; 85 } 86 }; 87 88 static const DeclContext * 89 getLambdaDefaultArgumentDeclContext(const Decl *D) { 90 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 91 if (RD->isLambda()) 92 if (const auto *Parm = 93 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 94 return Parm->getDeclContext(); 95 return nullptr; 96 } 97 98 /// Retrieve the declaration context that should be used when mangling 99 /// the given declaration. 100 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 101 // The ABI assumes that lambda closure types that occur within 102 // default arguments live in the context of the function. However, due to 103 // the way in which Clang parses and creates function declarations, this is 104 // not the case: the lambda closure type ends up living in the context 105 // where the function itself resides, because the function declaration itself 106 // had not yet been created. Fix the context here. 107 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 108 return LDADC; 109 110 // Perform the same check for block literals. 111 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 112 if (ParmVarDecl *ContextParam = 113 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 114 return ContextParam->getDeclContext(); 115 } 116 117 const DeclContext *DC = D->getDeclContext(); 118 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 119 isa<OMPDeclareMapperDecl>(DC)) { 120 return getEffectiveDeclContext(cast<Decl>(DC)); 121 } 122 123 return DC->getRedeclContext(); 124 } 125 126 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 127 return getEffectiveDeclContext(cast<Decl>(DC)); 128 } 129 130 static const FunctionDecl *getStructor(const NamedDecl *ND) { 131 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 132 return FTD->getTemplatedDecl()->getCanonicalDecl(); 133 134 const auto *FD = cast<FunctionDecl>(ND); 135 if (const auto *FTD = FD->getPrimaryTemplate()) 136 return FTD->getTemplatedDecl()->getCanonicalDecl(); 137 138 return FD->getCanonicalDecl(); 139 } 140 141 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 142 /// Microsoft Visual C++ ABI. 143 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 144 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 145 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 146 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 147 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 148 llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds; 149 llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds; 150 SmallString<16> AnonymousNamespaceHash; 151 152 public: 153 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags, 154 bool IsAux = false); 155 bool shouldMangleCXXName(const NamedDecl *D) override; 156 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 157 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; 158 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 159 const MethodVFTableLocation &ML, 160 raw_ostream &Out) override; 161 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 162 raw_ostream &) override; 163 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 164 const ThisAdjustment &ThisAdjustment, 165 raw_ostream &) override; 166 void mangleCXXVFTable(const CXXRecordDecl *Derived, 167 ArrayRef<const CXXRecordDecl *> BasePath, 168 raw_ostream &Out) override; 169 void mangleCXXVBTable(const CXXRecordDecl *Derived, 170 ArrayRef<const CXXRecordDecl *> BasePath, 171 raw_ostream &Out) override; 172 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 173 const CXXRecordDecl *DstRD, 174 raw_ostream &Out) override; 175 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 176 bool IsUnaligned, uint32_t NumEntries, 177 raw_ostream &Out) override; 178 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 179 raw_ostream &Out) override; 180 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 181 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 182 int32_t VBPtrOffset, uint32_t VBIndex, 183 raw_ostream &Out) override; 184 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 185 void mangleCXXRTTIName(QualType T, raw_ostream &Out, 186 bool NormalizeIntegers) override; 187 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 188 uint32_t NVOffset, int32_t VBPtrOffset, 189 uint32_t VBTableOffset, uint32_t Flags, 190 raw_ostream &Out) override; 191 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 192 raw_ostream &Out) override; 193 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 194 raw_ostream &Out) override; 195 void 196 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 197 ArrayRef<const CXXRecordDecl *> BasePath, 198 raw_ostream &Out) override; 199 void mangleTypeName(QualType T, raw_ostream &, 200 bool NormalizeIntegers) override; 201 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 202 raw_ostream &) override; 203 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 204 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 205 raw_ostream &Out) override; 206 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 207 void mangleDynamicAtExitDestructor(const VarDecl *D, 208 raw_ostream &Out) override; 209 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, 210 raw_ostream &Out) override; 211 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, 212 raw_ostream &Out) override; 213 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 214 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 215 const DeclContext *DC = getEffectiveDeclContext(ND); 216 if (!DC->isFunctionOrMethod()) 217 return false; 218 219 // Lambda closure types are already numbered, give out a phony number so 220 // that they demangle nicely. 221 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 222 if (RD->isLambda()) { 223 disc = 1; 224 return true; 225 } 226 } 227 228 // Use the canonical number for externally visible decls. 229 if (ND->isExternallyVisible()) { 230 disc = getASTContext().getManglingNumber(ND, isAux()); 231 return true; 232 } 233 234 // Anonymous tags are already numbered. 235 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 236 if (!Tag->hasNameForLinkage() && 237 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 238 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 239 return false; 240 } 241 242 // Make up a reasonable number for internal decls. 243 unsigned &discriminator = Uniquifier[ND]; 244 if (!discriminator) 245 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 246 disc = discriminator + 1; 247 return true; 248 } 249 250 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 251 assert(Lambda->isLambda() && "RD must be a lambda!"); 252 std::string Name("<lambda_"); 253 254 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 255 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 256 unsigned LambdaId; 257 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 258 const FunctionDecl *Func = 259 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 260 261 if (Func) { 262 unsigned DefaultArgNo = 263 Func->getNumParams() - Parm->getFunctionScopeIndex(); 264 Name += llvm::utostr(DefaultArgNo); 265 Name += "_"; 266 } 267 268 if (LambdaManglingNumber) 269 LambdaId = LambdaManglingNumber; 270 else 271 LambdaId = getLambdaIdForDebugInfo(Lambda); 272 273 Name += llvm::utostr(LambdaId); 274 Name += ">"; 275 return Name; 276 } 277 278 unsigned getLambdaId(const CXXRecordDecl *RD) { 279 assert(RD->isLambda() && "RD must be a lambda!"); 280 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 281 assert(RD->getLambdaManglingNumber() == 0 && 282 "RD must not have a mangling number!"); 283 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 284 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 285 return Result.first->second; 286 } 287 288 unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { 289 assert(RD->isLambda() && "RD must be a lambda!"); 290 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 291 assert(RD->getLambdaManglingNumber() == 0 && 292 "RD must not have a mangling number!"); 293 // The lambda should exist, but return 0 in case it doesn't. 294 return LambdaIds.lookup(RD); 295 } 296 297 /// Return a character sequence that is (somewhat) unique to the TU suitable 298 /// for mangling anonymous namespaces. 299 StringRef getAnonymousNamespaceHash() const { 300 return AnonymousNamespaceHash; 301 } 302 303 private: 304 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 305 }; 306 307 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 308 /// Microsoft Visual C++ ABI. 309 class MicrosoftCXXNameMangler { 310 MicrosoftMangleContextImpl &Context; 311 raw_ostream &Out; 312 313 /// The "structor" is the top-level declaration being mangled, if 314 /// that's not a template specialization; otherwise it's the pattern 315 /// for that specialization. 316 const NamedDecl *Structor; 317 unsigned StructorType; 318 319 typedef llvm::SmallVector<std::string, 10> BackRefVec; 320 BackRefVec NameBackReferences; 321 322 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 323 ArgBackRefMap FunArgBackReferences; 324 ArgBackRefMap TemplateArgBackReferences; 325 326 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 327 TemplateArgStringMap TemplateArgStrings; 328 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 329 llvm::StringSaver TemplateArgStringStorage; 330 331 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 332 PassObjectSizeArgsSet PassObjectSizeArgs; 333 334 ASTContext &getASTContext() const { return Context.getASTContext(); } 335 336 const bool PointersAre64Bit; 337 338 public: 339 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 340 341 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 342 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 343 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 344 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 345 LangAS::Default) == 64) {} 346 347 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 348 const CXXConstructorDecl *D, CXXCtorType Type) 349 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 350 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 351 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 352 LangAS::Default) == 64) {} 353 354 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 355 const CXXDestructorDecl *D, CXXDtorType Type) 356 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 357 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 358 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( 359 LangAS::Default) == 64) {} 360 361 raw_ostream &getStream() const { return Out; } 362 363 void mangle(GlobalDecl GD, StringRef Prefix = "?"); 364 void mangleName(GlobalDecl GD); 365 void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle); 366 void mangleVariableEncoding(const VarDecl *VD); 367 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, 368 StringRef Prefix = "$"); 369 void mangleMemberDataPointerInClassNTTP(const CXXRecordDecl *, 370 const ValueDecl *); 371 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 372 const CXXMethodDecl *MD, 373 StringRef Prefix = "$"); 374 void mangleMemberFunctionPointerInClassNTTP(const CXXRecordDecl *RD, 375 const CXXMethodDecl *MD); 376 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 377 const MethodVFTableLocation &ML); 378 void mangleNumber(int64_t Number); 379 void mangleNumber(llvm::APSInt Number); 380 void mangleFloat(llvm::APFloat Number); 381 void mangleBits(llvm::APInt Number); 382 void mangleTagTypeKind(TagTypeKind TK); 383 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 384 ArrayRef<StringRef> NestedNames = std::nullopt); 385 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 386 void mangleType(QualType T, SourceRange Range, 387 QualifierMangleMode QMM = QMM_Mangle); 388 void mangleFunctionType(const FunctionType *T, 389 const FunctionDecl *D = nullptr, 390 bool ForceThisQuals = false, 391 bool MangleExceptionSpec = true); 392 void mangleNestedName(GlobalDecl GD); 393 394 private: 395 bool isStructorDecl(const NamedDecl *ND) const { 396 return ND == Structor || getStructor(ND) == Structor; 397 } 398 399 bool is64BitPointer(Qualifiers Quals) const { 400 LangAS AddrSpace = Quals.getAddressSpace(); 401 return AddrSpace == LangAS::ptr64 || 402 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || 403 AddrSpace == LangAS::ptr32_uptr)); 404 } 405 406 void mangleUnqualifiedName(GlobalDecl GD) { 407 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName()); 408 } 409 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name); 410 void mangleSourceName(StringRef Name); 411 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 412 void mangleCXXDtorType(CXXDtorType T); 413 void mangleQualifiers(Qualifiers Quals, bool IsMember); 414 void mangleRefQualifier(RefQualifierKind RefQualifier); 415 void manglePointerCVQualifiers(Qualifiers Quals); 416 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 417 418 void mangleUnscopedTemplateName(GlobalDecl GD); 419 void 420 mangleTemplateInstantiationName(GlobalDecl GD, 421 const TemplateArgumentList &TemplateArgs); 422 void mangleObjCMethodName(const ObjCMethodDecl *MD); 423 424 void mangleFunctionArgumentType(QualType T, SourceRange Range); 425 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 426 427 bool isArtificialTagType(QualType T) const; 428 429 // Declare manglers for every type class. 430 #define ABSTRACT_TYPE(CLASS, PARENT) 431 #define NON_CANONICAL_TYPE(CLASS, PARENT) 432 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 433 Qualifiers Quals, \ 434 SourceRange Range); 435 #include "clang/AST/TypeNodes.inc" 436 #undef ABSTRACT_TYPE 437 #undef NON_CANONICAL_TYPE 438 #undef TYPE 439 440 void mangleType(const TagDecl *TD); 441 void mangleDecayedArrayType(const ArrayType *T); 442 void mangleArrayType(const ArrayType *T); 443 void mangleFunctionClass(const FunctionDecl *FD); 444 void mangleCallingConvention(CallingConv CC); 445 void mangleCallingConvention(const FunctionType *T); 446 void mangleIntegerLiteral(const llvm::APSInt &Number, 447 const NonTypeTemplateParmDecl *PD = nullptr, 448 QualType TemplateArgType = QualType()); 449 void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); 450 void mangleThrowSpecification(const FunctionProtoType *T); 451 452 void mangleTemplateArgs(const TemplateDecl *TD, 453 const TemplateArgumentList &TemplateArgs); 454 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 455 const NamedDecl *Parm); 456 void mangleTemplateArgValue(QualType T, const APValue &V, 457 bool WithScalarType = false); 458 459 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 460 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 461 SourceRange Range); 462 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 463 SourceRange Range); 464 }; 465 } 466 467 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 468 DiagnosticsEngine &Diags, 469 bool IsAux) 470 : MicrosoftMangleContext(Context, Diags, IsAux) { 471 // To mangle anonymous namespaces, hash the path to the main source file. The 472 // path should be whatever (probably relative) path was passed on the command 473 // line. The goal is for the compiler to produce the same output regardless of 474 // working directory, so use the uncanonicalized relative path. 475 // 476 // It's important to make the mangled names unique because, when CodeView 477 // debug info is in use, the debugger uses mangled type names to distinguish 478 // between otherwise identically named types in anonymous namespaces. 479 // 480 // These symbols are always internal, so there is no need for the hash to 481 // match what MSVC produces. For the same reason, clang is free to change the 482 // hash at any time without breaking compatibility with old versions of clang. 483 // The generated names are intended to look similar to what MSVC generates, 484 // which are something like "?A0x01234567@". 485 SourceManager &SM = Context.getSourceManager(); 486 if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { 487 // Truncate the hash so we get 8 characters of hexadecimal. 488 uint32_t TruncatedHash = uint32_t(xxh3_64bits(FE->getName())); 489 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 490 } else { 491 // If we don't have a path to the main file, we'll just use 0. 492 AnonymousNamespaceHash = "0"; 493 } 494 } 495 496 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 497 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 498 LanguageLinkage L = FD->getLanguageLinkage(); 499 // Overloadable functions need mangling. 500 if (FD->hasAttr<OverloadableAttr>()) 501 return true; 502 503 // The ABI expects that we would never mangle "typical" user-defined entry 504 // points regardless of visibility or freestanding-ness. 505 // 506 // N.B. This is distinct from asking about "main". "main" has a lot of 507 // special rules associated with it in the standard while these 508 // user-defined entry points are outside of the purview of the standard. 509 // For example, there can be only one definition for "main" in a standards 510 // compliant program; however nothing forbids the existence of wmain and 511 // WinMain in the same translation unit. 512 if (FD->isMSVCRTEntryPoint()) 513 return false; 514 515 // C++ functions and those whose names are not a simple identifier need 516 // mangling. 517 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 518 return true; 519 520 // C functions are not mangled. 521 if (L == CLanguageLinkage) 522 return false; 523 } 524 525 // Otherwise, no mangling is done outside C++ mode. 526 if (!getASTContext().getLangOpts().CPlusPlus) 527 return false; 528 529 const VarDecl *VD = dyn_cast<VarDecl>(D); 530 if (VD && !isa<DecompositionDecl>(D)) { 531 // C variables are not mangled. 532 if (VD->isExternC()) 533 return false; 534 535 // Variables at global scope with internal linkage are not mangled. 536 const DeclContext *DC = getEffectiveDeclContext(D); 537 // Check for extern variable declared locally. 538 if (DC->isFunctionOrMethod() && D->hasLinkage()) 539 while (!DC->isNamespace() && !DC->isTranslationUnit()) 540 DC = getEffectiveParentContext(DC); 541 542 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && 543 !isa<VarTemplateSpecializationDecl>(D) && 544 D->getIdentifier() != nullptr) 545 return false; 546 } 547 548 return true; 549 } 550 551 bool 552 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 553 return true; 554 } 555 556 void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) { 557 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 558 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 559 // Therefore it's really important that we don't decorate the 560 // name with leading underscores or leading/trailing at signs. So, by 561 // default, we emit an asm marker at the start so we get the name right. 562 // Callers can override this with a custom prefix. 563 564 // <mangled-name> ::= ? <name> <type-encoding> 565 Out << Prefix; 566 mangleName(GD); 567 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 568 mangleFunctionEncoding(GD, Context.shouldMangleDeclName(FD)); 569 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 570 mangleVariableEncoding(VD); 571 else if (isa<MSGuidDecl>(D)) 572 // MSVC appears to mangle GUIDs as if they were variables of type 573 // 'const struct __s_GUID'. 574 Out << "3U__s_GUID@@B"; 575 else if (isa<TemplateParamObjectDecl>(D)) { 576 // Template parameter objects don't get a <type-encoding>; their type is 577 // specified as part of their value. 578 } else 579 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 580 } 581 582 void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD, 583 bool ShouldMangle) { 584 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 585 // <type-encoding> ::= <function-class> <function-type> 586 587 // Since MSVC operates on the type as written and not the canonical type, it 588 // actually matters which decl we have here. MSVC appears to choose the 589 // first, since it is most likely to be the declaration in a header file. 590 FD = FD->getFirstDecl(); 591 592 // We should never ever see a FunctionNoProtoType at this point. 593 // We don't even know how to mangle their types anyway :). 594 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 595 596 // extern "C" functions can hold entities that must be mangled. 597 // As it stands, these functions still need to get expressed in the full 598 // external name. They have their class and type omitted, replaced with '9'. 599 if (ShouldMangle) { 600 // We would like to mangle all extern "C" functions using this additional 601 // component but this would break compatibility with MSVC's behavior. 602 // Instead, do this when we know that compatibility isn't important (in 603 // other words, when it is an overloaded extern "C" function). 604 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 605 Out << "$$J0"; 606 607 mangleFunctionClass(FD); 608 609 mangleFunctionType(FT, FD, false, false); 610 } else { 611 Out << '9'; 612 } 613 } 614 615 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 616 // <type-encoding> ::= <storage-class> <variable-type> 617 // <storage-class> ::= 0 # private static member 618 // ::= 1 # protected static member 619 // ::= 2 # public static member 620 // ::= 3 # global 621 // ::= 4 # static local 622 623 // The first character in the encoding (after the name) is the storage class. 624 if (VD->isStaticDataMember()) { 625 // If it's a static member, it also encodes the access level. 626 switch (VD->getAccess()) { 627 default: 628 case AS_private: Out << '0'; break; 629 case AS_protected: Out << '1'; break; 630 case AS_public: Out << '2'; break; 631 } 632 } 633 else if (!VD->isStaticLocal()) 634 Out << '3'; 635 else 636 Out << '4'; 637 // Now mangle the type. 638 // <variable-type> ::= <type> <cvr-qualifiers> 639 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 640 // Pointers and references are odd. The type of 'int * const foo;' gets 641 // mangled as 'QAHA' instead of 'PAHB', for example. 642 SourceRange SR = VD->getSourceRange(); 643 QualType Ty = VD->getType(); 644 if (Ty->isPointerType() || Ty->isReferenceType() || 645 Ty->isMemberPointerType()) { 646 mangleType(Ty, SR, QMM_Drop); 647 manglePointerExtQualifiers( 648 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 649 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 650 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 651 // Member pointers are suffixed with a back reference to the member 652 // pointer's class name. 653 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 654 } else 655 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 656 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 657 // Global arrays are funny, too. 658 mangleDecayedArrayType(AT); 659 if (AT->getElementType()->isArrayType()) 660 Out << 'A'; 661 else 662 mangleQualifiers(Ty.getQualifiers(), false); 663 } else { 664 mangleType(Ty, SR, QMM_Drop); 665 mangleQualifiers(Ty.getQualifiers(), false); 666 } 667 } 668 669 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 670 const ValueDecl *VD, 671 StringRef Prefix) { 672 // <member-data-pointer> ::= <integer-literal> 673 // ::= $F <number> <number> 674 // ::= $G <number> <number> <number> 675 676 int64_t FieldOffset; 677 int64_t VBTableOffset; 678 MSInheritanceModel IM = RD->getMSInheritanceModel(); 679 if (VD) { 680 FieldOffset = getASTContext().getFieldOffset(VD); 681 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 682 "cannot take address of bitfield"); 683 FieldOffset /= getASTContext().getCharWidth(); 684 685 VBTableOffset = 0; 686 687 if (IM == MSInheritanceModel::Virtual) 688 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 689 } else { 690 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 691 692 VBTableOffset = -1; 693 } 694 695 char Code = '\0'; 696 switch (IM) { 697 case MSInheritanceModel::Single: Code = '0'; break; 698 case MSInheritanceModel::Multiple: Code = '0'; break; 699 case MSInheritanceModel::Virtual: Code = 'F'; break; 700 case MSInheritanceModel::Unspecified: Code = 'G'; break; 701 } 702 703 Out << Prefix << Code; 704 705 mangleNumber(FieldOffset); 706 707 // The C++ standard doesn't allow base-to-derived member pointer conversions 708 // in template parameter contexts, so the vbptr offset of data member pointers 709 // is always zero. 710 if (inheritanceModelHasVBPtrOffsetField(IM)) 711 mangleNumber(0); 712 if (inheritanceModelHasVBTableOffsetField(IM)) 713 mangleNumber(VBTableOffset); 714 } 715 716 void MicrosoftCXXNameMangler::mangleMemberDataPointerInClassNTTP( 717 const CXXRecordDecl *RD, const ValueDecl *VD) { 718 MSInheritanceModel IM = RD->getMSInheritanceModel(); 719 // <nttp-class-member-data-pointer> ::= <member-data-pointer> 720 // ::= N 721 // ::= 8 <postfix> @ <unqualified-name> @ 722 723 if (IM != MSInheritanceModel::Single && IM != MSInheritanceModel::Multiple) 724 return mangleMemberDataPointer(RD, VD, ""); 725 726 if (!VD) { 727 Out << 'N'; 728 return; 729 } 730 731 Out << '8'; 732 mangleNestedName(VD); 733 Out << '@'; 734 mangleUnqualifiedName(VD); 735 Out << '@'; 736 } 737 738 void 739 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 740 const CXXMethodDecl *MD, 741 StringRef Prefix) { 742 // <member-function-pointer> ::= $1? <name> 743 // ::= $H? <name> <number> 744 // ::= $I? <name> <number> <number> 745 // ::= $J? <name> <number> <number> <number> 746 747 MSInheritanceModel IM = RD->getMSInheritanceModel(); 748 749 char Code = '\0'; 750 switch (IM) { 751 case MSInheritanceModel::Single: Code = '1'; break; 752 case MSInheritanceModel::Multiple: Code = 'H'; break; 753 case MSInheritanceModel::Virtual: Code = 'I'; break; 754 case MSInheritanceModel::Unspecified: Code = 'J'; break; 755 } 756 757 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 758 // thunk. 759 uint64_t NVOffset = 0; 760 uint64_t VBTableOffset = 0; 761 uint64_t VBPtrOffset = 0; 762 if (MD) { 763 Out << Prefix << Code << '?'; 764 if (MD->isVirtual()) { 765 MicrosoftVTableContext *VTContext = 766 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 767 MethodVFTableLocation ML = 768 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 769 mangleVirtualMemPtrThunk(MD, ML); 770 NVOffset = ML.VFPtrOffset.getQuantity(); 771 VBTableOffset = ML.VBTableIndex * 4; 772 if (ML.VBase) { 773 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 774 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 775 } 776 } else { 777 mangleName(MD); 778 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 779 } 780 781 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) 782 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 783 } else { 784 // Null single inheritance member functions are encoded as a simple nullptr. 785 if (IM == MSInheritanceModel::Single) { 786 Out << Prefix << "0A@"; 787 return; 788 } 789 if (IM == MSInheritanceModel::Unspecified) 790 VBTableOffset = -1; 791 Out << Prefix << Code; 792 } 793 794 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM)) 795 mangleNumber(static_cast<uint32_t>(NVOffset)); 796 if (inheritanceModelHasVBPtrOffsetField(IM)) 797 mangleNumber(VBPtrOffset); 798 if (inheritanceModelHasVBTableOffsetField(IM)) 799 mangleNumber(VBTableOffset); 800 } 801 802 void MicrosoftCXXNameMangler::mangleMemberFunctionPointerInClassNTTP( 803 const CXXRecordDecl *RD, const CXXMethodDecl *MD) { 804 // <nttp-class-member-function-pointer> ::= <member-function-pointer> 805 // ::= N 806 // ::= E? <virtual-mem-ptr-thunk> 807 // ::= E? <mangled-name> <type-encoding> 808 809 if (!MD) { 810 if (RD->getMSInheritanceModel() != MSInheritanceModel::Single) 811 return mangleMemberFunctionPointer(RD, MD, ""); 812 813 Out << 'N'; 814 return; 815 } 816 817 Out << "E?"; 818 if (MD->isVirtual()) { 819 MicrosoftVTableContext *VTContext = 820 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 821 MethodVFTableLocation ML = 822 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 823 mangleVirtualMemPtrThunk(MD, ML); 824 } else { 825 mangleName(MD); 826 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 827 } 828 } 829 830 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 831 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 832 // Get the vftable offset. 833 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 834 getASTContext().getTargetInfo().getPointerWidth(LangAS::Default)); 835 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 836 837 Out << "?_9"; 838 mangleName(MD->getParent()); 839 Out << "$B"; 840 mangleNumber(OffsetInVFTable); 841 Out << 'A'; 842 mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>()); 843 } 844 845 void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) { 846 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 847 848 // Always start with the unqualified name. 849 mangleUnqualifiedName(GD); 850 851 mangleNestedName(GD); 852 853 // Terminate the whole name with an '@'. 854 Out << '@'; 855 } 856 857 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 858 mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); 859 } 860 861 void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { 862 // MSVC never mangles any integer wider than 64 bits. In general it appears 863 // to convert every integer to signed 64 bit before mangling (including 864 // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom 865 // 64. 866 unsigned Width = std::max(Number.getBitWidth(), 64U); 867 llvm::APInt Value = Number.extend(Width); 868 869 // <non-negative integer> ::= A@ # when Number == 0 870 // ::= <decimal digit> # when 1 <= Number <= 10 871 // ::= <hex digit>+ @ # when Number >= 10 872 // 873 // <number> ::= [?] <non-negative integer> 874 875 if (Value.isNegative()) { 876 Value = -Value; 877 Out << '?'; 878 } 879 mangleBits(Value); 880 } 881 882 void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { 883 using llvm::APFloat; 884 885 switch (APFloat::SemanticsToEnum(Number.getSemantics())) { 886 case APFloat::S_IEEEsingle: Out << 'A'; break; 887 case APFloat::S_IEEEdouble: Out << 'B'; break; 888 889 // The following are all Clang extensions. We try to pick manglings that are 890 // unlikely to conflict with MSVC's scheme. 891 case APFloat::S_IEEEhalf: Out << 'V'; break; 892 case APFloat::S_BFloat: Out << 'W'; break; 893 case APFloat::S_x87DoubleExtended: Out << 'X'; break; 894 case APFloat::S_IEEEquad: Out << 'Y'; break; 895 case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; 896 case APFloat::S_Float8E5M2: 897 case APFloat::S_Float8E4M3FN: 898 case APFloat::S_Float8E5M2FNUZ: 899 case APFloat::S_Float8E4M3FNUZ: 900 case APFloat::S_Float8E4M3B11FNUZ: 901 case APFloat::S_FloatTF32: 902 llvm_unreachable("Tried to mangle unexpected APFloat semantics"); 903 } 904 905 mangleBits(Number.bitcastToAPInt()); 906 } 907 908 void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { 909 if (Value == 0) 910 Out << "A@"; 911 else if (Value.uge(1) && Value.ule(10)) 912 Out << (Value - 1); 913 else { 914 // Numbers that are not encoded as decimal digits are represented as nibbles 915 // in the range of ASCII characters 'A' to 'P'. 916 // The number 0x123450 would be encoded as 'BCDEFA' 917 llvm::SmallString<32> EncodedNumberBuffer; 918 for (; Value != 0; Value.lshrInPlace(4)) 919 EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue()); 920 std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end()); 921 Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size()); 922 Out << '@'; 923 } 924 } 925 926 static GlobalDecl isTemplate(GlobalDecl GD, 927 const TemplateArgumentList *&TemplateArgs) { 928 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 929 // Check if we have a function template. 930 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 931 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 932 TemplateArgs = FD->getTemplateSpecializationArgs(); 933 return GD.getWithDecl(TD); 934 } 935 } 936 937 // Check if we have a class template. 938 if (const ClassTemplateSpecializationDecl *Spec = 939 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 940 TemplateArgs = &Spec->getTemplateArgs(); 941 return GD.getWithDecl(Spec->getSpecializedTemplate()); 942 } 943 944 // Check if we have a variable template. 945 if (const VarTemplateSpecializationDecl *Spec = 946 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 947 TemplateArgs = &Spec->getTemplateArgs(); 948 return GD.getWithDecl(Spec->getSpecializedTemplate()); 949 } 950 951 return GlobalDecl(); 952 } 953 954 void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, 955 DeclarationName Name) { 956 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 957 // <unqualified-name> ::= <operator-name> 958 // ::= <ctor-dtor-name> 959 // ::= <source-name> 960 // ::= <template-name> 961 962 // Check if we have a template. 963 const TemplateArgumentList *TemplateArgs = nullptr; 964 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 965 // Function templates aren't considered for name back referencing. This 966 // makes sense since function templates aren't likely to occur multiple 967 // times in a symbol. 968 if (isa<FunctionTemplateDecl>(TD.getDecl())) { 969 mangleTemplateInstantiationName(TD, *TemplateArgs); 970 Out << '@'; 971 return; 972 } 973 974 // Here comes the tricky thing: if we need to mangle something like 975 // void foo(A::X<Y>, B::X<Y>), 976 // the X<Y> part is aliased. However, if you need to mangle 977 // void foo(A::X<A::Y>, A::X<B::Y>), 978 // the A::X<> part is not aliased. 979 // That is, from the mangler's perspective we have a structure like this: 980 // namespace[s] -> type[ -> template-parameters] 981 // but from the Clang perspective we have 982 // type [ -> template-parameters] 983 // \-> namespace[s] 984 // What we do is we create a new mangler, mangle the same type (without 985 // a namespace suffix) to a string using the extra mangler and then use 986 // the mangled type name as a key to check the mangling of different types 987 // for aliasing. 988 989 // It's important to key cache reads off ND, not TD -- the same TD can 990 // be used with different TemplateArgs, but ND uniquely identifies 991 // TD / TemplateArg pairs. 992 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 993 if (Found == TemplateArgBackReferences.end()) { 994 995 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 996 if (Found == TemplateArgStrings.end()) { 997 // Mangle full template name into temporary buffer. 998 llvm::SmallString<64> TemplateMangling; 999 llvm::raw_svector_ostream Stream(TemplateMangling); 1000 MicrosoftCXXNameMangler Extra(Context, Stream); 1001 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 1002 1003 // Use the string backref vector to possibly get a back reference. 1004 mangleSourceName(TemplateMangling); 1005 1006 // Memoize back reference for this type if one exist, else memoize 1007 // the mangling itself. 1008 BackRefVec::iterator StringFound = 1009 llvm::find(NameBackReferences, TemplateMangling); 1010 if (StringFound != NameBackReferences.end()) { 1011 TemplateArgBackReferences[ND] = 1012 StringFound - NameBackReferences.begin(); 1013 } else { 1014 TemplateArgStrings[ND] = 1015 TemplateArgStringStorage.save(TemplateMangling.str()); 1016 } 1017 } else { 1018 Out << Found->second << '@'; // Outputs a StringRef. 1019 } 1020 } else { 1021 Out << Found->second; // Outputs a back reference (an int). 1022 } 1023 return; 1024 } 1025 1026 switch (Name.getNameKind()) { 1027 case DeclarationName::Identifier: { 1028 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 1029 bool IsDeviceStub = 1030 ND && 1031 ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) || 1032 (isa<FunctionTemplateDecl>(ND) && 1033 cast<FunctionTemplateDecl>(ND) 1034 ->getTemplatedDecl() 1035 ->hasAttr<CUDAGlobalAttr>())) && 1036 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1037 if (IsDeviceStub) 1038 mangleSourceName( 1039 (llvm::Twine("__device_stub__") + II->getName()).str()); 1040 else 1041 mangleSourceName(II->getName()); 1042 break; 1043 } 1044 1045 // Otherwise, an anonymous entity. We must have a declaration. 1046 assert(ND && "mangling empty name without declaration"); 1047 1048 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1049 if (NS->isAnonymousNamespace()) { 1050 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 1051 break; 1052 } 1053 } 1054 1055 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 1056 // Decomposition declarations are considered anonymous, and get 1057 // numbered with a $S prefix. 1058 llvm::SmallString<64> Name("$S"); 1059 // Get a unique id for the anonymous struct. 1060 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); 1061 mangleSourceName(Name); 1062 break; 1063 } 1064 1065 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1066 // We must have an anonymous union or struct declaration. 1067 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 1068 assert(RD && "expected variable decl to have a record type"); 1069 // Anonymous types with no tag or typedef get the name of their 1070 // declarator mangled in. If they have no declarator, number them with 1071 // a $S prefix. 1072 llvm::SmallString<64> Name("$S"); 1073 // Get a unique id for the anonymous struct. 1074 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 1075 mangleSourceName(Name.str()); 1076 break; 1077 } 1078 1079 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) { 1080 // Mangle a GUID object as if it were a variable with the corresponding 1081 // mangled name. 1082 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1083 llvm::raw_svector_ostream GUIDOS(GUID); 1084 Context.mangleMSGuidDecl(GD, GUIDOS); 1085 mangleSourceName(GUID); 1086 break; 1087 } 1088 1089 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1090 Out << "?__N"; 1091 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1092 TPO->getValue()); 1093 break; 1094 } 1095 1096 // We must have an anonymous struct. 1097 const TagDecl *TD = cast<TagDecl>(ND); 1098 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1099 assert(TD->getDeclContext() == D->getDeclContext() && 1100 "Typedef should not be in another decl context!"); 1101 assert(D->getDeclName().getAsIdentifierInfo() && 1102 "Typedef was not named!"); 1103 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 1104 break; 1105 } 1106 1107 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1108 if (Record->isLambda()) { 1109 llvm::SmallString<10> Name("<lambda_"); 1110 1111 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 1112 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 1113 unsigned LambdaId; 1114 const ParmVarDecl *Parm = 1115 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 1116 const FunctionDecl *Func = 1117 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 1118 1119 if (Func) { 1120 unsigned DefaultArgNo = 1121 Func->getNumParams() - Parm->getFunctionScopeIndex(); 1122 Name += llvm::utostr(DefaultArgNo); 1123 Name += "_"; 1124 } 1125 1126 if (LambdaManglingNumber) 1127 LambdaId = LambdaManglingNumber; 1128 else 1129 LambdaId = Context.getLambdaId(Record); 1130 1131 Name += llvm::utostr(LambdaId); 1132 Name += ">"; 1133 1134 mangleSourceName(Name); 1135 1136 // If the context is a variable or a class member and not a parameter, 1137 // it is encoded in a qualified name. 1138 if (LambdaManglingNumber && LambdaContextDecl) { 1139 if ((isa<VarDecl>(LambdaContextDecl) || 1140 isa<FieldDecl>(LambdaContextDecl)) && 1141 !isa<ParmVarDecl>(LambdaContextDecl)) { 1142 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 1143 } 1144 } 1145 break; 1146 } 1147 } 1148 1149 llvm::SmallString<64> Name; 1150 if (DeclaratorDecl *DD = 1151 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 1152 // Anonymous types without a name for linkage purposes have their 1153 // declarator mangled in if they have one. 1154 Name += "<unnamed-type-"; 1155 Name += DD->getName(); 1156 } else if (TypedefNameDecl *TND = 1157 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 1158 TD)) { 1159 // Anonymous types without a name for linkage purposes have their 1160 // associate typedef mangled in if they have one. 1161 Name += "<unnamed-type-"; 1162 Name += TND->getName(); 1163 } else if (isa<EnumDecl>(TD) && 1164 cast<EnumDecl>(TD)->enumerator_begin() != 1165 cast<EnumDecl>(TD)->enumerator_end()) { 1166 // Anonymous non-empty enums mangle in the first enumerator. 1167 auto *ED = cast<EnumDecl>(TD); 1168 Name += "<unnamed-enum-"; 1169 Name += ED->enumerator_begin()->getName(); 1170 } else { 1171 // Otherwise, number the types using a $S prefix. 1172 Name += "<unnamed-type-$S"; 1173 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 1174 } 1175 Name += ">"; 1176 mangleSourceName(Name.str()); 1177 break; 1178 } 1179 1180 case DeclarationName::ObjCZeroArgSelector: 1181 case DeclarationName::ObjCOneArgSelector: 1182 case DeclarationName::ObjCMultiArgSelector: { 1183 // This is reachable only when constructing an outlined SEH finally 1184 // block. Nothing depends on this mangling and it's used only with 1185 // functinos with internal linkage. 1186 llvm::SmallString<64> Name; 1187 mangleSourceName(Name.str()); 1188 break; 1189 } 1190 1191 case DeclarationName::CXXConstructorName: 1192 if (isStructorDecl(ND)) { 1193 if (StructorType == Ctor_CopyingClosure) { 1194 Out << "?_O"; 1195 return; 1196 } 1197 if (StructorType == Ctor_DefaultClosure) { 1198 Out << "?_F"; 1199 return; 1200 } 1201 } 1202 Out << "?0"; 1203 return; 1204 1205 case DeclarationName::CXXDestructorName: 1206 if (isStructorDecl(ND)) 1207 // If the named decl is the C++ destructor we're mangling, 1208 // use the type we were given. 1209 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1210 else 1211 // Otherwise, use the base destructor name. This is relevant if a 1212 // class with a destructor is declared within a destructor. 1213 mangleCXXDtorType(Dtor_Base); 1214 break; 1215 1216 case DeclarationName::CXXConversionFunctionName: 1217 // <operator-name> ::= ?B # (cast) 1218 // The target type is encoded as the return type. 1219 Out << "?B"; 1220 break; 1221 1222 case DeclarationName::CXXOperatorName: 1223 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1224 break; 1225 1226 case DeclarationName::CXXLiteralOperatorName: { 1227 Out << "?__K"; 1228 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1229 break; 1230 } 1231 1232 case DeclarationName::CXXDeductionGuideName: 1233 llvm_unreachable("Can't mangle a deduction guide name!"); 1234 1235 case DeclarationName::CXXUsingDirective: 1236 llvm_unreachable("Can't mangle a using directive name!"); 1237 } 1238 } 1239 1240 // <postfix> ::= <unqualified-name> [<postfix>] 1241 // ::= <substitution> [<postfix>] 1242 void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) { 1243 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1244 1245 if (const auto *ID = dyn_cast<IndirectFieldDecl>(ND)) 1246 for (unsigned I = 1, IE = ID->getChainingSize(); I < IE; ++I) 1247 mangleSourceName("<unnamed-tag>"); 1248 1249 const DeclContext *DC = getEffectiveDeclContext(ND); 1250 while (!DC->isTranslationUnit()) { 1251 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1252 unsigned Disc; 1253 if (Context.getNextDiscriminator(ND, Disc)) { 1254 Out << '?'; 1255 mangleNumber(Disc); 1256 Out << '?'; 1257 } 1258 } 1259 1260 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1261 auto Discriminate = 1262 [](StringRef Name, const unsigned Discriminator, 1263 const unsigned ParameterDiscriminator) -> std::string { 1264 std::string Buffer; 1265 llvm::raw_string_ostream Stream(Buffer); 1266 Stream << Name; 1267 if (Discriminator) 1268 Stream << '_' << Discriminator; 1269 if (ParameterDiscriminator) 1270 Stream << '_' << ParameterDiscriminator; 1271 return Stream.str(); 1272 }; 1273 1274 unsigned Discriminator = BD->getBlockManglingNumber(); 1275 if (!Discriminator) 1276 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1277 1278 // Mangle the parameter position as a discriminator to deal with unnamed 1279 // parameters. Rather than mangling the unqualified parameter name, 1280 // always use the position to give a uniform mangling. 1281 unsigned ParameterDiscriminator = 0; 1282 if (const auto *MC = BD->getBlockManglingContextDecl()) 1283 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1284 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1285 ParameterDiscriminator = 1286 F->getNumParams() - P->getFunctionScopeIndex(); 1287 1288 DC = getEffectiveDeclContext(BD); 1289 1290 Out << '?'; 1291 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1292 ParameterDiscriminator)); 1293 // If we have a block mangling context, encode that now. This allows us 1294 // to discriminate between named static data initializers in the same 1295 // scope. This is handled differently from parameters, which use 1296 // positions to discriminate between multiple instances. 1297 if (const auto *MC = BD->getBlockManglingContextDecl()) 1298 if (!isa<ParmVarDecl>(MC)) 1299 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1300 mangleUnqualifiedName(ND); 1301 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1302 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1303 // just the unqualified name to get the ordering correct. 1304 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1305 mangleName(RD); 1306 else 1307 Out << '@'; 1308 // void __cdecl 1309 Out << "YAX"; 1310 // struct __block_literal * 1311 Out << 'P'; 1312 // __ptr64 1313 if (PointersAre64Bit) 1314 Out << 'E'; 1315 Out << 'A'; 1316 mangleArtificialTagType(TTK_Struct, 1317 Discriminate("__block_literal", Discriminator, 1318 ParameterDiscriminator)); 1319 Out << "@Z"; 1320 1321 // If the effective context was a Record, we have fully mangled the 1322 // qualified name and do not need to continue. 1323 if (isa<RecordDecl>(DC)) 1324 break; 1325 continue; 1326 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1327 mangleObjCMethodName(Method); 1328 } else if (isa<NamedDecl>(DC)) { 1329 ND = cast<NamedDecl>(DC); 1330 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1331 mangle(getGlobalDeclAsDeclContext(FD), "?"); 1332 break; 1333 } else { 1334 mangleUnqualifiedName(ND); 1335 // Lambdas in default arguments conceptually belong to the function the 1336 // parameter corresponds to. 1337 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1338 DC = LDADC; 1339 continue; 1340 } 1341 } 1342 } 1343 DC = DC->getParent(); 1344 } 1345 } 1346 1347 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1348 // Microsoft uses the names on the case labels for these dtor variants. Clang 1349 // uses the Itanium terminology internally. Everything in this ABI delegates 1350 // towards the base dtor. 1351 switch (T) { 1352 // <operator-name> ::= ?1 # destructor 1353 case Dtor_Base: Out << "?1"; return; 1354 // <operator-name> ::= ?_D # vbase destructor 1355 case Dtor_Complete: Out << "?_D"; return; 1356 // <operator-name> ::= ?_G # scalar deleting destructor 1357 case Dtor_Deleting: Out << "?_G"; return; 1358 // <operator-name> ::= ?_E # vector deleting destructor 1359 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1360 // it. 1361 case Dtor_Comdat: 1362 llvm_unreachable("not expecting a COMDAT"); 1363 } 1364 llvm_unreachable("Unsupported dtor type?"); 1365 } 1366 1367 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1368 SourceLocation Loc) { 1369 switch (OO) { 1370 // ?0 # constructor 1371 // ?1 # destructor 1372 // <operator-name> ::= ?2 # new 1373 case OO_New: Out << "?2"; break; 1374 // <operator-name> ::= ?3 # delete 1375 case OO_Delete: Out << "?3"; break; 1376 // <operator-name> ::= ?4 # = 1377 case OO_Equal: Out << "?4"; break; 1378 // <operator-name> ::= ?5 # >> 1379 case OO_GreaterGreater: Out << "?5"; break; 1380 // <operator-name> ::= ?6 # << 1381 case OO_LessLess: Out << "?6"; break; 1382 // <operator-name> ::= ?7 # ! 1383 case OO_Exclaim: Out << "?7"; break; 1384 // <operator-name> ::= ?8 # == 1385 case OO_EqualEqual: Out << "?8"; break; 1386 // <operator-name> ::= ?9 # != 1387 case OO_ExclaimEqual: Out << "?9"; break; 1388 // <operator-name> ::= ?A # [] 1389 case OO_Subscript: Out << "?A"; break; 1390 // ?B # conversion 1391 // <operator-name> ::= ?C # -> 1392 case OO_Arrow: Out << "?C"; break; 1393 // <operator-name> ::= ?D # * 1394 case OO_Star: Out << "?D"; break; 1395 // <operator-name> ::= ?E # ++ 1396 case OO_PlusPlus: Out << "?E"; break; 1397 // <operator-name> ::= ?F # -- 1398 case OO_MinusMinus: Out << "?F"; break; 1399 // <operator-name> ::= ?G # - 1400 case OO_Minus: Out << "?G"; break; 1401 // <operator-name> ::= ?H # + 1402 case OO_Plus: Out << "?H"; break; 1403 // <operator-name> ::= ?I # & 1404 case OO_Amp: Out << "?I"; break; 1405 // <operator-name> ::= ?J # ->* 1406 case OO_ArrowStar: Out << "?J"; break; 1407 // <operator-name> ::= ?K # / 1408 case OO_Slash: Out << "?K"; break; 1409 // <operator-name> ::= ?L # % 1410 case OO_Percent: Out << "?L"; break; 1411 // <operator-name> ::= ?M # < 1412 case OO_Less: Out << "?M"; break; 1413 // <operator-name> ::= ?N # <= 1414 case OO_LessEqual: Out << "?N"; break; 1415 // <operator-name> ::= ?O # > 1416 case OO_Greater: Out << "?O"; break; 1417 // <operator-name> ::= ?P # >= 1418 case OO_GreaterEqual: Out << "?P"; break; 1419 // <operator-name> ::= ?Q # , 1420 case OO_Comma: Out << "?Q"; break; 1421 // <operator-name> ::= ?R # () 1422 case OO_Call: Out << "?R"; break; 1423 // <operator-name> ::= ?S # ~ 1424 case OO_Tilde: Out << "?S"; break; 1425 // <operator-name> ::= ?T # ^ 1426 case OO_Caret: Out << "?T"; break; 1427 // <operator-name> ::= ?U # | 1428 case OO_Pipe: Out << "?U"; break; 1429 // <operator-name> ::= ?V # && 1430 case OO_AmpAmp: Out << "?V"; break; 1431 // <operator-name> ::= ?W # || 1432 case OO_PipePipe: Out << "?W"; break; 1433 // <operator-name> ::= ?X # *= 1434 case OO_StarEqual: Out << "?X"; break; 1435 // <operator-name> ::= ?Y # += 1436 case OO_PlusEqual: Out << "?Y"; break; 1437 // <operator-name> ::= ?Z # -= 1438 case OO_MinusEqual: Out << "?Z"; break; 1439 // <operator-name> ::= ?_0 # /= 1440 case OO_SlashEqual: Out << "?_0"; break; 1441 // <operator-name> ::= ?_1 # %= 1442 case OO_PercentEqual: Out << "?_1"; break; 1443 // <operator-name> ::= ?_2 # >>= 1444 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1445 // <operator-name> ::= ?_3 # <<= 1446 case OO_LessLessEqual: Out << "?_3"; break; 1447 // <operator-name> ::= ?_4 # &= 1448 case OO_AmpEqual: Out << "?_4"; break; 1449 // <operator-name> ::= ?_5 # |= 1450 case OO_PipeEqual: Out << "?_5"; break; 1451 // <operator-name> ::= ?_6 # ^= 1452 case OO_CaretEqual: Out << "?_6"; break; 1453 // ?_7 # vftable 1454 // ?_8 # vbtable 1455 // ?_9 # vcall 1456 // ?_A # typeof 1457 // ?_B # local static guard 1458 // ?_C # string 1459 // ?_D # vbase destructor 1460 // ?_E # vector deleting destructor 1461 // ?_F # default constructor closure 1462 // ?_G # scalar deleting destructor 1463 // ?_H # vector constructor iterator 1464 // ?_I # vector destructor iterator 1465 // ?_J # vector vbase constructor iterator 1466 // ?_K # virtual displacement map 1467 // ?_L # eh vector constructor iterator 1468 // ?_M # eh vector destructor iterator 1469 // ?_N # eh vector vbase constructor iterator 1470 // ?_O # copy constructor closure 1471 // ?_P<name> # udt returning <name> 1472 // ?_Q # <unknown> 1473 // ?_R0 # RTTI Type Descriptor 1474 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1475 // ?_R2 # RTTI Base Class Array 1476 // ?_R3 # RTTI Class Hierarchy Descriptor 1477 // ?_R4 # RTTI Complete Object Locator 1478 // ?_S # local vftable 1479 // ?_T # local vftable constructor closure 1480 // <operator-name> ::= ?_U # new[] 1481 case OO_Array_New: Out << "?_U"; break; 1482 // <operator-name> ::= ?_V # delete[] 1483 case OO_Array_Delete: Out << "?_V"; break; 1484 // <operator-name> ::= ?__L # co_await 1485 case OO_Coawait: Out << "?__L"; break; 1486 // <operator-name> ::= ?__M # <=> 1487 case OO_Spaceship: Out << "?__M"; break; 1488 1489 case OO_Conditional: { 1490 DiagnosticsEngine &Diags = Context.getDiags(); 1491 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1492 "cannot mangle this conditional operator yet"); 1493 Diags.Report(Loc, DiagID); 1494 break; 1495 } 1496 1497 case OO_None: 1498 case NUM_OVERLOADED_OPERATORS: 1499 llvm_unreachable("Not an overloaded operator"); 1500 } 1501 } 1502 1503 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1504 // <source name> ::= <identifier> @ 1505 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1506 if (Found == NameBackReferences.end()) { 1507 if (NameBackReferences.size() < 10) 1508 NameBackReferences.push_back(std::string(Name)); 1509 Out << Name << '@'; 1510 } else { 1511 Out << (Found - NameBackReferences.begin()); 1512 } 1513 } 1514 1515 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1516 Context.mangleObjCMethodNameAsSourceName(MD, Out); 1517 } 1518 1519 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1520 GlobalDecl GD, const TemplateArgumentList &TemplateArgs) { 1521 // <template-name> ::= <unscoped-template-name> <template-args> 1522 // ::= <substitution> 1523 // Always start with the unqualified name. 1524 1525 // Templates have their own context for back references. 1526 ArgBackRefMap OuterFunArgsContext; 1527 ArgBackRefMap OuterTemplateArgsContext; 1528 BackRefVec OuterTemplateContext; 1529 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1530 NameBackReferences.swap(OuterTemplateContext); 1531 FunArgBackReferences.swap(OuterFunArgsContext); 1532 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1533 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1534 1535 mangleUnscopedTemplateName(GD); 1536 mangleTemplateArgs(cast<TemplateDecl>(GD.getDecl()), TemplateArgs); 1537 1538 // Restore the previous back reference contexts. 1539 NameBackReferences.swap(OuterTemplateContext); 1540 FunArgBackReferences.swap(OuterFunArgsContext); 1541 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1542 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1543 } 1544 1545 void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) { 1546 // <unscoped-template-name> ::= ?$ <unqualified-name> 1547 Out << "?$"; 1548 mangleUnqualifiedName(GD); 1549 } 1550 1551 void MicrosoftCXXNameMangler::mangleIntegerLiteral( 1552 const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, 1553 QualType TemplateArgType) { 1554 // <integer-literal> ::= $0 <number> 1555 Out << "$"; 1556 1557 // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when 1558 // argument is integer. 1559 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 1560 LangOptions::MSVC2019) && 1561 PD && PD->getType()->getTypeClass() == Type::Auto && 1562 !TemplateArgType.isNull()) { 1563 Out << "M"; 1564 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 1565 } 1566 1567 Out << "0"; 1568 1569 mangleNumber(Value); 1570 } 1571 1572 void MicrosoftCXXNameMangler::mangleExpression( 1573 const Expr *E, const NonTypeTemplateParmDecl *PD) { 1574 // See if this is a constant expression. 1575 if (std::optional<llvm::APSInt> Value = 1576 E->getIntegerConstantExpr(Context.getASTContext())) { 1577 mangleIntegerLiteral(*Value, PD, E->getType()); 1578 return; 1579 } 1580 1581 // As bad as this diagnostic is, it's better than crashing. 1582 DiagnosticsEngine &Diags = Context.getDiags(); 1583 unsigned DiagID = Diags.getCustomDiagID( 1584 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1585 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1586 << E->getSourceRange(); 1587 } 1588 1589 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1590 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1591 // <template-args> ::= <template-arg>+ 1592 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1593 assert(TPL->size() == TemplateArgs.size() && 1594 "size mismatch between args and parms!"); 1595 1596 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1597 const TemplateArgument &TA = TemplateArgs[i]; 1598 1599 // Separate consecutive packs by $$Z. 1600 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1601 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1602 Out << "$$Z"; 1603 1604 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1605 } 1606 } 1607 1608 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1609 const TemplateArgument &TA, 1610 const NamedDecl *Parm) { 1611 // <template-arg> ::= <type> 1612 // ::= <integer-literal> 1613 // ::= <member-data-pointer> 1614 // ::= <member-function-pointer> 1615 // ::= $ <constant-value> 1616 // ::= <template-args> 1617 // 1618 // <constant-value> ::= 0 <number> # integer 1619 // ::= 1 <mangled-name> # address of D 1620 // ::= 2 <type> <typed-constant-value>* @ # struct 1621 // ::= 3 <type> <constant-value>* @ # array 1622 // ::= 4 ??? # string 1623 // ::= 5 <constant-value> @ # address of subobject 1624 // ::= 6 <constant-value> <unqualified-name> @ # a.b 1625 // ::= 7 <type> [<unqualified-name> <constant-value>] @ 1626 // # union, with or without an active member 1627 // # pointer to member, symbolically 1628 // ::= 8 <class> <unqualified-name> @ 1629 // ::= A <type> <non-negative integer> # float 1630 // ::= B <type> <non-negative integer> # double 1631 // # pointer to member, by component value 1632 // ::= F <number> <number> 1633 // ::= G <number> <number> <number> 1634 // ::= H <mangled-name> <number> 1635 // ::= I <mangled-name> <number> <number> 1636 // ::= J <mangled-name> <number> <number> <number> 1637 // 1638 // <typed-constant-value> ::= [<type>] <constant-value> 1639 // 1640 // The <type> appears to be included in a <typed-constant-value> only in the 1641 // '0', '1', '8', 'A', 'B', and 'E' cases. 1642 1643 switch (TA.getKind()) { 1644 case TemplateArgument::Null: 1645 llvm_unreachable("Can't mangle null template arguments!"); 1646 case TemplateArgument::TemplateExpansion: 1647 llvm_unreachable("Can't mangle template expansion arguments!"); 1648 case TemplateArgument::Type: { 1649 QualType T = TA.getAsType(); 1650 mangleType(T, SourceRange(), QMM_Escape); 1651 break; 1652 } 1653 case TemplateArgument::Declaration: { 1654 const NamedDecl *ND = TA.getAsDecl(); 1655 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1656 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1657 ->getMostRecentNonInjectedDecl(), 1658 cast<ValueDecl>(ND)); 1659 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1660 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1661 if (MD && MD->isInstance()) { 1662 mangleMemberFunctionPointer( 1663 MD->getParent()->getMostRecentNonInjectedDecl(), MD); 1664 } else { 1665 Out << "$1?"; 1666 mangleName(FD); 1667 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1668 } 1669 } else if (TA.getParamTypeForDecl()->isRecordType()) { 1670 Out << "$"; 1671 auto *TPO = cast<TemplateParamObjectDecl>(ND); 1672 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1673 TPO->getValue()); 1674 } else { 1675 mangle(ND, "$1?"); 1676 } 1677 break; 1678 } 1679 case TemplateArgument::Integral: { 1680 QualType T = TA.getIntegralType(); 1681 mangleIntegerLiteral(TA.getAsIntegral(), 1682 cast<NonTypeTemplateParmDecl>(Parm), T); 1683 break; 1684 } 1685 case TemplateArgument::NullPtr: { 1686 QualType T = TA.getNullPtrType(); 1687 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1688 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1689 if (MPT->isMemberFunctionPointerType() && 1690 !isa<FunctionTemplateDecl>(TD)) { 1691 mangleMemberFunctionPointer(RD, nullptr); 1692 return; 1693 } 1694 if (MPT->isMemberDataPointer()) { 1695 if (!isa<FunctionTemplateDecl>(TD)) { 1696 mangleMemberDataPointer(RD, nullptr); 1697 return; 1698 } 1699 // nullptr data pointers are always represented with a single field 1700 // which is initialized with either 0 or -1. Why -1? Well, we need to 1701 // distinguish the case where the data member is at offset zero in the 1702 // record. 1703 // However, we are free to use 0 *if* we would use multiple fields for 1704 // non-nullptr member pointers. 1705 if (!RD->nullFieldOffsetIsZero()) { 1706 mangleIntegerLiteral(llvm::APSInt::get(-1), 1707 cast<NonTypeTemplateParmDecl>(Parm), T); 1708 return; 1709 } 1710 } 1711 } 1712 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), 1713 cast<NonTypeTemplateParmDecl>(Parm), T); 1714 break; 1715 } 1716 case TemplateArgument::Expression: 1717 mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm)); 1718 break; 1719 case TemplateArgument::Pack: { 1720 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1721 if (TemplateArgs.empty()) { 1722 if (isa<TemplateTypeParmDecl>(Parm) || 1723 isa<TemplateTemplateParmDecl>(Parm)) 1724 // MSVC 2015 changed the mangling for empty expanded template packs, 1725 // use the old mangling for link compatibility for old versions. 1726 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1727 LangOptions::MSVC2015) 1728 ? "$$V" 1729 : "$$$V"); 1730 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1731 Out << "$S"; 1732 else 1733 llvm_unreachable("unexpected template parameter decl!"); 1734 } else { 1735 for (const TemplateArgument &PA : TemplateArgs) 1736 mangleTemplateArg(TD, PA, Parm); 1737 } 1738 break; 1739 } 1740 case TemplateArgument::Template: { 1741 const NamedDecl *ND = 1742 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1743 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1744 mangleType(TD); 1745 } else if (isa<TypeAliasDecl>(ND)) { 1746 Out << "$$Y"; 1747 mangleName(ND); 1748 } else { 1749 llvm_unreachable("unexpected template template NamedDecl!"); 1750 } 1751 break; 1752 } 1753 } 1754 } 1755 1756 void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, 1757 const APValue &V, 1758 bool WithScalarType) { 1759 switch (V.getKind()) { 1760 case APValue::None: 1761 case APValue::Indeterminate: 1762 // FIXME: MSVC doesn't allow this, so we can't be sure how it should be 1763 // mangled. 1764 if (WithScalarType) 1765 mangleType(T, SourceRange(), QMM_Escape); 1766 Out << '@'; 1767 return; 1768 1769 case APValue::Int: 1770 if (WithScalarType) 1771 mangleType(T, SourceRange(), QMM_Escape); 1772 Out << '0'; 1773 mangleNumber(V.getInt()); 1774 return; 1775 1776 case APValue::Float: 1777 if (WithScalarType) 1778 mangleType(T, SourceRange(), QMM_Escape); 1779 mangleFloat(V.getFloat()); 1780 return; 1781 1782 case APValue::LValue: { 1783 if (WithScalarType) 1784 mangleType(T, SourceRange(), QMM_Escape); 1785 1786 // We don't know how to mangle past-the-end pointers yet. 1787 if (V.isLValueOnePastTheEnd()) 1788 break; 1789 1790 APValue::LValueBase Base = V.getLValueBase(); 1791 if (!V.hasLValuePath() || V.getLValuePath().empty()) { 1792 // Taking the address of a complete object has a special-case mangling. 1793 if (Base.isNull()) { 1794 // MSVC emits 0A@ for null pointers. Generalize this for arbitrary 1795 // integers cast to pointers. 1796 // FIXME: This mangles 0 cast to a pointer the same as a null pointer, 1797 // even in cases where the two are different values. 1798 Out << "0"; 1799 mangleNumber(V.getLValueOffset().getQuantity()); 1800 } else if (!V.hasLValuePath()) { 1801 // FIXME: This can only happen as an extension. Invent a mangling. 1802 break; 1803 } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { 1804 Out << "E"; 1805 mangle(VD); 1806 } else { 1807 break; 1808 } 1809 } else { 1810 if (T->isPointerType()) 1811 Out << "5"; 1812 1813 SmallVector<char, 2> EntryTypes; 1814 SmallVector<std::function<void()>, 2> EntryManglers; 1815 QualType ET = Base.getType(); 1816 for (APValue::LValuePathEntry E : V.getLValuePath()) { 1817 if (auto *AT = ET->getAsArrayTypeUnsafe()) { 1818 EntryTypes.push_back('C'); 1819 EntryManglers.push_back([this, I = E.getAsArrayIndex()] { 1820 Out << '0'; 1821 mangleNumber(I); 1822 Out << '@'; 1823 }); 1824 ET = AT->getElementType(); 1825 continue; 1826 } 1827 1828 const Decl *D = E.getAsBaseOrMember().getPointer(); 1829 if (auto *FD = dyn_cast<FieldDecl>(D)) { 1830 ET = FD->getType(); 1831 if (const auto *RD = ET->getAsRecordDecl()) 1832 if (RD->isAnonymousStructOrUnion()) 1833 continue; 1834 } else { 1835 ET = getASTContext().getRecordType(cast<CXXRecordDecl>(D)); 1836 // Bug in MSVC: fully qualified name of base class should be used for 1837 // mangling to prevent collisions e.g. on base classes with same names 1838 // in different namespaces. 1839 } 1840 1841 EntryTypes.push_back('6'); 1842 EntryManglers.push_back([this, D] { 1843 mangleUnqualifiedName(cast<NamedDecl>(D)); 1844 Out << '@'; 1845 }); 1846 } 1847 1848 for (auto I = EntryTypes.rbegin(), E = EntryTypes.rend(); I != E; ++I) 1849 Out << *I; 1850 1851 auto *VD = Base.dyn_cast<const ValueDecl*>(); 1852 if (!VD) 1853 break; 1854 Out << "E"; 1855 mangle(VD); 1856 1857 for (const std::function<void()> &Mangler : EntryManglers) 1858 Mangler(); 1859 if (T->isPointerType()) 1860 Out << '@'; 1861 } 1862 1863 return; 1864 } 1865 1866 case APValue::MemberPointer: { 1867 if (WithScalarType) 1868 mangleType(T, SourceRange(), QMM_Escape); 1869 1870 const CXXRecordDecl *RD = 1871 T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); 1872 const ValueDecl *D = V.getMemberPointerDecl(); 1873 if (T->isMemberDataPointerType()) 1874 mangleMemberDataPointerInClassNTTP(RD, D); 1875 else 1876 mangleMemberFunctionPointerInClassNTTP(RD, 1877 cast_or_null<CXXMethodDecl>(D)); 1878 return; 1879 } 1880 1881 case APValue::Struct: { 1882 Out << '2'; 1883 mangleType(T, SourceRange(), QMM_Escape); 1884 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 1885 assert(RD && "unexpected type for record value"); 1886 1887 unsigned BaseIndex = 0; 1888 for (const CXXBaseSpecifier &B : RD->bases()) 1889 mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++)); 1890 for (const FieldDecl *FD : RD->fields()) 1891 if (!FD->isUnnamedBitfield()) 1892 mangleTemplateArgValue(FD->getType(), 1893 V.getStructField(FD->getFieldIndex()), 1894 /*WithScalarType*/ true); 1895 Out << '@'; 1896 return; 1897 } 1898 1899 case APValue::Union: 1900 Out << '7'; 1901 mangleType(T, SourceRange(), QMM_Escape); 1902 if (const FieldDecl *FD = V.getUnionField()) { 1903 mangleUnqualifiedName(FD); 1904 mangleTemplateArgValue(FD->getType(), V.getUnionValue()); 1905 } 1906 Out << '@'; 1907 return; 1908 1909 case APValue::ComplexInt: 1910 // We mangle complex types as structs, so mangle the value as a struct too. 1911 Out << '2'; 1912 mangleType(T, SourceRange(), QMM_Escape); 1913 Out << '0'; 1914 mangleNumber(V.getComplexIntReal()); 1915 Out << '0'; 1916 mangleNumber(V.getComplexIntImag()); 1917 Out << '@'; 1918 return; 1919 1920 case APValue::ComplexFloat: 1921 Out << '2'; 1922 mangleType(T, SourceRange(), QMM_Escape); 1923 mangleFloat(V.getComplexFloatReal()); 1924 mangleFloat(V.getComplexFloatImag()); 1925 Out << '@'; 1926 return; 1927 1928 case APValue::Array: { 1929 Out << '3'; 1930 QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); 1931 mangleType(ElemT, SourceRange(), QMM_Escape); 1932 for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { 1933 const APValue &ElemV = I < V.getArrayInitializedElts() 1934 ? V.getArrayInitializedElt(I) 1935 : V.getArrayFiller(); 1936 mangleTemplateArgValue(ElemT, ElemV); 1937 Out << '@'; 1938 } 1939 Out << '@'; 1940 return; 1941 } 1942 1943 case APValue::Vector: { 1944 // __m128 is mangled as a struct containing an array. We follow this 1945 // approach for all vector types. 1946 Out << '2'; 1947 mangleType(T, SourceRange(), QMM_Escape); 1948 Out << '3'; 1949 QualType ElemT = T->castAs<VectorType>()->getElementType(); 1950 mangleType(ElemT, SourceRange(), QMM_Escape); 1951 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { 1952 const APValue &ElemV = V.getVectorElt(I); 1953 mangleTemplateArgValue(ElemT, ElemV); 1954 Out << '@'; 1955 } 1956 Out << "@@"; 1957 return; 1958 } 1959 1960 case APValue::AddrLabelDiff: 1961 case APValue::FixedPoint: 1962 break; 1963 } 1964 1965 DiagnosticsEngine &Diags = Context.getDiags(); 1966 unsigned DiagID = Diags.getCustomDiagID( 1967 DiagnosticsEngine::Error, "cannot mangle this template argument yet"); 1968 Diags.Report(DiagID); 1969 } 1970 1971 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 1972 llvm::SmallString<64> TemplateMangling; 1973 llvm::raw_svector_ostream Stream(TemplateMangling); 1974 MicrosoftCXXNameMangler Extra(Context, Stream); 1975 1976 Stream << "?$"; 1977 Extra.mangleSourceName("Protocol"); 1978 Extra.mangleArtificialTagType(TTK_Struct, PD->getName()); 1979 1980 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1981 } 1982 1983 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 1984 Qualifiers Quals, 1985 SourceRange Range) { 1986 llvm::SmallString<64> TemplateMangling; 1987 llvm::raw_svector_ostream Stream(TemplateMangling); 1988 MicrosoftCXXNameMangler Extra(Context, Stream); 1989 1990 Stream << "?$"; 1991 switch (Quals.getObjCLifetime()) { 1992 case Qualifiers::OCL_None: 1993 case Qualifiers::OCL_ExplicitNone: 1994 break; 1995 case Qualifiers::OCL_Autoreleasing: 1996 Extra.mangleSourceName("Autoreleasing"); 1997 break; 1998 case Qualifiers::OCL_Strong: 1999 Extra.mangleSourceName("Strong"); 2000 break; 2001 case Qualifiers::OCL_Weak: 2002 Extra.mangleSourceName("Weak"); 2003 break; 2004 } 2005 Extra.manglePointerCVQualifiers(Quals); 2006 Extra.manglePointerExtQualifiers(Quals, Type); 2007 Extra.mangleType(Type, Range); 2008 2009 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 2010 } 2011 2012 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 2013 Qualifiers Quals, 2014 SourceRange Range) { 2015 llvm::SmallString<64> TemplateMangling; 2016 llvm::raw_svector_ostream Stream(TemplateMangling); 2017 MicrosoftCXXNameMangler Extra(Context, Stream); 2018 2019 Stream << "?$"; 2020 Extra.mangleSourceName("KindOf"); 2021 Extra.mangleType(QualType(T, 0) 2022 .stripObjCKindOfType(getASTContext()) 2023 ->castAs<ObjCObjectType>(), 2024 Quals, Range); 2025 2026 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 2027 } 2028 2029 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 2030 bool IsMember) { 2031 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 2032 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 2033 // 'I' means __restrict (32/64-bit). 2034 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 2035 // keyword! 2036 // <base-cvr-qualifiers> ::= A # near 2037 // ::= B # near const 2038 // ::= C # near volatile 2039 // ::= D # near const volatile 2040 // ::= E # far (16-bit) 2041 // ::= F # far const (16-bit) 2042 // ::= G # far volatile (16-bit) 2043 // ::= H # far const volatile (16-bit) 2044 // ::= I # huge (16-bit) 2045 // ::= J # huge const (16-bit) 2046 // ::= K # huge volatile (16-bit) 2047 // ::= L # huge const volatile (16-bit) 2048 // ::= M <basis> # based 2049 // ::= N <basis> # based const 2050 // ::= O <basis> # based volatile 2051 // ::= P <basis> # based const volatile 2052 // ::= Q # near member 2053 // ::= R # near const member 2054 // ::= S # near volatile member 2055 // ::= T # near const volatile member 2056 // ::= U # far member (16-bit) 2057 // ::= V # far const member (16-bit) 2058 // ::= W # far volatile member (16-bit) 2059 // ::= X # far const volatile member (16-bit) 2060 // ::= Y # huge member (16-bit) 2061 // ::= Z # huge const member (16-bit) 2062 // ::= 0 # huge volatile member (16-bit) 2063 // ::= 1 # huge const volatile member (16-bit) 2064 // ::= 2 <basis> # based member 2065 // ::= 3 <basis> # based const member 2066 // ::= 4 <basis> # based volatile member 2067 // ::= 5 <basis> # based const volatile member 2068 // ::= 6 # near function (pointers only) 2069 // ::= 7 # far function (pointers only) 2070 // ::= 8 # near method (pointers only) 2071 // ::= 9 # far method (pointers only) 2072 // ::= _A <basis> # based function (pointers only) 2073 // ::= _B <basis> # based function (far?) (pointers only) 2074 // ::= _C <basis> # based method (pointers only) 2075 // ::= _D <basis> # based method (far?) (pointers only) 2076 // ::= _E # block (Clang) 2077 // <basis> ::= 0 # __based(void) 2078 // ::= 1 # __based(segment)? 2079 // ::= 2 <name> # __based(name) 2080 // ::= 3 # ? 2081 // ::= 4 # ? 2082 // ::= 5 # not really based 2083 bool HasConst = Quals.hasConst(), 2084 HasVolatile = Quals.hasVolatile(); 2085 2086 if (!IsMember) { 2087 if (HasConst && HasVolatile) { 2088 Out << 'D'; 2089 } else if (HasVolatile) { 2090 Out << 'C'; 2091 } else if (HasConst) { 2092 Out << 'B'; 2093 } else { 2094 Out << 'A'; 2095 } 2096 } else { 2097 if (HasConst && HasVolatile) { 2098 Out << 'T'; 2099 } else if (HasVolatile) { 2100 Out << 'S'; 2101 } else if (HasConst) { 2102 Out << 'R'; 2103 } else { 2104 Out << 'Q'; 2105 } 2106 } 2107 2108 // FIXME: For now, just drop all extension qualifiers on the floor. 2109 } 2110 2111 void 2112 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2113 // <ref-qualifier> ::= G # lvalue reference 2114 // ::= H # rvalue-reference 2115 switch (RefQualifier) { 2116 case RQ_None: 2117 break; 2118 2119 case RQ_LValue: 2120 Out << 'G'; 2121 break; 2122 2123 case RQ_RValue: 2124 Out << 'H'; 2125 break; 2126 } 2127 } 2128 2129 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 2130 QualType PointeeType) { 2131 // Check if this is a default 64-bit pointer or has __ptr64 qualifier. 2132 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : 2133 is64BitPointer(PointeeType.getQualifiers()); 2134 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) 2135 Out << 'E'; 2136 2137 if (Quals.hasRestrict()) 2138 Out << 'I'; 2139 2140 if (Quals.hasUnaligned() || 2141 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 2142 Out << 'F'; 2143 } 2144 2145 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 2146 // <pointer-cv-qualifiers> ::= P # no qualifiers 2147 // ::= Q # const 2148 // ::= R # volatile 2149 // ::= S # const volatile 2150 bool HasConst = Quals.hasConst(), 2151 HasVolatile = Quals.hasVolatile(); 2152 2153 if (HasConst && HasVolatile) { 2154 Out << 'S'; 2155 } else if (HasVolatile) { 2156 Out << 'R'; 2157 } else if (HasConst) { 2158 Out << 'Q'; 2159 } else { 2160 Out << 'P'; 2161 } 2162 } 2163 2164 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 2165 SourceRange Range) { 2166 // MSVC will backreference two canonically equivalent types that have slightly 2167 // different manglings when mangled alone. 2168 2169 // Decayed types do not match up with non-decayed versions of the same type. 2170 // 2171 // e.g. 2172 // void (*x)(void) will not form a backreference with void x(void) 2173 void *TypePtr; 2174 if (const auto *DT = T->getAs<DecayedType>()) { 2175 QualType OriginalType = DT->getOriginalType(); 2176 // All decayed ArrayTypes should be treated identically; as-if they were 2177 // a decayed IncompleteArrayType. 2178 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 2179 OriginalType = getASTContext().getIncompleteArrayType( 2180 AT->getElementType(), AT->getSizeModifier(), 2181 AT->getIndexTypeCVRQualifiers()); 2182 2183 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 2184 // If the original parameter was textually written as an array, 2185 // instead treat the decayed parameter like it's const. 2186 // 2187 // e.g. 2188 // int [] -> int * const 2189 if (OriginalType->isArrayType()) 2190 T = T.withConst(); 2191 } else { 2192 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 2193 } 2194 2195 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2196 2197 if (Found == FunArgBackReferences.end()) { 2198 size_t OutSizeBefore = Out.tell(); 2199 2200 mangleType(T, Range, QMM_Drop); 2201 2202 // See if it's worth creating a back reference. 2203 // Only types longer than 1 character are considered 2204 // and only 10 back references slots are available: 2205 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 2206 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 2207 size_t Size = FunArgBackReferences.size(); 2208 FunArgBackReferences[TypePtr] = Size; 2209 } 2210 } else { 2211 Out << Found->second; 2212 } 2213 } 2214 2215 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 2216 const PassObjectSizeAttr *POSA) { 2217 int Type = POSA->getType(); 2218 bool Dynamic = POSA->isDynamic(); 2219 2220 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 2221 auto *TypePtr = (const void *)&*Iter; 2222 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2223 2224 if (Found == FunArgBackReferences.end()) { 2225 std::string Name = 2226 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 2227 mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"}); 2228 2229 if (FunArgBackReferences.size() < 10) { 2230 size_t Size = FunArgBackReferences.size(); 2231 FunArgBackReferences[TypePtr] = Size; 2232 } 2233 } else { 2234 Out << Found->second; 2235 } 2236 } 2237 2238 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 2239 Qualifiers Quals, 2240 SourceRange Range) { 2241 // Address space is mangled as an unqualified templated type in the __clang 2242 // namespace. The demangled version of this is: 2243 // In the case of a language specific address space: 2244 // __clang::struct _AS[language_addr_space]<Type> 2245 // where: 2246 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 2247 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2248 // "private"| "generic" | "device" | "host" ] 2249 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2250 // Note that the above were chosen to match the Itanium mangling for this. 2251 // 2252 // In the case of a non-language specific address space: 2253 // __clang::struct _AS<TargetAS, Type> 2254 assert(Quals.hasAddressSpace() && "Not valid without address space"); 2255 llvm::SmallString<32> ASMangling; 2256 llvm::raw_svector_ostream Stream(ASMangling); 2257 MicrosoftCXXNameMangler Extra(Context, Stream); 2258 Stream << "?$"; 2259 2260 LangAS AS = Quals.getAddressSpace(); 2261 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2262 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2263 Extra.mangleSourceName("_AS"); 2264 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS)); 2265 } else { 2266 switch (AS) { 2267 default: 2268 llvm_unreachable("Not a language specific address space"); 2269 case LangAS::opencl_global: 2270 Extra.mangleSourceName("_ASCLglobal"); 2271 break; 2272 case LangAS::opencl_global_device: 2273 Extra.mangleSourceName("_ASCLdevice"); 2274 break; 2275 case LangAS::opencl_global_host: 2276 Extra.mangleSourceName("_ASCLhost"); 2277 break; 2278 case LangAS::opencl_local: 2279 Extra.mangleSourceName("_ASCLlocal"); 2280 break; 2281 case LangAS::opencl_constant: 2282 Extra.mangleSourceName("_ASCLconstant"); 2283 break; 2284 case LangAS::opencl_private: 2285 Extra.mangleSourceName("_ASCLprivate"); 2286 break; 2287 case LangAS::opencl_generic: 2288 Extra.mangleSourceName("_ASCLgeneric"); 2289 break; 2290 case LangAS::cuda_device: 2291 Extra.mangleSourceName("_ASCUdevice"); 2292 break; 2293 case LangAS::cuda_constant: 2294 Extra.mangleSourceName("_ASCUconstant"); 2295 break; 2296 case LangAS::cuda_shared: 2297 Extra.mangleSourceName("_ASCUshared"); 2298 break; 2299 case LangAS::ptr32_sptr: 2300 case LangAS::ptr32_uptr: 2301 case LangAS::ptr64: 2302 llvm_unreachable("don't mangle ptr address spaces with _AS"); 2303 } 2304 } 2305 2306 Extra.mangleType(T, Range, QMM_Escape); 2307 mangleQualifiers(Qualifiers(), false); 2308 mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"}); 2309 } 2310 2311 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 2312 QualifierMangleMode QMM) { 2313 // Don't use the canonical types. MSVC includes things like 'const' on 2314 // pointer arguments to function pointers that canonicalization strips away. 2315 T = T.getDesugaredType(getASTContext()); 2316 Qualifiers Quals = T.getLocalQualifiers(); 2317 2318 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 2319 // If there were any Quals, getAsArrayType() pushed them onto the array 2320 // element type. 2321 if (QMM == QMM_Mangle) 2322 Out << 'A'; 2323 else if (QMM == QMM_Escape || QMM == QMM_Result) 2324 Out << "$$B"; 2325 mangleArrayType(AT); 2326 return; 2327 } 2328 2329 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 2330 T->isReferenceType() || T->isBlockPointerType(); 2331 2332 switch (QMM) { 2333 case QMM_Drop: 2334 if (Quals.hasObjCLifetime()) 2335 Quals = Quals.withoutObjCLifetime(); 2336 break; 2337 case QMM_Mangle: 2338 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 2339 Out << '6'; 2340 mangleFunctionType(FT); 2341 return; 2342 } 2343 mangleQualifiers(Quals, false); 2344 break; 2345 case QMM_Escape: 2346 if (!IsPointer && Quals) { 2347 Out << "$$C"; 2348 mangleQualifiers(Quals, false); 2349 } 2350 break; 2351 case QMM_Result: 2352 // Presence of __unaligned qualifier shouldn't affect mangling here. 2353 Quals.removeUnaligned(); 2354 if (Quals.hasObjCLifetime()) 2355 Quals = Quals.withoutObjCLifetime(); 2356 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 2357 Out << '?'; 2358 mangleQualifiers(Quals, false); 2359 } 2360 break; 2361 } 2362 2363 const Type *ty = T.getTypePtr(); 2364 2365 switch (ty->getTypeClass()) { 2366 #define ABSTRACT_TYPE(CLASS, PARENT) 2367 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2368 case Type::CLASS: \ 2369 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2370 return; 2371 #define TYPE(CLASS, PARENT) \ 2372 case Type::CLASS: \ 2373 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 2374 break; 2375 #include "clang/AST/TypeNodes.inc" 2376 #undef ABSTRACT_TYPE 2377 #undef NON_CANONICAL_TYPE 2378 #undef TYPE 2379 } 2380 } 2381 2382 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 2383 SourceRange Range) { 2384 // <type> ::= <builtin-type> 2385 // <builtin-type> ::= X # void 2386 // ::= C # signed char 2387 // ::= D # char 2388 // ::= E # unsigned char 2389 // ::= F # short 2390 // ::= G # unsigned short (or wchar_t if it's not a builtin) 2391 // ::= H # int 2392 // ::= I # unsigned int 2393 // ::= J # long 2394 // ::= K # unsigned long 2395 // L # <none> 2396 // ::= M # float 2397 // ::= N # double 2398 // ::= O # long double (__float80 is mangled differently) 2399 // ::= _J # long long, __int64 2400 // ::= _K # unsigned long long, __int64 2401 // ::= _L # __int128 2402 // ::= _M # unsigned __int128 2403 // ::= _N # bool 2404 // _O # <array in parameter> 2405 // ::= _Q # char8_t 2406 // ::= _S # char16_t 2407 // ::= _T # __float80 (Intel) 2408 // ::= _U # char32_t 2409 // ::= _W # wchar_t 2410 // ::= _Z # __float80 (Digital Mars) 2411 switch (T->getKind()) { 2412 case BuiltinType::Void: 2413 Out << 'X'; 2414 break; 2415 case BuiltinType::SChar: 2416 Out << 'C'; 2417 break; 2418 case BuiltinType::Char_U: 2419 case BuiltinType::Char_S: 2420 Out << 'D'; 2421 break; 2422 case BuiltinType::UChar: 2423 Out << 'E'; 2424 break; 2425 case BuiltinType::Short: 2426 Out << 'F'; 2427 break; 2428 case BuiltinType::UShort: 2429 Out << 'G'; 2430 break; 2431 case BuiltinType::Int: 2432 Out << 'H'; 2433 break; 2434 case BuiltinType::UInt: 2435 Out << 'I'; 2436 break; 2437 case BuiltinType::Long: 2438 Out << 'J'; 2439 break; 2440 case BuiltinType::ULong: 2441 Out << 'K'; 2442 break; 2443 case BuiltinType::Float: 2444 Out << 'M'; 2445 break; 2446 case BuiltinType::Double: 2447 Out << 'N'; 2448 break; 2449 // TODO: Determine size and mangle accordingly 2450 case BuiltinType::LongDouble: 2451 Out << 'O'; 2452 break; 2453 case BuiltinType::LongLong: 2454 Out << "_J"; 2455 break; 2456 case BuiltinType::ULongLong: 2457 Out << "_K"; 2458 break; 2459 case BuiltinType::Int128: 2460 Out << "_L"; 2461 break; 2462 case BuiltinType::UInt128: 2463 Out << "_M"; 2464 break; 2465 case BuiltinType::Bool: 2466 Out << "_N"; 2467 break; 2468 case BuiltinType::Char8: 2469 Out << "_Q"; 2470 break; 2471 case BuiltinType::Char16: 2472 Out << "_S"; 2473 break; 2474 case BuiltinType::Char32: 2475 Out << "_U"; 2476 break; 2477 case BuiltinType::WChar_S: 2478 case BuiltinType::WChar_U: 2479 Out << "_W"; 2480 break; 2481 2482 #define BUILTIN_TYPE(Id, SingletonId) 2483 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2484 case BuiltinType::Id: 2485 #include "clang/AST/BuiltinTypes.def" 2486 case BuiltinType::Dependent: 2487 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2488 2489 case BuiltinType::ObjCId: 2490 mangleArtificialTagType(TTK_Struct, "objc_object"); 2491 break; 2492 case BuiltinType::ObjCClass: 2493 mangleArtificialTagType(TTK_Struct, "objc_class"); 2494 break; 2495 case BuiltinType::ObjCSel: 2496 mangleArtificialTagType(TTK_Struct, "objc_selector"); 2497 break; 2498 2499 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2500 case BuiltinType::Id: \ 2501 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2502 break; 2503 #include "clang/Basic/OpenCLImageTypes.def" 2504 case BuiltinType::OCLSampler: 2505 Out << "PA"; 2506 mangleArtificialTagType(TTK_Struct, "ocl_sampler"); 2507 break; 2508 case BuiltinType::OCLEvent: 2509 Out << "PA"; 2510 mangleArtificialTagType(TTK_Struct, "ocl_event"); 2511 break; 2512 case BuiltinType::OCLClkEvent: 2513 Out << "PA"; 2514 mangleArtificialTagType(TTK_Struct, "ocl_clkevent"); 2515 break; 2516 case BuiltinType::OCLQueue: 2517 Out << "PA"; 2518 mangleArtificialTagType(TTK_Struct, "ocl_queue"); 2519 break; 2520 case BuiltinType::OCLReserveID: 2521 Out << "PA"; 2522 mangleArtificialTagType(TTK_Struct, "ocl_reserveid"); 2523 break; 2524 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2525 case BuiltinType::Id: \ 2526 mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \ 2527 break; 2528 #include "clang/Basic/OpenCLExtensionTypes.def" 2529 2530 case BuiltinType::NullPtr: 2531 Out << "$$T"; 2532 break; 2533 2534 case BuiltinType::Float16: 2535 mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"}); 2536 break; 2537 2538 case BuiltinType::Half: 2539 if (!getASTContext().getLangOpts().HLSL) 2540 mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"}); 2541 else if (getASTContext().getLangOpts().NativeHalfType) 2542 Out << "$f16@"; 2543 else 2544 Out << "$halff@"; 2545 break; 2546 2547 case BuiltinType::BFloat16: 2548 mangleArtificialTagType(TTK_Struct, "__bf16", {"__clang"}); 2549 break; 2550 2551 #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ 2552 case BuiltinType::Id: \ 2553 mangleArtificialTagType(TTK_Struct, MangledName); \ 2554 mangleArtificialTagType(TTK_Struct, MangledName, {"__clang"}); \ 2555 break; 2556 2557 #include "clang/Basic/WebAssemblyReferenceTypes.def" 2558 #define SVE_TYPE(Name, Id, SingletonId) \ 2559 case BuiltinType::Id: 2560 #include "clang/Basic/AArch64SVEACLETypes.def" 2561 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 2562 case BuiltinType::Id: 2563 #include "clang/Basic/PPCTypes.def" 2564 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 2565 #include "clang/Basic/RISCVVTypes.def" 2566 case BuiltinType::ShortAccum: 2567 case BuiltinType::Accum: 2568 case BuiltinType::LongAccum: 2569 case BuiltinType::UShortAccum: 2570 case BuiltinType::UAccum: 2571 case BuiltinType::ULongAccum: 2572 case BuiltinType::ShortFract: 2573 case BuiltinType::Fract: 2574 case BuiltinType::LongFract: 2575 case BuiltinType::UShortFract: 2576 case BuiltinType::UFract: 2577 case BuiltinType::ULongFract: 2578 case BuiltinType::SatShortAccum: 2579 case BuiltinType::SatAccum: 2580 case BuiltinType::SatLongAccum: 2581 case BuiltinType::SatUShortAccum: 2582 case BuiltinType::SatUAccum: 2583 case BuiltinType::SatULongAccum: 2584 case BuiltinType::SatShortFract: 2585 case BuiltinType::SatFract: 2586 case BuiltinType::SatLongFract: 2587 case BuiltinType::SatUShortFract: 2588 case BuiltinType::SatUFract: 2589 case BuiltinType::SatULongFract: 2590 case BuiltinType::Ibm128: 2591 case BuiltinType::Float128: { 2592 DiagnosticsEngine &Diags = Context.getDiags(); 2593 unsigned DiagID = Diags.getCustomDiagID( 2594 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2595 Diags.Report(Range.getBegin(), DiagID) 2596 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2597 break; 2598 } 2599 } 2600 } 2601 2602 // <type> ::= <function-type> 2603 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2604 SourceRange) { 2605 // Structors only appear in decls, so at this point we know it's not a 2606 // structor type. 2607 // FIXME: This may not be lambda-friendly. 2608 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2609 Out << "$$A8@@"; 2610 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2611 } else { 2612 Out << "$$A6"; 2613 mangleFunctionType(T); 2614 } 2615 } 2616 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2617 Qualifiers, SourceRange) { 2618 Out << "$$A6"; 2619 mangleFunctionType(T); 2620 } 2621 2622 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2623 const FunctionDecl *D, 2624 bool ForceThisQuals, 2625 bool MangleExceptionSpec) { 2626 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2627 // <return-type> <argument-list> <throw-spec> 2628 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2629 2630 SourceRange Range; 2631 if (D) Range = D->getSourceRange(); 2632 2633 bool IsInLambda = false; 2634 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2635 CallingConv CC = T->getCallConv(); 2636 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2637 if (MD->getParent()->isLambda()) 2638 IsInLambda = true; 2639 if (MD->isInstance()) 2640 HasThisQuals = true; 2641 if (isa<CXXDestructorDecl>(MD)) { 2642 IsStructor = true; 2643 } else if (isa<CXXConstructorDecl>(MD)) { 2644 IsStructor = true; 2645 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2646 StructorType == Ctor_DefaultClosure) && 2647 isStructorDecl(MD); 2648 if (IsCtorClosure) 2649 CC = getASTContext().getDefaultCallingConvention( 2650 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2651 } 2652 } 2653 2654 // If this is a C++ instance method, mangle the CVR qualifiers for the 2655 // this pointer. 2656 if (HasThisQuals) { 2657 Qualifiers Quals = Proto->getMethodQuals(); 2658 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2659 mangleRefQualifier(Proto->getRefQualifier()); 2660 mangleQualifiers(Quals, /*IsMember=*/false); 2661 } 2662 2663 mangleCallingConvention(CC); 2664 2665 // <return-type> ::= <type> 2666 // ::= @ # structors (they have no declared return type) 2667 if (IsStructor) { 2668 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2669 // The scalar deleting destructor takes an extra int argument which is not 2670 // reflected in the AST. 2671 if (StructorType == Dtor_Deleting) { 2672 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2673 return; 2674 } 2675 // The vbase destructor returns void which is not reflected in the AST. 2676 if (StructorType == Dtor_Complete) { 2677 Out << "XXZ"; 2678 return; 2679 } 2680 } 2681 if (IsCtorClosure) { 2682 // Default constructor closure and copy constructor closure both return 2683 // void. 2684 Out << 'X'; 2685 2686 if (StructorType == Ctor_DefaultClosure) { 2687 // Default constructor closure always has no arguments. 2688 Out << 'X'; 2689 } else if (StructorType == Ctor_CopyingClosure) { 2690 // Copy constructor closure always takes an unqualified reference. 2691 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2692 Proto->getParamType(0) 2693 ->castAs<LValueReferenceType>() 2694 ->getPointeeType(), 2695 /*SpelledAsLValue=*/true), 2696 Range); 2697 Out << '@'; 2698 } else { 2699 llvm_unreachable("unexpected constructor closure!"); 2700 } 2701 Out << 'Z'; 2702 return; 2703 } 2704 Out << '@'; 2705 } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) { 2706 // The only lambda conversion operators are to function pointers, which 2707 // can differ by their calling convention and are typically deduced. So 2708 // we make sure that this type gets mangled properly. 2709 mangleType(T->getReturnType(), Range, QMM_Result); 2710 } else { 2711 QualType ResultType = T->getReturnType(); 2712 if (IsInLambda && isa<CXXConversionDecl>(D)) { 2713 // The only lambda conversion operators are to function pointers, which 2714 // can differ by their calling convention and are typically deduced. So 2715 // we make sure that this type gets mangled properly. 2716 mangleType(ResultType, Range, QMM_Result); 2717 } else if (const auto *AT = dyn_cast_or_null<AutoType>( 2718 ResultType->getContainedAutoType())) { 2719 Out << '?'; 2720 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2721 Out << '?'; 2722 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2723 "shouldn't need to mangle __auto_type!"); 2724 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2725 Out << '@'; 2726 } else if (IsInLambda) { 2727 Out << '@'; 2728 } else { 2729 if (ResultType->isVoidType()) 2730 ResultType = ResultType.getUnqualifiedType(); 2731 mangleType(ResultType, Range, QMM_Result); 2732 } 2733 } 2734 2735 // <argument-list> ::= X # void 2736 // ::= <type>+ @ 2737 // ::= <type>* Z # varargs 2738 if (!Proto) { 2739 // Function types without prototypes can arise when mangling a function type 2740 // within an overloadable function in C. We mangle these as the absence of 2741 // any parameter types (not even an empty parameter list). 2742 Out << '@'; 2743 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2744 Out << 'X'; 2745 } else { 2746 // Happens for function pointer type arguments for example. 2747 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2748 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2749 // Mangle each pass_object_size parameter as if it's a parameter of enum 2750 // type passed directly after the parameter with the pass_object_size 2751 // attribute. The aforementioned enum's name is __pass_object_size, and we 2752 // pretend it resides in a top-level namespace called __clang. 2753 // 2754 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2755 // necessary to just cross our fingers and hope this type+namespace 2756 // combination doesn't conflict with anything? 2757 if (D) 2758 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2759 manglePassObjectSizeArg(P); 2760 } 2761 // <builtin-type> ::= Z # ellipsis 2762 if (Proto->isVariadic()) 2763 Out << 'Z'; 2764 else 2765 Out << '@'; 2766 } 2767 2768 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2769 getASTContext().getLangOpts().isCompatibleWithMSVC( 2770 LangOptions::MSVC2017_5)) 2771 mangleThrowSpecification(Proto); 2772 else 2773 Out << 'Z'; 2774 } 2775 2776 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2777 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2778 // # pointer. in 64-bit mode *all* 2779 // # 'this' pointers are 64-bit. 2780 // ::= <global-function> 2781 // <member-function> ::= A # private: near 2782 // ::= B # private: far 2783 // ::= C # private: static near 2784 // ::= D # private: static far 2785 // ::= E # private: virtual near 2786 // ::= F # private: virtual far 2787 // ::= I # protected: near 2788 // ::= J # protected: far 2789 // ::= K # protected: static near 2790 // ::= L # protected: static far 2791 // ::= M # protected: virtual near 2792 // ::= N # protected: virtual far 2793 // ::= Q # public: near 2794 // ::= R # public: far 2795 // ::= S # public: static near 2796 // ::= T # public: static far 2797 // ::= U # public: virtual near 2798 // ::= V # public: virtual far 2799 // <global-function> ::= Y # global near 2800 // ::= Z # global far 2801 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2802 bool IsVirtual = MD->isVirtual(); 2803 // When mangling vbase destructor variants, ignore whether or not the 2804 // underlying destructor was defined to be virtual. 2805 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2806 StructorType == Dtor_Complete) { 2807 IsVirtual = false; 2808 } 2809 switch (MD->getAccess()) { 2810 case AS_none: 2811 llvm_unreachable("Unsupported access specifier"); 2812 case AS_private: 2813 if (MD->isStatic()) 2814 Out << 'C'; 2815 else if (IsVirtual) 2816 Out << 'E'; 2817 else 2818 Out << 'A'; 2819 break; 2820 case AS_protected: 2821 if (MD->isStatic()) 2822 Out << 'K'; 2823 else if (IsVirtual) 2824 Out << 'M'; 2825 else 2826 Out << 'I'; 2827 break; 2828 case AS_public: 2829 if (MD->isStatic()) 2830 Out << 'S'; 2831 else if (IsVirtual) 2832 Out << 'U'; 2833 else 2834 Out << 'Q'; 2835 } 2836 } else { 2837 Out << 'Y'; 2838 } 2839 } 2840 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 2841 // <calling-convention> ::= A # __cdecl 2842 // ::= B # __export __cdecl 2843 // ::= C # __pascal 2844 // ::= D # __export __pascal 2845 // ::= E # __thiscall 2846 // ::= F # __export __thiscall 2847 // ::= G # __stdcall 2848 // ::= H # __export __stdcall 2849 // ::= I # __fastcall 2850 // ::= J # __export __fastcall 2851 // ::= Q # __vectorcall 2852 // ::= S # __attribute__((__swiftcall__)) // Clang-only 2853 // ::= T # __attribute__((__swiftasynccall__)) 2854 // // Clang-only 2855 // ::= w # __regcall 2856 // The 'export' calling conventions are from a bygone era 2857 // (*cough*Win16*cough*) when functions were declared for export with 2858 // that keyword. (It didn't actually export them, it just made them so 2859 // that they could be in a DLL and somebody from another module could call 2860 // them.) 2861 2862 switch (CC) { 2863 default: 2864 llvm_unreachable("Unsupported CC for mangling"); 2865 case CC_Win64: 2866 case CC_X86_64SysV: 2867 case CC_C: Out << 'A'; break; 2868 case CC_X86Pascal: Out << 'C'; break; 2869 case CC_X86ThisCall: Out << 'E'; break; 2870 case CC_X86StdCall: Out << 'G'; break; 2871 case CC_X86FastCall: Out << 'I'; break; 2872 case CC_X86VectorCall: Out << 'Q'; break; 2873 case CC_Swift: Out << 'S'; break; 2874 case CC_SwiftAsync: Out << 'W'; break; 2875 case CC_PreserveMost: Out << 'U'; break; 2876 case CC_X86RegCall: Out << 'w'; break; 2877 } 2878 } 2879 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 2880 mangleCallingConvention(T->getCallConv()); 2881 } 2882 2883 void MicrosoftCXXNameMangler::mangleThrowSpecification( 2884 const FunctionProtoType *FT) { 2885 // <throw-spec> ::= Z # (default) 2886 // ::= _E # noexcept 2887 if (FT->canThrow()) 2888 Out << 'Z'; 2889 else 2890 Out << "_E"; 2891 } 2892 2893 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 2894 Qualifiers, SourceRange Range) { 2895 // Probably should be mangled as a template instantiation; need to see what 2896 // VC does first. 2897 DiagnosticsEngine &Diags = Context.getDiags(); 2898 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2899 "cannot mangle this unresolved dependent type yet"); 2900 Diags.Report(Range.getBegin(), DiagID) 2901 << Range; 2902 } 2903 2904 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 2905 // <union-type> ::= T <name> 2906 // <struct-type> ::= U <name> 2907 // <class-type> ::= V <name> 2908 // <enum-type> ::= W4 <name> 2909 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 2910 switch (TTK) { 2911 case TTK_Union: 2912 Out << 'T'; 2913 break; 2914 case TTK_Struct: 2915 case TTK_Interface: 2916 Out << 'U'; 2917 break; 2918 case TTK_Class: 2919 Out << 'V'; 2920 break; 2921 case TTK_Enum: 2922 Out << "W4"; 2923 break; 2924 } 2925 } 2926 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 2927 SourceRange) { 2928 mangleType(cast<TagType>(T)->getDecl()); 2929 } 2930 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 2931 SourceRange) { 2932 mangleType(cast<TagType>(T)->getDecl()); 2933 } 2934 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 2935 mangleTagTypeKind(TD->getTagKind()); 2936 mangleName(TD); 2937 } 2938 2939 // If you add a call to this, consider updating isArtificialTagType() too. 2940 void MicrosoftCXXNameMangler::mangleArtificialTagType( 2941 TagTypeKind TK, StringRef UnqualifiedName, 2942 ArrayRef<StringRef> NestedNames) { 2943 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 2944 mangleTagTypeKind(TK); 2945 2946 // Always start with the unqualified name. 2947 mangleSourceName(UnqualifiedName); 2948 2949 for (StringRef N : llvm::reverse(NestedNames)) 2950 mangleSourceName(N); 2951 2952 // Terminate the whole name with an '@'. 2953 Out << '@'; 2954 } 2955 2956 // <type> ::= <array-type> 2957 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2958 // [Y <dimension-count> <dimension>+] 2959 // <element-type> # as global, E is never required 2960 // It's supposed to be the other way around, but for some strange reason, it 2961 // isn't. Today this behavior is retained for the sole purpose of backwards 2962 // compatibility. 2963 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2964 // This isn't a recursive mangling, so now we have to do it all in this 2965 // one call. 2966 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2967 mangleType(T->getElementType(), SourceRange()); 2968 } 2969 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2970 SourceRange) { 2971 llvm_unreachable("Should have been special cased"); 2972 } 2973 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2974 SourceRange) { 2975 llvm_unreachable("Should have been special cased"); 2976 } 2977 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2978 Qualifiers, SourceRange) { 2979 llvm_unreachable("Should have been special cased"); 2980 } 2981 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2982 Qualifiers, SourceRange) { 2983 llvm_unreachable("Should have been special cased"); 2984 } 2985 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2986 QualType ElementTy(T, 0); 2987 SmallVector<llvm::APInt, 3> Dimensions; 2988 for (;;) { 2989 if (ElementTy->isConstantArrayType()) { 2990 const ConstantArrayType *CAT = 2991 getASTContext().getAsConstantArrayType(ElementTy); 2992 Dimensions.push_back(CAT->getSize()); 2993 ElementTy = CAT->getElementType(); 2994 } else if (ElementTy->isIncompleteArrayType()) { 2995 const IncompleteArrayType *IAT = 2996 getASTContext().getAsIncompleteArrayType(ElementTy); 2997 Dimensions.push_back(llvm::APInt(32, 0)); 2998 ElementTy = IAT->getElementType(); 2999 } else if (ElementTy->isVariableArrayType()) { 3000 const VariableArrayType *VAT = 3001 getASTContext().getAsVariableArrayType(ElementTy); 3002 Dimensions.push_back(llvm::APInt(32, 0)); 3003 ElementTy = VAT->getElementType(); 3004 } else if (ElementTy->isDependentSizedArrayType()) { 3005 // The dependent expression has to be folded into a constant (TODO). 3006 const DependentSizedArrayType *DSAT = 3007 getASTContext().getAsDependentSizedArrayType(ElementTy); 3008 DiagnosticsEngine &Diags = Context.getDiags(); 3009 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3010 "cannot mangle this dependent-length array yet"); 3011 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 3012 << DSAT->getBracketsRange(); 3013 return; 3014 } else { 3015 break; 3016 } 3017 } 3018 Out << 'Y'; 3019 // <dimension-count> ::= <number> # number of extra dimensions 3020 mangleNumber(Dimensions.size()); 3021 for (const llvm::APInt &Dimension : Dimensions) 3022 mangleNumber(Dimension.getLimitedValue()); 3023 mangleType(ElementTy, SourceRange(), QMM_Escape); 3024 } 3025 3026 // <type> ::= <pointer-to-member-type> 3027 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 3028 // <class name> <type> 3029 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 3030 Qualifiers Quals, SourceRange Range) { 3031 QualType PointeeType = T->getPointeeType(); 3032 manglePointerCVQualifiers(Quals); 3033 manglePointerExtQualifiers(Quals, PointeeType); 3034 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 3035 Out << '8'; 3036 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 3037 mangleFunctionType(FPT, nullptr, true); 3038 } else { 3039 mangleQualifiers(PointeeType.getQualifiers(), true); 3040 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 3041 mangleType(PointeeType, Range, QMM_Drop); 3042 } 3043 } 3044 3045 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 3046 Qualifiers, SourceRange Range) { 3047 DiagnosticsEngine &Diags = Context.getDiags(); 3048 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3049 "cannot mangle this template type parameter type yet"); 3050 Diags.Report(Range.getBegin(), DiagID) 3051 << Range; 3052 } 3053 3054 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 3055 Qualifiers, SourceRange Range) { 3056 DiagnosticsEngine &Diags = Context.getDiags(); 3057 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3058 "cannot mangle this substituted parameter pack yet"); 3059 Diags.Report(Range.getBegin(), DiagID) 3060 << Range; 3061 } 3062 3063 // <type> ::= <pointer-type> 3064 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 3065 // # the E is required for 64-bit non-static pointers 3066 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 3067 SourceRange Range) { 3068 QualType PointeeType = T->getPointeeType(); 3069 manglePointerCVQualifiers(Quals); 3070 manglePointerExtQualifiers(Quals, PointeeType); 3071 3072 // For pointer size address spaces, go down the same type mangling path as 3073 // non address space types. 3074 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); 3075 if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default) 3076 mangleType(PointeeType, Range); 3077 else 3078 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 3079 } 3080 3081 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 3082 Qualifiers Quals, SourceRange Range) { 3083 QualType PointeeType = T->getPointeeType(); 3084 switch (Quals.getObjCLifetime()) { 3085 case Qualifiers::OCL_None: 3086 case Qualifiers::OCL_ExplicitNone: 3087 break; 3088 case Qualifiers::OCL_Autoreleasing: 3089 case Qualifiers::OCL_Strong: 3090 case Qualifiers::OCL_Weak: 3091 return mangleObjCLifetime(PointeeType, Quals, Range); 3092 } 3093 manglePointerCVQualifiers(Quals); 3094 manglePointerExtQualifiers(Quals, PointeeType); 3095 mangleType(PointeeType, Range); 3096 } 3097 3098 // <type> ::= <reference-type> 3099 // <reference-type> ::= A E? <cvr-qualifiers> <type> 3100 // # the E is required for 64-bit non-static lvalue references 3101 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 3102 Qualifiers Quals, SourceRange Range) { 3103 QualType PointeeType = T->getPointeeType(); 3104 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 3105 Out << 'A'; 3106 manglePointerExtQualifiers(Quals, PointeeType); 3107 mangleType(PointeeType, Range); 3108 } 3109 3110 // <type> ::= <r-value-reference-type> 3111 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 3112 // # the E is required for 64-bit non-static rvalue references 3113 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 3114 Qualifiers Quals, SourceRange Range) { 3115 QualType PointeeType = T->getPointeeType(); 3116 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 3117 Out << "$$Q"; 3118 manglePointerExtQualifiers(Quals, PointeeType); 3119 mangleType(PointeeType, Range); 3120 } 3121 3122 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 3123 SourceRange Range) { 3124 QualType ElementType = T->getElementType(); 3125 3126 llvm::SmallString<64> TemplateMangling; 3127 llvm::raw_svector_ostream Stream(TemplateMangling); 3128 MicrosoftCXXNameMangler Extra(Context, Stream); 3129 Stream << "?$"; 3130 Extra.mangleSourceName("_Complex"); 3131 Extra.mangleType(ElementType, Range, QMM_Escape); 3132 3133 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3134 } 3135 3136 // Returns true for types that mangleArtificialTagType() gets called for with 3137 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's 3138 // mangling matters. 3139 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 3140 // support.) 3141 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 3142 const Type *ty = T.getTypePtr(); 3143 switch (ty->getTypeClass()) { 3144 default: 3145 return false; 3146 3147 case Type::Vector: { 3148 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 3149 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 3150 // just always return true (the other vector types are clang-only). 3151 return true; 3152 } 3153 } 3154 } 3155 3156 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 3157 SourceRange Range) { 3158 QualType EltTy = T->getElementType(); 3159 const BuiltinType *ET = EltTy->getAs<BuiltinType>(); 3160 const BitIntType *BitIntTy = EltTy->getAs<BitIntType>(); 3161 assert((ET || BitIntTy) && 3162 "vectors with non-builtin/_BitInt elements are unsupported"); 3163 uint64_t Width = getASTContext().getTypeSize(T); 3164 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 3165 // doesn't match the Intel types uses a custom mangling below. 3166 size_t OutSizeBefore = Out.tell(); 3167 if (!isa<ExtVectorType>(T)) { 3168 if (getASTContext().getTargetInfo().getTriple().isX86() && ET) { 3169 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 3170 mangleArtificialTagType(TTK_Union, "__m64"); 3171 } else if (Width >= 128) { 3172 if (ET->getKind() == BuiltinType::Float) 3173 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width)); 3174 else if (ET->getKind() == BuiltinType::LongLong) 3175 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); 3176 else if (ET->getKind() == BuiltinType::Double) 3177 mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); 3178 } 3179 } 3180 } 3181 3182 bool IsBuiltin = Out.tell() != OutSizeBefore; 3183 if (!IsBuiltin) { 3184 // The MS ABI doesn't have a special mangling for vector types, so we define 3185 // our own mangling to handle uses of __vector_size__ on user-specified 3186 // types, and for extensions like __v4sf. 3187 3188 llvm::SmallString<64> TemplateMangling; 3189 llvm::raw_svector_ostream Stream(TemplateMangling); 3190 MicrosoftCXXNameMangler Extra(Context, Stream); 3191 Stream << "?$"; 3192 Extra.mangleSourceName("__vector"); 3193 Extra.mangleType(QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0), 3194 Range, QMM_Escape); 3195 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements())); 3196 3197 mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"}); 3198 } 3199 } 3200 3201 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 3202 Qualifiers Quals, SourceRange Range) { 3203 mangleType(static_cast<const VectorType *>(T), Quals, Range); 3204 } 3205 3206 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 3207 Qualifiers, SourceRange Range) { 3208 DiagnosticsEngine &Diags = Context.getDiags(); 3209 unsigned DiagID = Diags.getCustomDiagID( 3210 DiagnosticsEngine::Error, 3211 "cannot mangle this dependent-sized vector type yet"); 3212 Diags.Report(Range.getBegin(), DiagID) << Range; 3213 } 3214 3215 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 3216 Qualifiers, SourceRange Range) { 3217 DiagnosticsEngine &Diags = Context.getDiags(); 3218 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3219 "cannot mangle this dependent-sized extended vector type yet"); 3220 Diags.Report(Range.getBegin(), DiagID) 3221 << Range; 3222 } 3223 3224 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, 3225 Qualifiers quals, SourceRange Range) { 3226 DiagnosticsEngine &Diags = Context.getDiags(); 3227 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3228 "Cannot mangle this matrix type yet"); 3229 Diags.Report(Range.getBegin(), DiagID) << Range; 3230 } 3231 3232 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, 3233 Qualifiers quals, SourceRange Range) { 3234 DiagnosticsEngine &Diags = Context.getDiags(); 3235 unsigned DiagID = Diags.getCustomDiagID( 3236 DiagnosticsEngine::Error, 3237 "Cannot mangle this dependent-sized matrix type yet"); 3238 Diags.Report(Range.getBegin(), DiagID) << Range; 3239 } 3240 3241 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 3242 Qualifiers, SourceRange Range) { 3243 DiagnosticsEngine &Diags = Context.getDiags(); 3244 unsigned DiagID = Diags.getCustomDiagID( 3245 DiagnosticsEngine::Error, 3246 "cannot mangle this dependent address space type yet"); 3247 Diags.Report(Range.getBegin(), DiagID) << Range; 3248 } 3249 3250 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 3251 SourceRange) { 3252 // ObjC interfaces have structs underlying them. 3253 mangleTagTypeKind(TTK_Struct); 3254 mangleName(T->getDecl()); 3255 } 3256 3257 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 3258 Qualifiers Quals, SourceRange Range) { 3259 if (T->isKindOfType()) 3260 return mangleObjCKindOfType(T, Quals, Range); 3261 3262 if (T->qual_empty() && !T->isSpecialized()) 3263 return mangleType(T->getBaseType(), Range, QMM_Drop); 3264 3265 ArgBackRefMap OuterFunArgsContext; 3266 ArgBackRefMap OuterTemplateArgsContext; 3267 BackRefVec OuterTemplateContext; 3268 3269 FunArgBackReferences.swap(OuterFunArgsContext); 3270 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3271 NameBackReferences.swap(OuterTemplateContext); 3272 3273 mangleTagTypeKind(TTK_Struct); 3274 3275 Out << "?$"; 3276 if (T->isObjCId()) 3277 mangleSourceName("objc_object"); 3278 else if (T->isObjCClass()) 3279 mangleSourceName("objc_class"); 3280 else 3281 mangleSourceName(T->getInterface()->getName()); 3282 3283 for (const auto &Q : T->quals()) 3284 mangleObjCProtocol(Q); 3285 3286 if (T->isSpecialized()) 3287 for (const auto &TA : T->getTypeArgs()) 3288 mangleType(TA, Range, QMM_Drop); 3289 3290 Out << '@'; 3291 3292 Out << '@'; 3293 3294 FunArgBackReferences.swap(OuterFunArgsContext); 3295 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3296 NameBackReferences.swap(OuterTemplateContext); 3297 } 3298 3299 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 3300 Qualifiers Quals, SourceRange Range) { 3301 QualType PointeeType = T->getPointeeType(); 3302 manglePointerCVQualifiers(Quals); 3303 manglePointerExtQualifiers(Quals, PointeeType); 3304 3305 Out << "_E"; 3306 3307 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 3308 } 3309 3310 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 3311 Qualifiers, SourceRange) { 3312 llvm_unreachable("Cannot mangle injected class name type."); 3313 } 3314 3315 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 3316 Qualifiers, SourceRange Range) { 3317 DiagnosticsEngine &Diags = Context.getDiags(); 3318 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3319 "cannot mangle this template specialization type yet"); 3320 Diags.Report(Range.getBegin(), DiagID) 3321 << Range; 3322 } 3323 3324 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 3325 SourceRange Range) { 3326 DiagnosticsEngine &Diags = Context.getDiags(); 3327 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3328 "cannot mangle this dependent name type yet"); 3329 Diags.Report(Range.getBegin(), DiagID) 3330 << Range; 3331 } 3332 3333 void MicrosoftCXXNameMangler::mangleType( 3334 const DependentTemplateSpecializationType *T, Qualifiers, 3335 SourceRange Range) { 3336 DiagnosticsEngine &Diags = Context.getDiags(); 3337 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3338 "cannot mangle this dependent template specialization type yet"); 3339 Diags.Report(Range.getBegin(), DiagID) 3340 << Range; 3341 } 3342 3343 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 3344 SourceRange Range) { 3345 DiagnosticsEngine &Diags = Context.getDiags(); 3346 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3347 "cannot mangle this pack expansion yet"); 3348 Diags.Report(Range.getBegin(), DiagID) 3349 << Range; 3350 } 3351 3352 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 3353 SourceRange Range) { 3354 DiagnosticsEngine &Diags = Context.getDiags(); 3355 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3356 "cannot mangle this typeof(type) yet"); 3357 Diags.Report(Range.getBegin(), DiagID) 3358 << Range; 3359 } 3360 3361 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 3362 SourceRange Range) { 3363 DiagnosticsEngine &Diags = Context.getDiags(); 3364 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3365 "cannot mangle this typeof(expression) yet"); 3366 Diags.Report(Range.getBegin(), DiagID) 3367 << Range; 3368 } 3369 3370 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 3371 SourceRange Range) { 3372 DiagnosticsEngine &Diags = Context.getDiags(); 3373 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3374 "cannot mangle this decltype() yet"); 3375 Diags.Report(Range.getBegin(), DiagID) 3376 << Range; 3377 } 3378 3379 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 3380 Qualifiers, SourceRange Range) { 3381 DiagnosticsEngine &Diags = Context.getDiags(); 3382 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3383 "cannot mangle this unary transform type yet"); 3384 Diags.Report(Range.getBegin(), DiagID) 3385 << Range; 3386 } 3387 3388 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 3389 SourceRange Range) { 3390 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3391 3392 DiagnosticsEngine &Diags = Context.getDiags(); 3393 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3394 "cannot mangle this 'auto' type yet"); 3395 Diags.Report(Range.getBegin(), DiagID) 3396 << Range; 3397 } 3398 3399 void MicrosoftCXXNameMangler::mangleType( 3400 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 3401 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3402 3403 DiagnosticsEngine &Diags = Context.getDiags(); 3404 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3405 "cannot mangle this deduced class template specialization type yet"); 3406 Diags.Report(Range.getBegin(), DiagID) 3407 << Range; 3408 } 3409 3410 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 3411 SourceRange Range) { 3412 QualType ValueType = T->getValueType(); 3413 3414 llvm::SmallString<64> TemplateMangling; 3415 llvm::raw_svector_ostream Stream(TemplateMangling); 3416 MicrosoftCXXNameMangler Extra(Context, Stream); 3417 Stream << "?$"; 3418 Extra.mangleSourceName("_Atomic"); 3419 Extra.mangleType(ValueType, Range, QMM_Escape); 3420 3421 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3422 } 3423 3424 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 3425 SourceRange Range) { 3426 QualType ElementType = T->getElementType(); 3427 3428 llvm::SmallString<64> TemplateMangling; 3429 llvm::raw_svector_ostream Stream(TemplateMangling); 3430 MicrosoftCXXNameMangler Extra(Context, Stream); 3431 Stream << "?$"; 3432 Extra.mangleSourceName("ocl_pipe"); 3433 Extra.mangleType(ElementType, Range, QMM_Escape); 3434 Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly())); 3435 3436 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3437 } 3438 3439 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, 3440 raw_ostream &Out) { 3441 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 3442 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 3443 getASTContext().getSourceManager(), 3444 "Mangling declaration"); 3445 3446 msvc_hashing_ostream MHO(Out); 3447 3448 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 3449 auto Type = GD.getCtorType(); 3450 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); 3451 return mangler.mangle(GD); 3452 } 3453 3454 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 3455 auto Type = GD.getDtorType(); 3456 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); 3457 return mangler.mangle(GD); 3458 } 3459 3460 MicrosoftCXXNameMangler Mangler(*this, MHO); 3461 return Mangler.mangle(GD); 3462 } 3463 3464 void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers, 3465 SourceRange Range) { 3466 llvm::SmallString<64> TemplateMangling; 3467 llvm::raw_svector_ostream Stream(TemplateMangling); 3468 MicrosoftCXXNameMangler Extra(Context, Stream); 3469 Stream << "?$"; 3470 if (T->isUnsigned()) 3471 Extra.mangleSourceName("_UBitInt"); 3472 else 3473 Extra.mangleSourceName("_BitInt"); 3474 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits())); 3475 3476 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3477 } 3478 3479 void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T, 3480 Qualifiers, SourceRange Range) { 3481 DiagnosticsEngine &Diags = Context.getDiags(); 3482 unsigned DiagID = Diags.getCustomDiagID( 3483 DiagnosticsEngine::Error, "cannot mangle this DependentBitInt type yet"); 3484 Diags.Report(Range.getBegin(), DiagID) << Range; 3485 } 3486 3487 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 3488 // <virtual-adjustment> 3489 // <no-adjustment> ::= A # private near 3490 // ::= B # private far 3491 // ::= I # protected near 3492 // ::= J # protected far 3493 // ::= Q # public near 3494 // ::= R # public far 3495 // <static-adjustment> ::= G <static-offset> # private near 3496 // ::= H <static-offset> # private far 3497 // ::= O <static-offset> # protected near 3498 // ::= P <static-offset> # protected far 3499 // ::= W <static-offset> # public near 3500 // ::= X <static-offset> # public far 3501 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 3502 // ::= $1 <virtual-shift> <static-offset> # private far 3503 // ::= $2 <virtual-shift> <static-offset> # protected near 3504 // ::= $3 <virtual-shift> <static-offset> # protected far 3505 // ::= $4 <virtual-shift> <static-offset> # public near 3506 // ::= $5 <virtual-shift> <static-offset> # public far 3507 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 3508 // <vtordisp-shift> ::= <offset-to-vtordisp> 3509 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 3510 // <offset-to-vtordisp> 3511 static void mangleThunkThisAdjustment(AccessSpecifier AS, 3512 const ThisAdjustment &Adjustment, 3513 MicrosoftCXXNameMangler &Mangler, 3514 raw_ostream &Out) { 3515 if (!Adjustment.Virtual.isEmpty()) { 3516 Out << '$'; 3517 char AccessSpec; 3518 switch (AS) { 3519 case AS_none: 3520 llvm_unreachable("Unsupported access specifier"); 3521 case AS_private: 3522 AccessSpec = '0'; 3523 break; 3524 case AS_protected: 3525 AccessSpec = '2'; 3526 break; 3527 case AS_public: 3528 AccessSpec = '4'; 3529 } 3530 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3531 Out << 'R' << AccessSpec; 3532 Mangler.mangleNumber( 3533 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3534 Mangler.mangleNumber( 3535 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3536 Mangler.mangleNumber( 3537 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3538 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3539 } else { 3540 Out << AccessSpec; 3541 Mangler.mangleNumber( 3542 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3543 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3544 } 3545 } else if (Adjustment.NonVirtual != 0) { 3546 switch (AS) { 3547 case AS_none: 3548 llvm_unreachable("Unsupported access specifier"); 3549 case AS_private: 3550 Out << 'G'; 3551 break; 3552 case AS_protected: 3553 Out << 'O'; 3554 break; 3555 case AS_public: 3556 Out << 'W'; 3557 } 3558 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3559 } else { 3560 switch (AS) { 3561 case AS_none: 3562 llvm_unreachable("Unsupported access specifier"); 3563 case AS_private: 3564 Out << 'A'; 3565 break; 3566 case AS_protected: 3567 Out << 'I'; 3568 break; 3569 case AS_public: 3570 Out << 'Q'; 3571 } 3572 } 3573 } 3574 3575 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3576 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3577 raw_ostream &Out) { 3578 msvc_hashing_ostream MHO(Out); 3579 MicrosoftCXXNameMangler Mangler(*this, MHO); 3580 Mangler.getStream() << '?'; 3581 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3582 } 3583 3584 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3585 const ThunkInfo &Thunk, 3586 raw_ostream &Out) { 3587 msvc_hashing_ostream MHO(Out); 3588 MicrosoftCXXNameMangler Mangler(*this, MHO); 3589 Mangler.getStream() << '?'; 3590 Mangler.mangleName(MD); 3591 3592 // Usually the thunk uses the access specifier of the new method, but if this 3593 // is a covariant return thunk, then MSVC always uses the public access 3594 // specifier, and we do the same. 3595 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3596 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3597 3598 if (!Thunk.Return.isEmpty()) 3599 assert(Thunk.Method != nullptr && 3600 "Thunk info should hold the overridee decl"); 3601 3602 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3603 Mangler.mangleFunctionType( 3604 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3605 } 3606 3607 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 3608 const CXXDestructorDecl *DD, CXXDtorType Type, 3609 const ThisAdjustment &Adjustment, raw_ostream &Out) { 3610 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3611 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3612 // mangling manually until we support both deleting dtor types. 3613 assert(Type == Dtor_Deleting); 3614 msvc_hashing_ostream MHO(Out); 3615 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3616 Mangler.getStream() << "??_E"; 3617 Mangler.mangleName(DD->getParent()); 3618 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3619 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3620 } 3621 3622 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3623 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3624 raw_ostream &Out) { 3625 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3626 // <cvr-qualifiers> [<name>] @ 3627 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3628 // is always '6' for vftables. 3629 msvc_hashing_ostream MHO(Out); 3630 MicrosoftCXXNameMangler Mangler(*this, MHO); 3631 if (Derived->hasAttr<DLLImportAttr>()) 3632 Mangler.getStream() << "??_S"; 3633 else 3634 Mangler.getStream() << "??_7"; 3635 Mangler.mangleName(Derived); 3636 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3637 for (const CXXRecordDecl *RD : BasePath) 3638 Mangler.mangleName(RD); 3639 Mangler.getStream() << '@'; 3640 } 3641 3642 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3643 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3644 raw_ostream &Out) { 3645 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3646 // <cvr-qualifiers> [<name>] @ 3647 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3648 // is always '7' for vbtables. 3649 msvc_hashing_ostream MHO(Out); 3650 MicrosoftCXXNameMangler Mangler(*this, MHO); 3651 Mangler.getStream() << "??_8"; 3652 Mangler.mangleName(Derived); 3653 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3654 for (const CXXRecordDecl *RD : BasePath) 3655 Mangler.mangleName(RD); 3656 Mangler.getStream() << '@'; 3657 } 3658 3659 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3660 msvc_hashing_ostream MHO(Out); 3661 MicrosoftCXXNameMangler Mangler(*this, MHO); 3662 Mangler.getStream() << "??_R0"; 3663 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3664 Mangler.getStream() << "@8"; 3665 } 3666 3667 void MicrosoftMangleContextImpl::mangleCXXRTTIName( 3668 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { 3669 MicrosoftCXXNameMangler Mangler(*this, Out); 3670 Mangler.getStream() << '.'; 3671 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3672 } 3673 3674 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3675 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3676 msvc_hashing_ostream MHO(Out); 3677 MicrosoftCXXNameMangler Mangler(*this, MHO); 3678 Mangler.getStream() << "??_K"; 3679 Mangler.mangleName(SrcRD); 3680 Mangler.getStream() << "$C"; 3681 Mangler.mangleName(DstRD); 3682 } 3683 3684 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3685 bool IsVolatile, 3686 bool IsUnaligned, 3687 uint32_t NumEntries, 3688 raw_ostream &Out) { 3689 msvc_hashing_ostream MHO(Out); 3690 MicrosoftCXXNameMangler Mangler(*this, MHO); 3691 Mangler.getStream() << "_TI"; 3692 if (IsConst) 3693 Mangler.getStream() << 'C'; 3694 if (IsVolatile) 3695 Mangler.getStream() << 'V'; 3696 if (IsUnaligned) 3697 Mangler.getStream() << 'U'; 3698 Mangler.getStream() << NumEntries; 3699 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3700 } 3701 3702 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3703 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3704 msvc_hashing_ostream MHO(Out); 3705 MicrosoftCXXNameMangler Mangler(*this, MHO); 3706 Mangler.getStream() << "_CTA"; 3707 Mangler.getStream() << NumEntries; 3708 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3709 } 3710 3711 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3712 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3713 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3714 raw_ostream &Out) { 3715 MicrosoftCXXNameMangler Mangler(*this, Out); 3716 Mangler.getStream() << "_CT"; 3717 3718 llvm::SmallString<64> RTTIMangling; 3719 { 3720 llvm::raw_svector_ostream Stream(RTTIMangling); 3721 msvc_hashing_ostream MHO(Stream); 3722 mangleCXXRTTI(T, MHO); 3723 } 3724 Mangler.getStream() << RTTIMangling; 3725 3726 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3727 // both older and newer versions include it. 3728 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3729 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3730 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3731 // Or 1912, 1913 already?). 3732 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3733 LangOptions::MSVC2015) && 3734 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3735 LangOptions::MSVC2017_7); 3736 llvm::SmallString<64> CopyCtorMangling; 3737 if (!OmitCopyCtor && CD) { 3738 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3739 msvc_hashing_ostream MHO(Stream); 3740 mangleCXXName(GlobalDecl(CD, CT), MHO); 3741 } 3742 Mangler.getStream() << CopyCtorMangling; 3743 3744 Mangler.getStream() << Size; 3745 if (VBPtrOffset == -1) { 3746 if (NVOffset) { 3747 Mangler.getStream() << NVOffset; 3748 } 3749 } else { 3750 Mangler.getStream() << NVOffset; 3751 Mangler.getStream() << VBPtrOffset; 3752 Mangler.getStream() << VBIndex; 3753 } 3754 } 3755 3756 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3757 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3758 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3759 msvc_hashing_ostream MHO(Out); 3760 MicrosoftCXXNameMangler Mangler(*this, MHO); 3761 Mangler.getStream() << "??_R1"; 3762 Mangler.mangleNumber(NVOffset); 3763 Mangler.mangleNumber(VBPtrOffset); 3764 Mangler.mangleNumber(VBTableOffset); 3765 Mangler.mangleNumber(Flags); 3766 Mangler.mangleName(Derived); 3767 Mangler.getStream() << "8"; 3768 } 3769 3770 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3771 const CXXRecordDecl *Derived, raw_ostream &Out) { 3772 msvc_hashing_ostream MHO(Out); 3773 MicrosoftCXXNameMangler Mangler(*this, MHO); 3774 Mangler.getStream() << "??_R2"; 3775 Mangler.mangleName(Derived); 3776 Mangler.getStream() << "8"; 3777 } 3778 3779 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3780 const CXXRecordDecl *Derived, raw_ostream &Out) { 3781 msvc_hashing_ostream MHO(Out); 3782 MicrosoftCXXNameMangler Mangler(*this, MHO); 3783 Mangler.getStream() << "??_R3"; 3784 Mangler.mangleName(Derived); 3785 Mangler.getStream() << "8"; 3786 } 3787 3788 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 3789 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3790 raw_ostream &Out) { 3791 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 3792 // <cvr-qualifiers> [<name>] @ 3793 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3794 // is always '6' for vftables. 3795 llvm::SmallString<64> VFTableMangling; 3796 llvm::raw_svector_ostream Stream(VFTableMangling); 3797 mangleCXXVFTable(Derived, BasePath, Stream); 3798 3799 if (VFTableMangling.startswith("??@")) { 3800 assert(VFTableMangling.endswith("@")); 3801 Out << VFTableMangling << "??_R4@"; 3802 return; 3803 } 3804 3805 assert(VFTableMangling.startswith("??_7") || 3806 VFTableMangling.startswith("??_S")); 3807 3808 Out << "??_R4" << VFTableMangling.str().drop_front(4); 3809 } 3810 3811 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 3812 GlobalDecl EnclosingDecl, raw_ostream &Out) { 3813 msvc_hashing_ostream MHO(Out); 3814 MicrosoftCXXNameMangler Mangler(*this, MHO); 3815 // The function body is in the same comdat as the function with the handler, 3816 // so the numbering here doesn't have to be the same across TUs. 3817 // 3818 // <mangled-name> ::= ?filt$ <filter-number> @0 3819 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 3820 Mangler.mangleName(EnclosingDecl); 3821 } 3822 3823 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 3824 GlobalDecl EnclosingDecl, raw_ostream &Out) { 3825 msvc_hashing_ostream MHO(Out); 3826 MicrosoftCXXNameMangler Mangler(*this, MHO); 3827 // The function body is in the same comdat as the function with the handler, 3828 // so the numbering here doesn't have to be the same across TUs. 3829 // 3830 // <mangled-name> ::= ?fin$ <filter-number> @0 3831 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 3832 Mangler.mangleName(EnclosingDecl); 3833 } 3834 3835 void MicrosoftMangleContextImpl::mangleTypeName( 3836 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { 3837 // This is just a made up unique string for the purposes of tbaa. undname 3838 // does *not* know how to demangle it. 3839 MicrosoftCXXNameMangler Mangler(*this, Out); 3840 Mangler.getStream() << '?'; 3841 Mangler.mangleType(T, SourceRange()); 3842 } 3843 3844 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 3845 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 3846 msvc_hashing_ostream MHO(Out); 3847 MicrosoftCXXNameMangler Mangler(*this, MHO); 3848 3849 Mangler.getStream() << "?$RT" << ManglingNumber << '@'; 3850 Mangler.mangle(VD, ""); 3851 } 3852 3853 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 3854 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 3855 msvc_hashing_ostream MHO(Out); 3856 MicrosoftCXXNameMangler Mangler(*this, MHO); 3857 3858 Mangler.getStream() << "?$TSS" << GuardNum << '@'; 3859 Mangler.mangleNestedName(VD); 3860 Mangler.getStream() << "@4HA"; 3861 } 3862 3863 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 3864 raw_ostream &Out) { 3865 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 3866 // ::= ?__J <postfix> @5 <scope-depth> 3867 // ::= ?$S <guard-num> @ <postfix> @4IA 3868 3869 // The first mangling is what MSVC uses to guard static locals in inline 3870 // functions. It uses a different mangling in external functions to support 3871 // guarding more than 32 variables. MSVC rejects inline functions with more 3872 // than 32 static locals. We don't fully implement the second mangling 3873 // because those guards are not externally visible, and instead use LLVM's 3874 // default renaming when creating a new guard variable. 3875 msvc_hashing_ostream MHO(Out); 3876 MicrosoftCXXNameMangler Mangler(*this, MHO); 3877 3878 bool Visible = VD->isExternallyVisible(); 3879 if (Visible) { 3880 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 3881 } else { 3882 Mangler.getStream() << "?$S1@"; 3883 } 3884 unsigned ScopeDepth = 0; 3885 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 3886 // If we do not have a discriminator and are emitting a guard variable for 3887 // use at global scope, then mangling the nested name will not be enough to 3888 // remove ambiguities. 3889 Mangler.mangle(VD, ""); 3890 else 3891 Mangler.mangleNestedName(VD); 3892 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 3893 if (ScopeDepth) 3894 Mangler.mangleNumber(ScopeDepth); 3895 } 3896 3897 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 3898 char CharCode, 3899 raw_ostream &Out) { 3900 msvc_hashing_ostream MHO(Out); 3901 MicrosoftCXXNameMangler Mangler(*this, MHO); 3902 Mangler.getStream() << "??__" << CharCode; 3903 if (D->isStaticDataMember()) { 3904 Mangler.getStream() << '?'; 3905 Mangler.mangleName(D); 3906 Mangler.mangleVariableEncoding(D); 3907 Mangler.getStream() << "@@"; 3908 } else { 3909 Mangler.mangleName(D); 3910 } 3911 // This is the function class mangling. These stubs are global, non-variadic, 3912 // cdecl functions that return void and take no args. 3913 Mangler.getStream() << "YAXXZ"; 3914 } 3915 3916 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 3917 raw_ostream &Out) { 3918 // <initializer-name> ::= ?__E <name> YAXXZ 3919 mangleInitFiniStub(D, 'E', Out); 3920 } 3921 3922 void 3923 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 3924 raw_ostream &Out) { 3925 // <destructor-name> ::= ?__F <name> YAXXZ 3926 mangleInitFiniStub(D, 'F', Out); 3927 } 3928 3929 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 3930 raw_ostream &Out) { 3931 // <char-type> ::= 0 # char, char16_t, char32_t 3932 // # (little endian char data in mangling) 3933 // ::= 1 # wchar_t (big endian char data in mangling) 3934 // 3935 // <literal-length> ::= <non-negative integer> # the length of the literal 3936 // 3937 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 3938 // # trailing null bytes 3939 // 3940 // <encoded-string> ::= <simple character> # uninteresting character 3941 // ::= '?$' <hex digit> <hex digit> # these two nibbles 3942 // # encode the byte for the 3943 // # character 3944 // ::= '?' [a-z] # \xe1 - \xfa 3945 // ::= '?' [A-Z] # \xc1 - \xda 3946 // ::= '?' [0-9] # [,/\:. \n\t'-] 3947 // 3948 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 3949 // <encoded-string> '@' 3950 MicrosoftCXXNameMangler Mangler(*this, Out); 3951 Mangler.getStream() << "??_C@_"; 3952 3953 // The actual string length might be different from that of the string literal 3954 // in cases like: 3955 // char foo[3] = "foobar"; 3956 // char bar[42] = "foobar"; 3957 // Where it is truncated or zero-padded to fit the array. This is the length 3958 // used for mangling, and any trailing null-bytes also need to be mangled. 3959 unsigned StringLength = getASTContext() 3960 .getAsConstantArrayType(SL->getType()) 3961 ->getSize() 3962 .getZExtValue(); 3963 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 3964 3965 // <char-type>: The "kind" of string literal is encoded into the mangled name. 3966 if (SL->isWide()) 3967 Mangler.getStream() << '1'; 3968 else 3969 Mangler.getStream() << '0'; 3970 3971 // <literal-length>: The next part of the mangled name consists of the length 3972 // of the string in bytes. 3973 Mangler.mangleNumber(StringByteLength); 3974 3975 auto GetLittleEndianByte = [&SL](unsigned Index) { 3976 unsigned CharByteWidth = SL->getCharByteWidth(); 3977 if (Index / CharByteWidth >= SL->getLength()) 3978 return static_cast<char>(0); 3979 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3980 unsigned OffsetInCodeUnit = Index % CharByteWidth; 3981 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3982 }; 3983 3984 auto GetBigEndianByte = [&SL](unsigned Index) { 3985 unsigned CharByteWidth = SL->getCharByteWidth(); 3986 if (Index / CharByteWidth >= SL->getLength()) 3987 return static_cast<char>(0); 3988 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3989 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 3990 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3991 }; 3992 3993 // CRC all the bytes of the StringLiteral. 3994 llvm::JamCRC JC; 3995 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 3996 JC.update(GetLittleEndianByte(I)); 3997 3998 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 3999 // scheme. 4000 Mangler.mangleNumber(JC.getCRC()); 4001 4002 // <encoded-string>: The mangled name also contains the first 32 bytes 4003 // (including null-terminator bytes) of the encoded StringLiteral. 4004 // Each character is encoded by splitting them into bytes and then encoding 4005 // the constituent bytes. 4006 auto MangleByte = [&Mangler](char Byte) { 4007 // There are five different manglings for characters: 4008 // - [a-zA-Z0-9_$]: A one-to-one mapping. 4009 // - ?[a-z]: The range from \xe1 to \xfa. 4010 // - ?[A-Z]: The range from \xc1 to \xda. 4011 // - ?[0-9]: The set of [,/\:. \n\t'-]. 4012 // - ?$XX: A fallback which maps nibbles. 4013 if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) { 4014 Mangler.getStream() << Byte; 4015 } else if (isLetter(Byte & 0x7f)) { 4016 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 4017 } else { 4018 const char SpecialChars[] = {',', '/', '\\', ':', '.', 4019 ' ', '\n', '\t', '\'', '-'}; 4020 const char *Pos = llvm::find(SpecialChars, Byte); 4021 if (Pos != std::end(SpecialChars)) { 4022 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 4023 } else { 4024 Mangler.getStream() << "?$"; 4025 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 4026 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 4027 } 4028 } 4029 }; 4030 4031 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 4032 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 4033 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 4034 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 4035 if (SL->isWide()) 4036 MangleByte(GetBigEndianByte(I)); 4037 else 4038 MangleByte(GetLittleEndianByte(I)); 4039 } 4040 4041 Mangler.getStream() << '@'; 4042 } 4043 4044 MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context, 4045 DiagnosticsEngine &Diags, 4046 bool IsAux) { 4047 return new MicrosoftMangleContextImpl(Context, Diags, IsAux); 4048 } 4049