1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implements C++ name mangling according to the Itanium C++ ABI, 10 // which is used in GCC 3.2 and newer (and many compilers that are 11 // ABI-compatible with GCC): 12 // 13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclOpenMP.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprConcepts.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/Module.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/Thunk.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/TargetParser/RISCVTargetParser.h" 39 #include <optional> 40 41 using namespace clang; 42 43 namespace { 44 45 static bool isLocalContainerContext(const DeclContext *DC) { 46 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 47 } 48 49 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 50 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 51 return ftd->getTemplatedDecl(); 52 53 return fn; 54 } 55 56 static const NamedDecl *getStructor(const NamedDecl *decl) { 57 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 58 return (fn ? getStructor(fn) : decl); 59 } 60 61 static bool isLambda(const NamedDecl *ND) { 62 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 63 if (!Record) 64 return false; 65 66 return Record->isLambda(); 67 } 68 69 static const unsigned UnknownArity = ~0U; 70 71 class ItaniumMangleContextImpl : public ItaniumMangleContext { 72 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 73 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 74 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 75 const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; 76 NamespaceDecl *StdNamespace = nullptr; 77 78 bool NeedsUniqueInternalLinkageNames = false; 79 80 public: 81 explicit ItaniumMangleContextImpl( 82 ASTContext &Context, DiagnosticsEngine &Diags, 83 DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false) 84 : ItaniumMangleContext(Context, Diags, IsAux), 85 DiscriminatorOverride(DiscriminatorOverride) {} 86 87 /// @name Mangler Entry Points 88 /// @{ 89 90 bool shouldMangleCXXName(const NamedDecl *D) override; 91 bool shouldMangleStringLiteral(const StringLiteral *) override { 92 return false; 93 } 94 95 bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; 96 void needsUniqueInternalLinkageNames() override { 97 NeedsUniqueInternalLinkageNames = true; 98 } 99 100 void mangleCXXName(GlobalDecl GD, raw_ostream &) override; 101 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 102 raw_ostream &) override; 103 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 104 const ThisAdjustment &ThisAdjustment, 105 raw_ostream &) override; 106 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 107 raw_ostream &) override; 108 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 109 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 110 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 111 const CXXRecordDecl *Type, raw_ostream &) override; 112 void mangleCXXRTTI(QualType T, raw_ostream &) override; 113 void mangleCXXRTTIName(QualType T, raw_ostream &, 114 bool NormalizeIntegers) override; 115 void mangleTypeName(QualType T, raw_ostream &, 116 bool NormalizeIntegers) override; 117 118 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 119 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 120 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 121 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 122 void mangleDynamicAtExitDestructor(const VarDecl *D, 123 raw_ostream &Out) override; 124 void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; 125 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, 126 raw_ostream &Out) override; 127 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, 128 raw_ostream &Out) override; 129 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 130 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 131 raw_ostream &) override; 132 133 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 134 135 void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; 136 137 void mangleModuleInitializer(const Module *Module, raw_ostream &) override; 138 139 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 140 // Lambda closure types are already numbered. 141 if (isLambda(ND)) 142 return false; 143 144 // Anonymous tags are already numbered. 145 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 146 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 147 return false; 148 } 149 150 // Use the canonical number for externally visible decls. 151 if (ND->isExternallyVisible()) { 152 unsigned discriminator = getASTContext().getManglingNumber(ND, isAux()); 153 if (discriminator == 1) 154 return false; 155 disc = discriminator - 2; 156 return true; 157 } 158 159 // Make up a reasonable number for internal decls. 160 unsigned &discriminator = Uniquifier[ND]; 161 if (!discriminator) { 162 const DeclContext *DC = getEffectiveDeclContext(ND); 163 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 164 } 165 if (discriminator == 1) 166 return false; 167 disc = discriminator-2; 168 return true; 169 } 170 171 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 172 // This function matches the one in MicrosoftMangle, which returns 173 // the string that is used in lambda mangled names. 174 assert(Lambda->isLambda() && "RD must be a lambda!"); 175 std::string Name("<lambda"); 176 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 177 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 178 unsigned LambdaId; 179 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 180 const FunctionDecl *Func = 181 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 182 183 if (Func) { 184 unsigned DefaultArgNo = 185 Func->getNumParams() - Parm->getFunctionScopeIndex(); 186 Name += llvm::utostr(DefaultArgNo); 187 Name += "_"; 188 } 189 190 if (LambdaManglingNumber) 191 LambdaId = LambdaManglingNumber; 192 else 193 LambdaId = getAnonymousStructIdForDebugInfo(Lambda); 194 195 Name += llvm::utostr(LambdaId); 196 Name += '>'; 197 return Name; 198 } 199 200 DiscriminatorOverrideTy getDiscriminatorOverride() const override { 201 return DiscriminatorOverride; 202 } 203 204 NamespaceDecl *getStdNamespace(); 205 206 const DeclContext *getEffectiveDeclContext(const Decl *D); 207 const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 208 return getEffectiveDeclContext(cast<Decl>(DC)); 209 } 210 211 bool isInternalLinkageDecl(const NamedDecl *ND); 212 213 /// @} 214 }; 215 216 /// Manage the mangling of a single name. 217 class CXXNameMangler { 218 ItaniumMangleContextImpl &Context; 219 raw_ostream &Out; 220 /// Normalize integer types for cross-language CFI support with other 221 /// languages that can't represent and encode C/C++ integer types. 222 bool NormalizeIntegers = false; 223 224 bool NullOut = false; 225 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 226 /// This mode is used when mangler creates another mangler recursively to 227 /// calculate ABI tags for the function return value or the variable type. 228 /// Also it is required to avoid infinite recursion in some cases. 229 bool DisableDerivedAbiTags = false; 230 231 /// The "structor" is the top-level declaration being mangled, if 232 /// that's not a template specialization; otherwise it's the pattern 233 /// for that specialization. 234 const NamedDecl *Structor; 235 unsigned StructorType = 0; 236 237 /// The next substitution sequence number. 238 unsigned SeqID = 0; 239 240 class FunctionTypeDepthState { 241 unsigned Bits; 242 243 enum { InResultTypeMask = 1 }; 244 245 public: 246 FunctionTypeDepthState() : Bits(0) {} 247 248 /// The number of function types we're inside. 249 unsigned getDepth() const { 250 return Bits >> 1; 251 } 252 253 /// True if we're in the return type of the innermost function type. 254 bool isInResultType() const { 255 return Bits & InResultTypeMask; 256 } 257 258 FunctionTypeDepthState push() { 259 FunctionTypeDepthState tmp = *this; 260 Bits = (Bits & ~InResultTypeMask) + 2; 261 return tmp; 262 } 263 264 void enterResultType() { 265 Bits |= InResultTypeMask; 266 } 267 268 void leaveResultType() { 269 Bits &= ~InResultTypeMask; 270 } 271 272 void pop(FunctionTypeDepthState saved) { 273 assert(getDepth() == saved.getDepth() + 1); 274 Bits = saved.Bits; 275 } 276 277 } FunctionTypeDepth; 278 279 // abi_tag is a gcc attribute, taking one or more strings called "tags". 280 // The goal is to annotate against which version of a library an object was 281 // built and to be able to provide backwards compatibility ("dual abi"). 282 // For more information see docs/ItaniumMangleAbiTags.rst. 283 typedef SmallVector<StringRef, 4> AbiTagList; 284 285 // State to gather all implicit and explicit tags used in a mangled name. 286 // Must always have an instance of this while emitting any name to keep 287 // track. 288 class AbiTagState final { 289 public: 290 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 291 Parent = LinkHead; 292 LinkHead = this; 293 } 294 295 // No copy, no move. 296 AbiTagState(const AbiTagState &) = delete; 297 AbiTagState &operator=(const AbiTagState &) = delete; 298 299 ~AbiTagState() { pop(); } 300 301 void write(raw_ostream &Out, const NamedDecl *ND, 302 const AbiTagList *AdditionalAbiTags) { 303 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 304 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 305 assert( 306 !AdditionalAbiTags && 307 "only function and variables need a list of additional abi tags"); 308 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 309 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 310 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 311 AbiTag->tags().end()); 312 } 313 // Don't emit abi tags for namespaces. 314 return; 315 } 316 } 317 318 AbiTagList TagList; 319 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 320 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 321 AbiTag->tags().end()); 322 TagList.insert(TagList.end(), AbiTag->tags().begin(), 323 AbiTag->tags().end()); 324 } 325 326 if (AdditionalAbiTags) { 327 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 328 AdditionalAbiTags->end()); 329 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 330 AdditionalAbiTags->end()); 331 } 332 333 llvm::sort(TagList); 334 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 335 336 writeSortedUniqueAbiTags(Out, TagList); 337 } 338 339 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 340 void setUsedAbiTags(const AbiTagList &AbiTags) { 341 UsedAbiTags = AbiTags; 342 } 343 344 const AbiTagList &getEmittedAbiTags() const { 345 return EmittedAbiTags; 346 } 347 348 const AbiTagList &getSortedUniqueUsedAbiTags() { 349 llvm::sort(UsedAbiTags); 350 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 351 UsedAbiTags.end()); 352 return UsedAbiTags; 353 } 354 355 private: 356 //! All abi tags used implicitly or explicitly. 357 AbiTagList UsedAbiTags; 358 //! All explicit abi tags (i.e. not from namespace). 359 AbiTagList EmittedAbiTags; 360 361 AbiTagState *&LinkHead; 362 AbiTagState *Parent = nullptr; 363 364 void pop() { 365 assert(LinkHead == this && 366 "abi tag link head must point to us on destruction"); 367 if (Parent) { 368 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 369 UsedAbiTags.begin(), UsedAbiTags.end()); 370 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 371 EmittedAbiTags.begin(), 372 EmittedAbiTags.end()); 373 } 374 LinkHead = Parent; 375 } 376 377 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 378 for (const auto &Tag : AbiTags) { 379 EmittedAbiTags.push_back(Tag); 380 Out << "B"; 381 Out << Tag.size(); 382 Out << Tag; 383 } 384 } 385 }; 386 387 AbiTagState *AbiTags = nullptr; 388 AbiTagState AbiTagsRoot; 389 390 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 391 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 392 393 ASTContext &getASTContext() const { return Context.getASTContext(); } 394 395 bool isStd(const NamespaceDecl *NS); 396 bool isStdNamespace(const DeclContext *DC); 397 398 const RecordDecl *GetLocalClassDecl(const Decl *D); 399 bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); 400 bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, 401 llvm::StringRef Name, bool HasAllocator); 402 403 public: 404 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 405 const NamedDecl *D = nullptr, bool NullOut_ = false) 406 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 407 AbiTagsRoot(AbiTags) { 408 // These can't be mangled without a ctor type or dtor type. 409 assert(!D || (!isa<CXXDestructorDecl>(D) && 410 !isa<CXXConstructorDecl>(D))); 411 } 412 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 413 const CXXConstructorDecl *D, CXXCtorType Type) 414 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 415 AbiTagsRoot(AbiTags) {} 416 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 417 const CXXDestructorDecl *D, CXXDtorType Type) 418 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 419 AbiTagsRoot(AbiTags) {} 420 421 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 422 bool NormalizeIntegers_) 423 : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_), 424 NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {} 425 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 426 : Context(Outer.Context), Out(Out_), Structor(Outer.Structor), 427 StructorType(Outer.StructorType), SeqID(Outer.SeqID), 428 FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags), 429 Substitutions(Outer.Substitutions), 430 ModuleSubstitutions(Outer.ModuleSubstitutions) {} 431 432 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 433 : CXXNameMangler(Outer, (raw_ostream &)Out_) { 434 NullOut = true; 435 } 436 437 raw_ostream &getStream() { return Out; } 438 439 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 440 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 441 442 void mangle(GlobalDecl GD); 443 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 444 void mangleNumber(const llvm::APSInt &I); 445 void mangleNumber(int64_t Number); 446 void mangleFloat(const llvm::APFloat &F); 447 void mangleFunctionEncoding(GlobalDecl GD); 448 void mangleSeqID(unsigned SeqID); 449 void mangleName(GlobalDecl GD); 450 void mangleType(QualType T); 451 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 452 void mangleLambdaSig(const CXXRecordDecl *Lambda); 453 void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false); 454 455 private: 456 457 bool mangleSubstitution(const NamedDecl *ND); 458 bool mangleSubstitution(NestedNameSpecifier *NNS); 459 bool mangleSubstitution(QualType T); 460 bool mangleSubstitution(TemplateName Template); 461 bool mangleSubstitution(uintptr_t Ptr); 462 463 void mangleExistingSubstitution(TemplateName name); 464 465 bool mangleStandardSubstitution(const NamedDecl *ND); 466 467 void addSubstitution(const NamedDecl *ND) { 468 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 469 470 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 471 } 472 void addSubstitution(NestedNameSpecifier *NNS) { 473 NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); 474 475 addSubstitution(reinterpret_cast<uintptr_t>(NNS)); 476 } 477 void addSubstitution(QualType T); 478 void addSubstitution(TemplateName Template); 479 void addSubstitution(uintptr_t Ptr); 480 // Destructive copy substitutions from other mangler. 481 void extendSubstitutions(CXXNameMangler* Other); 482 483 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 484 bool recursive = false); 485 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 486 DeclarationName name, 487 const TemplateArgumentLoc *TemplateArgs, 488 unsigned NumTemplateArgs, 489 unsigned KnownArity = UnknownArity); 490 491 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 492 493 void mangleNameWithAbiTags(GlobalDecl GD, 494 const AbiTagList *AdditionalAbiTags); 495 void mangleModuleName(const NamedDecl *ND); 496 void mangleTemplateName(const TemplateDecl *TD, 497 ArrayRef<TemplateArgument> Args); 498 void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC, 499 const AbiTagList *AdditionalAbiTags) { 500 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC, 501 UnknownArity, AdditionalAbiTags); 502 } 503 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, 504 const DeclContext *DC, unsigned KnownArity, 505 const AbiTagList *AdditionalAbiTags); 506 void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, 507 const AbiTagList *AdditionalAbiTags); 508 void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC, 509 const AbiTagList *AdditionalAbiTags); 510 void mangleSourceName(const IdentifierInfo *II); 511 void mangleRegCallName(const IdentifierInfo *II); 512 void mangleDeviceStubName(const IdentifierInfo *II); 513 void mangleSourceNameWithAbiTags( 514 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 515 void mangleLocalName(GlobalDecl GD, 516 const AbiTagList *AdditionalAbiTags); 517 void mangleBlockForPrefix(const BlockDecl *Block); 518 void mangleUnqualifiedBlock(const BlockDecl *Block); 519 void mangleTemplateParamDecl(const NamedDecl *Decl); 520 void mangleLambda(const CXXRecordDecl *Lambda); 521 void mangleNestedName(GlobalDecl GD, const DeclContext *DC, 522 const AbiTagList *AdditionalAbiTags, 523 bool NoFunction=false); 524 void mangleNestedName(const TemplateDecl *TD, 525 ArrayRef<TemplateArgument> Args); 526 void mangleNestedNameWithClosurePrefix(GlobalDecl GD, 527 const NamedDecl *PrefixND, 528 const AbiTagList *AdditionalAbiTags); 529 void manglePrefix(NestedNameSpecifier *qualifier); 530 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 531 void manglePrefix(QualType type); 532 void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); 533 void mangleTemplatePrefix(TemplateName Template); 534 const NamedDecl *getClosurePrefix(const Decl *ND); 535 void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); 536 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 537 StringRef Prefix = ""); 538 void mangleOperatorName(DeclarationName Name, unsigned Arity); 539 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 540 void mangleVendorQualifier(StringRef qualifier); 541 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 542 void mangleRefQualifier(RefQualifierKind RefQualifier); 543 544 void mangleObjCMethodName(const ObjCMethodDecl *MD); 545 546 // Declare manglers for every type class. 547 #define ABSTRACT_TYPE(CLASS, PARENT) 548 #define NON_CANONICAL_TYPE(CLASS, PARENT) 549 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 550 #include "clang/AST/TypeNodes.inc" 551 552 void mangleType(const TagType*); 553 void mangleType(TemplateName); 554 static StringRef getCallingConvQualifierName(CallingConv CC); 555 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 556 void mangleExtFunctionInfo(const FunctionType *T); 557 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 558 const FunctionDecl *FD = nullptr); 559 void mangleNeonVectorType(const VectorType *T); 560 void mangleNeonVectorType(const DependentVectorType *T); 561 void mangleAArch64NeonVectorType(const VectorType *T); 562 void mangleAArch64NeonVectorType(const DependentVectorType *T); 563 void mangleAArch64FixedSveVectorType(const VectorType *T); 564 void mangleAArch64FixedSveVectorType(const DependentVectorType *T); 565 void mangleRISCVFixedRVVVectorType(const VectorType *T); 566 void mangleRISCVFixedRVVVectorType(const DependentVectorType *T); 567 568 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 569 void mangleFloatLiteral(QualType T, const llvm::APFloat &V); 570 void mangleFixedPointLiteral(); 571 void mangleNullPointer(QualType T); 572 573 void mangleMemberExprBase(const Expr *base, bool isArrow); 574 void mangleMemberExpr(const Expr *base, bool isArrow, 575 NestedNameSpecifier *qualifier, 576 NamedDecl *firstQualifierLookup, 577 DeclarationName name, 578 const TemplateArgumentLoc *TemplateArgs, 579 unsigned NumTemplateArgs, 580 unsigned knownArity); 581 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 582 void mangleInitListElements(const InitListExpr *InitList); 583 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, 584 bool AsTemplateArg = false); 585 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 586 void mangleCXXDtorType(CXXDtorType T); 587 588 void mangleTemplateArgs(TemplateName TN, 589 const TemplateArgumentLoc *TemplateArgs, 590 unsigned NumTemplateArgs); 591 void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args); 592 void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); 593 void mangleTemplateArg(TemplateArgument A, bool NeedExactType); 594 void mangleTemplateArgExpr(const Expr *E); 595 void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, 596 bool NeedExactType = false); 597 598 void mangleTemplateParameter(unsigned Depth, unsigned Index); 599 600 void mangleFunctionParam(const ParmVarDecl *parm); 601 602 void writeAbiTags(const NamedDecl *ND, 603 const AbiTagList *AdditionalAbiTags); 604 605 // Returns sorted unique list of ABI tags. 606 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 607 // Returns sorted unique list of ABI tags. 608 AbiTagList makeVariableTypeTags(const VarDecl *VD); 609 }; 610 611 } 612 613 NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { 614 if (!StdNamespace) { 615 StdNamespace = NamespaceDecl::Create( 616 getASTContext(), getASTContext().getTranslationUnitDecl(), 617 /*Inline=*/false, SourceLocation(), SourceLocation(), 618 &getASTContext().Idents.get("std"), 619 /*PrevDecl=*/nullptr, /*Nested=*/false); 620 StdNamespace->setImplicit(); 621 } 622 return StdNamespace; 623 } 624 625 /// Retrieve the declaration context that should be used when mangling the given 626 /// declaration. 627 const DeclContext * 628 ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { 629 // The ABI assumes that lambda closure types that occur within 630 // default arguments live in the context of the function. However, due to 631 // the way in which Clang parses and creates function declarations, this is 632 // not the case: the lambda closure type ends up living in the context 633 // where the function itself resides, because the function declaration itself 634 // had not yet been created. Fix the context here. 635 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 636 if (RD->isLambda()) 637 if (ParmVarDecl *ContextParam = 638 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 639 return ContextParam->getDeclContext(); 640 } 641 642 // Perform the same check for block literals. 643 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 644 if (ParmVarDecl *ContextParam = 645 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 646 return ContextParam->getDeclContext(); 647 } 648 649 // On ARM and AArch64, the va_list tag is always mangled as if in the std 650 // namespace. We do not represent va_list as actually being in the std 651 // namespace in C because this would result in incorrect debug info in C, 652 // among other things. It is important for both languages to have the same 653 // mangling in order for -fsanitize=cfi-icall to work. 654 if (D == getASTContext().getVaListTagDecl()) { 655 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 656 if (T.isARM() || T.isThumb() || T.isAArch64()) 657 return getStdNamespace(); 658 } 659 660 const DeclContext *DC = D->getDeclContext(); 661 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 662 isa<OMPDeclareMapperDecl>(DC)) { 663 return getEffectiveDeclContext(cast<Decl>(DC)); 664 } 665 666 if (const auto *VD = dyn_cast<VarDecl>(D)) 667 if (VD->isExternC()) 668 return getASTContext().getTranslationUnitDecl(); 669 670 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 671 if (FD->isExternC()) 672 return getASTContext().getTranslationUnitDecl(); 673 674 return DC->getRedeclContext(); 675 } 676 677 bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { 678 if (ND && ND->getFormalLinkage() == InternalLinkage && 679 !ND->isExternallyVisible() && 680 getEffectiveDeclContext(ND)->isFileContext() && 681 !ND->isInAnonymousNamespace()) 682 return true; 683 return false; 684 } 685 686 // Check if this Function Decl needs a unique internal linkage name. 687 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( 688 const NamedDecl *ND) { 689 if (!NeedsUniqueInternalLinkageNames || !ND) 690 return false; 691 692 const auto *FD = dyn_cast<FunctionDecl>(ND); 693 if (!FD) 694 return false; 695 696 // For C functions without prototypes, return false as their 697 // names should not be mangled. 698 if (!FD->getType()->getAs<FunctionProtoType>()) 699 return false; 700 701 if (isInternalLinkageDecl(ND)) 702 return true; 703 704 return false; 705 } 706 707 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 708 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 709 LanguageLinkage L = FD->getLanguageLinkage(); 710 // Overloadable functions need mangling. 711 if (FD->hasAttr<OverloadableAttr>()) 712 return true; 713 714 // "main" is not mangled. 715 if (FD->isMain()) 716 return false; 717 718 // The Windows ABI expects that we would never mangle "typical" 719 // user-defined entry points regardless of visibility or freestanding-ness. 720 // 721 // N.B. This is distinct from asking about "main". "main" has a lot of 722 // special rules associated with it in the standard while these 723 // user-defined entry points are outside of the purview of the standard. 724 // For example, there can be only one definition for "main" in a standards 725 // compliant program; however nothing forbids the existence of wmain and 726 // WinMain in the same translation unit. 727 if (FD->isMSVCRTEntryPoint()) 728 return false; 729 730 // C++ functions and those whose names are not a simple identifier need 731 // mangling. 732 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 733 return true; 734 735 // C functions are not mangled. 736 if (L == CLanguageLinkage) 737 return false; 738 } 739 740 // Otherwise, no mangling is done outside C++ mode. 741 if (!getASTContext().getLangOpts().CPlusPlus) 742 return false; 743 744 if (const auto *VD = dyn_cast<VarDecl>(D)) { 745 // Decompositions are mangled. 746 if (isa<DecompositionDecl>(VD)) 747 return true; 748 749 // C variables are not mangled. 750 if (VD->isExternC()) 751 return false; 752 753 // Variables at global scope are not mangled unless they have internal 754 // linkage or are specializations or are attached to a named module. 755 const DeclContext *DC = getEffectiveDeclContext(D); 756 // Check for extern variable declared locally. 757 if (DC->isFunctionOrMethod() && D->hasLinkage()) 758 while (!DC->isFileContext()) 759 DC = getEffectiveParentContext(DC); 760 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && 761 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 762 !isa<VarTemplateSpecializationDecl>(VD) && 763 !VD->getOwningModuleForLinkage()) 764 return false; 765 } 766 767 return true; 768 } 769 770 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 771 const AbiTagList *AdditionalAbiTags) { 772 assert(AbiTags && "require AbiTagState"); 773 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 774 } 775 776 void CXXNameMangler::mangleSourceNameWithAbiTags( 777 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 778 mangleSourceName(ND->getIdentifier()); 779 writeAbiTags(ND, AdditionalAbiTags); 780 } 781 782 void CXXNameMangler::mangle(GlobalDecl GD) { 783 // <mangled-name> ::= _Z <encoding> 784 // ::= <data name> 785 // ::= <special-name> 786 Out << "_Z"; 787 if (isa<FunctionDecl>(GD.getDecl())) 788 mangleFunctionEncoding(GD); 789 else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, 790 BindingDecl>(GD.getDecl())) 791 mangleName(GD); 792 else if (const IndirectFieldDecl *IFD = 793 dyn_cast<IndirectFieldDecl>(GD.getDecl())) 794 mangleName(IFD->getAnonField()); 795 else 796 llvm_unreachable("unexpected kind of global decl"); 797 } 798 799 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { 800 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 801 // <encoding> ::= <function name> <bare-function-type> 802 803 // Don't mangle in the type if this isn't a decl we should typically mangle. 804 if (!Context.shouldMangleDeclName(FD)) { 805 mangleName(GD); 806 return; 807 } 808 809 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 810 if (ReturnTypeAbiTags.empty()) { 811 // There are no tags for return type, the simplest case. 812 mangleName(GD); 813 mangleFunctionEncodingBareType(FD); 814 return; 815 } 816 817 // Mangle function name and encoding to temporary buffer. 818 // We have to output name and encoding to the same mangler to get the same 819 // substitution as it will be in final mangling. 820 SmallString<256> FunctionEncodingBuf; 821 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 822 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 823 // Output name of the function. 824 FunctionEncodingMangler.disableDerivedAbiTags(); 825 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 826 827 // Remember length of the function name in the buffer. 828 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 829 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 830 831 // Get tags from return type that are not present in function name or 832 // encoding. 833 const AbiTagList &UsedAbiTags = 834 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 835 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 836 AdditionalAbiTags.erase( 837 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 838 UsedAbiTags.begin(), UsedAbiTags.end(), 839 AdditionalAbiTags.begin()), 840 AdditionalAbiTags.end()); 841 842 // Output name with implicit tags and function encoding from temporary buffer. 843 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 844 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 845 846 // Function encoding could create new substitutions so we have to add 847 // temp mangled substitutions to main mangler. 848 extendSubstitutions(&FunctionEncodingMangler); 849 } 850 851 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 852 if (FD->hasAttr<EnableIfAttr>()) { 853 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 854 Out << "Ua9enable_ifI"; 855 for (AttrVec::const_iterator I = FD->getAttrs().begin(), 856 E = FD->getAttrs().end(); 857 I != E; ++I) { 858 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 859 if (!EIA) 860 continue; 861 if (Context.getASTContext().getLangOpts().getClangABICompat() > 862 LangOptions::ClangABI::Ver11) { 863 mangleTemplateArgExpr(EIA->getCond()); 864 } else { 865 // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, 866 // even though <template-arg> should not include an X/E around 867 // <expr-primary>. 868 Out << 'X'; 869 mangleExpression(EIA->getCond()); 870 Out << 'E'; 871 } 872 } 873 Out << 'E'; 874 FunctionTypeDepth.pop(Saved); 875 } 876 877 // When mangling an inheriting constructor, the bare function type used is 878 // that of the inherited constructor. 879 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 880 if (auto Inherited = CD->getInheritedConstructor()) 881 FD = Inherited.getConstructor(); 882 883 // Whether the mangling of a function type includes the return type depends on 884 // the context and the nature of the function. The rules for deciding whether 885 // the return type is included are: 886 // 887 // 1. Template functions (names or types) have return types encoded, with 888 // the exceptions listed below. 889 // 2. Function types not appearing as part of a function name mangling, 890 // e.g. parameters, pointer types, etc., have return type encoded, with the 891 // exceptions listed below. 892 // 3. Non-template function names do not have return types encoded. 893 // 894 // The exceptions mentioned in (1) and (2) above, for which the return type is 895 // never included, are 896 // 1. Constructors. 897 // 2. Destructors. 898 // 3. Conversion operator functions, e.g. operator int. 899 bool MangleReturnType = false; 900 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 901 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 902 isa<CXXConversionDecl>(FD))) 903 MangleReturnType = true; 904 905 // Mangle the type of the primary template. 906 FD = PrimaryTemplate->getTemplatedDecl(); 907 } 908 909 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 910 MangleReturnType, FD); 911 } 912 913 /// Return whether a given namespace is the 'std' namespace. 914 bool CXXNameMangler::isStd(const NamespaceDecl *NS) { 915 if (!Context.getEffectiveParentContext(NS)->isTranslationUnit()) 916 return false; 917 918 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 919 return II && II->isStr("std"); 920 } 921 922 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 923 // namespace. 924 bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { 925 if (!DC->isNamespace()) 926 return false; 927 928 return isStd(cast<NamespaceDecl>(DC)); 929 } 930 931 static const GlobalDecl 932 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { 933 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 934 // Check if we have a function template. 935 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 936 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 937 TemplateArgs = FD->getTemplateSpecializationArgs(); 938 return GD.getWithDecl(TD); 939 } 940 } 941 942 // Check if we have a class template. 943 if (const ClassTemplateSpecializationDecl *Spec = 944 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 945 TemplateArgs = &Spec->getTemplateArgs(); 946 return GD.getWithDecl(Spec->getSpecializedTemplate()); 947 } 948 949 // Check if we have a variable template. 950 if (const VarTemplateSpecializationDecl *Spec = 951 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 952 TemplateArgs = &Spec->getTemplateArgs(); 953 return GD.getWithDecl(Spec->getSpecializedTemplate()); 954 } 955 956 return GlobalDecl(); 957 } 958 959 static TemplateName asTemplateName(GlobalDecl GD) { 960 const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl()); 961 return TemplateName(const_cast<TemplateDecl*>(TD)); 962 } 963 964 void CXXNameMangler::mangleName(GlobalDecl GD) { 965 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 966 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 967 // Variables should have implicit tags from its type. 968 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 969 if (VariableTypeAbiTags.empty()) { 970 // Simple case no variable type tags. 971 mangleNameWithAbiTags(VD, nullptr); 972 return; 973 } 974 975 // Mangle variable name to null stream to collect tags. 976 llvm::raw_null_ostream NullOutStream; 977 CXXNameMangler VariableNameMangler(*this, NullOutStream); 978 VariableNameMangler.disableDerivedAbiTags(); 979 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 980 981 // Get tags from variable type that are not present in its name. 982 const AbiTagList &UsedAbiTags = 983 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 984 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 985 AdditionalAbiTags.erase( 986 std::set_difference(VariableTypeAbiTags.begin(), 987 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 988 UsedAbiTags.end(), AdditionalAbiTags.begin()), 989 AdditionalAbiTags.end()); 990 991 // Output name with implicit tags. 992 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 993 } else { 994 mangleNameWithAbiTags(GD, nullptr); 995 } 996 } 997 998 const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { 999 const DeclContext *DC = Context.getEffectiveDeclContext(D); 1000 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 1001 if (isLocalContainerContext(DC)) 1002 return dyn_cast<RecordDecl>(D); 1003 D = cast<Decl>(DC); 1004 DC = Context.getEffectiveDeclContext(D); 1005 } 1006 return nullptr; 1007 } 1008 1009 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, 1010 const AbiTagList *AdditionalAbiTags) { 1011 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1012 // <name> ::= [<module-name>] <nested-name> 1013 // ::= [<module-name>] <unscoped-name> 1014 // ::= [<module-name>] <unscoped-template-name> <template-args> 1015 // ::= <local-name> 1016 // 1017 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 1018 1019 // If this is an extern variable declared locally, the relevant DeclContext 1020 // is that of the containing namespace, or the translation unit. 1021 // FIXME: This is a hack; extern variables declared locally should have 1022 // a proper semantic declaration context! 1023 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) 1024 while (!DC->isNamespace() && !DC->isTranslationUnit()) 1025 DC = Context.getEffectiveParentContext(DC); 1026 else if (GetLocalClassDecl(ND)) { 1027 mangleLocalName(GD, AdditionalAbiTags); 1028 return; 1029 } 1030 1031 assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl"); 1032 1033 if (isLocalContainerContext(DC)) { 1034 mangleLocalName(GD, AdditionalAbiTags); 1035 return; 1036 } 1037 1038 // Closures can require a nested-name mangling even if they're semantically 1039 // in the global namespace. 1040 if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 1041 mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); 1042 return; 1043 } 1044 1045 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1046 // Check if we have a template. 1047 const TemplateArgumentList *TemplateArgs = nullptr; 1048 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1049 mangleUnscopedTemplateName(TD, DC, AdditionalAbiTags); 1050 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1051 return; 1052 } 1053 1054 mangleUnscopedName(GD, DC, AdditionalAbiTags); 1055 return; 1056 } 1057 1058 mangleNestedName(GD, DC, AdditionalAbiTags); 1059 } 1060 1061 void CXXNameMangler::mangleModuleName(const NamedDecl *ND) { 1062 if (ND->isExternallyVisible()) 1063 if (Module *M = ND->getOwningModuleForLinkage()) 1064 mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName()); 1065 } 1066 1067 // <module-name> ::= <module-subname> 1068 // ::= <module-name> <module-subname> 1069 // ::= <substitution> 1070 // <module-subname> ::= W <source-name> 1071 // ::= W P <source-name> 1072 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) { 1073 // <substitution> ::= S <seq-id> _ 1074 auto It = ModuleSubstitutions.find(Name); 1075 if (It != ModuleSubstitutions.end()) { 1076 Out << 'S'; 1077 mangleSeqID(It->second); 1078 return; 1079 } 1080 1081 // FIXME: Preserve hierarchy in module names rather than flattening 1082 // them to strings; use Module*s as substitution keys. 1083 auto Parts = Name.rsplit('.'); 1084 if (Parts.second.empty()) 1085 Parts.second = Parts.first; 1086 else { 1087 mangleModuleNamePrefix(Parts.first, IsPartition); 1088 IsPartition = false; 1089 } 1090 1091 Out << 'W'; 1092 if (IsPartition) 1093 Out << 'P'; 1094 Out << Parts.second.size() << Parts.second; 1095 ModuleSubstitutions.insert({Name, SeqID++}); 1096 } 1097 1098 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 1099 ArrayRef<TemplateArgument> Args) { 1100 const DeclContext *DC = Context.getEffectiveDeclContext(TD); 1101 1102 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1103 mangleUnscopedTemplateName(TD, DC, nullptr); 1104 mangleTemplateArgs(asTemplateName(TD), Args); 1105 } else { 1106 mangleNestedName(TD, Args); 1107 } 1108 } 1109 1110 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, 1111 const AbiTagList *AdditionalAbiTags) { 1112 // <unscoped-name> ::= <unqualified-name> 1113 // ::= St <unqualified-name> # ::std:: 1114 1115 assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl"); 1116 if (isStdNamespace(DC)) 1117 Out << "St"; 1118 1119 mangleUnqualifiedName(GD, DC, AdditionalAbiTags); 1120 } 1121 1122 void CXXNameMangler::mangleUnscopedTemplateName( 1123 GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) { 1124 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 1125 // <unscoped-template-name> ::= <unscoped-name> 1126 // ::= <substitution> 1127 if (mangleSubstitution(ND)) 1128 return; 1129 1130 // <template-template-param> ::= <template-param> 1131 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1132 assert(!AdditionalAbiTags && 1133 "template template param cannot have abi tags"); 1134 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 1135 } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) { 1136 mangleUnscopedName(GD, DC, AdditionalAbiTags); 1137 } else { 1138 mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), DC, 1139 AdditionalAbiTags); 1140 } 1141 1142 addSubstitution(ND); 1143 } 1144 1145 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1146 // ABI: 1147 // Floating-point literals are encoded using a fixed-length 1148 // lowercase hexadecimal string corresponding to the internal 1149 // representation (IEEE on Itanium), high-order bytes first, 1150 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1151 // on Itanium. 1152 // The 'without leading zeroes' thing seems to be an editorial 1153 // mistake; see the discussion on cxx-abi-dev beginning on 1154 // 2012-01-16. 1155 1156 // Our requirements here are just barely weird enough to justify 1157 // using a custom algorithm instead of post-processing APInt::toString(). 1158 1159 llvm::APInt valueBits = f.bitcastToAPInt(); 1160 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1161 assert(numCharacters != 0); 1162 1163 // Allocate a buffer of the right number of characters. 1164 SmallVector<char, 20> buffer(numCharacters); 1165 1166 // Fill the buffer left-to-right. 1167 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1168 // The bit-index of the next hex digit. 1169 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1170 1171 // Project out 4 bits starting at 'digitIndex'. 1172 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1173 hexDigit >>= (digitBitIndex % 64); 1174 hexDigit &= 0xF; 1175 1176 // Map that over to a lowercase hex digit. 1177 static const char charForHex[16] = { 1178 '0', '1', '2', '3', '4', '5', '6', '7', 1179 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1180 }; 1181 buffer[stringIndex] = charForHex[hexDigit]; 1182 } 1183 1184 Out.write(buffer.data(), numCharacters); 1185 } 1186 1187 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { 1188 Out << 'L'; 1189 mangleType(T); 1190 mangleFloat(V); 1191 Out << 'E'; 1192 } 1193 1194 void CXXNameMangler::mangleFixedPointLiteral() { 1195 DiagnosticsEngine &Diags = Context.getDiags(); 1196 unsigned DiagID = Diags.getCustomDiagID( 1197 DiagnosticsEngine::Error, "cannot mangle fixed point literals yet"); 1198 Diags.Report(DiagID); 1199 } 1200 1201 void CXXNameMangler::mangleNullPointer(QualType T) { 1202 // <expr-primary> ::= L <type> 0 E 1203 Out << 'L'; 1204 mangleType(T); 1205 Out << "0E"; 1206 } 1207 1208 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1209 if (Value.isSigned() && Value.isNegative()) { 1210 Out << 'n'; 1211 Value.abs().print(Out, /*signed*/ false); 1212 } else { 1213 Value.print(Out, /*signed*/ false); 1214 } 1215 } 1216 1217 void CXXNameMangler::mangleNumber(int64_t Number) { 1218 // <number> ::= [n] <non-negative decimal integer> 1219 if (Number < 0) { 1220 Out << 'n'; 1221 Number = -Number; 1222 } 1223 1224 Out << Number; 1225 } 1226 1227 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1228 // <call-offset> ::= h <nv-offset> _ 1229 // ::= v <v-offset> _ 1230 // <nv-offset> ::= <offset number> # non-virtual base override 1231 // <v-offset> ::= <offset number> _ <virtual offset number> 1232 // # virtual base override, with vcall offset 1233 if (!Virtual) { 1234 Out << 'h'; 1235 mangleNumber(NonVirtual); 1236 Out << '_'; 1237 return; 1238 } 1239 1240 Out << 'v'; 1241 mangleNumber(NonVirtual); 1242 Out << '_'; 1243 mangleNumber(Virtual); 1244 Out << '_'; 1245 } 1246 1247 void CXXNameMangler::manglePrefix(QualType type) { 1248 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1249 if (!mangleSubstitution(QualType(TST, 0))) { 1250 mangleTemplatePrefix(TST->getTemplateName()); 1251 1252 // FIXME: GCC does not appear to mangle the template arguments when 1253 // the template in question is a dependent template name. Should we 1254 // emulate that badness? 1255 mangleTemplateArgs(TST->getTemplateName(), TST->template_arguments()); 1256 addSubstitution(QualType(TST, 0)); 1257 } 1258 } else if (const auto *DTST = 1259 type->getAs<DependentTemplateSpecializationType>()) { 1260 if (!mangleSubstitution(QualType(DTST, 0))) { 1261 TemplateName Template = getASTContext().getDependentTemplateName( 1262 DTST->getQualifier(), DTST->getIdentifier()); 1263 mangleTemplatePrefix(Template); 1264 1265 // FIXME: GCC does not appear to mangle the template arguments when 1266 // the template in question is a dependent template name. Should we 1267 // emulate that badness? 1268 mangleTemplateArgs(Template, DTST->template_arguments()); 1269 addSubstitution(QualType(DTST, 0)); 1270 } 1271 } else { 1272 // We use the QualType mangle type variant here because it handles 1273 // substitutions. 1274 mangleType(type); 1275 } 1276 } 1277 1278 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1279 /// 1280 /// \param recursive - true if this is being called recursively, 1281 /// i.e. if there is more prefix "to the right". 1282 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1283 bool recursive) { 1284 1285 // x, ::x 1286 // <unresolved-name> ::= [gs] <base-unresolved-name> 1287 1288 // T::x / decltype(p)::x 1289 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1290 1291 // T::N::x /decltype(p)::N::x 1292 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1293 // <base-unresolved-name> 1294 1295 // A::x, N::y, A<T>::z; "gs" means leading "::" 1296 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1297 // <base-unresolved-name> 1298 1299 switch (qualifier->getKind()) { 1300 case NestedNameSpecifier::Global: 1301 Out << "gs"; 1302 1303 // We want an 'sr' unless this is the entire NNS. 1304 if (recursive) 1305 Out << "sr"; 1306 1307 // We never want an 'E' here. 1308 return; 1309 1310 case NestedNameSpecifier::Super: 1311 llvm_unreachable("Can't mangle __super specifier"); 1312 1313 case NestedNameSpecifier::Namespace: 1314 if (qualifier->getPrefix()) 1315 mangleUnresolvedPrefix(qualifier->getPrefix(), 1316 /*recursive*/ true); 1317 else 1318 Out << "sr"; 1319 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1320 break; 1321 case NestedNameSpecifier::NamespaceAlias: 1322 if (qualifier->getPrefix()) 1323 mangleUnresolvedPrefix(qualifier->getPrefix(), 1324 /*recursive*/ true); 1325 else 1326 Out << "sr"; 1327 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1328 break; 1329 1330 case NestedNameSpecifier::TypeSpec: 1331 case NestedNameSpecifier::TypeSpecWithTemplate: { 1332 const Type *type = qualifier->getAsType(); 1333 1334 // We only want to use an unresolved-type encoding if this is one of: 1335 // - a decltype 1336 // - a template type parameter 1337 // - a template template parameter with arguments 1338 // In all of these cases, we should have no prefix. 1339 if (qualifier->getPrefix()) { 1340 mangleUnresolvedPrefix(qualifier->getPrefix(), 1341 /*recursive*/ true); 1342 } else { 1343 // Otherwise, all the cases want this. 1344 Out << "sr"; 1345 } 1346 1347 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1348 return; 1349 1350 break; 1351 } 1352 1353 case NestedNameSpecifier::Identifier: 1354 // Member expressions can have these without prefixes. 1355 if (qualifier->getPrefix()) 1356 mangleUnresolvedPrefix(qualifier->getPrefix(), 1357 /*recursive*/ true); 1358 else 1359 Out << "sr"; 1360 1361 mangleSourceName(qualifier->getAsIdentifier()); 1362 // An Identifier has no type information, so we can't emit abi tags for it. 1363 break; 1364 } 1365 1366 // If this was the innermost part of the NNS, and we fell out to 1367 // here, append an 'E'. 1368 if (!recursive) 1369 Out << 'E'; 1370 } 1371 1372 /// Mangle an unresolved-name, which is generally used for names which 1373 /// weren't resolved to specific entities. 1374 void CXXNameMangler::mangleUnresolvedName( 1375 NestedNameSpecifier *qualifier, DeclarationName name, 1376 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1377 unsigned knownArity) { 1378 if (qualifier) mangleUnresolvedPrefix(qualifier); 1379 switch (name.getNameKind()) { 1380 // <base-unresolved-name> ::= <simple-id> 1381 case DeclarationName::Identifier: 1382 mangleSourceName(name.getAsIdentifierInfo()); 1383 break; 1384 // <base-unresolved-name> ::= dn <destructor-name> 1385 case DeclarationName::CXXDestructorName: 1386 Out << "dn"; 1387 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1388 break; 1389 // <base-unresolved-name> ::= on <operator-name> 1390 case DeclarationName::CXXConversionFunctionName: 1391 case DeclarationName::CXXLiteralOperatorName: 1392 case DeclarationName::CXXOperatorName: 1393 Out << "on"; 1394 mangleOperatorName(name, knownArity); 1395 break; 1396 case DeclarationName::CXXConstructorName: 1397 llvm_unreachable("Can't mangle a constructor name!"); 1398 case DeclarationName::CXXUsingDirective: 1399 llvm_unreachable("Can't mangle a using directive name!"); 1400 case DeclarationName::CXXDeductionGuideName: 1401 llvm_unreachable("Can't mangle a deduction guide name!"); 1402 case DeclarationName::ObjCMultiArgSelector: 1403 case DeclarationName::ObjCOneArgSelector: 1404 case DeclarationName::ObjCZeroArgSelector: 1405 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1406 } 1407 1408 // The <simple-id> and on <operator-name> productions end in an optional 1409 // <template-args>. 1410 if (TemplateArgs) 1411 mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs); 1412 } 1413 1414 void CXXNameMangler::mangleUnqualifiedName( 1415 GlobalDecl GD, DeclarationName Name, const DeclContext *DC, 1416 unsigned KnownArity, const AbiTagList *AdditionalAbiTags) { 1417 const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl()); 1418 // <unqualified-name> ::= [<module-name>] <operator-name> 1419 // ::= <ctor-dtor-name> 1420 // ::= [<module-name>] <source-name> 1421 // ::= [<module-name>] DC <source-name>* E 1422 1423 if (ND && DC && DC->isFileContext()) 1424 mangleModuleName(ND); 1425 1426 unsigned Arity = KnownArity; 1427 switch (Name.getNameKind()) { 1428 case DeclarationName::Identifier: { 1429 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1430 1431 // We mangle decomposition declarations as the names of their bindings. 1432 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1433 // FIXME: Non-standard mangling for decomposition declarations: 1434 // 1435 // <unqualified-name> ::= DC <source-name>* E 1436 // 1437 // Proposed on cxx-abi-dev on 2016-08-12 1438 Out << "DC"; 1439 for (auto *BD : DD->bindings()) 1440 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1441 Out << 'E'; 1442 writeAbiTags(ND, AdditionalAbiTags); 1443 break; 1444 } 1445 1446 if (auto *GD = dyn_cast<MSGuidDecl>(ND)) { 1447 // We follow MSVC in mangling GUID declarations as if they were variables 1448 // with a particular reserved name. Continue the pretense here. 1449 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1450 llvm::raw_svector_ostream GUIDOS(GUID); 1451 Context.mangleMSGuidDecl(GD, GUIDOS); 1452 Out << GUID.size() << GUID; 1453 break; 1454 } 1455 1456 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1457 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 1458 Out << "TA"; 1459 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 1460 TPO->getValue(), /*TopLevel=*/true); 1461 break; 1462 } 1463 1464 if (II) { 1465 // Match GCC's naming convention for internal linkage symbols, for 1466 // symbols that are not actually visible outside of this TU. GCC 1467 // distinguishes between internal and external linkage symbols in 1468 // its mangling, to support cases like this that were valid C++ prior 1469 // to DR426: 1470 // 1471 // void test() { extern void foo(); } 1472 // static void foo(); 1473 // 1474 // Don't bother with the L marker for names in anonymous namespaces; the 1475 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1476 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1477 // implying internal linkage. 1478 if (Context.isInternalLinkageDecl(ND)) 1479 Out << 'L'; 1480 1481 auto *FD = dyn_cast<FunctionDecl>(ND); 1482 bool IsRegCall = FD && 1483 FD->getType()->castAs<FunctionType>()->getCallConv() == 1484 clang::CC_X86RegCall; 1485 bool IsDeviceStub = 1486 FD && FD->hasAttr<CUDAGlobalAttr>() && 1487 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1488 if (IsDeviceStub) 1489 mangleDeviceStubName(II); 1490 else if (IsRegCall) 1491 mangleRegCallName(II); 1492 else 1493 mangleSourceName(II); 1494 1495 writeAbiTags(ND, AdditionalAbiTags); 1496 break; 1497 } 1498 1499 // Otherwise, an anonymous entity. We must have a declaration. 1500 assert(ND && "mangling empty name without declaration"); 1501 1502 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1503 if (NS->isAnonymousNamespace()) { 1504 // This is how gcc mangles these names. 1505 Out << "12_GLOBAL__N_1"; 1506 break; 1507 } 1508 } 1509 1510 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1511 // We must have an anonymous union or struct declaration. 1512 const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); 1513 1514 // Itanium C++ ABI 5.1.2: 1515 // 1516 // For the purposes of mangling, the name of an anonymous union is 1517 // considered to be the name of the first named data member found by a 1518 // pre-order, depth-first, declaration-order walk of the data members of 1519 // the anonymous union. If there is no such data member (i.e., if all of 1520 // the data members in the union are unnamed), then there is no way for 1521 // a program to refer to the anonymous union, and there is therefore no 1522 // need to mangle its name. 1523 assert(RD->isAnonymousStructOrUnion() 1524 && "Expected anonymous struct or union!"); 1525 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1526 1527 // It's actually possible for various reasons for us to get here 1528 // with an empty anonymous struct / union. Fortunately, it 1529 // doesn't really matter what name we generate. 1530 if (!FD) break; 1531 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1532 1533 mangleSourceName(FD->getIdentifier()); 1534 // Not emitting abi tags: internal name anyway. 1535 break; 1536 } 1537 1538 // Class extensions have no name as a category, and it's possible 1539 // for them to be the semantic parent of certain declarations 1540 // (primarily, tag decls defined within declarations). Such 1541 // declarations will always have internal linkage, so the name 1542 // doesn't really matter, but we shouldn't crash on them. For 1543 // safety, just handle all ObjC containers here. 1544 if (isa<ObjCContainerDecl>(ND)) 1545 break; 1546 1547 // We must have an anonymous struct. 1548 const TagDecl *TD = cast<TagDecl>(ND); 1549 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1550 assert(TD->getDeclContext() == D->getDeclContext() && 1551 "Typedef should not be in another decl context!"); 1552 assert(D->getDeclName().getAsIdentifierInfo() && 1553 "Typedef was not named!"); 1554 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1555 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1556 // Explicit abi tags are still possible; take from underlying type, not 1557 // from typedef. 1558 writeAbiTags(TD, nullptr); 1559 break; 1560 } 1561 1562 // <unnamed-type-name> ::= <closure-type-name> 1563 // 1564 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1565 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ 1566 // # Parameter types or 'v' for 'void'. 1567 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1568 std::optional<unsigned> DeviceNumber = 1569 Context.getDiscriminatorOverride()(Context.getASTContext(), Record); 1570 1571 // If we have a device-number via the discriminator, use that to mangle 1572 // the lambda, otherwise use the typical lambda-mangling-number. In either 1573 // case, a '0' should be mangled as a normal unnamed class instead of as a 1574 // lambda. 1575 if (Record->isLambda() && 1576 ((DeviceNumber && *DeviceNumber > 0) || 1577 (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { 1578 assert(!AdditionalAbiTags && 1579 "Lambda type cannot have additional abi tags"); 1580 mangleLambda(Record); 1581 break; 1582 } 1583 } 1584 1585 if (TD->isExternallyVisible()) { 1586 unsigned UnnamedMangle = 1587 getASTContext().getManglingNumber(TD, Context.isAux()); 1588 Out << "Ut"; 1589 if (UnnamedMangle > 1) 1590 Out << UnnamedMangle - 2; 1591 Out << '_'; 1592 writeAbiTags(TD, AdditionalAbiTags); 1593 break; 1594 } 1595 1596 // Get a unique id for the anonymous struct. If it is not a real output 1597 // ID doesn't matter so use fake one. 1598 unsigned AnonStructId = 1599 NullOut ? 0 1600 : Context.getAnonymousStructId(TD, dyn_cast<FunctionDecl>(DC)); 1601 1602 // Mangle it as a source name in the form 1603 // [n] $_<id> 1604 // where n is the length of the string. 1605 SmallString<8> Str; 1606 Str += "$_"; 1607 Str += llvm::utostr(AnonStructId); 1608 1609 Out << Str.size(); 1610 Out << Str; 1611 break; 1612 } 1613 1614 case DeclarationName::ObjCZeroArgSelector: 1615 case DeclarationName::ObjCOneArgSelector: 1616 case DeclarationName::ObjCMultiArgSelector: 1617 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1618 1619 case DeclarationName::CXXConstructorName: { 1620 const CXXRecordDecl *InheritedFrom = nullptr; 1621 TemplateName InheritedTemplateName; 1622 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1623 if (auto Inherited = 1624 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1625 InheritedFrom = Inherited.getConstructor()->getParent(); 1626 InheritedTemplateName = 1627 TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); 1628 InheritedTemplateArgs = 1629 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1630 } 1631 1632 if (ND == Structor) 1633 // If the named decl is the C++ constructor we're mangling, use the type 1634 // we were given. 1635 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1636 else 1637 // Otherwise, use the complete constructor name. This is relevant if a 1638 // class with a constructor is declared within a constructor. 1639 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1640 1641 // FIXME: The template arguments are part of the enclosing prefix or 1642 // nested-name, but it's more convenient to mangle them here. 1643 if (InheritedTemplateArgs) 1644 mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs); 1645 1646 writeAbiTags(ND, AdditionalAbiTags); 1647 break; 1648 } 1649 1650 case DeclarationName::CXXDestructorName: 1651 if (ND == Structor) 1652 // If the named decl is the C++ destructor we're mangling, use the type we 1653 // were given. 1654 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1655 else 1656 // Otherwise, use the complete destructor name. This is relevant if a 1657 // class with a destructor is declared within a destructor. 1658 mangleCXXDtorType(Dtor_Complete); 1659 writeAbiTags(ND, AdditionalAbiTags); 1660 break; 1661 1662 case DeclarationName::CXXOperatorName: 1663 if (ND && Arity == UnknownArity) { 1664 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1665 1666 // If we have a member function, we need to include the 'this' pointer. 1667 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1668 if (!MD->isStatic()) 1669 Arity++; 1670 } 1671 [[fallthrough]]; 1672 case DeclarationName::CXXConversionFunctionName: 1673 case DeclarationName::CXXLiteralOperatorName: 1674 mangleOperatorName(Name, Arity); 1675 writeAbiTags(ND, AdditionalAbiTags); 1676 break; 1677 1678 case DeclarationName::CXXDeductionGuideName: 1679 llvm_unreachable("Can't mangle a deduction guide name!"); 1680 1681 case DeclarationName::CXXUsingDirective: 1682 llvm_unreachable("Can't mangle a using directive name!"); 1683 } 1684 } 1685 1686 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1687 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1688 // <number> ::= [n] <non-negative decimal integer> 1689 // <identifier> ::= <unqualified source code identifier> 1690 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1691 << II->getName(); 1692 } 1693 1694 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { 1695 // <source-name> ::= <positive length number> __device_stub__ <identifier> 1696 // <number> ::= [n] <non-negative decimal integer> 1697 // <identifier> ::= <unqualified source code identifier> 1698 Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__" 1699 << II->getName(); 1700 } 1701 1702 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1703 // <source-name> ::= <positive length number> <identifier> 1704 // <number> ::= [n] <non-negative decimal integer> 1705 // <identifier> ::= <unqualified source code identifier> 1706 Out << II->getLength() << II->getName(); 1707 } 1708 1709 void CXXNameMangler::mangleNestedName(GlobalDecl GD, 1710 const DeclContext *DC, 1711 const AbiTagList *AdditionalAbiTags, 1712 bool NoFunction) { 1713 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1714 // <nested-name> 1715 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1716 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1717 // <template-args> E 1718 1719 Out << 'N'; 1720 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1721 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1722 // We do not consider restrict a distinguishing attribute for overloading 1723 // purposes so we must not mangle it. 1724 MethodQuals.removeRestrict(); 1725 mangleQualifiers(MethodQuals); 1726 mangleRefQualifier(Method->getRefQualifier()); 1727 } 1728 1729 // Check if we have a template. 1730 const TemplateArgumentList *TemplateArgs = nullptr; 1731 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1732 mangleTemplatePrefix(TD, NoFunction); 1733 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1734 } else { 1735 manglePrefix(DC, NoFunction); 1736 mangleUnqualifiedName(GD, DC, AdditionalAbiTags); 1737 } 1738 1739 Out << 'E'; 1740 } 1741 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1742 ArrayRef<TemplateArgument> Args) { 1743 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1744 1745 Out << 'N'; 1746 1747 mangleTemplatePrefix(TD); 1748 mangleTemplateArgs(asTemplateName(TD), Args); 1749 1750 Out << 'E'; 1751 } 1752 1753 void CXXNameMangler::mangleNestedNameWithClosurePrefix( 1754 GlobalDecl GD, const NamedDecl *PrefixND, 1755 const AbiTagList *AdditionalAbiTags) { 1756 // A <closure-prefix> represents a variable or field, not a regular 1757 // DeclContext, so needs special handling. In this case we're mangling a 1758 // limited form of <nested-name>: 1759 // 1760 // <nested-name> ::= N <closure-prefix> <closure-type-name> E 1761 1762 Out << 'N'; 1763 1764 mangleClosurePrefix(PrefixND); 1765 mangleUnqualifiedName(GD, nullptr, AdditionalAbiTags); 1766 1767 Out << 'E'; 1768 } 1769 1770 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { 1771 GlobalDecl GD; 1772 // The Itanium spec says: 1773 // For entities in constructors and destructors, the mangling of the 1774 // complete object constructor or destructor is used as the base function 1775 // name, i.e. the C1 or D1 version. 1776 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 1777 GD = GlobalDecl(CD, Ctor_Complete); 1778 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 1779 GD = GlobalDecl(DD, Dtor_Complete); 1780 else 1781 GD = GlobalDecl(cast<FunctionDecl>(DC)); 1782 return GD; 1783 } 1784 1785 void CXXNameMangler::mangleLocalName(GlobalDecl GD, 1786 const AbiTagList *AdditionalAbiTags) { 1787 const Decl *D = GD.getDecl(); 1788 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1789 // := Z <function encoding> E s [<discriminator>] 1790 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1791 // _ <entity name> 1792 // <discriminator> := _ <non-negative number> 1793 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1794 const RecordDecl *RD = GetLocalClassDecl(D); 1795 const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D); 1796 1797 Out << 'Z'; 1798 1799 { 1800 AbiTagState LocalAbiTags(AbiTags); 1801 1802 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1803 mangleObjCMethodName(MD); 1804 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1805 mangleBlockForPrefix(BD); 1806 else 1807 mangleFunctionEncoding(getParentOfLocalEntity(DC)); 1808 1809 // Implicit ABI tags (from namespace) are not available in the following 1810 // entity; reset to actually emitted tags, which are available. 1811 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1812 } 1813 1814 Out << 'E'; 1815 1816 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1817 // be a bug that is fixed in trunk. 1818 1819 if (RD) { 1820 // The parameter number is omitted for the last parameter, 0 for the 1821 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1822 // <entity name> will of course contain a <closure-type-name>: Its 1823 // numbering will be local to the particular argument in which it appears 1824 // -- other default arguments do not affect its encoding. 1825 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1826 if (CXXRD && CXXRD->isLambda()) { 1827 if (const ParmVarDecl *Parm 1828 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1829 if (const FunctionDecl *Func 1830 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1831 Out << 'd'; 1832 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1833 if (Num > 1) 1834 mangleNumber(Num - 2); 1835 Out << '_'; 1836 } 1837 } 1838 } 1839 1840 // Mangle the name relative to the closest enclosing function. 1841 // equality ok because RD derived from ND above 1842 if (D == RD) { 1843 mangleUnqualifiedName(RD, DC, AdditionalAbiTags); 1844 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1845 if (const NamedDecl *PrefixND = getClosurePrefix(BD)) 1846 mangleClosurePrefix(PrefixND, true /*NoFunction*/); 1847 else 1848 manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/); 1849 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1850 mangleUnqualifiedBlock(BD); 1851 } else { 1852 const NamedDecl *ND = cast<NamedDecl>(D); 1853 mangleNestedName(GD, Context.getEffectiveDeclContext(ND), 1854 AdditionalAbiTags, true /*NoFunction*/); 1855 } 1856 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1857 // Mangle a block in a default parameter; see above explanation for 1858 // lambdas. 1859 if (const ParmVarDecl *Parm 1860 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1861 if (const FunctionDecl *Func 1862 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1863 Out << 'd'; 1864 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1865 if (Num > 1) 1866 mangleNumber(Num - 2); 1867 Out << '_'; 1868 } 1869 } 1870 1871 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1872 mangleUnqualifiedBlock(BD); 1873 } else { 1874 mangleUnqualifiedName(GD, DC, AdditionalAbiTags); 1875 } 1876 1877 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1878 unsigned disc; 1879 if (Context.getNextDiscriminator(ND, disc)) { 1880 if (disc < 10) 1881 Out << '_' << disc; 1882 else 1883 Out << "__" << disc << '_'; 1884 } 1885 } 1886 } 1887 1888 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1889 if (GetLocalClassDecl(Block)) { 1890 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1891 return; 1892 } 1893 const DeclContext *DC = Context.getEffectiveDeclContext(Block); 1894 if (isLocalContainerContext(DC)) { 1895 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1896 return; 1897 } 1898 if (const NamedDecl *PrefixND = getClosurePrefix(Block)) 1899 mangleClosurePrefix(PrefixND); 1900 else 1901 manglePrefix(DC); 1902 mangleUnqualifiedBlock(Block); 1903 } 1904 1905 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1906 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1907 // <data-member-prefix> now, with no substitutions and no <template-args>. 1908 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1909 if (getASTContext().getLangOpts().getClangABICompat() <= 1910 LangOptions::ClangABI::Ver12 && 1911 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1912 Context->getDeclContext()->isRecord()) { 1913 const auto *ND = cast<NamedDecl>(Context); 1914 if (ND->getIdentifier()) { 1915 mangleSourceNameWithAbiTags(ND); 1916 Out << 'M'; 1917 } 1918 } 1919 } 1920 1921 // If we have a block mangling number, use it. 1922 unsigned Number = Block->getBlockManglingNumber(); 1923 // Otherwise, just make up a number. It doesn't matter what it is because 1924 // the symbol in question isn't externally visible. 1925 if (!Number) 1926 Number = Context.getBlockId(Block, false); 1927 else { 1928 // Stored mangling numbers are 1-based. 1929 --Number; 1930 } 1931 Out << "Ub"; 1932 if (Number > 0) 1933 Out << Number - 1; 1934 Out << '_'; 1935 } 1936 1937 // <template-param-decl> 1938 // ::= Ty # template type parameter 1939 // ::= Tn <type> # template non-type parameter 1940 // ::= Tt <template-param-decl>* E # template template parameter 1941 // ::= Tp <template-param-decl> # template parameter pack 1942 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { 1943 if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) { 1944 if (Ty->isParameterPack()) 1945 Out << "Tp"; 1946 Out << "Ty"; 1947 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { 1948 if (Tn->isExpandedParameterPack()) { 1949 for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { 1950 Out << "Tn"; 1951 mangleType(Tn->getExpansionType(I)); 1952 } 1953 } else { 1954 QualType T = Tn->getType(); 1955 if (Tn->isParameterPack()) { 1956 Out << "Tp"; 1957 if (auto *PackExpansion = T->getAs<PackExpansionType>()) 1958 T = PackExpansion->getPattern(); 1959 } 1960 Out << "Tn"; 1961 mangleType(T); 1962 } 1963 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { 1964 if (Tt->isExpandedParameterPack()) { 1965 for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; 1966 ++I) { 1967 Out << "Tt"; 1968 for (auto *Param : *Tt->getExpansionTemplateParameters(I)) 1969 mangleTemplateParamDecl(Param); 1970 Out << "E"; 1971 } 1972 } else { 1973 if (Tt->isParameterPack()) 1974 Out << "Tp"; 1975 Out << "Tt"; 1976 for (auto *Param : *Tt->getTemplateParameters()) 1977 mangleTemplateParamDecl(Param); 1978 Out << "E"; 1979 } 1980 } 1981 } 1982 1983 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 1984 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1985 // <data-member-prefix> now, with no substitutions. 1986 if (Decl *Context = Lambda->getLambdaContextDecl()) { 1987 if (getASTContext().getLangOpts().getClangABICompat() <= 1988 LangOptions::ClangABI::Ver12 && 1989 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1990 !isa<ParmVarDecl>(Context)) { 1991 if (const IdentifierInfo *Name 1992 = cast<NamedDecl>(Context)->getIdentifier()) { 1993 mangleSourceName(Name); 1994 const TemplateArgumentList *TemplateArgs = nullptr; 1995 if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 1996 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1997 Out << 'M'; 1998 } 1999 } 2000 } 2001 2002 Out << "Ul"; 2003 mangleLambdaSig(Lambda); 2004 Out << "E"; 2005 2006 // The number is omitted for the first closure type with a given 2007 // <lambda-sig> in a given context; it is n-2 for the nth closure type 2008 // (in lexical order) with that same <lambda-sig> and context. 2009 // 2010 // The AST keeps track of the number for us. 2011 // 2012 // In CUDA/HIP, to ensure the consistent lamba numbering between the device- 2013 // and host-side compilations, an extra device mangle context may be created 2014 // if the host-side CXX ABI has different numbering for lambda. In such case, 2015 // if the mangle context is that device-side one, use the device-side lambda 2016 // mangling number for this lambda. 2017 std::optional<unsigned> DeviceNumber = 2018 Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); 2019 unsigned Number = 2020 DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); 2021 2022 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 2023 if (Number > 1) 2024 mangleNumber(Number - 2); 2025 Out << '_'; 2026 } 2027 2028 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { 2029 for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) 2030 mangleTemplateParamDecl(D); 2031 auto *Proto = 2032 Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); 2033 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 2034 Lambda->getLambdaStaticInvoker()); 2035 } 2036 2037 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 2038 switch (qualifier->getKind()) { 2039 case NestedNameSpecifier::Global: 2040 // nothing 2041 return; 2042 2043 case NestedNameSpecifier::Super: 2044 llvm_unreachable("Can't mangle __super specifier"); 2045 2046 case NestedNameSpecifier::Namespace: 2047 mangleName(qualifier->getAsNamespace()); 2048 return; 2049 2050 case NestedNameSpecifier::NamespaceAlias: 2051 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 2052 return; 2053 2054 case NestedNameSpecifier::TypeSpec: 2055 case NestedNameSpecifier::TypeSpecWithTemplate: 2056 manglePrefix(QualType(qualifier->getAsType(), 0)); 2057 return; 2058 2059 case NestedNameSpecifier::Identifier: 2060 // Clang 14 and before did not consider this substitutable. 2061 bool Clang14Compat = getASTContext().getLangOpts().getClangABICompat() <= 2062 LangOptions::ClangABI::Ver14; 2063 if (!Clang14Compat && mangleSubstitution(qualifier)) 2064 return; 2065 2066 // Member expressions can have these without prefixes, but that 2067 // should end up in mangleUnresolvedPrefix instead. 2068 assert(qualifier->getPrefix()); 2069 manglePrefix(qualifier->getPrefix()); 2070 2071 mangleSourceName(qualifier->getAsIdentifier()); 2072 2073 if (!Clang14Compat) 2074 addSubstitution(qualifier); 2075 return; 2076 } 2077 2078 llvm_unreachable("unexpected nested name specifier"); 2079 } 2080 2081 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 2082 // <prefix> ::= <prefix> <unqualified-name> 2083 // ::= <template-prefix> <template-args> 2084 // ::= <closure-prefix> 2085 // ::= <template-param> 2086 // ::= # empty 2087 // ::= <substitution> 2088 2089 assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl"); 2090 2091 if (DC->isTranslationUnit()) 2092 return; 2093 2094 if (NoFunction && isLocalContainerContext(DC)) 2095 return; 2096 2097 assert(!isLocalContainerContext(DC)); 2098 2099 const NamedDecl *ND = cast<NamedDecl>(DC); 2100 if (mangleSubstitution(ND)) 2101 return; 2102 2103 // Check if we have a template-prefix or a closure-prefix. 2104 const TemplateArgumentList *TemplateArgs = nullptr; 2105 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2106 mangleTemplatePrefix(TD); 2107 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2108 } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 2109 mangleClosurePrefix(PrefixND, NoFunction); 2110 mangleUnqualifiedName(ND, nullptr, nullptr); 2111 } else { 2112 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 2113 manglePrefix(DC, NoFunction); 2114 mangleUnqualifiedName(ND, DC, nullptr); 2115 } 2116 2117 addSubstitution(ND); 2118 } 2119 2120 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 2121 // <template-prefix> ::= <prefix> <template unqualified-name> 2122 // ::= <template-param> 2123 // ::= <substitution> 2124 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 2125 return mangleTemplatePrefix(TD); 2126 2127 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 2128 assert(Dependent && "unexpected template name kind"); 2129 2130 // Clang 11 and before mangled the substitution for a dependent template name 2131 // after already having emitted (a substitution for) the prefix. 2132 bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <= 2133 LangOptions::ClangABI::Ver11; 2134 if (!Clang11Compat && mangleSubstitution(Template)) 2135 return; 2136 2137 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 2138 manglePrefix(Qualifier); 2139 2140 if (Clang11Compat && mangleSubstitution(Template)) 2141 return; 2142 2143 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 2144 mangleSourceName(Id); 2145 else 2146 mangleOperatorName(Dependent->getOperator(), UnknownArity); 2147 2148 addSubstitution(Template); 2149 } 2150 2151 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, 2152 bool NoFunction) { 2153 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 2154 // <template-prefix> ::= <prefix> <template unqualified-name> 2155 // ::= <template-param> 2156 // ::= <substitution> 2157 // <template-template-param> ::= <template-param> 2158 // <substitution> 2159 2160 if (mangleSubstitution(ND)) 2161 return; 2162 2163 // <template-template-param> ::= <template-param> 2164 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 2165 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2166 } else { 2167 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 2168 manglePrefix(DC, NoFunction); 2169 if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) 2170 mangleUnqualifiedName(GD, DC, nullptr); 2171 else 2172 mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), DC, 2173 nullptr); 2174 } 2175 2176 addSubstitution(ND); 2177 } 2178 2179 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { 2180 if (getASTContext().getLangOpts().getClangABICompat() <= 2181 LangOptions::ClangABI::Ver12) 2182 return nullptr; 2183 2184 const NamedDecl *Context = nullptr; 2185 if (auto *Block = dyn_cast<BlockDecl>(ND)) { 2186 Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl()); 2187 } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 2188 if (RD->isLambda()) 2189 Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl()); 2190 } 2191 if (!Context) 2192 return nullptr; 2193 2194 // Only lambdas within the initializer of a non-local variable or non-static 2195 // data member get a <closure-prefix>. 2196 if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) || 2197 isa<FieldDecl>(Context)) 2198 return Context; 2199 2200 return nullptr; 2201 } 2202 2203 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { 2204 // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M 2205 // ::= <template-prefix> <template-args> M 2206 if (mangleSubstitution(ND)) 2207 return; 2208 2209 const TemplateArgumentList *TemplateArgs = nullptr; 2210 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2211 mangleTemplatePrefix(TD, NoFunction); 2212 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2213 } else { 2214 const auto *DC = Context.getEffectiveDeclContext(ND); 2215 manglePrefix(DC, NoFunction); 2216 mangleUnqualifiedName(ND, DC, nullptr); 2217 } 2218 2219 Out << 'M'; 2220 2221 addSubstitution(ND); 2222 } 2223 2224 /// Mangles a template name under the production <type>. Required for 2225 /// template template arguments. 2226 /// <type> ::= <class-enum-type> 2227 /// ::= <template-param> 2228 /// ::= <substitution> 2229 void CXXNameMangler::mangleType(TemplateName TN) { 2230 if (mangleSubstitution(TN)) 2231 return; 2232 2233 TemplateDecl *TD = nullptr; 2234 2235 switch (TN.getKind()) { 2236 case TemplateName::QualifiedTemplate: 2237 case TemplateName::UsingTemplate: 2238 case TemplateName::Template: 2239 TD = TN.getAsTemplateDecl(); 2240 goto HaveDecl; 2241 2242 HaveDecl: 2243 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD)) 2244 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2245 else 2246 mangleName(TD); 2247 break; 2248 2249 case TemplateName::OverloadedTemplate: 2250 case TemplateName::AssumedTemplate: 2251 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 2252 2253 case TemplateName::DependentTemplate: { 2254 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 2255 assert(Dependent->isIdentifier()); 2256 2257 // <class-enum-type> ::= <name> 2258 // <name> ::= <nested-name> 2259 mangleUnresolvedPrefix(Dependent->getQualifier()); 2260 mangleSourceName(Dependent->getIdentifier()); 2261 break; 2262 } 2263 2264 case TemplateName::SubstTemplateTemplateParm: { 2265 // Substituted template parameters are mangled as the substituted 2266 // template. This will check for the substitution twice, which is 2267 // fine, but we have to return early so that we don't try to *add* 2268 // the substitution twice. 2269 SubstTemplateTemplateParmStorage *subst 2270 = TN.getAsSubstTemplateTemplateParm(); 2271 mangleType(subst->getReplacement()); 2272 return; 2273 } 2274 2275 case TemplateName::SubstTemplateTemplateParmPack: { 2276 // FIXME: not clear how to mangle this! 2277 // template <template <class> class T...> class A { 2278 // template <template <class> class U...> void foo(B<T,U> x...); 2279 // }; 2280 Out << "_SUBSTPACK_"; 2281 break; 2282 } 2283 } 2284 2285 addSubstitution(TN); 2286 } 2287 2288 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 2289 StringRef Prefix) { 2290 // Only certain other types are valid as prefixes; enumerate them. 2291 switch (Ty->getTypeClass()) { 2292 case Type::Builtin: 2293 case Type::Complex: 2294 case Type::Adjusted: 2295 case Type::Decayed: 2296 case Type::Pointer: 2297 case Type::BlockPointer: 2298 case Type::LValueReference: 2299 case Type::RValueReference: 2300 case Type::MemberPointer: 2301 case Type::ConstantArray: 2302 case Type::IncompleteArray: 2303 case Type::VariableArray: 2304 case Type::DependentSizedArray: 2305 case Type::DependentAddressSpace: 2306 case Type::DependentVector: 2307 case Type::DependentSizedExtVector: 2308 case Type::Vector: 2309 case Type::ExtVector: 2310 case Type::ConstantMatrix: 2311 case Type::DependentSizedMatrix: 2312 case Type::FunctionProto: 2313 case Type::FunctionNoProto: 2314 case Type::Paren: 2315 case Type::Attributed: 2316 case Type::BTFTagAttributed: 2317 case Type::Auto: 2318 case Type::DeducedTemplateSpecialization: 2319 case Type::PackExpansion: 2320 case Type::ObjCObject: 2321 case Type::ObjCInterface: 2322 case Type::ObjCObjectPointer: 2323 case Type::ObjCTypeParam: 2324 case Type::Atomic: 2325 case Type::Pipe: 2326 case Type::MacroQualified: 2327 case Type::BitInt: 2328 case Type::DependentBitInt: 2329 llvm_unreachable("type is illegal as a nested name specifier"); 2330 2331 case Type::SubstTemplateTypeParmPack: 2332 // FIXME: not clear how to mangle this! 2333 // template <class T...> class A { 2334 // template <class U...> void foo(decltype(T::foo(U())) x...); 2335 // }; 2336 Out << "_SUBSTPACK_"; 2337 break; 2338 2339 // <unresolved-type> ::= <template-param> 2340 // ::= <decltype> 2341 // ::= <template-template-param> <template-args> 2342 // (this last is not official yet) 2343 case Type::TypeOfExpr: 2344 case Type::TypeOf: 2345 case Type::Decltype: 2346 case Type::TemplateTypeParm: 2347 case Type::UnaryTransform: 2348 case Type::SubstTemplateTypeParm: 2349 unresolvedType: 2350 // Some callers want a prefix before the mangled type. 2351 Out << Prefix; 2352 2353 // This seems to do everything we want. It's not really 2354 // sanctioned for a substituted template parameter, though. 2355 mangleType(Ty); 2356 2357 // We never want to print 'E' directly after an unresolved-type, 2358 // so we return directly. 2359 return true; 2360 2361 case Type::Typedef: 2362 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 2363 break; 2364 2365 case Type::UnresolvedUsing: 2366 mangleSourceNameWithAbiTags( 2367 cast<UnresolvedUsingType>(Ty)->getDecl()); 2368 break; 2369 2370 case Type::Enum: 2371 case Type::Record: 2372 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 2373 break; 2374 2375 case Type::TemplateSpecialization: { 2376 const TemplateSpecializationType *TST = 2377 cast<TemplateSpecializationType>(Ty); 2378 TemplateName TN = TST->getTemplateName(); 2379 switch (TN.getKind()) { 2380 case TemplateName::Template: 2381 case TemplateName::QualifiedTemplate: { 2382 TemplateDecl *TD = TN.getAsTemplateDecl(); 2383 2384 // If the base is a template template parameter, this is an 2385 // unresolved type. 2386 assert(TD && "no template for template specialization type"); 2387 if (isa<TemplateTemplateParmDecl>(TD)) 2388 goto unresolvedType; 2389 2390 mangleSourceNameWithAbiTags(TD); 2391 break; 2392 } 2393 2394 case TemplateName::OverloadedTemplate: 2395 case TemplateName::AssumedTemplate: 2396 case TemplateName::DependentTemplate: 2397 llvm_unreachable("invalid base for a template specialization type"); 2398 2399 case TemplateName::SubstTemplateTemplateParm: { 2400 SubstTemplateTemplateParmStorage *subst = 2401 TN.getAsSubstTemplateTemplateParm(); 2402 mangleExistingSubstitution(subst->getReplacement()); 2403 break; 2404 } 2405 2406 case TemplateName::SubstTemplateTemplateParmPack: { 2407 // FIXME: not clear how to mangle this! 2408 // template <template <class U> class T...> class A { 2409 // template <class U...> void foo(decltype(T<U>::foo) x...); 2410 // }; 2411 Out << "_SUBSTPACK_"; 2412 break; 2413 } 2414 case TemplateName::UsingTemplate: { 2415 TemplateDecl *TD = TN.getAsTemplateDecl(); 2416 assert(TD && !isa<TemplateTemplateParmDecl>(TD)); 2417 mangleSourceNameWithAbiTags(TD); 2418 break; 2419 } 2420 } 2421 2422 // Note: we don't pass in the template name here. We are mangling the 2423 // original source-level template arguments, so we shouldn't consider 2424 // conversions to the corresponding template parameter. 2425 // FIXME: Other compilers mangle partially-resolved template arguments in 2426 // unresolved-qualifier-levels. 2427 mangleTemplateArgs(TemplateName(), TST->template_arguments()); 2428 break; 2429 } 2430 2431 case Type::InjectedClassName: 2432 mangleSourceNameWithAbiTags( 2433 cast<InjectedClassNameType>(Ty)->getDecl()); 2434 break; 2435 2436 case Type::DependentName: 2437 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2438 break; 2439 2440 case Type::DependentTemplateSpecialization: { 2441 const DependentTemplateSpecializationType *DTST = 2442 cast<DependentTemplateSpecializationType>(Ty); 2443 TemplateName Template = getASTContext().getDependentTemplateName( 2444 DTST->getQualifier(), DTST->getIdentifier()); 2445 mangleSourceName(DTST->getIdentifier()); 2446 mangleTemplateArgs(Template, DTST->template_arguments()); 2447 break; 2448 } 2449 2450 case Type::Using: 2451 return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(), 2452 Prefix); 2453 case Type::Elaborated: 2454 return mangleUnresolvedTypeOrSimpleId( 2455 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2456 } 2457 2458 return false; 2459 } 2460 2461 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2462 switch (Name.getNameKind()) { 2463 case DeclarationName::CXXConstructorName: 2464 case DeclarationName::CXXDestructorName: 2465 case DeclarationName::CXXDeductionGuideName: 2466 case DeclarationName::CXXUsingDirective: 2467 case DeclarationName::Identifier: 2468 case DeclarationName::ObjCMultiArgSelector: 2469 case DeclarationName::ObjCOneArgSelector: 2470 case DeclarationName::ObjCZeroArgSelector: 2471 llvm_unreachable("Not an operator name"); 2472 2473 case DeclarationName::CXXConversionFunctionName: 2474 // <operator-name> ::= cv <type> # (cast) 2475 Out << "cv"; 2476 mangleType(Name.getCXXNameType()); 2477 break; 2478 2479 case DeclarationName::CXXLiteralOperatorName: 2480 Out << "li"; 2481 mangleSourceName(Name.getCXXLiteralIdentifier()); 2482 return; 2483 2484 case DeclarationName::CXXOperatorName: 2485 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2486 break; 2487 } 2488 } 2489 2490 void 2491 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2492 switch (OO) { 2493 // <operator-name> ::= nw # new 2494 case OO_New: Out << "nw"; break; 2495 // ::= na # new[] 2496 case OO_Array_New: Out << "na"; break; 2497 // ::= dl # delete 2498 case OO_Delete: Out << "dl"; break; 2499 // ::= da # delete[] 2500 case OO_Array_Delete: Out << "da"; break; 2501 // ::= ps # + (unary) 2502 // ::= pl # + (binary or unknown) 2503 case OO_Plus: 2504 Out << (Arity == 1? "ps" : "pl"); break; 2505 // ::= ng # - (unary) 2506 // ::= mi # - (binary or unknown) 2507 case OO_Minus: 2508 Out << (Arity == 1? "ng" : "mi"); break; 2509 // ::= ad # & (unary) 2510 // ::= an # & (binary or unknown) 2511 case OO_Amp: 2512 Out << (Arity == 1? "ad" : "an"); break; 2513 // ::= de # * (unary) 2514 // ::= ml # * (binary or unknown) 2515 case OO_Star: 2516 // Use binary when unknown. 2517 Out << (Arity == 1? "de" : "ml"); break; 2518 // ::= co # ~ 2519 case OO_Tilde: Out << "co"; break; 2520 // ::= dv # / 2521 case OO_Slash: Out << "dv"; break; 2522 // ::= rm # % 2523 case OO_Percent: Out << "rm"; break; 2524 // ::= or # | 2525 case OO_Pipe: Out << "or"; break; 2526 // ::= eo # ^ 2527 case OO_Caret: Out << "eo"; break; 2528 // ::= aS # = 2529 case OO_Equal: Out << "aS"; break; 2530 // ::= pL # += 2531 case OO_PlusEqual: Out << "pL"; break; 2532 // ::= mI # -= 2533 case OO_MinusEqual: Out << "mI"; break; 2534 // ::= mL # *= 2535 case OO_StarEqual: Out << "mL"; break; 2536 // ::= dV # /= 2537 case OO_SlashEqual: Out << "dV"; break; 2538 // ::= rM # %= 2539 case OO_PercentEqual: Out << "rM"; break; 2540 // ::= aN # &= 2541 case OO_AmpEqual: Out << "aN"; break; 2542 // ::= oR # |= 2543 case OO_PipeEqual: Out << "oR"; break; 2544 // ::= eO # ^= 2545 case OO_CaretEqual: Out << "eO"; break; 2546 // ::= ls # << 2547 case OO_LessLess: Out << "ls"; break; 2548 // ::= rs # >> 2549 case OO_GreaterGreater: Out << "rs"; break; 2550 // ::= lS # <<= 2551 case OO_LessLessEqual: Out << "lS"; break; 2552 // ::= rS # >>= 2553 case OO_GreaterGreaterEqual: Out << "rS"; break; 2554 // ::= eq # == 2555 case OO_EqualEqual: Out << "eq"; break; 2556 // ::= ne # != 2557 case OO_ExclaimEqual: Out << "ne"; break; 2558 // ::= lt # < 2559 case OO_Less: Out << "lt"; break; 2560 // ::= gt # > 2561 case OO_Greater: Out << "gt"; break; 2562 // ::= le # <= 2563 case OO_LessEqual: Out << "le"; break; 2564 // ::= ge # >= 2565 case OO_GreaterEqual: Out << "ge"; break; 2566 // ::= nt # ! 2567 case OO_Exclaim: Out << "nt"; break; 2568 // ::= aa # && 2569 case OO_AmpAmp: Out << "aa"; break; 2570 // ::= oo # || 2571 case OO_PipePipe: Out << "oo"; break; 2572 // ::= pp # ++ 2573 case OO_PlusPlus: Out << "pp"; break; 2574 // ::= mm # -- 2575 case OO_MinusMinus: Out << "mm"; break; 2576 // ::= cm # , 2577 case OO_Comma: Out << "cm"; break; 2578 // ::= pm # ->* 2579 case OO_ArrowStar: Out << "pm"; break; 2580 // ::= pt # -> 2581 case OO_Arrow: Out << "pt"; break; 2582 // ::= cl # () 2583 case OO_Call: Out << "cl"; break; 2584 // ::= ix # [] 2585 case OO_Subscript: Out << "ix"; break; 2586 2587 // ::= qu # ? 2588 // The conditional operator can't be overloaded, but we still handle it when 2589 // mangling expressions. 2590 case OO_Conditional: Out << "qu"; break; 2591 // Proposal on cxx-abi-dev, 2015-10-21. 2592 // ::= aw # co_await 2593 case OO_Coawait: Out << "aw"; break; 2594 // Proposed in cxx-abi github issue 43. 2595 // ::= ss # <=> 2596 case OO_Spaceship: Out << "ss"; break; 2597 2598 case OO_None: 2599 case NUM_OVERLOADED_OPERATORS: 2600 llvm_unreachable("Not an overloaded operator"); 2601 } 2602 } 2603 2604 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2605 // Vendor qualifiers come first and if they are order-insensitive they must 2606 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2607 2608 // <type> ::= U <addrspace-expr> 2609 if (DAST) { 2610 Out << "U2ASI"; 2611 mangleExpression(DAST->getAddrSpaceExpr()); 2612 Out << "E"; 2613 } 2614 2615 // Address space qualifiers start with an ordinary letter. 2616 if (Quals.hasAddressSpace()) { 2617 // Address space extension: 2618 // 2619 // <type> ::= U <target-addrspace> 2620 // <type> ::= U <OpenCL-addrspace> 2621 // <type> ::= U <CUDA-addrspace> 2622 2623 SmallString<64> ASString; 2624 LangAS AS = Quals.getAddressSpace(); 2625 2626 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2627 // <target-addrspace> ::= "AS" <address-space-number> 2628 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2629 if (TargetAS != 0 || 2630 Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0) 2631 ASString = "AS" + llvm::utostr(TargetAS); 2632 } else { 2633 switch (AS) { 2634 default: llvm_unreachable("Not a language specific address space"); 2635 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2636 // "private"| "generic" | "device" | 2637 // "host" ] 2638 case LangAS::opencl_global: 2639 ASString = "CLglobal"; 2640 break; 2641 case LangAS::opencl_global_device: 2642 ASString = "CLdevice"; 2643 break; 2644 case LangAS::opencl_global_host: 2645 ASString = "CLhost"; 2646 break; 2647 case LangAS::opencl_local: 2648 ASString = "CLlocal"; 2649 break; 2650 case LangAS::opencl_constant: 2651 ASString = "CLconstant"; 2652 break; 2653 case LangAS::opencl_private: 2654 ASString = "CLprivate"; 2655 break; 2656 case LangAS::opencl_generic: 2657 ASString = "CLgeneric"; 2658 break; 2659 // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | 2660 // "device" | "host" ] 2661 case LangAS::sycl_global: 2662 ASString = "SYglobal"; 2663 break; 2664 case LangAS::sycl_global_device: 2665 ASString = "SYdevice"; 2666 break; 2667 case LangAS::sycl_global_host: 2668 ASString = "SYhost"; 2669 break; 2670 case LangAS::sycl_local: 2671 ASString = "SYlocal"; 2672 break; 2673 case LangAS::sycl_private: 2674 ASString = "SYprivate"; 2675 break; 2676 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2677 case LangAS::cuda_device: 2678 ASString = "CUdevice"; 2679 break; 2680 case LangAS::cuda_constant: 2681 ASString = "CUconstant"; 2682 break; 2683 case LangAS::cuda_shared: 2684 ASString = "CUshared"; 2685 break; 2686 // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] 2687 case LangAS::ptr32_sptr: 2688 ASString = "ptr32_sptr"; 2689 break; 2690 case LangAS::ptr32_uptr: 2691 ASString = "ptr32_uptr"; 2692 break; 2693 case LangAS::ptr64: 2694 ASString = "ptr64"; 2695 break; 2696 } 2697 } 2698 if (!ASString.empty()) 2699 mangleVendorQualifier(ASString); 2700 } 2701 2702 // The ARC ownership qualifiers start with underscores. 2703 // Objective-C ARC Extension: 2704 // 2705 // <type> ::= U "__strong" 2706 // <type> ::= U "__weak" 2707 // <type> ::= U "__autoreleasing" 2708 // 2709 // Note: we emit __weak first to preserve the order as 2710 // required by the Itanium ABI. 2711 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2712 mangleVendorQualifier("__weak"); 2713 2714 // __unaligned (from -fms-extensions) 2715 if (Quals.hasUnaligned()) 2716 mangleVendorQualifier("__unaligned"); 2717 2718 // Remaining ARC ownership qualifiers. 2719 switch (Quals.getObjCLifetime()) { 2720 case Qualifiers::OCL_None: 2721 break; 2722 2723 case Qualifiers::OCL_Weak: 2724 // Do nothing as we already handled this case above. 2725 break; 2726 2727 case Qualifiers::OCL_Strong: 2728 mangleVendorQualifier("__strong"); 2729 break; 2730 2731 case Qualifiers::OCL_Autoreleasing: 2732 mangleVendorQualifier("__autoreleasing"); 2733 break; 2734 2735 case Qualifiers::OCL_ExplicitNone: 2736 // The __unsafe_unretained qualifier is *not* mangled, so that 2737 // __unsafe_unretained types in ARC produce the same manglings as the 2738 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2739 // better ABI compatibility. 2740 // 2741 // It's safe to do this because unqualified 'id' won't show up 2742 // in any type signatures that need to be mangled. 2743 break; 2744 } 2745 2746 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2747 if (Quals.hasRestrict()) 2748 Out << 'r'; 2749 if (Quals.hasVolatile()) 2750 Out << 'V'; 2751 if (Quals.hasConst()) 2752 Out << 'K'; 2753 } 2754 2755 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2756 Out << 'U' << name.size() << name; 2757 } 2758 2759 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2760 // <ref-qualifier> ::= R # lvalue reference 2761 // ::= O # rvalue-reference 2762 switch (RefQualifier) { 2763 case RQ_None: 2764 break; 2765 2766 case RQ_LValue: 2767 Out << 'R'; 2768 break; 2769 2770 case RQ_RValue: 2771 Out << 'O'; 2772 break; 2773 } 2774 } 2775 2776 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2777 Context.mangleObjCMethodNameAsSourceName(MD, Out); 2778 } 2779 2780 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2781 ASTContext &Ctx) { 2782 if (Quals) 2783 return true; 2784 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2785 return true; 2786 if (Ty->isOpenCLSpecificType()) 2787 return true; 2788 if (Ty->isBuiltinType()) 2789 return false; 2790 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2791 // substitution candidates. 2792 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2793 isa<AutoType>(Ty)) 2794 return false; 2795 // A placeholder type for class template deduction is substitutable with 2796 // its corresponding template name; this is handled specially when mangling 2797 // the type. 2798 if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) 2799 if (DeducedTST->getDeducedType().isNull()) 2800 return false; 2801 return true; 2802 } 2803 2804 void CXXNameMangler::mangleType(QualType T) { 2805 // If our type is instantiation-dependent but not dependent, we mangle 2806 // it as it was written in the source, removing any top-level sugar. 2807 // Otherwise, use the canonical type. 2808 // 2809 // FIXME: This is an approximation of the instantiation-dependent name 2810 // mangling rules, since we should really be using the type as written and 2811 // augmented via semantic analysis (i.e., with implicit conversions and 2812 // default template arguments) for any instantiation-dependent type. 2813 // Unfortunately, that requires several changes to our AST: 2814 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2815 // uniqued, so that we can handle substitutions properly 2816 // - Default template arguments will need to be represented in the 2817 // TemplateSpecializationType, since they need to be mangled even though 2818 // they aren't written. 2819 // - Conversions on non-type template arguments need to be expressed, since 2820 // they can affect the mangling of sizeof/alignof. 2821 // 2822 // FIXME: This is wrong when mapping to the canonical type for a dependent 2823 // type discards instantiation-dependent portions of the type, such as for: 2824 // 2825 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2826 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2827 // 2828 // It's also wrong in the opposite direction when instantiation-dependent, 2829 // canonically-equivalent types differ in some irrelevant portion of inner 2830 // type sugar. In such cases, we fail to form correct substitutions, eg: 2831 // 2832 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2833 // 2834 // We should instead canonicalize the non-instantiation-dependent parts, 2835 // regardless of whether the type as a whole is dependent or instantiation 2836 // dependent. 2837 if (!T->isInstantiationDependentType() || T->isDependentType()) 2838 T = T.getCanonicalType(); 2839 else { 2840 // Desugar any types that are purely sugar. 2841 do { 2842 // Don't desugar through template specialization types that aren't 2843 // type aliases. We need to mangle the template arguments as written. 2844 if (const TemplateSpecializationType *TST 2845 = dyn_cast<TemplateSpecializationType>(T)) 2846 if (!TST->isTypeAlias()) 2847 break; 2848 2849 // FIXME: We presumably shouldn't strip off ElaboratedTypes with 2850 // instantation-dependent qualifiers. See 2851 // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. 2852 2853 QualType Desugared 2854 = T.getSingleStepDesugaredType(Context.getASTContext()); 2855 if (Desugared == T) 2856 break; 2857 2858 T = Desugared; 2859 } while (true); 2860 } 2861 SplitQualType split = T.split(); 2862 Qualifiers quals = split.Quals; 2863 const Type *ty = split.Ty; 2864 2865 bool isSubstitutable = 2866 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2867 if (isSubstitutable && mangleSubstitution(T)) 2868 return; 2869 2870 // If we're mangling a qualified array type, push the qualifiers to 2871 // the element type. 2872 if (quals && isa<ArrayType>(T)) { 2873 ty = Context.getASTContext().getAsArrayType(T); 2874 quals = Qualifiers(); 2875 2876 // Note that we don't update T: we want to add the 2877 // substitution at the original type. 2878 } 2879 2880 if (quals || ty->isDependentAddressSpaceType()) { 2881 if (const DependentAddressSpaceType *DAST = 2882 dyn_cast<DependentAddressSpaceType>(ty)) { 2883 SplitQualType splitDAST = DAST->getPointeeType().split(); 2884 mangleQualifiers(splitDAST.Quals, DAST); 2885 mangleType(QualType(splitDAST.Ty, 0)); 2886 } else { 2887 mangleQualifiers(quals); 2888 2889 // Recurse: even if the qualified type isn't yet substitutable, 2890 // the unqualified type might be. 2891 mangleType(QualType(ty, 0)); 2892 } 2893 } else { 2894 switch (ty->getTypeClass()) { 2895 #define ABSTRACT_TYPE(CLASS, PARENT) 2896 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2897 case Type::CLASS: \ 2898 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2899 return; 2900 #define TYPE(CLASS, PARENT) \ 2901 case Type::CLASS: \ 2902 mangleType(static_cast<const CLASS##Type*>(ty)); \ 2903 break; 2904 #include "clang/AST/TypeNodes.inc" 2905 } 2906 } 2907 2908 // Add the substitution. 2909 if (isSubstitutable) 2910 addSubstitution(T); 2911 } 2912 2913 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 2914 if (!mangleStandardSubstitution(ND)) 2915 mangleName(ND); 2916 } 2917 2918 void CXXNameMangler::mangleType(const BuiltinType *T) { 2919 // <type> ::= <builtin-type> 2920 // <builtin-type> ::= v # void 2921 // ::= w # wchar_t 2922 // ::= b # bool 2923 // ::= c # char 2924 // ::= a # signed char 2925 // ::= h # unsigned char 2926 // ::= s # short 2927 // ::= t # unsigned short 2928 // ::= i # int 2929 // ::= j # unsigned int 2930 // ::= l # long 2931 // ::= m # unsigned long 2932 // ::= x # long long, __int64 2933 // ::= y # unsigned long long, __int64 2934 // ::= n # __int128 2935 // ::= o # unsigned __int128 2936 // ::= f # float 2937 // ::= d # double 2938 // ::= e # long double, __float80 2939 // ::= g # __float128 2940 // ::= g # __ibm128 2941 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 2942 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 2943 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 2944 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 2945 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 2946 // ::= Di # char32_t 2947 // ::= Ds # char16_t 2948 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 2949 // ::= u <source-name> # vendor extended type 2950 std::string type_name; 2951 // Normalize integer types as vendor extended types: 2952 // u<length>i<type size> 2953 // u<length>u<type size> 2954 if (NormalizeIntegers && T->isInteger()) { 2955 if (T->isSignedInteger()) { 2956 switch (getASTContext().getTypeSize(T)) { 2957 case 8: 2958 // Pick a representative for each integer size in the substitution 2959 // dictionary. (Its actual defined size is not relevant.) 2960 if (mangleSubstitution(BuiltinType::SChar)) 2961 break; 2962 Out << "u2i8"; 2963 addSubstitution(BuiltinType::SChar); 2964 break; 2965 case 16: 2966 if (mangleSubstitution(BuiltinType::Short)) 2967 break; 2968 Out << "u3i16"; 2969 addSubstitution(BuiltinType::Short); 2970 break; 2971 case 32: 2972 if (mangleSubstitution(BuiltinType::Int)) 2973 break; 2974 Out << "u3i32"; 2975 addSubstitution(BuiltinType::Int); 2976 break; 2977 case 64: 2978 if (mangleSubstitution(BuiltinType::Long)) 2979 break; 2980 Out << "u3i64"; 2981 addSubstitution(BuiltinType::Long); 2982 break; 2983 case 128: 2984 if (mangleSubstitution(BuiltinType::Int128)) 2985 break; 2986 Out << "u4i128"; 2987 addSubstitution(BuiltinType::Int128); 2988 break; 2989 default: 2990 llvm_unreachable("Unknown integer size for normalization"); 2991 } 2992 } else { 2993 switch (getASTContext().getTypeSize(T)) { 2994 case 8: 2995 if (mangleSubstitution(BuiltinType::UChar)) 2996 break; 2997 Out << "u2u8"; 2998 addSubstitution(BuiltinType::UChar); 2999 break; 3000 case 16: 3001 if (mangleSubstitution(BuiltinType::UShort)) 3002 break; 3003 Out << "u3u16"; 3004 addSubstitution(BuiltinType::UShort); 3005 break; 3006 case 32: 3007 if (mangleSubstitution(BuiltinType::UInt)) 3008 break; 3009 Out << "u3u32"; 3010 addSubstitution(BuiltinType::UInt); 3011 break; 3012 case 64: 3013 if (mangleSubstitution(BuiltinType::ULong)) 3014 break; 3015 Out << "u3u64"; 3016 addSubstitution(BuiltinType::ULong); 3017 break; 3018 case 128: 3019 if (mangleSubstitution(BuiltinType::UInt128)) 3020 break; 3021 Out << "u4u128"; 3022 addSubstitution(BuiltinType::UInt128); 3023 break; 3024 default: 3025 llvm_unreachable("Unknown integer size for normalization"); 3026 } 3027 } 3028 return; 3029 } 3030 switch (T->getKind()) { 3031 case BuiltinType::Void: 3032 Out << 'v'; 3033 break; 3034 case BuiltinType::Bool: 3035 Out << 'b'; 3036 break; 3037 case BuiltinType::Char_U: 3038 case BuiltinType::Char_S: 3039 Out << 'c'; 3040 break; 3041 case BuiltinType::UChar: 3042 Out << 'h'; 3043 break; 3044 case BuiltinType::UShort: 3045 Out << 't'; 3046 break; 3047 case BuiltinType::UInt: 3048 Out << 'j'; 3049 break; 3050 case BuiltinType::ULong: 3051 Out << 'm'; 3052 break; 3053 case BuiltinType::ULongLong: 3054 Out << 'y'; 3055 break; 3056 case BuiltinType::UInt128: 3057 Out << 'o'; 3058 break; 3059 case BuiltinType::SChar: 3060 Out << 'a'; 3061 break; 3062 case BuiltinType::WChar_S: 3063 case BuiltinType::WChar_U: 3064 Out << 'w'; 3065 break; 3066 case BuiltinType::Char8: 3067 Out << "Du"; 3068 break; 3069 case BuiltinType::Char16: 3070 Out << "Ds"; 3071 break; 3072 case BuiltinType::Char32: 3073 Out << "Di"; 3074 break; 3075 case BuiltinType::Short: 3076 Out << 's'; 3077 break; 3078 case BuiltinType::Int: 3079 Out << 'i'; 3080 break; 3081 case BuiltinType::Long: 3082 Out << 'l'; 3083 break; 3084 case BuiltinType::LongLong: 3085 Out << 'x'; 3086 break; 3087 case BuiltinType::Int128: 3088 Out << 'n'; 3089 break; 3090 case BuiltinType::Float16: 3091 Out << "DF16_"; 3092 break; 3093 case BuiltinType::ShortAccum: 3094 case BuiltinType::Accum: 3095 case BuiltinType::LongAccum: 3096 case BuiltinType::UShortAccum: 3097 case BuiltinType::UAccum: 3098 case BuiltinType::ULongAccum: 3099 case BuiltinType::ShortFract: 3100 case BuiltinType::Fract: 3101 case BuiltinType::LongFract: 3102 case BuiltinType::UShortFract: 3103 case BuiltinType::UFract: 3104 case BuiltinType::ULongFract: 3105 case BuiltinType::SatShortAccum: 3106 case BuiltinType::SatAccum: 3107 case BuiltinType::SatLongAccum: 3108 case BuiltinType::SatUShortAccum: 3109 case BuiltinType::SatUAccum: 3110 case BuiltinType::SatULongAccum: 3111 case BuiltinType::SatShortFract: 3112 case BuiltinType::SatFract: 3113 case BuiltinType::SatLongFract: 3114 case BuiltinType::SatUShortFract: 3115 case BuiltinType::SatUFract: 3116 case BuiltinType::SatULongFract: 3117 llvm_unreachable("Fixed point types are disabled for c++"); 3118 case BuiltinType::Half: 3119 Out << "Dh"; 3120 break; 3121 case BuiltinType::Float: 3122 Out << 'f'; 3123 break; 3124 case BuiltinType::Double: 3125 Out << 'd'; 3126 break; 3127 case BuiltinType::LongDouble: { 3128 const TargetInfo *TI = 3129 getASTContext().getLangOpts().OpenMP && 3130 getASTContext().getLangOpts().OpenMPIsTargetDevice 3131 ? getASTContext().getAuxTargetInfo() 3132 : &getASTContext().getTargetInfo(); 3133 Out << TI->getLongDoubleMangling(); 3134 break; 3135 } 3136 case BuiltinType::Float128: { 3137 const TargetInfo *TI = 3138 getASTContext().getLangOpts().OpenMP && 3139 getASTContext().getLangOpts().OpenMPIsTargetDevice 3140 ? getASTContext().getAuxTargetInfo() 3141 : &getASTContext().getTargetInfo(); 3142 Out << TI->getFloat128Mangling(); 3143 break; 3144 } 3145 case BuiltinType::BFloat16: { 3146 const TargetInfo *TI = 3147 ((getASTContext().getLangOpts().OpenMP && 3148 getASTContext().getLangOpts().OpenMPIsTargetDevice) || 3149 getASTContext().getLangOpts().SYCLIsDevice) 3150 ? getASTContext().getAuxTargetInfo() 3151 : &getASTContext().getTargetInfo(); 3152 Out << TI->getBFloat16Mangling(); 3153 break; 3154 } 3155 case BuiltinType::Ibm128: { 3156 const TargetInfo *TI = &getASTContext().getTargetInfo(); 3157 Out << TI->getIbm128Mangling(); 3158 break; 3159 } 3160 case BuiltinType::NullPtr: 3161 Out << "Dn"; 3162 break; 3163 3164 #define BUILTIN_TYPE(Id, SingletonId) 3165 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 3166 case BuiltinType::Id: 3167 #include "clang/AST/BuiltinTypes.def" 3168 case BuiltinType::Dependent: 3169 if (!NullOut) 3170 llvm_unreachable("mangling a placeholder type"); 3171 break; 3172 case BuiltinType::ObjCId: 3173 Out << "11objc_object"; 3174 break; 3175 case BuiltinType::ObjCClass: 3176 Out << "10objc_class"; 3177 break; 3178 case BuiltinType::ObjCSel: 3179 Out << "13objc_selector"; 3180 break; 3181 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 3182 case BuiltinType::Id: \ 3183 type_name = "ocl_" #ImgType "_" #Suffix; \ 3184 Out << type_name.size() << type_name; \ 3185 break; 3186 #include "clang/Basic/OpenCLImageTypes.def" 3187 case BuiltinType::OCLSampler: 3188 Out << "11ocl_sampler"; 3189 break; 3190 case BuiltinType::OCLEvent: 3191 Out << "9ocl_event"; 3192 break; 3193 case BuiltinType::OCLClkEvent: 3194 Out << "12ocl_clkevent"; 3195 break; 3196 case BuiltinType::OCLQueue: 3197 Out << "9ocl_queue"; 3198 break; 3199 case BuiltinType::OCLReserveID: 3200 Out << "13ocl_reserveid"; 3201 break; 3202 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 3203 case BuiltinType::Id: \ 3204 type_name = "ocl_" #ExtType; \ 3205 Out << type_name.size() << type_name; \ 3206 break; 3207 #include "clang/Basic/OpenCLExtensionTypes.def" 3208 // The SVE types are effectively target-specific. The mangling scheme 3209 // is defined in the appendices to the Procedure Call Standard for the 3210 // Arm Architecture. 3211 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ 3212 ElBits, IsSigned, IsFP, IsBF) \ 3213 case BuiltinType::Id: \ 3214 type_name = MangledName; \ 3215 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3216 << type_name; \ 3217 break; 3218 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ 3219 case BuiltinType::Id: \ 3220 type_name = MangledName; \ 3221 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3222 << type_name; \ 3223 break; 3224 #define SVE_OPAQUE_TYPE(InternalName, MangledName, Id, SingletonId) \ 3225 case BuiltinType::Id: \ 3226 type_name = MangledName; \ 3227 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3228 << type_name; \ 3229 break; 3230 #include "clang/Basic/AArch64SVEACLETypes.def" 3231 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 3232 case BuiltinType::Id: \ 3233 type_name = #Name; \ 3234 Out << 'u' << type_name.size() << type_name; \ 3235 break; 3236 #include "clang/Basic/PPCTypes.def" 3237 // TODO: Check the mangling scheme for RISC-V V. 3238 #define RVV_TYPE(Name, Id, SingletonId) \ 3239 case BuiltinType::Id: \ 3240 type_name = Name; \ 3241 Out << 'u' << type_name.size() << type_name; \ 3242 break; 3243 #include "clang/Basic/RISCVVTypes.def" 3244 #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ 3245 case BuiltinType::Id: \ 3246 type_name = MangledName; \ 3247 Out << 'u' << type_name.size() << type_name; \ 3248 break; 3249 #include "clang/Basic/WebAssemblyReferenceTypes.def" 3250 } 3251 } 3252 3253 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 3254 switch (CC) { 3255 case CC_C: 3256 return ""; 3257 3258 case CC_X86VectorCall: 3259 case CC_X86Pascal: 3260 case CC_X86RegCall: 3261 case CC_AAPCS: 3262 case CC_AAPCS_VFP: 3263 case CC_AArch64VectorCall: 3264 case CC_AArch64SVEPCS: 3265 case CC_AMDGPUKernelCall: 3266 case CC_IntelOclBicc: 3267 case CC_SpirFunction: 3268 case CC_OpenCLKernel: 3269 case CC_PreserveMost: 3270 case CC_PreserveAll: 3271 // FIXME: we should be mangling all of the above. 3272 return ""; 3273 3274 case CC_X86ThisCall: 3275 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is 3276 // used explicitly. At this point, we don't have that much information in 3277 // the AST, since clang tends to bake the convention into the canonical 3278 // function type. thiscall only rarely used explicitly, so don't mangle it 3279 // for now. 3280 return ""; 3281 3282 case CC_X86StdCall: 3283 return "stdcall"; 3284 case CC_X86FastCall: 3285 return "fastcall"; 3286 case CC_X86_64SysV: 3287 return "sysv_abi"; 3288 case CC_Win64: 3289 return "ms_abi"; 3290 case CC_Swift: 3291 return "swiftcall"; 3292 case CC_SwiftAsync: 3293 return "swiftasynccall"; 3294 } 3295 llvm_unreachable("bad calling convention"); 3296 } 3297 3298 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 3299 // Fast path. 3300 if (T->getExtInfo() == FunctionType::ExtInfo()) 3301 return; 3302 3303 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3304 // This will get more complicated in the future if we mangle other 3305 // things here; but for now, since we mangle ns_returns_retained as 3306 // a qualifier on the result type, we can get away with this: 3307 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 3308 if (!CCQualifier.empty()) 3309 mangleVendorQualifier(CCQualifier); 3310 3311 // FIXME: regparm 3312 // FIXME: noreturn 3313 } 3314 3315 void 3316 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 3317 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3318 3319 // Note that these are *not* substitution candidates. Demanglers might 3320 // have trouble with this if the parameter type is fully substituted. 3321 3322 switch (PI.getABI()) { 3323 case ParameterABI::Ordinary: 3324 break; 3325 3326 // All of these start with "swift", so they come before "ns_consumed". 3327 case ParameterABI::SwiftContext: 3328 case ParameterABI::SwiftAsyncContext: 3329 case ParameterABI::SwiftErrorResult: 3330 case ParameterABI::SwiftIndirectResult: 3331 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 3332 break; 3333 } 3334 3335 if (PI.isConsumed()) 3336 mangleVendorQualifier("ns_consumed"); 3337 3338 if (PI.isNoEscape()) 3339 mangleVendorQualifier("noescape"); 3340 } 3341 3342 // <type> ::= <function-type> 3343 // <function-type> ::= [<CV-qualifiers>] F [Y] 3344 // <bare-function-type> [<ref-qualifier>] E 3345 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 3346 mangleExtFunctionInfo(T); 3347 3348 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 3349 // e.g. "const" in "int (A::*)() const". 3350 mangleQualifiers(T->getMethodQuals()); 3351 3352 // Mangle instantiation-dependent exception-specification, if present, 3353 // per cxx-abi-dev proposal on 2016-10-11. 3354 if (T->hasInstantiationDependentExceptionSpec()) { 3355 if (isComputedNoexcept(T->getExceptionSpecType())) { 3356 Out << "DO"; 3357 mangleExpression(T->getNoexceptExpr()); 3358 Out << "E"; 3359 } else { 3360 assert(T->getExceptionSpecType() == EST_Dynamic); 3361 Out << "Dw"; 3362 for (auto ExceptTy : T->exceptions()) 3363 mangleType(ExceptTy); 3364 Out << "E"; 3365 } 3366 } else if (T->isNothrow()) { 3367 Out << "Do"; 3368 } 3369 3370 Out << 'F'; 3371 3372 // FIXME: We don't have enough information in the AST to produce the 'Y' 3373 // encoding for extern "C" function types. 3374 mangleBareFunctionType(T, /*MangleReturnType=*/true); 3375 3376 // Mangle the ref-qualifier, if present. 3377 mangleRefQualifier(T->getRefQualifier()); 3378 3379 Out << 'E'; 3380 } 3381 3382 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 3383 // Function types without prototypes can arise when mangling a function type 3384 // within an overloadable function in C. We mangle these as the absence of any 3385 // parameter types (not even an empty parameter list). 3386 Out << 'F'; 3387 3388 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3389 3390 FunctionTypeDepth.enterResultType(); 3391 mangleType(T->getReturnType()); 3392 FunctionTypeDepth.leaveResultType(); 3393 3394 FunctionTypeDepth.pop(saved); 3395 Out << 'E'; 3396 } 3397 3398 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 3399 bool MangleReturnType, 3400 const FunctionDecl *FD) { 3401 // Record that we're in a function type. See mangleFunctionParam 3402 // for details on what we're trying to achieve here. 3403 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3404 3405 // <bare-function-type> ::= <signature type>+ 3406 if (MangleReturnType) { 3407 FunctionTypeDepth.enterResultType(); 3408 3409 // Mangle ns_returns_retained as an order-sensitive qualifier here. 3410 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 3411 mangleVendorQualifier("ns_returns_retained"); 3412 3413 // Mangle the return type without any direct ARC ownership qualifiers. 3414 QualType ReturnTy = Proto->getReturnType(); 3415 if (ReturnTy.getObjCLifetime()) { 3416 auto SplitReturnTy = ReturnTy.split(); 3417 SplitReturnTy.Quals.removeObjCLifetime(); 3418 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 3419 } 3420 mangleType(ReturnTy); 3421 3422 FunctionTypeDepth.leaveResultType(); 3423 } 3424 3425 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 3426 // <builtin-type> ::= v # void 3427 Out << 'v'; 3428 3429 FunctionTypeDepth.pop(saved); 3430 return; 3431 } 3432 3433 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 3434 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 3435 // Mangle extended parameter info as order-sensitive qualifiers here. 3436 if (Proto->hasExtParameterInfos() && FD == nullptr) { 3437 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 3438 } 3439 3440 // Mangle the type. 3441 QualType ParamTy = Proto->getParamType(I); 3442 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 3443 3444 if (FD) { 3445 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 3446 // Attr can only take 1 character, so we can hardcode the length below. 3447 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 3448 if (Attr->isDynamic()) 3449 Out << "U25pass_dynamic_object_size" << Attr->getType(); 3450 else 3451 Out << "U17pass_object_size" << Attr->getType(); 3452 } 3453 } 3454 } 3455 3456 FunctionTypeDepth.pop(saved); 3457 3458 // <builtin-type> ::= z # ellipsis 3459 if (Proto->isVariadic()) 3460 Out << 'z'; 3461 } 3462 3463 // <type> ::= <class-enum-type> 3464 // <class-enum-type> ::= <name> 3465 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 3466 mangleName(T->getDecl()); 3467 } 3468 3469 // <type> ::= <class-enum-type> 3470 // <class-enum-type> ::= <name> 3471 void CXXNameMangler::mangleType(const EnumType *T) { 3472 mangleType(static_cast<const TagType*>(T)); 3473 } 3474 void CXXNameMangler::mangleType(const RecordType *T) { 3475 mangleType(static_cast<const TagType*>(T)); 3476 } 3477 void CXXNameMangler::mangleType(const TagType *T) { 3478 mangleName(T->getDecl()); 3479 } 3480 3481 // <type> ::= <array-type> 3482 // <array-type> ::= A <positive dimension number> _ <element type> 3483 // ::= A [<dimension expression>] _ <element type> 3484 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 3485 Out << 'A' << T->getSize() << '_'; 3486 mangleType(T->getElementType()); 3487 } 3488 void CXXNameMangler::mangleType(const VariableArrayType *T) { 3489 Out << 'A'; 3490 // decayed vla types (size 0) will just be skipped. 3491 if (T->getSizeExpr()) 3492 mangleExpression(T->getSizeExpr()); 3493 Out << '_'; 3494 mangleType(T->getElementType()); 3495 } 3496 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 3497 Out << 'A'; 3498 // A DependentSizedArrayType might not have size expression as below 3499 // 3500 // template<int ...N> int arr[] = {N...}; 3501 if (T->getSizeExpr()) 3502 mangleExpression(T->getSizeExpr()); 3503 Out << '_'; 3504 mangleType(T->getElementType()); 3505 } 3506 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 3507 Out << "A_"; 3508 mangleType(T->getElementType()); 3509 } 3510 3511 // <type> ::= <pointer-to-member-type> 3512 // <pointer-to-member-type> ::= M <class type> <member type> 3513 void CXXNameMangler::mangleType(const MemberPointerType *T) { 3514 Out << 'M'; 3515 mangleType(QualType(T->getClass(), 0)); 3516 QualType PointeeType = T->getPointeeType(); 3517 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 3518 mangleType(FPT); 3519 3520 // Itanium C++ ABI 5.1.8: 3521 // 3522 // The type of a non-static member function is considered to be different, 3523 // for the purposes of substitution, from the type of a namespace-scope or 3524 // static member function whose type appears similar. The types of two 3525 // non-static member functions are considered to be different, for the 3526 // purposes of substitution, if the functions are members of different 3527 // classes. In other words, for the purposes of substitution, the class of 3528 // which the function is a member is considered part of the type of 3529 // function. 3530 3531 // Given that we already substitute member function pointers as a 3532 // whole, the net effect of this rule is just to unconditionally 3533 // suppress substitution on the function type in a member pointer. 3534 // We increment the SeqID here to emulate adding an entry to the 3535 // substitution table. 3536 ++SeqID; 3537 } else 3538 mangleType(PointeeType); 3539 } 3540 3541 // <type> ::= <template-param> 3542 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 3543 mangleTemplateParameter(T->getDepth(), T->getIndex()); 3544 } 3545 3546 // <type> ::= <template-param> 3547 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 3548 // FIXME: not clear how to mangle this! 3549 // template <class T...> class A { 3550 // template <class U...> void foo(T(*)(U) x...); 3551 // }; 3552 Out << "_SUBSTPACK_"; 3553 } 3554 3555 // <type> ::= P <type> # pointer-to 3556 void CXXNameMangler::mangleType(const PointerType *T) { 3557 Out << 'P'; 3558 mangleType(T->getPointeeType()); 3559 } 3560 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 3561 Out << 'P'; 3562 mangleType(T->getPointeeType()); 3563 } 3564 3565 // <type> ::= R <type> # reference-to 3566 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 3567 Out << 'R'; 3568 mangleType(T->getPointeeType()); 3569 } 3570 3571 // <type> ::= O <type> # rvalue reference-to (C++0x) 3572 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 3573 Out << 'O'; 3574 mangleType(T->getPointeeType()); 3575 } 3576 3577 // <type> ::= C <type> # complex pair (C 2000) 3578 void CXXNameMangler::mangleType(const ComplexType *T) { 3579 Out << 'C'; 3580 mangleType(T->getElementType()); 3581 } 3582 3583 // ARM's ABI for Neon vector types specifies that they should be mangled as 3584 // if they are structs (to match ARM's initial implementation). The 3585 // vector type must be one of the special types predefined by ARM. 3586 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 3587 QualType EltType = T->getElementType(); 3588 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3589 const char *EltName = nullptr; 3590 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3591 switch (cast<BuiltinType>(EltType)->getKind()) { 3592 case BuiltinType::SChar: 3593 case BuiltinType::UChar: 3594 EltName = "poly8_t"; 3595 break; 3596 case BuiltinType::Short: 3597 case BuiltinType::UShort: 3598 EltName = "poly16_t"; 3599 break; 3600 case BuiltinType::LongLong: 3601 case BuiltinType::ULongLong: 3602 EltName = "poly64_t"; 3603 break; 3604 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 3605 } 3606 } else { 3607 switch (cast<BuiltinType>(EltType)->getKind()) { 3608 case BuiltinType::SChar: EltName = "int8_t"; break; 3609 case BuiltinType::UChar: EltName = "uint8_t"; break; 3610 case BuiltinType::Short: EltName = "int16_t"; break; 3611 case BuiltinType::UShort: EltName = "uint16_t"; break; 3612 case BuiltinType::Int: EltName = "int32_t"; break; 3613 case BuiltinType::UInt: EltName = "uint32_t"; break; 3614 case BuiltinType::LongLong: EltName = "int64_t"; break; 3615 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 3616 case BuiltinType::Double: EltName = "float64_t"; break; 3617 case BuiltinType::Float: EltName = "float32_t"; break; 3618 case BuiltinType::Half: EltName = "float16_t"; break; 3619 case BuiltinType::BFloat16: EltName = "bfloat16_t"; break; 3620 default: 3621 llvm_unreachable("unexpected Neon vector element type"); 3622 } 3623 } 3624 const char *BaseName = nullptr; 3625 unsigned BitSize = (T->getNumElements() * 3626 getASTContext().getTypeSize(EltType)); 3627 if (BitSize == 64) 3628 BaseName = "__simd64_"; 3629 else { 3630 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 3631 BaseName = "__simd128_"; 3632 } 3633 Out << strlen(BaseName) + strlen(EltName); 3634 Out << BaseName << EltName; 3635 } 3636 3637 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { 3638 DiagnosticsEngine &Diags = Context.getDiags(); 3639 unsigned DiagID = Diags.getCustomDiagID( 3640 DiagnosticsEngine::Error, 3641 "cannot mangle this dependent neon vector type yet"); 3642 Diags.Report(T->getAttributeLoc(), DiagID); 3643 } 3644 3645 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 3646 switch (EltType->getKind()) { 3647 case BuiltinType::SChar: 3648 return "Int8"; 3649 case BuiltinType::Short: 3650 return "Int16"; 3651 case BuiltinType::Int: 3652 return "Int32"; 3653 case BuiltinType::Long: 3654 case BuiltinType::LongLong: 3655 return "Int64"; 3656 case BuiltinType::UChar: 3657 return "Uint8"; 3658 case BuiltinType::UShort: 3659 return "Uint16"; 3660 case BuiltinType::UInt: 3661 return "Uint32"; 3662 case BuiltinType::ULong: 3663 case BuiltinType::ULongLong: 3664 return "Uint64"; 3665 case BuiltinType::Half: 3666 return "Float16"; 3667 case BuiltinType::Float: 3668 return "Float32"; 3669 case BuiltinType::Double: 3670 return "Float64"; 3671 case BuiltinType::BFloat16: 3672 return "Bfloat16"; 3673 default: 3674 llvm_unreachable("Unexpected vector element base type"); 3675 } 3676 } 3677 3678 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3679 // the equivalent internal name. The vector type must be one of the special 3680 // types predefined by ARM. 3681 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3682 QualType EltType = T->getElementType(); 3683 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3684 unsigned BitSize = 3685 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3686 (void)BitSize; // Silence warning. 3687 3688 assert((BitSize == 64 || BitSize == 128) && 3689 "Neon vector type not 64 or 128 bits"); 3690 3691 StringRef EltName; 3692 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3693 switch (cast<BuiltinType>(EltType)->getKind()) { 3694 case BuiltinType::UChar: 3695 EltName = "Poly8"; 3696 break; 3697 case BuiltinType::UShort: 3698 EltName = "Poly16"; 3699 break; 3700 case BuiltinType::ULong: 3701 case BuiltinType::ULongLong: 3702 EltName = "Poly64"; 3703 break; 3704 default: 3705 llvm_unreachable("unexpected Neon polynomial vector element type"); 3706 } 3707 } else 3708 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3709 3710 std::string TypeName = 3711 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3712 Out << TypeName.length() << TypeName; 3713 } 3714 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { 3715 DiagnosticsEngine &Diags = Context.getDiags(); 3716 unsigned DiagID = Diags.getCustomDiagID( 3717 DiagnosticsEngine::Error, 3718 "cannot mangle this dependent neon vector type yet"); 3719 Diags.Report(T->getAttributeLoc(), DiagID); 3720 } 3721 3722 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types 3723 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 3724 // type as the sizeless variants. 3725 // 3726 // The mangling scheme for VLS types is implemented as a "pseudo" template: 3727 // 3728 // '__SVE_VLS<<type>, <vector length>>' 3729 // 3730 // Combining the existing SVE type and a specific vector length (in bits). 3731 // For example: 3732 // 3733 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); 3734 // 3735 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: 3736 // 3737 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" 3738 // 3739 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE 3740 // 3741 // The latest ACLE specification (00bet5) does not contain details of this 3742 // mangling scheme, it will be specified in the next revision. The mangling 3743 // scheme is otherwise defined in the appendices to the Procedure Call Standard 3744 // for the Arm Architecture, see 3745 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling 3746 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { 3747 assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3748 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) && 3749 "expected fixed-length SVE vector!"); 3750 3751 QualType EltType = T->getElementType(); 3752 assert(EltType->isBuiltinType() && 3753 "expected builtin type for fixed-length SVE vector!"); 3754 3755 StringRef TypeName; 3756 switch (cast<BuiltinType>(EltType)->getKind()) { 3757 case BuiltinType::SChar: 3758 TypeName = "__SVInt8_t"; 3759 break; 3760 case BuiltinType::UChar: { 3761 if (T->getVectorKind() == VectorType::SveFixedLengthDataVector) 3762 TypeName = "__SVUint8_t"; 3763 else 3764 TypeName = "__SVBool_t"; 3765 break; 3766 } 3767 case BuiltinType::Short: 3768 TypeName = "__SVInt16_t"; 3769 break; 3770 case BuiltinType::UShort: 3771 TypeName = "__SVUint16_t"; 3772 break; 3773 case BuiltinType::Int: 3774 TypeName = "__SVInt32_t"; 3775 break; 3776 case BuiltinType::UInt: 3777 TypeName = "__SVUint32_t"; 3778 break; 3779 case BuiltinType::Long: 3780 TypeName = "__SVInt64_t"; 3781 break; 3782 case BuiltinType::ULong: 3783 TypeName = "__SVUint64_t"; 3784 break; 3785 case BuiltinType::Half: 3786 TypeName = "__SVFloat16_t"; 3787 break; 3788 case BuiltinType::Float: 3789 TypeName = "__SVFloat32_t"; 3790 break; 3791 case BuiltinType::Double: 3792 TypeName = "__SVFloat64_t"; 3793 break; 3794 case BuiltinType::BFloat16: 3795 TypeName = "__SVBfloat16_t"; 3796 break; 3797 default: 3798 llvm_unreachable("unexpected element type for fixed-length SVE vector!"); 3799 } 3800 3801 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; 3802 3803 if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 3804 VecSizeInBits *= 8; 3805 3806 Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" 3807 << VecSizeInBits << "EE"; 3808 } 3809 3810 void CXXNameMangler::mangleAArch64FixedSveVectorType( 3811 const DependentVectorType *T) { 3812 DiagnosticsEngine &Diags = Context.getDiags(); 3813 unsigned DiagID = Diags.getCustomDiagID( 3814 DiagnosticsEngine::Error, 3815 "cannot mangle this dependent fixed-length SVE vector type yet"); 3816 Diags.Report(T->getAttributeLoc(), DiagID); 3817 } 3818 3819 void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) { 3820 assert(T->getVectorKind() == VectorType::RVVFixedLengthDataVector && 3821 "expected fixed-length RVV vector!"); 3822 3823 QualType EltType = T->getElementType(); 3824 assert(EltType->isBuiltinType() && 3825 "expected builtin type for fixed-length RVV vector!"); 3826 3827 SmallString<20> TypeNameStr; 3828 llvm::raw_svector_ostream TypeNameOS(TypeNameStr); 3829 TypeNameOS << "__rvv_"; 3830 switch (cast<BuiltinType>(EltType)->getKind()) { 3831 case BuiltinType::SChar: 3832 TypeNameOS << "int8"; 3833 break; 3834 case BuiltinType::UChar: 3835 TypeNameOS << "uint8"; 3836 break; 3837 case BuiltinType::Short: 3838 TypeNameOS << "int16"; 3839 break; 3840 case BuiltinType::UShort: 3841 TypeNameOS << "uint16"; 3842 break; 3843 case BuiltinType::Int: 3844 TypeNameOS << "int32"; 3845 break; 3846 case BuiltinType::UInt: 3847 TypeNameOS << "uint32"; 3848 break; 3849 case BuiltinType::Long: 3850 TypeNameOS << "int64"; 3851 break; 3852 case BuiltinType::ULong: 3853 TypeNameOS << "uint64"; 3854 break; 3855 case BuiltinType::Half: 3856 TypeNameOS << "float16"; 3857 break; 3858 case BuiltinType::Float: 3859 TypeNameOS << "float32"; 3860 break; 3861 case BuiltinType::Double: 3862 TypeNameOS << "float64"; 3863 break; 3864 default: 3865 llvm_unreachable("unexpected element type for fixed-length RVV vector!"); 3866 } 3867 3868 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; 3869 3870 // Apend the LMUL suffix. 3871 auto VScale = getASTContext().getTargetInfo().getVScaleRange( 3872 getASTContext().getLangOpts()); 3873 unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock; 3874 TypeNameOS << 'm'; 3875 if (VecSizeInBits >= VLen) 3876 TypeNameOS << (VecSizeInBits / VLen); 3877 else 3878 TypeNameOS << 'f' << (VLen / VecSizeInBits); 3879 3880 TypeNameOS << "_t"; 3881 3882 Out << "9__RVV_VLSI" << 'u' << TypeNameStr.size() << TypeNameStr << "Lj" 3883 << VecSizeInBits << "EE"; 3884 } 3885 3886 void CXXNameMangler::mangleRISCVFixedRVVVectorType( 3887 const DependentVectorType *T) { 3888 DiagnosticsEngine &Diags = Context.getDiags(); 3889 unsigned DiagID = Diags.getCustomDiagID( 3890 DiagnosticsEngine::Error, 3891 "cannot mangle this dependent fixed-length RVV vector type yet"); 3892 Diags.Report(T->getAttributeLoc(), DiagID); 3893 } 3894 3895 // GNU extension: vector types 3896 // <type> ::= <vector-type> 3897 // <vector-type> ::= Dv <positive dimension number> _ 3898 // <extended element type> 3899 // ::= Dv [<dimension expression>] _ <element type> 3900 // <extended element type> ::= <element type> 3901 // ::= p # AltiVec vector pixel 3902 // ::= b # Altivec vector bool 3903 void CXXNameMangler::mangleType(const VectorType *T) { 3904 if ((T->getVectorKind() == VectorType::NeonVector || 3905 T->getVectorKind() == VectorType::NeonPolyVector)) { 3906 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3907 llvm::Triple::ArchType Arch = 3908 getASTContext().getTargetInfo().getTriple().getArch(); 3909 if ((Arch == llvm::Triple::aarch64 || 3910 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 3911 mangleAArch64NeonVectorType(T); 3912 else 3913 mangleNeonVectorType(T); 3914 return; 3915 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3916 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 3917 mangleAArch64FixedSveVectorType(T); 3918 return; 3919 } else if (T->getVectorKind() == VectorType::RVVFixedLengthDataVector) { 3920 mangleRISCVFixedRVVVectorType(T); 3921 return; 3922 } 3923 Out << "Dv" << T->getNumElements() << '_'; 3924 if (T->getVectorKind() == VectorType::AltiVecPixel) 3925 Out << 'p'; 3926 else if (T->getVectorKind() == VectorType::AltiVecBool) 3927 Out << 'b'; 3928 else 3929 mangleType(T->getElementType()); 3930 } 3931 3932 void CXXNameMangler::mangleType(const DependentVectorType *T) { 3933 if ((T->getVectorKind() == VectorType::NeonVector || 3934 T->getVectorKind() == VectorType::NeonPolyVector)) { 3935 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3936 llvm::Triple::ArchType Arch = 3937 getASTContext().getTargetInfo().getTriple().getArch(); 3938 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && 3939 !Target.isOSDarwin()) 3940 mangleAArch64NeonVectorType(T); 3941 else 3942 mangleNeonVectorType(T); 3943 return; 3944 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3945 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 3946 mangleAArch64FixedSveVectorType(T); 3947 return; 3948 } else if (T->getVectorKind() == VectorType::RVVFixedLengthDataVector) { 3949 mangleRISCVFixedRVVVectorType(T); 3950 return; 3951 } 3952 3953 Out << "Dv"; 3954 mangleExpression(T->getSizeExpr()); 3955 Out << '_'; 3956 if (T->getVectorKind() == VectorType::AltiVecPixel) 3957 Out << 'p'; 3958 else if (T->getVectorKind() == VectorType::AltiVecBool) 3959 Out << 'b'; 3960 else 3961 mangleType(T->getElementType()); 3962 } 3963 3964 void CXXNameMangler::mangleType(const ExtVectorType *T) { 3965 mangleType(static_cast<const VectorType*>(T)); 3966 } 3967 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 3968 Out << "Dv"; 3969 mangleExpression(T->getSizeExpr()); 3970 Out << '_'; 3971 mangleType(T->getElementType()); 3972 } 3973 3974 void CXXNameMangler::mangleType(const ConstantMatrixType *T) { 3975 // Mangle matrix types as a vendor extended type: 3976 // u<Len>matrix_typeI<Rows><Columns><element type>E 3977 3978 StringRef VendorQualifier = "matrix_type"; 3979 Out << "u" << VendorQualifier.size() << VendorQualifier; 3980 3981 Out << "I"; 3982 auto &ASTCtx = getASTContext(); 3983 unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType()); 3984 llvm::APSInt Rows(BitWidth); 3985 Rows = T->getNumRows(); 3986 mangleIntegerLiteral(ASTCtx.getSizeType(), Rows); 3987 llvm::APSInt Columns(BitWidth); 3988 Columns = T->getNumColumns(); 3989 mangleIntegerLiteral(ASTCtx.getSizeType(), Columns); 3990 mangleType(T->getElementType()); 3991 Out << "E"; 3992 } 3993 3994 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { 3995 // Mangle matrix types as a vendor extended type: 3996 // u<Len>matrix_typeI<row expr><column expr><element type>E 3997 StringRef VendorQualifier = "matrix_type"; 3998 Out << "u" << VendorQualifier.size() << VendorQualifier; 3999 4000 Out << "I"; 4001 mangleTemplateArgExpr(T->getRowExpr()); 4002 mangleTemplateArgExpr(T->getColumnExpr()); 4003 mangleType(T->getElementType()); 4004 Out << "E"; 4005 } 4006 4007 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 4008 SplitQualType split = T->getPointeeType().split(); 4009 mangleQualifiers(split.Quals, T); 4010 mangleType(QualType(split.Ty, 0)); 4011 } 4012 4013 void CXXNameMangler::mangleType(const PackExpansionType *T) { 4014 // <type> ::= Dp <type> # pack expansion (C++0x) 4015 Out << "Dp"; 4016 mangleType(T->getPattern()); 4017 } 4018 4019 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 4020 mangleSourceName(T->getDecl()->getIdentifier()); 4021 } 4022 4023 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 4024 // Treat __kindof as a vendor extended type qualifier. 4025 if (T->isKindOfType()) 4026 Out << "U8__kindof"; 4027 4028 if (!T->qual_empty()) { 4029 // Mangle protocol qualifiers. 4030 SmallString<64> QualStr; 4031 llvm::raw_svector_ostream QualOS(QualStr); 4032 QualOS << "objcproto"; 4033 for (const auto *I : T->quals()) { 4034 StringRef name = I->getName(); 4035 QualOS << name.size() << name; 4036 } 4037 Out << 'U' << QualStr.size() << QualStr; 4038 } 4039 4040 mangleType(T->getBaseType()); 4041 4042 if (T->isSpecialized()) { 4043 // Mangle type arguments as I <type>+ E 4044 Out << 'I'; 4045 for (auto typeArg : T->getTypeArgs()) 4046 mangleType(typeArg); 4047 Out << 'E'; 4048 } 4049 } 4050 4051 void CXXNameMangler::mangleType(const BlockPointerType *T) { 4052 Out << "U13block_pointer"; 4053 mangleType(T->getPointeeType()); 4054 } 4055 4056 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 4057 // Mangle injected class name types as if the user had written the 4058 // specialization out fully. It may not actually be possible to see 4059 // this mangling, though. 4060 mangleType(T->getInjectedSpecializationType()); 4061 } 4062 4063 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 4064 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 4065 mangleTemplateName(TD, T->template_arguments()); 4066 } else { 4067 if (mangleSubstitution(QualType(T, 0))) 4068 return; 4069 4070 mangleTemplatePrefix(T->getTemplateName()); 4071 4072 // FIXME: GCC does not appear to mangle the template arguments when 4073 // the template in question is a dependent template name. Should we 4074 // emulate that badness? 4075 mangleTemplateArgs(T->getTemplateName(), T->template_arguments()); 4076 addSubstitution(QualType(T, 0)); 4077 } 4078 } 4079 4080 void CXXNameMangler::mangleType(const DependentNameType *T) { 4081 // Proposal by cxx-abi-dev, 2014-03-26 4082 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 4083 // # dependent elaborated type specifier using 4084 // # 'typename' 4085 // ::= Ts <name> # dependent elaborated type specifier using 4086 // # 'struct' or 'class' 4087 // ::= Tu <name> # dependent elaborated type specifier using 4088 // # 'union' 4089 // ::= Te <name> # dependent elaborated type specifier using 4090 // # 'enum' 4091 switch (T->getKeyword()) { 4092 case ETK_None: 4093 case ETK_Typename: 4094 break; 4095 case ETK_Struct: 4096 case ETK_Class: 4097 case ETK_Interface: 4098 Out << "Ts"; 4099 break; 4100 case ETK_Union: 4101 Out << "Tu"; 4102 break; 4103 case ETK_Enum: 4104 Out << "Te"; 4105 break; 4106 } 4107 // Typename types are always nested 4108 Out << 'N'; 4109 manglePrefix(T->getQualifier()); 4110 mangleSourceName(T->getIdentifier()); 4111 Out << 'E'; 4112 } 4113 4114 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 4115 // Dependently-scoped template types are nested if they have a prefix. 4116 Out << 'N'; 4117 4118 // TODO: avoid making this TemplateName. 4119 TemplateName Prefix = 4120 getASTContext().getDependentTemplateName(T->getQualifier(), 4121 T->getIdentifier()); 4122 mangleTemplatePrefix(Prefix); 4123 4124 // FIXME: GCC does not appear to mangle the template arguments when 4125 // the template in question is a dependent template name. Should we 4126 // emulate that badness? 4127 mangleTemplateArgs(Prefix, T->template_arguments()); 4128 Out << 'E'; 4129 } 4130 4131 void CXXNameMangler::mangleType(const TypeOfType *T) { 4132 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 4133 // "extension with parameters" mangling. 4134 Out << "u6typeof"; 4135 } 4136 4137 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 4138 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 4139 // "extension with parameters" mangling. 4140 Out << "u6typeof"; 4141 } 4142 4143 void CXXNameMangler::mangleType(const DecltypeType *T) { 4144 Expr *E = T->getUnderlyingExpr(); 4145 4146 // type ::= Dt <expression> E # decltype of an id-expression 4147 // # or class member access 4148 // ::= DT <expression> E # decltype of an expression 4149 4150 // This purports to be an exhaustive list of id-expressions and 4151 // class member accesses. Note that we do not ignore parentheses; 4152 // parentheses change the semantics of decltype for these 4153 // expressions (and cause the mangler to use the other form). 4154 if (isa<DeclRefExpr>(E) || 4155 isa<MemberExpr>(E) || 4156 isa<UnresolvedLookupExpr>(E) || 4157 isa<DependentScopeDeclRefExpr>(E) || 4158 isa<CXXDependentScopeMemberExpr>(E) || 4159 isa<UnresolvedMemberExpr>(E)) 4160 Out << "Dt"; 4161 else 4162 Out << "DT"; 4163 mangleExpression(E); 4164 Out << 'E'; 4165 } 4166 4167 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 4168 // If this is dependent, we need to record that. If not, we simply 4169 // mangle it as the underlying type since they are equivalent. 4170 if (T->isDependentType()) { 4171 Out << "u"; 4172 4173 StringRef BuiltinName; 4174 switch (T->getUTTKind()) { 4175 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ 4176 case UnaryTransformType::Enum: \ 4177 BuiltinName = "__" #Trait; \ 4178 break; 4179 #include "clang/Basic/TransformTypeTraits.def" 4180 } 4181 Out << BuiltinName.size() << BuiltinName; 4182 } 4183 4184 Out << "I"; 4185 mangleType(T->getBaseType()); 4186 Out << "E"; 4187 } 4188 4189 void CXXNameMangler::mangleType(const AutoType *T) { 4190 assert(T->getDeducedType().isNull() && 4191 "Deduced AutoType shouldn't be handled here!"); 4192 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 4193 "shouldn't need to mangle __auto_type!"); 4194 // <builtin-type> ::= Da # auto 4195 // ::= Dc # decltype(auto) 4196 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 4197 } 4198 4199 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 4200 QualType Deduced = T->getDeducedType(); 4201 if (!Deduced.isNull()) 4202 return mangleType(Deduced); 4203 4204 TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); 4205 assert(TD && "shouldn't form deduced TST unless we know we have a template"); 4206 4207 if (mangleSubstitution(TD)) 4208 return; 4209 4210 mangleName(GlobalDecl(TD)); 4211 addSubstitution(TD); 4212 } 4213 4214 void CXXNameMangler::mangleType(const AtomicType *T) { 4215 // <type> ::= U <source-name> <type> # vendor extended type qualifier 4216 // (Until there's a standardized mangling...) 4217 Out << "U7_Atomic"; 4218 mangleType(T->getValueType()); 4219 } 4220 4221 void CXXNameMangler::mangleType(const PipeType *T) { 4222 // Pipe type mangling rules are described in SPIR 2.0 specification 4223 // A.1 Data types and A.3 Summary of changes 4224 // <type> ::= 8ocl_pipe 4225 Out << "8ocl_pipe"; 4226 } 4227 4228 void CXXNameMangler::mangleType(const BitIntType *T) { 4229 // 5.1.5.2 Builtin types 4230 // <type> ::= DB <number | instantiation-dependent expression> _ 4231 // ::= DU <number | instantiation-dependent expression> _ 4232 Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_"; 4233 } 4234 4235 void CXXNameMangler::mangleType(const DependentBitIntType *T) { 4236 // 5.1.5.2 Builtin types 4237 // <type> ::= DB <number | instantiation-dependent expression> _ 4238 // ::= DU <number | instantiation-dependent expression> _ 4239 Out << "D" << (T->isUnsigned() ? "U" : "B"); 4240 mangleExpression(T->getNumBitsExpr()); 4241 Out << "_"; 4242 } 4243 4244 void CXXNameMangler::mangleIntegerLiteral(QualType T, 4245 const llvm::APSInt &Value) { 4246 // <expr-primary> ::= L <type> <value number> E # integer literal 4247 Out << 'L'; 4248 4249 mangleType(T); 4250 if (T->isBooleanType()) { 4251 // Boolean values are encoded as 0/1. 4252 Out << (Value.getBoolValue() ? '1' : '0'); 4253 } else { 4254 mangleNumber(Value); 4255 } 4256 Out << 'E'; 4257 4258 } 4259 4260 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 4261 // Ignore member expressions involving anonymous unions. 4262 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 4263 if (!RT->getDecl()->isAnonymousStructOrUnion()) 4264 break; 4265 const auto *ME = dyn_cast<MemberExpr>(Base); 4266 if (!ME) 4267 break; 4268 Base = ME->getBase(); 4269 IsArrow = ME->isArrow(); 4270 } 4271 4272 if (Base->isImplicitCXXThis()) { 4273 // Note: GCC mangles member expressions to the implicit 'this' as 4274 // *this., whereas we represent them as this->. The Itanium C++ ABI 4275 // does not specify anything here, so we follow GCC. 4276 Out << "dtdefpT"; 4277 } else { 4278 Out << (IsArrow ? "pt" : "dt"); 4279 mangleExpression(Base); 4280 } 4281 } 4282 4283 /// Mangles a member expression. 4284 void CXXNameMangler::mangleMemberExpr(const Expr *base, 4285 bool isArrow, 4286 NestedNameSpecifier *qualifier, 4287 NamedDecl *firstQualifierLookup, 4288 DeclarationName member, 4289 const TemplateArgumentLoc *TemplateArgs, 4290 unsigned NumTemplateArgs, 4291 unsigned arity) { 4292 // <expression> ::= dt <expression> <unresolved-name> 4293 // ::= pt <expression> <unresolved-name> 4294 if (base) 4295 mangleMemberExprBase(base, isArrow); 4296 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 4297 } 4298 4299 /// Look at the callee of the given call expression and determine if 4300 /// it's a parenthesized id-expression which would have triggered ADL 4301 /// otherwise. 4302 static bool isParenthesizedADLCallee(const CallExpr *call) { 4303 const Expr *callee = call->getCallee(); 4304 const Expr *fn = callee->IgnoreParens(); 4305 4306 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 4307 // too, but for those to appear in the callee, it would have to be 4308 // parenthesized. 4309 if (callee == fn) return false; 4310 4311 // Must be an unresolved lookup. 4312 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 4313 if (!lookup) return false; 4314 4315 assert(!lookup->requiresADL()); 4316 4317 // Must be an unqualified lookup. 4318 if (lookup->getQualifier()) return false; 4319 4320 // Must not have found a class member. Note that if one is a class 4321 // member, they're all class members. 4322 if (lookup->getNumDecls() > 0 && 4323 (*lookup->decls_begin())->isCXXClassMember()) 4324 return false; 4325 4326 // Otherwise, ADL would have been triggered. 4327 return true; 4328 } 4329 4330 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 4331 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 4332 Out << CastEncoding; 4333 mangleType(ECE->getType()); 4334 mangleExpression(ECE->getSubExpr()); 4335 } 4336 4337 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 4338 if (auto *Syntactic = InitList->getSyntacticForm()) 4339 InitList = Syntactic; 4340 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 4341 mangleExpression(InitList->getInit(i)); 4342 } 4343 4344 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, 4345 bool AsTemplateArg) { 4346 // <expression> ::= <unary operator-name> <expression> 4347 // ::= <binary operator-name> <expression> <expression> 4348 // ::= <trinary operator-name> <expression> <expression> <expression> 4349 // ::= cv <type> expression # conversion with one argument 4350 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 4351 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 4352 // ::= sc <type> <expression> # static_cast<type> (expression) 4353 // ::= cc <type> <expression> # const_cast<type> (expression) 4354 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 4355 // ::= st <type> # sizeof (a type) 4356 // ::= at <type> # alignof (a type) 4357 // ::= <template-param> 4358 // ::= <function-param> 4359 // ::= fpT # 'this' expression (part of <function-param>) 4360 // ::= sr <type> <unqualified-name> # dependent name 4361 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 4362 // ::= ds <expression> <expression> # expr.*expr 4363 // ::= sZ <template-param> # size of a parameter pack 4364 // ::= sZ <function-param> # size of a function parameter pack 4365 // ::= u <source-name> <template-arg>* E # vendor extended expression 4366 // ::= <expr-primary> 4367 // <expr-primary> ::= L <type> <value number> E # integer literal 4368 // ::= L <type> <value float> E # floating literal 4369 // ::= L <type> <string type> E # string literal 4370 // ::= L <nullptr type> E # nullptr literal "LDnE" 4371 // ::= L <pointer type> 0 E # null pointer template argument 4372 // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang 4373 // ::= L <mangled-name> E # external name 4374 QualType ImplicitlyConvertedToType; 4375 4376 // A top-level expression that's not <expr-primary> needs to be wrapped in 4377 // X...E in a template arg. 4378 bool IsPrimaryExpr = true; 4379 auto NotPrimaryExpr = [&] { 4380 if (AsTemplateArg && IsPrimaryExpr) 4381 Out << 'X'; 4382 IsPrimaryExpr = false; 4383 }; 4384 4385 auto MangleDeclRefExpr = [&](const NamedDecl *D) { 4386 switch (D->getKind()) { 4387 default: 4388 // <expr-primary> ::= L <mangled-name> E # external name 4389 Out << 'L'; 4390 mangle(D); 4391 Out << 'E'; 4392 break; 4393 4394 case Decl::ParmVar: 4395 NotPrimaryExpr(); 4396 mangleFunctionParam(cast<ParmVarDecl>(D)); 4397 break; 4398 4399 case Decl::EnumConstant: { 4400 // <expr-primary> 4401 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 4402 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 4403 break; 4404 } 4405 4406 case Decl::NonTypeTemplateParm: 4407 NotPrimaryExpr(); 4408 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 4409 mangleTemplateParameter(PD->getDepth(), PD->getIndex()); 4410 break; 4411 } 4412 }; 4413 4414 // 'goto recurse' is used when handling a simple "unwrapping" node which 4415 // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need 4416 // to be preserved. 4417 recurse: 4418 switch (E->getStmtClass()) { 4419 case Expr::NoStmtClass: 4420 #define ABSTRACT_STMT(Type) 4421 #define EXPR(Type, Base) 4422 #define STMT(Type, Base) \ 4423 case Expr::Type##Class: 4424 #include "clang/AST/StmtNodes.inc" 4425 // fallthrough 4426 4427 // These all can only appear in local or variable-initialization 4428 // contexts and so should never appear in a mangling. 4429 case Expr::AddrLabelExprClass: 4430 case Expr::DesignatedInitUpdateExprClass: 4431 case Expr::ImplicitValueInitExprClass: 4432 case Expr::ArrayInitLoopExprClass: 4433 case Expr::ArrayInitIndexExprClass: 4434 case Expr::NoInitExprClass: 4435 case Expr::ParenListExprClass: 4436 case Expr::MSPropertyRefExprClass: 4437 case Expr::MSPropertySubscriptExprClass: 4438 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 4439 case Expr::RecoveryExprClass: 4440 case Expr::OMPArraySectionExprClass: 4441 case Expr::OMPArrayShapingExprClass: 4442 case Expr::OMPIteratorExprClass: 4443 case Expr::CXXInheritedCtorInitExprClass: 4444 case Expr::CXXParenListInitExprClass: 4445 llvm_unreachable("unexpected statement kind"); 4446 4447 case Expr::ConstantExprClass: 4448 E = cast<ConstantExpr>(E)->getSubExpr(); 4449 goto recurse; 4450 4451 // FIXME: invent manglings for all these. 4452 case Expr::BlockExprClass: 4453 case Expr::ChooseExprClass: 4454 case Expr::CompoundLiteralExprClass: 4455 case Expr::ExtVectorElementExprClass: 4456 case Expr::GenericSelectionExprClass: 4457 case Expr::ObjCEncodeExprClass: 4458 case Expr::ObjCIsaExprClass: 4459 case Expr::ObjCIvarRefExprClass: 4460 case Expr::ObjCMessageExprClass: 4461 case Expr::ObjCPropertyRefExprClass: 4462 case Expr::ObjCProtocolExprClass: 4463 case Expr::ObjCSelectorExprClass: 4464 case Expr::ObjCStringLiteralClass: 4465 case Expr::ObjCBoxedExprClass: 4466 case Expr::ObjCArrayLiteralClass: 4467 case Expr::ObjCDictionaryLiteralClass: 4468 case Expr::ObjCSubscriptRefExprClass: 4469 case Expr::ObjCIndirectCopyRestoreExprClass: 4470 case Expr::ObjCAvailabilityCheckExprClass: 4471 case Expr::OffsetOfExprClass: 4472 case Expr::PredefinedExprClass: 4473 case Expr::ShuffleVectorExprClass: 4474 case Expr::ConvertVectorExprClass: 4475 case Expr::StmtExprClass: 4476 case Expr::TypeTraitExprClass: 4477 case Expr::RequiresExprClass: 4478 case Expr::ArrayTypeTraitExprClass: 4479 case Expr::ExpressionTraitExprClass: 4480 case Expr::VAArgExprClass: 4481 case Expr::CUDAKernelCallExprClass: 4482 case Expr::AsTypeExprClass: 4483 case Expr::PseudoObjectExprClass: 4484 case Expr::AtomicExprClass: 4485 case Expr::SourceLocExprClass: 4486 case Expr::BuiltinBitCastExprClass: 4487 { 4488 NotPrimaryExpr(); 4489 if (!NullOut) { 4490 // As bad as this diagnostic is, it's better than crashing. 4491 DiagnosticsEngine &Diags = Context.getDiags(); 4492 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4493 "cannot yet mangle expression type %0"); 4494 Diags.Report(E->getExprLoc(), DiagID) 4495 << E->getStmtClassName() << E->getSourceRange(); 4496 return; 4497 } 4498 break; 4499 } 4500 4501 case Expr::CXXUuidofExprClass: { 4502 NotPrimaryExpr(); 4503 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 4504 // As of clang 12, uuidof uses the vendor extended expression 4505 // mangling. Previously, it used a special-cased nonstandard extension. 4506 if (Context.getASTContext().getLangOpts().getClangABICompat() > 4507 LangOptions::ClangABI::Ver11) { 4508 Out << "u8__uuidof"; 4509 if (UE->isTypeOperand()) 4510 mangleType(UE->getTypeOperand(Context.getASTContext())); 4511 else 4512 mangleTemplateArgExpr(UE->getExprOperand()); 4513 Out << 'E'; 4514 } else { 4515 if (UE->isTypeOperand()) { 4516 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 4517 Out << "u8__uuidoft"; 4518 mangleType(UuidT); 4519 } else { 4520 Expr *UuidExp = UE->getExprOperand(); 4521 Out << "u8__uuidofz"; 4522 mangleExpression(UuidExp); 4523 } 4524 } 4525 break; 4526 } 4527 4528 // Even gcc-4.5 doesn't mangle this. 4529 case Expr::BinaryConditionalOperatorClass: { 4530 NotPrimaryExpr(); 4531 DiagnosticsEngine &Diags = Context.getDiags(); 4532 unsigned DiagID = 4533 Diags.getCustomDiagID(DiagnosticsEngine::Error, 4534 "?: operator with omitted middle operand cannot be mangled"); 4535 Diags.Report(E->getExprLoc(), DiagID) 4536 << E->getStmtClassName() << E->getSourceRange(); 4537 return; 4538 } 4539 4540 // These are used for internal purposes and cannot be meaningfully mangled. 4541 case Expr::OpaqueValueExprClass: 4542 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 4543 4544 case Expr::InitListExprClass: { 4545 NotPrimaryExpr(); 4546 Out << "il"; 4547 mangleInitListElements(cast<InitListExpr>(E)); 4548 Out << "E"; 4549 break; 4550 } 4551 4552 case Expr::DesignatedInitExprClass: { 4553 NotPrimaryExpr(); 4554 auto *DIE = cast<DesignatedInitExpr>(E); 4555 for (const auto &Designator : DIE->designators()) { 4556 if (Designator.isFieldDesignator()) { 4557 Out << "di"; 4558 mangleSourceName(Designator.getFieldName()); 4559 } else if (Designator.isArrayDesignator()) { 4560 Out << "dx"; 4561 mangleExpression(DIE->getArrayIndex(Designator)); 4562 } else { 4563 assert(Designator.isArrayRangeDesignator() && 4564 "unknown designator kind"); 4565 Out << "dX"; 4566 mangleExpression(DIE->getArrayRangeStart(Designator)); 4567 mangleExpression(DIE->getArrayRangeEnd(Designator)); 4568 } 4569 } 4570 mangleExpression(DIE->getInit()); 4571 break; 4572 } 4573 4574 case Expr::CXXDefaultArgExprClass: 4575 E = cast<CXXDefaultArgExpr>(E)->getExpr(); 4576 goto recurse; 4577 4578 case Expr::CXXDefaultInitExprClass: 4579 E = cast<CXXDefaultInitExpr>(E)->getExpr(); 4580 goto recurse; 4581 4582 case Expr::CXXStdInitializerListExprClass: 4583 E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); 4584 goto recurse; 4585 4586 case Expr::SubstNonTypeTemplateParmExprClass: 4587 E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); 4588 goto recurse; 4589 4590 case Expr::UserDefinedLiteralClass: 4591 // We follow g++'s approach of mangling a UDL as a call to the literal 4592 // operator. 4593 case Expr::CXXMemberCallExprClass: // fallthrough 4594 case Expr::CallExprClass: { 4595 NotPrimaryExpr(); 4596 const CallExpr *CE = cast<CallExpr>(E); 4597 4598 // <expression> ::= cp <simple-id> <expression>* E 4599 // We use this mangling only when the call would use ADL except 4600 // for being parenthesized. Per discussion with David 4601 // Vandervoorde, 2011.04.25. 4602 if (isParenthesizedADLCallee(CE)) { 4603 Out << "cp"; 4604 // The callee here is a parenthesized UnresolvedLookupExpr with 4605 // no qualifier and should always get mangled as a <simple-id> 4606 // anyway. 4607 4608 // <expression> ::= cl <expression>* E 4609 } else { 4610 Out << "cl"; 4611 } 4612 4613 unsigned CallArity = CE->getNumArgs(); 4614 for (const Expr *Arg : CE->arguments()) 4615 if (isa<PackExpansionExpr>(Arg)) 4616 CallArity = UnknownArity; 4617 4618 mangleExpression(CE->getCallee(), CallArity); 4619 for (const Expr *Arg : CE->arguments()) 4620 mangleExpression(Arg); 4621 Out << 'E'; 4622 break; 4623 } 4624 4625 case Expr::CXXNewExprClass: { 4626 NotPrimaryExpr(); 4627 const CXXNewExpr *New = cast<CXXNewExpr>(E); 4628 if (New->isGlobalNew()) Out << "gs"; 4629 Out << (New->isArray() ? "na" : "nw"); 4630 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 4631 E = New->placement_arg_end(); I != E; ++I) 4632 mangleExpression(*I); 4633 Out << '_'; 4634 mangleType(New->getAllocatedType()); 4635 if (New->hasInitializer()) { 4636 if (New->getInitializationStyle() == CXXNewExpr::ListInit) 4637 Out << "il"; 4638 else 4639 Out << "pi"; 4640 const Expr *Init = New->getInitializer(); 4641 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 4642 // Directly inline the initializers. 4643 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 4644 E = CCE->arg_end(); 4645 I != E; ++I) 4646 mangleExpression(*I); 4647 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 4648 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 4649 mangleExpression(PLE->getExpr(i)); 4650 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && 4651 isa<InitListExpr>(Init)) { 4652 // Only take InitListExprs apart for list-initialization. 4653 mangleInitListElements(cast<InitListExpr>(Init)); 4654 } else 4655 mangleExpression(Init); 4656 } 4657 Out << 'E'; 4658 break; 4659 } 4660 4661 case Expr::CXXPseudoDestructorExprClass: { 4662 NotPrimaryExpr(); 4663 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 4664 if (const Expr *Base = PDE->getBase()) 4665 mangleMemberExprBase(Base, PDE->isArrow()); 4666 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 4667 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 4668 if (Qualifier) { 4669 mangleUnresolvedPrefix(Qualifier, 4670 /*recursive=*/true); 4671 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 4672 Out << 'E'; 4673 } else { 4674 Out << "sr"; 4675 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 4676 Out << 'E'; 4677 } 4678 } else if (Qualifier) { 4679 mangleUnresolvedPrefix(Qualifier); 4680 } 4681 // <base-unresolved-name> ::= dn <destructor-name> 4682 Out << "dn"; 4683 QualType DestroyedType = PDE->getDestroyedType(); 4684 mangleUnresolvedTypeOrSimpleId(DestroyedType); 4685 break; 4686 } 4687 4688 case Expr::MemberExprClass: { 4689 NotPrimaryExpr(); 4690 const MemberExpr *ME = cast<MemberExpr>(E); 4691 mangleMemberExpr(ME->getBase(), ME->isArrow(), 4692 ME->getQualifier(), nullptr, 4693 ME->getMemberDecl()->getDeclName(), 4694 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4695 Arity); 4696 break; 4697 } 4698 4699 case Expr::UnresolvedMemberExprClass: { 4700 NotPrimaryExpr(); 4701 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 4702 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 4703 ME->isArrow(), ME->getQualifier(), nullptr, 4704 ME->getMemberName(), 4705 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4706 Arity); 4707 break; 4708 } 4709 4710 case Expr::CXXDependentScopeMemberExprClass: { 4711 NotPrimaryExpr(); 4712 const CXXDependentScopeMemberExpr *ME 4713 = cast<CXXDependentScopeMemberExpr>(E); 4714 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 4715 ME->isArrow(), ME->getQualifier(), 4716 ME->getFirstQualifierFoundInScope(), 4717 ME->getMember(), 4718 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4719 Arity); 4720 break; 4721 } 4722 4723 case Expr::UnresolvedLookupExprClass: { 4724 NotPrimaryExpr(); 4725 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 4726 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 4727 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 4728 Arity); 4729 break; 4730 } 4731 4732 case Expr::CXXUnresolvedConstructExprClass: { 4733 NotPrimaryExpr(); 4734 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 4735 unsigned N = CE->getNumArgs(); 4736 4737 if (CE->isListInitialization()) { 4738 assert(N == 1 && "unexpected form for list initialization"); 4739 auto *IL = cast<InitListExpr>(CE->getArg(0)); 4740 Out << "tl"; 4741 mangleType(CE->getType()); 4742 mangleInitListElements(IL); 4743 Out << "E"; 4744 break; 4745 } 4746 4747 Out << "cv"; 4748 mangleType(CE->getType()); 4749 if (N != 1) Out << '_'; 4750 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 4751 if (N != 1) Out << 'E'; 4752 break; 4753 } 4754 4755 case Expr::CXXConstructExprClass: { 4756 // An implicit cast is silent, thus may contain <expr-primary>. 4757 const auto *CE = cast<CXXConstructExpr>(E); 4758 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 4759 assert( 4760 CE->getNumArgs() >= 1 && 4761 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 4762 "implicit CXXConstructExpr must have one argument"); 4763 E = cast<CXXConstructExpr>(E)->getArg(0); 4764 goto recurse; 4765 } 4766 NotPrimaryExpr(); 4767 Out << "il"; 4768 for (auto *E : CE->arguments()) 4769 mangleExpression(E); 4770 Out << "E"; 4771 break; 4772 } 4773 4774 case Expr::CXXTemporaryObjectExprClass: { 4775 NotPrimaryExpr(); 4776 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 4777 unsigned N = CE->getNumArgs(); 4778 bool List = CE->isListInitialization(); 4779 4780 if (List) 4781 Out << "tl"; 4782 else 4783 Out << "cv"; 4784 mangleType(CE->getType()); 4785 if (!List && N != 1) 4786 Out << '_'; 4787 if (CE->isStdInitListInitialization()) { 4788 // We implicitly created a std::initializer_list<T> for the first argument 4789 // of a constructor of type U in an expression of the form U{a, b, c}. 4790 // Strip all the semantic gunk off the initializer list. 4791 auto *SILE = 4792 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 4793 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 4794 mangleInitListElements(ILE); 4795 } else { 4796 for (auto *E : CE->arguments()) 4797 mangleExpression(E); 4798 } 4799 if (List || N != 1) 4800 Out << 'E'; 4801 break; 4802 } 4803 4804 case Expr::CXXScalarValueInitExprClass: 4805 NotPrimaryExpr(); 4806 Out << "cv"; 4807 mangleType(E->getType()); 4808 Out << "_E"; 4809 break; 4810 4811 case Expr::CXXNoexceptExprClass: 4812 NotPrimaryExpr(); 4813 Out << "nx"; 4814 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 4815 break; 4816 4817 case Expr::UnaryExprOrTypeTraitExprClass: { 4818 // Non-instantiation-dependent traits are an <expr-primary> integer literal. 4819 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 4820 4821 if (!SAE->isInstantiationDependent()) { 4822 // Itanium C++ ABI: 4823 // If the operand of a sizeof or alignof operator is not 4824 // instantiation-dependent it is encoded as an integer literal 4825 // reflecting the result of the operator. 4826 // 4827 // If the result of the operator is implicitly converted to a known 4828 // integer type, that type is used for the literal; otherwise, the type 4829 // of std::size_t or std::ptrdiff_t is used. 4830 QualType T = (ImplicitlyConvertedToType.isNull() || 4831 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 4832 : ImplicitlyConvertedToType; 4833 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 4834 mangleIntegerLiteral(T, V); 4835 break; 4836 } 4837 4838 NotPrimaryExpr(); // But otherwise, they are not. 4839 4840 auto MangleAlignofSizeofArg = [&] { 4841 if (SAE->isArgumentType()) { 4842 Out << 't'; 4843 mangleType(SAE->getArgumentType()); 4844 } else { 4845 Out << 'z'; 4846 mangleExpression(SAE->getArgumentExpr()); 4847 } 4848 }; 4849 4850 switch(SAE->getKind()) { 4851 case UETT_SizeOf: 4852 Out << 's'; 4853 MangleAlignofSizeofArg(); 4854 break; 4855 case UETT_PreferredAlignOf: 4856 // As of clang 12, we mangle __alignof__ differently than alignof. (They 4857 // have acted differently since Clang 8, but were previously mangled the 4858 // same.) 4859 if (Context.getASTContext().getLangOpts().getClangABICompat() > 4860 LangOptions::ClangABI::Ver11) { 4861 Out << "u11__alignof__"; 4862 if (SAE->isArgumentType()) 4863 mangleType(SAE->getArgumentType()); 4864 else 4865 mangleTemplateArgExpr(SAE->getArgumentExpr()); 4866 Out << 'E'; 4867 break; 4868 } 4869 [[fallthrough]]; 4870 case UETT_AlignOf: 4871 Out << 'a'; 4872 MangleAlignofSizeofArg(); 4873 break; 4874 case UETT_VecStep: { 4875 DiagnosticsEngine &Diags = Context.getDiags(); 4876 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4877 "cannot yet mangle vec_step expression"); 4878 Diags.Report(DiagID); 4879 return; 4880 } 4881 case UETT_OpenMPRequiredSimdAlign: { 4882 DiagnosticsEngine &Diags = Context.getDiags(); 4883 unsigned DiagID = Diags.getCustomDiagID( 4884 DiagnosticsEngine::Error, 4885 "cannot yet mangle __builtin_omp_required_simd_align expression"); 4886 Diags.Report(DiagID); 4887 return; 4888 } 4889 } 4890 break; 4891 } 4892 4893 case Expr::CXXThrowExprClass: { 4894 NotPrimaryExpr(); 4895 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 4896 // <expression> ::= tw <expression> # throw expression 4897 // ::= tr # rethrow 4898 if (TE->getSubExpr()) { 4899 Out << "tw"; 4900 mangleExpression(TE->getSubExpr()); 4901 } else { 4902 Out << "tr"; 4903 } 4904 break; 4905 } 4906 4907 case Expr::CXXTypeidExprClass: { 4908 NotPrimaryExpr(); 4909 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 4910 // <expression> ::= ti <type> # typeid (type) 4911 // ::= te <expression> # typeid (expression) 4912 if (TIE->isTypeOperand()) { 4913 Out << "ti"; 4914 mangleType(TIE->getTypeOperand(Context.getASTContext())); 4915 } else { 4916 Out << "te"; 4917 mangleExpression(TIE->getExprOperand()); 4918 } 4919 break; 4920 } 4921 4922 case Expr::CXXDeleteExprClass: { 4923 NotPrimaryExpr(); 4924 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 4925 // <expression> ::= [gs] dl <expression> # [::] delete expr 4926 // ::= [gs] da <expression> # [::] delete [] expr 4927 if (DE->isGlobalDelete()) Out << "gs"; 4928 Out << (DE->isArrayForm() ? "da" : "dl"); 4929 mangleExpression(DE->getArgument()); 4930 break; 4931 } 4932 4933 case Expr::UnaryOperatorClass: { 4934 NotPrimaryExpr(); 4935 const UnaryOperator *UO = cast<UnaryOperator>(E); 4936 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 4937 /*Arity=*/1); 4938 mangleExpression(UO->getSubExpr()); 4939 break; 4940 } 4941 4942 case Expr::ArraySubscriptExprClass: { 4943 NotPrimaryExpr(); 4944 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 4945 4946 // Array subscript is treated as a syntactically weird form of 4947 // binary operator. 4948 Out << "ix"; 4949 mangleExpression(AE->getLHS()); 4950 mangleExpression(AE->getRHS()); 4951 break; 4952 } 4953 4954 case Expr::MatrixSubscriptExprClass: { 4955 NotPrimaryExpr(); 4956 const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); 4957 Out << "ixix"; 4958 mangleExpression(ME->getBase()); 4959 mangleExpression(ME->getRowIdx()); 4960 mangleExpression(ME->getColumnIdx()); 4961 break; 4962 } 4963 4964 case Expr::CompoundAssignOperatorClass: // fallthrough 4965 case Expr::BinaryOperatorClass: { 4966 NotPrimaryExpr(); 4967 const BinaryOperator *BO = cast<BinaryOperator>(E); 4968 if (BO->getOpcode() == BO_PtrMemD) 4969 Out << "ds"; 4970 else 4971 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 4972 /*Arity=*/2); 4973 mangleExpression(BO->getLHS()); 4974 mangleExpression(BO->getRHS()); 4975 break; 4976 } 4977 4978 case Expr::CXXRewrittenBinaryOperatorClass: { 4979 NotPrimaryExpr(); 4980 // The mangled form represents the original syntax. 4981 CXXRewrittenBinaryOperator::DecomposedForm Decomposed = 4982 cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); 4983 mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode), 4984 /*Arity=*/2); 4985 mangleExpression(Decomposed.LHS); 4986 mangleExpression(Decomposed.RHS); 4987 break; 4988 } 4989 4990 case Expr::ConditionalOperatorClass: { 4991 NotPrimaryExpr(); 4992 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 4993 mangleOperatorName(OO_Conditional, /*Arity=*/3); 4994 mangleExpression(CO->getCond()); 4995 mangleExpression(CO->getLHS(), Arity); 4996 mangleExpression(CO->getRHS(), Arity); 4997 break; 4998 } 4999 5000 case Expr::ImplicitCastExprClass: { 5001 ImplicitlyConvertedToType = E->getType(); 5002 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 5003 goto recurse; 5004 } 5005 5006 case Expr::ObjCBridgedCastExprClass: { 5007 NotPrimaryExpr(); 5008 // Mangle ownership casts as a vendor extended operator __bridge, 5009 // __bridge_transfer, or __bridge_retain. 5010 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 5011 Out << "v1U" << Kind.size() << Kind; 5012 mangleCastExpression(E, "cv"); 5013 break; 5014 } 5015 5016 case Expr::CStyleCastExprClass: 5017 NotPrimaryExpr(); 5018 mangleCastExpression(E, "cv"); 5019 break; 5020 5021 case Expr::CXXFunctionalCastExprClass: { 5022 NotPrimaryExpr(); 5023 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 5024 // FIXME: Add isImplicit to CXXConstructExpr. 5025 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 5026 if (CCE->getParenOrBraceRange().isInvalid()) 5027 Sub = CCE->getArg(0)->IgnoreImplicit(); 5028 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 5029 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 5030 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 5031 Out << "tl"; 5032 mangleType(E->getType()); 5033 mangleInitListElements(IL); 5034 Out << "E"; 5035 } else { 5036 mangleCastExpression(E, "cv"); 5037 } 5038 break; 5039 } 5040 5041 case Expr::CXXStaticCastExprClass: 5042 NotPrimaryExpr(); 5043 mangleCastExpression(E, "sc"); 5044 break; 5045 case Expr::CXXDynamicCastExprClass: 5046 NotPrimaryExpr(); 5047 mangleCastExpression(E, "dc"); 5048 break; 5049 case Expr::CXXReinterpretCastExprClass: 5050 NotPrimaryExpr(); 5051 mangleCastExpression(E, "rc"); 5052 break; 5053 case Expr::CXXConstCastExprClass: 5054 NotPrimaryExpr(); 5055 mangleCastExpression(E, "cc"); 5056 break; 5057 case Expr::CXXAddrspaceCastExprClass: 5058 NotPrimaryExpr(); 5059 mangleCastExpression(E, "ac"); 5060 break; 5061 5062 case Expr::CXXOperatorCallExprClass: { 5063 NotPrimaryExpr(); 5064 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 5065 unsigned NumArgs = CE->getNumArgs(); 5066 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 5067 // (the enclosing MemberExpr covers the syntactic portion). 5068 if (CE->getOperator() != OO_Arrow) 5069 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 5070 // Mangle the arguments. 5071 for (unsigned i = 0; i != NumArgs; ++i) 5072 mangleExpression(CE->getArg(i)); 5073 break; 5074 } 5075 5076 case Expr::ParenExprClass: 5077 E = cast<ParenExpr>(E)->getSubExpr(); 5078 goto recurse; 5079 5080 case Expr::ConceptSpecializationExprClass: { 5081 // <expr-primary> ::= L <mangled-name> E # external name 5082 Out << "L_Z"; 5083 auto *CSE = cast<ConceptSpecializationExpr>(E); 5084 mangleTemplateName(CSE->getNamedConcept(), CSE->getTemplateArguments()); 5085 Out << 'E'; 5086 break; 5087 } 5088 5089 case Expr::DeclRefExprClass: 5090 // MangleDeclRefExpr helper handles primary-vs-nonprimary 5091 MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); 5092 break; 5093 5094 case Expr::SubstNonTypeTemplateParmPackExprClass: 5095 NotPrimaryExpr(); 5096 // FIXME: not clear how to mangle this! 5097 // template <unsigned N...> class A { 5098 // template <class U...> void foo(U (&x)[N]...); 5099 // }; 5100 Out << "_SUBSTPACK_"; 5101 break; 5102 5103 case Expr::FunctionParmPackExprClass: { 5104 NotPrimaryExpr(); 5105 // FIXME: not clear how to mangle this! 5106 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 5107 Out << "v110_SUBSTPACK"; 5108 MangleDeclRefExpr(FPPE->getParameterPack()); 5109 break; 5110 } 5111 5112 case Expr::DependentScopeDeclRefExprClass: { 5113 NotPrimaryExpr(); 5114 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 5115 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 5116 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 5117 Arity); 5118 break; 5119 } 5120 5121 case Expr::CXXBindTemporaryExprClass: 5122 E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); 5123 goto recurse; 5124 5125 case Expr::ExprWithCleanupsClass: 5126 E = cast<ExprWithCleanups>(E)->getSubExpr(); 5127 goto recurse; 5128 5129 case Expr::FloatingLiteralClass: { 5130 // <expr-primary> 5131 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 5132 mangleFloatLiteral(FL->getType(), FL->getValue()); 5133 break; 5134 } 5135 5136 case Expr::FixedPointLiteralClass: 5137 // Currently unimplemented -- might be <expr-primary> in future? 5138 mangleFixedPointLiteral(); 5139 break; 5140 5141 case Expr::CharacterLiteralClass: 5142 // <expr-primary> 5143 Out << 'L'; 5144 mangleType(E->getType()); 5145 Out << cast<CharacterLiteral>(E)->getValue(); 5146 Out << 'E'; 5147 break; 5148 5149 // FIXME. __objc_yes/__objc_no are mangled same as true/false 5150 case Expr::ObjCBoolLiteralExprClass: 5151 // <expr-primary> 5152 Out << "Lb"; 5153 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 5154 Out << 'E'; 5155 break; 5156 5157 case Expr::CXXBoolLiteralExprClass: 5158 // <expr-primary> 5159 Out << "Lb"; 5160 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 5161 Out << 'E'; 5162 break; 5163 5164 case Expr::IntegerLiteralClass: { 5165 // <expr-primary> 5166 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 5167 if (E->getType()->isSignedIntegerType()) 5168 Value.setIsSigned(true); 5169 mangleIntegerLiteral(E->getType(), Value); 5170 break; 5171 } 5172 5173 case Expr::ImaginaryLiteralClass: { 5174 // <expr-primary> 5175 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 5176 // Mangle as if a complex literal. 5177 // Proposal from David Vandevoorde, 2010.06.30. 5178 Out << 'L'; 5179 mangleType(E->getType()); 5180 if (const FloatingLiteral *Imag = 5181 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 5182 // Mangle a floating-point zero of the appropriate type. 5183 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 5184 Out << '_'; 5185 mangleFloat(Imag->getValue()); 5186 } else { 5187 Out << "0_"; 5188 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 5189 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 5190 Value.setIsSigned(true); 5191 mangleNumber(Value); 5192 } 5193 Out << 'E'; 5194 break; 5195 } 5196 5197 case Expr::StringLiteralClass: { 5198 // <expr-primary> 5199 // Revised proposal from David Vandervoorde, 2010.07.15. 5200 Out << 'L'; 5201 assert(isa<ConstantArrayType>(E->getType())); 5202 mangleType(E->getType()); 5203 Out << 'E'; 5204 break; 5205 } 5206 5207 case Expr::GNUNullExprClass: 5208 // <expr-primary> 5209 // Mangle as if an integer literal 0. 5210 mangleIntegerLiteral(E->getType(), llvm::APSInt(32)); 5211 break; 5212 5213 case Expr::CXXNullPtrLiteralExprClass: { 5214 // <expr-primary> 5215 Out << "LDnE"; 5216 break; 5217 } 5218 5219 case Expr::LambdaExprClass: { 5220 // A lambda-expression can't appear in the signature of an 5221 // externally-visible declaration, so there's no standard mangling for 5222 // this, but mangling as a literal of the closure type seems reasonable. 5223 Out << "L"; 5224 mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass())); 5225 Out << "E"; 5226 break; 5227 } 5228 5229 case Expr::PackExpansionExprClass: 5230 NotPrimaryExpr(); 5231 Out << "sp"; 5232 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 5233 break; 5234 5235 case Expr::SizeOfPackExprClass: { 5236 NotPrimaryExpr(); 5237 auto *SPE = cast<SizeOfPackExpr>(E); 5238 if (SPE->isPartiallySubstituted()) { 5239 Out << "sP"; 5240 for (const auto &A : SPE->getPartialArguments()) 5241 mangleTemplateArg(A, false); 5242 Out << "E"; 5243 break; 5244 } 5245 5246 Out << "sZ"; 5247 const NamedDecl *Pack = SPE->getPack(); 5248 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 5249 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 5250 else if (const NonTypeTemplateParmDecl *NTTP 5251 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 5252 mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex()); 5253 else if (const TemplateTemplateParmDecl *TempTP 5254 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 5255 mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex()); 5256 else 5257 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 5258 break; 5259 } 5260 5261 case Expr::MaterializeTemporaryExprClass: 5262 E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); 5263 goto recurse; 5264 5265 case Expr::CXXFoldExprClass: { 5266 NotPrimaryExpr(); 5267 auto *FE = cast<CXXFoldExpr>(E); 5268 if (FE->isLeftFold()) 5269 Out << (FE->getInit() ? "fL" : "fl"); 5270 else 5271 Out << (FE->getInit() ? "fR" : "fr"); 5272 5273 if (FE->getOperator() == BO_PtrMemD) 5274 Out << "ds"; 5275 else 5276 mangleOperatorName( 5277 BinaryOperator::getOverloadedOperator(FE->getOperator()), 5278 /*Arity=*/2); 5279 5280 if (FE->getLHS()) 5281 mangleExpression(FE->getLHS()); 5282 if (FE->getRHS()) 5283 mangleExpression(FE->getRHS()); 5284 break; 5285 } 5286 5287 case Expr::CXXThisExprClass: 5288 NotPrimaryExpr(); 5289 Out << "fpT"; 5290 break; 5291 5292 case Expr::CoawaitExprClass: 5293 // FIXME: Propose a non-vendor mangling. 5294 NotPrimaryExpr(); 5295 Out << "v18co_await"; 5296 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5297 break; 5298 5299 case Expr::DependentCoawaitExprClass: 5300 // FIXME: Propose a non-vendor mangling. 5301 NotPrimaryExpr(); 5302 Out << "v18co_await"; 5303 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 5304 break; 5305 5306 case Expr::CoyieldExprClass: 5307 // FIXME: Propose a non-vendor mangling. 5308 NotPrimaryExpr(); 5309 Out << "v18co_yield"; 5310 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5311 break; 5312 case Expr::SYCLUniqueStableNameExprClass: { 5313 const auto *USN = cast<SYCLUniqueStableNameExpr>(E); 5314 NotPrimaryExpr(); 5315 5316 Out << "u33__builtin_sycl_unique_stable_name"; 5317 mangleType(USN->getTypeSourceInfo()->getType()); 5318 5319 Out << "E"; 5320 break; 5321 } 5322 } 5323 5324 if (AsTemplateArg && !IsPrimaryExpr) 5325 Out << 'E'; 5326 } 5327 5328 /// Mangle an expression which refers to a parameter variable. 5329 /// 5330 /// <expression> ::= <function-param> 5331 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 5332 /// <function-param> ::= fp <top-level CV-qualifiers> 5333 /// <parameter-2 non-negative number> _ # L == 0, I > 0 5334 /// <function-param> ::= fL <L-1 non-negative number> 5335 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 5336 /// <function-param> ::= fL <L-1 non-negative number> 5337 /// p <top-level CV-qualifiers> 5338 /// <I-1 non-negative number> _ # L > 0, I > 0 5339 /// 5340 /// L is the nesting depth of the parameter, defined as 1 if the 5341 /// parameter comes from the innermost function prototype scope 5342 /// enclosing the current context, 2 if from the next enclosing 5343 /// function prototype scope, and so on, with one special case: if 5344 /// we've processed the full parameter clause for the innermost 5345 /// function type, then L is one less. This definition conveniently 5346 /// makes it irrelevant whether a function's result type was written 5347 /// trailing or leading, but is otherwise overly complicated; the 5348 /// numbering was first designed without considering references to 5349 /// parameter in locations other than return types, and then the 5350 /// mangling had to be generalized without changing the existing 5351 /// manglings. 5352 /// 5353 /// I is the zero-based index of the parameter within its parameter 5354 /// declaration clause. Note that the original ABI document describes 5355 /// this using 1-based ordinals. 5356 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 5357 unsigned parmDepth = parm->getFunctionScopeDepth(); 5358 unsigned parmIndex = parm->getFunctionScopeIndex(); 5359 5360 // Compute 'L'. 5361 // parmDepth does not include the declaring function prototype. 5362 // FunctionTypeDepth does account for that. 5363 assert(parmDepth < FunctionTypeDepth.getDepth()); 5364 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 5365 if (FunctionTypeDepth.isInResultType()) 5366 nestingDepth--; 5367 5368 if (nestingDepth == 0) { 5369 Out << "fp"; 5370 } else { 5371 Out << "fL" << (nestingDepth - 1) << 'p'; 5372 } 5373 5374 // Top-level qualifiers. We don't have to worry about arrays here, 5375 // because parameters declared as arrays should already have been 5376 // transformed to have pointer type. FIXME: apparently these don't 5377 // get mangled if used as an rvalue of a known non-class type? 5378 assert(!parm->getType()->isArrayType() 5379 && "parameter's type is still an array type?"); 5380 5381 if (const DependentAddressSpaceType *DAST = 5382 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 5383 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 5384 } else { 5385 mangleQualifiers(parm->getType().getQualifiers()); 5386 } 5387 5388 // Parameter index. 5389 if (parmIndex != 0) { 5390 Out << (parmIndex - 1); 5391 } 5392 Out << '_'; 5393 } 5394 5395 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 5396 const CXXRecordDecl *InheritedFrom) { 5397 // <ctor-dtor-name> ::= C1 # complete object constructor 5398 // ::= C2 # base object constructor 5399 // ::= CI1 <type> # complete inheriting constructor 5400 // ::= CI2 <type> # base inheriting constructor 5401 // 5402 // In addition, C5 is a comdat name with C1 and C2 in it. 5403 Out << 'C'; 5404 if (InheritedFrom) 5405 Out << 'I'; 5406 switch (T) { 5407 case Ctor_Complete: 5408 Out << '1'; 5409 break; 5410 case Ctor_Base: 5411 Out << '2'; 5412 break; 5413 case Ctor_Comdat: 5414 Out << '5'; 5415 break; 5416 case Ctor_DefaultClosure: 5417 case Ctor_CopyingClosure: 5418 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 5419 } 5420 if (InheritedFrom) 5421 mangleName(InheritedFrom); 5422 } 5423 5424 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 5425 // <ctor-dtor-name> ::= D0 # deleting destructor 5426 // ::= D1 # complete object destructor 5427 // ::= D2 # base object destructor 5428 // 5429 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 5430 switch (T) { 5431 case Dtor_Deleting: 5432 Out << "D0"; 5433 break; 5434 case Dtor_Complete: 5435 Out << "D1"; 5436 break; 5437 case Dtor_Base: 5438 Out << "D2"; 5439 break; 5440 case Dtor_Comdat: 5441 Out << "D5"; 5442 break; 5443 } 5444 } 5445 5446 namespace { 5447 // Helper to provide ancillary information on a template used to mangle its 5448 // arguments. 5449 struct TemplateArgManglingInfo { 5450 TemplateDecl *ResolvedTemplate = nullptr; 5451 bool SeenPackExpansionIntoNonPack = false; 5452 const NamedDecl *UnresolvedExpandedPack = nullptr; 5453 5454 TemplateArgManglingInfo(TemplateName TN) { 5455 if (TemplateDecl *TD = TN.getAsTemplateDecl()) 5456 ResolvedTemplate = TD; 5457 } 5458 5459 /// Do we need to mangle template arguments with exactly correct types? 5460 /// 5461 /// This should be called exactly once for each parameter / argument pair, in 5462 /// order. 5463 bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) { 5464 // We need correct types when the template-name is unresolved or when it 5465 // names a template that is able to be overloaded. 5466 if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) 5467 return true; 5468 5469 // Move to the next parameter. 5470 const NamedDecl *Param = UnresolvedExpandedPack; 5471 if (!Param) { 5472 assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && 5473 "no parameter for argument"); 5474 Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx); 5475 5476 // If we reach an expanded parameter pack whose argument isn't in pack 5477 // form, that means Sema couldn't figure out which arguments belonged to 5478 // it, because it contains a pack expansion. Track the expanded pack for 5479 // all further template arguments until we hit that pack expansion. 5480 if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { 5481 assert(getExpandedPackSize(Param) && 5482 "failed to form pack argument for parameter pack"); 5483 UnresolvedExpandedPack = Param; 5484 } 5485 } 5486 5487 // If we encounter a pack argument that is expanded into a non-pack 5488 // parameter, we can no longer track parameter / argument correspondence, 5489 // and need to use exact types from this point onwards. 5490 if (Arg.isPackExpansion() && 5491 (!Param->isParameterPack() || UnresolvedExpandedPack)) { 5492 SeenPackExpansionIntoNonPack = true; 5493 return true; 5494 } 5495 5496 // We need exact types for function template arguments because they might be 5497 // overloaded on template parameter type. As a special case, a member 5498 // function template of a generic lambda is not overloadable. 5499 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) { 5500 auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); 5501 if (!RD || !RD->isGenericLambda()) 5502 return true; 5503 } 5504 5505 // Otherwise, we only need a correct type if the parameter has a deduced 5506 // type. 5507 // 5508 // Note: for an expanded parameter pack, getType() returns the type prior 5509 // to expansion. We could ask for the expanded type with getExpansionType(), 5510 // but it doesn't matter because substitution and expansion don't affect 5511 // whether a deduced type appears in the type. 5512 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param); 5513 return NTTP && NTTP->getType()->getContainedDeducedType(); 5514 } 5515 }; 5516 } 5517 5518 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5519 const TemplateArgumentLoc *TemplateArgs, 5520 unsigned NumTemplateArgs) { 5521 // <template-args> ::= I <template-arg>+ E 5522 Out << 'I'; 5523 TemplateArgManglingInfo Info(TN); 5524 for (unsigned i = 0; i != NumTemplateArgs; ++i) 5525 mangleTemplateArg(TemplateArgs[i].getArgument(), 5526 Info.needExactType(i, TemplateArgs[i].getArgument())); 5527 Out << 'E'; 5528 } 5529 5530 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5531 const TemplateArgumentList &AL) { 5532 // <template-args> ::= I <template-arg>+ E 5533 Out << 'I'; 5534 TemplateArgManglingInfo Info(TN); 5535 for (unsigned i = 0, e = AL.size(); i != e; ++i) 5536 mangleTemplateArg(AL[i], Info.needExactType(i, AL[i])); 5537 Out << 'E'; 5538 } 5539 5540 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5541 ArrayRef<TemplateArgument> Args) { 5542 // <template-args> ::= I <template-arg>+ E 5543 Out << 'I'; 5544 TemplateArgManglingInfo Info(TN); 5545 for (unsigned i = 0; i != Args.size(); ++i) 5546 mangleTemplateArg(Args[i], Info.needExactType(i, Args[i])); 5547 Out << 'E'; 5548 } 5549 5550 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { 5551 // <template-arg> ::= <type> # type or template 5552 // ::= X <expression> E # expression 5553 // ::= <expr-primary> # simple expressions 5554 // ::= J <template-arg>* E # argument pack 5555 if (!A.isInstantiationDependent() || A.isDependent()) 5556 A = Context.getASTContext().getCanonicalTemplateArgument(A); 5557 5558 switch (A.getKind()) { 5559 case TemplateArgument::Null: 5560 llvm_unreachable("Cannot mangle NULL template argument"); 5561 5562 case TemplateArgument::Type: 5563 mangleType(A.getAsType()); 5564 break; 5565 case TemplateArgument::Template: 5566 // This is mangled as <type>. 5567 mangleType(A.getAsTemplate()); 5568 break; 5569 case TemplateArgument::TemplateExpansion: 5570 // <type> ::= Dp <type> # pack expansion (C++0x) 5571 Out << "Dp"; 5572 mangleType(A.getAsTemplateOrTemplatePattern()); 5573 break; 5574 case TemplateArgument::Expression: 5575 mangleTemplateArgExpr(A.getAsExpr()); 5576 break; 5577 case TemplateArgument::Integral: 5578 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 5579 break; 5580 case TemplateArgument::Declaration: { 5581 // <expr-primary> ::= L <mangled-name> E # external name 5582 ValueDecl *D = A.getAsDecl(); 5583 5584 // Template parameter objects are modeled by reproducing a source form 5585 // produced as if by aggregate initialization. 5586 if (A.getParamTypeForDecl()->isRecordType()) { 5587 auto *TPO = cast<TemplateParamObjectDecl>(D); 5588 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 5589 TPO->getValue(), /*TopLevel=*/true, 5590 NeedExactType); 5591 break; 5592 } 5593 5594 ASTContext &Ctx = Context.getASTContext(); 5595 APValue Value; 5596 if (D->isCXXInstanceMember()) 5597 // Simple pointer-to-member with no conversion. 5598 Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); 5599 else if (D->getType()->isArrayType() && 5600 Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()), 5601 A.getParamTypeForDecl()) && 5602 Ctx.getLangOpts().getClangABICompat() > 5603 LangOptions::ClangABI::Ver11) 5604 // Build a value corresponding to this implicit array-to-pointer decay. 5605 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 5606 {APValue::LValuePathEntry::ArrayIndex(0)}, 5607 /*OnePastTheEnd=*/false); 5608 else 5609 // Regular pointer or reference to a declaration. 5610 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 5611 ArrayRef<APValue::LValuePathEntry>(), 5612 /*OnePastTheEnd=*/false); 5613 mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true, 5614 NeedExactType); 5615 break; 5616 } 5617 case TemplateArgument::NullPtr: { 5618 mangleNullPointer(A.getNullPtrType()); 5619 break; 5620 } 5621 case TemplateArgument::Pack: { 5622 // <template-arg> ::= J <template-arg>* E 5623 Out << 'J'; 5624 for (const auto &P : A.pack_elements()) 5625 mangleTemplateArg(P, NeedExactType); 5626 Out << 'E'; 5627 } 5628 } 5629 } 5630 5631 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { 5632 ASTContext &Ctx = Context.getASTContext(); 5633 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) { 5634 mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true); 5635 return; 5636 } 5637 5638 // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> 5639 // correctly in cases where the template argument was 5640 // constructed from an expression rather than an already-evaluated 5641 // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of 5642 // 'Li0E'. 5643 // 5644 // We did special-case DeclRefExpr to attempt to DTRT for that one 5645 // expression-kind, but while doing so, unfortunately handled ParmVarDecl 5646 // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of 5647 // the proper 'Xfp_E'. 5648 E = E->IgnoreParenImpCasts(); 5649 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 5650 const ValueDecl *D = DRE->getDecl(); 5651 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 5652 Out << 'L'; 5653 mangle(D); 5654 Out << 'E'; 5655 return; 5656 } 5657 } 5658 Out << 'X'; 5659 mangleExpression(E); 5660 Out << 'E'; 5661 } 5662 5663 /// Determine whether a given value is equivalent to zero-initialization for 5664 /// the purpose of discarding a trailing portion of a 'tl' mangling. 5665 /// 5666 /// Note that this is not in general equivalent to determining whether the 5667 /// value has an all-zeroes bit pattern. 5668 static bool isZeroInitialized(QualType T, const APValue &V) { 5669 // FIXME: mangleValueInTemplateArg has quadratic time complexity in 5670 // pathological cases due to using this, but it's a little awkward 5671 // to do this in linear time in general. 5672 switch (V.getKind()) { 5673 case APValue::None: 5674 case APValue::Indeterminate: 5675 case APValue::AddrLabelDiff: 5676 return false; 5677 5678 case APValue::Struct: { 5679 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5680 assert(RD && "unexpected type for record value"); 5681 unsigned I = 0; 5682 for (const CXXBaseSpecifier &BS : RD->bases()) { 5683 if (!isZeroInitialized(BS.getType(), V.getStructBase(I))) 5684 return false; 5685 ++I; 5686 } 5687 I = 0; 5688 for (const FieldDecl *FD : RD->fields()) { 5689 if (!FD->isUnnamedBitfield() && 5690 !isZeroInitialized(FD->getType(), V.getStructField(I))) 5691 return false; 5692 ++I; 5693 } 5694 return true; 5695 } 5696 5697 case APValue::Union: { 5698 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5699 assert(RD && "unexpected type for union value"); 5700 // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. 5701 for (const FieldDecl *FD : RD->fields()) { 5702 if (!FD->isUnnamedBitfield()) 5703 return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && 5704 isZeroInitialized(FD->getType(), V.getUnionValue()); 5705 } 5706 // If there are no fields (other than unnamed bitfields), the value is 5707 // necessarily zero-initialized. 5708 return true; 5709 } 5710 5711 case APValue::Array: { 5712 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 5713 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) 5714 if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I))) 5715 return false; 5716 return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller()); 5717 } 5718 5719 case APValue::Vector: { 5720 const VectorType *VT = T->castAs<VectorType>(); 5721 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) 5722 if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I))) 5723 return false; 5724 return true; 5725 } 5726 5727 case APValue::Int: 5728 return !V.getInt(); 5729 5730 case APValue::Float: 5731 return V.getFloat().isPosZero(); 5732 5733 case APValue::FixedPoint: 5734 return !V.getFixedPoint().getValue(); 5735 5736 case APValue::ComplexFloat: 5737 return V.getComplexFloatReal().isPosZero() && 5738 V.getComplexFloatImag().isPosZero(); 5739 5740 case APValue::ComplexInt: 5741 return !V.getComplexIntReal() && !V.getComplexIntImag(); 5742 5743 case APValue::LValue: 5744 return V.isNullPointer(); 5745 5746 case APValue::MemberPointer: 5747 return !V.getMemberPointerDecl(); 5748 } 5749 5750 llvm_unreachable("Unhandled APValue::ValueKind enum"); 5751 } 5752 5753 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { 5754 QualType T = LV.getLValueBase().getType(); 5755 for (APValue::LValuePathEntry E : LV.getLValuePath()) { 5756 if (const ArrayType *AT = Ctx.getAsArrayType(T)) 5757 T = AT->getElementType(); 5758 else if (const FieldDecl *FD = 5759 dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer())) 5760 T = FD->getType(); 5761 else 5762 T = Ctx.getRecordType( 5763 cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer())); 5764 } 5765 return T; 5766 } 5767 5768 static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc, 5769 DiagnosticsEngine &Diags, 5770 const FieldDecl *FD) { 5771 // According to: 5772 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous 5773 // For the purposes of mangling, the name of an anonymous union is considered 5774 // to be the name of the first named data member found by a pre-order, 5775 // depth-first, declaration-order walk of the data members of the anonymous 5776 // union. 5777 5778 if (FD->getIdentifier()) 5779 return FD->getIdentifier(); 5780 5781 // The only cases where the identifer of a FieldDecl would be blank is if the 5782 // field represents an anonymous record type or if it is an unnamed bitfield. 5783 // There is no type to descend into in the case of a bitfield, so we can just 5784 // return nullptr in that case. 5785 if (FD->isBitField()) 5786 return nullptr; 5787 const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); 5788 5789 // Consider only the fields in declaration order, searched depth-first. We 5790 // don't care about the active member of the union, as all we are doing is 5791 // looking for a valid name. We also don't check bases, due to guidance from 5792 // the Itanium ABI folks. 5793 for (const FieldDecl *RDField : RD->fields()) { 5794 if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField)) 5795 return II; 5796 } 5797 5798 // According to the Itanium ABI: If there is no such data member (i.e., if all 5799 // of the data members in the union are unnamed), then there is no way for a 5800 // program to refer to the anonymous union, and there is therefore no need to 5801 // mangle its name. However, we should diagnose this anyway. 5802 unsigned DiagID = Diags.getCustomDiagID( 5803 DiagnosticsEngine::Error, "cannot mangle this unnamed union NTTP yet"); 5804 Diags.Report(UnionLoc, DiagID); 5805 5806 return nullptr; 5807 } 5808 5809 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, 5810 bool TopLevel, 5811 bool NeedExactType) { 5812 // Ignore all top-level cv-qualifiers, to match GCC. 5813 Qualifiers Quals; 5814 T = getASTContext().getUnqualifiedArrayType(T, Quals); 5815 5816 // A top-level expression that's not a primary expression is wrapped in X...E. 5817 bool IsPrimaryExpr = true; 5818 auto NotPrimaryExpr = [&] { 5819 if (TopLevel && IsPrimaryExpr) 5820 Out << 'X'; 5821 IsPrimaryExpr = false; 5822 }; 5823 5824 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 5825 switch (V.getKind()) { 5826 case APValue::None: 5827 case APValue::Indeterminate: 5828 Out << 'L'; 5829 mangleType(T); 5830 Out << 'E'; 5831 break; 5832 5833 case APValue::AddrLabelDiff: 5834 llvm_unreachable("unexpected value kind in template argument"); 5835 5836 case APValue::Struct: { 5837 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5838 assert(RD && "unexpected type for record value"); 5839 5840 // Drop trailing zero-initialized elements. 5841 llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields()); 5842 while ( 5843 !Fields.empty() && 5844 (Fields.back()->isUnnamedBitfield() || 5845 isZeroInitialized(Fields.back()->getType(), 5846 V.getStructField(Fields.back()->getFieldIndex())))) { 5847 Fields.pop_back(); 5848 } 5849 llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); 5850 if (Fields.empty()) { 5851 while (!Bases.empty() && 5852 isZeroInitialized(Bases.back().getType(), 5853 V.getStructBase(Bases.size() - 1))) 5854 Bases = Bases.drop_back(); 5855 } 5856 5857 // <expression> ::= tl <type> <braced-expression>* E 5858 NotPrimaryExpr(); 5859 Out << "tl"; 5860 mangleType(T); 5861 for (unsigned I = 0, N = Bases.size(); I != N; ++I) 5862 mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false); 5863 for (unsigned I = 0, N = Fields.size(); I != N; ++I) { 5864 if (Fields[I]->isUnnamedBitfield()) 5865 continue; 5866 mangleValueInTemplateArg(Fields[I]->getType(), 5867 V.getStructField(Fields[I]->getFieldIndex()), 5868 false); 5869 } 5870 Out << 'E'; 5871 break; 5872 } 5873 5874 case APValue::Union: { 5875 assert(T->getAsCXXRecordDecl() && "unexpected type for union value"); 5876 const FieldDecl *FD = V.getUnionField(); 5877 5878 if (!FD) { 5879 Out << 'L'; 5880 mangleType(T); 5881 Out << 'E'; 5882 break; 5883 } 5884 5885 // <braced-expression> ::= di <field source-name> <braced-expression> 5886 NotPrimaryExpr(); 5887 Out << "tl"; 5888 mangleType(T); 5889 if (!isZeroInitialized(T, V)) { 5890 Out << "di"; 5891 IdentifierInfo *II = (getUnionInitName( 5892 T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD)); 5893 if (II) 5894 mangleSourceName(II); 5895 mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false); 5896 } 5897 Out << 'E'; 5898 break; 5899 } 5900 5901 case APValue::Array: { 5902 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 5903 5904 NotPrimaryExpr(); 5905 Out << "tl"; 5906 mangleType(T); 5907 5908 // Drop trailing zero-initialized elements. 5909 unsigned N = V.getArraySize(); 5910 if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) { 5911 N = V.getArrayInitializedElts(); 5912 while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1))) 5913 --N; 5914 } 5915 5916 for (unsigned I = 0; I != N; ++I) { 5917 const APValue &Elem = I < V.getArrayInitializedElts() 5918 ? V.getArrayInitializedElt(I) 5919 : V.getArrayFiller(); 5920 mangleValueInTemplateArg(ElemT, Elem, false); 5921 } 5922 Out << 'E'; 5923 break; 5924 } 5925 5926 case APValue::Vector: { 5927 const VectorType *VT = T->castAs<VectorType>(); 5928 5929 NotPrimaryExpr(); 5930 Out << "tl"; 5931 mangleType(T); 5932 unsigned N = V.getVectorLength(); 5933 while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1))) 5934 --N; 5935 for (unsigned I = 0; I != N; ++I) 5936 mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false); 5937 Out << 'E'; 5938 break; 5939 } 5940 5941 case APValue::Int: 5942 mangleIntegerLiteral(T, V.getInt()); 5943 break; 5944 5945 case APValue::Float: 5946 mangleFloatLiteral(T, V.getFloat()); 5947 break; 5948 5949 case APValue::FixedPoint: 5950 mangleFixedPointLiteral(); 5951 break; 5952 5953 case APValue::ComplexFloat: { 5954 const ComplexType *CT = T->castAs<ComplexType>(); 5955 NotPrimaryExpr(); 5956 Out << "tl"; 5957 mangleType(T); 5958 if (!V.getComplexFloatReal().isPosZero() || 5959 !V.getComplexFloatImag().isPosZero()) 5960 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal()); 5961 if (!V.getComplexFloatImag().isPosZero()) 5962 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag()); 5963 Out << 'E'; 5964 break; 5965 } 5966 5967 case APValue::ComplexInt: { 5968 const ComplexType *CT = T->castAs<ComplexType>(); 5969 NotPrimaryExpr(); 5970 Out << "tl"; 5971 mangleType(T); 5972 if (V.getComplexIntReal().getBoolValue() || 5973 V.getComplexIntImag().getBoolValue()) 5974 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal()); 5975 if (V.getComplexIntImag().getBoolValue()) 5976 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag()); 5977 Out << 'E'; 5978 break; 5979 } 5980 5981 case APValue::LValue: { 5982 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 5983 assert((T->isPointerType() || T->isReferenceType()) && 5984 "unexpected type for LValue template arg"); 5985 5986 if (V.isNullPointer()) { 5987 mangleNullPointer(T); 5988 break; 5989 } 5990 5991 APValue::LValueBase B = V.getLValueBase(); 5992 if (!B) { 5993 // Non-standard mangling for integer cast to a pointer; this can only 5994 // occur as an extension. 5995 CharUnits Offset = V.getLValueOffset(); 5996 if (Offset.isZero()) { 5997 // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as 5998 // a cast, because L <type> 0 E means something else. 5999 NotPrimaryExpr(); 6000 Out << "rc"; 6001 mangleType(T); 6002 Out << "Li0E"; 6003 if (TopLevel) 6004 Out << 'E'; 6005 } else { 6006 Out << "L"; 6007 mangleType(T); 6008 Out << Offset.getQuantity() << 'E'; 6009 } 6010 break; 6011 } 6012 6013 ASTContext &Ctx = Context.getASTContext(); 6014 6015 enum { Base, Offset, Path } Kind; 6016 if (!V.hasLValuePath()) { 6017 // Mangle as (T*)((char*)&base + N). 6018 if (T->isReferenceType()) { 6019 NotPrimaryExpr(); 6020 Out << "decvP"; 6021 mangleType(T->getPointeeType()); 6022 } else { 6023 NotPrimaryExpr(); 6024 Out << "cv"; 6025 mangleType(T); 6026 } 6027 Out << "plcvPcad"; 6028 Kind = Offset; 6029 } else { 6030 if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) { 6031 NotPrimaryExpr(); 6032 // A final conversion to the template parameter's type is usually 6033 // folded into the 'so' mangling, but we can't do that for 'void*' 6034 // parameters without introducing collisions. 6035 if (NeedExactType && T->isVoidPointerType()) { 6036 Out << "cv"; 6037 mangleType(T); 6038 } 6039 if (T->isPointerType()) 6040 Out << "ad"; 6041 Out << "so"; 6042 mangleType(T->isVoidPointerType() 6043 ? getLValueType(Ctx, V).getUnqualifiedType() 6044 : T->getPointeeType()); 6045 Kind = Path; 6046 } else { 6047 if (NeedExactType && 6048 !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) && 6049 Ctx.getLangOpts().getClangABICompat() > 6050 LangOptions::ClangABI::Ver11) { 6051 NotPrimaryExpr(); 6052 Out << "cv"; 6053 mangleType(T); 6054 } 6055 if (T->isPointerType()) { 6056 NotPrimaryExpr(); 6057 Out << "ad"; 6058 } 6059 Kind = Base; 6060 } 6061 } 6062 6063 QualType TypeSoFar = B.getType(); 6064 if (auto *VD = B.dyn_cast<const ValueDecl*>()) { 6065 Out << 'L'; 6066 mangle(VD); 6067 Out << 'E'; 6068 } else if (auto *E = B.dyn_cast<const Expr*>()) { 6069 NotPrimaryExpr(); 6070 mangleExpression(E); 6071 } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { 6072 NotPrimaryExpr(); 6073 Out << "ti"; 6074 mangleType(QualType(TI.getType(), 0)); 6075 } else { 6076 // We should never see dynamic allocations here. 6077 llvm_unreachable("unexpected lvalue base kind in template argument"); 6078 } 6079 6080 switch (Kind) { 6081 case Base: 6082 break; 6083 6084 case Offset: 6085 Out << 'L'; 6086 mangleType(Ctx.getPointerDiffType()); 6087 mangleNumber(V.getLValueOffset().getQuantity()); 6088 Out << 'E'; 6089 break; 6090 6091 case Path: 6092 // <expression> ::= so <referent type> <expr> [<offset number>] 6093 // <union-selector>* [p] E 6094 if (!V.getLValueOffset().isZero()) 6095 mangleNumber(V.getLValueOffset().getQuantity()); 6096 6097 // We model a past-the-end array pointer as array indexing with index N, 6098 // not with the "past the end" flag. Compensate for that. 6099 bool OnePastTheEnd = V.isLValueOnePastTheEnd(); 6100 6101 for (APValue::LValuePathEntry E : V.getLValuePath()) { 6102 if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { 6103 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 6104 OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); 6105 TypeSoFar = AT->getElementType(); 6106 } else { 6107 const Decl *D = E.getAsBaseOrMember().getPointer(); 6108 if (auto *FD = dyn_cast<FieldDecl>(D)) { 6109 // <union-selector> ::= _ <number> 6110 if (FD->getParent()->isUnion()) { 6111 Out << '_'; 6112 if (FD->getFieldIndex()) 6113 Out << (FD->getFieldIndex() - 1); 6114 } 6115 TypeSoFar = FD->getType(); 6116 } else { 6117 TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D)); 6118 } 6119 } 6120 } 6121 6122 if (OnePastTheEnd) 6123 Out << 'p'; 6124 Out << 'E'; 6125 break; 6126 } 6127 6128 break; 6129 } 6130 6131 case APValue::MemberPointer: 6132 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 6133 if (!V.getMemberPointerDecl()) { 6134 mangleNullPointer(T); 6135 break; 6136 } 6137 6138 ASTContext &Ctx = Context.getASTContext(); 6139 6140 NotPrimaryExpr(); 6141 if (!V.getMemberPointerPath().empty()) { 6142 Out << "mc"; 6143 mangleType(T); 6144 } else if (NeedExactType && 6145 !Ctx.hasSameType( 6146 T->castAs<MemberPointerType>()->getPointeeType(), 6147 V.getMemberPointerDecl()->getType()) && 6148 Ctx.getLangOpts().getClangABICompat() > 6149 LangOptions::ClangABI::Ver11) { 6150 Out << "cv"; 6151 mangleType(T); 6152 } 6153 Out << "adL"; 6154 mangle(V.getMemberPointerDecl()); 6155 Out << 'E'; 6156 if (!V.getMemberPointerPath().empty()) { 6157 CharUnits Offset = 6158 Context.getASTContext().getMemberPointerPathAdjustment(V); 6159 if (!Offset.isZero()) 6160 mangleNumber(Offset.getQuantity()); 6161 Out << 'E'; 6162 } 6163 break; 6164 } 6165 6166 if (TopLevel && !IsPrimaryExpr) 6167 Out << 'E'; 6168 } 6169 6170 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { 6171 // <template-param> ::= T_ # first template parameter 6172 // ::= T <parameter-2 non-negative number> _ 6173 // ::= TL <L-1 non-negative number> __ 6174 // ::= TL <L-1 non-negative number> _ 6175 // <parameter-2 non-negative number> _ 6176 // 6177 // The latter two manglings are from a proposal here: 6178 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 6179 Out << 'T'; 6180 if (Depth != 0) 6181 Out << 'L' << (Depth - 1) << '_'; 6182 if (Index != 0) 6183 Out << (Index - 1); 6184 Out << '_'; 6185 } 6186 6187 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 6188 if (SeqID == 0) { 6189 // Nothing. 6190 } else if (SeqID == 1) { 6191 Out << '0'; 6192 } else { 6193 SeqID--; 6194 6195 // <seq-id> is encoded in base-36, using digits and upper case letters. 6196 char Buffer[7]; // log(2**32) / log(36) ~= 7 6197 MutableArrayRef<char> BufferRef(Buffer); 6198 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 6199 6200 for (; SeqID != 0; SeqID /= 36) { 6201 unsigned C = SeqID % 36; 6202 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 6203 } 6204 6205 Out.write(I.base(), I - BufferRef.rbegin()); 6206 } 6207 Out << '_'; 6208 } 6209 6210 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 6211 bool result = mangleSubstitution(tname); 6212 assert(result && "no existing substitution for template name"); 6213 (void) result; 6214 } 6215 6216 // <substitution> ::= S <seq-id> _ 6217 // ::= S_ 6218 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 6219 // Try one of the standard substitutions first. 6220 if (mangleStandardSubstitution(ND)) 6221 return true; 6222 6223 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 6224 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 6225 } 6226 6227 bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) { 6228 assert(NNS->getKind() == NestedNameSpecifier::Identifier && 6229 "mangleSubstitution(NestedNameSpecifier *) is only used for " 6230 "identifier nested name specifiers."); 6231 NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); 6232 return mangleSubstitution(reinterpret_cast<uintptr_t>(NNS)); 6233 } 6234 6235 /// Determine whether the given type has any qualifiers that are relevant for 6236 /// substitutions. 6237 static bool hasMangledSubstitutionQualifiers(QualType T) { 6238 Qualifiers Qs = T.getQualifiers(); 6239 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 6240 } 6241 6242 bool CXXNameMangler::mangleSubstitution(QualType T) { 6243 if (!hasMangledSubstitutionQualifiers(T)) { 6244 if (const RecordType *RT = T->getAs<RecordType>()) 6245 return mangleSubstitution(RT->getDecl()); 6246 } 6247 6248 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 6249 6250 return mangleSubstitution(TypePtr); 6251 } 6252 6253 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 6254 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 6255 return mangleSubstitution(TD); 6256 6257 Template = Context.getASTContext().getCanonicalTemplateName(Template); 6258 return mangleSubstitution( 6259 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 6260 } 6261 6262 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 6263 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 6264 if (I == Substitutions.end()) 6265 return false; 6266 6267 unsigned SeqID = I->second; 6268 Out << 'S'; 6269 mangleSeqID(SeqID); 6270 6271 return true; 6272 } 6273 6274 /// Returns whether S is a template specialization of std::Name with a single 6275 /// argument of type A. 6276 bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, 6277 QualType A) { 6278 if (S.isNull()) 6279 return false; 6280 6281 const RecordType *RT = S->getAs<RecordType>(); 6282 if (!RT) 6283 return false; 6284 6285 const ClassTemplateSpecializationDecl *SD = 6286 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 6287 if (!SD || !SD->getIdentifier()->isStr(Name)) 6288 return false; 6289 6290 if (!isStdNamespace(Context.getEffectiveDeclContext(SD))) 6291 return false; 6292 6293 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6294 if (TemplateArgs.size() != 1) 6295 return false; 6296 6297 if (TemplateArgs[0].getAsType() != A) 6298 return false; 6299 6300 if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) 6301 return false; 6302 6303 return true; 6304 } 6305 6306 /// Returns whether SD is a template specialization std::Name<char, 6307 /// std::char_traits<char> [, std::allocator<char>]> 6308 /// HasAllocator controls whether the 3rd template argument is needed. 6309 bool CXXNameMangler::isStdCharSpecialization( 6310 const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, 6311 bool HasAllocator) { 6312 if (!SD->getIdentifier()->isStr(Name)) 6313 return false; 6314 6315 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6316 if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) 6317 return false; 6318 6319 QualType A = TemplateArgs[0].getAsType(); 6320 if (A.isNull()) 6321 return false; 6322 // Plain 'char' is named Char_S or Char_U depending on the target ABI. 6323 if (!A->isSpecificBuiltinType(BuiltinType::Char_S) && 6324 !A->isSpecificBuiltinType(BuiltinType::Char_U)) 6325 return false; 6326 6327 if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A)) 6328 return false; 6329 6330 if (HasAllocator && 6331 !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A)) 6332 return false; 6333 6334 if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) 6335 return false; 6336 6337 return true; 6338 } 6339 6340 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 6341 // <substitution> ::= St # ::std:: 6342 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 6343 if (isStd(NS)) { 6344 Out << "St"; 6345 return true; 6346 } 6347 return false; 6348 } 6349 6350 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 6351 if (!isStdNamespace(Context.getEffectiveDeclContext(TD))) 6352 return false; 6353 6354 if (TD->getOwningModuleForLinkage()) 6355 return false; 6356 6357 // <substitution> ::= Sa # ::std::allocator 6358 if (TD->getIdentifier()->isStr("allocator")) { 6359 Out << "Sa"; 6360 return true; 6361 } 6362 6363 // <<substitution> ::= Sb # ::std::basic_string 6364 if (TD->getIdentifier()->isStr("basic_string")) { 6365 Out << "Sb"; 6366 return true; 6367 } 6368 return false; 6369 } 6370 6371 if (const ClassTemplateSpecializationDecl *SD = 6372 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 6373 if (!isStdNamespace(Context.getEffectiveDeclContext(SD))) 6374 return false; 6375 6376 if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) 6377 return false; 6378 6379 // <substitution> ::= Ss # ::std::basic_string<char, 6380 // ::std::char_traits<char>, 6381 // ::std::allocator<char> > 6382 if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) { 6383 Out << "Ss"; 6384 return true; 6385 } 6386 6387 // <substitution> ::= Si # ::std::basic_istream<char, 6388 // ::std::char_traits<char> > 6389 if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) { 6390 Out << "Si"; 6391 return true; 6392 } 6393 6394 // <substitution> ::= So # ::std::basic_ostream<char, 6395 // ::std::char_traits<char> > 6396 if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) { 6397 Out << "So"; 6398 return true; 6399 } 6400 6401 // <substitution> ::= Sd # ::std::basic_iostream<char, 6402 // ::std::char_traits<char> > 6403 if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) { 6404 Out << "Sd"; 6405 return true; 6406 } 6407 return false; 6408 } 6409 6410 return false; 6411 } 6412 6413 void CXXNameMangler::addSubstitution(QualType T) { 6414 if (!hasMangledSubstitutionQualifiers(T)) { 6415 if (const RecordType *RT = T->getAs<RecordType>()) { 6416 addSubstitution(RT->getDecl()); 6417 return; 6418 } 6419 } 6420 6421 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 6422 addSubstitution(TypePtr); 6423 } 6424 6425 void CXXNameMangler::addSubstitution(TemplateName Template) { 6426 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 6427 return addSubstitution(TD); 6428 6429 Template = Context.getASTContext().getCanonicalTemplateName(Template); 6430 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 6431 } 6432 6433 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 6434 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 6435 Substitutions[Ptr] = SeqID++; 6436 } 6437 6438 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 6439 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 6440 if (Other->SeqID > SeqID) { 6441 Substitutions.swap(Other->Substitutions); 6442 SeqID = Other->SeqID; 6443 } 6444 } 6445 6446 CXXNameMangler::AbiTagList 6447 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 6448 // When derived abi tags are disabled there is no need to make any list. 6449 if (DisableDerivedAbiTags) 6450 return AbiTagList(); 6451 6452 llvm::raw_null_ostream NullOutStream; 6453 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 6454 TrackReturnTypeTags.disableDerivedAbiTags(); 6455 6456 const FunctionProtoType *Proto = 6457 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 6458 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 6459 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 6460 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 6461 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 6462 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 6463 6464 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6465 } 6466 6467 CXXNameMangler::AbiTagList 6468 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 6469 // When derived abi tags are disabled there is no need to make any list. 6470 if (DisableDerivedAbiTags) 6471 return AbiTagList(); 6472 6473 llvm::raw_null_ostream NullOutStream; 6474 CXXNameMangler TrackVariableType(*this, NullOutStream); 6475 TrackVariableType.disableDerivedAbiTags(); 6476 6477 TrackVariableType.mangleType(VD->getType()); 6478 6479 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6480 } 6481 6482 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 6483 const VarDecl *VD) { 6484 llvm::raw_null_ostream NullOutStream; 6485 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 6486 TrackAbiTags.mangle(VD); 6487 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 6488 } 6489 6490 // 6491 6492 /// Mangles the name of the declaration D and emits that name to the given 6493 /// output stream. 6494 /// 6495 /// If the declaration D requires a mangled name, this routine will emit that 6496 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 6497 /// and this routine will return false. In this case, the caller should just 6498 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 6499 /// name. 6500 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, 6501 raw_ostream &Out) { 6502 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 6503 assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && 6504 "Invalid mangleName() call, argument is not a variable or function!"); 6505 6506 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 6507 getASTContext().getSourceManager(), 6508 "Mangling declaration"); 6509 6510 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 6511 auto Type = GD.getCtorType(); 6512 CXXNameMangler Mangler(*this, Out, CD, Type); 6513 return Mangler.mangle(GlobalDecl(CD, Type)); 6514 } 6515 6516 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 6517 auto Type = GD.getDtorType(); 6518 CXXNameMangler Mangler(*this, Out, DD, Type); 6519 return Mangler.mangle(GlobalDecl(DD, Type)); 6520 } 6521 6522 CXXNameMangler Mangler(*this, Out, D); 6523 Mangler.mangle(GD); 6524 } 6525 6526 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 6527 raw_ostream &Out) { 6528 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 6529 Mangler.mangle(GlobalDecl(D, Ctor_Comdat)); 6530 } 6531 6532 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 6533 raw_ostream &Out) { 6534 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 6535 Mangler.mangle(GlobalDecl(D, Dtor_Comdat)); 6536 } 6537 6538 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 6539 const ThunkInfo &Thunk, 6540 raw_ostream &Out) { 6541 // <special-name> ::= T <call-offset> <base encoding> 6542 // # base is the nominal target function of thunk 6543 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 6544 // # base is the nominal target function of thunk 6545 // # first call-offset is 'this' adjustment 6546 // # second call-offset is result adjustment 6547 6548 assert(!isa<CXXDestructorDecl>(MD) && 6549 "Use mangleCXXDtor for destructor decls!"); 6550 CXXNameMangler Mangler(*this, Out); 6551 Mangler.getStream() << "_ZT"; 6552 if (!Thunk.Return.isEmpty()) 6553 Mangler.getStream() << 'c'; 6554 6555 // Mangle the 'this' pointer adjustment. 6556 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 6557 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 6558 6559 // Mangle the return pointer adjustment if there is one. 6560 if (!Thunk.Return.isEmpty()) 6561 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 6562 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 6563 6564 Mangler.mangleFunctionEncoding(MD); 6565 } 6566 6567 void ItaniumMangleContextImpl::mangleCXXDtorThunk( 6568 const CXXDestructorDecl *DD, CXXDtorType Type, 6569 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { 6570 // <special-name> ::= T <call-offset> <base encoding> 6571 // # base is the nominal target function of thunk 6572 CXXNameMangler Mangler(*this, Out, DD, Type); 6573 Mangler.getStream() << "_ZT"; 6574 6575 // Mangle the 'this' pointer adjustment. 6576 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 6577 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 6578 6579 Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type)); 6580 } 6581 6582 /// Returns the mangled name for a guard variable for the passed in VarDecl. 6583 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 6584 raw_ostream &Out) { 6585 // <special-name> ::= GV <object name> # Guard variable for one-time 6586 // # initialization 6587 CXXNameMangler Mangler(*this, Out); 6588 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 6589 // be a bug that is fixed in trunk. 6590 Mangler.getStream() << "_ZGV"; 6591 Mangler.mangleName(D); 6592 } 6593 6594 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 6595 raw_ostream &Out) { 6596 // These symbols are internal in the Itanium ABI, so the names don't matter. 6597 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 6598 // avoid duplicate symbols. 6599 Out << "__cxx_global_var_init"; 6600 } 6601 6602 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 6603 raw_ostream &Out) { 6604 // Prefix the mangling of D with __dtor_. 6605 CXXNameMangler Mangler(*this, Out); 6606 Mangler.getStream() << "__dtor_"; 6607 if (shouldMangleDeclName(D)) 6608 Mangler.mangle(D); 6609 else 6610 Mangler.getStream() << D->getName(); 6611 } 6612 6613 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, 6614 raw_ostream &Out) { 6615 // Clang generates these internal-linkage functions as part of its 6616 // implementation of the XL ABI. 6617 CXXNameMangler Mangler(*this, Out); 6618 Mangler.getStream() << "__finalize_"; 6619 if (shouldMangleDeclName(D)) 6620 Mangler.mangle(D); 6621 else 6622 Mangler.getStream() << D->getName(); 6623 } 6624 6625 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 6626 GlobalDecl EnclosingDecl, raw_ostream &Out) { 6627 CXXNameMangler Mangler(*this, Out); 6628 Mangler.getStream() << "__filt_"; 6629 auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl()); 6630 if (shouldMangleDeclName(EnclosingFD)) 6631 Mangler.mangle(EnclosingDecl); 6632 else 6633 Mangler.getStream() << EnclosingFD->getName(); 6634 } 6635 6636 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 6637 GlobalDecl EnclosingDecl, raw_ostream &Out) { 6638 CXXNameMangler Mangler(*this, Out); 6639 Mangler.getStream() << "__fin_"; 6640 auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl()); 6641 if (shouldMangleDeclName(EnclosingFD)) 6642 Mangler.mangle(EnclosingDecl); 6643 else 6644 Mangler.getStream() << EnclosingFD->getName(); 6645 } 6646 6647 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 6648 raw_ostream &Out) { 6649 // <special-name> ::= TH <object name> 6650 CXXNameMangler Mangler(*this, Out); 6651 Mangler.getStream() << "_ZTH"; 6652 Mangler.mangleName(D); 6653 } 6654 6655 void 6656 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 6657 raw_ostream &Out) { 6658 // <special-name> ::= TW <object name> 6659 CXXNameMangler Mangler(*this, Out); 6660 Mangler.getStream() << "_ZTW"; 6661 Mangler.mangleName(D); 6662 } 6663 6664 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 6665 unsigned ManglingNumber, 6666 raw_ostream &Out) { 6667 // We match the GCC mangling here. 6668 // <special-name> ::= GR <object name> 6669 CXXNameMangler Mangler(*this, Out); 6670 Mangler.getStream() << "_ZGR"; 6671 Mangler.mangleName(D); 6672 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 6673 Mangler.mangleSeqID(ManglingNumber - 1); 6674 } 6675 6676 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 6677 raw_ostream &Out) { 6678 // <special-name> ::= TV <type> # virtual table 6679 CXXNameMangler Mangler(*this, Out); 6680 Mangler.getStream() << "_ZTV"; 6681 Mangler.mangleNameOrStandardSubstitution(RD); 6682 } 6683 6684 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 6685 raw_ostream &Out) { 6686 // <special-name> ::= TT <type> # VTT structure 6687 CXXNameMangler Mangler(*this, Out); 6688 Mangler.getStream() << "_ZTT"; 6689 Mangler.mangleNameOrStandardSubstitution(RD); 6690 } 6691 6692 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 6693 int64_t Offset, 6694 const CXXRecordDecl *Type, 6695 raw_ostream &Out) { 6696 // <special-name> ::= TC <type> <offset number> _ <base type> 6697 CXXNameMangler Mangler(*this, Out); 6698 Mangler.getStream() << "_ZTC"; 6699 Mangler.mangleNameOrStandardSubstitution(RD); 6700 Mangler.getStream() << Offset; 6701 Mangler.getStream() << '_'; 6702 Mangler.mangleNameOrStandardSubstitution(Type); 6703 } 6704 6705 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 6706 // <special-name> ::= TI <type> # typeinfo structure 6707 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 6708 CXXNameMangler Mangler(*this, Out); 6709 Mangler.getStream() << "_ZTI"; 6710 Mangler.mangleType(Ty); 6711 } 6712 6713 void ItaniumMangleContextImpl::mangleCXXRTTIName( 6714 QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { 6715 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 6716 CXXNameMangler Mangler(*this, Out, NormalizeIntegers); 6717 Mangler.getStream() << "_ZTS"; 6718 Mangler.mangleType(Ty); 6719 } 6720 6721 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out, 6722 bool NormalizeIntegers = false) { 6723 mangleCXXRTTIName(Ty, Out, NormalizeIntegers); 6724 } 6725 6726 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 6727 llvm_unreachable("Can't mangle string literals"); 6728 } 6729 6730 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, 6731 raw_ostream &Out) { 6732 CXXNameMangler Mangler(*this, Out); 6733 Mangler.mangleLambdaSig(Lambda); 6734 } 6735 6736 void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M, 6737 raw_ostream &Out) { 6738 // <special-name> ::= GI <module-name> # module initializer function 6739 CXXNameMangler Mangler(*this, Out); 6740 Mangler.getStream() << "_ZGI"; 6741 Mangler.mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName()); 6742 if (M->isModulePartition()) { 6743 // The partition needs including, as partitions can have them too. 6744 auto Partition = M->Name.find(':'); 6745 Mangler.mangleModuleNamePrefix( 6746 StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1), 6747 /*IsPartition*/ true); 6748 } 6749 } 6750 6751 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, 6752 DiagnosticsEngine &Diags, 6753 bool IsAux) { 6754 return new ItaniumMangleContextImpl( 6755 Context, Diags, 6756 [](ASTContext &, const NamedDecl *) -> std::optional<unsigned> { 6757 return std::nullopt; 6758 }, 6759 IsAux); 6760 } 6761 6762 ItaniumMangleContext * 6763 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, 6764 DiscriminatorOverrideTy DiscriminatorOverride, 6765 bool IsAux) { 6766 return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride, 6767 IsAux); 6768 } 6769