1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implements C++ name mangling according to the Itanium C++ ABI, 10 // which is used in GCC 3.2 and newer (and many compilers that are 11 // ABI-compatible with GCC): 12 // 13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclOpenMP.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprConcepts.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/Module.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/Thunk.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace clang; 40 41 namespace { 42 43 /// Retrieve the declaration context that should be used when mangling the given 44 /// declaration. 45 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 46 // The ABI assumes that lambda closure types that occur within 47 // default arguments live in the context of the function. However, due to 48 // the way in which Clang parses and creates function declarations, this is 49 // not the case: the lambda closure type ends up living in the context 50 // where the function itself resides, because the function declaration itself 51 // had not yet been created. Fix the context here. 52 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 53 if (RD->isLambda()) 54 if (ParmVarDecl *ContextParam 55 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 56 return ContextParam->getDeclContext(); 57 } 58 59 // Perform the same check for block literals. 60 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 61 if (ParmVarDecl *ContextParam 62 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 63 return ContextParam->getDeclContext(); 64 } 65 66 const DeclContext *DC = D->getDeclContext(); 67 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 68 isa<OMPDeclareMapperDecl>(DC)) { 69 return getEffectiveDeclContext(cast<Decl>(DC)); 70 } 71 72 if (const auto *VD = dyn_cast<VarDecl>(D)) 73 if (VD->isExternC()) 74 return VD->getASTContext().getTranslationUnitDecl(); 75 76 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 77 if (FD->isExternC()) 78 return FD->getASTContext().getTranslationUnitDecl(); 79 80 return DC->getRedeclContext(); 81 } 82 83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 84 return getEffectiveDeclContext(cast<Decl>(DC)); 85 } 86 87 static bool isLocalContainerContext(const DeclContext *DC) { 88 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 89 } 90 91 static const RecordDecl *GetLocalClassDecl(const Decl *D) { 92 const DeclContext *DC = getEffectiveDeclContext(D); 93 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 94 if (isLocalContainerContext(DC)) 95 return dyn_cast<RecordDecl>(D); 96 D = cast<Decl>(DC); 97 DC = getEffectiveDeclContext(D); 98 } 99 return nullptr; 100 } 101 102 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 103 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 104 return ftd->getTemplatedDecl(); 105 106 return fn; 107 } 108 109 static const NamedDecl *getStructor(const NamedDecl *decl) { 110 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 111 return (fn ? getStructor(fn) : decl); 112 } 113 114 static bool isLambda(const NamedDecl *ND) { 115 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 116 if (!Record) 117 return false; 118 119 return Record->isLambda(); 120 } 121 122 static const unsigned UnknownArity = ~0U; 123 124 class ItaniumMangleContextImpl : public ItaniumMangleContext { 125 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 126 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 127 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 128 const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; 129 130 bool NeedsUniqueInternalLinkageNames = false; 131 132 public: 133 explicit ItaniumMangleContextImpl( 134 ASTContext &Context, DiagnosticsEngine &Diags, 135 DiscriminatorOverrideTy DiscriminatorOverride) 136 : ItaniumMangleContext(Context, Diags), 137 DiscriminatorOverride(DiscriminatorOverride) {} 138 139 /// @name Mangler Entry Points 140 /// @{ 141 142 bool shouldMangleCXXName(const NamedDecl *D) override; 143 bool shouldMangleStringLiteral(const StringLiteral *) override { 144 return false; 145 } 146 147 bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; 148 void needsUniqueInternalLinkageNames() override { 149 NeedsUniqueInternalLinkageNames = true; 150 } 151 152 void mangleCXXName(GlobalDecl GD, raw_ostream &) override; 153 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 154 raw_ostream &) override; 155 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 156 const ThisAdjustment &ThisAdjustment, 157 raw_ostream &) override; 158 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 159 raw_ostream &) override; 160 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 161 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 162 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 163 const CXXRecordDecl *Type, raw_ostream &) override; 164 void mangleCXXRTTI(QualType T, raw_ostream &) override; 165 void mangleCXXRTTIName(QualType T, raw_ostream &) override; 166 void mangleTypeName(QualType T, raw_ostream &) override; 167 168 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 169 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 170 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 171 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 172 void mangleDynamicAtExitDestructor(const VarDecl *D, 173 raw_ostream &Out) override; 174 void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; 175 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 176 raw_ostream &Out) override; 177 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 178 raw_ostream &Out) override; 179 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 180 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 181 raw_ostream &) override; 182 183 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 184 185 void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; 186 187 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 188 // Lambda closure types are already numbered. 189 if (isLambda(ND)) 190 return false; 191 192 // Anonymous tags are already numbered. 193 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 194 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 195 return false; 196 } 197 198 // Use the canonical number for externally visible decls. 199 if (ND->isExternallyVisible()) { 200 unsigned discriminator = getASTContext().getManglingNumber(ND); 201 if (discriminator == 1) 202 return false; 203 disc = discriminator - 2; 204 return true; 205 } 206 207 // Make up a reasonable number for internal decls. 208 unsigned &discriminator = Uniquifier[ND]; 209 if (!discriminator) { 210 const DeclContext *DC = getEffectiveDeclContext(ND); 211 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 212 } 213 if (discriminator == 1) 214 return false; 215 disc = discriminator-2; 216 return true; 217 } 218 219 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 220 // This function matches the one in MicrosoftMangle, which returns 221 // the string that is used in lambda mangled names. 222 assert(Lambda->isLambda() && "RD must be a lambda!"); 223 std::string Name("<lambda"); 224 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 225 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 226 unsigned LambdaId; 227 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 228 const FunctionDecl *Func = 229 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 230 231 if (Func) { 232 unsigned DefaultArgNo = 233 Func->getNumParams() - Parm->getFunctionScopeIndex(); 234 Name += llvm::utostr(DefaultArgNo); 235 Name += "_"; 236 } 237 238 if (LambdaManglingNumber) 239 LambdaId = LambdaManglingNumber; 240 else 241 LambdaId = getAnonymousStructIdForDebugInfo(Lambda); 242 243 Name += llvm::utostr(LambdaId); 244 Name += '>'; 245 return Name; 246 } 247 248 DiscriminatorOverrideTy getDiscriminatorOverride() const override { 249 return DiscriminatorOverride; 250 } 251 252 /// @} 253 }; 254 255 /// Manage the mangling of a single name. 256 class CXXNameMangler { 257 ItaniumMangleContextImpl &Context; 258 raw_ostream &Out; 259 bool NullOut = false; 260 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 261 /// This mode is used when mangler creates another mangler recursively to 262 /// calculate ABI tags for the function return value or the variable type. 263 /// Also it is required to avoid infinite recursion in some cases. 264 bool DisableDerivedAbiTags = false; 265 266 /// The "structor" is the top-level declaration being mangled, if 267 /// that's not a template specialization; otherwise it's the pattern 268 /// for that specialization. 269 const NamedDecl *Structor; 270 unsigned StructorType; 271 272 /// The next substitution sequence number. 273 unsigned SeqID; 274 275 class FunctionTypeDepthState { 276 unsigned Bits; 277 278 enum { InResultTypeMask = 1 }; 279 280 public: 281 FunctionTypeDepthState() : Bits(0) {} 282 283 /// The number of function types we're inside. 284 unsigned getDepth() const { 285 return Bits >> 1; 286 } 287 288 /// True if we're in the return type of the innermost function type. 289 bool isInResultType() const { 290 return Bits & InResultTypeMask; 291 } 292 293 FunctionTypeDepthState push() { 294 FunctionTypeDepthState tmp = *this; 295 Bits = (Bits & ~InResultTypeMask) + 2; 296 return tmp; 297 } 298 299 void enterResultType() { 300 Bits |= InResultTypeMask; 301 } 302 303 void leaveResultType() { 304 Bits &= ~InResultTypeMask; 305 } 306 307 void pop(FunctionTypeDepthState saved) { 308 assert(getDepth() == saved.getDepth() + 1); 309 Bits = saved.Bits; 310 } 311 312 } FunctionTypeDepth; 313 314 // abi_tag is a gcc attribute, taking one or more strings called "tags". 315 // The goal is to annotate against which version of a library an object was 316 // built and to be able to provide backwards compatibility ("dual abi"). 317 // For more information see docs/ItaniumMangleAbiTags.rst. 318 typedef SmallVector<StringRef, 4> AbiTagList; 319 320 // State to gather all implicit and explicit tags used in a mangled name. 321 // Must always have an instance of this while emitting any name to keep 322 // track. 323 class AbiTagState final { 324 public: 325 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 326 Parent = LinkHead; 327 LinkHead = this; 328 } 329 330 // No copy, no move. 331 AbiTagState(const AbiTagState &) = delete; 332 AbiTagState &operator=(const AbiTagState &) = delete; 333 334 ~AbiTagState() { pop(); } 335 336 void write(raw_ostream &Out, const NamedDecl *ND, 337 const AbiTagList *AdditionalAbiTags) { 338 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 339 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 340 assert( 341 !AdditionalAbiTags && 342 "only function and variables need a list of additional abi tags"); 343 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 344 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 345 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 346 AbiTag->tags().end()); 347 } 348 // Don't emit abi tags for namespaces. 349 return; 350 } 351 } 352 353 AbiTagList TagList; 354 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 355 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 356 AbiTag->tags().end()); 357 TagList.insert(TagList.end(), AbiTag->tags().begin(), 358 AbiTag->tags().end()); 359 } 360 361 if (AdditionalAbiTags) { 362 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 363 AdditionalAbiTags->end()); 364 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 365 AdditionalAbiTags->end()); 366 } 367 368 llvm::sort(TagList); 369 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 370 371 writeSortedUniqueAbiTags(Out, TagList); 372 } 373 374 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 375 void setUsedAbiTags(const AbiTagList &AbiTags) { 376 UsedAbiTags = AbiTags; 377 } 378 379 const AbiTagList &getEmittedAbiTags() const { 380 return EmittedAbiTags; 381 } 382 383 const AbiTagList &getSortedUniqueUsedAbiTags() { 384 llvm::sort(UsedAbiTags); 385 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 386 UsedAbiTags.end()); 387 return UsedAbiTags; 388 } 389 390 private: 391 //! All abi tags used implicitly or explicitly. 392 AbiTagList UsedAbiTags; 393 //! All explicit abi tags (i.e. not from namespace). 394 AbiTagList EmittedAbiTags; 395 396 AbiTagState *&LinkHead; 397 AbiTagState *Parent = nullptr; 398 399 void pop() { 400 assert(LinkHead == this && 401 "abi tag link head must point to us on destruction"); 402 if (Parent) { 403 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 404 UsedAbiTags.begin(), UsedAbiTags.end()); 405 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 406 EmittedAbiTags.begin(), 407 EmittedAbiTags.end()); 408 } 409 LinkHead = Parent; 410 } 411 412 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 413 for (const auto &Tag : AbiTags) { 414 EmittedAbiTags.push_back(Tag); 415 Out << "B"; 416 Out << Tag.size(); 417 Out << Tag; 418 } 419 } 420 }; 421 422 AbiTagState *AbiTags = nullptr; 423 AbiTagState AbiTagsRoot; 424 425 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 426 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 427 428 ASTContext &getASTContext() const { return Context.getASTContext(); } 429 430 public: 431 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 432 const NamedDecl *D = nullptr, bool NullOut_ = false) 433 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 434 StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { 435 // These can't be mangled without a ctor type or dtor type. 436 assert(!D || (!isa<CXXDestructorDecl>(D) && 437 !isa<CXXConstructorDecl>(D))); 438 } 439 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 440 const CXXConstructorDecl *D, CXXCtorType Type) 441 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 442 SeqID(0), AbiTagsRoot(AbiTags) { } 443 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 444 const CXXDestructorDecl *D, CXXDtorType Type) 445 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 446 SeqID(0), AbiTagsRoot(AbiTags) { } 447 448 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 449 : Context(Outer.Context), Out(Out_), NullOut(false), 450 Structor(Outer.Structor), StructorType(Outer.StructorType), 451 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 452 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 453 454 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 455 : Context(Outer.Context), Out(Out_), NullOut(true), 456 Structor(Outer.Structor), StructorType(Outer.StructorType), 457 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 458 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 459 460 raw_ostream &getStream() { return Out; } 461 462 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 463 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 464 465 void mangle(GlobalDecl GD); 466 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 467 void mangleNumber(const llvm::APSInt &I); 468 void mangleNumber(int64_t Number); 469 void mangleFloat(const llvm::APFloat &F); 470 void mangleFunctionEncoding(GlobalDecl GD); 471 void mangleSeqID(unsigned SeqID); 472 void mangleName(GlobalDecl GD); 473 void mangleType(QualType T); 474 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 475 void mangleLambdaSig(const CXXRecordDecl *Lambda); 476 477 private: 478 479 bool mangleSubstitution(const NamedDecl *ND); 480 bool mangleSubstitution(QualType T); 481 bool mangleSubstitution(TemplateName Template); 482 bool mangleSubstitution(uintptr_t Ptr); 483 484 void mangleExistingSubstitution(TemplateName name); 485 486 bool mangleStandardSubstitution(const NamedDecl *ND); 487 488 void addSubstitution(const NamedDecl *ND) { 489 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 490 491 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 492 } 493 void addSubstitution(QualType T); 494 void addSubstitution(TemplateName Template); 495 void addSubstitution(uintptr_t Ptr); 496 // Destructive copy substitutions from other mangler. 497 void extendSubstitutions(CXXNameMangler* Other); 498 499 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 500 bool recursive = false); 501 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 502 DeclarationName name, 503 const TemplateArgumentLoc *TemplateArgs, 504 unsigned NumTemplateArgs, 505 unsigned KnownArity = UnknownArity); 506 507 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 508 509 void mangleNameWithAbiTags(GlobalDecl GD, 510 const AbiTagList *AdditionalAbiTags); 511 void mangleModuleName(const Module *M); 512 void mangleModuleNamePrefix(StringRef Name); 513 void mangleTemplateName(const TemplateDecl *TD, 514 const TemplateArgument *TemplateArgs, 515 unsigned NumTemplateArgs); 516 void mangleUnqualifiedName(GlobalDecl GD, 517 const AbiTagList *AdditionalAbiTags) { 518 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity, 519 AdditionalAbiTags); 520 } 521 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, 522 unsigned KnownArity, 523 const AbiTagList *AdditionalAbiTags); 524 void mangleUnscopedName(GlobalDecl GD, 525 const AbiTagList *AdditionalAbiTags); 526 void mangleUnscopedTemplateName(GlobalDecl GD, 527 const AbiTagList *AdditionalAbiTags); 528 void mangleSourceName(const IdentifierInfo *II); 529 void mangleRegCallName(const IdentifierInfo *II); 530 void mangleDeviceStubName(const IdentifierInfo *II); 531 void mangleSourceNameWithAbiTags( 532 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 533 void mangleLocalName(GlobalDecl GD, 534 const AbiTagList *AdditionalAbiTags); 535 void mangleBlockForPrefix(const BlockDecl *Block); 536 void mangleUnqualifiedBlock(const BlockDecl *Block); 537 void mangleTemplateParamDecl(const NamedDecl *Decl); 538 void mangleLambda(const CXXRecordDecl *Lambda); 539 void mangleNestedName(GlobalDecl GD, const DeclContext *DC, 540 const AbiTagList *AdditionalAbiTags, 541 bool NoFunction=false); 542 void mangleNestedName(const TemplateDecl *TD, 543 const TemplateArgument *TemplateArgs, 544 unsigned NumTemplateArgs); 545 void mangleNestedNameWithClosurePrefix(GlobalDecl GD, 546 const NamedDecl *PrefixND, 547 const AbiTagList *AdditionalAbiTags); 548 void manglePrefix(NestedNameSpecifier *qualifier); 549 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 550 void manglePrefix(QualType type); 551 void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); 552 void mangleTemplatePrefix(TemplateName Template); 553 const NamedDecl *getClosurePrefix(const Decl *ND); 554 void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); 555 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 556 StringRef Prefix = ""); 557 void mangleOperatorName(DeclarationName Name, unsigned Arity); 558 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 559 void mangleVendorQualifier(StringRef qualifier); 560 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 561 void mangleRefQualifier(RefQualifierKind RefQualifier); 562 563 void mangleObjCMethodName(const ObjCMethodDecl *MD); 564 565 // Declare manglers for every type class. 566 #define ABSTRACT_TYPE(CLASS, PARENT) 567 #define NON_CANONICAL_TYPE(CLASS, PARENT) 568 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 569 #include "clang/AST/TypeNodes.inc" 570 571 void mangleType(const TagType*); 572 void mangleType(TemplateName); 573 static StringRef getCallingConvQualifierName(CallingConv CC); 574 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 575 void mangleExtFunctionInfo(const FunctionType *T); 576 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 577 const FunctionDecl *FD = nullptr); 578 void mangleNeonVectorType(const VectorType *T); 579 void mangleNeonVectorType(const DependentVectorType *T); 580 void mangleAArch64NeonVectorType(const VectorType *T); 581 void mangleAArch64NeonVectorType(const DependentVectorType *T); 582 void mangleAArch64FixedSveVectorType(const VectorType *T); 583 void mangleAArch64FixedSveVectorType(const DependentVectorType *T); 584 585 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 586 void mangleFloatLiteral(QualType T, const llvm::APFloat &V); 587 void mangleFixedPointLiteral(); 588 void mangleNullPointer(QualType T); 589 590 void mangleMemberExprBase(const Expr *base, bool isArrow); 591 void mangleMemberExpr(const Expr *base, bool isArrow, 592 NestedNameSpecifier *qualifier, 593 NamedDecl *firstQualifierLookup, 594 DeclarationName name, 595 const TemplateArgumentLoc *TemplateArgs, 596 unsigned NumTemplateArgs, 597 unsigned knownArity); 598 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 599 void mangleInitListElements(const InitListExpr *InitList); 600 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, 601 bool AsTemplateArg = false); 602 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 603 void mangleCXXDtorType(CXXDtorType T); 604 605 void mangleTemplateArgs(TemplateName TN, 606 const TemplateArgumentLoc *TemplateArgs, 607 unsigned NumTemplateArgs); 608 void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs, 609 unsigned NumTemplateArgs); 610 void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); 611 void mangleTemplateArg(TemplateArgument A, bool NeedExactType); 612 void mangleTemplateArgExpr(const Expr *E); 613 void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, 614 bool NeedExactType = false); 615 616 void mangleTemplateParameter(unsigned Depth, unsigned Index); 617 618 void mangleFunctionParam(const ParmVarDecl *parm); 619 620 void writeAbiTags(const NamedDecl *ND, 621 const AbiTagList *AdditionalAbiTags); 622 623 // Returns sorted unique list of ABI tags. 624 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 625 // Returns sorted unique list of ABI tags. 626 AbiTagList makeVariableTypeTags(const VarDecl *VD); 627 }; 628 629 } 630 631 static bool isInternalLinkageDecl(const NamedDecl *ND) { 632 if (ND && ND->getFormalLinkage() == InternalLinkage && 633 !ND->isExternallyVisible() && 634 getEffectiveDeclContext(ND)->isFileContext() && 635 !ND->isInAnonymousNamespace()) 636 return true; 637 return false; 638 } 639 640 // Check if this Function Decl needs a unique internal linkage name. 641 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( 642 const NamedDecl *ND) { 643 if (!NeedsUniqueInternalLinkageNames || !ND) 644 return false; 645 646 const auto *FD = dyn_cast<FunctionDecl>(ND); 647 if (!FD) 648 return false; 649 650 // For C functions without prototypes, return false as their 651 // names should not be mangled. 652 if (!FD->getType()->getAs<FunctionProtoType>()) 653 return false; 654 655 if (isInternalLinkageDecl(ND)) 656 return true; 657 658 return false; 659 } 660 661 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 662 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 663 if (FD) { 664 LanguageLinkage L = FD->getLanguageLinkage(); 665 // Overloadable functions need mangling. 666 if (FD->hasAttr<OverloadableAttr>()) 667 return true; 668 669 // "main" is not mangled. 670 if (FD->isMain()) 671 return false; 672 673 // The Windows ABI expects that we would never mangle "typical" 674 // user-defined entry points regardless of visibility or freestanding-ness. 675 // 676 // N.B. This is distinct from asking about "main". "main" has a lot of 677 // special rules associated with it in the standard while these 678 // user-defined entry points are outside of the purview of the standard. 679 // For example, there can be only one definition for "main" in a standards 680 // compliant program; however nothing forbids the existence of wmain and 681 // WinMain in the same translation unit. 682 if (FD->isMSVCRTEntryPoint()) 683 return false; 684 685 // C++ functions and those whose names are not a simple identifier need 686 // mangling. 687 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 688 return true; 689 690 // C functions are not mangled. 691 if (L == CLanguageLinkage) 692 return false; 693 } 694 695 // Otherwise, no mangling is done outside C++ mode. 696 if (!getASTContext().getLangOpts().CPlusPlus) 697 return false; 698 699 const VarDecl *VD = dyn_cast<VarDecl>(D); 700 if (VD && !isa<DecompositionDecl>(D)) { 701 // C variables are not mangled. 702 if (VD->isExternC()) 703 return false; 704 705 // Variables at global scope with non-internal linkage are not mangled 706 const DeclContext *DC = getEffectiveDeclContext(D); 707 // Check for extern variable declared locally. 708 if (DC->isFunctionOrMethod() && D->hasLinkage()) 709 while (!DC->isNamespace() && !DC->isTranslationUnit()) 710 DC = getEffectiveParentContext(DC); 711 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && 712 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 713 !isa<VarTemplateSpecializationDecl>(D)) 714 return false; 715 } 716 717 return true; 718 } 719 720 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 721 const AbiTagList *AdditionalAbiTags) { 722 assert(AbiTags && "require AbiTagState"); 723 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 724 } 725 726 void CXXNameMangler::mangleSourceNameWithAbiTags( 727 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 728 mangleSourceName(ND->getIdentifier()); 729 writeAbiTags(ND, AdditionalAbiTags); 730 } 731 732 void CXXNameMangler::mangle(GlobalDecl GD) { 733 // <mangled-name> ::= _Z <encoding> 734 // ::= <data name> 735 // ::= <special-name> 736 Out << "_Z"; 737 if (isa<FunctionDecl>(GD.getDecl())) 738 mangleFunctionEncoding(GD); 739 else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, 740 BindingDecl>(GD.getDecl())) 741 mangleName(GD); 742 else if (const IndirectFieldDecl *IFD = 743 dyn_cast<IndirectFieldDecl>(GD.getDecl())) 744 mangleName(IFD->getAnonField()); 745 else 746 llvm_unreachable("unexpected kind of global decl"); 747 } 748 749 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { 750 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 751 // <encoding> ::= <function name> <bare-function-type> 752 753 // Don't mangle in the type if this isn't a decl we should typically mangle. 754 if (!Context.shouldMangleDeclName(FD)) { 755 mangleName(GD); 756 return; 757 } 758 759 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 760 if (ReturnTypeAbiTags.empty()) { 761 // There are no tags for return type, the simplest case. 762 mangleName(GD); 763 mangleFunctionEncodingBareType(FD); 764 return; 765 } 766 767 // Mangle function name and encoding to temporary buffer. 768 // We have to output name and encoding to the same mangler to get the same 769 // substitution as it will be in final mangling. 770 SmallString<256> FunctionEncodingBuf; 771 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 772 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 773 // Output name of the function. 774 FunctionEncodingMangler.disableDerivedAbiTags(); 775 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 776 777 // Remember length of the function name in the buffer. 778 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 779 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 780 781 // Get tags from return type that are not present in function name or 782 // encoding. 783 const AbiTagList &UsedAbiTags = 784 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 785 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 786 AdditionalAbiTags.erase( 787 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 788 UsedAbiTags.begin(), UsedAbiTags.end(), 789 AdditionalAbiTags.begin()), 790 AdditionalAbiTags.end()); 791 792 // Output name with implicit tags and function encoding from temporary buffer. 793 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 794 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 795 796 // Function encoding could create new substitutions so we have to add 797 // temp mangled substitutions to main mangler. 798 extendSubstitutions(&FunctionEncodingMangler); 799 } 800 801 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 802 if (FD->hasAttr<EnableIfAttr>()) { 803 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 804 Out << "Ua9enable_ifI"; 805 for (AttrVec::const_iterator I = FD->getAttrs().begin(), 806 E = FD->getAttrs().end(); 807 I != E; ++I) { 808 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 809 if (!EIA) 810 continue; 811 if (Context.getASTContext().getLangOpts().getClangABICompat() > 812 LangOptions::ClangABI::Ver11) { 813 mangleTemplateArgExpr(EIA->getCond()); 814 } else { 815 // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, 816 // even though <template-arg> should not include an X/E around 817 // <expr-primary>. 818 Out << 'X'; 819 mangleExpression(EIA->getCond()); 820 Out << 'E'; 821 } 822 } 823 Out << 'E'; 824 FunctionTypeDepth.pop(Saved); 825 } 826 827 // When mangling an inheriting constructor, the bare function type used is 828 // that of the inherited constructor. 829 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 830 if (auto Inherited = CD->getInheritedConstructor()) 831 FD = Inherited.getConstructor(); 832 833 // Whether the mangling of a function type includes the return type depends on 834 // the context and the nature of the function. The rules for deciding whether 835 // the return type is included are: 836 // 837 // 1. Template functions (names or types) have return types encoded, with 838 // the exceptions listed below. 839 // 2. Function types not appearing as part of a function name mangling, 840 // e.g. parameters, pointer types, etc., have return type encoded, with the 841 // exceptions listed below. 842 // 3. Non-template function names do not have return types encoded. 843 // 844 // The exceptions mentioned in (1) and (2) above, for which the return type is 845 // never included, are 846 // 1. Constructors. 847 // 2. Destructors. 848 // 3. Conversion operator functions, e.g. operator int. 849 bool MangleReturnType = false; 850 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 851 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 852 isa<CXXConversionDecl>(FD))) 853 MangleReturnType = true; 854 855 // Mangle the type of the primary template. 856 FD = PrimaryTemplate->getTemplatedDecl(); 857 } 858 859 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 860 MangleReturnType, FD); 861 } 862 863 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { 864 while (isa<LinkageSpecDecl>(DC)) { 865 DC = getEffectiveParentContext(DC); 866 } 867 868 return DC; 869 } 870 871 /// Return whether a given namespace is the 'std' namespace. 872 static bool isStd(const NamespaceDecl *NS) { 873 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) 874 ->isTranslationUnit()) 875 return false; 876 877 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 878 return II && II->isStr("std"); 879 } 880 881 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 882 // namespace. 883 static bool isStdNamespace(const DeclContext *DC) { 884 if (!DC->isNamespace()) 885 return false; 886 887 return isStd(cast<NamespaceDecl>(DC)); 888 } 889 890 static const GlobalDecl 891 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { 892 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 893 // Check if we have a function template. 894 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 895 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 896 TemplateArgs = FD->getTemplateSpecializationArgs(); 897 return GD.getWithDecl(TD); 898 } 899 } 900 901 // Check if we have a class template. 902 if (const ClassTemplateSpecializationDecl *Spec = 903 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 904 TemplateArgs = &Spec->getTemplateArgs(); 905 return GD.getWithDecl(Spec->getSpecializedTemplate()); 906 } 907 908 // Check if we have a variable template. 909 if (const VarTemplateSpecializationDecl *Spec = 910 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 911 TemplateArgs = &Spec->getTemplateArgs(); 912 return GD.getWithDecl(Spec->getSpecializedTemplate()); 913 } 914 915 return GlobalDecl(); 916 } 917 918 static TemplateName asTemplateName(GlobalDecl GD) { 919 const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl()); 920 return TemplateName(const_cast<TemplateDecl*>(TD)); 921 } 922 923 void CXXNameMangler::mangleName(GlobalDecl GD) { 924 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 925 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 926 // Variables should have implicit tags from its type. 927 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 928 if (VariableTypeAbiTags.empty()) { 929 // Simple case no variable type tags. 930 mangleNameWithAbiTags(VD, nullptr); 931 return; 932 } 933 934 // Mangle variable name to null stream to collect tags. 935 llvm::raw_null_ostream NullOutStream; 936 CXXNameMangler VariableNameMangler(*this, NullOutStream); 937 VariableNameMangler.disableDerivedAbiTags(); 938 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 939 940 // Get tags from variable type that are not present in its name. 941 const AbiTagList &UsedAbiTags = 942 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 943 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 944 AdditionalAbiTags.erase( 945 std::set_difference(VariableTypeAbiTags.begin(), 946 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 947 UsedAbiTags.end(), AdditionalAbiTags.begin()), 948 AdditionalAbiTags.end()); 949 950 // Output name with implicit tags. 951 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 952 } else { 953 mangleNameWithAbiTags(GD, nullptr); 954 } 955 } 956 957 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, 958 const AbiTagList *AdditionalAbiTags) { 959 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 960 // <name> ::= [<module-name>] <nested-name> 961 // ::= [<module-name>] <unscoped-name> 962 // ::= [<module-name>] <unscoped-template-name> <template-args> 963 // ::= <local-name> 964 // 965 const DeclContext *DC = getEffectiveDeclContext(ND); 966 967 // If this is an extern variable declared locally, the relevant DeclContext 968 // is that of the containing namespace, or the translation unit. 969 // FIXME: This is a hack; extern variables declared locally should have 970 // a proper semantic declaration context! 971 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) 972 while (!DC->isNamespace() && !DC->isTranslationUnit()) 973 DC = getEffectiveParentContext(DC); 974 else if (GetLocalClassDecl(ND)) { 975 mangleLocalName(GD, AdditionalAbiTags); 976 return; 977 } 978 979 DC = IgnoreLinkageSpecDecls(DC); 980 981 if (isLocalContainerContext(DC)) { 982 mangleLocalName(GD, AdditionalAbiTags); 983 return; 984 } 985 986 // Do not mangle the owning module for an external linkage declaration. 987 // This enables backwards-compatibility with non-modular code, and is 988 // a valid choice since conflicts are not permitted by C++ Modules TS 989 // [basic.def.odr]/6.2. 990 if (!ND->hasExternalFormalLinkage()) 991 if (Module *M = ND->getOwningModuleForLinkage()) 992 mangleModuleName(M); 993 994 // Closures can require a nested-name mangling even if they're semantically 995 // in the global namespace. 996 if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 997 mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); 998 return; 999 } 1000 1001 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1002 // Check if we have a template. 1003 const TemplateArgumentList *TemplateArgs = nullptr; 1004 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1005 mangleUnscopedTemplateName(TD, AdditionalAbiTags); 1006 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1007 return; 1008 } 1009 1010 mangleUnscopedName(GD, AdditionalAbiTags); 1011 return; 1012 } 1013 1014 mangleNestedName(GD, DC, AdditionalAbiTags); 1015 } 1016 1017 void CXXNameMangler::mangleModuleName(const Module *M) { 1018 // Implement the C++ Modules TS name mangling proposal; see 1019 // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile 1020 // 1021 // <module-name> ::= W <unscoped-name>+ E 1022 // ::= W <module-subst> <unscoped-name>* E 1023 Out << 'W'; 1024 mangleModuleNamePrefix(M->Name); 1025 Out << 'E'; 1026 } 1027 1028 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { 1029 // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 1030 // ::= W <seq-id - 10> _ # otherwise 1031 auto It = ModuleSubstitutions.find(Name); 1032 if (It != ModuleSubstitutions.end()) { 1033 if (It->second < 10) 1034 Out << '_' << static_cast<char>('0' + It->second); 1035 else 1036 Out << 'W' << (It->second - 10) << '_'; 1037 return; 1038 } 1039 1040 // FIXME: Preserve hierarchy in module names rather than flattening 1041 // them to strings; use Module*s as substitution keys. 1042 auto Parts = Name.rsplit('.'); 1043 if (Parts.second.empty()) 1044 Parts.second = Parts.first; 1045 else 1046 mangleModuleNamePrefix(Parts.first); 1047 1048 Out << Parts.second.size() << Parts.second; 1049 ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); 1050 } 1051 1052 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 1053 const TemplateArgument *TemplateArgs, 1054 unsigned NumTemplateArgs) { 1055 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); 1056 1057 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1058 mangleUnscopedTemplateName(TD, nullptr); 1059 mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs); 1060 } else { 1061 mangleNestedName(TD, TemplateArgs, NumTemplateArgs); 1062 } 1063 } 1064 1065 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, 1066 const AbiTagList *AdditionalAbiTags) { 1067 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1068 // <unscoped-name> ::= <unqualified-name> 1069 // ::= St <unqualified-name> # ::std:: 1070 1071 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) 1072 Out << "St"; 1073 1074 mangleUnqualifiedName(GD, AdditionalAbiTags); 1075 } 1076 1077 void CXXNameMangler::mangleUnscopedTemplateName( 1078 GlobalDecl GD, const AbiTagList *AdditionalAbiTags) { 1079 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 1080 // <unscoped-template-name> ::= <unscoped-name> 1081 // ::= <substitution> 1082 if (mangleSubstitution(ND)) 1083 return; 1084 1085 // <template-template-param> ::= <template-param> 1086 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1087 assert(!AdditionalAbiTags && 1088 "template template param cannot have abi tags"); 1089 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 1090 } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) { 1091 mangleUnscopedName(GD, AdditionalAbiTags); 1092 } else { 1093 mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags); 1094 } 1095 1096 addSubstitution(ND); 1097 } 1098 1099 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1100 // ABI: 1101 // Floating-point literals are encoded using a fixed-length 1102 // lowercase hexadecimal string corresponding to the internal 1103 // representation (IEEE on Itanium), high-order bytes first, 1104 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1105 // on Itanium. 1106 // The 'without leading zeroes' thing seems to be an editorial 1107 // mistake; see the discussion on cxx-abi-dev beginning on 1108 // 2012-01-16. 1109 1110 // Our requirements here are just barely weird enough to justify 1111 // using a custom algorithm instead of post-processing APInt::toString(). 1112 1113 llvm::APInt valueBits = f.bitcastToAPInt(); 1114 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1115 assert(numCharacters != 0); 1116 1117 // Allocate a buffer of the right number of characters. 1118 SmallVector<char, 20> buffer(numCharacters); 1119 1120 // Fill the buffer left-to-right. 1121 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1122 // The bit-index of the next hex digit. 1123 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1124 1125 // Project out 4 bits starting at 'digitIndex'. 1126 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1127 hexDigit >>= (digitBitIndex % 64); 1128 hexDigit &= 0xF; 1129 1130 // Map that over to a lowercase hex digit. 1131 static const char charForHex[16] = { 1132 '0', '1', '2', '3', '4', '5', '6', '7', 1133 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1134 }; 1135 buffer[stringIndex] = charForHex[hexDigit]; 1136 } 1137 1138 Out.write(buffer.data(), numCharacters); 1139 } 1140 1141 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { 1142 Out << 'L'; 1143 mangleType(T); 1144 mangleFloat(V); 1145 Out << 'E'; 1146 } 1147 1148 void CXXNameMangler::mangleFixedPointLiteral() { 1149 DiagnosticsEngine &Diags = Context.getDiags(); 1150 unsigned DiagID = Diags.getCustomDiagID( 1151 DiagnosticsEngine::Error, "cannot mangle fixed point literals yet"); 1152 Diags.Report(DiagID); 1153 } 1154 1155 void CXXNameMangler::mangleNullPointer(QualType T) { 1156 // <expr-primary> ::= L <type> 0 E 1157 Out << 'L'; 1158 mangleType(T); 1159 Out << "0E"; 1160 } 1161 1162 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1163 if (Value.isSigned() && Value.isNegative()) { 1164 Out << 'n'; 1165 Value.abs().print(Out, /*signed*/ false); 1166 } else { 1167 Value.print(Out, /*signed*/ false); 1168 } 1169 } 1170 1171 void CXXNameMangler::mangleNumber(int64_t Number) { 1172 // <number> ::= [n] <non-negative decimal integer> 1173 if (Number < 0) { 1174 Out << 'n'; 1175 Number = -Number; 1176 } 1177 1178 Out << Number; 1179 } 1180 1181 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1182 // <call-offset> ::= h <nv-offset> _ 1183 // ::= v <v-offset> _ 1184 // <nv-offset> ::= <offset number> # non-virtual base override 1185 // <v-offset> ::= <offset number> _ <virtual offset number> 1186 // # virtual base override, with vcall offset 1187 if (!Virtual) { 1188 Out << 'h'; 1189 mangleNumber(NonVirtual); 1190 Out << '_'; 1191 return; 1192 } 1193 1194 Out << 'v'; 1195 mangleNumber(NonVirtual); 1196 Out << '_'; 1197 mangleNumber(Virtual); 1198 Out << '_'; 1199 } 1200 1201 void CXXNameMangler::manglePrefix(QualType type) { 1202 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1203 if (!mangleSubstitution(QualType(TST, 0))) { 1204 mangleTemplatePrefix(TST->getTemplateName()); 1205 1206 // FIXME: GCC does not appear to mangle the template arguments when 1207 // the template in question is a dependent template name. Should we 1208 // emulate that badness? 1209 mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), 1210 TST->getNumArgs()); 1211 addSubstitution(QualType(TST, 0)); 1212 } 1213 } else if (const auto *DTST = 1214 type->getAs<DependentTemplateSpecializationType>()) { 1215 if (!mangleSubstitution(QualType(DTST, 0))) { 1216 TemplateName Template = getASTContext().getDependentTemplateName( 1217 DTST->getQualifier(), DTST->getIdentifier()); 1218 mangleTemplatePrefix(Template); 1219 1220 // FIXME: GCC does not appear to mangle the template arguments when 1221 // the template in question is a dependent template name. Should we 1222 // emulate that badness? 1223 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); 1224 addSubstitution(QualType(DTST, 0)); 1225 } 1226 } else { 1227 // We use the QualType mangle type variant here because it handles 1228 // substitutions. 1229 mangleType(type); 1230 } 1231 } 1232 1233 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1234 /// 1235 /// \param recursive - true if this is being called recursively, 1236 /// i.e. if there is more prefix "to the right". 1237 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1238 bool recursive) { 1239 1240 // x, ::x 1241 // <unresolved-name> ::= [gs] <base-unresolved-name> 1242 1243 // T::x / decltype(p)::x 1244 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1245 1246 // T::N::x /decltype(p)::N::x 1247 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1248 // <base-unresolved-name> 1249 1250 // A::x, N::y, A<T>::z; "gs" means leading "::" 1251 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1252 // <base-unresolved-name> 1253 1254 switch (qualifier->getKind()) { 1255 case NestedNameSpecifier::Global: 1256 Out << "gs"; 1257 1258 // We want an 'sr' unless this is the entire NNS. 1259 if (recursive) 1260 Out << "sr"; 1261 1262 // We never want an 'E' here. 1263 return; 1264 1265 case NestedNameSpecifier::Super: 1266 llvm_unreachable("Can't mangle __super specifier"); 1267 1268 case NestedNameSpecifier::Namespace: 1269 if (qualifier->getPrefix()) 1270 mangleUnresolvedPrefix(qualifier->getPrefix(), 1271 /*recursive*/ true); 1272 else 1273 Out << "sr"; 1274 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1275 break; 1276 case NestedNameSpecifier::NamespaceAlias: 1277 if (qualifier->getPrefix()) 1278 mangleUnresolvedPrefix(qualifier->getPrefix(), 1279 /*recursive*/ true); 1280 else 1281 Out << "sr"; 1282 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1283 break; 1284 1285 case NestedNameSpecifier::TypeSpec: 1286 case NestedNameSpecifier::TypeSpecWithTemplate: { 1287 const Type *type = qualifier->getAsType(); 1288 1289 // We only want to use an unresolved-type encoding if this is one of: 1290 // - a decltype 1291 // - a template type parameter 1292 // - a template template parameter with arguments 1293 // In all of these cases, we should have no prefix. 1294 if (qualifier->getPrefix()) { 1295 mangleUnresolvedPrefix(qualifier->getPrefix(), 1296 /*recursive*/ true); 1297 } else { 1298 // Otherwise, all the cases want this. 1299 Out << "sr"; 1300 } 1301 1302 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1303 return; 1304 1305 break; 1306 } 1307 1308 case NestedNameSpecifier::Identifier: 1309 // Member expressions can have these without prefixes. 1310 if (qualifier->getPrefix()) 1311 mangleUnresolvedPrefix(qualifier->getPrefix(), 1312 /*recursive*/ true); 1313 else 1314 Out << "sr"; 1315 1316 mangleSourceName(qualifier->getAsIdentifier()); 1317 // An Identifier has no type information, so we can't emit abi tags for it. 1318 break; 1319 } 1320 1321 // If this was the innermost part of the NNS, and we fell out to 1322 // here, append an 'E'. 1323 if (!recursive) 1324 Out << 'E'; 1325 } 1326 1327 /// Mangle an unresolved-name, which is generally used for names which 1328 /// weren't resolved to specific entities. 1329 void CXXNameMangler::mangleUnresolvedName( 1330 NestedNameSpecifier *qualifier, DeclarationName name, 1331 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1332 unsigned knownArity) { 1333 if (qualifier) mangleUnresolvedPrefix(qualifier); 1334 switch (name.getNameKind()) { 1335 // <base-unresolved-name> ::= <simple-id> 1336 case DeclarationName::Identifier: 1337 mangleSourceName(name.getAsIdentifierInfo()); 1338 break; 1339 // <base-unresolved-name> ::= dn <destructor-name> 1340 case DeclarationName::CXXDestructorName: 1341 Out << "dn"; 1342 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1343 break; 1344 // <base-unresolved-name> ::= on <operator-name> 1345 case DeclarationName::CXXConversionFunctionName: 1346 case DeclarationName::CXXLiteralOperatorName: 1347 case DeclarationName::CXXOperatorName: 1348 Out << "on"; 1349 mangleOperatorName(name, knownArity); 1350 break; 1351 case DeclarationName::CXXConstructorName: 1352 llvm_unreachable("Can't mangle a constructor name!"); 1353 case DeclarationName::CXXUsingDirective: 1354 llvm_unreachable("Can't mangle a using directive name!"); 1355 case DeclarationName::CXXDeductionGuideName: 1356 llvm_unreachable("Can't mangle a deduction guide name!"); 1357 case DeclarationName::ObjCMultiArgSelector: 1358 case DeclarationName::ObjCOneArgSelector: 1359 case DeclarationName::ObjCZeroArgSelector: 1360 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1361 } 1362 1363 // The <simple-id> and on <operator-name> productions end in an optional 1364 // <template-args>. 1365 if (TemplateArgs) 1366 mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs); 1367 } 1368 1369 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, 1370 DeclarationName Name, 1371 unsigned KnownArity, 1372 const AbiTagList *AdditionalAbiTags) { 1373 const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl()); 1374 unsigned Arity = KnownArity; 1375 // <unqualified-name> ::= <operator-name> 1376 // ::= <ctor-dtor-name> 1377 // ::= <source-name> 1378 switch (Name.getNameKind()) { 1379 case DeclarationName::Identifier: { 1380 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1381 1382 // We mangle decomposition declarations as the names of their bindings. 1383 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1384 // FIXME: Non-standard mangling for decomposition declarations: 1385 // 1386 // <unqualified-name> ::= DC <source-name>* E 1387 // 1388 // These can never be referenced across translation units, so we do 1389 // not need a cross-vendor mangling for anything other than demanglers. 1390 // Proposed on cxx-abi-dev on 2016-08-12 1391 Out << "DC"; 1392 for (auto *BD : DD->bindings()) 1393 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1394 Out << 'E'; 1395 writeAbiTags(ND, AdditionalAbiTags); 1396 break; 1397 } 1398 1399 if (auto *GD = dyn_cast<MSGuidDecl>(ND)) { 1400 // We follow MSVC in mangling GUID declarations as if they were variables 1401 // with a particular reserved name. Continue the pretense here. 1402 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1403 llvm::raw_svector_ostream GUIDOS(GUID); 1404 Context.mangleMSGuidDecl(GD, GUIDOS); 1405 Out << GUID.size() << GUID; 1406 break; 1407 } 1408 1409 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1410 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 1411 Out << "TA"; 1412 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 1413 TPO->getValue(), /*TopLevel=*/true); 1414 break; 1415 } 1416 1417 if (II) { 1418 // Match GCC's naming convention for internal linkage symbols, for 1419 // symbols that are not actually visible outside of this TU. GCC 1420 // distinguishes between internal and external linkage symbols in 1421 // its mangling, to support cases like this that were valid C++ prior 1422 // to DR426: 1423 // 1424 // void test() { extern void foo(); } 1425 // static void foo(); 1426 // 1427 // Don't bother with the L marker for names in anonymous namespaces; the 1428 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1429 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1430 // implying internal linkage. 1431 if (isInternalLinkageDecl(ND)) 1432 Out << 'L'; 1433 1434 auto *FD = dyn_cast<FunctionDecl>(ND); 1435 bool IsRegCall = FD && 1436 FD->getType()->castAs<FunctionType>()->getCallConv() == 1437 clang::CC_X86RegCall; 1438 bool IsDeviceStub = 1439 FD && FD->hasAttr<CUDAGlobalAttr>() && 1440 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1441 if (IsDeviceStub) 1442 mangleDeviceStubName(II); 1443 else if (IsRegCall) 1444 mangleRegCallName(II); 1445 else 1446 mangleSourceName(II); 1447 1448 writeAbiTags(ND, AdditionalAbiTags); 1449 break; 1450 } 1451 1452 // Otherwise, an anonymous entity. We must have a declaration. 1453 assert(ND && "mangling empty name without declaration"); 1454 1455 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1456 if (NS->isAnonymousNamespace()) { 1457 // This is how gcc mangles these names. 1458 Out << "12_GLOBAL__N_1"; 1459 break; 1460 } 1461 } 1462 1463 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1464 // We must have an anonymous union or struct declaration. 1465 const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); 1466 1467 // Itanium C++ ABI 5.1.2: 1468 // 1469 // For the purposes of mangling, the name of an anonymous union is 1470 // considered to be the name of the first named data member found by a 1471 // pre-order, depth-first, declaration-order walk of the data members of 1472 // the anonymous union. If there is no such data member (i.e., if all of 1473 // the data members in the union are unnamed), then there is no way for 1474 // a program to refer to the anonymous union, and there is therefore no 1475 // need to mangle its name. 1476 assert(RD->isAnonymousStructOrUnion() 1477 && "Expected anonymous struct or union!"); 1478 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1479 1480 // It's actually possible for various reasons for us to get here 1481 // with an empty anonymous struct / union. Fortunately, it 1482 // doesn't really matter what name we generate. 1483 if (!FD) break; 1484 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1485 1486 mangleSourceName(FD->getIdentifier()); 1487 // Not emitting abi tags: internal name anyway. 1488 break; 1489 } 1490 1491 // Class extensions have no name as a category, and it's possible 1492 // for them to be the semantic parent of certain declarations 1493 // (primarily, tag decls defined within declarations). Such 1494 // declarations will always have internal linkage, so the name 1495 // doesn't really matter, but we shouldn't crash on them. For 1496 // safety, just handle all ObjC containers here. 1497 if (isa<ObjCContainerDecl>(ND)) 1498 break; 1499 1500 // We must have an anonymous struct. 1501 const TagDecl *TD = cast<TagDecl>(ND); 1502 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1503 assert(TD->getDeclContext() == D->getDeclContext() && 1504 "Typedef should not be in another decl context!"); 1505 assert(D->getDeclName().getAsIdentifierInfo() && 1506 "Typedef was not named!"); 1507 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1508 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1509 // Explicit abi tags are still possible; take from underlying type, not 1510 // from typedef. 1511 writeAbiTags(TD, nullptr); 1512 break; 1513 } 1514 1515 // <unnamed-type-name> ::= <closure-type-name> 1516 // 1517 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1518 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ 1519 // # Parameter types or 'v' for 'void'. 1520 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1521 if (Record->isLambda() && (Record->getLambdaManglingNumber() || 1522 Context.getDiscriminatorOverride()( 1523 Context.getASTContext(), Record))) { 1524 assert(!AdditionalAbiTags && 1525 "Lambda type cannot have additional abi tags"); 1526 mangleLambda(Record); 1527 break; 1528 } 1529 } 1530 1531 if (TD->isExternallyVisible()) { 1532 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); 1533 Out << "Ut"; 1534 if (UnnamedMangle > 1) 1535 Out << UnnamedMangle - 2; 1536 Out << '_'; 1537 writeAbiTags(TD, AdditionalAbiTags); 1538 break; 1539 } 1540 1541 // Get a unique id for the anonymous struct. If it is not a real output 1542 // ID doesn't matter so use fake one. 1543 unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); 1544 1545 // Mangle it as a source name in the form 1546 // [n] $_<id> 1547 // where n is the length of the string. 1548 SmallString<8> Str; 1549 Str += "$_"; 1550 Str += llvm::utostr(AnonStructId); 1551 1552 Out << Str.size(); 1553 Out << Str; 1554 break; 1555 } 1556 1557 case DeclarationName::ObjCZeroArgSelector: 1558 case DeclarationName::ObjCOneArgSelector: 1559 case DeclarationName::ObjCMultiArgSelector: 1560 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1561 1562 case DeclarationName::CXXConstructorName: { 1563 const CXXRecordDecl *InheritedFrom = nullptr; 1564 TemplateName InheritedTemplateName; 1565 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1566 if (auto Inherited = 1567 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1568 InheritedFrom = Inherited.getConstructor()->getParent(); 1569 InheritedTemplateName = 1570 TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); 1571 InheritedTemplateArgs = 1572 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1573 } 1574 1575 if (ND == Structor) 1576 // If the named decl is the C++ constructor we're mangling, use the type 1577 // we were given. 1578 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1579 else 1580 // Otherwise, use the complete constructor name. This is relevant if a 1581 // class with a constructor is declared within a constructor. 1582 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1583 1584 // FIXME: The template arguments are part of the enclosing prefix or 1585 // nested-name, but it's more convenient to mangle them here. 1586 if (InheritedTemplateArgs) 1587 mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs); 1588 1589 writeAbiTags(ND, AdditionalAbiTags); 1590 break; 1591 } 1592 1593 case DeclarationName::CXXDestructorName: 1594 if (ND == Structor) 1595 // If the named decl is the C++ destructor we're mangling, use the type we 1596 // were given. 1597 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1598 else 1599 // Otherwise, use the complete destructor name. This is relevant if a 1600 // class with a destructor is declared within a destructor. 1601 mangleCXXDtorType(Dtor_Complete); 1602 writeAbiTags(ND, AdditionalAbiTags); 1603 break; 1604 1605 case DeclarationName::CXXOperatorName: 1606 if (ND && Arity == UnknownArity) { 1607 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1608 1609 // If we have a member function, we need to include the 'this' pointer. 1610 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1611 if (!MD->isStatic()) 1612 Arity++; 1613 } 1614 LLVM_FALLTHROUGH; 1615 case DeclarationName::CXXConversionFunctionName: 1616 case DeclarationName::CXXLiteralOperatorName: 1617 mangleOperatorName(Name, Arity); 1618 writeAbiTags(ND, AdditionalAbiTags); 1619 break; 1620 1621 case DeclarationName::CXXDeductionGuideName: 1622 llvm_unreachable("Can't mangle a deduction guide name!"); 1623 1624 case DeclarationName::CXXUsingDirective: 1625 llvm_unreachable("Can't mangle a using directive name!"); 1626 } 1627 } 1628 1629 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1630 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1631 // <number> ::= [n] <non-negative decimal integer> 1632 // <identifier> ::= <unqualified source code identifier> 1633 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1634 << II->getName(); 1635 } 1636 1637 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { 1638 // <source-name> ::= <positive length number> __device_stub__ <identifier> 1639 // <number> ::= [n] <non-negative decimal integer> 1640 // <identifier> ::= <unqualified source code identifier> 1641 Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__" 1642 << II->getName(); 1643 } 1644 1645 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1646 // <source-name> ::= <positive length number> <identifier> 1647 // <number> ::= [n] <non-negative decimal integer> 1648 // <identifier> ::= <unqualified source code identifier> 1649 Out << II->getLength() << II->getName(); 1650 } 1651 1652 void CXXNameMangler::mangleNestedName(GlobalDecl GD, 1653 const DeclContext *DC, 1654 const AbiTagList *AdditionalAbiTags, 1655 bool NoFunction) { 1656 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1657 // <nested-name> 1658 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1659 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1660 // <template-args> E 1661 1662 Out << 'N'; 1663 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1664 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1665 // We do not consider restrict a distinguishing attribute for overloading 1666 // purposes so we must not mangle it. 1667 MethodQuals.removeRestrict(); 1668 mangleQualifiers(MethodQuals); 1669 mangleRefQualifier(Method->getRefQualifier()); 1670 } 1671 1672 // Check if we have a template. 1673 const TemplateArgumentList *TemplateArgs = nullptr; 1674 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1675 mangleTemplatePrefix(TD, NoFunction); 1676 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1677 } else { 1678 manglePrefix(DC, NoFunction); 1679 mangleUnqualifiedName(GD, AdditionalAbiTags); 1680 } 1681 1682 Out << 'E'; 1683 } 1684 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1685 const TemplateArgument *TemplateArgs, 1686 unsigned NumTemplateArgs) { 1687 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1688 1689 Out << 'N'; 1690 1691 mangleTemplatePrefix(TD); 1692 mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs); 1693 1694 Out << 'E'; 1695 } 1696 1697 void CXXNameMangler::mangleNestedNameWithClosurePrefix( 1698 GlobalDecl GD, const NamedDecl *PrefixND, 1699 const AbiTagList *AdditionalAbiTags) { 1700 // A <closure-prefix> represents a variable or field, not a regular 1701 // DeclContext, so needs special handling. In this case we're mangling a 1702 // limited form of <nested-name>: 1703 // 1704 // <nested-name> ::= N <closure-prefix> <closure-type-name> E 1705 1706 Out << 'N'; 1707 1708 mangleClosurePrefix(PrefixND); 1709 mangleUnqualifiedName(GD, AdditionalAbiTags); 1710 1711 Out << 'E'; 1712 } 1713 1714 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { 1715 GlobalDecl GD; 1716 // The Itanium spec says: 1717 // For entities in constructors and destructors, the mangling of the 1718 // complete object constructor or destructor is used as the base function 1719 // name, i.e. the C1 or D1 version. 1720 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 1721 GD = GlobalDecl(CD, Ctor_Complete); 1722 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 1723 GD = GlobalDecl(DD, Dtor_Complete); 1724 else 1725 GD = GlobalDecl(cast<FunctionDecl>(DC)); 1726 return GD; 1727 } 1728 1729 void CXXNameMangler::mangleLocalName(GlobalDecl GD, 1730 const AbiTagList *AdditionalAbiTags) { 1731 const Decl *D = GD.getDecl(); 1732 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1733 // := Z <function encoding> E s [<discriminator>] 1734 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1735 // _ <entity name> 1736 // <discriminator> := _ <non-negative number> 1737 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1738 const RecordDecl *RD = GetLocalClassDecl(D); 1739 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); 1740 1741 Out << 'Z'; 1742 1743 { 1744 AbiTagState LocalAbiTags(AbiTags); 1745 1746 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1747 mangleObjCMethodName(MD); 1748 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1749 mangleBlockForPrefix(BD); 1750 else 1751 mangleFunctionEncoding(getParentOfLocalEntity(DC)); 1752 1753 // Implicit ABI tags (from namespace) are not available in the following 1754 // entity; reset to actually emitted tags, which are available. 1755 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1756 } 1757 1758 Out << 'E'; 1759 1760 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1761 // be a bug that is fixed in trunk. 1762 1763 if (RD) { 1764 // The parameter number is omitted for the last parameter, 0 for the 1765 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1766 // <entity name> will of course contain a <closure-type-name>: Its 1767 // numbering will be local to the particular argument in which it appears 1768 // -- other default arguments do not affect its encoding. 1769 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1770 if (CXXRD && CXXRD->isLambda()) { 1771 if (const ParmVarDecl *Parm 1772 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1773 if (const FunctionDecl *Func 1774 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1775 Out << 'd'; 1776 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1777 if (Num > 1) 1778 mangleNumber(Num - 2); 1779 Out << '_'; 1780 } 1781 } 1782 } 1783 1784 // Mangle the name relative to the closest enclosing function. 1785 // equality ok because RD derived from ND above 1786 if (D == RD) { 1787 mangleUnqualifiedName(RD, AdditionalAbiTags); 1788 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1789 if (const NamedDecl *PrefixND = getClosurePrefix(BD)) 1790 mangleClosurePrefix(PrefixND, true /*NoFunction*/); 1791 else 1792 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); 1793 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1794 mangleUnqualifiedBlock(BD); 1795 } else { 1796 const NamedDecl *ND = cast<NamedDecl>(D); 1797 mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags, 1798 true /*NoFunction*/); 1799 } 1800 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1801 // Mangle a block in a default parameter; see above explanation for 1802 // lambdas. 1803 if (const ParmVarDecl *Parm 1804 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1805 if (const FunctionDecl *Func 1806 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1807 Out << 'd'; 1808 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1809 if (Num > 1) 1810 mangleNumber(Num - 2); 1811 Out << '_'; 1812 } 1813 } 1814 1815 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1816 mangleUnqualifiedBlock(BD); 1817 } else { 1818 mangleUnqualifiedName(GD, AdditionalAbiTags); 1819 } 1820 1821 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1822 unsigned disc; 1823 if (Context.getNextDiscriminator(ND, disc)) { 1824 if (disc < 10) 1825 Out << '_' << disc; 1826 else 1827 Out << "__" << disc << '_'; 1828 } 1829 } 1830 } 1831 1832 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1833 if (GetLocalClassDecl(Block)) { 1834 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1835 return; 1836 } 1837 const DeclContext *DC = getEffectiveDeclContext(Block); 1838 if (isLocalContainerContext(DC)) { 1839 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1840 return; 1841 } 1842 if (const NamedDecl *PrefixND = getClosurePrefix(Block)) 1843 mangleClosurePrefix(PrefixND); 1844 else 1845 manglePrefix(DC); 1846 mangleUnqualifiedBlock(Block); 1847 } 1848 1849 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1850 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1851 // <data-member-prefix> now, with no substitutions and no <template-args>. 1852 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1853 if (getASTContext().getLangOpts().getClangABICompat() <= 1854 LangOptions::ClangABI::Ver12 && 1855 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1856 Context->getDeclContext()->isRecord()) { 1857 const auto *ND = cast<NamedDecl>(Context); 1858 if (ND->getIdentifier()) { 1859 mangleSourceNameWithAbiTags(ND); 1860 Out << 'M'; 1861 } 1862 } 1863 } 1864 1865 // If we have a block mangling number, use it. 1866 unsigned Number = Block->getBlockManglingNumber(); 1867 // Otherwise, just make up a number. It doesn't matter what it is because 1868 // the symbol in question isn't externally visible. 1869 if (!Number) 1870 Number = Context.getBlockId(Block, false); 1871 else { 1872 // Stored mangling numbers are 1-based. 1873 --Number; 1874 } 1875 Out << "Ub"; 1876 if (Number > 0) 1877 Out << Number - 1; 1878 Out << '_'; 1879 } 1880 1881 // <template-param-decl> 1882 // ::= Ty # template type parameter 1883 // ::= Tn <type> # template non-type parameter 1884 // ::= Tt <template-param-decl>* E # template template parameter 1885 // ::= Tp <template-param-decl> # template parameter pack 1886 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { 1887 if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) { 1888 if (Ty->isParameterPack()) 1889 Out << "Tp"; 1890 Out << "Ty"; 1891 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { 1892 if (Tn->isExpandedParameterPack()) { 1893 for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { 1894 Out << "Tn"; 1895 mangleType(Tn->getExpansionType(I)); 1896 } 1897 } else { 1898 QualType T = Tn->getType(); 1899 if (Tn->isParameterPack()) { 1900 Out << "Tp"; 1901 if (auto *PackExpansion = T->getAs<PackExpansionType>()) 1902 T = PackExpansion->getPattern(); 1903 } 1904 Out << "Tn"; 1905 mangleType(T); 1906 } 1907 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { 1908 if (Tt->isExpandedParameterPack()) { 1909 for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; 1910 ++I) { 1911 Out << "Tt"; 1912 for (auto *Param : *Tt->getExpansionTemplateParameters(I)) 1913 mangleTemplateParamDecl(Param); 1914 Out << "E"; 1915 } 1916 } else { 1917 if (Tt->isParameterPack()) 1918 Out << "Tp"; 1919 Out << "Tt"; 1920 for (auto *Param : *Tt->getTemplateParameters()) 1921 mangleTemplateParamDecl(Param); 1922 Out << "E"; 1923 } 1924 } 1925 } 1926 1927 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 1928 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1929 // <data-member-prefix> now, with no substitutions. 1930 if (Decl *Context = Lambda->getLambdaContextDecl()) { 1931 if (getASTContext().getLangOpts().getClangABICompat() <= 1932 LangOptions::ClangABI::Ver12 && 1933 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1934 !isa<ParmVarDecl>(Context)) { 1935 if (const IdentifierInfo *Name 1936 = cast<NamedDecl>(Context)->getIdentifier()) { 1937 mangleSourceName(Name); 1938 const TemplateArgumentList *TemplateArgs = nullptr; 1939 if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 1940 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1941 Out << 'M'; 1942 } 1943 } 1944 } 1945 1946 Out << "Ul"; 1947 mangleLambdaSig(Lambda); 1948 Out << "E"; 1949 1950 // The number is omitted for the first closure type with a given 1951 // <lambda-sig> in a given context; it is n-2 for the nth closure type 1952 // (in lexical order) with that same <lambda-sig> and context. 1953 // 1954 // The AST keeps track of the number for us. 1955 // 1956 // In CUDA/HIP, to ensure the consistent lamba numbering between the device- 1957 // and host-side compilations, an extra device mangle context may be created 1958 // if the host-side CXX ABI has different numbering for lambda. In such case, 1959 // if the mangle context is that device-side one, use the device-side lambda 1960 // mangling number for this lambda. 1961 llvm::Optional<unsigned> DeviceNumber = 1962 Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); 1963 unsigned Number = DeviceNumber.hasValue() ? *DeviceNumber 1964 : Lambda->getLambdaManglingNumber(); 1965 1966 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 1967 if (Number > 1) 1968 mangleNumber(Number - 2); 1969 Out << '_'; 1970 } 1971 1972 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { 1973 for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) 1974 mangleTemplateParamDecl(D); 1975 auto *Proto = 1976 Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); 1977 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 1978 Lambda->getLambdaStaticInvoker()); 1979 } 1980 1981 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 1982 switch (qualifier->getKind()) { 1983 case NestedNameSpecifier::Global: 1984 // nothing 1985 return; 1986 1987 case NestedNameSpecifier::Super: 1988 llvm_unreachable("Can't mangle __super specifier"); 1989 1990 case NestedNameSpecifier::Namespace: 1991 mangleName(qualifier->getAsNamespace()); 1992 return; 1993 1994 case NestedNameSpecifier::NamespaceAlias: 1995 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 1996 return; 1997 1998 case NestedNameSpecifier::TypeSpec: 1999 case NestedNameSpecifier::TypeSpecWithTemplate: 2000 manglePrefix(QualType(qualifier->getAsType(), 0)); 2001 return; 2002 2003 case NestedNameSpecifier::Identifier: 2004 // Member expressions can have these without prefixes, but that 2005 // should end up in mangleUnresolvedPrefix instead. 2006 assert(qualifier->getPrefix()); 2007 manglePrefix(qualifier->getPrefix()); 2008 2009 mangleSourceName(qualifier->getAsIdentifier()); 2010 return; 2011 } 2012 2013 llvm_unreachable("unexpected nested name specifier"); 2014 } 2015 2016 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 2017 // <prefix> ::= <prefix> <unqualified-name> 2018 // ::= <template-prefix> <template-args> 2019 // ::= <closure-prefix> 2020 // ::= <template-param> 2021 // ::= # empty 2022 // ::= <substitution> 2023 2024 DC = IgnoreLinkageSpecDecls(DC); 2025 2026 if (DC->isTranslationUnit()) 2027 return; 2028 2029 if (NoFunction && isLocalContainerContext(DC)) 2030 return; 2031 2032 assert(!isLocalContainerContext(DC)); 2033 2034 const NamedDecl *ND = cast<NamedDecl>(DC); 2035 if (mangleSubstitution(ND)) 2036 return; 2037 2038 // Check if we have a template-prefix or a closure-prefix. 2039 const TemplateArgumentList *TemplateArgs = nullptr; 2040 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2041 mangleTemplatePrefix(TD); 2042 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2043 } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 2044 mangleClosurePrefix(PrefixND, NoFunction); 2045 mangleUnqualifiedName(ND, nullptr); 2046 } else { 2047 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 2048 mangleUnqualifiedName(ND, nullptr); 2049 } 2050 2051 addSubstitution(ND); 2052 } 2053 2054 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 2055 // <template-prefix> ::= <prefix> <template unqualified-name> 2056 // ::= <template-param> 2057 // ::= <substitution> 2058 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 2059 return mangleTemplatePrefix(TD); 2060 2061 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 2062 assert(Dependent && "unexpected template name kind"); 2063 2064 // Clang 11 and before mangled the substitution for a dependent template name 2065 // after already having emitted (a substitution for) the prefix. 2066 bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <= 2067 LangOptions::ClangABI::Ver11; 2068 if (!Clang11Compat && mangleSubstitution(Template)) 2069 return; 2070 2071 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 2072 manglePrefix(Qualifier); 2073 2074 if (Clang11Compat && mangleSubstitution(Template)) 2075 return; 2076 2077 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 2078 mangleSourceName(Id); 2079 else 2080 mangleOperatorName(Dependent->getOperator(), UnknownArity); 2081 2082 addSubstitution(Template); 2083 } 2084 2085 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, 2086 bool NoFunction) { 2087 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 2088 // <template-prefix> ::= <prefix> <template unqualified-name> 2089 // ::= <template-param> 2090 // ::= <substitution> 2091 // <template-template-param> ::= <template-param> 2092 // <substitution> 2093 2094 if (mangleSubstitution(ND)) 2095 return; 2096 2097 // <template-template-param> ::= <template-param> 2098 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 2099 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2100 } else { 2101 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 2102 if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) 2103 mangleUnqualifiedName(GD, nullptr); 2104 else 2105 mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr); 2106 } 2107 2108 addSubstitution(ND); 2109 } 2110 2111 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { 2112 if (getASTContext().getLangOpts().getClangABICompat() <= 2113 LangOptions::ClangABI::Ver12) 2114 return nullptr; 2115 2116 const NamedDecl *Context = nullptr; 2117 if (auto *Block = dyn_cast<BlockDecl>(ND)) { 2118 Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl()); 2119 } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 2120 if (RD->isLambda()) 2121 Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl()); 2122 } 2123 if (!Context) 2124 return nullptr; 2125 2126 // Only lambdas within the initializer of a non-local variable or non-static 2127 // data member get a <closure-prefix>. 2128 if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) || 2129 isa<FieldDecl>(Context)) 2130 return Context; 2131 2132 return nullptr; 2133 } 2134 2135 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { 2136 // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M 2137 // ::= <template-prefix> <template-args> M 2138 if (mangleSubstitution(ND)) 2139 return; 2140 2141 const TemplateArgumentList *TemplateArgs = nullptr; 2142 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2143 mangleTemplatePrefix(TD, NoFunction); 2144 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2145 } else { 2146 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 2147 mangleUnqualifiedName(ND, nullptr); 2148 } 2149 2150 Out << 'M'; 2151 2152 addSubstitution(ND); 2153 } 2154 2155 /// Mangles a template name under the production <type>. Required for 2156 /// template template arguments. 2157 /// <type> ::= <class-enum-type> 2158 /// ::= <template-param> 2159 /// ::= <substitution> 2160 void CXXNameMangler::mangleType(TemplateName TN) { 2161 if (mangleSubstitution(TN)) 2162 return; 2163 2164 TemplateDecl *TD = nullptr; 2165 2166 switch (TN.getKind()) { 2167 case TemplateName::QualifiedTemplate: 2168 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); 2169 goto HaveDecl; 2170 2171 case TemplateName::Template: 2172 TD = TN.getAsTemplateDecl(); 2173 goto HaveDecl; 2174 2175 HaveDecl: 2176 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD)) 2177 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2178 else 2179 mangleName(TD); 2180 break; 2181 2182 case TemplateName::OverloadedTemplate: 2183 case TemplateName::AssumedTemplate: 2184 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 2185 2186 case TemplateName::DependentTemplate: { 2187 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 2188 assert(Dependent->isIdentifier()); 2189 2190 // <class-enum-type> ::= <name> 2191 // <name> ::= <nested-name> 2192 mangleUnresolvedPrefix(Dependent->getQualifier()); 2193 mangleSourceName(Dependent->getIdentifier()); 2194 break; 2195 } 2196 2197 case TemplateName::SubstTemplateTemplateParm: { 2198 // Substituted template parameters are mangled as the substituted 2199 // template. This will check for the substitution twice, which is 2200 // fine, but we have to return early so that we don't try to *add* 2201 // the substitution twice. 2202 SubstTemplateTemplateParmStorage *subst 2203 = TN.getAsSubstTemplateTemplateParm(); 2204 mangleType(subst->getReplacement()); 2205 return; 2206 } 2207 2208 case TemplateName::SubstTemplateTemplateParmPack: { 2209 // FIXME: not clear how to mangle this! 2210 // template <template <class> class T...> class A { 2211 // template <template <class> class U...> void foo(B<T,U> x...); 2212 // }; 2213 Out << "_SUBSTPACK_"; 2214 break; 2215 } 2216 } 2217 2218 addSubstitution(TN); 2219 } 2220 2221 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 2222 StringRef Prefix) { 2223 // Only certain other types are valid as prefixes; enumerate them. 2224 switch (Ty->getTypeClass()) { 2225 case Type::Builtin: 2226 case Type::Complex: 2227 case Type::Adjusted: 2228 case Type::Decayed: 2229 case Type::Pointer: 2230 case Type::BlockPointer: 2231 case Type::LValueReference: 2232 case Type::RValueReference: 2233 case Type::MemberPointer: 2234 case Type::ConstantArray: 2235 case Type::IncompleteArray: 2236 case Type::VariableArray: 2237 case Type::DependentSizedArray: 2238 case Type::DependentAddressSpace: 2239 case Type::DependentVector: 2240 case Type::DependentSizedExtVector: 2241 case Type::Vector: 2242 case Type::ExtVector: 2243 case Type::ConstantMatrix: 2244 case Type::DependentSizedMatrix: 2245 case Type::FunctionProto: 2246 case Type::FunctionNoProto: 2247 case Type::Paren: 2248 case Type::Attributed: 2249 case Type::Auto: 2250 case Type::DeducedTemplateSpecialization: 2251 case Type::PackExpansion: 2252 case Type::ObjCObject: 2253 case Type::ObjCInterface: 2254 case Type::ObjCObjectPointer: 2255 case Type::ObjCTypeParam: 2256 case Type::Atomic: 2257 case Type::Pipe: 2258 case Type::MacroQualified: 2259 case Type::ExtInt: 2260 case Type::DependentExtInt: 2261 llvm_unreachable("type is illegal as a nested name specifier"); 2262 2263 case Type::SubstTemplateTypeParmPack: 2264 // FIXME: not clear how to mangle this! 2265 // template <class T...> class A { 2266 // template <class U...> void foo(decltype(T::foo(U())) x...); 2267 // }; 2268 Out << "_SUBSTPACK_"; 2269 break; 2270 2271 // <unresolved-type> ::= <template-param> 2272 // ::= <decltype> 2273 // ::= <template-template-param> <template-args> 2274 // (this last is not official yet) 2275 case Type::TypeOfExpr: 2276 case Type::TypeOf: 2277 case Type::Decltype: 2278 case Type::TemplateTypeParm: 2279 case Type::UnaryTransform: 2280 case Type::SubstTemplateTypeParm: 2281 unresolvedType: 2282 // Some callers want a prefix before the mangled type. 2283 Out << Prefix; 2284 2285 // This seems to do everything we want. It's not really 2286 // sanctioned for a substituted template parameter, though. 2287 mangleType(Ty); 2288 2289 // We never want to print 'E' directly after an unresolved-type, 2290 // so we return directly. 2291 return true; 2292 2293 case Type::Typedef: 2294 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 2295 break; 2296 2297 case Type::UnresolvedUsing: 2298 mangleSourceNameWithAbiTags( 2299 cast<UnresolvedUsingType>(Ty)->getDecl()); 2300 break; 2301 2302 case Type::Enum: 2303 case Type::Record: 2304 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 2305 break; 2306 2307 case Type::TemplateSpecialization: { 2308 const TemplateSpecializationType *TST = 2309 cast<TemplateSpecializationType>(Ty); 2310 TemplateName TN = TST->getTemplateName(); 2311 switch (TN.getKind()) { 2312 case TemplateName::Template: 2313 case TemplateName::QualifiedTemplate: { 2314 TemplateDecl *TD = TN.getAsTemplateDecl(); 2315 2316 // If the base is a template template parameter, this is an 2317 // unresolved type. 2318 assert(TD && "no template for template specialization type"); 2319 if (isa<TemplateTemplateParmDecl>(TD)) 2320 goto unresolvedType; 2321 2322 mangleSourceNameWithAbiTags(TD); 2323 break; 2324 } 2325 2326 case TemplateName::OverloadedTemplate: 2327 case TemplateName::AssumedTemplate: 2328 case TemplateName::DependentTemplate: 2329 llvm_unreachable("invalid base for a template specialization type"); 2330 2331 case TemplateName::SubstTemplateTemplateParm: { 2332 SubstTemplateTemplateParmStorage *subst = 2333 TN.getAsSubstTemplateTemplateParm(); 2334 mangleExistingSubstitution(subst->getReplacement()); 2335 break; 2336 } 2337 2338 case TemplateName::SubstTemplateTemplateParmPack: { 2339 // FIXME: not clear how to mangle this! 2340 // template <template <class U> class T...> class A { 2341 // template <class U...> void foo(decltype(T<U>::foo) x...); 2342 // }; 2343 Out << "_SUBSTPACK_"; 2344 break; 2345 } 2346 } 2347 2348 // Note: we don't pass in the template name here. We are mangling the 2349 // original source-level template arguments, so we shouldn't consider 2350 // conversions to the corresponding template parameter. 2351 // FIXME: Other compilers mangle partially-resolved template arguments in 2352 // unresolved-qualifier-levels. 2353 mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs()); 2354 break; 2355 } 2356 2357 case Type::InjectedClassName: 2358 mangleSourceNameWithAbiTags( 2359 cast<InjectedClassNameType>(Ty)->getDecl()); 2360 break; 2361 2362 case Type::DependentName: 2363 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2364 break; 2365 2366 case Type::DependentTemplateSpecialization: { 2367 const DependentTemplateSpecializationType *DTST = 2368 cast<DependentTemplateSpecializationType>(Ty); 2369 TemplateName Template = getASTContext().getDependentTemplateName( 2370 DTST->getQualifier(), DTST->getIdentifier()); 2371 mangleSourceName(DTST->getIdentifier()); 2372 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); 2373 break; 2374 } 2375 2376 case Type::Elaborated: 2377 return mangleUnresolvedTypeOrSimpleId( 2378 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2379 } 2380 2381 return false; 2382 } 2383 2384 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2385 switch (Name.getNameKind()) { 2386 case DeclarationName::CXXConstructorName: 2387 case DeclarationName::CXXDestructorName: 2388 case DeclarationName::CXXDeductionGuideName: 2389 case DeclarationName::CXXUsingDirective: 2390 case DeclarationName::Identifier: 2391 case DeclarationName::ObjCMultiArgSelector: 2392 case DeclarationName::ObjCOneArgSelector: 2393 case DeclarationName::ObjCZeroArgSelector: 2394 llvm_unreachable("Not an operator name"); 2395 2396 case DeclarationName::CXXConversionFunctionName: 2397 // <operator-name> ::= cv <type> # (cast) 2398 Out << "cv"; 2399 mangleType(Name.getCXXNameType()); 2400 break; 2401 2402 case DeclarationName::CXXLiteralOperatorName: 2403 Out << "li"; 2404 mangleSourceName(Name.getCXXLiteralIdentifier()); 2405 return; 2406 2407 case DeclarationName::CXXOperatorName: 2408 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2409 break; 2410 } 2411 } 2412 2413 void 2414 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2415 switch (OO) { 2416 // <operator-name> ::= nw # new 2417 case OO_New: Out << "nw"; break; 2418 // ::= na # new[] 2419 case OO_Array_New: Out << "na"; break; 2420 // ::= dl # delete 2421 case OO_Delete: Out << "dl"; break; 2422 // ::= da # delete[] 2423 case OO_Array_Delete: Out << "da"; break; 2424 // ::= ps # + (unary) 2425 // ::= pl # + (binary or unknown) 2426 case OO_Plus: 2427 Out << (Arity == 1? "ps" : "pl"); break; 2428 // ::= ng # - (unary) 2429 // ::= mi # - (binary or unknown) 2430 case OO_Minus: 2431 Out << (Arity == 1? "ng" : "mi"); break; 2432 // ::= ad # & (unary) 2433 // ::= an # & (binary or unknown) 2434 case OO_Amp: 2435 Out << (Arity == 1? "ad" : "an"); break; 2436 // ::= de # * (unary) 2437 // ::= ml # * (binary or unknown) 2438 case OO_Star: 2439 // Use binary when unknown. 2440 Out << (Arity == 1? "de" : "ml"); break; 2441 // ::= co # ~ 2442 case OO_Tilde: Out << "co"; break; 2443 // ::= dv # / 2444 case OO_Slash: Out << "dv"; break; 2445 // ::= rm # % 2446 case OO_Percent: Out << "rm"; break; 2447 // ::= or # | 2448 case OO_Pipe: Out << "or"; break; 2449 // ::= eo # ^ 2450 case OO_Caret: Out << "eo"; break; 2451 // ::= aS # = 2452 case OO_Equal: Out << "aS"; break; 2453 // ::= pL # += 2454 case OO_PlusEqual: Out << "pL"; break; 2455 // ::= mI # -= 2456 case OO_MinusEqual: Out << "mI"; break; 2457 // ::= mL # *= 2458 case OO_StarEqual: Out << "mL"; break; 2459 // ::= dV # /= 2460 case OO_SlashEqual: Out << "dV"; break; 2461 // ::= rM # %= 2462 case OO_PercentEqual: Out << "rM"; break; 2463 // ::= aN # &= 2464 case OO_AmpEqual: Out << "aN"; break; 2465 // ::= oR # |= 2466 case OO_PipeEqual: Out << "oR"; break; 2467 // ::= eO # ^= 2468 case OO_CaretEqual: Out << "eO"; break; 2469 // ::= ls # << 2470 case OO_LessLess: Out << "ls"; break; 2471 // ::= rs # >> 2472 case OO_GreaterGreater: Out << "rs"; break; 2473 // ::= lS # <<= 2474 case OO_LessLessEqual: Out << "lS"; break; 2475 // ::= rS # >>= 2476 case OO_GreaterGreaterEqual: Out << "rS"; break; 2477 // ::= eq # == 2478 case OO_EqualEqual: Out << "eq"; break; 2479 // ::= ne # != 2480 case OO_ExclaimEqual: Out << "ne"; break; 2481 // ::= lt # < 2482 case OO_Less: Out << "lt"; break; 2483 // ::= gt # > 2484 case OO_Greater: Out << "gt"; break; 2485 // ::= le # <= 2486 case OO_LessEqual: Out << "le"; break; 2487 // ::= ge # >= 2488 case OO_GreaterEqual: Out << "ge"; break; 2489 // ::= nt # ! 2490 case OO_Exclaim: Out << "nt"; break; 2491 // ::= aa # && 2492 case OO_AmpAmp: Out << "aa"; break; 2493 // ::= oo # || 2494 case OO_PipePipe: Out << "oo"; break; 2495 // ::= pp # ++ 2496 case OO_PlusPlus: Out << "pp"; break; 2497 // ::= mm # -- 2498 case OO_MinusMinus: Out << "mm"; break; 2499 // ::= cm # , 2500 case OO_Comma: Out << "cm"; break; 2501 // ::= pm # ->* 2502 case OO_ArrowStar: Out << "pm"; break; 2503 // ::= pt # -> 2504 case OO_Arrow: Out << "pt"; break; 2505 // ::= cl # () 2506 case OO_Call: Out << "cl"; break; 2507 // ::= ix # [] 2508 case OO_Subscript: Out << "ix"; break; 2509 2510 // ::= qu # ? 2511 // The conditional operator can't be overloaded, but we still handle it when 2512 // mangling expressions. 2513 case OO_Conditional: Out << "qu"; break; 2514 // Proposal on cxx-abi-dev, 2015-10-21. 2515 // ::= aw # co_await 2516 case OO_Coawait: Out << "aw"; break; 2517 // Proposed in cxx-abi github issue 43. 2518 // ::= ss # <=> 2519 case OO_Spaceship: Out << "ss"; break; 2520 2521 case OO_None: 2522 case NUM_OVERLOADED_OPERATORS: 2523 llvm_unreachable("Not an overloaded operator"); 2524 } 2525 } 2526 2527 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2528 // Vendor qualifiers come first and if they are order-insensitive they must 2529 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2530 2531 // <type> ::= U <addrspace-expr> 2532 if (DAST) { 2533 Out << "U2ASI"; 2534 mangleExpression(DAST->getAddrSpaceExpr()); 2535 Out << "E"; 2536 } 2537 2538 // Address space qualifiers start with an ordinary letter. 2539 if (Quals.hasAddressSpace()) { 2540 // Address space extension: 2541 // 2542 // <type> ::= U <target-addrspace> 2543 // <type> ::= U <OpenCL-addrspace> 2544 // <type> ::= U <CUDA-addrspace> 2545 2546 SmallString<64> ASString; 2547 LangAS AS = Quals.getAddressSpace(); 2548 2549 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2550 // <target-addrspace> ::= "AS" <address-space-number> 2551 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2552 if (TargetAS != 0 || 2553 Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0) 2554 ASString = "AS" + llvm::utostr(TargetAS); 2555 } else { 2556 switch (AS) { 2557 default: llvm_unreachable("Not a language specific address space"); 2558 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2559 // "private"| "generic" | "device" | 2560 // "host" ] 2561 case LangAS::opencl_global: 2562 ASString = "CLglobal"; 2563 break; 2564 case LangAS::opencl_global_device: 2565 ASString = "CLdevice"; 2566 break; 2567 case LangAS::opencl_global_host: 2568 ASString = "CLhost"; 2569 break; 2570 case LangAS::opencl_local: 2571 ASString = "CLlocal"; 2572 break; 2573 case LangAS::opencl_constant: 2574 ASString = "CLconstant"; 2575 break; 2576 case LangAS::opencl_private: 2577 ASString = "CLprivate"; 2578 break; 2579 case LangAS::opencl_generic: 2580 ASString = "CLgeneric"; 2581 break; 2582 // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | 2583 // "device" | "host" ] 2584 case LangAS::sycl_global: 2585 ASString = "SYglobal"; 2586 break; 2587 case LangAS::sycl_global_device: 2588 ASString = "SYdevice"; 2589 break; 2590 case LangAS::sycl_global_host: 2591 ASString = "SYhost"; 2592 break; 2593 case LangAS::sycl_local: 2594 ASString = "SYlocal"; 2595 break; 2596 case LangAS::sycl_private: 2597 ASString = "SYprivate"; 2598 break; 2599 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2600 case LangAS::cuda_device: 2601 ASString = "CUdevice"; 2602 break; 2603 case LangAS::cuda_constant: 2604 ASString = "CUconstant"; 2605 break; 2606 case LangAS::cuda_shared: 2607 ASString = "CUshared"; 2608 break; 2609 // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] 2610 case LangAS::ptr32_sptr: 2611 ASString = "ptr32_sptr"; 2612 break; 2613 case LangAS::ptr32_uptr: 2614 ASString = "ptr32_uptr"; 2615 break; 2616 case LangAS::ptr64: 2617 ASString = "ptr64"; 2618 break; 2619 } 2620 } 2621 if (!ASString.empty()) 2622 mangleVendorQualifier(ASString); 2623 } 2624 2625 // The ARC ownership qualifiers start with underscores. 2626 // Objective-C ARC Extension: 2627 // 2628 // <type> ::= U "__strong" 2629 // <type> ::= U "__weak" 2630 // <type> ::= U "__autoreleasing" 2631 // 2632 // Note: we emit __weak first to preserve the order as 2633 // required by the Itanium ABI. 2634 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2635 mangleVendorQualifier("__weak"); 2636 2637 // __unaligned (from -fms-extensions) 2638 if (Quals.hasUnaligned()) 2639 mangleVendorQualifier("__unaligned"); 2640 2641 // Remaining ARC ownership qualifiers. 2642 switch (Quals.getObjCLifetime()) { 2643 case Qualifiers::OCL_None: 2644 break; 2645 2646 case Qualifiers::OCL_Weak: 2647 // Do nothing as we already handled this case above. 2648 break; 2649 2650 case Qualifiers::OCL_Strong: 2651 mangleVendorQualifier("__strong"); 2652 break; 2653 2654 case Qualifiers::OCL_Autoreleasing: 2655 mangleVendorQualifier("__autoreleasing"); 2656 break; 2657 2658 case Qualifiers::OCL_ExplicitNone: 2659 // The __unsafe_unretained qualifier is *not* mangled, so that 2660 // __unsafe_unretained types in ARC produce the same manglings as the 2661 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2662 // better ABI compatibility. 2663 // 2664 // It's safe to do this because unqualified 'id' won't show up 2665 // in any type signatures that need to be mangled. 2666 break; 2667 } 2668 2669 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2670 if (Quals.hasRestrict()) 2671 Out << 'r'; 2672 if (Quals.hasVolatile()) 2673 Out << 'V'; 2674 if (Quals.hasConst()) 2675 Out << 'K'; 2676 } 2677 2678 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2679 Out << 'U' << name.size() << name; 2680 } 2681 2682 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2683 // <ref-qualifier> ::= R # lvalue reference 2684 // ::= O # rvalue-reference 2685 switch (RefQualifier) { 2686 case RQ_None: 2687 break; 2688 2689 case RQ_LValue: 2690 Out << 'R'; 2691 break; 2692 2693 case RQ_RValue: 2694 Out << 'O'; 2695 break; 2696 } 2697 } 2698 2699 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2700 Context.mangleObjCMethodNameAsSourceName(MD, Out); 2701 } 2702 2703 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2704 ASTContext &Ctx) { 2705 if (Quals) 2706 return true; 2707 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2708 return true; 2709 if (Ty->isOpenCLSpecificType()) 2710 return true; 2711 if (Ty->isBuiltinType()) 2712 return false; 2713 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2714 // substitution candidates. 2715 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2716 isa<AutoType>(Ty)) 2717 return false; 2718 // A placeholder type for class template deduction is substitutable with 2719 // its corresponding template name; this is handled specially when mangling 2720 // the type. 2721 if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) 2722 if (DeducedTST->getDeducedType().isNull()) 2723 return false; 2724 return true; 2725 } 2726 2727 void CXXNameMangler::mangleType(QualType T) { 2728 // If our type is instantiation-dependent but not dependent, we mangle 2729 // it as it was written in the source, removing any top-level sugar. 2730 // Otherwise, use the canonical type. 2731 // 2732 // FIXME: This is an approximation of the instantiation-dependent name 2733 // mangling rules, since we should really be using the type as written and 2734 // augmented via semantic analysis (i.e., with implicit conversions and 2735 // default template arguments) for any instantiation-dependent type. 2736 // Unfortunately, that requires several changes to our AST: 2737 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2738 // uniqued, so that we can handle substitutions properly 2739 // - Default template arguments will need to be represented in the 2740 // TemplateSpecializationType, since they need to be mangled even though 2741 // they aren't written. 2742 // - Conversions on non-type template arguments need to be expressed, since 2743 // they can affect the mangling of sizeof/alignof. 2744 // 2745 // FIXME: This is wrong when mapping to the canonical type for a dependent 2746 // type discards instantiation-dependent portions of the type, such as for: 2747 // 2748 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2749 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2750 // 2751 // It's also wrong in the opposite direction when instantiation-dependent, 2752 // canonically-equivalent types differ in some irrelevant portion of inner 2753 // type sugar. In such cases, we fail to form correct substitutions, eg: 2754 // 2755 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2756 // 2757 // We should instead canonicalize the non-instantiation-dependent parts, 2758 // regardless of whether the type as a whole is dependent or instantiation 2759 // dependent. 2760 if (!T->isInstantiationDependentType() || T->isDependentType()) 2761 T = T.getCanonicalType(); 2762 else { 2763 // Desugar any types that are purely sugar. 2764 do { 2765 // Don't desugar through template specialization types that aren't 2766 // type aliases. We need to mangle the template arguments as written. 2767 if (const TemplateSpecializationType *TST 2768 = dyn_cast<TemplateSpecializationType>(T)) 2769 if (!TST->isTypeAlias()) 2770 break; 2771 2772 // FIXME: We presumably shouldn't strip off ElaboratedTypes with 2773 // instantation-dependent qualifiers. See 2774 // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. 2775 2776 QualType Desugared 2777 = T.getSingleStepDesugaredType(Context.getASTContext()); 2778 if (Desugared == T) 2779 break; 2780 2781 T = Desugared; 2782 } while (true); 2783 } 2784 SplitQualType split = T.split(); 2785 Qualifiers quals = split.Quals; 2786 const Type *ty = split.Ty; 2787 2788 bool isSubstitutable = 2789 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2790 if (isSubstitutable && mangleSubstitution(T)) 2791 return; 2792 2793 // If we're mangling a qualified array type, push the qualifiers to 2794 // the element type. 2795 if (quals && isa<ArrayType>(T)) { 2796 ty = Context.getASTContext().getAsArrayType(T); 2797 quals = Qualifiers(); 2798 2799 // Note that we don't update T: we want to add the 2800 // substitution at the original type. 2801 } 2802 2803 if (quals || ty->isDependentAddressSpaceType()) { 2804 if (const DependentAddressSpaceType *DAST = 2805 dyn_cast<DependentAddressSpaceType>(ty)) { 2806 SplitQualType splitDAST = DAST->getPointeeType().split(); 2807 mangleQualifiers(splitDAST.Quals, DAST); 2808 mangleType(QualType(splitDAST.Ty, 0)); 2809 } else { 2810 mangleQualifiers(quals); 2811 2812 // Recurse: even if the qualified type isn't yet substitutable, 2813 // the unqualified type might be. 2814 mangleType(QualType(ty, 0)); 2815 } 2816 } else { 2817 switch (ty->getTypeClass()) { 2818 #define ABSTRACT_TYPE(CLASS, PARENT) 2819 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2820 case Type::CLASS: \ 2821 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2822 return; 2823 #define TYPE(CLASS, PARENT) \ 2824 case Type::CLASS: \ 2825 mangleType(static_cast<const CLASS##Type*>(ty)); \ 2826 break; 2827 #include "clang/AST/TypeNodes.inc" 2828 } 2829 } 2830 2831 // Add the substitution. 2832 if (isSubstitutable) 2833 addSubstitution(T); 2834 } 2835 2836 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 2837 if (!mangleStandardSubstitution(ND)) 2838 mangleName(ND); 2839 } 2840 2841 void CXXNameMangler::mangleType(const BuiltinType *T) { 2842 // <type> ::= <builtin-type> 2843 // <builtin-type> ::= v # void 2844 // ::= w # wchar_t 2845 // ::= b # bool 2846 // ::= c # char 2847 // ::= a # signed char 2848 // ::= h # unsigned char 2849 // ::= s # short 2850 // ::= t # unsigned short 2851 // ::= i # int 2852 // ::= j # unsigned int 2853 // ::= l # long 2854 // ::= m # unsigned long 2855 // ::= x # long long, __int64 2856 // ::= y # unsigned long long, __int64 2857 // ::= n # __int128 2858 // ::= o # unsigned __int128 2859 // ::= f # float 2860 // ::= d # double 2861 // ::= e # long double, __float80 2862 // ::= g # __float128 2863 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 2864 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 2865 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 2866 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 2867 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 2868 // ::= Di # char32_t 2869 // ::= Ds # char16_t 2870 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 2871 // ::= u <source-name> # vendor extended type 2872 std::string type_name; 2873 switch (T->getKind()) { 2874 case BuiltinType::Void: 2875 Out << 'v'; 2876 break; 2877 case BuiltinType::Bool: 2878 Out << 'b'; 2879 break; 2880 case BuiltinType::Char_U: 2881 case BuiltinType::Char_S: 2882 Out << 'c'; 2883 break; 2884 case BuiltinType::UChar: 2885 Out << 'h'; 2886 break; 2887 case BuiltinType::UShort: 2888 Out << 't'; 2889 break; 2890 case BuiltinType::UInt: 2891 Out << 'j'; 2892 break; 2893 case BuiltinType::ULong: 2894 Out << 'm'; 2895 break; 2896 case BuiltinType::ULongLong: 2897 Out << 'y'; 2898 break; 2899 case BuiltinType::UInt128: 2900 Out << 'o'; 2901 break; 2902 case BuiltinType::SChar: 2903 Out << 'a'; 2904 break; 2905 case BuiltinType::WChar_S: 2906 case BuiltinType::WChar_U: 2907 Out << 'w'; 2908 break; 2909 case BuiltinType::Char8: 2910 Out << "Du"; 2911 break; 2912 case BuiltinType::Char16: 2913 Out << "Ds"; 2914 break; 2915 case BuiltinType::Char32: 2916 Out << "Di"; 2917 break; 2918 case BuiltinType::Short: 2919 Out << 's'; 2920 break; 2921 case BuiltinType::Int: 2922 Out << 'i'; 2923 break; 2924 case BuiltinType::Long: 2925 Out << 'l'; 2926 break; 2927 case BuiltinType::LongLong: 2928 Out << 'x'; 2929 break; 2930 case BuiltinType::Int128: 2931 Out << 'n'; 2932 break; 2933 case BuiltinType::Float16: 2934 Out << "DF16_"; 2935 break; 2936 case BuiltinType::ShortAccum: 2937 case BuiltinType::Accum: 2938 case BuiltinType::LongAccum: 2939 case BuiltinType::UShortAccum: 2940 case BuiltinType::UAccum: 2941 case BuiltinType::ULongAccum: 2942 case BuiltinType::ShortFract: 2943 case BuiltinType::Fract: 2944 case BuiltinType::LongFract: 2945 case BuiltinType::UShortFract: 2946 case BuiltinType::UFract: 2947 case BuiltinType::ULongFract: 2948 case BuiltinType::SatShortAccum: 2949 case BuiltinType::SatAccum: 2950 case BuiltinType::SatLongAccum: 2951 case BuiltinType::SatUShortAccum: 2952 case BuiltinType::SatUAccum: 2953 case BuiltinType::SatULongAccum: 2954 case BuiltinType::SatShortFract: 2955 case BuiltinType::SatFract: 2956 case BuiltinType::SatLongFract: 2957 case BuiltinType::SatUShortFract: 2958 case BuiltinType::SatUFract: 2959 case BuiltinType::SatULongFract: 2960 llvm_unreachable("Fixed point types are disabled for c++"); 2961 case BuiltinType::Half: 2962 Out << "Dh"; 2963 break; 2964 case BuiltinType::Float: 2965 Out << 'f'; 2966 break; 2967 case BuiltinType::Double: 2968 Out << 'd'; 2969 break; 2970 case BuiltinType::LongDouble: { 2971 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && 2972 getASTContext().getLangOpts().OpenMPIsDevice 2973 ? getASTContext().getAuxTargetInfo() 2974 : &getASTContext().getTargetInfo(); 2975 Out << TI->getLongDoubleMangling(); 2976 break; 2977 } 2978 case BuiltinType::Float128: { 2979 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && 2980 getASTContext().getLangOpts().OpenMPIsDevice 2981 ? getASTContext().getAuxTargetInfo() 2982 : &getASTContext().getTargetInfo(); 2983 Out << TI->getFloat128Mangling(); 2984 break; 2985 } 2986 case BuiltinType::BFloat16: { 2987 const TargetInfo *TI = &getASTContext().getTargetInfo(); 2988 Out << TI->getBFloat16Mangling(); 2989 break; 2990 } 2991 case BuiltinType::NullPtr: 2992 Out << "Dn"; 2993 break; 2994 2995 #define BUILTIN_TYPE(Id, SingletonId) 2996 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2997 case BuiltinType::Id: 2998 #include "clang/AST/BuiltinTypes.def" 2999 case BuiltinType::Dependent: 3000 if (!NullOut) 3001 llvm_unreachable("mangling a placeholder type"); 3002 break; 3003 case BuiltinType::ObjCId: 3004 Out << "11objc_object"; 3005 break; 3006 case BuiltinType::ObjCClass: 3007 Out << "10objc_class"; 3008 break; 3009 case BuiltinType::ObjCSel: 3010 Out << "13objc_selector"; 3011 break; 3012 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 3013 case BuiltinType::Id: \ 3014 type_name = "ocl_" #ImgType "_" #Suffix; \ 3015 Out << type_name.size() << type_name; \ 3016 break; 3017 #include "clang/Basic/OpenCLImageTypes.def" 3018 case BuiltinType::OCLSampler: 3019 Out << "11ocl_sampler"; 3020 break; 3021 case BuiltinType::OCLEvent: 3022 Out << "9ocl_event"; 3023 break; 3024 case BuiltinType::OCLClkEvent: 3025 Out << "12ocl_clkevent"; 3026 break; 3027 case BuiltinType::OCLQueue: 3028 Out << "9ocl_queue"; 3029 break; 3030 case BuiltinType::OCLReserveID: 3031 Out << "13ocl_reserveid"; 3032 break; 3033 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 3034 case BuiltinType::Id: \ 3035 type_name = "ocl_" #ExtType; \ 3036 Out << type_name.size() << type_name; \ 3037 break; 3038 #include "clang/Basic/OpenCLExtensionTypes.def" 3039 // The SVE types are effectively target-specific. The mangling scheme 3040 // is defined in the appendices to the Procedure Call Standard for the 3041 // Arm Architecture. 3042 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ 3043 ElBits, IsSigned, IsFP, IsBF) \ 3044 case BuiltinType::Id: \ 3045 type_name = MangledName; \ 3046 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3047 << type_name; \ 3048 break; 3049 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ 3050 case BuiltinType::Id: \ 3051 type_name = MangledName; \ 3052 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3053 << type_name; \ 3054 break; 3055 #include "clang/Basic/AArch64SVEACLETypes.def" 3056 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 3057 case BuiltinType::Id: \ 3058 type_name = #Name; \ 3059 Out << 'u' << type_name.size() << type_name; \ 3060 break; 3061 #include "clang/Basic/PPCTypes.def" 3062 // TODO: Check the mangling scheme for RISC-V V. 3063 #define RVV_TYPE(Name, Id, SingletonId) \ 3064 case BuiltinType::Id: \ 3065 type_name = Name; \ 3066 Out << 'u' << type_name.size() << type_name; \ 3067 break; 3068 #include "clang/Basic/RISCVVTypes.def" 3069 } 3070 } 3071 3072 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 3073 switch (CC) { 3074 case CC_C: 3075 return ""; 3076 3077 case CC_X86VectorCall: 3078 case CC_X86Pascal: 3079 case CC_X86RegCall: 3080 case CC_AAPCS: 3081 case CC_AAPCS_VFP: 3082 case CC_AArch64VectorCall: 3083 case CC_IntelOclBicc: 3084 case CC_SpirFunction: 3085 case CC_OpenCLKernel: 3086 case CC_PreserveMost: 3087 case CC_PreserveAll: 3088 // FIXME: we should be mangling all of the above. 3089 return ""; 3090 3091 case CC_X86ThisCall: 3092 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is 3093 // used explicitly. At this point, we don't have that much information in 3094 // the AST, since clang tends to bake the convention into the canonical 3095 // function type. thiscall only rarely used explicitly, so don't mangle it 3096 // for now. 3097 return ""; 3098 3099 case CC_X86StdCall: 3100 return "stdcall"; 3101 case CC_X86FastCall: 3102 return "fastcall"; 3103 case CC_X86_64SysV: 3104 return "sysv_abi"; 3105 case CC_Win64: 3106 return "ms_abi"; 3107 case CC_Swift: 3108 return "swiftcall"; 3109 case CC_SwiftAsync: 3110 return "swiftasynccall"; 3111 } 3112 llvm_unreachable("bad calling convention"); 3113 } 3114 3115 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 3116 // Fast path. 3117 if (T->getExtInfo() == FunctionType::ExtInfo()) 3118 return; 3119 3120 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3121 // This will get more complicated in the future if we mangle other 3122 // things here; but for now, since we mangle ns_returns_retained as 3123 // a qualifier on the result type, we can get away with this: 3124 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 3125 if (!CCQualifier.empty()) 3126 mangleVendorQualifier(CCQualifier); 3127 3128 // FIXME: regparm 3129 // FIXME: noreturn 3130 } 3131 3132 void 3133 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 3134 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3135 3136 // Note that these are *not* substitution candidates. Demanglers might 3137 // have trouble with this if the parameter type is fully substituted. 3138 3139 switch (PI.getABI()) { 3140 case ParameterABI::Ordinary: 3141 break; 3142 3143 // All of these start with "swift", so they come before "ns_consumed". 3144 case ParameterABI::SwiftContext: 3145 case ParameterABI::SwiftAsyncContext: 3146 case ParameterABI::SwiftErrorResult: 3147 case ParameterABI::SwiftIndirectResult: 3148 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 3149 break; 3150 } 3151 3152 if (PI.isConsumed()) 3153 mangleVendorQualifier("ns_consumed"); 3154 3155 if (PI.isNoEscape()) 3156 mangleVendorQualifier("noescape"); 3157 } 3158 3159 // <type> ::= <function-type> 3160 // <function-type> ::= [<CV-qualifiers>] F [Y] 3161 // <bare-function-type> [<ref-qualifier>] E 3162 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 3163 mangleExtFunctionInfo(T); 3164 3165 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 3166 // e.g. "const" in "int (A::*)() const". 3167 mangleQualifiers(T->getMethodQuals()); 3168 3169 // Mangle instantiation-dependent exception-specification, if present, 3170 // per cxx-abi-dev proposal on 2016-10-11. 3171 if (T->hasInstantiationDependentExceptionSpec()) { 3172 if (isComputedNoexcept(T->getExceptionSpecType())) { 3173 Out << "DO"; 3174 mangleExpression(T->getNoexceptExpr()); 3175 Out << "E"; 3176 } else { 3177 assert(T->getExceptionSpecType() == EST_Dynamic); 3178 Out << "Dw"; 3179 for (auto ExceptTy : T->exceptions()) 3180 mangleType(ExceptTy); 3181 Out << "E"; 3182 } 3183 } else if (T->isNothrow()) { 3184 Out << "Do"; 3185 } 3186 3187 Out << 'F'; 3188 3189 // FIXME: We don't have enough information in the AST to produce the 'Y' 3190 // encoding for extern "C" function types. 3191 mangleBareFunctionType(T, /*MangleReturnType=*/true); 3192 3193 // Mangle the ref-qualifier, if present. 3194 mangleRefQualifier(T->getRefQualifier()); 3195 3196 Out << 'E'; 3197 } 3198 3199 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 3200 // Function types without prototypes can arise when mangling a function type 3201 // within an overloadable function in C. We mangle these as the absence of any 3202 // parameter types (not even an empty parameter list). 3203 Out << 'F'; 3204 3205 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3206 3207 FunctionTypeDepth.enterResultType(); 3208 mangleType(T->getReturnType()); 3209 FunctionTypeDepth.leaveResultType(); 3210 3211 FunctionTypeDepth.pop(saved); 3212 Out << 'E'; 3213 } 3214 3215 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 3216 bool MangleReturnType, 3217 const FunctionDecl *FD) { 3218 // Record that we're in a function type. See mangleFunctionParam 3219 // for details on what we're trying to achieve here. 3220 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3221 3222 // <bare-function-type> ::= <signature type>+ 3223 if (MangleReturnType) { 3224 FunctionTypeDepth.enterResultType(); 3225 3226 // Mangle ns_returns_retained as an order-sensitive qualifier here. 3227 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 3228 mangleVendorQualifier("ns_returns_retained"); 3229 3230 // Mangle the return type without any direct ARC ownership qualifiers. 3231 QualType ReturnTy = Proto->getReturnType(); 3232 if (ReturnTy.getObjCLifetime()) { 3233 auto SplitReturnTy = ReturnTy.split(); 3234 SplitReturnTy.Quals.removeObjCLifetime(); 3235 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 3236 } 3237 mangleType(ReturnTy); 3238 3239 FunctionTypeDepth.leaveResultType(); 3240 } 3241 3242 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 3243 // <builtin-type> ::= v # void 3244 Out << 'v'; 3245 3246 FunctionTypeDepth.pop(saved); 3247 return; 3248 } 3249 3250 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 3251 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 3252 // Mangle extended parameter info as order-sensitive qualifiers here. 3253 if (Proto->hasExtParameterInfos() && FD == nullptr) { 3254 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 3255 } 3256 3257 // Mangle the type. 3258 QualType ParamTy = Proto->getParamType(I); 3259 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 3260 3261 if (FD) { 3262 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 3263 // Attr can only take 1 character, so we can hardcode the length below. 3264 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 3265 if (Attr->isDynamic()) 3266 Out << "U25pass_dynamic_object_size" << Attr->getType(); 3267 else 3268 Out << "U17pass_object_size" << Attr->getType(); 3269 } 3270 } 3271 } 3272 3273 FunctionTypeDepth.pop(saved); 3274 3275 // <builtin-type> ::= z # ellipsis 3276 if (Proto->isVariadic()) 3277 Out << 'z'; 3278 } 3279 3280 // <type> ::= <class-enum-type> 3281 // <class-enum-type> ::= <name> 3282 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 3283 mangleName(T->getDecl()); 3284 } 3285 3286 // <type> ::= <class-enum-type> 3287 // <class-enum-type> ::= <name> 3288 void CXXNameMangler::mangleType(const EnumType *T) { 3289 mangleType(static_cast<const TagType*>(T)); 3290 } 3291 void CXXNameMangler::mangleType(const RecordType *T) { 3292 mangleType(static_cast<const TagType*>(T)); 3293 } 3294 void CXXNameMangler::mangleType(const TagType *T) { 3295 mangleName(T->getDecl()); 3296 } 3297 3298 // <type> ::= <array-type> 3299 // <array-type> ::= A <positive dimension number> _ <element type> 3300 // ::= A [<dimension expression>] _ <element type> 3301 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 3302 Out << 'A' << T->getSize() << '_'; 3303 mangleType(T->getElementType()); 3304 } 3305 void CXXNameMangler::mangleType(const VariableArrayType *T) { 3306 Out << 'A'; 3307 // decayed vla types (size 0) will just be skipped. 3308 if (T->getSizeExpr()) 3309 mangleExpression(T->getSizeExpr()); 3310 Out << '_'; 3311 mangleType(T->getElementType()); 3312 } 3313 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 3314 Out << 'A'; 3315 // A DependentSizedArrayType might not have size expression as below 3316 // 3317 // template<int ...N> int arr[] = {N...}; 3318 if (T->getSizeExpr()) 3319 mangleExpression(T->getSizeExpr()); 3320 Out << '_'; 3321 mangleType(T->getElementType()); 3322 } 3323 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 3324 Out << "A_"; 3325 mangleType(T->getElementType()); 3326 } 3327 3328 // <type> ::= <pointer-to-member-type> 3329 // <pointer-to-member-type> ::= M <class type> <member type> 3330 void CXXNameMangler::mangleType(const MemberPointerType *T) { 3331 Out << 'M'; 3332 mangleType(QualType(T->getClass(), 0)); 3333 QualType PointeeType = T->getPointeeType(); 3334 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 3335 mangleType(FPT); 3336 3337 // Itanium C++ ABI 5.1.8: 3338 // 3339 // The type of a non-static member function is considered to be different, 3340 // for the purposes of substitution, from the type of a namespace-scope or 3341 // static member function whose type appears similar. The types of two 3342 // non-static member functions are considered to be different, for the 3343 // purposes of substitution, if the functions are members of different 3344 // classes. In other words, for the purposes of substitution, the class of 3345 // which the function is a member is considered part of the type of 3346 // function. 3347 3348 // Given that we already substitute member function pointers as a 3349 // whole, the net effect of this rule is just to unconditionally 3350 // suppress substitution on the function type in a member pointer. 3351 // We increment the SeqID here to emulate adding an entry to the 3352 // substitution table. 3353 ++SeqID; 3354 } else 3355 mangleType(PointeeType); 3356 } 3357 3358 // <type> ::= <template-param> 3359 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 3360 mangleTemplateParameter(T->getDepth(), T->getIndex()); 3361 } 3362 3363 // <type> ::= <template-param> 3364 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 3365 // FIXME: not clear how to mangle this! 3366 // template <class T...> class A { 3367 // template <class U...> void foo(T(*)(U) x...); 3368 // }; 3369 Out << "_SUBSTPACK_"; 3370 } 3371 3372 // <type> ::= P <type> # pointer-to 3373 void CXXNameMangler::mangleType(const PointerType *T) { 3374 Out << 'P'; 3375 mangleType(T->getPointeeType()); 3376 } 3377 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 3378 Out << 'P'; 3379 mangleType(T->getPointeeType()); 3380 } 3381 3382 // <type> ::= R <type> # reference-to 3383 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 3384 Out << 'R'; 3385 mangleType(T->getPointeeType()); 3386 } 3387 3388 // <type> ::= O <type> # rvalue reference-to (C++0x) 3389 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 3390 Out << 'O'; 3391 mangleType(T->getPointeeType()); 3392 } 3393 3394 // <type> ::= C <type> # complex pair (C 2000) 3395 void CXXNameMangler::mangleType(const ComplexType *T) { 3396 Out << 'C'; 3397 mangleType(T->getElementType()); 3398 } 3399 3400 // ARM's ABI for Neon vector types specifies that they should be mangled as 3401 // if they are structs (to match ARM's initial implementation). The 3402 // vector type must be one of the special types predefined by ARM. 3403 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 3404 QualType EltType = T->getElementType(); 3405 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3406 const char *EltName = nullptr; 3407 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3408 switch (cast<BuiltinType>(EltType)->getKind()) { 3409 case BuiltinType::SChar: 3410 case BuiltinType::UChar: 3411 EltName = "poly8_t"; 3412 break; 3413 case BuiltinType::Short: 3414 case BuiltinType::UShort: 3415 EltName = "poly16_t"; 3416 break; 3417 case BuiltinType::LongLong: 3418 case BuiltinType::ULongLong: 3419 EltName = "poly64_t"; 3420 break; 3421 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 3422 } 3423 } else { 3424 switch (cast<BuiltinType>(EltType)->getKind()) { 3425 case BuiltinType::SChar: EltName = "int8_t"; break; 3426 case BuiltinType::UChar: EltName = "uint8_t"; break; 3427 case BuiltinType::Short: EltName = "int16_t"; break; 3428 case BuiltinType::UShort: EltName = "uint16_t"; break; 3429 case BuiltinType::Int: EltName = "int32_t"; break; 3430 case BuiltinType::UInt: EltName = "uint32_t"; break; 3431 case BuiltinType::LongLong: EltName = "int64_t"; break; 3432 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 3433 case BuiltinType::Double: EltName = "float64_t"; break; 3434 case BuiltinType::Float: EltName = "float32_t"; break; 3435 case BuiltinType::Half: EltName = "float16_t"; break; 3436 case BuiltinType::BFloat16: EltName = "bfloat16_t"; break; 3437 default: 3438 llvm_unreachable("unexpected Neon vector element type"); 3439 } 3440 } 3441 const char *BaseName = nullptr; 3442 unsigned BitSize = (T->getNumElements() * 3443 getASTContext().getTypeSize(EltType)); 3444 if (BitSize == 64) 3445 BaseName = "__simd64_"; 3446 else { 3447 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 3448 BaseName = "__simd128_"; 3449 } 3450 Out << strlen(BaseName) + strlen(EltName); 3451 Out << BaseName << EltName; 3452 } 3453 3454 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { 3455 DiagnosticsEngine &Diags = Context.getDiags(); 3456 unsigned DiagID = Diags.getCustomDiagID( 3457 DiagnosticsEngine::Error, 3458 "cannot mangle this dependent neon vector type yet"); 3459 Diags.Report(T->getAttributeLoc(), DiagID); 3460 } 3461 3462 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 3463 switch (EltType->getKind()) { 3464 case BuiltinType::SChar: 3465 return "Int8"; 3466 case BuiltinType::Short: 3467 return "Int16"; 3468 case BuiltinType::Int: 3469 return "Int32"; 3470 case BuiltinType::Long: 3471 case BuiltinType::LongLong: 3472 return "Int64"; 3473 case BuiltinType::UChar: 3474 return "Uint8"; 3475 case BuiltinType::UShort: 3476 return "Uint16"; 3477 case BuiltinType::UInt: 3478 return "Uint32"; 3479 case BuiltinType::ULong: 3480 case BuiltinType::ULongLong: 3481 return "Uint64"; 3482 case BuiltinType::Half: 3483 return "Float16"; 3484 case BuiltinType::Float: 3485 return "Float32"; 3486 case BuiltinType::Double: 3487 return "Float64"; 3488 case BuiltinType::BFloat16: 3489 return "Bfloat16"; 3490 default: 3491 llvm_unreachable("Unexpected vector element base type"); 3492 } 3493 } 3494 3495 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3496 // the equivalent internal name. The vector type must be one of the special 3497 // types predefined by ARM. 3498 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3499 QualType EltType = T->getElementType(); 3500 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3501 unsigned BitSize = 3502 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3503 (void)BitSize; // Silence warning. 3504 3505 assert((BitSize == 64 || BitSize == 128) && 3506 "Neon vector type not 64 or 128 bits"); 3507 3508 StringRef EltName; 3509 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3510 switch (cast<BuiltinType>(EltType)->getKind()) { 3511 case BuiltinType::UChar: 3512 EltName = "Poly8"; 3513 break; 3514 case BuiltinType::UShort: 3515 EltName = "Poly16"; 3516 break; 3517 case BuiltinType::ULong: 3518 case BuiltinType::ULongLong: 3519 EltName = "Poly64"; 3520 break; 3521 default: 3522 llvm_unreachable("unexpected Neon polynomial vector element type"); 3523 } 3524 } else 3525 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3526 3527 std::string TypeName = 3528 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3529 Out << TypeName.length() << TypeName; 3530 } 3531 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { 3532 DiagnosticsEngine &Diags = Context.getDiags(); 3533 unsigned DiagID = Diags.getCustomDiagID( 3534 DiagnosticsEngine::Error, 3535 "cannot mangle this dependent neon vector type yet"); 3536 Diags.Report(T->getAttributeLoc(), DiagID); 3537 } 3538 3539 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types 3540 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 3541 // type as the sizeless variants. 3542 // 3543 // The mangling scheme for VLS types is implemented as a "pseudo" template: 3544 // 3545 // '__SVE_VLS<<type>, <vector length>>' 3546 // 3547 // Combining the existing SVE type and a specific vector length (in bits). 3548 // For example: 3549 // 3550 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); 3551 // 3552 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: 3553 // 3554 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" 3555 // 3556 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE 3557 // 3558 // The latest ACLE specification (00bet5) does not contain details of this 3559 // mangling scheme, it will be specified in the next revision. The mangling 3560 // scheme is otherwise defined in the appendices to the Procedure Call Standard 3561 // for the Arm Architecture, see 3562 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling 3563 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { 3564 assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3565 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) && 3566 "expected fixed-length SVE vector!"); 3567 3568 QualType EltType = T->getElementType(); 3569 assert(EltType->isBuiltinType() && 3570 "expected builtin type for fixed-length SVE vector!"); 3571 3572 StringRef TypeName; 3573 switch (cast<BuiltinType>(EltType)->getKind()) { 3574 case BuiltinType::SChar: 3575 TypeName = "__SVInt8_t"; 3576 break; 3577 case BuiltinType::UChar: { 3578 if (T->getVectorKind() == VectorType::SveFixedLengthDataVector) 3579 TypeName = "__SVUint8_t"; 3580 else 3581 TypeName = "__SVBool_t"; 3582 break; 3583 } 3584 case BuiltinType::Short: 3585 TypeName = "__SVInt16_t"; 3586 break; 3587 case BuiltinType::UShort: 3588 TypeName = "__SVUint16_t"; 3589 break; 3590 case BuiltinType::Int: 3591 TypeName = "__SVInt32_t"; 3592 break; 3593 case BuiltinType::UInt: 3594 TypeName = "__SVUint32_t"; 3595 break; 3596 case BuiltinType::Long: 3597 TypeName = "__SVInt64_t"; 3598 break; 3599 case BuiltinType::ULong: 3600 TypeName = "__SVUint64_t"; 3601 break; 3602 case BuiltinType::Half: 3603 TypeName = "__SVFloat16_t"; 3604 break; 3605 case BuiltinType::Float: 3606 TypeName = "__SVFloat32_t"; 3607 break; 3608 case BuiltinType::Double: 3609 TypeName = "__SVFloat64_t"; 3610 break; 3611 case BuiltinType::BFloat16: 3612 TypeName = "__SVBfloat16_t"; 3613 break; 3614 default: 3615 llvm_unreachable("unexpected element type for fixed-length SVE vector!"); 3616 } 3617 3618 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; 3619 3620 if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 3621 VecSizeInBits *= 8; 3622 3623 Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" 3624 << VecSizeInBits << "EE"; 3625 } 3626 3627 void CXXNameMangler::mangleAArch64FixedSveVectorType( 3628 const DependentVectorType *T) { 3629 DiagnosticsEngine &Diags = Context.getDiags(); 3630 unsigned DiagID = Diags.getCustomDiagID( 3631 DiagnosticsEngine::Error, 3632 "cannot mangle this dependent fixed-length SVE vector type yet"); 3633 Diags.Report(T->getAttributeLoc(), DiagID); 3634 } 3635 3636 // GNU extension: vector types 3637 // <type> ::= <vector-type> 3638 // <vector-type> ::= Dv <positive dimension number> _ 3639 // <extended element type> 3640 // ::= Dv [<dimension expression>] _ <element type> 3641 // <extended element type> ::= <element type> 3642 // ::= p # AltiVec vector pixel 3643 // ::= b # Altivec vector bool 3644 void CXXNameMangler::mangleType(const VectorType *T) { 3645 if ((T->getVectorKind() == VectorType::NeonVector || 3646 T->getVectorKind() == VectorType::NeonPolyVector)) { 3647 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3648 llvm::Triple::ArchType Arch = 3649 getASTContext().getTargetInfo().getTriple().getArch(); 3650 if ((Arch == llvm::Triple::aarch64 || 3651 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 3652 mangleAArch64NeonVectorType(T); 3653 else 3654 mangleNeonVectorType(T); 3655 return; 3656 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3657 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 3658 mangleAArch64FixedSveVectorType(T); 3659 return; 3660 } 3661 Out << "Dv" << T->getNumElements() << '_'; 3662 if (T->getVectorKind() == VectorType::AltiVecPixel) 3663 Out << 'p'; 3664 else if (T->getVectorKind() == VectorType::AltiVecBool) 3665 Out << 'b'; 3666 else 3667 mangleType(T->getElementType()); 3668 } 3669 3670 void CXXNameMangler::mangleType(const DependentVectorType *T) { 3671 if ((T->getVectorKind() == VectorType::NeonVector || 3672 T->getVectorKind() == VectorType::NeonPolyVector)) { 3673 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3674 llvm::Triple::ArchType Arch = 3675 getASTContext().getTargetInfo().getTriple().getArch(); 3676 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && 3677 !Target.isOSDarwin()) 3678 mangleAArch64NeonVectorType(T); 3679 else 3680 mangleNeonVectorType(T); 3681 return; 3682 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3683 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 3684 mangleAArch64FixedSveVectorType(T); 3685 return; 3686 } 3687 3688 Out << "Dv"; 3689 mangleExpression(T->getSizeExpr()); 3690 Out << '_'; 3691 if (T->getVectorKind() == VectorType::AltiVecPixel) 3692 Out << 'p'; 3693 else if (T->getVectorKind() == VectorType::AltiVecBool) 3694 Out << 'b'; 3695 else 3696 mangleType(T->getElementType()); 3697 } 3698 3699 void CXXNameMangler::mangleType(const ExtVectorType *T) { 3700 mangleType(static_cast<const VectorType*>(T)); 3701 } 3702 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 3703 Out << "Dv"; 3704 mangleExpression(T->getSizeExpr()); 3705 Out << '_'; 3706 mangleType(T->getElementType()); 3707 } 3708 3709 void CXXNameMangler::mangleType(const ConstantMatrixType *T) { 3710 // Mangle matrix types as a vendor extended type: 3711 // u<Len>matrix_typeI<Rows><Columns><element type>E 3712 3713 StringRef VendorQualifier = "matrix_type"; 3714 Out << "u" << VendorQualifier.size() << VendorQualifier; 3715 3716 Out << "I"; 3717 auto &ASTCtx = getASTContext(); 3718 unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType()); 3719 llvm::APSInt Rows(BitWidth); 3720 Rows = T->getNumRows(); 3721 mangleIntegerLiteral(ASTCtx.getSizeType(), Rows); 3722 llvm::APSInt Columns(BitWidth); 3723 Columns = T->getNumColumns(); 3724 mangleIntegerLiteral(ASTCtx.getSizeType(), Columns); 3725 mangleType(T->getElementType()); 3726 Out << "E"; 3727 } 3728 3729 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { 3730 // Mangle matrix types as a vendor extended type: 3731 // u<Len>matrix_typeI<row expr><column expr><element type>E 3732 StringRef VendorQualifier = "matrix_type"; 3733 Out << "u" << VendorQualifier.size() << VendorQualifier; 3734 3735 Out << "I"; 3736 mangleTemplateArgExpr(T->getRowExpr()); 3737 mangleTemplateArgExpr(T->getColumnExpr()); 3738 mangleType(T->getElementType()); 3739 Out << "E"; 3740 } 3741 3742 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 3743 SplitQualType split = T->getPointeeType().split(); 3744 mangleQualifiers(split.Quals, T); 3745 mangleType(QualType(split.Ty, 0)); 3746 } 3747 3748 void CXXNameMangler::mangleType(const PackExpansionType *T) { 3749 // <type> ::= Dp <type> # pack expansion (C++0x) 3750 Out << "Dp"; 3751 mangleType(T->getPattern()); 3752 } 3753 3754 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 3755 mangleSourceName(T->getDecl()->getIdentifier()); 3756 } 3757 3758 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 3759 // Treat __kindof as a vendor extended type qualifier. 3760 if (T->isKindOfType()) 3761 Out << "U8__kindof"; 3762 3763 if (!T->qual_empty()) { 3764 // Mangle protocol qualifiers. 3765 SmallString<64> QualStr; 3766 llvm::raw_svector_ostream QualOS(QualStr); 3767 QualOS << "objcproto"; 3768 for (const auto *I : T->quals()) { 3769 StringRef name = I->getName(); 3770 QualOS << name.size() << name; 3771 } 3772 Out << 'U' << QualStr.size() << QualStr; 3773 } 3774 3775 mangleType(T->getBaseType()); 3776 3777 if (T->isSpecialized()) { 3778 // Mangle type arguments as I <type>+ E 3779 Out << 'I'; 3780 for (auto typeArg : T->getTypeArgs()) 3781 mangleType(typeArg); 3782 Out << 'E'; 3783 } 3784 } 3785 3786 void CXXNameMangler::mangleType(const BlockPointerType *T) { 3787 Out << "U13block_pointer"; 3788 mangleType(T->getPointeeType()); 3789 } 3790 3791 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 3792 // Mangle injected class name types as if the user had written the 3793 // specialization out fully. It may not actually be possible to see 3794 // this mangling, though. 3795 mangleType(T->getInjectedSpecializationType()); 3796 } 3797 3798 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 3799 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 3800 mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); 3801 } else { 3802 if (mangleSubstitution(QualType(T, 0))) 3803 return; 3804 3805 mangleTemplatePrefix(T->getTemplateName()); 3806 3807 // FIXME: GCC does not appear to mangle the template arguments when 3808 // the template in question is a dependent template name. Should we 3809 // emulate that badness? 3810 mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs()); 3811 addSubstitution(QualType(T, 0)); 3812 } 3813 } 3814 3815 void CXXNameMangler::mangleType(const DependentNameType *T) { 3816 // Proposal by cxx-abi-dev, 2014-03-26 3817 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 3818 // # dependent elaborated type specifier using 3819 // # 'typename' 3820 // ::= Ts <name> # dependent elaborated type specifier using 3821 // # 'struct' or 'class' 3822 // ::= Tu <name> # dependent elaborated type specifier using 3823 // # 'union' 3824 // ::= Te <name> # dependent elaborated type specifier using 3825 // # 'enum' 3826 switch (T->getKeyword()) { 3827 case ETK_None: 3828 case ETK_Typename: 3829 break; 3830 case ETK_Struct: 3831 case ETK_Class: 3832 case ETK_Interface: 3833 Out << "Ts"; 3834 break; 3835 case ETK_Union: 3836 Out << "Tu"; 3837 break; 3838 case ETK_Enum: 3839 Out << "Te"; 3840 break; 3841 } 3842 // Typename types are always nested 3843 Out << 'N'; 3844 manglePrefix(T->getQualifier()); 3845 mangleSourceName(T->getIdentifier()); 3846 Out << 'E'; 3847 } 3848 3849 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 3850 // Dependently-scoped template types are nested if they have a prefix. 3851 Out << 'N'; 3852 3853 // TODO: avoid making this TemplateName. 3854 TemplateName Prefix = 3855 getASTContext().getDependentTemplateName(T->getQualifier(), 3856 T->getIdentifier()); 3857 mangleTemplatePrefix(Prefix); 3858 3859 // FIXME: GCC does not appear to mangle the template arguments when 3860 // the template in question is a dependent template name. Should we 3861 // emulate that badness? 3862 mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs()); 3863 Out << 'E'; 3864 } 3865 3866 void CXXNameMangler::mangleType(const TypeOfType *T) { 3867 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3868 // "extension with parameters" mangling. 3869 Out << "u6typeof"; 3870 } 3871 3872 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 3873 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3874 // "extension with parameters" mangling. 3875 Out << "u6typeof"; 3876 } 3877 3878 void CXXNameMangler::mangleType(const DecltypeType *T) { 3879 Expr *E = T->getUnderlyingExpr(); 3880 3881 // type ::= Dt <expression> E # decltype of an id-expression 3882 // # or class member access 3883 // ::= DT <expression> E # decltype of an expression 3884 3885 // This purports to be an exhaustive list of id-expressions and 3886 // class member accesses. Note that we do not ignore parentheses; 3887 // parentheses change the semantics of decltype for these 3888 // expressions (and cause the mangler to use the other form). 3889 if (isa<DeclRefExpr>(E) || 3890 isa<MemberExpr>(E) || 3891 isa<UnresolvedLookupExpr>(E) || 3892 isa<DependentScopeDeclRefExpr>(E) || 3893 isa<CXXDependentScopeMemberExpr>(E) || 3894 isa<UnresolvedMemberExpr>(E)) 3895 Out << "Dt"; 3896 else 3897 Out << "DT"; 3898 mangleExpression(E); 3899 Out << 'E'; 3900 } 3901 3902 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 3903 // If this is dependent, we need to record that. If not, we simply 3904 // mangle it as the underlying type since they are equivalent. 3905 if (T->isDependentType()) { 3906 Out << 'U'; 3907 3908 switch (T->getUTTKind()) { 3909 case UnaryTransformType::EnumUnderlyingType: 3910 Out << "3eut"; 3911 break; 3912 } 3913 } 3914 3915 mangleType(T->getBaseType()); 3916 } 3917 3918 void CXXNameMangler::mangleType(const AutoType *T) { 3919 assert(T->getDeducedType().isNull() && 3920 "Deduced AutoType shouldn't be handled here!"); 3921 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 3922 "shouldn't need to mangle __auto_type!"); 3923 // <builtin-type> ::= Da # auto 3924 // ::= Dc # decltype(auto) 3925 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 3926 } 3927 3928 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 3929 QualType Deduced = T->getDeducedType(); 3930 if (!Deduced.isNull()) 3931 return mangleType(Deduced); 3932 3933 TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); 3934 assert(TD && "shouldn't form deduced TST unless we know we have a template"); 3935 3936 if (mangleSubstitution(TD)) 3937 return; 3938 3939 mangleName(GlobalDecl(TD)); 3940 addSubstitution(TD); 3941 } 3942 3943 void CXXNameMangler::mangleType(const AtomicType *T) { 3944 // <type> ::= U <source-name> <type> # vendor extended type qualifier 3945 // (Until there's a standardized mangling...) 3946 Out << "U7_Atomic"; 3947 mangleType(T->getValueType()); 3948 } 3949 3950 void CXXNameMangler::mangleType(const PipeType *T) { 3951 // Pipe type mangling rules are described in SPIR 2.0 specification 3952 // A.1 Data types and A.3 Summary of changes 3953 // <type> ::= 8ocl_pipe 3954 Out << "8ocl_pipe"; 3955 } 3956 3957 void CXXNameMangler::mangleType(const ExtIntType *T) { 3958 Out << "U7_ExtInt"; 3959 llvm::APSInt BW(32, true); 3960 BW = T->getNumBits(); 3961 TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy); 3962 mangleTemplateArgs(TemplateName(), &TA, 1); 3963 if (T->isUnsigned()) 3964 Out << "j"; 3965 else 3966 Out << "i"; 3967 } 3968 3969 void CXXNameMangler::mangleType(const DependentExtIntType *T) { 3970 Out << "U7_ExtInt"; 3971 TemplateArgument TA(T->getNumBitsExpr()); 3972 mangleTemplateArgs(TemplateName(), &TA, 1); 3973 if (T->isUnsigned()) 3974 Out << "j"; 3975 else 3976 Out << "i"; 3977 } 3978 3979 void CXXNameMangler::mangleIntegerLiteral(QualType T, 3980 const llvm::APSInt &Value) { 3981 // <expr-primary> ::= L <type> <value number> E # integer literal 3982 Out << 'L'; 3983 3984 mangleType(T); 3985 if (T->isBooleanType()) { 3986 // Boolean values are encoded as 0/1. 3987 Out << (Value.getBoolValue() ? '1' : '0'); 3988 } else { 3989 mangleNumber(Value); 3990 } 3991 Out << 'E'; 3992 3993 } 3994 3995 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 3996 // Ignore member expressions involving anonymous unions. 3997 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 3998 if (!RT->getDecl()->isAnonymousStructOrUnion()) 3999 break; 4000 const auto *ME = dyn_cast<MemberExpr>(Base); 4001 if (!ME) 4002 break; 4003 Base = ME->getBase(); 4004 IsArrow = ME->isArrow(); 4005 } 4006 4007 if (Base->isImplicitCXXThis()) { 4008 // Note: GCC mangles member expressions to the implicit 'this' as 4009 // *this., whereas we represent them as this->. The Itanium C++ ABI 4010 // does not specify anything here, so we follow GCC. 4011 Out << "dtdefpT"; 4012 } else { 4013 Out << (IsArrow ? "pt" : "dt"); 4014 mangleExpression(Base); 4015 } 4016 } 4017 4018 /// Mangles a member expression. 4019 void CXXNameMangler::mangleMemberExpr(const Expr *base, 4020 bool isArrow, 4021 NestedNameSpecifier *qualifier, 4022 NamedDecl *firstQualifierLookup, 4023 DeclarationName member, 4024 const TemplateArgumentLoc *TemplateArgs, 4025 unsigned NumTemplateArgs, 4026 unsigned arity) { 4027 // <expression> ::= dt <expression> <unresolved-name> 4028 // ::= pt <expression> <unresolved-name> 4029 if (base) 4030 mangleMemberExprBase(base, isArrow); 4031 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 4032 } 4033 4034 /// Look at the callee of the given call expression and determine if 4035 /// it's a parenthesized id-expression which would have triggered ADL 4036 /// otherwise. 4037 static bool isParenthesizedADLCallee(const CallExpr *call) { 4038 const Expr *callee = call->getCallee(); 4039 const Expr *fn = callee->IgnoreParens(); 4040 4041 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 4042 // too, but for those to appear in the callee, it would have to be 4043 // parenthesized. 4044 if (callee == fn) return false; 4045 4046 // Must be an unresolved lookup. 4047 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 4048 if (!lookup) return false; 4049 4050 assert(!lookup->requiresADL()); 4051 4052 // Must be an unqualified lookup. 4053 if (lookup->getQualifier()) return false; 4054 4055 // Must not have found a class member. Note that if one is a class 4056 // member, they're all class members. 4057 if (lookup->getNumDecls() > 0 && 4058 (*lookup->decls_begin())->isCXXClassMember()) 4059 return false; 4060 4061 // Otherwise, ADL would have been triggered. 4062 return true; 4063 } 4064 4065 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 4066 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 4067 Out << CastEncoding; 4068 mangleType(ECE->getType()); 4069 mangleExpression(ECE->getSubExpr()); 4070 } 4071 4072 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 4073 if (auto *Syntactic = InitList->getSyntacticForm()) 4074 InitList = Syntactic; 4075 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 4076 mangleExpression(InitList->getInit(i)); 4077 } 4078 4079 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, 4080 bool AsTemplateArg) { 4081 // <expression> ::= <unary operator-name> <expression> 4082 // ::= <binary operator-name> <expression> <expression> 4083 // ::= <trinary operator-name> <expression> <expression> <expression> 4084 // ::= cv <type> expression # conversion with one argument 4085 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 4086 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 4087 // ::= sc <type> <expression> # static_cast<type> (expression) 4088 // ::= cc <type> <expression> # const_cast<type> (expression) 4089 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 4090 // ::= st <type> # sizeof (a type) 4091 // ::= at <type> # alignof (a type) 4092 // ::= <template-param> 4093 // ::= <function-param> 4094 // ::= fpT # 'this' expression (part of <function-param>) 4095 // ::= sr <type> <unqualified-name> # dependent name 4096 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 4097 // ::= ds <expression> <expression> # expr.*expr 4098 // ::= sZ <template-param> # size of a parameter pack 4099 // ::= sZ <function-param> # size of a function parameter pack 4100 // ::= u <source-name> <template-arg>* E # vendor extended expression 4101 // ::= <expr-primary> 4102 // <expr-primary> ::= L <type> <value number> E # integer literal 4103 // ::= L <type> <value float> E # floating literal 4104 // ::= L <type> <string type> E # string literal 4105 // ::= L <nullptr type> E # nullptr literal "LDnE" 4106 // ::= L <pointer type> 0 E # null pointer template argument 4107 // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang 4108 // ::= L <mangled-name> E # external name 4109 QualType ImplicitlyConvertedToType; 4110 4111 // A top-level expression that's not <expr-primary> needs to be wrapped in 4112 // X...E in a template arg. 4113 bool IsPrimaryExpr = true; 4114 auto NotPrimaryExpr = [&] { 4115 if (AsTemplateArg && IsPrimaryExpr) 4116 Out << 'X'; 4117 IsPrimaryExpr = false; 4118 }; 4119 4120 auto MangleDeclRefExpr = [&](const NamedDecl *D) { 4121 switch (D->getKind()) { 4122 default: 4123 // <expr-primary> ::= L <mangled-name> E # external name 4124 Out << 'L'; 4125 mangle(D); 4126 Out << 'E'; 4127 break; 4128 4129 case Decl::ParmVar: 4130 NotPrimaryExpr(); 4131 mangleFunctionParam(cast<ParmVarDecl>(D)); 4132 break; 4133 4134 case Decl::EnumConstant: { 4135 // <expr-primary> 4136 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 4137 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 4138 break; 4139 } 4140 4141 case Decl::NonTypeTemplateParm: 4142 NotPrimaryExpr(); 4143 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 4144 mangleTemplateParameter(PD->getDepth(), PD->getIndex()); 4145 break; 4146 } 4147 }; 4148 4149 // 'goto recurse' is used when handling a simple "unwrapping" node which 4150 // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need 4151 // to be preserved. 4152 recurse: 4153 switch (E->getStmtClass()) { 4154 case Expr::NoStmtClass: 4155 #define ABSTRACT_STMT(Type) 4156 #define EXPR(Type, Base) 4157 #define STMT(Type, Base) \ 4158 case Expr::Type##Class: 4159 #include "clang/AST/StmtNodes.inc" 4160 // fallthrough 4161 4162 // These all can only appear in local or variable-initialization 4163 // contexts and so should never appear in a mangling. 4164 case Expr::AddrLabelExprClass: 4165 case Expr::DesignatedInitUpdateExprClass: 4166 case Expr::ImplicitValueInitExprClass: 4167 case Expr::ArrayInitLoopExprClass: 4168 case Expr::ArrayInitIndexExprClass: 4169 case Expr::NoInitExprClass: 4170 case Expr::ParenListExprClass: 4171 case Expr::LambdaExprClass: 4172 case Expr::MSPropertyRefExprClass: 4173 case Expr::MSPropertySubscriptExprClass: 4174 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 4175 case Expr::RecoveryExprClass: 4176 case Expr::OMPArraySectionExprClass: 4177 case Expr::OMPArrayShapingExprClass: 4178 case Expr::OMPIteratorExprClass: 4179 case Expr::CXXInheritedCtorInitExprClass: 4180 llvm_unreachable("unexpected statement kind"); 4181 4182 case Expr::ConstantExprClass: 4183 E = cast<ConstantExpr>(E)->getSubExpr(); 4184 goto recurse; 4185 4186 // FIXME: invent manglings for all these. 4187 case Expr::BlockExprClass: 4188 case Expr::ChooseExprClass: 4189 case Expr::CompoundLiteralExprClass: 4190 case Expr::ExtVectorElementExprClass: 4191 case Expr::GenericSelectionExprClass: 4192 case Expr::ObjCEncodeExprClass: 4193 case Expr::ObjCIsaExprClass: 4194 case Expr::ObjCIvarRefExprClass: 4195 case Expr::ObjCMessageExprClass: 4196 case Expr::ObjCPropertyRefExprClass: 4197 case Expr::ObjCProtocolExprClass: 4198 case Expr::ObjCSelectorExprClass: 4199 case Expr::ObjCStringLiteralClass: 4200 case Expr::ObjCBoxedExprClass: 4201 case Expr::ObjCArrayLiteralClass: 4202 case Expr::ObjCDictionaryLiteralClass: 4203 case Expr::ObjCSubscriptRefExprClass: 4204 case Expr::ObjCIndirectCopyRestoreExprClass: 4205 case Expr::ObjCAvailabilityCheckExprClass: 4206 case Expr::OffsetOfExprClass: 4207 case Expr::PredefinedExprClass: 4208 case Expr::ShuffleVectorExprClass: 4209 case Expr::ConvertVectorExprClass: 4210 case Expr::StmtExprClass: 4211 case Expr::TypeTraitExprClass: 4212 case Expr::RequiresExprClass: 4213 case Expr::ArrayTypeTraitExprClass: 4214 case Expr::ExpressionTraitExprClass: 4215 case Expr::VAArgExprClass: 4216 case Expr::CUDAKernelCallExprClass: 4217 case Expr::AsTypeExprClass: 4218 case Expr::PseudoObjectExprClass: 4219 case Expr::AtomicExprClass: 4220 case Expr::SourceLocExprClass: 4221 case Expr::BuiltinBitCastExprClass: 4222 { 4223 NotPrimaryExpr(); 4224 if (!NullOut) { 4225 // As bad as this diagnostic is, it's better than crashing. 4226 DiagnosticsEngine &Diags = Context.getDiags(); 4227 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4228 "cannot yet mangle expression type %0"); 4229 Diags.Report(E->getExprLoc(), DiagID) 4230 << E->getStmtClassName() << E->getSourceRange(); 4231 return; 4232 } 4233 break; 4234 } 4235 4236 case Expr::CXXUuidofExprClass: { 4237 NotPrimaryExpr(); 4238 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 4239 // As of clang 12, uuidof uses the vendor extended expression 4240 // mangling. Previously, it used a special-cased nonstandard extension. 4241 if (Context.getASTContext().getLangOpts().getClangABICompat() > 4242 LangOptions::ClangABI::Ver11) { 4243 Out << "u8__uuidof"; 4244 if (UE->isTypeOperand()) 4245 mangleType(UE->getTypeOperand(Context.getASTContext())); 4246 else 4247 mangleTemplateArgExpr(UE->getExprOperand()); 4248 Out << 'E'; 4249 } else { 4250 if (UE->isTypeOperand()) { 4251 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 4252 Out << "u8__uuidoft"; 4253 mangleType(UuidT); 4254 } else { 4255 Expr *UuidExp = UE->getExprOperand(); 4256 Out << "u8__uuidofz"; 4257 mangleExpression(UuidExp); 4258 } 4259 } 4260 break; 4261 } 4262 4263 // Even gcc-4.5 doesn't mangle this. 4264 case Expr::BinaryConditionalOperatorClass: { 4265 NotPrimaryExpr(); 4266 DiagnosticsEngine &Diags = Context.getDiags(); 4267 unsigned DiagID = 4268 Diags.getCustomDiagID(DiagnosticsEngine::Error, 4269 "?: operator with omitted middle operand cannot be mangled"); 4270 Diags.Report(E->getExprLoc(), DiagID) 4271 << E->getStmtClassName() << E->getSourceRange(); 4272 return; 4273 } 4274 4275 // These are used for internal purposes and cannot be meaningfully mangled. 4276 case Expr::OpaqueValueExprClass: 4277 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 4278 4279 case Expr::InitListExprClass: { 4280 NotPrimaryExpr(); 4281 Out << "il"; 4282 mangleInitListElements(cast<InitListExpr>(E)); 4283 Out << "E"; 4284 break; 4285 } 4286 4287 case Expr::DesignatedInitExprClass: { 4288 NotPrimaryExpr(); 4289 auto *DIE = cast<DesignatedInitExpr>(E); 4290 for (const auto &Designator : DIE->designators()) { 4291 if (Designator.isFieldDesignator()) { 4292 Out << "di"; 4293 mangleSourceName(Designator.getFieldName()); 4294 } else if (Designator.isArrayDesignator()) { 4295 Out << "dx"; 4296 mangleExpression(DIE->getArrayIndex(Designator)); 4297 } else { 4298 assert(Designator.isArrayRangeDesignator() && 4299 "unknown designator kind"); 4300 Out << "dX"; 4301 mangleExpression(DIE->getArrayRangeStart(Designator)); 4302 mangleExpression(DIE->getArrayRangeEnd(Designator)); 4303 } 4304 } 4305 mangleExpression(DIE->getInit()); 4306 break; 4307 } 4308 4309 case Expr::CXXDefaultArgExprClass: 4310 E = cast<CXXDefaultArgExpr>(E)->getExpr(); 4311 goto recurse; 4312 4313 case Expr::CXXDefaultInitExprClass: 4314 E = cast<CXXDefaultInitExpr>(E)->getExpr(); 4315 goto recurse; 4316 4317 case Expr::CXXStdInitializerListExprClass: 4318 E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); 4319 goto recurse; 4320 4321 case Expr::SubstNonTypeTemplateParmExprClass: 4322 E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); 4323 goto recurse; 4324 4325 case Expr::UserDefinedLiteralClass: 4326 // We follow g++'s approach of mangling a UDL as a call to the literal 4327 // operator. 4328 case Expr::CXXMemberCallExprClass: // fallthrough 4329 case Expr::CallExprClass: { 4330 NotPrimaryExpr(); 4331 const CallExpr *CE = cast<CallExpr>(E); 4332 4333 // <expression> ::= cp <simple-id> <expression>* E 4334 // We use this mangling only when the call would use ADL except 4335 // for being parenthesized. Per discussion with David 4336 // Vandervoorde, 2011.04.25. 4337 if (isParenthesizedADLCallee(CE)) { 4338 Out << "cp"; 4339 // The callee here is a parenthesized UnresolvedLookupExpr with 4340 // no qualifier and should always get mangled as a <simple-id> 4341 // anyway. 4342 4343 // <expression> ::= cl <expression>* E 4344 } else { 4345 Out << "cl"; 4346 } 4347 4348 unsigned CallArity = CE->getNumArgs(); 4349 for (const Expr *Arg : CE->arguments()) 4350 if (isa<PackExpansionExpr>(Arg)) 4351 CallArity = UnknownArity; 4352 4353 mangleExpression(CE->getCallee(), CallArity); 4354 for (const Expr *Arg : CE->arguments()) 4355 mangleExpression(Arg); 4356 Out << 'E'; 4357 break; 4358 } 4359 4360 case Expr::CXXNewExprClass: { 4361 NotPrimaryExpr(); 4362 const CXXNewExpr *New = cast<CXXNewExpr>(E); 4363 if (New->isGlobalNew()) Out << "gs"; 4364 Out << (New->isArray() ? "na" : "nw"); 4365 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 4366 E = New->placement_arg_end(); I != E; ++I) 4367 mangleExpression(*I); 4368 Out << '_'; 4369 mangleType(New->getAllocatedType()); 4370 if (New->hasInitializer()) { 4371 if (New->getInitializationStyle() == CXXNewExpr::ListInit) 4372 Out << "il"; 4373 else 4374 Out << "pi"; 4375 const Expr *Init = New->getInitializer(); 4376 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 4377 // Directly inline the initializers. 4378 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 4379 E = CCE->arg_end(); 4380 I != E; ++I) 4381 mangleExpression(*I); 4382 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 4383 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 4384 mangleExpression(PLE->getExpr(i)); 4385 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && 4386 isa<InitListExpr>(Init)) { 4387 // Only take InitListExprs apart for list-initialization. 4388 mangleInitListElements(cast<InitListExpr>(Init)); 4389 } else 4390 mangleExpression(Init); 4391 } 4392 Out << 'E'; 4393 break; 4394 } 4395 4396 case Expr::CXXPseudoDestructorExprClass: { 4397 NotPrimaryExpr(); 4398 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 4399 if (const Expr *Base = PDE->getBase()) 4400 mangleMemberExprBase(Base, PDE->isArrow()); 4401 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 4402 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 4403 if (Qualifier) { 4404 mangleUnresolvedPrefix(Qualifier, 4405 /*recursive=*/true); 4406 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 4407 Out << 'E'; 4408 } else { 4409 Out << "sr"; 4410 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 4411 Out << 'E'; 4412 } 4413 } else if (Qualifier) { 4414 mangleUnresolvedPrefix(Qualifier); 4415 } 4416 // <base-unresolved-name> ::= dn <destructor-name> 4417 Out << "dn"; 4418 QualType DestroyedType = PDE->getDestroyedType(); 4419 mangleUnresolvedTypeOrSimpleId(DestroyedType); 4420 break; 4421 } 4422 4423 case Expr::MemberExprClass: { 4424 NotPrimaryExpr(); 4425 const MemberExpr *ME = cast<MemberExpr>(E); 4426 mangleMemberExpr(ME->getBase(), ME->isArrow(), 4427 ME->getQualifier(), nullptr, 4428 ME->getMemberDecl()->getDeclName(), 4429 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4430 Arity); 4431 break; 4432 } 4433 4434 case Expr::UnresolvedMemberExprClass: { 4435 NotPrimaryExpr(); 4436 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 4437 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 4438 ME->isArrow(), ME->getQualifier(), nullptr, 4439 ME->getMemberName(), 4440 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4441 Arity); 4442 break; 4443 } 4444 4445 case Expr::CXXDependentScopeMemberExprClass: { 4446 NotPrimaryExpr(); 4447 const CXXDependentScopeMemberExpr *ME 4448 = cast<CXXDependentScopeMemberExpr>(E); 4449 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 4450 ME->isArrow(), ME->getQualifier(), 4451 ME->getFirstQualifierFoundInScope(), 4452 ME->getMember(), 4453 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4454 Arity); 4455 break; 4456 } 4457 4458 case Expr::UnresolvedLookupExprClass: { 4459 NotPrimaryExpr(); 4460 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 4461 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 4462 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 4463 Arity); 4464 break; 4465 } 4466 4467 case Expr::CXXUnresolvedConstructExprClass: { 4468 NotPrimaryExpr(); 4469 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 4470 unsigned N = CE->getNumArgs(); 4471 4472 if (CE->isListInitialization()) { 4473 assert(N == 1 && "unexpected form for list initialization"); 4474 auto *IL = cast<InitListExpr>(CE->getArg(0)); 4475 Out << "tl"; 4476 mangleType(CE->getType()); 4477 mangleInitListElements(IL); 4478 Out << "E"; 4479 break; 4480 } 4481 4482 Out << "cv"; 4483 mangleType(CE->getType()); 4484 if (N != 1) Out << '_'; 4485 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 4486 if (N != 1) Out << 'E'; 4487 break; 4488 } 4489 4490 case Expr::CXXConstructExprClass: { 4491 // An implicit cast is silent, thus may contain <expr-primary>. 4492 const auto *CE = cast<CXXConstructExpr>(E); 4493 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 4494 assert( 4495 CE->getNumArgs() >= 1 && 4496 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 4497 "implicit CXXConstructExpr must have one argument"); 4498 E = cast<CXXConstructExpr>(E)->getArg(0); 4499 goto recurse; 4500 } 4501 NotPrimaryExpr(); 4502 Out << "il"; 4503 for (auto *E : CE->arguments()) 4504 mangleExpression(E); 4505 Out << "E"; 4506 break; 4507 } 4508 4509 case Expr::CXXTemporaryObjectExprClass: { 4510 NotPrimaryExpr(); 4511 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 4512 unsigned N = CE->getNumArgs(); 4513 bool List = CE->isListInitialization(); 4514 4515 if (List) 4516 Out << "tl"; 4517 else 4518 Out << "cv"; 4519 mangleType(CE->getType()); 4520 if (!List && N != 1) 4521 Out << '_'; 4522 if (CE->isStdInitListInitialization()) { 4523 // We implicitly created a std::initializer_list<T> for the first argument 4524 // of a constructor of type U in an expression of the form U{a, b, c}. 4525 // Strip all the semantic gunk off the initializer list. 4526 auto *SILE = 4527 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 4528 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 4529 mangleInitListElements(ILE); 4530 } else { 4531 for (auto *E : CE->arguments()) 4532 mangleExpression(E); 4533 } 4534 if (List || N != 1) 4535 Out << 'E'; 4536 break; 4537 } 4538 4539 case Expr::CXXScalarValueInitExprClass: 4540 NotPrimaryExpr(); 4541 Out << "cv"; 4542 mangleType(E->getType()); 4543 Out << "_E"; 4544 break; 4545 4546 case Expr::CXXNoexceptExprClass: 4547 NotPrimaryExpr(); 4548 Out << "nx"; 4549 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 4550 break; 4551 4552 case Expr::UnaryExprOrTypeTraitExprClass: { 4553 // Non-instantiation-dependent traits are an <expr-primary> integer literal. 4554 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 4555 4556 if (!SAE->isInstantiationDependent()) { 4557 // Itanium C++ ABI: 4558 // If the operand of a sizeof or alignof operator is not 4559 // instantiation-dependent it is encoded as an integer literal 4560 // reflecting the result of the operator. 4561 // 4562 // If the result of the operator is implicitly converted to a known 4563 // integer type, that type is used for the literal; otherwise, the type 4564 // of std::size_t or std::ptrdiff_t is used. 4565 QualType T = (ImplicitlyConvertedToType.isNull() || 4566 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 4567 : ImplicitlyConvertedToType; 4568 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 4569 mangleIntegerLiteral(T, V); 4570 break; 4571 } 4572 4573 NotPrimaryExpr(); // But otherwise, they are not. 4574 4575 auto MangleAlignofSizeofArg = [&] { 4576 if (SAE->isArgumentType()) { 4577 Out << 't'; 4578 mangleType(SAE->getArgumentType()); 4579 } else { 4580 Out << 'z'; 4581 mangleExpression(SAE->getArgumentExpr()); 4582 } 4583 }; 4584 4585 switch(SAE->getKind()) { 4586 case UETT_SizeOf: 4587 Out << 's'; 4588 MangleAlignofSizeofArg(); 4589 break; 4590 case UETT_PreferredAlignOf: 4591 // As of clang 12, we mangle __alignof__ differently than alignof. (They 4592 // have acted differently since Clang 8, but were previously mangled the 4593 // same.) 4594 if (Context.getASTContext().getLangOpts().getClangABICompat() > 4595 LangOptions::ClangABI::Ver11) { 4596 Out << "u11__alignof__"; 4597 if (SAE->isArgumentType()) 4598 mangleType(SAE->getArgumentType()); 4599 else 4600 mangleTemplateArgExpr(SAE->getArgumentExpr()); 4601 Out << 'E'; 4602 break; 4603 } 4604 LLVM_FALLTHROUGH; 4605 case UETT_AlignOf: 4606 Out << 'a'; 4607 MangleAlignofSizeofArg(); 4608 break; 4609 case UETT_VecStep: { 4610 DiagnosticsEngine &Diags = Context.getDiags(); 4611 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4612 "cannot yet mangle vec_step expression"); 4613 Diags.Report(DiagID); 4614 return; 4615 } 4616 case UETT_OpenMPRequiredSimdAlign: { 4617 DiagnosticsEngine &Diags = Context.getDiags(); 4618 unsigned DiagID = Diags.getCustomDiagID( 4619 DiagnosticsEngine::Error, 4620 "cannot yet mangle __builtin_omp_required_simd_align expression"); 4621 Diags.Report(DiagID); 4622 return; 4623 } 4624 } 4625 break; 4626 } 4627 4628 case Expr::CXXThrowExprClass: { 4629 NotPrimaryExpr(); 4630 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 4631 // <expression> ::= tw <expression> # throw expression 4632 // ::= tr # rethrow 4633 if (TE->getSubExpr()) { 4634 Out << "tw"; 4635 mangleExpression(TE->getSubExpr()); 4636 } else { 4637 Out << "tr"; 4638 } 4639 break; 4640 } 4641 4642 case Expr::CXXTypeidExprClass: { 4643 NotPrimaryExpr(); 4644 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 4645 // <expression> ::= ti <type> # typeid (type) 4646 // ::= te <expression> # typeid (expression) 4647 if (TIE->isTypeOperand()) { 4648 Out << "ti"; 4649 mangleType(TIE->getTypeOperand(Context.getASTContext())); 4650 } else { 4651 Out << "te"; 4652 mangleExpression(TIE->getExprOperand()); 4653 } 4654 break; 4655 } 4656 4657 case Expr::CXXDeleteExprClass: { 4658 NotPrimaryExpr(); 4659 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 4660 // <expression> ::= [gs] dl <expression> # [::] delete expr 4661 // ::= [gs] da <expression> # [::] delete [] expr 4662 if (DE->isGlobalDelete()) Out << "gs"; 4663 Out << (DE->isArrayForm() ? "da" : "dl"); 4664 mangleExpression(DE->getArgument()); 4665 break; 4666 } 4667 4668 case Expr::UnaryOperatorClass: { 4669 NotPrimaryExpr(); 4670 const UnaryOperator *UO = cast<UnaryOperator>(E); 4671 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 4672 /*Arity=*/1); 4673 mangleExpression(UO->getSubExpr()); 4674 break; 4675 } 4676 4677 case Expr::ArraySubscriptExprClass: { 4678 NotPrimaryExpr(); 4679 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 4680 4681 // Array subscript is treated as a syntactically weird form of 4682 // binary operator. 4683 Out << "ix"; 4684 mangleExpression(AE->getLHS()); 4685 mangleExpression(AE->getRHS()); 4686 break; 4687 } 4688 4689 case Expr::MatrixSubscriptExprClass: { 4690 NotPrimaryExpr(); 4691 const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); 4692 Out << "ixix"; 4693 mangleExpression(ME->getBase()); 4694 mangleExpression(ME->getRowIdx()); 4695 mangleExpression(ME->getColumnIdx()); 4696 break; 4697 } 4698 4699 case Expr::CompoundAssignOperatorClass: // fallthrough 4700 case Expr::BinaryOperatorClass: { 4701 NotPrimaryExpr(); 4702 const BinaryOperator *BO = cast<BinaryOperator>(E); 4703 if (BO->getOpcode() == BO_PtrMemD) 4704 Out << "ds"; 4705 else 4706 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 4707 /*Arity=*/2); 4708 mangleExpression(BO->getLHS()); 4709 mangleExpression(BO->getRHS()); 4710 break; 4711 } 4712 4713 case Expr::CXXRewrittenBinaryOperatorClass: { 4714 NotPrimaryExpr(); 4715 // The mangled form represents the original syntax. 4716 CXXRewrittenBinaryOperator::DecomposedForm Decomposed = 4717 cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); 4718 mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode), 4719 /*Arity=*/2); 4720 mangleExpression(Decomposed.LHS); 4721 mangleExpression(Decomposed.RHS); 4722 break; 4723 } 4724 4725 case Expr::ConditionalOperatorClass: { 4726 NotPrimaryExpr(); 4727 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 4728 mangleOperatorName(OO_Conditional, /*Arity=*/3); 4729 mangleExpression(CO->getCond()); 4730 mangleExpression(CO->getLHS(), Arity); 4731 mangleExpression(CO->getRHS(), Arity); 4732 break; 4733 } 4734 4735 case Expr::ImplicitCastExprClass: { 4736 ImplicitlyConvertedToType = E->getType(); 4737 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 4738 goto recurse; 4739 } 4740 4741 case Expr::ObjCBridgedCastExprClass: { 4742 NotPrimaryExpr(); 4743 // Mangle ownership casts as a vendor extended operator __bridge, 4744 // __bridge_transfer, or __bridge_retain. 4745 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 4746 Out << "v1U" << Kind.size() << Kind; 4747 mangleCastExpression(E, "cv"); 4748 break; 4749 } 4750 4751 case Expr::CStyleCastExprClass: 4752 NotPrimaryExpr(); 4753 mangleCastExpression(E, "cv"); 4754 break; 4755 4756 case Expr::CXXFunctionalCastExprClass: { 4757 NotPrimaryExpr(); 4758 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 4759 // FIXME: Add isImplicit to CXXConstructExpr. 4760 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 4761 if (CCE->getParenOrBraceRange().isInvalid()) 4762 Sub = CCE->getArg(0)->IgnoreImplicit(); 4763 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 4764 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 4765 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 4766 Out << "tl"; 4767 mangleType(E->getType()); 4768 mangleInitListElements(IL); 4769 Out << "E"; 4770 } else { 4771 mangleCastExpression(E, "cv"); 4772 } 4773 break; 4774 } 4775 4776 case Expr::CXXStaticCastExprClass: 4777 NotPrimaryExpr(); 4778 mangleCastExpression(E, "sc"); 4779 break; 4780 case Expr::CXXDynamicCastExprClass: 4781 NotPrimaryExpr(); 4782 mangleCastExpression(E, "dc"); 4783 break; 4784 case Expr::CXXReinterpretCastExprClass: 4785 NotPrimaryExpr(); 4786 mangleCastExpression(E, "rc"); 4787 break; 4788 case Expr::CXXConstCastExprClass: 4789 NotPrimaryExpr(); 4790 mangleCastExpression(E, "cc"); 4791 break; 4792 case Expr::CXXAddrspaceCastExprClass: 4793 NotPrimaryExpr(); 4794 mangleCastExpression(E, "ac"); 4795 break; 4796 4797 case Expr::CXXOperatorCallExprClass: { 4798 NotPrimaryExpr(); 4799 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 4800 unsigned NumArgs = CE->getNumArgs(); 4801 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 4802 // (the enclosing MemberExpr covers the syntactic portion). 4803 if (CE->getOperator() != OO_Arrow) 4804 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 4805 // Mangle the arguments. 4806 for (unsigned i = 0; i != NumArgs; ++i) 4807 mangleExpression(CE->getArg(i)); 4808 break; 4809 } 4810 4811 case Expr::ParenExprClass: 4812 E = cast<ParenExpr>(E)->getSubExpr(); 4813 goto recurse; 4814 4815 case Expr::ConceptSpecializationExprClass: { 4816 // <expr-primary> ::= L <mangled-name> E # external name 4817 Out << "L_Z"; 4818 auto *CSE = cast<ConceptSpecializationExpr>(E); 4819 mangleTemplateName(CSE->getNamedConcept(), 4820 CSE->getTemplateArguments().data(), 4821 CSE->getTemplateArguments().size()); 4822 Out << 'E'; 4823 break; 4824 } 4825 4826 case Expr::DeclRefExprClass: 4827 // MangleDeclRefExpr helper handles primary-vs-nonprimary 4828 MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); 4829 break; 4830 4831 case Expr::SubstNonTypeTemplateParmPackExprClass: 4832 NotPrimaryExpr(); 4833 // FIXME: not clear how to mangle this! 4834 // template <unsigned N...> class A { 4835 // template <class U...> void foo(U (&x)[N]...); 4836 // }; 4837 Out << "_SUBSTPACK_"; 4838 break; 4839 4840 case Expr::FunctionParmPackExprClass: { 4841 NotPrimaryExpr(); 4842 // FIXME: not clear how to mangle this! 4843 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 4844 Out << "v110_SUBSTPACK"; 4845 MangleDeclRefExpr(FPPE->getParameterPack()); 4846 break; 4847 } 4848 4849 case Expr::DependentScopeDeclRefExprClass: { 4850 NotPrimaryExpr(); 4851 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 4852 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 4853 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 4854 Arity); 4855 break; 4856 } 4857 4858 case Expr::CXXBindTemporaryExprClass: 4859 E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); 4860 goto recurse; 4861 4862 case Expr::ExprWithCleanupsClass: 4863 E = cast<ExprWithCleanups>(E)->getSubExpr(); 4864 goto recurse; 4865 4866 case Expr::FloatingLiteralClass: { 4867 // <expr-primary> 4868 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 4869 mangleFloatLiteral(FL->getType(), FL->getValue()); 4870 break; 4871 } 4872 4873 case Expr::FixedPointLiteralClass: 4874 // Currently unimplemented -- might be <expr-primary> in future? 4875 mangleFixedPointLiteral(); 4876 break; 4877 4878 case Expr::CharacterLiteralClass: 4879 // <expr-primary> 4880 Out << 'L'; 4881 mangleType(E->getType()); 4882 Out << cast<CharacterLiteral>(E)->getValue(); 4883 Out << 'E'; 4884 break; 4885 4886 // FIXME. __objc_yes/__objc_no are mangled same as true/false 4887 case Expr::ObjCBoolLiteralExprClass: 4888 // <expr-primary> 4889 Out << "Lb"; 4890 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4891 Out << 'E'; 4892 break; 4893 4894 case Expr::CXXBoolLiteralExprClass: 4895 // <expr-primary> 4896 Out << "Lb"; 4897 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4898 Out << 'E'; 4899 break; 4900 4901 case Expr::IntegerLiteralClass: { 4902 // <expr-primary> 4903 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 4904 if (E->getType()->isSignedIntegerType()) 4905 Value.setIsSigned(true); 4906 mangleIntegerLiteral(E->getType(), Value); 4907 break; 4908 } 4909 4910 case Expr::ImaginaryLiteralClass: { 4911 // <expr-primary> 4912 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 4913 // Mangle as if a complex literal. 4914 // Proposal from David Vandevoorde, 2010.06.30. 4915 Out << 'L'; 4916 mangleType(E->getType()); 4917 if (const FloatingLiteral *Imag = 4918 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 4919 // Mangle a floating-point zero of the appropriate type. 4920 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 4921 Out << '_'; 4922 mangleFloat(Imag->getValue()); 4923 } else { 4924 Out << "0_"; 4925 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 4926 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 4927 Value.setIsSigned(true); 4928 mangleNumber(Value); 4929 } 4930 Out << 'E'; 4931 break; 4932 } 4933 4934 case Expr::StringLiteralClass: { 4935 // <expr-primary> 4936 // Revised proposal from David Vandervoorde, 2010.07.15. 4937 Out << 'L'; 4938 assert(isa<ConstantArrayType>(E->getType())); 4939 mangleType(E->getType()); 4940 Out << 'E'; 4941 break; 4942 } 4943 4944 case Expr::GNUNullExprClass: 4945 // <expr-primary> 4946 // Mangle as if an integer literal 0. 4947 mangleIntegerLiteral(E->getType(), llvm::APSInt(32)); 4948 break; 4949 4950 case Expr::CXXNullPtrLiteralExprClass: { 4951 // <expr-primary> 4952 Out << "LDnE"; 4953 break; 4954 } 4955 4956 case Expr::PackExpansionExprClass: 4957 NotPrimaryExpr(); 4958 Out << "sp"; 4959 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 4960 break; 4961 4962 case Expr::SizeOfPackExprClass: { 4963 NotPrimaryExpr(); 4964 auto *SPE = cast<SizeOfPackExpr>(E); 4965 if (SPE->isPartiallySubstituted()) { 4966 Out << "sP"; 4967 for (const auto &A : SPE->getPartialArguments()) 4968 mangleTemplateArg(A, false); 4969 Out << "E"; 4970 break; 4971 } 4972 4973 Out << "sZ"; 4974 const NamedDecl *Pack = SPE->getPack(); 4975 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 4976 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 4977 else if (const NonTypeTemplateParmDecl *NTTP 4978 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 4979 mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex()); 4980 else if (const TemplateTemplateParmDecl *TempTP 4981 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 4982 mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex()); 4983 else 4984 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 4985 break; 4986 } 4987 4988 case Expr::MaterializeTemporaryExprClass: 4989 E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); 4990 goto recurse; 4991 4992 case Expr::CXXFoldExprClass: { 4993 NotPrimaryExpr(); 4994 auto *FE = cast<CXXFoldExpr>(E); 4995 if (FE->isLeftFold()) 4996 Out << (FE->getInit() ? "fL" : "fl"); 4997 else 4998 Out << (FE->getInit() ? "fR" : "fr"); 4999 5000 if (FE->getOperator() == BO_PtrMemD) 5001 Out << "ds"; 5002 else 5003 mangleOperatorName( 5004 BinaryOperator::getOverloadedOperator(FE->getOperator()), 5005 /*Arity=*/2); 5006 5007 if (FE->getLHS()) 5008 mangleExpression(FE->getLHS()); 5009 if (FE->getRHS()) 5010 mangleExpression(FE->getRHS()); 5011 break; 5012 } 5013 5014 case Expr::CXXThisExprClass: 5015 NotPrimaryExpr(); 5016 Out << "fpT"; 5017 break; 5018 5019 case Expr::CoawaitExprClass: 5020 // FIXME: Propose a non-vendor mangling. 5021 NotPrimaryExpr(); 5022 Out << "v18co_await"; 5023 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5024 break; 5025 5026 case Expr::DependentCoawaitExprClass: 5027 // FIXME: Propose a non-vendor mangling. 5028 NotPrimaryExpr(); 5029 Out << "v18co_await"; 5030 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 5031 break; 5032 5033 case Expr::CoyieldExprClass: 5034 // FIXME: Propose a non-vendor mangling. 5035 NotPrimaryExpr(); 5036 Out << "v18co_yield"; 5037 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5038 break; 5039 case Expr::SYCLUniqueStableNameExprClass: { 5040 const auto *USN = cast<SYCLUniqueStableNameExpr>(E); 5041 NotPrimaryExpr(); 5042 5043 Out << "u33__builtin_sycl_unique_stable_name"; 5044 mangleType(USN->getTypeSourceInfo()->getType()); 5045 5046 Out << "E"; 5047 break; 5048 } 5049 } 5050 5051 if (AsTemplateArg && !IsPrimaryExpr) 5052 Out << 'E'; 5053 } 5054 5055 /// Mangle an expression which refers to a parameter variable. 5056 /// 5057 /// <expression> ::= <function-param> 5058 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 5059 /// <function-param> ::= fp <top-level CV-qualifiers> 5060 /// <parameter-2 non-negative number> _ # L == 0, I > 0 5061 /// <function-param> ::= fL <L-1 non-negative number> 5062 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 5063 /// <function-param> ::= fL <L-1 non-negative number> 5064 /// p <top-level CV-qualifiers> 5065 /// <I-1 non-negative number> _ # L > 0, I > 0 5066 /// 5067 /// L is the nesting depth of the parameter, defined as 1 if the 5068 /// parameter comes from the innermost function prototype scope 5069 /// enclosing the current context, 2 if from the next enclosing 5070 /// function prototype scope, and so on, with one special case: if 5071 /// we've processed the full parameter clause for the innermost 5072 /// function type, then L is one less. This definition conveniently 5073 /// makes it irrelevant whether a function's result type was written 5074 /// trailing or leading, but is otherwise overly complicated; the 5075 /// numbering was first designed without considering references to 5076 /// parameter in locations other than return types, and then the 5077 /// mangling had to be generalized without changing the existing 5078 /// manglings. 5079 /// 5080 /// I is the zero-based index of the parameter within its parameter 5081 /// declaration clause. Note that the original ABI document describes 5082 /// this using 1-based ordinals. 5083 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 5084 unsigned parmDepth = parm->getFunctionScopeDepth(); 5085 unsigned parmIndex = parm->getFunctionScopeIndex(); 5086 5087 // Compute 'L'. 5088 // parmDepth does not include the declaring function prototype. 5089 // FunctionTypeDepth does account for that. 5090 assert(parmDepth < FunctionTypeDepth.getDepth()); 5091 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 5092 if (FunctionTypeDepth.isInResultType()) 5093 nestingDepth--; 5094 5095 if (nestingDepth == 0) { 5096 Out << "fp"; 5097 } else { 5098 Out << "fL" << (nestingDepth - 1) << 'p'; 5099 } 5100 5101 // Top-level qualifiers. We don't have to worry about arrays here, 5102 // because parameters declared as arrays should already have been 5103 // transformed to have pointer type. FIXME: apparently these don't 5104 // get mangled if used as an rvalue of a known non-class type? 5105 assert(!parm->getType()->isArrayType() 5106 && "parameter's type is still an array type?"); 5107 5108 if (const DependentAddressSpaceType *DAST = 5109 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 5110 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 5111 } else { 5112 mangleQualifiers(parm->getType().getQualifiers()); 5113 } 5114 5115 // Parameter index. 5116 if (parmIndex != 0) { 5117 Out << (parmIndex - 1); 5118 } 5119 Out << '_'; 5120 } 5121 5122 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 5123 const CXXRecordDecl *InheritedFrom) { 5124 // <ctor-dtor-name> ::= C1 # complete object constructor 5125 // ::= C2 # base object constructor 5126 // ::= CI1 <type> # complete inheriting constructor 5127 // ::= CI2 <type> # base inheriting constructor 5128 // 5129 // In addition, C5 is a comdat name with C1 and C2 in it. 5130 Out << 'C'; 5131 if (InheritedFrom) 5132 Out << 'I'; 5133 switch (T) { 5134 case Ctor_Complete: 5135 Out << '1'; 5136 break; 5137 case Ctor_Base: 5138 Out << '2'; 5139 break; 5140 case Ctor_Comdat: 5141 Out << '5'; 5142 break; 5143 case Ctor_DefaultClosure: 5144 case Ctor_CopyingClosure: 5145 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 5146 } 5147 if (InheritedFrom) 5148 mangleName(InheritedFrom); 5149 } 5150 5151 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 5152 // <ctor-dtor-name> ::= D0 # deleting destructor 5153 // ::= D1 # complete object destructor 5154 // ::= D2 # base object destructor 5155 // 5156 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 5157 switch (T) { 5158 case Dtor_Deleting: 5159 Out << "D0"; 5160 break; 5161 case Dtor_Complete: 5162 Out << "D1"; 5163 break; 5164 case Dtor_Base: 5165 Out << "D2"; 5166 break; 5167 case Dtor_Comdat: 5168 Out << "D5"; 5169 break; 5170 } 5171 } 5172 5173 namespace { 5174 // Helper to provide ancillary information on a template used to mangle its 5175 // arguments. 5176 struct TemplateArgManglingInfo { 5177 TemplateDecl *ResolvedTemplate = nullptr; 5178 bool SeenPackExpansionIntoNonPack = false; 5179 const NamedDecl *UnresolvedExpandedPack = nullptr; 5180 5181 TemplateArgManglingInfo(TemplateName TN) { 5182 if (TemplateDecl *TD = TN.getAsTemplateDecl()) 5183 ResolvedTemplate = TD; 5184 } 5185 5186 /// Do we need to mangle template arguments with exactly correct types? 5187 /// 5188 /// This should be called exactly once for each parameter / argument pair, in 5189 /// order. 5190 bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) { 5191 // We need correct types when the template-name is unresolved or when it 5192 // names a template that is able to be overloaded. 5193 if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) 5194 return true; 5195 5196 // Move to the next parameter. 5197 const NamedDecl *Param = UnresolvedExpandedPack; 5198 if (!Param) { 5199 assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && 5200 "no parameter for argument"); 5201 Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx); 5202 5203 // If we reach an expanded parameter pack whose argument isn't in pack 5204 // form, that means Sema couldn't figure out which arguments belonged to 5205 // it, because it contains a pack expansion. Track the expanded pack for 5206 // all further template arguments until we hit that pack expansion. 5207 if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { 5208 assert(getExpandedPackSize(Param) && 5209 "failed to form pack argument for parameter pack"); 5210 UnresolvedExpandedPack = Param; 5211 } 5212 } 5213 5214 // If we encounter a pack argument that is expanded into a non-pack 5215 // parameter, we can no longer track parameter / argument correspondence, 5216 // and need to use exact types from this point onwards. 5217 if (Arg.isPackExpansion() && 5218 (!Param->isParameterPack() || UnresolvedExpandedPack)) { 5219 SeenPackExpansionIntoNonPack = true; 5220 return true; 5221 } 5222 5223 // We need exact types for function template arguments because they might be 5224 // overloaded on template parameter type. As a special case, a member 5225 // function template of a generic lambda is not overloadable. 5226 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) { 5227 auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); 5228 if (!RD || !RD->isGenericLambda()) 5229 return true; 5230 } 5231 5232 // Otherwise, we only need a correct type if the parameter has a deduced 5233 // type. 5234 // 5235 // Note: for an expanded parameter pack, getType() returns the type prior 5236 // to expansion. We could ask for the expanded type with getExpansionType(), 5237 // but it doesn't matter because substitution and expansion don't affect 5238 // whether a deduced type appears in the type. 5239 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param); 5240 return NTTP && NTTP->getType()->getContainedDeducedType(); 5241 } 5242 }; 5243 } 5244 5245 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5246 const TemplateArgumentLoc *TemplateArgs, 5247 unsigned NumTemplateArgs) { 5248 // <template-args> ::= I <template-arg>+ E 5249 Out << 'I'; 5250 TemplateArgManglingInfo Info(TN); 5251 for (unsigned i = 0; i != NumTemplateArgs; ++i) 5252 mangleTemplateArg(TemplateArgs[i].getArgument(), 5253 Info.needExactType(i, TemplateArgs[i].getArgument())); 5254 Out << 'E'; 5255 } 5256 5257 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5258 const TemplateArgumentList &AL) { 5259 // <template-args> ::= I <template-arg>+ E 5260 Out << 'I'; 5261 TemplateArgManglingInfo Info(TN); 5262 for (unsigned i = 0, e = AL.size(); i != e; ++i) 5263 mangleTemplateArg(AL[i], Info.needExactType(i, AL[i])); 5264 Out << 'E'; 5265 } 5266 5267 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5268 const TemplateArgument *TemplateArgs, 5269 unsigned NumTemplateArgs) { 5270 // <template-args> ::= I <template-arg>+ E 5271 Out << 'I'; 5272 TemplateArgManglingInfo Info(TN); 5273 for (unsigned i = 0; i != NumTemplateArgs; ++i) 5274 mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i])); 5275 Out << 'E'; 5276 } 5277 5278 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { 5279 // <template-arg> ::= <type> # type or template 5280 // ::= X <expression> E # expression 5281 // ::= <expr-primary> # simple expressions 5282 // ::= J <template-arg>* E # argument pack 5283 if (!A.isInstantiationDependent() || A.isDependent()) 5284 A = Context.getASTContext().getCanonicalTemplateArgument(A); 5285 5286 switch (A.getKind()) { 5287 case TemplateArgument::Null: 5288 llvm_unreachable("Cannot mangle NULL template argument"); 5289 5290 case TemplateArgument::Type: 5291 mangleType(A.getAsType()); 5292 break; 5293 case TemplateArgument::Template: 5294 // This is mangled as <type>. 5295 mangleType(A.getAsTemplate()); 5296 break; 5297 case TemplateArgument::TemplateExpansion: 5298 // <type> ::= Dp <type> # pack expansion (C++0x) 5299 Out << "Dp"; 5300 mangleType(A.getAsTemplateOrTemplatePattern()); 5301 break; 5302 case TemplateArgument::Expression: 5303 mangleTemplateArgExpr(A.getAsExpr()); 5304 break; 5305 case TemplateArgument::Integral: 5306 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 5307 break; 5308 case TemplateArgument::Declaration: { 5309 // <expr-primary> ::= L <mangled-name> E # external name 5310 ValueDecl *D = A.getAsDecl(); 5311 5312 // Template parameter objects are modeled by reproducing a source form 5313 // produced as if by aggregate initialization. 5314 if (A.getParamTypeForDecl()->isRecordType()) { 5315 auto *TPO = cast<TemplateParamObjectDecl>(D); 5316 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 5317 TPO->getValue(), /*TopLevel=*/true, 5318 NeedExactType); 5319 break; 5320 } 5321 5322 ASTContext &Ctx = Context.getASTContext(); 5323 APValue Value; 5324 if (D->isCXXInstanceMember()) 5325 // Simple pointer-to-member with no conversion. 5326 Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); 5327 else if (D->getType()->isArrayType() && 5328 Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()), 5329 A.getParamTypeForDecl()) && 5330 Ctx.getLangOpts().getClangABICompat() > 5331 LangOptions::ClangABI::Ver11) 5332 // Build a value corresponding to this implicit array-to-pointer decay. 5333 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 5334 {APValue::LValuePathEntry::ArrayIndex(0)}, 5335 /*OnePastTheEnd=*/false); 5336 else 5337 // Regular pointer or reference to a declaration. 5338 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 5339 ArrayRef<APValue::LValuePathEntry>(), 5340 /*OnePastTheEnd=*/false); 5341 mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true, 5342 NeedExactType); 5343 break; 5344 } 5345 case TemplateArgument::NullPtr: { 5346 mangleNullPointer(A.getNullPtrType()); 5347 break; 5348 } 5349 case TemplateArgument::Pack: { 5350 // <template-arg> ::= J <template-arg>* E 5351 Out << 'J'; 5352 for (const auto &P : A.pack_elements()) 5353 mangleTemplateArg(P, NeedExactType); 5354 Out << 'E'; 5355 } 5356 } 5357 } 5358 5359 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { 5360 ASTContext &Ctx = Context.getASTContext(); 5361 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) { 5362 mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true); 5363 return; 5364 } 5365 5366 // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> 5367 // correctly in cases where the template argument was 5368 // constructed from an expression rather than an already-evaluated 5369 // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of 5370 // 'Li0E'. 5371 // 5372 // We did special-case DeclRefExpr to attempt to DTRT for that one 5373 // expression-kind, but while doing so, unfortunately handled ParmVarDecl 5374 // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of 5375 // the proper 'Xfp_E'. 5376 E = E->IgnoreParenImpCasts(); 5377 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 5378 const ValueDecl *D = DRE->getDecl(); 5379 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 5380 Out << 'L'; 5381 mangle(D); 5382 Out << 'E'; 5383 return; 5384 } 5385 } 5386 Out << 'X'; 5387 mangleExpression(E); 5388 Out << 'E'; 5389 } 5390 5391 /// Determine whether a given value is equivalent to zero-initialization for 5392 /// the purpose of discarding a trailing portion of a 'tl' mangling. 5393 /// 5394 /// Note that this is not in general equivalent to determining whether the 5395 /// value has an all-zeroes bit pattern. 5396 static bool isZeroInitialized(QualType T, const APValue &V) { 5397 // FIXME: mangleValueInTemplateArg has quadratic time complexity in 5398 // pathological cases due to using this, but it's a little awkward 5399 // to do this in linear time in general. 5400 switch (V.getKind()) { 5401 case APValue::None: 5402 case APValue::Indeterminate: 5403 case APValue::AddrLabelDiff: 5404 return false; 5405 5406 case APValue::Struct: { 5407 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5408 assert(RD && "unexpected type for record value"); 5409 unsigned I = 0; 5410 for (const CXXBaseSpecifier &BS : RD->bases()) { 5411 if (!isZeroInitialized(BS.getType(), V.getStructBase(I))) 5412 return false; 5413 ++I; 5414 } 5415 I = 0; 5416 for (const FieldDecl *FD : RD->fields()) { 5417 if (!FD->isUnnamedBitfield() && 5418 !isZeroInitialized(FD->getType(), V.getStructField(I))) 5419 return false; 5420 ++I; 5421 } 5422 return true; 5423 } 5424 5425 case APValue::Union: { 5426 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5427 assert(RD && "unexpected type for union value"); 5428 // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. 5429 for (const FieldDecl *FD : RD->fields()) { 5430 if (!FD->isUnnamedBitfield()) 5431 return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && 5432 isZeroInitialized(FD->getType(), V.getUnionValue()); 5433 } 5434 // If there are no fields (other than unnamed bitfields), the value is 5435 // necessarily zero-initialized. 5436 return true; 5437 } 5438 5439 case APValue::Array: { 5440 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 5441 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) 5442 if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I))) 5443 return false; 5444 return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller()); 5445 } 5446 5447 case APValue::Vector: { 5448 const VectorType *VT = T->castAs<VectorType>(); 5449 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) 5450 if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I))) 5451 return false; 5452 return true; 5453 } 5454 5455 case APValue::Int: 5456 return !V.getInt(); 5457 5458 case APValue::Float: 5459 return V.getFloat().isPosZero(); 5460 5461 case APValue::FixedPoint: 5462 return !V.getFixedPoint().getValue(); 5463 5464 case APValue::ComplexFloat: 5465 return V.getComplexFloatReal().isPosZero() && 5466 V.getComplexFloatImag().isPosZero(); 5467 5468 case APValue::ComplexInt: 5469 return !V.getComplexIntReal() && !V.getComplexIntImag(); 5470 5471 case APValue::LValue: 5472 return V.isNullPointer(); 5473 5474 case APValue::MemberPointer: 5475 return !V.getMemberPointerDecl(); 5476 } 5477 5478 llvm_unreachable("Unhandled APValue::ValueKind enum"); 5479 } 5480 5481 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { 5482 QualType T = LV.getLValueBase().getType(); 5483 for (APValue::LValuePathEntry E : LV.getLValuePath()) { 5484 if (const ArrayType *AT = Ctx.getAsArrayType(T)) 5485 T = AT->getElementType(); 5486 else if (const FieldDecl *FD = 5487 dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer())) 5488 T = FD->getType(); 5489 else 5490 T = Ctx.getRecordType( 5491 cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer())); 5492 } 5493 return T; 5494 } 5495 5496 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, 5497 bool TopLevel, 5498 bool NeedExactType) { 5499 // Ignore all top-level cv-qualifiers, to match GCC. 5500 Qualifiers Quals; 5501 T = getASTContext().getUnqualifiedArrayType(T, Quals); 5502 5503 // A top-level expression that's not a primary expression is wrapped in X...E. 5504 bool IsPrimaryExpr = true; 5505 auto NotPrimaryExpr = [&] { 5506 if (TopLevel && IsPrimaryExpr) 5507 Out << 'X'; 5508 IsPrimaryExpr = false; 5509 }; 5510 5511 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 5512 switch (V.getKind()) { 5513 case APValue::None: 5514 case APValue::Indeterminate: 5515 Out << 'L'; 5516 mangleType(T); 5517 Out << 'E'; 5518 break; 5519 5520 case APValue::AddrLabelDiff: 5521 llvm_unreachable("unexpected value kind in template argument"); 5522 5523 case APValue::Struct: { 5524 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5525 assert(RD && "unexpected type for record value"); 5526 5527 // Drop trailing zero-initialized elements. 5528 llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(), 5529 RD->field_end()); 5530 while ( 5531 !Fields.empty() && 5532 (Fields.back()->isUnnamedBitfield() || 5533 isZeroInitialized(Fields.back()->getType(), 5534 V.getStructField(Fields.back()->getFieldIndex())))) { 5535 Fields.pop_back(); 5536 } 5537 llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); 5538 if (Fields.empty()) { 5539 while (!Bases.empty() && 5540 isZeroInitialized(Bases.back().getType(), 5541 V.getStructBase(Bases.size() - 1))) 5542 Bases = Bases.drop_back(); 5543 } 5544 5545 // <expression> ::= tl <type> <braced-expression>* E 5546 NotPrimaryExpr(); 5547 Out << "tl"; 5548 mangleType(T); 5549 for (unsigned I = 0, N = Bases.size(); I != N; ++I) 5550 mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false); 5551 for (unsigned I = 0, N = Fields.size(); I != N; ++I) { 5552 if (Fields[I]->isUnnamedBitfield()) 5553 continue; 5554 mangleValueInTemplateArg(Fields[I]->getType(), 5555 V.getStructField(Fields[I]->getFieldIndex()), 5556 false); 5557 } 5558 Out << 'E'; 5559 break; 5560 } 5561 5562 case APValue::Union: { 5563 assert(T->getAsCXXRecordDecl() && "unexpected type for union value"); 5564 const FieldDecl *FD = V.getUnionField(); 5565 5566 if (!FD) { 5567 Out << 'L'; 5568 mangleType(T); 5569 Out << 'E'; 5570 break; 5571 } 5572 5573 // <braced-expression> ::= di <field source-name> <braced-expression> 5574 NotPrimaryExpr(); 5575 Out << "tl"; 5576 mangleType(T); 5577 if (!isZeroInitialized(T, V)) { 5578 Out << "di"; 5579 mangleSourceName(FD->getIdentifier()); 5580 mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false); 5581 } 5582 Out << 'E'; 5583 break; 5584 } 5585 5586 case APValue::Array: { 5587 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 5588 5589 NotPrimaryExpr(); 5590 Out << "tl"; 5591 mangleType(T); 5592 5593 // Drop trailing zero-initialized elements. 5594 unsigned N = V.getArraySize(); 5595 if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) { 5596 N = V.getArrayInitializedElts(); 5597 while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1))) 5598 --N; 5599 } 5600 5601 for (unsigned I = 0; I != N; ++I) { 5602 const APValue &Elem = I < V.getArrayInitializedElts() 5603 ? V.getArrayInitializedElt(I) 5604 : V.getArrayFiller(); 5605 mangleValueInTemplateArg(ElemT, Elem, false); 5606 } 5607 Out << 'E'; 5608 break; 5609 } 5610 5611 case APValue::Vector: { 5612 const VectorType *VT = T->castAs<VectorType>(); 5613 5614 NotPrimaryExpr(); 5615 Out << "tl"; 5616 mangleType(T); 5617 unsigned N = V.getVectorLength(); 5618 while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1))) 5619 --N; 5620 for (unsigned I = 0; I != N; ++I) 5621 mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false); 5622 Out << 'E'; 5623 break; 5624 } 5625 5626 case APValue::Int: 5627 mangleIntegerLiteral(T, V.getInt()); 5628 break; 5629 5630 case APValue::Float: 5631 mangleFloatLiteral(T, V.getFloat()); 5632 break; 5633 5634 case APValue::FixedPoint: 5635 mangleFixedPointLiteral(); 5636 break; 5637 5638 case APValue::ComplexFloat: { 5639 const ComplexType *CT = T->castAs<ComplexType>(); 5640 NotPrimaryExpr(); 5641 Out << "tl"; 5642 mangleType(T); 5643 if (!V.getComplexFloatReal().isPosZero() || 5644 !V.getComplexFloatImag().isPosZero()) 5645 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal()); 5646 if (!V.getComplexFloatImag().isPosZero()) 5647 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag()); 5648 Out << 'E'; 5649 break; 5650 } 5651 5652 case APValue::ComplexInt: { 5653 const ComplexType *CT = T->castAs<ComplexType>(); 5654 NotPrimaryExpr(); 5655 Out << "tl"; 5656 mangleType(T); 5657 if (V.getComplexIntReal().getBoolValue() || 5658 V.getComplexIntImag().getBoolValue()) 5659 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal()); 5660 if (V.getComplexIntImag().getBoolValue()) 5661 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag()); 5662 Out << 'E'; 5663 break; 5664 } 5665 5666 case APValue::LValue: { 5667 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 5668 assert((T->isPointerType() || T->isReferenceType()) && 5669 "unexpected type for LValue template arg"); 5670 5671 if (V.isNullPointer()) { 5672 mangleNullPointer(T); 5673 break; 5674 } 5675 5676 APValue::LValueBase B = V.getLValueBase(); 5677 if (!B) { 5678 // Non-standard mangling for integer cast to a pointer; this can only 5679 // occur as an extension. 5680 CharUnits Offset = V.getLValueOffset(); 5681 if (Offset.isZero()) { 5682 // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as 5683 // a cast, because L <type> 0 E means something else. 5684 NotPrimaryExpr(); 5685 Out << "rc"; 5686 mangleType(T); 5687 Out << "Li0E"; 5688 if (TopLevel) 5689 Out << 'E'; 5690 } else { 5691 Out << "L"; 5692 mangleType(T); 5693 Out << Offset.getQuantity() << 'E'; 5694 } 5695 break; 5696 } 5697 5698 ASTContext &Ctx = Context.getASTContext(); 5699 5700 enum { Base, Offset, Path } Kind; 5701 if (!V.hasLValuePath()) { 5702 // Mangle as (T*)((char*)&base + N). 5703 if (T->isReferenceType()) { 5704 NotPrimaryExpr(); 5705 Out << "decvP"; 5706 mangleType(T->getPointeeType()); 5707 } else { 5708 NotPrimaryExpr(); 5709 Out << "cv"; 5710 mangleType(T); 5711 } 5712 Out << "plcvPcad"; 5713 Kind = Offset; 5714 } else { 5715 if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) { 5716 NotPrimaryExpr(); 5717 // A final conversion to the template parameter's type is usually 5718 // folded into the 'so' mangling, but we can't do that for 'void*' 5719 // parameters without introducing collisions. 5720 if (NeedExactType && T->isVoidPointerType()) { 5721 Out << "cv"; 5722 mangleType(T); 5723 } 5724 if (T->isPointerType()) 5725 Out << "ad"; 5726 Out << "so"; 5727 mangleType(T->isVoidPointerType() 5728 ? getLValueType(Ctx, V).getUnqualifiedType() 5729 : T->getPointeeType()); 5730 Kind = Path; 5731 } else { 5732 if (NeedExactType && 5733 !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) && 5734 Ctx.getLangOpts().getClangABICompat() > 5735 LangOptions::ClangABI::Ver11) { 5736 NotPrimaryExpr(); 5737 Out << "cv"; 5738 mangleType(T); 5739 } 5740 if (T->isPointerType()) { 5741 NotPrimaryExpr(); 5742 Out << "ad"; 5743 } 5744 Kind = Base; 5745 } 5746 } 5747 5748 QualType TypeSoFar = B.getType(); 5749 if (auto *VD = B.dyn_cast<const ValueDecl*>()) { 5750 Out << 'L'; 5751 mangle(VD); 5752 Out << 'E'; 5753 } else if (auto *E = B.dyn_cast<const Expr*>()) { 5754 NotPrimaryExpr(); 5755 mangleExpression(E); 5756 } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { 5757 NotPrimaryExpr(); 5758 Out << "ti"; 5759 mangleType(QualType(TI.getType(), 0)); 5760 } else { 5761 // We should never see dynamic allocations here. 5762 llvm_unreachable("unexpected lvalue base kind in template argument"); 5763 } 5764 5765 switch (Kind) { 5766 case Base: 5767 break; 5768 5769 case Offset: 5770 Out << 'L'; 5771 mangleType(Ctx.getPointerDiffType()); 5772 mangleNumber(V.getLValueOffset().getQuantity()); 5773 Out << 'E'; 5774 break; 5775 5776 case Path: 5777 // <expression> ::= so <referent type> <expr> [<offset number>] 5778 // <union-selector>* [p] E 5779 if (!V.getLValueOffset().isZero()) 5780 mangleNumber(V.getLValueOffset().getQuantity()); 5781 5782 // We model a past-the-end array pointer as array indexing with index N, 5783 // not with the "past the end" flag. Compensate for that. 5784 bool OnePastTheEnd = V.isLValueOnePastTheEnd(); 5785 5786 for (APValue::LValuePathEntry E : V.getLValuePath()) { 5787 if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { 5788 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 5789 OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); 5790 TypeSoFar = AT->getElementType(); 5791 } else { 5792 const Decl *D = E.getAsBaseOrMember().getPointer(); 5793 if (auto *FD = dyn_cast<FieldDecl>(D)) { 5794 // <union-selector> ::= _ <number> 5795 if (FD->getParent()->isUnion()) { 5796 Out << '_'; 5797 if (FD->getFieldIndex()) 5798 Out << (FD->getFieldIndex() - 1); 5799 } 5800 TypeSoFar = FD->getType(); 5801 } else { 5802 TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D)); 5803 } 5804 } 5805 } 5806 5807 if (OnePastTheEnd) 5808 Out << 'p'; 5809 Out << 'E'; 5810 break; 5811 } 5812 5813 break; 5814 } 5815 5816 case APValue::MemberPointer: 5817 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 5818 if (!V.getMemberPointerDecl()) { 5819 mangleNullPointer(T); 5820 break; 5821 } 5822 5823 ASTContext &Ctx = Context.getASTContext(); 5824 5825 NotPrimaryExpr(); 5826 if (!V.getMemberPointerPath().empty()) { 5827 Out << "mc"; 5828 mangleType(T); 5829 } else if (NeedExactType && 5830 !Ctx.hasSameType( 5831 T->castAs<MemberPointerType>()->getPointeeType(), 5832 V.getMemberPointerDecl()->getType()) && 5833 Ctx.getLangOpts().getClangABICompat() > 5834 LangOptions::ClangABI::Ver11) { 5835 Out << "cv"; 5836 mangleType(T); 5837 } 5838 Out << "adL"; 5839 mangle(V.getMemberPointerDecl()); 5840 Out << 'E'; 5841 if (!V.getMemberPointerPath().empty()) { 5842 CharUnits Offset = 5843 Context.getASTContext().getMemberPointerPathAdjustment(V); 5844 if (!Offset.isZero()) 5845 mangleNumber(Offset.getQuantity()); 5846 Out << 'E'; 5847 } 5848 break; 5849 } 5850 5851 if (TopLevel && !IsPrimaryExpr) 5852 Out << 'E'; 5853 } 5854 5855 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { 5856 // <template-param> ::= T_ # first template parameter 5857 // ::= T <parameter-2 non-negative number> _ 5858 // ::= TL <L-1 non-negative number> __ 5859 // ::= TL <L-1 non-negative number> _ 5860 // <parameter-2 non-negative number> _ 5861 // 5862 // The latter two manglings are from a proposal here: 5863 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 5864 Out << 'T'; 5865 if (Depth != 0) 5866 Out << 'L' << (Depth - 1) << '_'; 5867 if (Index != 0) 5868 Out << (Index - 1); 5869 Out << '_'; 5870 } 5871 5872 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 5873 if (SeqID == 1) 5874 Out << '0'; 5875 else if (SeqID > 1) { 5876 SeqID--; 5877 5878 // <seq-id> is encoded in base-36, using digits and upper case letters. 5879 char Buffer[7]; // log(2**32) / log(36) ~= 7 5880 MutableArrayRef<char> BufferRef(Buffer); 5881 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 5882 5883 for (; SeqID != 0; SeqID /= 36) { 5884 unsigned C = SeqID % 36; 5885 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 5886 } 5887 5888 Out.write(I.base(), I - BufferRef.rbegin()); 5889 } 5890 Out << '_'; 5891 } 5892 5893 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 5894 bool result = mangleSubstitution(tname); 5895 assert(result && "no existing substitution for template name"); 5896 (void) result; 5897 } 5898 5899 // <substitution> ::= S <seq-id> _ 5900 // ::= S_ 5901 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 5902 // Try one of the standard substitutions first. 5903 if (mangleStandardSubstitution(ND)) 5904 return true; 5905 5906 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 5907 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 5908 } 5909 5910 /// Determine whether the given type has any qualifiers that are relevant for 5911 /// substitutions. 5912 static bool hasMangledSubstitutionQualifiers(QualType T) { 5913 Qualifiers Qs = T.getQualifiers(); 5914 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 5915 } 5916 5917 bool CXXNameMangler::mangleSubstitution(QualType T) { 5918 if (!hasMangledSubstitutionQualifiers(T)) { 5919 if (const RecordType *RT = T->getAs<RecordType>()) 5920 return mangleSubstitution(RT->getDecl()); 5921 } 5922 5923 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 5924 5925 return mangleSubstitution(TypePtr); 5926 } 5927 5928 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 5929 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 5930 return mangleSubstitution(TD); 5931 5932 Template = Context.getASTContext().getCanonicalTemplateName(Template); 5933 return mangleSubstitution( 5934 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 5935 } 5936 5937 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 5938 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 5939 if (I == Substitutions.end()) 5940 return false; 5941 5942 unsigned SeqID = I->second; 5943 Out << 'S'; 5944 mangleSeqID(SeqID); 5945 5946 return true; 5947 } 5948 5949 static bool isCharType(QualType T) { 5950 if (T.isNull()) 5951 return false; 5952 5953 return T->isSpecificBuiltinType(BuiltinType::Char_S) || 5954 T->isSpecificBuiltinType(BuiltinType::Char_U); 5955 } 5956 5957 /// Returns whether a given type is a template specialization of a given name 5958 /// with a single argument of type char. 5959 static bool isCharSpecialization(QualType T, const char *Name) { 5960 if (T.isNull()) 5961 return false; 5962 5963 const RecordType *RT = T->getAs<RecordType>(); 5964 if (!RT) 5965 return false; 5966 5967 const ClassTemplateSpecializationDecl *SD = 5968 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 5969 if (!SD) 5970 return false; 5971 5972 if (!isStdNamespace(getEffectiveDeclContext(SD))) 5973 return false; 5974 5975 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 5976 if (TemplateArgs.size() != 1) 5977 return false; 5978 5979 if (!isCharType(TemplateArgs[0].getAsType())) 5980 return false; 5981 5982 return SD->getIdentifier()->getName() == Name; 5983 } 5984 5985 template <std::size_t StrLen> 5986 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, 5987 const char (&Str)[StrLen]) { 5988 if (!SD->getIdentifier()->isStr(Str)) 5989 return false; 5990 5991 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 5992 if (TemplateArgs.size() != 2) 5993 return false; 5994 5995 if (!isCharType(TemplateArgs[0].getAsType())) 5996 return false; 5997 5998 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 5999 return false; 6000 6001 return true; 6002 } 6003 6004 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 6005 // <substitution> ::= St # ::std:: 6006 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 6007 if (isStd(NS)) { 6008 Out << "St"; 6009 return true; 6010 } 6011 } 6012 6013 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 6014 if (!isStdNamespace(getEffectiveDeclContext(TD))) 6015 return false; 6016 6017 // <substitution> ::= Sa # ::std::allocator 6018 if (TD->getIdentifier()->isStr("allocator")) { 6019 Out << "Sa"; 6020 return true; 6021 } 6022 6023 // <<substitution> ::= Sb # ::std::basic_string 6024 if (TD->getIdentifier()->isStr("basic_string")) { 6025 Out << "Sb"; 6026 return true; 6027 } 6028 } 6029 6030 if (const ClassTemplateSpecializationDecl *SD = 6031 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 6032 if (!isStdNamespace(getEffectiveDeclContext(SD))) 6033 return false; 6034 6035 // <substitution> ::= Ss # ::std::basic_string<char, 6036 // ::std::char_traits<char>, 6037 // ::std::allocator<char> > 6038 if (SD->getIdentifier()->isStr("basic_string")) { 6039 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6040 6041 if (TemplateArgs.size() != 3) 6042 return false; 6043 6044 if (!isCharType(TemplateArgs[0].getAsType())) 6045 return false; 6046 6047 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 6048 return false; 6049 6050 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) 6051 return false; 6052 6053 Out << "Ss"; 6054 return true; 6055 } 6056 6057 // <substitution> ::= Si # ::std::basic_istream<char, 6058 // ::std::char_traits<char> > 6059 if (isStreamCharSpecialization(SD, "basic_istream")) { 6060 Out << "Si"; 6061 return true; 6062 } 6063 6064 // <substitution> ::= So # ::std::basic_ostream<char, 6065 // ::std::char_traits<char> > 6066 if (isStreamCharSpecialization(SD, "basic_ostream")) { 6067 Out << "So"; 6068 return true; 6069 } 6070 6071 // <substitution> ::= Sd # ::std::basic_iostream<char, 6072 // ::std::char_traits<char> > 6073 if (isStreamCharSpecialization(SD, "basic_iostream")) { 6074 Out << "Sd"; 6075 return true; 6076 } 6077 } 6078 return false; 6079 } 6080 6081 void CXXNameMangler::addSubstitution(QualType T) { 6082 if (!hasMangledSubstitutionQualifiers(T)) { 6083 if (const RecordType *RT = T->getAs<RecordType>()) { 6084 addSubstitution(RT->getDecl()); 6085 return; 6086 } 6087 } 6088 6089 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 6090 addSubstitution(TypePtr); 6091 } 6092 6093 void CXXNameMangler::addSubstitution(TemplateName Template) { 6094 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 6095 return addSubstitution(TD); 6096 6097 Template = Context.getASTContext().getCanonicalTemplateName(Template); 6098 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 6099 } 6100 6101 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 6102 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 6103 Substitutions[Ptr] = SeqID++; 6104 } 6105 6106 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 6107 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 6108 if (Other->SeqID > SeqID) { 6109 Substitutions.swap(Other->Substitutions); 6110 SeqID = Other->SeqID; 6111 } 6112 } 6113 6114 CXXNameMangler::AbiTagList 6115 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 6116 // When derived abi tags are disabled there is no need to make any list. 6117 if (DisableDerivedAbiTags) 6118 return AbiTagList(); 6119 6120 llvm::raw_null_ostream NullOutStream; 6121 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 6122 TrackReturnTypeTags.disableDerivedAbiTags(); 6123 6124 const FunctionProtoType *Proto = 6125 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 6126 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 6127 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 6128 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 6129 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 6130 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 6131 6132 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6133 } 6134 6135 CXXNameMangler::AbiTagList 6136 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 6137 // When derived abi tags are disabled there is no need to make any list. 6138 if (DisableDerivedAbiTags) 6139 return AbiTagList(); 6140 6141 llvm::raw_null_ostream NullOutStream; 6142 CXXNameMangler TrackVariableType(*this, NullOutStream); 6143 TrackVariableType.disableDerivedAbiTags(); 6144 6145 TrackVariableType.mangleType(VD->getType()); 6146 6147 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6148 } 6149 6150 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 6151 const VarDecl *VD) { 6152 llvm::raw_null_ostream NullOutStream; 6153 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 6154 TrackAbiTags.mangle(VD); 6155 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 6156 } 6157 6158 // 6159 6160 /// Mangles the name of the declaration D and emits that name to the given 6161 /// output stream. 6162 /// 6163 /// If the declaration D requires a mangled name, this routine will emit that 6164 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 6165 /// and this routine will return false. In this case, the caller should just 6166 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 6167 /// name. 6168 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, 6169 raw_ostream &Out) { 6170 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 6171 assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && 6172 "Invalid mangleName() call, argument is not a variable or function!"); 6173 6174 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 6175 getASTContext().getSourceManager(), 6176 "Mangling declaration"); 6177 6178 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 6179 auto Type = GD.getCtorType(); 6180 CXXNameMangler Mangler(*this, Out, CD, Type); 6181 return Mangler.mangle(GlobalDecl(CD, Type)); 6182 } 6183 6184 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 6185 auto Type = GD.getDtorType(); 6186 CXXNameMangler Mangler(*this, Out, DD, Type); 6187 return Mangler.mangle(GlobalDecl(DD, Type)); 6188 } 6189 6190 CXXNameMangler Mangler(*this, Out, D); 6191 Mangler.mangle(GD); 6192 } 6193 6194 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 6195 raw_ostream &Out) { 6196 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 6197 Mangler.mangle(GlobalDecl(D, Ctor_Comdat)); 6198 } 6199 6200 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 6201 raw_ostream &Out) { 6202 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 6203 Mangler.mangle(GlobalDecl(D, Dtor_Comdat)); 6204 } 6205 6206 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 6207 const ThunkInfo &Thunk, 6208 raw_ostream &Out) { 6209 // <special-name> ::= T <call-offset> <base encoding> 6210 // # base is the nominal target function of thunk 6211 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 6212 // # base is the nominal target function of thunk 6213 // # first call-offset is 'this' adjustment 6214 // # second call-offset is result adjustment 6215 6216 assert(!isa<CXXDestructorDecl>(MD) && 6217 "Use mangleCXXDtor for destructor decls!"); 6218 CXXNameMangler Mangler(*this, Out); 6219 Mangler.getStream() << "_ZT"; 6220 if (!Thunk.Return.isEmpty()) 6221 Mangler.getStream() << 'c'; 6222 6223 // Mangle the 'this' pointer adjustment. 6224 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 6225 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 6226 6227 // Mangle the return pointer adjustment if there is one. 6228 if (!Thunk.Return.isEmpty()) 6229 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 6230 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 6231 6232 Mangler.mangleFunctionEncoding(MD); 6233 } 6234 6235 void ItaniumMangleContextImpl::mangleCXXDtorThunk( 6236 const CXXDestructorDecl *DD, CXXDtorType Type, 6237 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { 6238 // <special-name> ::= T <call-offset> <base encoding> 6239 // # base is the nominal target function of thunk 6240 CXXNameMangler Mangler(*this, Out, DD, Type); 6241 Mangler.getStream() << "_ZT"; 6242 6243 // Mangle the 'this' pointer adjustment. 6244 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 6245 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 6246 6247 Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type)); 6248 } 6249 6250 /// Returns the mangled name for a guard variable for the passed in VarDecl. 6251 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 6252 raw_ostream &Out) { 6253 // <special-name> ::= GV <object name> # Guard variable for one-time 6254 // # initialization 6255 CXXNameMangler Mangler(*this, Out); 6256 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 6257 // be a bug that is fixed in trunk. 6258 Mangler.getStream() << "_ZGV"; 6259 Mangler.mangleName(D); 6260 } 6261 6262 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 6263 raw_ostream &Out) { 6264 // These symbols are internal in the Itanium ABI, so the names don't matter. 6265 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 6266 // avoid duplicate symbols. 6267 Out << "__cxx_global_var_init"; 6268 } 6269 6270 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 6271 raw_ostream &Out) { 6272 // Prefix the mangling of D with __dtor_. 6273 CXXNameMangler Mangler(*this, Out); 6274 Mangler.getStream() << "__dtor_"; 6275 if (shouldMangleDeclName(D)) 6276 Mangler.mangle(D); 6277 else 6278 Mangler.getStream() << D->getName(); 6279 } 6280 6281 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, 6282 raw_ostream &Out) { 6283 // Clang generates these internal-linkage functions as part of its 6284 // implementation of the XL ABI. 6285 CXXNameMangler Mangler(*this, Out); 6286 Mangler.getStream() << "__finalize_"; 6287 if (shouldMangleDeclName(D)) 6288 Mangler.mangle(D); 6289 else 6290 Mangler.getStream() << D->getName(); 6291 } 6292 6293 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 6294 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 6295 CXXNameMangler Mangler(*this, Out); 6296 Mangler.getStream() << "__filt_"; 6297 if (shouldMangleDeclName(EnclosingDecl)) 6298 Mangler.mangle(EnclosingDecl); 6299 else 6300 Mangler.getStream() << EnclosingDecl->getName(); 6301 } 6302 6303 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 6304 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 6305 CXXNameMangler Mangler(*this, Out); 6306 Mangler.getStream() << "__fin_"; 6307 if (shouldMangleDeclName(EnclosingDecl)) 6308 Mangler.mangle(EnclosingDecl); 6309 else 6310 Mangler.getStream() << EnclosingDecl->getName(); 6311 } 6312 6313 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 6314 raw_ostream &Out) { 6315 // <special-name> ::= TH <object name> 6316 CXXNameMangler Mangler(*this, Out); 6317 Mangler.getStream() << "_ZTH"; 6318 Mangler.mangleName(D); 6319 } 6320 6321 void 6322 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 6323 raw_ostream &Out) { 6324 // <special-name> ::= TW <object name> 6325 CXXNameMangler Mangler(*this, Out); 6326 Mangler.getStream() << "_ZTW"; 6327 Mangler.mangleName(D); 6328 } 6329 6330 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 6331 unsigned ManglingNumber, 6332 raw_ostream &Out) { 6333 // We match the GCC mangling here. 6334 // <special-name> ::= GR <object name> 6335 CXXNameMangler Mangler(*this, Out); 6336 Mangler.getStream() << "_ZGR"; 6337 Mangler.mangleName(D); 6338 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 6339 Mangler.mangleSeqID(ManglingNumber - 1); 6340 } 6341 6342 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 6343 raw_ostream &Out) { 6344 // <special-name> ::= TV <type> # virtual table 6345 CXXNameMangler Mangler(*this, Out); 6346 Mangler.getStream() << "_ZTV"; 6347 Mangler.mangleNameOrStandardSubstitution(RD); 6348 } 6349 6350 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 6351 raw_ostream &Out) { 6352 // <special-name> ::= TT <type> # VTT structure 6353 CXXNameMangler Mangler(*this, Out); 6354 Mangler.getStream() << "_ZTT"; 6355 Mangler.mangleNameOrStandardSubstitution(RD); 6356 } 6357 6358 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 6359 int64_t Offset, 6360 const CXXRecordDecl *Type, 6361 raw_ostream &Out) { 6362 // <special-name> ::= TC <type> <offset number> _ <base type> 6363 CXXNameMangler Mangler(*this, Out); 6364 Mangler.getStream() << "_ZTC"; 6365 Mangler.mangleNameOrStandardSubstitution(RD); 6366 Mangler.getStream() << Offset; 6367 Mangler.getStream() << '_'; 6368 Mangler.mangleNameOrStandardSubstitution(Type); 6369 } 6370 6371 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 6372 // <special-name> ::= TI <type> # typeinfo structure 6373 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 6374 CXXNameMangler Mangler(*this, Out); 6375 Mangler.getStream() << "_ZTI"; 6376 Mangler.mangleType(Ty); 6377 } 6378 6379 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, 6380 raw_ostream &Out) { 6381 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 6382 CXXNameMangler Mangler(*this, Out); 6383 Mangler.getStream() << "_ZTS"; 6384 Mangler.mangleType(Ty); 6385 } 6386 6387 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { 6388 mangleCXXRTTIName(Ty, Out); 6389 } 6390 6391 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 6392 llvm_unreachable("Can't mangle string literals"); 6393 } 6394 6395 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, 6396 raw_ostream &Out) { 6397 CXXNameMangler Mangler(*this, Out); 6398 Mangler.mangleLambdaSig(Lambda); 6399 } 6400 6401 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, 6402 DiagnosticsEngine &Diags) { 6403 return new ItaniumMangleContextImpl( 6404 Context, Diags, 6405 [](ASTContext &, const NamedDecl *) -> llvm::Optional<unsigned> { 6406 return llvm::None; 6407 }); 6408 } 6409 6410 ItaniumMangleContext * 6411 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, 6412 DiscriminatorOverrideTy DiscriminatorOverride) { 6413 return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride); 6414 } 6415