xref: /freebsd/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp (revision b3512b30dbec579da28028e29d8b33ec7242af68)
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace clang;
39 
40 namespace {
41 
42 /// Retrieve the declaration context that should be used when mangling the given
43 /// declaration.
44 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
45   // The ABI assumes that lambda closure types that occur within
46   // default arguments live in the context of the function. However, due to
47   // the way in which Clang parses and creates function declarations, this is
48   // not the case: the lambda closure type ends up living in the context
49   // where the function itself resides, because the function declaration itself
50   // had not yet been created. Fix the context here.
51   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
52     if (RD->isLambda())
53       if (ParmVarDecl *ContextParam
54             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
55         return ContextParam->getDeclContext();
56   }
57 
58   // Perform the same check for block literals.
59   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
60     if (ParmVarDecl *ContextParam
61           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
62       return ContextParam->getDeclContext();
63   }
64 
65   const DeclContext *DC = D->getDeclContext();
66   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
67       isa<OMPDeclareMapperDecl>(DC)) {
68     return getEffectiveDeclContext(cast<Decl>(DC));
69   }
70 
71   if (const auto *VD = dyn_cast<VarDecl>(D))
72     if (VD->isExternC())
73       return VD->getASTContext().getTranslationUnitDecl();
74 
75   if (const auto *FD = dyn_cast<FunctionDecl>(D))
76     if (FD->isExternC())
77       return FD->getASTContext().getTranslationUnitDecl();
78 
79   return DC->getRedeclContext();
80 }
81 
82 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
83   return getEffectiveDeclContext(cast<Decl>(DC));
84 }
85 
86 static bool isLocalContainerContext(const DeclContext *DC) {
87   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
88 }
89 
90 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
91   const DeclContext *DC = getEffectiveDeclContext(D);
92   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
93     if (isLocalContainerContext(DC))
94       return dyn_cast<RecordDecl>(D);
95     D = cast<Decl>(DC);
96     DC = getEffectiveDeclContext(D);
97   }
98   return nullptr;
99 }
100 
101 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
102   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
103     return ftd->getTemplatedDecl();
104 
105   return fn;
106 }
107 
108 static const NamedDecl *getStructor(const NamedDecl *decl) {
109   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
110   return (fn ? getStructor(fn) : decl);
111 }
112 
113 static bool isLambda(const NamedDecl *ND) {
114   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
115   if (!Record)
116     return false;
117 
118   return Record->isLambda();
119 }
120 
121 static const unsigned UnknownArity = ~0U;
122 
123 class ItaniumMangleContextImpl : public ItaniumMangleContext {
124   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
125   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
126   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
127 
128 public:
129   explicit ItaniumMangleContextImpl(ASTContext &Context,
130                                     DiagnosticsEngine &Diags,
131                                     bool IsUniqueNameMangler)
132       : ItaniumMangleContext(Context, Diags, IsUniqueNameMangler) {}
133 
134   /// @name Mangler Entry Points
135   /// @{
136 
137   bool shouldMangleCXXName(const NamedDecl *D) override;
138   bool shouldMangleStringLiteral(const StringLiteral *) override {
139     return false;
140   }
141   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
142   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                    raw_ostream &) override;
144   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                           const ThisAdjustment &ThisAdjustment,
146                           raw_ostream &) override;
147   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148                                 raw_ostream &) override;
149   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152                            const CXXRecordDecl *Type, raw_ostream &) override;
153   void mangleCXXRTTI(QualType T, raw_ostream &) override;
154   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155   void mangleTypeName(QualType T, raw_ostream &) override;
156 
157   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
158   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
159   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
160   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
161   void mangleDynamicAtExitDestructor(const VarDecl *D,
162                                      raw_ostream &Out) override;
163   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
164   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
165                                  raw_ostream &Out) override;
166   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
167                              raw_ostream &Out) override;
168   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
169   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
170                                        raw_ostream &) override;
171 
172   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
173 
174   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
175 
176   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
177     // Lambda closure types are already numbered.
178     if (isLambda(ND))
179       return false;
180 
181     // Anonymous tags are already numbered.
182     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
183       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
184         return false;
185     }
186 
187     // Use the canonical number for externally visible decls.
188     if (ND->isExternallyVisible()) {
189       unsigned discriminator = getASTContext().getManglingNumber(ND);
190       if (discriminator == 1)
191         return false;
192       disc = discriminator - 2;
193       return true;
194     }
195 
196     // Make up a reasonable number for internal decls.
197     unsigned &discriminator = Uniquifier[ND];
198     if (!discriminator) {
199       const DeclContext *DC = getEffectiveDeclContext(ND);
200       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
201     }
202     if (discriminator == 1)
203       return false;
204     disc = discriminator-2;
205     return true;
206   }
207   /// @}
208 };
209 
210 /// Manage the mangling of a single name.
211 class CXXNameMangler {
212   ItaniumMangleContextImpl &Context;
213   raw_ostream &Out;
214   bool NullOut = false;
215   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
216   /// This mode is used when mangler creates another mangler recursively to
217   /// calculate ABI tags for the function return value or the variable type.
218   /// Also it is required to avoid infinite recursion in some cases.
219   bool DisableDerivedAbiTags = false;
220 
221   /// The "structor" is the top-level declaration being mangled, if
222   /// that's not a template specialization; otherwise it's the pattern
223   /// for that specialization.
224   const NamedDecl *Structor;
225   unsigned StructorType;
226 
227   /// The next substitution sequence number.
228   unsigned SeqID;
229 
230   class FunctionTypeDepthState {
231     unsigned Bits;
232 
233     enum { InResultTypeMask = 1 };
234 
235   public:
236     FunctionTypeDepthState() : Bits(0) {}
237 
238     /// The number of function types we're inside.
239     unsigned getDepth() const {
240       return Bits >> 1;
241     }
242 
243     /// True if we're in the return type of the innermost function type.
244     bool isInResultType() const {
245       return Bits & InResultTypeMask;
246     }
247 
248     FunctionTypeDepthState push() {
249       FunctionTypeDepthState tmp = *this;
250       Bits = (Bits & ~InResultTypeMask) + 2;
251       return tmp;
252     }
253 
254     void enterResultType() {
255       Bits |= InResultTypeMask;
256     }
257 
258     void leaveResultType() {
259       Bits &= ~InResultTypeMask;
260     }
261 
262     void pop(FunctionTypeDepthState saved) {
263       assert(getDepth() == saved.getDepth() + 1);
264       Bits = saved.Bits;
265     }
266 
267   } FunctionTypeDepth;
268 
269   // abi_tag is a gcc attribute, taking one or more strings called "tags".
270   // The goal is to annotate against which version of a library an object was
271   // built and to be able to provide backwards compatibility ("dual abi").
272   // For more information see docs/ItaniumMangleAbiTags.rst.
273   typedef SmallVector<StringRef, 4> AbiTagList;
274 
275   // State to gather all implicit and explicit tags used in a mangled name.
276   // Must always have an instance of this while emitting any name to keep
277   // track.
278   class AbiTagState final {
279   public:
280     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
281       Parent = LinkHead;
282       LinkHead = this;
283     }
284 
285     // No copy, no move.
286     AbiTagState(const AbiTagState &) = delete;
287     AbiTagState &operator=(const AbiTagState &) = delete;
288 
289     ~AbiTagState() { pop(); }
290 
291     void write(raw_ostream &Out, const NamedDecl *ND,
292                const AbiTagList *AdditionalAbiTags) {
293       ND = cast<NamedDecl>(ND->getCanonicalDecl());
294       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
295         assert(
296             !AdditionalAbiTags &&
297             "only function and variables need a list of additional abi tags");
298         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
299           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
300             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
301                                AbiTag->tags().end());
302           }
303           // Don't emit abi tags for namespaces.
304           return;
305         }
306       }
307 
308       AbiTagList TagList;
309       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
310         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
311                            AbiTag->tags().end());
312         TagList.insert(TagList.end(), AbiTag->tags().begin(),
313                        AbiTag->tags().end());
314       }
315 
316       if (AdditionalAbiTags) {
317         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
318                            AdditionalAbiTags->end());
319         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
320                        AdditionalAbiTags->end());
321       }
322 
323       llvm::sort(TagList);
324       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
325 
326       writeSortedUniqueAbiTags(Out, TagList);
327     }
328 
329     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
330     void setUsedAbiTags(const AbiTagList &AbiTags) {
331       UsedAbiTags = AbiTags;
332     }
333 
334     const AbiTagList &getEmittedAbiTags() const {
335       return EmittedAbiTags;
336     }
337 
338     const AbiTagList &getSortedUniqueUsedAbiTags() {
339       llvm::sort(UsedAbiTags);
340       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
341                         UsedAbiTags.end());
342       return UsedAbiTags;
343     }
344 
345   private:
346     //! All abi tags used implicitly or explicitly.
347     AbiTagList UsedAbiTags;
348     //! All explicit abi tags (i.e. not from namespace).
349     AbiTagList EmittedAbiTags;
350 
351     AbiTagState *&LinkHead;
352     AbiTagState *Parent = nullptr;
353 
354     void pop() {
355       assert(LinkHead == this &&
356              "abi tag link head must point to us on destruction");
357       if (Parent) {
358         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
359                                    UsedAbiTags.begin(), UsedAbiTags.end());
360         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
361                                       EmittedAbiTags.begin(),
362                                       EmittedAbiTags.end());
363       }
364       LinkHead = Parent;
365     }
366 
367     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
368       for (const auto &Tag : AbiTags) {
369         EmittedAbiTags.push_back(Tag);
370         Out << "B";
371         Out << Tag.size();
372         Out << Tag;
373       }
374     }
375   };
376 
377   AbiTagState *AbiTags = nullptr;
378   AbiTagState AbiTagsRoot;
379 
380   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
381   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
382 
383   ASTContext &getASTContext() const { return Context.getASTContext(); }
384 
385 public:
386   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
387                  const NamedDecl *D = nullptr, bool NullOut_ = false)
388     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
389       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
390     // These can't be mangled without a ctor type or dtor type.
391     assert(!D || (!isa<CXXDestructorDecl>(D) &&
392                   !isa<CXXConstructorDecl>(D)));
393   }
394   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
395                  const CXXConstructorDecl *D, CXXCtorType Type)
396     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
397       SeqID(0), AbiTagsRoot(AbiTags) { }
398   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399                  const CXXDestructorDecl *D, CXXDtorType Type)
400     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
401       SeqID(0), AbiTagsRoot(AbiTags) { }
402 
403   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
404       : Context(Outer.Context), Out(Out_), NullOut(false),
405         Structor(Outer.Structor), StructorType(Outer.StructorType),
406         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
407         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
408 
409   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
410       : Context(Outer.Context), Out(Out_), NullOut(true),
411         Structor(Outer.Structor), StructorType(Outer.StructorType),
412         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
413         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
414 
415   raw_ostream &getStream() { return Out; }
416 
417   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
418   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
419 
420   void mangle(GlobalDecl GD);
421   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
422   void mangleNumber(const llvm::APSInt &I);
423   void mangleNumber(int64_t Number);
424   void mangleFloat(const llvm::APFloat &F);
425   void mangleFunctionEncoding(GlobalDecl GD);
426   void mangleSeqID(unsigned SeqID);
427   void mangleName(GlobalDecl GD);
428   void mangleType(QualType T);
429   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
430   void mangleLambdaSig(const CXXRecordDecl *Lambda);
431 
432 private:
433 
434   bool mangleSubstitution(const NamedDecl *ND);
435   bool mangleSubstitution(QualType T);
436   bool mangleSubstitution(TemplateName Template);
437   bool mangleSubstitution(uintptr_t Ptr);
438 
439   void mangleExistingSubstitution(TemplateName name);
440 
441   bool mangleStandardSubstitution(const NamedDecl *ND);
442 
443   void addSubstitution(const NamedDecl *ND) {
444     ND = cast<NamedDecl>(ND->getCanonicalDecl());
445 
446     addSubstitution(reinterpret_cast<uintptr_t>(ND));
447   }
448   void addSubstitution(QualType T);
449   void addSubstitution(TemplateName Template);
450   void addSubstitution(uintptr_t Ptr);
451   // Destructive copy substitutions from other mangler.
452   void extendSubstitutions(CXXNameMangler* Other);
453 
454   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
455                               bool recursive = false);
456   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
457                             DeclarationName name,
458                             const TemplateArgumentLoc *TemplateArgs,
459                             unsigned NumTemplateArgs,
460                             unsigned KnownArity = UnknownArity);
461 
462   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
463 
464   void mangleNameWithAbiTags(GlobalDecl GD,
465                              const AbiTagList *AdditionalAbiTags);
466   void mangleModuleName(const Module *M);
467   void mangleModuleNamePrefix(StringRef Name);
468   void mangleTemplateName(const TemplateDecl *TD,
469                           const TemplateArgument *TemplateArgs,
470                           unsigned NumTemplateArgs);
471   void mangleUnqualifiedName(GlobalDecl GD,
472                              const AbiTagList *AdditionalAbiTags) {
473     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
474                           AdditionalAbiTags);
475   }
476   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
477                              unsigned KnownArity,
478                              const AbiTagList *AdditionalAbiTags);
479   void mangleUnscopedName(GlobalDecl GD,
480                           const AbiTagList *AdditionalAbiTags);
481   void mangleUnscopedTemplateName(GlobalDecl GD,
482                                   const AbiTagList *AdditionalAbiTags);
483   void mangleUnscopedTemplateName(TemplateName,
484                                   const AbiTagList *AdditionalAbiTags);
485   void mangleSourceName(const IdentifierInfo *II);
486   void mangleRegCallName(const IdentifierInfo *II);
487   void mangleDeviceStubName(const IdentifierInfo *II);
488   void mangleSourceNameWithAbiTags(
489       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
490   void mangleLocalName(GlobalDecl GD,
491                        const AbiTagList *AdditionalAbiTags);
492   void mangleBlockForPrefix(const BlockDecl *Block);
493   void mangleUnqualifiedBlock(const BlockDecl *Block);
494   void mangleTemplateParamDecl(const NamedDecl *Decl);
495   void mangleLambda(const CXXRecordDecl *Lambda);
496   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
497                         const AbiTagList *AdditionalAbiTags,
498                         bool NoFunction=false);
499   void mangleNestedName(const TemplateDecl *TD,
500                         const TemplateArgument *TemplateArgs,
501                         unsigned NumTemplateArgs);
502   void manglePrefix(NestedNameSpecifier *qualifier);
503   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
504   void manglePrefix(QualType type);
505   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
506   void mangleTemplatePrefix(TemplateName Template);
507   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
508                                       StringRef Prefix = "");
509   void mangleOperatorName(DeclarationName Name, unsigned Arity);
510   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
511   void mangleVendorQualifier(StringRef qualifier);
512   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
513   void mangleRefQualifier(RefQualifierKind RefQualifier);
514 
515   void mangleObjCMethodName(const ObjCMethodDecl *MD);
516 
517   // Declare manglers for every type class.
518 #define ABSTRACT_TYPE(CLASS, PARENT)
519 #define NON_CANONICAL_TYPE(CLASS, PARENT)
520 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
521 #include "clang/AST/TypeNodes.inc"
522 
523   void mangleType(const TagType*);
524   void mangleType(TemplateName);
525   static StringRef getCallingConvQualifierName(CallingConv CC);
526   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
527   void mangleExtFunctionInfo(const FunctionType *T);
528   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
529                               const FunctionDecl *FD = nullptr);
530   void mangleNeonVectorType(const VectorType *T);
531   void mangleNeonVectorType(const DependentVectorType *T);
532   void mangleAArch64NeonVectorType(const VectorType *T);
533   void mangleAArch64NeonVectorType(const DependentVectorType *T);
534 
535   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
536   void mangleMemberExprBase(const Expr *base, bool isArrow);
537   void mangleMemberExpr(const Expr *base, bool isArrow,
538                         NestedNameSpecifier *qualifier,
539                         NamedDecl *firstQualifierLookup,
540                         DeclarationName name,
541                         const TemplateArgumentLoc *TemplateArgs,
542                         unsigned NumTemplateArgs,
543                         unsigned knownArity);
544   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
545   void mangleInitListElements(const InitListExpr *InitList);
546   void mangleDeclRefExpr(const NamedDecl *D);
547   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
548   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
549   void mangleCXXDtorType(CXXDtorType T);
550 
551   void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
552                           unsigned NumTemplateArgs);
553   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
554                           unsigned NumTemplateArgs);
555   void mangleTemplateArgs(const TemplateArgumentList &AL);
556   void mangleTemplateArg(TemplateArgument A);
557 
558   void mangleTemplateParameter(unsigned Depth, unsigned Index);
559 
560   void mangleFunctionParam(const ParmVarDecl *parm);
561 
562   void writeAbiTags(const NamedDecl *ND,
563                     const AbiTagList *AdditionalAbiTags);
564 
565   // Returns sorted unique list of ABI tags.
566   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
567   // Returns sorted unique list of ABI tags.
568   AbiTagList makeVariableTypeTags(const VarDecl *VD);
569 };
570 
571 }
572 
573 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
574   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
575   if (FD) {
576     LanguageLinkage L = FD->getLanguageLinkage();
577     // Overloadable functions need mangling.
578     if (FD->hasAttr<OverloadableAttr>())
579       return true;
580 
581     // "main" is not mangled.
582     if (FD->isMain())
583       return false;
584 
585     // The Windows ABI expects that we would never mangle "typical"
586     // user-defined entry points regardless of visibility or freestanding-ness.
587     //
588     // N.B. This is distinct from asking about "main".  "main" has a lot of
589     // special rules associated with it in the standard while these
590     // user-defined entry points are outside of the purview of the standard.
591     // For example, there can be only one definition for "main" in a standards
592     // compliant program; however nothing forbids the existence of wmain and
593     // WinMain in the same translation unit.
594     if (FD->isMSVCRTEntryPoint())
595       return false;
596 
597     // C++ functions and those whose names are not a simple identifier need
598     // mangling.
599     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
600       return true;
601 
602     // C functions are not mangled.
603     if (L == CLanguageLinkage)
604       return false;
605   }
606 
607   // Otherwise, no mangling is done outside C++ mode.
608   if (!getASTContext().getLangOpts().CPlusPlus)
609     return false;
610 
611   const VarDecl *VD = dyn_cast<VarDecl>(D);
612   if (VD && !isa<DecompositionDecl>(D)) {
613     // C variables are not mangled.
614     if (VD->isExternC())
615       return false;
616 
617     // Variables at global scope with non-internal linkage are not mangled
618     const DeclContext *DC = getEffectiveDeclContext(D);
619     // Check for extern variable declared locally.
620     if (DC->isFunctionOrMethod() && D->hasLinkage())
621       while (!DC->isNamespace() && !DC->isTranslationUnit())
622         DC = getEffectiveParentContext(DC);
623     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
624         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
625         !isa<VarTemplateSpecializationDecl>(D))
626       return false;
627   }
628 
629   return true;
630 }
631 
632 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
633                                   const AbiTagList *AdditionalAbiTags) {
634   assert(AbiTags && "require AbiTagState");
635   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
636 }
637 
638 void CXXNameMangler::mangleSourceNameWithAbiTags(
639     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
640   mangleSourceName(ND->getIdentifier());
641   writeAbiTags(ND, AdditionalAbiTags);
642 }
643 
644 void CXXNameMangler::mangle(GlobalDecl GD) {
645   // <mangled-name> ::= _Z <encoding>
646   //            ::= <data name>
647   //            ::= <special-name>
648   Out << "_Z";
649   if (isa<FunctionDecl>(GD.getDecl()))
650     mangleFunctionEncoding(GD);
651   else if (const VarDecl *VD = dyn_cast<VarDecl>(GD.getDecl()))
652     mangleName(VD);
653   else if (const IndirectFieldDecl *IFD =
654                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
655     mangleName(IFD->getAnonField());
656   else if (const FieldDecl *FD = dyn_cast<FieldDecl>(GD.getDecl()))
657     mangleName(FD);
658   else if (const MSGuidDecl *GuidD = dyn_cast<MSGuidDecl>(GD.getDecl()))
659     mangleName(GuidD);
660   else
661     llvm_unreachable("unexpected kind of global decl");
662 }
663 
664 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
665   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
666   // <encoding> ::= <function name> <bare-function-type>
667 
668   // Don't mangle in the type if this isn't a decl we should typically mangle.
669   if (!Context.shouldMangleDeclName(FD)) {
670     mangleName(GD);
671     return;
672   }
673 
674   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
675   if (ReturnTypeAbiTags.empty()) {
676     // There are no tags for return type, the simplest case.
677     mangleName(GD);
678     mangleFunctionEncodingBareType(FD);
679     return;
680   }
681 
682   // Mangle function name and encoding to temporary buffer.
683   // We have to output name and encoding to the same mangler to get the same
684   // substitution as it will be in final mangling.
685   SmallString<256> FunctionEncodingBuf;
686   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
687   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
688   // Output name of the function.
689   FunctionEncodingMangler.disableDerivedAbiTags();
690   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
691 
692   // Remember length of the function name in the buffer.
693   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
694   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
695 
696   // Get tags from return type that are not present in function name or
697   // encoding.
698   const AbiTagList &UsedAbiTags =
699       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
700   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
701   AdditionalAbiTags.erase(
702       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
703                           UsedAbiTags.begin(), UsedAbiTags.end(),
704                           AdditionalAbiTags.begin()),
705       AdditionalAbiTags.end());
706 
707   // Output name with implicit tags and function encoding from temporary buffer.
708   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
709   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
710 
711   // Function encoding could create new substitutions so we have to add
712   // temp mangled substitutions to main mangler.
713   extendSubstitutions(&FunctionEncodingMangler);
714 }
715 
716 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
717   if (FD->hasAttr<EnableIfAttr>()) {
718     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
719     Out << "Ua9enable_ifI";
720     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
721                                  E = FD->getAttrs().end();
722          I != E; ++I) {
723       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
724       if (!EIA)
725         continue;
726       Out << 'X';
727       mangleExpression(EIA->getCond());
728       Out << 'E';
729     }
730     Out << 'E';
731     FunctionTypeDepth.pop(Saved);
732   }
733 
734   // When mangling an inheriting constructor, the bare function type used is
735   // that of the inherited constructor.
736   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
737     if (auto Inherited = CD->getInheritedConstructor())
738       FD = Inherited.getConstructor();
739 
740   // Whether the mangling of a function type includes the return type depends on
741   // the context and the nature of the function. The rules for deciding whether
742   // the return type is included are:
743   //
744   //   1. Template functions (names or types) have return types encoded, with
745   //   the exceptions listed below.
746   //   2. Function types not appearing as part of a function name mangling,
747   //   e.g. parameters, pointer types, etc., have return type encoded, with the
748   //   exceptions listed below.
749   //   3. Non-template function names do not have return types encoded.
750   //
751   // The exceptions mentioned in (1) and (2) above, for which the return type is
752   // never included, are
753   //   1. Constructors.
754   //   2. Destructors.
755   //   3. Conversion operator functions, e.g. operator int.
756   bool MangleReturnType = false;
757   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
758     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
759           isa<CXXConversionDecl>(FD)))
760       MangleReturnType = true;
761 
762     // Mangle the type of the primary template.
763     FD = PrimaryTemplate->getTemplatedDecl();
764   }
765 
766   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
767                          MangleReturnType, FD);
768 }
769 
770 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
771   while (isa<LinkageSpecDecl>(DC)) {
772     DC = getEffectiveParentContext(DC);
773   }
774 
775   return DC;
776 }
777 
778 /// Return whether a given namespace is the 'std' namespace.
779 static bool isStd(const NamespaceDecl *NS) {
780   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
781                                 ->isTranslationUnit())
782     return false;
783 
784   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
785   return II && II->isStr("std");
786 }
787 
788 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
789 // namespace.
790 static bool isStdNamespace(const DeclContext *DC) {
791   if (!DC->isNamespace())
792     return false;
793 
794   return isStd(cast<NamespaceDecl>(DC));
795 }
796 
797 static const GlobalDecl
798 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
799   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
800   // Check if we have a function template.
801   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
802     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
803       TemplateArgs = FD->getTemplateSpecializationArgs();
804       return GD.getWithDecl(TD);
805     }
806   }
807 
808   // Check if we have a class template.
809   if (const ClassTemplateSpecializationDecl *Spec =
810         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
811     TemplateArgs = &Spec->getTemplateArgs();
812     return GD.getWithDecl(Spec->getSpecializedTemplate());
813   }
814 
815   // Check if we have a variable template.
816   if (const VarTemplateSpecializationDecl *Spec =
817           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
818     TemplateArgs = &Spec->getTemplateArgs();
819     return GD.getWithDecl(Spec->getSpecializedTemplate());
820   }
821 
822   return GlobalDecl();
823 }
824 
825 void CXXNameMangler::mangleName(GlobalDecl GD) {
826   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
827   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
828     // Variables should have implicit tags from its type.
829     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
830     if (VariableTypeAbiTags.empty()) {
831       // Simple case no variable type tags.
832       mangleNameWithAbiTags(VD, nullptr);
833       return;
834     }
835 
836     // Mangle variable name to null stream to collect tags.
837     llvm::raw_null_ostream NullOutStream;
838     CXXNameMangler VariableNameMangler(*this, NullOutStream);
839     VariableNameMangler.disableDerivedAbiTags();
840     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
841 
842     // Get tags from variable type that are not present in its name.
843     const AbiTagList &UsedAbiTags =
844         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
845     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
846     AdditionalAbiTags.erase(
847         std::set_difference(VariableTypeAbiTags.begin(),
848                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
849                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
850         AdditionalAbiTags.end());
851 
852     // Output name with implicit tags.
853     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
854   } else {
855     mangleNameWithAbiTags(GD, nullptr);
856   }
857 }
858 
859 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
860                                            const AbiTagList *AdditionalAbiTags) {
861   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
862   //  <name> ::= [<module-name>] <nested-name>
863   //         ::= [<module-name>] <unscoped-name>
864   //         ::= [<module-name>] <unscoped-template-name> <template-args>
865   //         ::= <local-name>
866   //
867   const DeclContext *DC = getEffectiveDeclContext(ND);
868 
869   // If this is an extern variable declared locally, the relevant DeclContext
870   // is that of the containing namespace, or the translation unit.
871   // FIXME: This is a hack; extern variables declared locally should have
872   // a proper semantic declaration context!
873   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
874     while (!DC->isNamespace() && !DC->isTranslationUnit())
875       DC = getEffectiveParentContext(DC);
876   else if (GetLocalClassDecl(ND)) {
877     mangleLocalName(GD, AdditionalAbiTags);
878     return;
879   }
880 
881   DC = IgnoreLinkageSpecDecls(DC);
882 
883   if (isLocalContainerContext(DC)) {
884     mangleLocalName(GD, AdditionalAbiTags);
885     return;
886   }
887 
888   // Do not mangle the owning module for an external linkage declaration.
889   // This enables backwards-compatibility with non-modular code, and is
890   // a valid choice since conflicts are not permitted by C++ Modules TS
891   // [basic.def.odr]/6.2.
892   if (!ND->hasExternalFormalLinkage())
893     if (Module *M = ND->getOwningModuleForLinkage())
894       mangleModuleName(M);
895 
896   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
897     // Check if we have a template.
898     const TemplateArgumentList *TemplateArgs = nullptr;
899     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
900       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
901       mangleTemplateArgs(*TemplateArgs);
902       return;
903     }
904 
905     mangleUnscopedName(GD, AdditionalAbiTags);
906     return;
907   }
908 
909   mangleNestedName(GD, DC, AdditionalAbiTags);
910 }
911 
912 void CXXNameMangler::mangleModuleName(const Module *M) {
913   // Implement the C++ Modules TS name mangling proposal; see
914   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
915   //
916   //   <module-name> ::= W <unscoped-name>+ E
917   //                 ::= W <module-subst> <unscoped-name>* E
918   Out << 'W';
919   mangleModuleNamePrefix(M->Name);
920   Out << 'E';
921 }
922 
923 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
924   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
925   //                 ::= W <seq-id - 10> _   # otherwise
926   auto It = ModuleSubstitutions.find(Name);
927   if (It != ModuleSubstitutions.end()) {
928     if (It->second < 10)
929       Out << '_' << static_cast<char>('0' + It->second);
930     else
931       Out << 'W' << (It->second - 10) << '_';
932     return;
933   }
934 
935   // FIXME: Preserve hierarchy in module names rather than flattening
936   // them to strings; use Module*s as substitution keys.
937   auto Parts = Name.rsplit('.');
938   if (Parts.second.empty())
939     Parts.second = Parts.first;
940   else
941     mangleModuleNamePrefix(Parts.first);
942 
943   Out << Parts.second.size() << Parts.second;
944   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
945 }
946 
947 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
948                                         const TemplateArgument *TemplateArgs,
949                                         unsigned NumTemplateArgs) {
950   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
951 
952   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
953     mangleUnscopedTemplateName(TD, nullptr);
954     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
955   } else {
956     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
957   }
958 }
959 
960 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
961                                         const AbiTagList *AdditionalAbiTags) {
962   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
963   //  <unscoped-name> ::= <unqualified-name>
964   //                  ::= St <unqualified-name>   # ::std::
965 
966   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
967     Out << "St";
968 
969   mangleUnqualifiedName(GD, AdditionalAbiTags);
970 }
971 
972 void CXXNameMangler::mangleUnscopedTemplateName(
973     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
974   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
975   //     <unscoped-template-name> ::= <unscoped-name>
976   //                              ::= <substitution>
977   if (mangleSubstitution(ND))
978     return;
979 
980   // <template-template-param> ::= <template-param>
981   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
982     assert(!AdditionalAbiTags &&
983            "template template param cannot have abi tags");
984     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
985   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
986     mangleUnscopedName(GD, AdditionalAbiTags);
987   } else {
988     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
989   }
990 
991   addSubstitution(ND);
992 }
993 
994 void CXXNameMangler::mangleUnscopedTemplateName(
995     TemplateName Template, const AbiTagList *AdditionalAbiTags) {
996   //     <unscoped-template-name> ::= <unscoped-name>
997   //                              ::= <substitution>
998   if (TemplateDecl *TD = Template.getAsTemplateDecl())
999     return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
1000 
1001   if (mangleSubstitution(Template))
1002     return;
1003 
1004   assert(!AdditionalAbiTags &&
1005          "dependent template name cannot have abi tags");
1006 
1007   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1008   assert(Dependent && "Not a dependent template name?");
1009   if (const IdentifierInfo *Id = Dependent->getIdentifier())
1010     mangleSourceName(Id);
1011   else
1012     mangleOperatorName(Dependent->getOperator(), UnknownArity);
1013 
1014   addSubstitution(Template);
1015 }
1016 
1017 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1018   // ABI:
1019   //   Floating-point literals are encoded using a fixed-length
1020   //   lowercase hexadecimal string corresponding to the internal
1021   //   representation (IEEE on Itanium), high-order bytes first,
1022   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1023   //   on Itanium.
1024   // The 'without leading zeroes' thing seems to be an editorial
1025   // mistake; see the discussion on cxx-abi-dev beginning on
1026   // 2012-01-16.
1027 
1028   // Our requirements here are just barely weird enough to justify
1029   // using a custom algorithm instead of post-processing APInt::toString().
1030 
1031   llvm::APInt valueBits = f.bitcastToAPInt();
1032   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1033   assert(numCharacters != 0);
1034 
1035   // Allocate a buffer of the right number of characters.
1036   SmallVector<char, 20> buffer(numCharacters);
1037 
1038   // Fill the buffer left-to-right.
1039   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1040     // The bit-index of the next hex digit.
1041     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1042 
1043     // Project out 4 bits starting at 'digitIndex'.
1044     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1045     hexDigit >>= (digitBitIndex % 64);
1046     hexDigit &= 0xF;
1047 
1048     // Map that over to a lowercase hex digit.
1049     static const char charForHex[16] = {
1050       '0', '1', '2', '3', '4', '5', '6', '7',
1051       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1052     };
1053     buffer[stringIndex] = charForHex[hexDigit];
1054   }
1055 
1056   Out.write(buffer.data(), numCharacters);
1057 }
1058 
1059 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1060   if (Value.isSigned() && Value.isNegative()) {
1061     Out << 'n';
1062     Value.abs().print(Out, /*signed*/ false);
1063   } else {
1064     Value.print(Out, /*signed*/ false);
1065   }
1066 }
1067 
1068 void CXXNameMangler::mangleNumber(int64_t Number) {
1069   //  <number> ::= [n] <non-negative decimal integer>
1070   if (Number < 0) {
1071     Out << 'n';
1072     Number = -Number;
1073   }
1074 
1075   Out << Number;
1076 }
1077 
1078 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1079   //  <call-offset>  ::= h <nv-offset> _
1080   //                 ::= v <v-offset> _
1081   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1082   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1083   //                      # virtual base override, with vcall offset
1084   if (!Virtual) {
1085     Out << 'h';
1086     mangleNumber(NonVirtual);
1087     Out << '_';
1088     return;
1089   }
1090 
1091   Out << 'v';
1092   mangleNumber(NonVirtual);
1093   Out << '_';
1094   mangleNumber(Virtual);
1095   Out << '_';
1096 }
1097 
1098 void CXXNameMangler::manglePrefix(QualType type) {
1099   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1100     if (!mangleSubstitution(QualType(TST, 0))) {
1101       mangleTemplatePrefix(TST->getTemplateName());
1102 
1103       // FIXME: GCC does not appear to mangle the template arguments when
1104       // the template in question is a dependent template name. Should we
1105       // emulate that badness?
1106       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1107       addSubstitution(QualType(TST, 0));
1108     }
1109   } else if (const auto *DTST =
1110                  type->getAs<DependentTemplateSpecializationType>()) {
1111     if (!mangleSubstitution(QualType(DTST, 0))) {
1112       TemplateName Template = getASTContext().getDependentTemplateName(
1113           DTST->getQualifier(), DTST->getIdentifier());
1114       mangleTemplatePrefix(Template);
1115 
1116       // FIXME: GCC does not appear to mangle the template arguments when
1117       // the template in question is a dependent template name. Should we
1118       // emulate that badness?
1119       mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1120       addSubstitution(QualType(DTST, 0));
1121     }
1122   } else {
1123     // We use the QualType mangle type variant here because it handles
1124     // substitutions.
1125     mangleType(type);
1126   }
1127 }
1128 
1129 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1130 ///
1131 /// \param recursive - true if this is being called recursively,
1132 ///   i.e. if there is more prefix "to the right".
1133 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1134                                             bool recursive) {
1135 
1136   // x, ::x
1137   // <unresolved-name> ::= [gs] <base-unresolved-name>
1138 
1139   // T::x / decltype(p)::x
1140   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1141 
1142   // T::N::x /decltype(p)::N::x
1143   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1144   //                       <base-unresolved-name>
1145 
1146   // A::x, N::y, A<T>::z; "gs" means leading "::"
1147   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1148   //                       <base-unresolved-name>
1149 
1150   switch (qualifier->getKind()) {
1151   case NestedNameSpecifier::Global:
1152     Out << "gs";
1153 
1154     // We want an 'sr' unless this is the entire NNS.
1155     if (recursive)
1156       Out << "sr";
1157 
1158     // We never want an 'E' here.
1159     return;
1160 
1161   case NestedNameSpecifier::Super:
1162     llvm_unreachable("Can't mangle __super specifier");
1163 
1164   case NestedNameSpecifier::Namespace:
1165     if (qualifier->getPrefix())
1166       mangleUnresolvedPrefix(qualifier->getPrefix(),
1167                              /*recursive*/ true);
1168     else
1169       Out << "sr";
1170     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1171     break;
1172   case NestedNameSpecifier::NamespaceAlias:
1173     if (qualifier->getPrefix())
1174       mangleUnresolvedPrefix(qualifier->getPrefix(),
1175                              /*recursive*/ true);
1176     else
1177       Out << "sr";
1178     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1179     break;
1180 
1181   case NestedNameSpecifier::TypeSpec:
1182   case NestedNameSpecifier::TypeSpecWithTemplate: {
1183     const Type *type = qualifier->getAsType();
1184 
1185     // We only want to use an unresolved-type encoding if this is one of:
1186     //   - a decltype
1187     //   - a template type parameter
1188     //   - a template template parameter with arguments
1189     // In all of these cases, we should have no prefix.
1190     if (qualifier->getPrefix()) {
1191       mangleUnresolvedPrefix(qualifier->getPrefix(),
1192                              /*recursive*/ true);
1193     } else {
1194       // Otherwise, all the cases want this.
1195       Out << "sr";
1196     }
1197 
1198     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1199       return;
1200 
1201     break;
1202   }
1203 
1204   case NestedNameSpecifier::Identifier:
1205     // Member expressions can have these without prefixes.
1206     if (qualifier->getPrefix())
1207       mangleUnresolvedPrefix(qualifier->getPrefix(),
1208                              /*recursive*/ true);
1209     else
1210       Out << "sr";
1211 
1212     mangleSourceName(qualifier->getAsIdentifier());
1213     // An Identifier has no type information, so we can't emit abi tags for it.
1214     break;
1215   }
1216 
1217   // If this was the innermost part of the NNS, and we fell out to
1218   // here, append an 'E'.
1219   if (!recursive)
1220     Out << 'E';
1221 }
1222 
1223 /// Mangle an unresolved-name, which is generally used for names which
1224 /// weren't resolved to specific entities.
1225 void CXXNameMangler::mangleUnresolvedName(
1226     NestedNameSpecifier *qualifier, DeclarationName name,
1227     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1228     unsigned knownArity) {
1229   if (qualifier) mangleUnresolvedPrefix(qualifier);
1230   switch (name.getNameKind()) {
1231     // <base-unresolved-name> ::= <simple-id>
1232     case DeclarationName::Identifier:
1233       mangleSourceName(name.getAsIdentifierInfo());
1234       break;
1235     // <base-unresolved-name> ::= dn <destructor-name>
1236     case DeclarationName::CXXDestructorName:
1237       Out << "dn";
1238       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1239       break;
1240     // <base-unresolved-name> ::= on <operator-name>
1241     case DeclarationName::CXXConversionFunctionName:
1242     case DeclarationName::CXXLiteralOperatorName:
1243     case DeclarationName::CXXOperatorName:
1244       Out << "on";
1245       mangleOperatorName(name, knownArity);
1246       break;
1247     case DeclarationName::CXXConstructorName:
1248       llvm_unreachable("Can't mangle a constructor name!");
1249     case DeclarationName::CXXUsingDirective:
1250       llvm_unreachable("Can't mangle a using directive name!");
1251     case DeclarationName::CXXDeductionGuideName:
1252       llvm_unreachable("Can't mangle a deduction guide name!");
1253     case DeclarationName::ObjCMultiArgSelector:
1254     case DeclarationName::ObjCOneArgSelector:
1255     case DeclarationName::ObjCZeroArgSelector:
1256       llvm_unreachable("Can't mangle Objective-C selector names here!");
1257   }
1258 
1259   // The <simple-id> and on <operator-name> productions end in an optional
1260   // <template-args>.
1261   if (TemplateArgs)
1262     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1263 }
1264 
1265 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1266                                            DeclarationName Name,
1267                                            unsigned KnownArity,
1268                                            const AbiTagList *AdditionalAbiTags) {
1269   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1270   unsigned Arity = KnownArity;
1271   //  <unqualified-name> ::= <operator-name>
1272   //                     ::= <ctor-dtor-name>
1273   //                     ::= <source-name>
1274   switch (Name.getNameKind()) {
1275   case DeclarationName::Identifier: {
1276     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1277 
1278     // We mangle decomposition declarations as the names of their bindings.
1279     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1280       // FIXME: Non-standard mangling for decomposition declarations:
1281       //
1282       //  <unqualified-name> ::= DC <source-name>* E
1283       //
1284       // These can never be referenced across translation units, so we do
1285       // not need a cross-vendor mangling for anything other than demanglers.
1286       // Proposed on cxx-abi-dev on 2016-08-12
1287       Out << "DC";
1288       for (auto *BD : DD->bindings())
1289         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1290       Out << 'E';
1291       writeAbiTags(ND, AdditionalAbiTags);
1292       break;
1293     }
1294 
1295     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1296       // We follow MSVC in mangling GUID declarations as if they were variables
1297       // with a particular reserved name. Continue the pretense here.
1298       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1299       llvm::raw_svector_ostream GUIDOS(GUID);
1300       Context.mangleMSGuidDecl(GD, GUIDOS);
1301       Out << GUID.size() << GUID;
1302       break;
1303     }
1304 
1305     if (II) {
1306       // Match GCC's naming convention for internal linkage symbols, for
1307       // symbols that are not actually visible outside of this TU. GCC
1308       // distinguishes between internal and external linkage symbols in
1309       // its mangling, to support cases like this that were valid C++ prior
1310       // to DR426:
1311       //
1312       //   void test() { extern void foo(); }
1313       //   static void foo();
1314       //
1315       // Don't bother with the L marker for names in anonymous namespaces; the
1316       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1317       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1318       // implying internal linkage.
1319       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1320           !ND->isExternallyVisible() &&
1321           getEffectiveDeclContext(ND)->isFileContext() &&
1322           !ND->isInAnonymousNamespace())
1323         Out << 'L';
1324 
1325       auto *FD = dyn_cast<FunctionDecl>(ND);
1326       bool IsRegCall = FD &&
1327                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1328                            clang::CC_X86RegCall;
1329       bool IsDeviceStub =
1330           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1331           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1332       if (IsDeviceStub)
1333         mangleDeviceStubName(II);
1334       else if (IsRegCall)
1335         mangleRegCallName(II);
1336       else
1337         mangleSourceName(II);
1338 
1339       writeAbiTags(ND, AdditionalAbiTags);
1340       break;
1341     }
1342 
1343     // Otherwise, an anonymous entity.  We must have a declaration.
1344     assert(ND && "mangling empty name without declaration");
1345 
1346     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1347       if (NS->isAnonymousNamespace()) {
1348         // This is how gcc mangles these names.
1349         Out << "12_GLOBAL__N_1";
1350         break;
1351       }
1352     }
1353 
1354     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1355       // We must have an anonymous union or struct declaration.
1356       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1357 
1358       // Itanium C++ ABI 5.1.2:
1359       //
1360       //   For the purposes of mangling, the name of an anonymous union is
1361       //   considered to be the name of the first named data member found by a
1362       //   pre-order, depth-first, declaration-order walk of the data members of
1363       //   the anonymous union. If there is no such data member (i.e., if all of
1364       //   the data members in the union are unnamed), then there is no way for
1365       //   a program to refer to the anonymous union, and there is therefore no
1366       //   need to mangle its name.
1367       assert(RD->isAnonymousStructOrUnion()
1368              && "Expected anonymous struct or union!");
1369       const FieldDecl *FD = RD->findFirstNamedDataMember();
1370 
1371       // It's actually possible for various reasons for us to get here
1372       // with an empty anonymous struct / union.  Fortunately, it
1373       // doesn't really matter what name we generate.
1374       if (!FD) break;
1375       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1376 
1377       mangleSourceName(FD->getIdentifier());
1378       // Not emitting abi tags: internal name anyway.
1379       break;
1380     }
1381 
1382     // Class extensions have no name as a category, and it's possible
1383     // for them to be the semantic parent of certain declarations
1384     // (primarily, tag decls defined within declarations).  Such
1385     // declarations will always have internal linkage, so the name
1386     // doesn't really matter, but we shouldn't crash on them.  For
1387     // safety, just handle all ObjC containers here.
1388     if (isa<ObjCContainerDecl>(ND))
1389       break;
1390 
1391     // We must have an anonymous struct.
1392     const TagDecl *TD = cast<TagDecl>(ND);
1393     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1394       assert(TD->getDeclContext() == D->getDeclContext() &&
1395              "Typedef should not be in another decl context!");
1396       assert(D->getDeclName().getAsIdentifierInfo() &&
1397              "Typedef was not named!");
1398       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1399       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1400       // Explicit abi tags are still possible; take from underlying type, not
1401       // from typedef.
1402       writeAbiTags(TD, nullptr);
1403       break;
1404     }
1405 
1406     // <unnamed-type-name> ::= <closure-type-name>
1407     //
1408     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1409     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1410     //     # Parameter types or 'v' for 'void'.
1411     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1412       if (Record->isLambda() && (Record->getLambdaManglingNumber() ||
1413                                  Context.isUniqueNameMangler())) {
1414         assert(!AdditionalAbiTags &&
1415                "Lambda type cannot have additional abi tags");
1416         mangleLambda(Record);
1417         break;
1418       }
1419     }
1420 
1421     if (TD->isExternallyVisible()) {
1422       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1423       Out << "Ut";
1424       if (UnnamedMangle > 1)
1425         Out << UnnamedMangle - 2;
1426       Out << '_';
1427       writeAbiTags(TD, AdditionalAbiTags);
1428       break;
1429     }
1430 
1431     // Get a unique id for the anonymous struct. If it is not a real output
1432     // ID doesn't matter so use fake one.
1433     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1434 
1435     // Mangle it as a source name in the form
1436     // [n] $_<id>
1437     // where n is the length of the string.
1438     SmallString<8> Str;
1439     Str += "$_";
1440     Str += llvm::utostr(AnonStructId);
1441 
1442     Out << Str.size();
1443     Out << Str;
1444     break;
1445   }
1446 
1447   case DeclarationName::ObjCZeroArgSelector:
1448   case DeclarationName::ObjCOneArgSelector:
1449   case DeclarationName::ObjCMultiArgSelector:
1450     llvm_unreachable("Can't mangle Objective-C selector names here!");
1451 
1452   case DeclarationName::CXXConstructorName: {
1453     const CXXRecordDecl *InheritedFrom = nullptr;
1454     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1455     if (auto Inherited =
1456             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1457       InheritedFrom = Inherited.getConstructor()->getParent();
1458       InheritedTemplateArgs =
1459           Inherited.getConstructor()->getTemplateSpecializationArgs();
1460     }
1461 
1462     if (ND == Structor)
1463       // If the named decl is the C++ constructor we're mangling, use the type
1464       // we were given.
1465       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1466     else
1467       // Otherwise, use the complete constructor name. This is relevant if a
1468       // class with a constructor is declared within a constructor.
1469       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1470 
1471     // FIXME: The template arguments are part of the enclosing prefix or
1472     // nested-name, but it's more convenient to mangle them here.
1473     if (InheritedTemplateArgs)
1474       mangleTemplateArgs(*InheritedTemplateArgs);
1475 
1476     writeAbiTags(ND, AdditionalAbiTags);
1477     break;
1478   }
1479 
1480   case DeclarationName::CXXDestructorName:
1481     if (ND == Structor)
1482       // If the named decl is the C++ destructor we're mangling, use the type we
1483       // were given.
1484       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1485     else
1486       // Otherwise, use the complete destructor name. This is relevant if a
1487       // class with a destructor is declared within a destructor.
1488       mangleCXXDtorType(Dtor_Complete);
1489     writeAbiTags(ND, AdditionalAbiTags);
1490     break;
1491 
1492   case DeclarationName::CXXOperatorName:
1493     if (ND && Arity == UnknownArity) {
1494       Arity = cast<FunctionDecl>(ND)->getNumParams();
1495 
1496       // If we have a member function, we need to include the 'this' pointer.
1497       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1498         if (!MD->isStatic())
1499           Arity++;
1500     }
1501     LLVM_FALLTHROUGH;
1502   case DeclarationName::CXXConversionFunctionName:
1503   case DeclarationName::CXXLiteralOperatorName:
1504     mangleOperatorName(Name, Arity);
1505     writeAbiTags(ND, AdditionalAbiTags);
1506     break;
1507 
1508   case DeclarationName::CXXDeductionGuideName:
1509     llvm_unreachable("Can't mangle a deduction guide name!");
1510 
1511   case DeclarationName::CXXUsingDirective:
1512     llvm_unreachable("Can't mangle a using directive name!");
1513   }
1514 }
1515 
1516 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1517   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1518   // <number> ::= [n] <non-negative decimal integer>
1519   // <identifier> ::= <unqualified source code identifier>
1520   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1521       << II->getName();
1522 }
1523 
1524 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1525   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1526   // <number> ::= [n] <non-negative decimal integer>
1527   // <identifier> ::= <unqualified source code identifier>
1528   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1529       << II->getName();
1530 }
1531 
1532 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1533   // <source-name> ::= <positive length number> <identifier>
1534   // <number> ::= [n] <non-negative decimal integer>
1535   // <identifier> ::= <unqualified source code identifier>
1536   Out << II->getLength() << II->getName();
1537 }
1538 
1539 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1540                                       const DeclContext *DC,
1541                                       const AbiTagList *AdditionalAbiTags,
1542                                       bool NoFunction) {
1543   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1544   // <nested-name>
1545   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1546   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1547   //       <template-args> E
1548 
1549   Out << 'N';
1550   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1551     Qualifiers MethodQuals = Method->getMethodQualifiers();
1552     // We do not consider restrict a distinguishing attribute for overloading
1553     // purposes so we must not mangle it.
1554     MethodQuals.removeRestrict();
1555     mangleQualifiers(MethodQuals);
1556     mangleRefQualifier(Method->getRefQualifier());
1557   }
1558 
1559   // Check if we have a template.
1560   const TemplateArgumentList *TemplateArgs = nullptr;
1561   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1562     mangleTemplatePrefix(TD, NoFunction);
1563     mangleTemplateArgs(*TemplateArgs);
1564   }
1565   else {
1566     manglePrefix(DC, NoFunction);
1567     mangleUnqualifiedName(GD, AdditionalAbiTags);
1568   }
1569 
1570   Out << 'E';
1571 }
1572 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1573                                       const TemplateArgument *TemplateArgs,
1574                                       unsigned NumTemplateArgs) {
1575   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1576 
1577   Out << 'N';
1578 
1579   mangleTemplatePrefix(TD);
1580   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1581 
1582   Out << 'E';
1583 }
1584 
1585 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1586   GlobalDecl GD;
1587   // The Itanium spec says:
1588   // For entities in constructors and destructors, the mangling of the
1589   // complete object constructor or destructor is used as the base function
1590   // name, i.e. the C1 or D1 version.
1591   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1592     GD = GlobalDecl(CD, Ctor_Complete);
1593   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1594     GD = GlobalDecl(DD, Dtor_Complete);
1595   else
1596     GD = GlobalDecl(cast<FunctionDecl>(DC));
1597   return GD;
1598 }
1599 
1600 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1601                                      const AbiTagList *AdditionalAbiTags) {
1602   const Decl *D = GD.getDecl();
1603   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1604   //              := Z <function encoding> E s [<discriminator>]
1605   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1606   //                 _ <entity name>
1607   // <discriminator> := _ <non-negative number>
1608   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1609   const RecordDecl *RD = GetLocalClassDecl(D);
1610   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1611 
1612   Out << 'Z';
1613 
1614   {
1615     AbiTagState LocalAbiTags(AbiTags);
1616 
1617     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1618       mangleObjCMethodName(MD);
1619     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1620       mangleBlockForPrefix(BD);
1621     else
1622       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1623 
1624     // Implicit ABI tags (from namespace) are not available in the following
1625     // entity; reset to actually emitted tags, which are available.
1626     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1627   }
1628 
1629   Out << 'E';
1630 
1631   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1632   // be a bug that is fixed in trunk.
1633 
1634   if (RD) {
1635     // The parameter number is omitted for the last parameter, 0 for the
1636     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1637     // <entity name> will of course contain a <closure-type-name>: Its
1638     // numbering will be local to the particular argument in which it appears
1639     // -- other default arguments do not affect its encoding.
1640     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1641     if (CXXRD && CXXRD->isLambda()) {
1642       if (const ParmVarDecl *Parm
1643               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1644         if (const FunctionDecl *Func
1645               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1646           Out << 'd';
1647           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1648           if (Num > 1)
1649             mangleNumber(Num - 2);
1650           Out << '_';
1651         }
1652       }
1653     }
1654 
1655     // Mangle the name relative to the closest enclosing function.
1656     // equality ok because RD derived from ND above
1657     if (D == RD)  {
1658       mangleUnqualifiedName(RD, AdditionalAbiTags);
1659     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1660       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1661       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1662       mangleUnqualifiedBlock(BD);
1663     } else {
1664       const NamedDecl *ND = cast<NamedDecl>(D);
1665       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1666                        true /*NoFunction*/);
1667     }
1668   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1669     // Mangle a block in a default parameter; see above explanation for
1670     // lambdas.
1671     if (const ParmVarDecl *Parm
1672             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1673       if (const FunctionDecl *Func
1674             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1675         Out << 'd';
1676         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1677         if (Num > 1)
1678           mangleNumber(Num - 2);
1679         Out << '_';
1680       }
1681     }
1682 
1683     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1684     mangleUnqualifiedBlock(BD);
1685   } else {
1686     mangleUnqualifiedName(GD, AdditionalAbiTags);
1687   }
1688 
1689   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1690     unsigned disc;
1691     if (Context.getNextDiscriminator(ND, disc)) {
1692       if (disc < 10)
1693         Out << '_' << disc;
1694       else
1695         Out << "__" << disc << '_';
1696     }
1697   }
1698 }
1699 
1700 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1701   if (GetLocalClassDecl(Block)) {
1702     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1703     return;
1704   }
1705   const DeclContext *DC = getEffectiveDeclContext(Block);
1706   if (isLocalContainerContext(DC)) {
1707     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1708     return;
1709   }
1710   manglePrefix(getEffectiveDeclContext(Block));
1711   mangleUnqualifiedBlock(Block);
1712 }
1713 
1714 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1715   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1716     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1717         Context->getDeclContext()->isRecord()) {
1718       const auto *ND = cast<NamedDecl>(Context);
1719       if (ND->getIdentifier()) {
1720         mangleSourceNameWithAbiTags(ND);
1721         Out << 'M';
1722       }
1723     }
1724   }
1725 
1726   // If we have a block mangling number, use it.
1727   unsigned Number = Block->getBlockManglingNumber();
1728   // Otherwise, just make up a number. It doesn't matter what it is because
1729   // the symbol in question isn't externally visible.
1730   if (!Number)
1731     Number = Context.getBlockId(Block, false);
1732   else {
1733     // Stored mangling numbers are 1-based.
1734     --Number;
1735   }
1736   Out << "Ub";
1737   if (Number > 0)
1738     Out << Number - 1;
1739   Out << '_';
1740 }
1741 
1742 // <template-param-decl>
1743 //   ::= Ty                              # template type parameter
1744 //   ::= Tn <type>                       # template non-type parameter
1745 //   ::= Tt <template-param-decl>* E     # template template parameter
1746 //   ::= Tp <template-param-decl>        # template parameter pack
1747 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1748   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1749     if (Ty->isParameterPack())
1750       Out << "Tp";
1751     Out << "Ty";
1752   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1753     if (Tn->isExpandedParameterPack()) {
1754       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1755         Out << "Tn";
1756         mangleType(Tn->getExpansionType(I));
1757       }
1758     } else {
1759       QualType T = Tn->getType();
1760       if (Tn->isParameterPack()) {
1761         Out << "Tp";
1762         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1763           T = PackExpansion->getPattern();
1764       }
1765       Out << "Tn";
1766       mangleType(T);
1767     }
1768   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1769     if (Tt->isExpandedParameterPack()) {
1770       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1771            ++I) {
1772         Out << "Tt";
1773         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1774           mangleTemplateParamDecl(Param);
1775         Out << "E";
1776       }
1777     } else {
1778       if (Tt->isParameterPack())
1779         Out << "Tp";
1780       Out << "Tt";
1781       for (auto *Param : *Tt->getTemplateParameters())
1782         mangleTemplateParamDecl(Param);
1783       Out << "E";
1784     }
1785   }
1786 }
1787 
1788 // Handles the __builtin_unique_stable_name feature for lambdas.  Instead of the
1789 // ordinal of the lambda in its mangling, this does line/column to uniquely and
1790 // reliably identify the lambda.  Additionally, macro expansions are expressed
1791 // as well to prevent macros causing duplicates.
1792 static void mangleUniqueNameLambda(CXXNameMangler &Mangler, SourceManager &SM,
1793                                    raw_ostream &Out,
1794                                    const CXXRecordDecl *Lambda) {
1795   SourceLocation Loc = Lambda->getLocation();
1796 
1797   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1798   Mangler.mangleNumber(PLoc.getLine());
1799   Out << "_";
1800   Mangler.mangleNumber(PLoc.getColumn());
1801 
1802   while(Loc.isMacroID()) {
1803     SourceLocation SLToPrint = Loc;
1804     if (SM.isMacroArgExpansion(Loc))
1805       SLToPrint = SM.getImmediateExpansionRange(Loc).getBegin();
1806 
1807     PLoc = SM.getPresumedLoc(SM.getSpellingLoc(SLToPrint));
1808     Out << "m";
1809     Mangler.mangleNumber(PLoc.getLine());
1810     Out << "_";
1811     Mangler.mangleNumber(PLoc.getColumn());
1812 
1813     Loc = SM.getImmediateMacroCallerLoc(Loc);
1814     if (Loc.isFileID())
1815       Loc = SM.getImmediateMacroCallerLoc(SLToPrint);
1816   }
1817 }
1818 
1819 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1820   // If the context of a closure type is an initializer for a class member
1821   // (static or nonstatic), it is encoded in a qualified name with a final
1822   // <prefix> of the form:
1823   //
1824   //   <data-member-prefix> := <member source-name> M
1825   //
1826   // Technically, the data-member-prefix is part of the <prefix>. However,
1827   // since a closure type will always be mangled with a prefix, it's easier
1828   // to emit that last part of the prefix here.
1829   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1830     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1831         !isa<ParmVarDecl>(Context)) {
1832       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1833       // reasonable mangling here.
1834       if (const IdentifierInfo *Name
1835             = cast<NamedDecl>(Context)->getIdentifier()) {
1836         mangleSourceName(Name);
1837         const TemplateArgumentList *TemplateArgs = nullptr;
1838         if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1839           mangleTemplateArgs(*TemplateArgs);
1840         Out << 'M';
1841       }
1842     }
1843   }
1844 
1845   Out << "Ul";
1846   mangleLambdaSig(Lambda);
1847   Out << "E";
1848 
1849   if (Context.isUniqueNameMangler()) {
1850     mangleUniqueNameLambda(
1851         *this, Context.getASTContext().getSourceManager(), Out, Lambda);
1852     return;
1853   }
1854 
1855   // The number is omitted for the first closure type with a given
1856   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1857   // (in lexical order) with that same <lambda-sig> and context.
1858   //
1859   // The AST keeps track of the number for us.
1860   unsigned Number = Lambda->getLambdaManglingNumber();
1861   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1862   if (Number > 1)
1863     mangleNumber(Number - 2);
1864   Out << '_';
1865 }
1866 
1867 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1868   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1869     mangleTemplateParamDecl(D);
1870   auto *Proto =
1871       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1872   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1873                          Lambda->getLambdaStaticInvoker());
1874 }
1875 
1876 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1877   switch (qualifier->getKind()) {
1878   case NestedNameSpecifier::Global:
1879     // nothing
1880     return;
1881 
1882   case NestedNameSpecifier::Super:
1883     llvm_unreachable("Can't mangle __super specifier");
1884 
1885   case NestedNameSpecifier::Namespace:
1886     mangleName(qualifier->getAsNamespace());
1887     return;
1888 
1889   case NestedNameSpecifier::NamespaceAlias:
1890     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1891     return;
1892 
1893   case NestedNameSpecifier::TypeSpec:
1894   case NestedNameSpecifier::TypeSpecWithTemplate:
1895     manglePrefix(QualType(qualifier->getAsType(), 0));
1896     return;
1897 
1898   case NestedNameSpecifier::Identifier:
1899     // Member expressions can have these without prefixes, but that
1900     // should end up in mangleUnresolvedPrefix instead.
1901     assert(qualifier->getPrefix());
1902     manglePrefix(qualifier->getPrefix());
1903 
1904     mangleSourceName(qualifier->getAsIdentifier());
1905     return;
1906   }
1907 
1908   llvm_unreachable("unexpected nested name specifier");
1909 }
1910 
1911 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1912   //  <prefix> ::= <prefix> <unqualified-name>
1913   //           ::= <template-prefix> <template-args>
1914   //           ::= <template-param>
1915   //           ::= # empty
1916   //           ::= <substitution>
1917 
1918   DC = IgnoreLinkageSpecDecls(DC);
1919 
1920   if (DC->isTranslationUnit())
1921     return;
1922 
1923   if (NoFunction && isLocalContainerContext(DC))
1924     return;
1925 
1926   assert(!isLocalContainerContext(DC));
1927 
1928   const NamedDecl *ND = cast<NamedDecl>(DC);
1929   if (mangleSubstitution(ND))
1930     return;
1931 
1932   // Check if we have a template.
1933   const TemplateArgumentList *TemplateArgs = nullptr;
1934   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
1935     mangleTemplatePrefix(TD);
1936     mangleTemplateArgs(*TemplateArgs);
1937   } else {
1938     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1939     mangleUnqualifiedName(ND, nullptr);
1940   }
1941 
1942   addSubstitution(ND);
1943 }
1944 
1945 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1946   // <template-prefix> ::= <prefix> <template unqualified-name>
1947   //                   ::= <template-param>
1948   //                   ::= <substitution>
1949   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1950     return mangleTemplatePrefix(TD);
1951 
1952   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1953     manglePrefix(Qualified->getQualifier());
1954 
1955   if (OverloadedTemplateStorage *Overloaded
1956                                       = Template.getAsOverloadedTemplate()) {
1957     mangleUnqualifiedName(GlobalDecl(), (*Overloaded->begin())->getDeclName(),
1958                           UnknownArity, nullptr);
1959     return;
1960   }
1961 
1962   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1963   assert(Dependent && "Unknown template name kind?");
1964   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1965     manglePrefix(Qualifier);
1966   mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1967 }
1968 
1969 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
1970                                           bool NoFunction) {
1971   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1972   // <template-prefix> ::= <prefix> <template unqualified-name>
1973   //                   ::= <template-param>
1974   //                   ::= <substitution>
1975   // <template-template-param> ::= <template-param>
1976   //                               <substitution>
1977 
1978   if (mangleSubstitution(ND))
1979     return;
1980 
1981   // <template-template-param> ::= <template-param>
1982   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1983     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1984   } else {
1985     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1986     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1987       mangleUnqualifiedName(GD, nullptr);
1988     else
1989       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
1990   }
1991 
1992   addSubstitution(ND);
1993 }
1994 
1995 /// Mangles a template name under the production <type>.  Required for
1996 /// template template arguments.
1997 ///   <type> ::= <class-enum-type>
1998 ///          ::= <template-param>
1999 ///          ::= <substitution>
2000 void CXXNameMangler::mangleType(TemplateName TN) {
2001   if (mangleSubstitution(TN))
2002     return;
2003 
2004   TemplateDecl *TD = nullptr;
2005 
2006   switch (TN.getKind()) {
2007   case TemplateName::QualifiedTemplate:
2008     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
2009     goto HaveDecl;
2010 
2011   case TemplateName::Template:
2012     TD = TN.getAsTemplateDecl();
2013     goto HaveDecl;
2014 
2015   HaveDecl:
2016     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2017       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2018     else
2019       mangleName(TD);
2020     break;
2021 
2022   case TemplateName::OverloadedTemplate:
2023   case TemplateName::AssumedTemplate:
2024     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2025 
2026   case TemplateName::DependentTemplate: {
2027     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2028     assert(Dependent->isIdentifier());
2029 
2030     // <class-enum-type> ::= <name>
2031     // <name> ::= <nested-name>
2032     mangleUnresolvedPrefix(Dependent->getQualifier());
2033     mangleSourceName(Dependent->getIdentifier());
2034     break;
2035   }
2036 
2037   case TemplateName::SubstTemplateTemplateParm: {
2038     // Substituted template parameters are mangled as the substituted
2039     // template.  This will check for the substitution twice, which is
2040     // fine, but we have to return early so that we don't try to *add*
2041     // the substitution twice.
2042     SubstTemplateTemplateParmStorage *subst
2043       = TN.getAsSubstTemplateTemplateParm();
2044     mangleType(subst->getReplacement());
2045     return;
2046   }
2047 
2048   case TemplateName::SubstTemplateTemplateParmPack: {
2049     // FIXME: not clear how to mangle this!
2050     // template <template <class> class T...> class A {
2051     //   template <template <class> class U...> void foo(B<T,U> x...);
2052     // };
2053     Out << "_SUBSTPACK_";
2054     break;
2055   }
2056   }
2057 
2058   addSubstitution(TN);
2059 }
2060 
2061 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2062                                                     StringRef Prefix) {
2063   // Only certain other types are valid as prefixes;  enumerate them.
2064   switch (Ty->getTypeClass()) {
2065   case Type::Builtin:
2066   case Type::Complex:
2067   case Type::Adjusted:
2068   case Type::Decayed:
2069   case Type::Pointer:
2070   case Type::BlockPointer:
2071   case Type::LValueReference:
2072   case Type::RValueReference:
2073   case Type::MemberPointer:
2074   case Type::ConstantArray:
2075   case Type::IncompleteArray:
2076   case Type::VariableArray:
2077   case Type::DependentSizedArray:
2078   case Type::DependentAddressSpace:
2079   case Type::DependentVector:
2080   case Type::DependentSizedExtVector:
2081   case Type::Vector:
2082   case Type::ExtVector:
2083   case Type::ConstantMatrix:
2084   case Type::DependentSizedMatrix:
2085   case Type::FunctionProto:
2086   case Type::FunctionNoProto:
2087   case Type::Paren:
2088   case Type::Attributed:
2089   case Type::Auto:
2090   case Type::DeducedTemplateSpecialization:
2091   case Type::PackExpansion:
2092   case Type::ObjCObject:
2093   case Type::ObjCInterface:
2094   case Type::ObjCObjectPointer:
2095   case Type::ObjCTypeParam:
2096   case Type::Atomic:
2097   case Type::Pipe:
2098   case Type::MacroQualified:
2099   case Type::ExtInt:
2100   case Type::DependentExtInt:
2101     llvm_unreachable("type is illegal as a nested name specifier");
2102 
2103   case Type::SubstTemplateTypeParmPack:
2104     // FIXME: not clear how to mangle this!
2105     // template <class T...> class A {
2106     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2107     // };
2108     Out << "_SUBSTPACK_";
2109     break;
2110 
2111   // <unresolved-type> ::= <template-param>
2112   //                   ::= <decltype>
2113   //                   ::= <template-template-param> <template-args>
2114   // (this last is not official yet)
2115   case Type::TypeOfExpr:
2116   case Type::TypeOf:
2117   case Type::Decltype:
2118   case Type::TemplateTypeParm:
2119   case Type::UnaryTransform:
2120   case Type::SubstTemplateTypeParm:
2121   unresolvedType:
2122     // Some callers want a prefix before the mangled type.
2123     Out << Prefix;
2124 
2125     // This seems to do everything we want.  It's not really
2126     // sanctioned for a substituted template parameter, though.
2127     mangleType(Ty);
2128 
2129     // We never want to print 'E' directly after an unresolved-type,
2130     // so we return directly.
2131     return true;
2132 
2133   case Type::Typedef:
2134     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2135     break;
2136 
2137   case Type::UnresolvedUsing:
2138     mangleSourceNameWithAbiTags(
2139         cast<UnresolvedUsingType>(Ty)->getDecl());
2140     break;
2141 
2142   case Type::Enum:
2143   case Type::Record:
2144     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2145     break;
2146 
2147   case Type::TemplateSpecialization: {
2148     const TemplateSpecializationType *TST =
2149         cast<TemplateSpecializationType>(Ty);
2150     TemplateName TN = TST->getTemplateName();
2151     switch (TN.getKind()) {
2152     case TemplateName::Template:
2153     case TemplateName::QualifiedTemplate: {
2154       TemplateDecl *TD = TN.getAsTemplateDecl();
2155 
2156       // If the base is a template template parameter, this is an
2157       // unresolved type.
2158       assert(TD && "no template for template specialization type");
2159       if (isa<TemplateTemplateParmDecl>(TD))
2160         goto unresolvedType;
2161 
2162       mangleSourceNameWithAbiTags(TD);
2163       break;
2164     }
2165 
2166     case TemplateName::OverloadedTemplate:
2167     case TemplateName::AssumedTemplate:
2168     case TemplateName::DependentTemplate:
2169       llvm_unreachable("invalid base for a template specialization type");
2170 
2171     case TemplateName::SubstTemplateTemplateParm: {
2172       SubstTemplateTemplateParmStorage *subst =
2173           TN.getAsSubstTemplateTemplateParm();
2174       mangleExistingSubstitution(subst->getReplacement());
2175       break;
2176     }
2177 
2178     case TemplateName::SubstTemplateTemplateParmPack: {
2179       // FIXME: not clear how to mangle this!
2180       // template <template <class U> class T...> class A {
2181       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2182       // };
2183       Out << "_SUBSTPACK_";
2184       break;
2185     }
2186     }
2187 
2188     mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2189     break;
2190   }
2191 
2192   case Type::InjectedClassName:
2193     mangleSourceNameWithAbiTags(
2194         cast<InjectedClassNameType>(Ty)->getDecl());
2195     break;
2196 
2197   case Type::DependentName:
2198     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2199     break;
2200 
2201   case Type::DependentTemplateSpecialization: {
2202     const DependentTemplateSpecializationType *DTST =
2203         cast<DependentTemplateSpecializationType>(Ty);
2204     mangleSourceName(DTST->getIdentifier());
2205     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2206     break;
2207   }
2208 
2209   case Type::Elaborated:
2210     return mangleUnresolvedTypeOrSimpleId(
2211         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2212   }
2213 
2214   return false;
2215 }
2216 
2217 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2218   switch (Name.getNameKind()) {
2219   case DeclarationName::CXXConstructorName:
2220   case DeclarationName::CXXDestructorName:
2221   case DeclarationName::CXXDeductionGuideName:
2222   case DeclarationName::CXXUsingDirective:
2223   case DeclarationName::Identifier:
2224   case DeclarationName::ObjCMultiArgSelector:
2225   case DeclarationName::ObjCOneArgSelector:
2226   case DeclarationName::ObjCZeroArgSelector:
2227     llvm_unreachable("Not an operator name");
2228 
2229   case DeclarationName::CXXConversionFunctionName:
2230     // <operator-name> ::= cv <type>    # (cast)
2231     Out << "cv";
2232     mangleType(Name.getCXXNameType());
2233     break;
2234 
2235   case DeclarationName::CXXLiteralOperatorName:
2236     Out << "li";
2237     mangleSourceName(Name.getCXXLiteralIdentifier());
2238     return;
2239 
2240   case DeclarationName::CXXOperatorName:
2241     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2242     break;
2243   }
2244 }
2245 
2246 void
2247 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2248   switch (OO) {
2249   // <operator-name> ::= nw     # new
2250   case OO_New: Out << "nw"; break;
2251   //              ::= na        # new[]
2252   case OO_Array_New: Out << "na"; break;
2253   //              ::= dl        # delete
2254   case OO_Delete: Out << "dl"; break;
2255   //              ::= da        # delete[]
2256   case OO_Array_Delete: Out << "da"; break;
2257   //              ::= ps        # + (unary)
2258   //              ::= pl        # + (binary or unknown)
2259   case OO_Plus:
2260     Out << (Arity == 1? "ps" : "pl"); break;
2261   //              ::= ng        # - (unary)
2262   //              ::= mi        # - (binary or unknown)
2263   case OO_Minus:
2264     Out << (Arity == 1? "ng" : "mi"); break;
2265   //              ::= ad        # & (unary)
2266   //              ::= an        # & (binary or unknown)
2267   case OO_Amp:
2268     Out << (Arity == 1? "ad" : "an"); break;
2269   //              ::= de        # * (unary)
2270   //              ::= ml        # * (binary or unknown)
2271   case OO_Star:
2272     // Use binary when unknown.
2273     Out << (Arity == 1? "de" : "ml"); break;
2274   //              ::= co        # ~
2275   case OO_Tilde: Out << "co"; break;
2276   //              ::= dv        # /
2277   case OO_Slash: Out << "dv"; break;
2278   //              ::= rm        # %
2279   case OO_Percent: Out << "rm"; break;
2280   //              ::= or        # |
2281   case OO_Pipe: Out << "or"; break;
2282   //              ::= eo        # ^
2283   case OO_Caret: Out << "eo"; break;
2284   //              ::= aS        # =
2285   case OO_Equal: Out << "aS"; break;
2286   //              ::= pL        # +=
2287   case OO_PlusEqual: Out << "pL"; break;
2288   //              ::= mI        # -=
2289   case OO_MinusEqual: Out << "mI"; break;
2290   //              ::= mL        # *=
2291   case OO_StarEqual: Out << "mL"; break;
2292   //              ::= dV        # /=
2293   case OO_SlashEqual: Out << "dV"; break;
2294   //              ::= rM        # %=
2295   case OO_PercentEqual: Out << "rM"; break;
2296   //              ::= aN        # &=
2297   case OO_AmpEqual: Out << "aN"; break;
2298   //              ::= oR        # |=
2299   case OO_PipeEqual: Out << "oR"; break;
2300   //              ::= eO        # ^=
2301   case OO_CaretEqual: Out << "eO"; break;
2302   //              ::= ls        # <<
2303   case OO_LessLess: Out << "ls"; break;
2304   //              ::= rs        # >>
2305   case OO_GreaterGreater: Out << "rs"; break;
2306   //              ::= lS        # <<=
2307   case OO_LessLessEqual: Out << "lS"; break;
2308   //              ::= rS        # >>=
2309   case OO_GreaterGreaterEqual: Out << "rS"; break;
2310   //              ::= eq        # ==
2311   case OO_EqualEqual: Out << "eq"; break;
2312   //              ::= ne        # !=
2313   case OO_ExclaimEqual: Out << "ne"; break;
2314   //              ::= lt        # <
2315   case OO_Less: Out << "lt"; break;
2316   //              ::= gt        # >
2317   case OO_Greater: Out << "gt"; break;
2318   //              ::= le        # <=
2319   case OO_LessEqual: Out << "le"; break;
2320   //              ::= ge        # >=
2321   case OO_GreaterEqual: Out << "ge"; break;
2322   //              ::= nt        # !
2323   case OO_Exclaim: Out << "nt"; break;
2324   //              ::= aa        # &&
2325   case OO_AmpAmp: Out << "aa"; break;
2326   //              ::= oo        # ||
2327   case OO_PipePipe: Out << "oo"; break;
2328   //              ::= pp        # ++
2329   case OO_PlusPlus: Out << "pp"; break;
2330   //              ::= mm        # --
2331   case OO_MinusMinus: Out << "mm"; break;
2332   //              ::= cm        # ,
2333   case OO_Comma: Out << "cm"; break;
2334   //              ::= pm        # ->*
2335   case OO_ArrowStar: Out << "pm"; break;
2336   //              ::= pt        # ->
2337   case OO_Arrow: Out << "pt"; break;
2338   //              ::= cl        # ()
2339   case OO_Call: Out << "cl"; break;
2340   //              ::= ix        # []
2341   case OO_Subscript: Out << "ix"; break;
2342 
2343   //              ::= qu        # ?
2344   // The conditional operator can't be overloaded, but we still handle it when
2345   // mangling expressions.
2346   case OO_Conditional: Out << "qu"; break;
2347   // Proposal on cxx-abi-dev, 2015-10-21.
2348   //              ::= aw        # co_await
2349   case OO_Coawait: Out << "aw"; break;
2350   // Proposed in cxx-abi github issue 43.
2351   //              ::= ss        # <=>
2352   case OO_Spaceship: Out << "ss"; break;
2353 
2354   case OO_None:
2355   case NUM_OVERLOADED_OPERATORS:
2356     llvm_unreachable("Not an overloaded operator");
2357   }
2358 }
2359 
2360 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2361   // Vendor qualifiers come first and if they are order-insensitive they must
2362   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2363 
2364   // <type> ::= U <addrspace-expr>
2365   if (DAST) {
2366     Out << "U2ASI";
2367     mangleExpression(DAST->getAddrSpaceExpr());
2368     Out << "E";
2369   }
2370 
2371   // Address space qualifiers start with an ordinary letter.
2372   if (Quals.hasAddressSpace()) {
2373     // Address space extension:
2374     //
2375     //   <type> ::= U <target-addrspace>
2376     //   <type> ::= U <OpenCL-addrspace>
2377     //   <type> ::= U <CUDA-addrspace>
2378 
2379     SmallString<64> ASString;
2380     LangAS AS = Quals.getAddressSpace();
2381 
2382     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2383       //  <target-addrspace> ::= "AS" <address-space-number>
2384       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2385       if (TargetAS != 0)
2386         ASString = "AS" + llvm::utostr(TargetAS);
2387     } else {
2388       switch (AS) {
2389       default: llvm_unreachable("Not a language specific address space");
2390       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2391       //                                "private"| "generic" ]
2392       case LangAS::opencl_global:   ASString = "CLglobal";   break;
2393       case LangAS::opencl_local:    ASString = "CLlocal";    break;
2394       case LangAS::opencl_constant: ASString = "CLconstant"; break;
2395       case LangAS::opencl_private:  ASString = "CLprivate";  break;
2396       case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
2397       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2398       case LangAS::cuda_device:     ASString = "CUdevice";   break;
2399       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2400       case LangAS::cuda_shared:     ASString = "CUshared";   break;
2401       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2402       case LangAS::ptr32_sptr:
2403         ASString = "ptr32_sptr";
2404         break;
2405       case LangAS::ptr32_uptr:
2406         ASString = "ptr32_uptr";
2407         break;
2408       case LangAS::ptr64:
2409         ASString = "ptr64";
2410         break;
2411       }
2412     }
2413     if (!ASString.empty())
2414       mangleVendorQualifier(ASString);
2415   }
2416 
2417   // The ARC ownership qualifiers start with underscores.
2418   // Objective-C ARC Extension:
2419   //
2420   //   <type> ::= U "__strong"
2421   //   <type> ::= U "__weak"
2422   //   <type> ::= U "__autoreleasing"
2423   //
2424   // Note: we emit __weak first to preserve the order as
2425   // required by the Itanium ABI.
2426   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2427     mangleVendorQualifier("__weak");
2428 
2429   // __unaligned (from -fms-extensions)
2430   if (Quals.hasUnaligned())
2431     mangleVendorQualifier("__unaligned");
2432 
2433   // Remaining ARC ownership qualifiers.
2434   switch (Quals.getObjCLifetime()) {
2435   case Qualifiers::OCL_None:
2436     break;
2437 
2438   case Qualifiers::OCL_Weak:
2439     // Do nothing as we already handled this case above.
2440     break;
2441 
2442   case Qualifiers::OCL_Strong:
2443     mangleVendorQualifier("__strong");
2444     break;
2445 
2446   case Qualifiers::OCL_Autoreleasing:
2447     mangleVendorQualifier("__autoreleasing");
2448     break;
2449 
2450   case Qualifiers::OCL_ExplicitNone:
2451     // The __unsafe_unretained qualifier is *not* mangled, so that
2452     // __unsafe_unretained types in ARC produce the same manglings as the
2453     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2454     // better ABI compatibility.
2455     //
2456     // It's safe to do this because unqualified 'id' won't show up
2457     // in any type signatures that need to be mangled.
2458     break;
2459   }
2460 
2461   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2462   if (Quals.hasRestrict())
2463     Out << 'r';
2464   if (Quals.hasVolatile())
2465     Out << 'V';
2466   if (Quals.hasConst())
2467     Out << 'K';
2468 }
2469 
2470 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2471   Out << 'U' << name.size() << name;
2472 }
2473 
2474 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2475   // <ref-qualifier> ::= R                # lvalue reference
2476   //                 ::= O                # rvalue-reference
2477   switch (RefQualifier) {
2478   case RQ_None:
2479     break;
2480 
2481   case RQ_LValue:
2482     Out << 'R';
2483     break;
2484 
2485   case RQ_RValue:
2486     Out << 'O';
2487     break;
2488   }
2489 }
2490 
2491 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2492   Context.mangleObjCMethodName(MD, Out);
2493 }
2494 
2495 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2496                                 ASTContext &Ctx) {
2497   if (Quals)
2498     return true;
2499   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2500     return true;
2501   if (Ty->isOpenCLSpecificType())
2502     return true;
2503   if (Ty->isBuiltinType())
2504     return false;
2505   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2506   // substitution candidates.
2507   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2508       isa<AutoType>(Ty))
2509     return false;
2510   return true;
2511 }
2512 
2513 void CXXNameMangler::mangleType(QualType T) {
2514   // If our type is instantiation-dependent but not dependent, we mangle
2515   // it as it was written in the source, removing any top-level sugar.
2516   // Otherwise, use the canonical type.
2517   //
2518   // FIXME: This is an approximation of the instantiation-dependent name
2519   // mangling rules, since we should really be using the type as written and
2520   // augmented via semantic analysis (i.e., with implicit conversions and
2521   // default template arguments) for any instantiation-dependent type.
2522   // Unfortunately, that requires several changes to our AST:
2523   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2524   //     uniqued, so that we can handle substitutions properly
2525   //   - Default template arguments will need to be represented in the
2526   //     TemplateSpecializationType, since they need to be mangled even though
2527   //     they aren't written.
2528   //   - Conversions on non-type template arguments need to be expressed, since
2529   //     they can affect the mangling of sizeof/alignof.
2530   //
2531   // FIXME: This is wrong when mapping to the canonical type for a dependent
2532   // type discards instantiation-dependent portions of the type, such as for:
2533   //
2534   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2535   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2536   //
2537   // It's also wrong in the opposite direction when instantiation-dependent,
2538   // canonically-equivalent types differ in some irrelevant portion of inner
2539   // type sugar. In such cases, we fail to form correct substitutions, eg:
2540   //
2541   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2542   //
2543   // We should instead canonicalize the non-instantiation-dependent parts,
2544   // regardless of whether the type as a whole is dependent or instantiation
2545   // dependent.
2546   if (!T->isInstantiationDependentType() || T->isDependentType())
2547     T = T.getCanonicalType();
2548   else {
2549     // Desugar any types that are purely sugar.
2550     do {
2551       // Don't desugar through template specialization types that aren't
2552       // type aliases. We need to mangle the template arguments as written.
2553       if (const TemplateSpecializationType *TST
2554                                       = dyn_cast<TemplateSpecializationType>(T))
2555         if (!TST->isTypeAlias())
2556           break;
2557 
2558       QualType Desugared
2559         = T.getSingleStepDesugaredType(Context.getASTContext());
2560       if (Desugared == T)
2561         break;
2562 
2563       T = Desugared;
2564     } while (true);
2565   }
2566   SplitQualType split = T.split();
2567   Qualifiers quals = split.Quals;
2568   const Type *ty = split.Ty;
2569 
2570   bool isSubstitutable =
2571     isTypeSubstitutable(quals, ty, Context.getASTContext());
2572   if (isSubstitutable && mangleSubstitution(T))
2573     return;
2574 
2575   // If we're mangling a qualified array type, push the qualifiers to
2576   // the element type.
2577   if (quals && isa<ArrayType>(T)) {
2578     ty = Context.getASTContext().getAsArrayType(T);
2579     quals = Qualifiers();
2580 
2581     // Note that we don't update T: we want to add the
2582     // substitution at the original type.
2583   }
2584 
2585   if (quals || ty->isDependentAddressSpaceType()) {
2586     if (const DependentAddressSpaceType *DAST =
2587         dyn_cast<DependentAddressSpaceType>(ty)) {
2588       SplitQualType splitDAST = DAST->getPointeeType().split();
2589       mangleQualifiers(splitDAST.Quals, DAST);
2590       mangleType(QualType(splitDAST.Ty, 0));
2591     } else {
2592       mangleQualifiers(quals);
2593 
2594       // Recurse:  even if the qualified type isn't yet substitutable,
2595       // the unqualified type might be.
2596       mangleType(QualType(ty, 0));
2597     }
2598   } else {
2599     switch (ty->getTypeClass()) {
2600 #define ABSTRACT_TYPE(CLASS, PARENT)
2601 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2602     case Type::CLASS: \
2603       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2604       return;
2605 #define TYPE(CLASS, PARENT) \
2606     case Type::CLASS: \
2607       mangleType(static_cast<const CLASS##Type*>(ty)); \
2608       break;
2609 #include "clang/AST/TypeNodes.inc"
2610     }
2611   }
2612 
2613   // Add the substitution.
2614   if (isSubstitutable)
2615     addSubstitution(T);
2616 }
2617 
2618 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2619   if (!mangleStandardSubstitution(ND))
2620     mangleName(ND);
2621 }
2622 
2623 void CXXNameMangler::mangleType(const BuiltinType *T) {
2624   //  <type>         ::= <builtin-type>
2625   //  <builtin-type> ::= v  # void
2626   //                 ::= w  # wchar_t
2627   //                 ::= b  # bool
2628   //                 ::= c  # char
2629   //                 ::= a  # signed char
2630   //                 ::= h  # unsigned char
2631   //                 ::= s  # short
2632   //                 ::= t  # unsigned short
2633   //                 ::= i  # int
2634   //                 ::= j  # unsigned int
2635   //                 ::= l  # long
2636   //                 ::= m  # unsigned long
2637   //                 ::= x  # long long, __int64
2638   //                 ::= y  # unsigned long long, __int64
2639   //                 ::= n  # __int128
2640   //                 ::= o  # unsigned __int128
2641   //                 ::= f  # float
2642   //                 ::= d  # double
2643   //                 ::= e  # long double, __float80
2644   //                 ::= g  # __float128
2645   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2646   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2647   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2648   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2649   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2650   //                 ::= Di # char32_t
2651   //                 ::= Ds # char16_t
2652   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2653   //                 ::= u <source-name>    # vendor extended type
2654   std::string type_name;
2655   switch (T->getKind()) {
2656   case BuiltinType::Void:
2657     Out << 'v';
2658     break;
2659   case BuiltinType::Bool:
2660     Out << 'b';
2661     break;
2662   case BuiltinType::Char_U:
2663   case BuiltinType::Char_S:
2664     Out << 'c';
2665     break;
2666   case BuiltinType::UChar:
2667     Out << 'h';
2668     break;
2669   case BuiltinType::UShort:
2670     Out << 't';
2671     break;
2672   case BuiltinType::UInt:
2673     Out << 'j';
2674     break;
2675   case BuiltinType::ULong:
2676     Out << 'm';
2677     break;
2678   case BuiltinType::ULongLong:
2679     Out << 'y';
2680     break;
2681   case BuiltinType::UInt128:
2682     Out << 'o';
2683     break;
2684   case BuiltinType::SChar:
2685     Out << 'a';
2686     break;
2687   case BuiltinType::WChar_S:
2688   case BuiltinType::WChar_U:
2689     Out << 'w';
2690     break;
2691   case BuiltinType::Char8:
2692     Out << "Du";
2693     break;
2694   case BuiltinType::Char16:
2695     Out << "Ds";
2696     break;
2697   case BuiltinType::Char32:
2698     Out << "Di";
2699     break;
2700   case BuiltinType::Short:
2701     Out << 's';
2702     break;
2703   case BuiltinType::Int:
2704     Out << 'i';
2705     break;
2706   case BuiltinType::Long:
2707     Out << 'l';
2708     break;
2709   case BuiltinType::LongLong:
2710     Out << 'x';
2711     break;
2712   case BuiltinType::Int128:
2713     Out << 'n';
2714     break;
2715   case BuiltinType::Float16:
2716     Out << "DF16_";
2717     break;
2718   case BuiltinType::ShortAccum:
2719   case BuiltinType::Accum:
2720   case BuiltinType::LongAccum:
2721   case BuiltinType::UShortAccum:
2722   case BuiltinType::UAccum:
2723   case BuiltinType::ULongAccum:
2724   case BuiltinType::ShortFract:
2725   case BuiltinType::Fract:
2726   case BuiltinType::LongFract:
2727   case BuiltinType::UShortFract:
2728   case BuiltinType::UFract:
2729   case BuiltinType::ULongFract:
2730   case BuiltinType::SatShortAccum:
2731   case BuiltinType::SatAccum:
2732   case BuiltinType::SatLongAccum:
2733   case BuiltinType::SatUShortAccum:
2734   case BuiltinType::SatUAccum:
2735   case BuiltinType::SatULongAccum:
2736   case BuiltinType::SatShortFract:
2737   case BuiltinType::SatFract:
2738   case BuiltinType::SatLongFract:
2739   case BuiltinType::SatUShortFract:
2740   case BuiltinType::SatUFract:
2741   case BuiltinType::SatULongFract:
2742     llvm_unreachable("Fixed point types are disabled for c++");
2743   case BuiltinType::Half:
2744     Out << "Dh";
2745     break;
2746   case BuiltinType::Float:
2747     Out << 'f';
2748     break;
2749   case BuiltinType::Double:
2750     Out << 'd';
2751     break;
2752   case BuiltinType::LongDouble: {
2753     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2754                                    getASTContext().getLangOpts().OpenMPIsDevice
2755                                ? getASTContext().getAuxTargetInfo()
2756                                : &getASTContext().getTargetInfo();
2757     Out << TI->getLongDoubleMangling();
2758     break;
2759   }
2760   case BuiltinType::Float128: {
2761     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2762                                    getASTContext().getLangOpts().OpenMPIsDevice
2763                                ? getASTContext().getAuxTargetInfo()
2764                                : &getASTContext().getTargetInfo();
2765     Out << TI->getFloat128Mangling();
2766     break;
2767   }
2768   case BuiltinType::BFloat16: {
2769     const TargetInfo *TI = &getASTContext().getTargetInfo();
2770     Out << TI->getBFloat16Mangling();
2771     break;
2772   }
2773   case BuiltinType::NullPtr:
2774     Out << "Dn";
2775     break;
2776 
2777 #define BUILTIN_TYPE(Id, SingletonId)
2778 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2779   case BuiltinType::Id:
2780 #include "clang/AST/BuiltinTypes.def"
2781   case BuiltinType::Dependent:
2782     if (!NullOut)
2783       llvm_unreachable("mangling a placeholder type");
2784     break;
2785   case BuiltinType::ObjCId:
2786     Out << "11objc_object";
2787     break;
2788   case BuiltinType::ObjCClass:
2789     Out << "10objc_class";
2790     break;
2791   case BuiltinType::ObjCSel:
2792     Out << "13objc_selector";
2793     break;
2794 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2795   case BuiltinType::Id: \
2796     type_name = "ocl_" #ImgType "_" #Suffix; \
2797     Out << type_name.size() << type_name; \
2798     break;
2799 #include "clang/Basic/OpenCLImageTypes.def"
2800   case BuiltinType::OCLSampler:
2801     Out << "11ocl_sampler";
2802     break;
2803   case BuiltinType::OCLEvent:
2804     Out << "9ocl_event";
2805     break;
2806   case BuiltinType::OCLClkEvent:
2807     Out << "12ocl_clkevent";
2808     break;
2809   case BuiltinType::OCLQueue:
2810     Out << "9ocl_queue";
2811     break;
2812   case BuiltinType::OCLReserveID:
2813     Out << "13ocl_reserveid";
2814     break;
2815 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2816   case BuiltinType::Id: \
2817     type_name = "ocl_" #ExtType; \
2818     Out << type_name.size() << type_name; \
2819     break;
2820 #include "clang/Basic/OpenCLExtensionTypes.def"
2821   // The SVE types are effectively target-specific.  The mangling scheme
2822   // is defined in the appendices to the Procedure Call Standard for the
2823   // Arm Architecture.
2824 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
2825                         ElBits, IsSigned, IsFP, IsBF)                          \
2826   case BuiltinType::Id:                                                        \
2827     type_name = MangledName;                                                   \
2828     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2829         << type_name;                                                          \
2830     break;
2831 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
2832   case BuiltinType::Id:                                                        \
2833     type_name = MangledName;                                                   \
2834     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2835         << type_name;                                                          \
2836     break;
2837 #include "clang/Basic/AArch64SVEACLETypes.def"
2838   }
2839 }
2840 
2841 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2842   switch (CC) {
2843   case CC_C:
2844     return "";
2845 
2846   case CC_X86VectorCall:
2847   case CC_X86Pascal:
2848   case CC_X86RegCall:
2849   case CC_AAPCS:
2850   case CC_AAPCS_VFP:
2851   case CC_AArch64VectorCall:
2852   case CC_IntelOclBicc:
2853   case CC_SpirFunction:
2854   case CC_OpenCLKernel:
2855   case CC_PreserveMost:
2856   case CC_PreserveAll:
2857     // FIXME: we should be mangling all of the above.
2858     return "";
2859 
2860   case CC_X86ThisCall:
2861     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2862     // used explicitly. At this point, we don't have that much information in
2863     // the AST, since clang tends to bake the convention into the canonical
2864     // function type. thiscall only rarely used explicitly, so don't mangle it
2865     // for now.
2866     return "";
2867 
2868   case CC_X86StdCall:
2869     return "stdcall";
2870   case CC_X86FastCall:
2871     return "fastcall";
2872   case CC_X86_64SysV:
2873     return "sysv_abi";
2874   case CC_Win64:
2875     return "ms_abi";
2876   case CC_Swift:
2877     return "swiftcall";
2878   }
2879   llvm_unreachable("bad calling convention");
2880 }
2881 
2882 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2883   // Fast path.
2884   if (T->getExtInfo() == FunctionType::ExtInfo())
2885     return;
2886 
2887   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2888   // This will get more complicated in the future if we mangle other
2889   // things here; but for now, since we mangle ns_returns_retained as
2890   // a qualifier on the result type, we can get away with this:
2891   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2892   if (!CCQualifier.empty())
2893     mangleVendorQualifier(CCQualifier);
2894 
2895   // FIXME: regparm
2896   // FIXME: noreturn
2897 }
2898 
2899 void
2900 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2901   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2902 
2903   // Note that these are *not* substitution candidates.  Demanglers might
2904   // have trouble with this if the parameter type is fully substituted.
2905 
2906   switch (PI.getABI()) {
2907   case ParameterABI::Ordinary:
2908     break;
2909 
2910   // All of these start with "swift", so they come before "ns_consumed".
2911   case ParameterABI::SwiftContext:
2912   case ParameterABI::SwiftErrorResult:
2913   case ParameterABI::SwiftIndirectResult:
2914     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2915     break;
2916   }
2917 
2918   if (PI.isConsumed())
2919     mangleVendorQualifier("ns_consumed");
2920 
2921   if (PI.isNoEscape())
2922     mangleVendorQualifier("noescape");
2923 }
2924 
2925 // <type>          ::= <function-type>
2926 // <function-type> ::= [<CV-qualifiers>] F [Y]
2927 //                      <bare-function-type> [<ref-qualifier>] E
2928 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2929   mangleExtFunctionInfo(T);
2930 
2931   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2932   // e.g. "const" in "int (A::*)() const".
2933   mangleQualifiers(T->getMethodQuals());
2934 
2935   // Mangle instantiation-dependent exception-specification, if present,
2936   // per cxx-abi-dev proposal on 2016-10-11.
2937   if (T->hasInstantiationDependentExceptionSpec()) {
2938     if (isComputedNoexcept(T->getExceptionSpecType())) {
2939       Out << "DO";
2940       mangleExpression(T->getNoexceptExpr());
2941       Out << "E";
2942     } else {
2943       assert(T->getExceptionSpecType() == EST_Dynamic);
2944       Out << "Dw";
2945       for (auto ExceptTy : T->exceptions())
2946         mangleType(ExceptTy);
2947       Out << "E";
2948     }
2949   } else if (T->isNothrow()) {
2950     Out << "Do";
2951   }
2952 
2953   Out << 'F';
2954 
2955   // FIXME: We don't have enough information in the AST to produce the 'Y'
2956   // encoding for extern "C" function types.
2957   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2958 
2959   // Mangle the ref-qualifier, if present.
2960   mangleRefQualifier(T->getRefQualifier());
2961 
2962   Out << 'E';
2963 }
2964 
2965 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2966   // Function types without prototypes can arise when mangling a function type
2967   // within an overloadable function in C. We mangle these as the absence of any
2968   // parameter types (not even an empty parameter list).
2969   Out << 'F';
2970 
2971   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2972 
2973   FunctionTypeDepth.enterResultType();
2974   mangleType(T->getReturnType());
2975   FunctionTypeDepth.leaveResultType();
2976 
2977   FunctionTypeDepth.pop(saved);
2978   Out << 'E';
2979 }
2980 
2981 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2982                                             bool MangleReturnType,
2983                                             const FunctionDecl *FD) {
2984   // Record that we're in a function type.  See mangleFunctionParam
2985   // for details on what we're trying to achieve here.
2986   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2987 
2988   // <bare-function-type> ::= <signature type>+
2989   if (MangleReturnType) {
2990     FunctionTypeDepth.enterResultType();
2991 
2992     // Mangle ns_returns_retained as an order-sensitive qualifier here.
2993     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2994       mangleVendorQualifier("ns_returns_retained");
2995 
2996     // Mangle the return type without any direct ARC ownership qualifiers.
2997     QualType ReturnTy = Proto->getReturnType();
2998     if (ReturnTy.getObjCLifetime()) {
2999       auto SplitReturnTy = ReturnTy.split();
3000       SplitReturnTy.Quals.removeObjCLifetime();
3001       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3002     }
3003     mangleType(ReturnTy);
3004 
3005     FunctionTypeDepth.leaveResultType();
3006   }
3007 
3008   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3009     //   <builtin-type> ::= v   # void
3010     Out << 'v';
3011 
3012     FunctionTypeDepth.pop(saved);
3013     return;
3014   }
3015 
3016   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3017   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3018     // Mangle extended parameter info as order-sensitive qualifiers here.
3019     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3020       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3021     }
3022 
3023     // Mangle the type.
3024     QualType ParamTy = Proto->getParamType(I);
3025     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3026 
3027     if (FD) {
3028       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3029         // Attr can only take 1 character, so we can hardcode the length below.
3030         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3031         if (Attr->isDynamic())
3032           Out << "U25pass_dynamic_object_size" << Attr->getType();
3033         else
3034           Out << "U17pass_object_size" << Attr->getType();
3035       }
3036     }
3037   }
3038 
3039   FunctionTypeDepth.pop(saved);
3040 
3041   // <builtin-type>      ::= z  # ellipsis
3042   if (Proto->isVariadic())
3043     Out << 'z';
3044 }
3045 
3046 // <type>            ::= <class-enum-type>
3047 // <class-enum-type> ::= <name>
3048 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3049   mangleName(T->getDecl());
3050 }
3051 
3052 // <type>            ::= <class-enum-type>
3053 // <class-enum-type> ::= <name>
3054 void CXXNameMangler::mangleType(const EnumType *T) {
3055   mangleType(static_cast<const TagType*>(T));
3056 }
3057 void CXXNameMangler::mangleType(const RecordType *T) {
3058   mangleType(static_cast<const TagType*>(T));
3059 }
3060 void CXXNameMangler::mangleType(const TagType *T) {
3061   mangleName(T->getDecl());
3062 }
3063 
3064 // <type>       ::= <array-type>
3065 // <array-type> ::= A <positive dimension number> _ <element type>
3066 //              ::= A [<dimension expression>] _ <element type>
3067 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3068   Out << 'A' << T->getSize() << '_';
3069   mangleType(T->getElementType());
3070 }
3071 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3072   Out << 'A';
3073   // decayed vla types (size 0) will just be skipped.
3074   if (T->getSizeExpr())
3075     mangleExpression(T->getSizeExpr());
3076   Out << '_';
3077   mangleType(T->getElementType());
3078 }
3079 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3080   Out << 'A';
3081   mangleExpression(T->getSizeExpr());
3082   Out << '_';
3083   mangleType(T->getElementType());
3084 }
3085 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3086   Out << "A_";
3087   mangleType(T->getElementType());
3088 }
3089 
3090 // <type>                   ::= <pointer-to-member-type>
3091 // <pointer-to-member-type> ::= M <class type> <member type>
3092 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3093   Out << 'M';
3094   mangleType(QualType(T->getClass(), 0));
3095   QualType PointeeType = T->getPointeeType();
3096   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3097     mangleType(FPT);
3098 
3099     // Itanium C++ ABI 5.1.8:
3100     //
3101     //   The type of a non-static member function is considered to be different,
3102     //   for the purposes of substitution, from the type of a namespace-scope or
3103     //   static member function whose type appears similar. The types of two
3104     //   non-static member functions are considered to be different, for the
3105     //   purposes of substitution, if the functions are members of different
3106     //   classes. In other words, for the purposes of substitution, the class of
3107     //   which the function is a member is considered part of the type of
3108     //   function.
3109 
3110     // Given that we already substitute member function pointers as a
3111     // whole, the net effect of this rule is just to unconditionally
3112     // suppress substitution on the function type in a member pointer.
3113     // We increment the SeqID here to emulate adding an entry to the
3114     // substitution table.
3115     ++SeqID;
3116   } else
3117     mangleType(PointeeType);
3118 }
3119 
3120 // <type>           ::= <template-param>
3121 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3122   mangleTemplateParameter(T->getDepth(), T->getIndex());
3123 }
3124 
3125 // <type>           ::= <template-param>
3126 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3127   // FIXME: not clear how to mangle this!
3128   // template <class T...> class A {
3129   //   template <class U...> void foo(T(*)(U) x...);
3130   // };
3131   Out << "_SUBSTPACK_";
3132 }
3133 
3134 // <type> ::= P <type>   # pointer-to
3135 void CXXNameMangler::mangleType(const PointerType *T) {
3136   Out << 'P';
3137   mangleType(T->getPointeeType());
3138 }
3139 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3140   Out << 'P';
3141   mangleType(T->getPointeeType());
3142 }
3143 
3144 // <type> ::= R <type>   # reference-to
3145 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3146   Out << 'R';
3147   mangleType(T->getPointeeType());
3148 }
3149 
3150 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3151 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3152   Out << 'O';
3153   mangleType(T->getPointeeType());
3154 }
3155 
3156 // <type> ::= C <type>   # complex pair (C 2000)
3157 void CXXNameMangler::mangleType(const ComplexType *T) {
3158   Out << 'C';
3159   mangleType(T->getElementType());
3160 }
3161 
3162 // ARM's ABI for Neon vector types specifies that they should be mangled as
3163 // if they are structs (to match ARM's initial implementation).  The
3164 // vector type must be one of the special types predefined by ARM.
3165 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3166   QualType EltType = T->getElementType();
3167   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3168   const char *EltName = nullptr;
3169   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3170     switch (cast<BuiltinType>(EltType)->getKind()) {
3171     case BuiltinType::SChar:
3172     case BuiltinType::UChar:
3173       EltName = "poly8_t";
3174       break;
3175     case BuiltinType::Short:
3176     case BuiltinType::UShort:
3177       EltName = "poly16_t";
3178       break;
3179     case BuiltinType::LongLong:
3180     case BuiltinType::ULongLong:
3181       EltName = "poly64_t";
3182       break;
3183     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3184     }
3185   } else {
3186     switch (cast<BuiltinType>(EltType)->getKind()) {
3187     case BuiltinType::SChar:     EltName = "int8_t"; break;
3188     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3189     case BuiltinType::Short:     EltName = "int16_t"; break;
3190     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3191     case BuiltinType::Int:       EltName = "int32_t"; break;
3192     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3193     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3194     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3195     case BuiltinType::Double:    EltName = "float64_t"; break;
3196     case BuiltinType::Float:     EltName = "float32_t"; break;
3197     case BuiltinType::Half:      EltName = "float16_t"; break;
3198     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3199     default:
3200       llvm_unreachable("unexpected Neon vector element type");
3201     }
3202   }
3203   const char *BaseName = nullptr;
3204   unsigned BitSize = (T->getNumElements() *
3205                       getASTContext().getTypeSize(EltType));
3206   if (BitSize == 64)
3207     BaseName = "__simd64_";
3208   else {
3209     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3210     BaseName = "__simd128_";
3211   }
3212   Out << strlen(BaseName) + strlen(EltName);
3213   Out << BaseName << EltName;
3214 }
3215 
3216 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3217   DiagnosticsEngine &Diags = Context.getDiags();
3218   unsigned DiagID = Diags.getCustomDiagID(
3219       DiagnosticsEngine::Error,
3220       "cannot mangle this dependent neon vector type yet");
3221   Diags.Report(T->getAttributeLoc(), DiagID);
3222 }
3223 
3224 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3225   switch (EltType->getKind()) {
3226   case BuiltinType::SChar:
3227     return "Int8";
3228   case BuiltinType::Short:
3229     return "Int16";
3230   case BuiltinType::Int:
3231     return "Int32";
3232   case BuiltinType::Long:
3233   case BuiltinType::LongLong:
3234     return "Int64";
3235   case BuiltinType::UChar:
3236     return "Uint8";
3237   case BuiltinType::UShort:
3238     return "Uint16";
3239   case BuiltinType::UInt:
3240     return "Uint32";
3241   case BuiltinType::ULong:
3242   case BuiltinType::ULongLong:
3243     return "Uint64";
3244   case BuiltinType::Half:
3245     return "Float16";
3246   case BuiltinType::Float:
3247     return "Float32";
3248   case BuiltinType::Double:
3249     return "Float64";
3250   case BuiltinType::BFloat16:
3251     return "BFloat16";
3252   default:
3253     llvm_unreachable("Unexpected vector element base type");
3254   }
3255 }
3256 
3257 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3258 // the equivalent internal name. The vector type must be one of the special
3259 // types predefined by ARM.
3260 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3261   QualType EltType = T->getElementType();
3262   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3263   unsigned BitSize =
3264       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3265   (void)BitSize; // Silence warning.
3266 
3267   assert((BitSize == 64 || BitSize == 128) &&
3268          "Neon vector type not 64 or 128 bits");
3269 
3270   StringRef EltName;
3271   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3272     switch (cast<BuiltinType>(EltType)->getKind()) {
3273     case BuiltinType::UChar:
3274       EltName = "Poly8";
3275       break;
3276     case BuiltinType::UShort:
3277       EltName = "Poly16";
3278       break;
3279     case BuiltinType::ULong:
3280     case BuiltinType::ULongLong:
3281       EltName = "Poly64";
3282       break;
3283     default:
3284       llvm_unreachable("unexpected Neon polynomial vector element type");
3285     }
3286   } else
3287     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3288 
3289   std::string TypeName =
3290       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3291   Out << TypeName.length() << TypeName;
3292 }
3293 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3294   DiagnosticsEngine &Diags = Context.getDiags();
3295   unsigned DiagID = Diags.getCustomDiagID(
3296       DiagnosticsEngine::Error,
3297       "cannot mangle this dependent neon vector type yet");
3298   Diags.Report(T->getAttributeLoc(), DiagID);
3299 }
3300 
3301 // GNU extension: vector types
3302 // <type>                  ::= <vector-type>
3303 // <vector-type>           ::= Dv <positive dimension number> _
3304 //                                    <extended element type>
3305 //                         ::= Dv [<dimension expression>] _ <element type>
3306 // <extended element type> ::= <element type>
3307 //                         ::= p # AltiVec vector pixel
3308 //                         ::= b # Altivec vector bool
3309 void CXXNameMangler::mangleType(const VectorType *T) {
3310   if ((T->getVectorKind() == VectorType::NeonVector ||
3311        T->getVectorKind() == VectorType::NeonPolyVector)) {
3312     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3313     llvm::Triple::ArchType Arch =
3314         getASTContext().getTargetInfo().getTriple().getArch();
3315     if ((Arch == llvm::Triple::aarch64 ||
3316          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3317       mangleAArch64NeonVectorType(T);
3318     else
3319       mangleNeonVectorType(T);
3320     return;
3321   }
3322   Out << "Dv" << T->getNumElements() << '_';
3323   if (T->getVectorKind() == VectorType::AltiVecPixel)
3324     Out << 'p';
3325   else if (T->getVectorKind() == VectorType::AltiVecBool)
3326     Out << 'b';
3327   else
3328     mangleType(T->getElementType());
3329 }
3330 
3331 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3332   if ((T->getVectorKind() == VectorType::NeonVector ||
3333        T->getVectorKind() == VectorType::NeonPolyVector)) {
3334     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3335     llvm::Triple::ArchType Arch =
3336         getASTContext().getTargetInfo().getTriple().getArch();
3337     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3338         !Target.isOSDarwin())
3339       mangleAArch64NeonVectorType(T);
3340     else
3341       mangleNeonVectorType(T);
3342     return;
3343   }
3344 
3345   Out << "Dv";
3346   mangleExpression(T->getSizeExpr());
3347   Out << '_';
3348   if (T->getVectorKind() == VectorType::AltiVecPixel)
3349     Out << 'p';
3350   else if (T->getVectorKind() == VectorType::AltiVecBool)
3351     Out << 'b';
3352   else
3353     mangleType(T->getElementType());
3354 }
3355 
3356 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3357   mangleType(static_cast<const VectorType*>(T));
3358 }
3359 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3360   Out << "Dv";
3361   mangleExpression(T->getSizeExpr());
3362   Out << '_';
3363   mangleType(T->getElementType());
3364 }
3365 
3366 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3367   // Mangle matrix types using a vendor extended type qualifier:
3368   // U<Len>matrix_type<Rows><Columns><element type>
3369   StringRef VendorQualifier = "matrix_type";
3370   Out << "U" << VendorQualifier.size() << VendorQualifier;
3371   auto &ASTCtx = getASTContext();
3372   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3373   llvm::APSInt Rows(BitWidth);
3374   Rows = T->getNumRows();
3375   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3376   llvm::APSInt Columns(BitWidth);
3377   Columns = T->getNumColumns();
3378   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3379   mangleType(T->getElementType());
3380 }
3381 
3382 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3383   // U<Len>matrix_type<row expr><column expr><element type>
3384   StringRef VendorQualifier = "matrix_type";
3385   Out << "U" << VendorQualifier.size() << VendorQualifier;
3386   mangleTemplateArg(T->getRowExpr());
3387   mangleTemplateArg(T->getColumnExpr());
3388   mangleType(T->getElementType());
3389 }
3390 
3391 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3392   SplitQualType split = T->getPointeeType().split();
3393   mangleQualifiers(split.Quals, T);
3394   mangleType(QualType(split.Ty, 0));
3395 }
3396 
3397 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3398   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3399   Out << "Dp";
3400   mangleType(T->getPattern());
3401 }
3402 
3403 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3404   mangleSourceName(T->getDecl()->getIdentifier());
3405 }
3406 
3407 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3408   // Treat __kindof as a vendor extended type qualifier.
3409   if (T->isKindOfType())
3410     Out << "U8__kindof";
3411 
3412   if (!T->qual_empty()) {
3413     // Mangle protocol qualifiers.
3414     SmallString<64> QualStr;
3415     llvm::raw_svector_ostream QualOS(QualStr);
3416     QualOS << "objcproto";
3417     for (const auto *I : T->quals()) {
3418       StringRef name = I->getName();
3419       QualOS << name.size() << name;
3420     }
3421     Out << 'U' << QualStr.size() << QualStr;
3422   }
3423 
3424   mangleType(T->getBaseType());
3425 
3426   if (T->isSpecialized()) {
3427     // Mangle type arguments as I <type>+ E
3428     Out << 'I';
3429     for (auto typeArg : T->getTypeArgs())
3430       mangleType(typeArg);
3431     Out << 'E';
3432   }
3433 }
3434 
3435 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3436   Out << "U13block_pointer";
3437   mangleType(T->getPointeeType());
3438 }
3439 
3440 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3441   // Mangle injected class name types as if the user had written the
3442   // specialization out fully.  It may not actually be possible to see
3443   // this mangling, though.
3444   mangleType(T->getInjectedSpecializationType());
3445 }
3446 
3447 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3448   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3449     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3450   } else {
3451     if (mangleSubstitution(QualType(T, 0)))
3452       return;
3453 
3454     mangleTemplatePrefix(T->getTemplateName());
3455 
3456     // FIXME: GCC does not appear to mangle the template arguments when
3457     // the template in question is a dependent template name. Should we
3458     // emulate that badness?
3459     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3460     addSubstitution(QualType(T, 0));
3461   }
3462 }
3463 
3464 void CXXNameMangler::mangleType(const DependentNameType *T) {
3465   // Proposal by cxx-abi-dev, 2014-03-26
3466   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3467   //                                 # dependent elaborated type specifier using
3468   //                                 # 'typename'
3469   //                   ::= Ts <name> # dependent elaborated type specifier using
3470   //                                 # 'struct' or 'class'
3471   //                   ::= Tu <name> # dependent elaborated type specifier using
3472   //                                 # 'union'
3473   //                   ::= Te <name> # dependent elaborated type specifier using
3474   //                                 # 'enum'
3475   switch (T->getKeyword()) {
3476     case ETK_None:
3477     case ETK_Typename:
3478       break;
3479     case ETK_Struct:
3480     case ETK_Class:
3481     case ETK_Interface:
3482       Out << "Ts";
3483       break;
3484     case ETK_Union:
3485       Out << "Tu";
3486       break;
3487     case ETK_Enum:
3488       Out << "Te";
3489       break;
3490   }
3491   // Typename types are always nested
3492   Out << 'N';
3493   manglePrefix(T->getQualifier());
3494   mangleSourceName(T->getIdentifier());
3495   Out << 'E';
3496 }
3497 
3498 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3499   // Dependently-scoped template types are nested if they have a prefix.
3500   Out << 'N';
3501 
3502   // TODO: avoid making this TemplateName.
3503   TemplateName Prefix =
3504     getASTContext().getDependentTemplateName(T->getQualifier(),
3505                                              T->getIdentifier());
3506   mangleTemplatePrefix(Prefix);
3507 
3508   // FIXME: GCC does not appear to mangle the template arguments when
3509   // the template in question is a dependent template name. Should we
3510   // emulate that badness?
3511   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3512   Out << 'E';
3513 }
3514 
3515 void CXXNameMangler::mangleType(const TypeOfType *T) {
3516   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3517   // "extension with parameters" mangling.
3518   Out << "u6typeof";
3519 }
3520 
3521 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3522   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3523   // "extension with parameters" mangling.
3524   Out << "u6typeof";
3525 }
3526 
3527 void CXXNameMangler::mangleType(const DecltypeType *T) {
3528   Expr *E = T->getUnderlyingExpr();
3529 
3530   // type ::= Dt <expression> E  # decltype of an id-expression
3531   //                             #   or class member access
3532   //      ::= DT <expression> E  # decltype of an expression
3533 
3534   // This purports to be an exhaustive list of id-expressions and
3535   // class member accesses.  Note that we do not ignore parentheses;
3536   // parentheses change the semantics of decltype for these
3537   // expressions (and cause the mangler to use the other form).
3538   if (isa<DeclRefExpr>(E) ||
3539       isa<MemberExpr>(E) ||
3540       isa<UnresolvedLookupExpr>(E) ||
3541       isa<DependentScopeDeclRefExpr>(E) ||
3542       isa<CXXDependentScopeMemberExpr>(E) ||
3543       isa<UnresolvedMemberExpr>(E))
3544     Out << "Dt";
3545   else
3546     Out << "DT";
3547   mangleExpression(E);
3548   Out << 'E';
3549 }
3550 
3551 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3552   // If this is dependent, we need to record that. If not, we simply
3553   // mangle it as the underlying type since they are equivalent.
3554   if (T->isDependentType()) {
3555     Out << 'U';
3556 
3557     switch (T->getUTTKind()) {
3558       case UnaryTransformType::EnumUnderlyingType:
3559         Out << "3eut";
3560         break;
3561     }
3562   }
3563 
3564   mangleType(T->getBaseType());
3565 }
3566 
3567 void CXXNameMangler::mangleType(const AutoType *T) {
3568   assert(T->getDeducedType().isNull() &&
3569          "Deduced AutoType shouldn't be handled here!");
3570   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3571          "shouldn't need to mangle __auto_type!");
3572   // <builtin-type> ::= Da # auto
3573   //                ::= Dc # decltype(auto)
3574   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3575 }
3576 
3577 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3578   // FIXME: This is not the right mangling. We also need to include a scope
3579   // here in some cases.
3580   QualType D = T->getDeducedType();
3581   if (D.isNull())
3582     mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3583   else
3584     mangleType(D);
3585 }
3586 
3587 void CXXNameMangler::mangleType(const AtomicType *T) {
3588   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3589   // (Until there's a standardized mangling...)
3590   Out << "U7_Atomic";
3591   mangleType(T->getValueType());
3592 }
3593 
3594 void CXXNameMangler::mangleType(const PipeType *T) {
3595   // Pipe type mangling rules are described in SPIR 2.0 specification
3596   // A.1 Data types and A.3 Summary of changes
3597   // <type> ::= 8ocl_pipe
3598   Out << "8ocl_pipe";
3599 }
3600 
3601 void CXXNameMangler::mangleType(const ExtIntType *T) {
3602   Out << "U7_ExtInt";
3603   llvm::APSInt BW(32, true);
3604   BW = T->getNumBits();
3605   TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3606   mangleTemplateArgs(&TA, 1);
3607   if (T->isUnsigned())
3608     Out << "j";
3609   else
3610     Out << "i";
3611 }
3612 
3613 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3614   Out << "U7_ExtInt";
3615   TemplateArgument TA(T->getNumBitsExpr());
3616   mangleTemplateArgs(&TA, 1);
3617   if (T->isUnsigned())
3618     Out << "j";
3619   else
3620     Out << "i";
3621 }
3622 
3623 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3624                                           const llvm::APSInt &Value) {
3625   //  <expr-primary> ::= L <type> <value number> E # integer literal
3626   Out << 'L';
3627 
3628   mangleType(T);
3629   if (T->isBooleanType()) {
3630     // Boolean values are encoded as 0/1.
3631     Out << (Value.getBoolValue() ? '1' : '0');
3632   } else {
3633     mangleNumber(Value);
3634   }
3635   Out << 'E';
3636 
3637 }
3638 
3639 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3640   // Ignore member expressions involving anonymous unions.
3641   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3642     if (!RT->getDecl()->isAnonymousStructOrUnion())
3643       break;
3644     const auto *ME = dyn_cast<MemberExpr>(Base);
3645     if (!ME)
3646       break;
3647     Base = ME->getBase();
3648     IsArrow = ME->isArrow();
3649   }
3650 
3651   if (Base->isImplicitCXXThis()) {
3652     // Note: GCC mangles member expressions to the implicit 'this' as
3653     // *this., whereas we represent them as this->. The Itanium C++ ABI
3654     // does not specify anything here, so we follow GCC.
3655     Out << "dtdefpT";
3656   } else {
3657     Out << (IsArrow ? "pt" : "dt");
3658     mangleExpression(Base);
3659   }
3660 }
3661 
3662 /// Mangles a member expression.
3663 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3664                                       bool isArrow,
3665                                       NestedNameSpecifier *qualifier,
3666                                       NamedDecl *firstQualifierLookup,
3667                                       DeclarationName member,
3668                                       const TemplateArgumentLoc *TemplateArgs,
3669                                       unsigned NumTemplateArgs,
3670                                       unsigned arity) {
3671   // <expression> ::= dt <expression> <unresolved-name>
3672   //              ::= pt <expression> <unresolved-name>
3673   if (base)
3674     mangleMemberExprBase(base, isArrow);
3675   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3676 }
3677 
3678 /// Look at the callee of the given call expression and determine if
3679 /// it's a parenthesized id-expression which would have triggered ADL
3680 /// otherwise.
3681 static bool isParenthesizedADLCallee(const CallExpr *call) {
3682   const Expr *callee = call->getCallee();
3683   const Expr *fn = callee->IgnoreParens();
3684 
3685   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3686   // too, but for those to appear in the callee, it would have to be
3687   // parenthesized.
3688   if (callee == fn) return false;
3689 
3690   // Must be an unresolved lookup.
3691   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3692   if (!lookup) return false;
3693 
3694   assert(!lookup->requiresADL());
3695 
3696   // Must be an unqualified lookup.
3697   if (lookup->getQualifier()) return false;
3698 
3699   // Must not have found a class member.  Note that if one is a class
3700   // member, they're all class members.
3701   if (lookup->getNumDecls() > 0 &&
3702       (*lookup->decls_begin())->isCXXClassMember())
3703     return false;
3704 
3705   // Otherwise, ADL would have been triggered.
3706   return true;
3707 }
3708 
3709 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3710   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3711   Out << CastEncoding;
3712   mangleType(ECE->getType());
3713   mangleExpression(ECE->getSubExpr());
3714 }
3715 
3716 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3717   if (auto *Syntactic = InitList->getSyntacticForm())
3718     InitList = Syntactic;
3719   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3720     mangleExpression(InitList->getInit(i));
3721 }
3722 
3723 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3724   switch (D->getKind()) {
3725   default:
3726     //  <expr-primary> ::= L <mangled-name> E # external name
3727     Out << 'L';
3728     mangle(D);
3729     Out << 'E';
3730     break;
3731 
3732   case Decl::ParmVar:
3733     mangleFunctionParam(cast<ParmVarDecl>(D));
3734     break;
3735 
3736   case Decl::EnumConstant: {
3737     const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3738     mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3739     break;
3740   }
3741 
3742   case Decl::NonTypeTemplateParm:
3743     const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3744     mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3745     break;
3746   }
3747 }
3748 
3749 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3750   // <expression> ::= <unary operator-name> <expression>
3751   //              ::= <binary operator-name> <expression> <expression>
3752   //              ::= <trinary operator-name> <expression> <expression> <expression>
3753   //              ::= cv <type> expression           # conversion with one argument
3754   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3755   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3756   //              ::= sc <type> <expression>         # static_cast<type> (expression)
3757   //              ::= cc <type> <expression>         # const_cast<type> (expression)
3758   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3759   //              ::= st <type>                      # sizeof (a type)
3760   //              ::= at <type>                      # alignof (a type)
3761   //              ::= <template-param>
3762   //              ::= <function-param>
3763   //              ::= sr <type> <unqualified-name>                   # dependent name
3764   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3765   //              ::= ds <expression> <expression>                   # expr.*expr
3766   //              ::= sZ <template-param>                            # size of a parameter pack
3767   //              ::= sZ <function-param>    # size of a function parameter pack
3768   //              ::= <expr-primary>
3769   // <expr-primary> ::= L <type> <value number> E    # integer literal
3770   //                ::= L <type <value float> E      # floating literal
3771   //                ::= L <mangled-name> E           # external name
3772   //                ::= fpT                          # 'this' expression
3773   QualType ImplicitlyConvertedToType;
3774 
3775 recurse:
3776   switch (E->getStmtClass()) {
3777   case Expr::NoStmtClass:
3778 #define ABSTRACT_STMT(Type)
3779 #define EXPR(Type, Base)
3780 #define STMT(Type, Base) \
3781   case Expr::Type##Class:
3782 #include "clang/AST/StmtNodes.inc"
3783     // fallthrough
3784 
3785   // These all can only appear in local or variable-initialization
3786   // contexts and so should never appear in a mangling.
3787   case Expr::AddrLabelExprClass:
3788   case Expr::DesignatedInitUpdateExprClass:
3789   case Expr::ImplicitValueInitExprClass:
3790   case Expr::ArrayInitLoopExprClass:
3791   case Expr::ArrayInitIndexExprClass:
3792   case Expr::NoInitExprClass:
3793   case Expr::ParenListExprClass:
3794   case Expr::LambdaExprClass:
3795   case Expr::MSPropertyRefExprClass:
3796   case Expr::MSPropertySubscriptExprClass:
3797   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3798   case Expr::RecoveryExprClass:
3799   case Expr::OMPArraySectionExprClass:
3800   case Expr::OMPArrayShapingExprClass:
3801   case Expr::OMPIteratorExprClass:
3802   case Expr::CXXInheritedCtorInitExprClass:
3803     llvm_unreachable("unexpected statement kind");
3804 
3805   case Expr::ConstantExprClass:
3806     E = cast<ConstantExpr>(E)->getSubExpr();
3807     goto recurse;
3808 
3809   // FIXME: invent manglings for all these.
3810   case Expr::BlockExprClass:
3811   case Expr::ChooseExprClass:
3812   case Expr::CompoundLiteralExprClass:
3813   case Expr::ExtVectorElementExprClass:
3814   case Expr::GenericSelectionExprClass:
3815   case Expr::ObjCEncodeExprClass:
3816   case Expr::ObjCIsaExprClass:
3817   case Expr::ObjCIvarRefExprClass:
3818   case Expr::ObjCMessageExprClass:
3819   case Expr::ObjCPropertyRefExprClass:
3820   case Expr::ObjCProtocolExprClass:
3821   case Expr::ObjCSelectorExprClass:
3822   case Expr::ObjCStringLiteralClass:
3823   case Expr::ObjCBoxedExprClass:
3824   case Expr::ObjCArrayLiteralClass:
3825   case Expr::ObjCDictionaryLiteralClass:
3826   case Expr::ObjCSubscriptRefExprClass:
3827   case Expr::ObjCIndirectCopyRestoreExprClass:
3828   case Expr::ObjCAvailabilityCheckExprClass:
3829   case Expr::OffsetOfExprClass:
3830   case Expr::PredefinedExprClass:
3831   case Expr::ShuffleVectorExprClass:
3832   case Expr::ConvertVectorExprClass:
3833   case Expr::StmtExprClass:
3834   case Expr::TypeTraitExprClass:
3835   case Expr::RequiresExprClass:
3836   case Expr::ArrayTypeTraitExprClass:
3837   case Expr::ExpressionTraitExprClass:
3838   case Expr::VAArgExprClass:
3839   case Expr::CUDAKernelCallExprClass:
3840   case Expr::AsTypeExprClass:
3841   case Expr::PseudoObjectExprClass:
3842   case Expr::AtomicExprClass:
3843   case Expr::SourceLocExprClass:
3844   case Expr::FixedPointLiteralClass:
3845   case Expr::BuiltinBitCastExprClass:
3846   {
3847     if (!NullOut) {
3848       // As bad as this diagnostic is, it's better than crashing.
3849       DiagnosticsEngine &Diags = Context.getDiags();
3850       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3851                                        "cannot yet mangle expression type %0");
3852       Diags.Report(E->getExprLoc(), DiagID)
3853         << E->getStmtClassName() << E->getSourceRange();
3854     }
3855     break;
3856   }
3857 
3858   case Expr::CXXUuidofExprClass: {
3859     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3860     if (UE->isTypeOperand()) {
3861       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3862       Out << "u8__uuidoft";
3863       mangleType(UuidT);
3864     } else {
3865       Expr *UuidExp = UE->getExprOperand();
3866       Out << "u8__uuidofz";
3867       mangleExpression(UuidExp, Arity);
3868     }
3869     break;
3870   }
3871 
3872   // Even gcc-4.5 doesn't mangle this.
3873   case Expr::BinaryConditionalOperatorClass: {
3874     DiagnosticsEngine &Diags = Context.getDiags();
3875     unsigned DiagID =
3876       Diags.getCustomDiagID(DiagnosticsEngine::Error,
3877                 "?: operator with omitted middle operand cannot be mangled");
3878     Diags.Report(E->getExprLoc(), DiagID)
3879       << E->getStmtClassName() << E->getSourceRange();
3880     break;
3881   }
3882 
3883   // These are used for internal purposes and cannot be meaningfully mangled.
3884   case Expr::OpaqueValueExprClass:
3885     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3886 
3887   case Expr::InitListExprClass: {
3888     Out << "il";
3889     mangleInitListElements(cast<InitListExpr>(E));
3890     Out << "E";
3891     break;
3892   }
3893 
3894   case Expr::DesignatedInitExprClass: {
3895     auto *DIE = cast<DesignatedInitExpr>(E);
3896     for (const auto &Designator : DIE->designators()) {
3897       if (Designator.isFieldDesignator()) {
3898         Out << "di";
3899         mangleSourceName(Designator.getFieldName());
3900       } else if (Designator.isArrayDesignator()) {
3901         Out << "dx";
3902         mangleExpression(DIE->getArrayIndex(Designator));
3903       } else {
3904         assert(Designator.isArrayRangeDesignator() &&
3905                "unknown designator kind");
3906         Out << "dX";
3907         mangleExpression(DIE->getArrayRangeStart(Designator));
3908         mangleExpression(DIE->getArrayRangeEnd(Designator));
3909       }
3910     }
3911     mangleExpression(DIE->getInit());
3912     break;
3913   }
3914 
3915   case Expr::CXXDefaultArgExprClass:
3916     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3917     break;
3918 
3919   case Expr::CXXDefaultInitExprClass:
3920     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3921     break;
3922 
3923   case Expr::CXXStdInitializerListExprClass:
3924     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3925     break;
3926 
3927   case Expr::SubstNonTypeTemplateParmExprClass:
3928     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3929                      Arity);
3930     break;
3931 
3932   case Expr::UserDefinedLiteralClass:
3933     // We follow g++'s approach of mangling a UDL as a call to the literal
3934     // operator.
3935   case Expr::CXXMemberCallExprClass: // fallthrough
3936   case Expr::CallExprClass: {
3937     const CallExpr *CE = cast<CallExpr>(E);
3938 
3939     // <expression> ::= cp <simple-id> <expression>* E
3940     // We use this mangling only when the call would use ADL except
3941     // for being parenthesized.  Per discussion with David
3942     // Vandervoorde, 2011.04.25.
3943     if (isParenthesizedADLCallee(CE)) {
3944       Out << "cp";
3945       // The callee here is a parenthesized UnresolvedLookupExpr with
3946       // no qualifier and should always get mangled as a <simple-id>
3947       // anyway.
3948 
3949     // <expression> ::= cl <expression>* E
3950     } else {
3951       Out << "cl";
3952     }
3953 
3954     unsigned CallArity = CE->getNumArgs();
3955     for (const Expr *Arg : CE->arguments())
3956       if (isa<PackExpansionExpr>(Arg))
3957         CallArity = UnknownArity;
3958 
3959     mangleExpression(CE->getCallee(), CallArity);
3960     for (const Expr *Arg : CE->arguments())
3961       mangleExpression(Arg);
3962     Out << 'E';
3963     break;
3964   }
3965 
3966   case Expr::CXXNewExprClass: {
3967     const CXXNewExpr *New = cast<CXXNewExpr>(E);
3968     if (New->isGlobalNew()) Out << "gs";
3969     Out << (New->isArray() ? "na" : "nw");
3970     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3971            E = New->placement_arg_end(); I != E; ++I)
3972       mangleExpression(*I);
3973     Out << '_';
3974     mangleType(New->getAllocatedType());
3975     if (New->hasInitializer()) {
3976       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3977         Out << "il";
3978       else
3979         Out << "pi";
3980       const Expr *Init = New->getInitializer();
3981       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3982         // Directly inline the initializers.
3983         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3984                                                   E = CCE->arg_end();
3985              I != E; ++I)
3986           mangleExpression(*I);
3987       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3988         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3989           mangleExpression(PLE->getExpr(i));
3990       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3991                  isa<InitListExpr>(Init)) {
3992         // Only take InitListExprs apart for list-initialization.
3993         mangleInitListElements(cast<InitListExpr>(Init));
3994       } else
3995         mangleExpression(Init);
3996     }
3997     Out << 'E';
3998     break;
3999   }
4000 
4001   case Expr::CXXPseudoDestructorExprClass: {
4002     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4003     if (const Expr *Base = PDE->getBase())
4004       mangleMemberExprBase(Base, PDE->isArrow());
4005     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4006     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4007       if (Qualifier) {
4008         mangleUnresolvedPrefix(Qualifier,
4009                                /*recursive=*/true);
4010         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4011         Out << 'E';
4012       } else {
4013         Out << "sr";
4014         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4015           Out << 'E';
4016       }
4017     } else if (Qualifier) {
4018       mangleUnresolvedPrefix(Qualifier);
4019     }
4020     // <base-unresolved-name> ::= dn <destructor-name>
4021     Out << "dn";
4022     QualType DestroyedType = PDE->getDestroyedType();
4023     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4024     break;
4025   }
4026 
4027   case Expr::MemberExprClass: {
4028     const MemberExpr *ME = cast<MemberExpr>(E);
4029     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4030                      ME->getQualifier(), nullptr,
4031                      ME->getMemberDecl()->getDeclName(),
4032                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4033                      Arity);
4034     break;
4035   }
4036 
4037   case Expr::UnresolvedMemberExprClass: {
4038     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4039     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4040                      ME->isArrow(), ME->getQualifier(), nullptr,
4041                      ME->getMemberName(),
4042                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4043                      Arity);
4044     break;
4045   }
4046 
4047   case Expr::CXXDependentScopeMemberExprClass: {
4048     const CXXDependentScopeMemberExpr *ME
4049       = cast<CXXDependentScopeMemberExpr>(E);
4050     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4051                      ME->isArrow(), ME->getQualifier(),
4052                      ME->getFirstQualifierFoundInScope(),
4053                      ME->getMember(),
4054                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4055                      Arity);
4056     break;
4057   }
4058 
4059   case Expr::UnresolvedLookupExprClass: {
4060     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4061     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4062                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4063                          Arity);
4064     break;
4065   }
4066 
4067   case Expr::CXXUnresolvedConstructExprClass: {
4068     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4069     unsigned N = CE->arg_size();
4070 
4071     if (CE->isListInitialization()) {
4072       assert(N == 1 && "unexpected form for list initialization");
4073       auto *IL = cast<InitListExpr>(CE->getArg(0));
4074       Out << "tl";
4075       mangleType(CE->getType());
4076       mangleInitListElements(IL);
4077       Out << "E";
4078       return;
4079     }
4080 
4081     Out << "cv";
4082     mangleType(CE->getType());
4083     if (N != 1) Out << '_';
4084     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4085     if (N != 1) Out << 'E';
4086     break;
4087   }
4088 
4089   case Expr::CXXConstructExprClass: {
4090     const auto *CE = cast<CXXConstructExpr>(E);
4091     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4092       assert(
4093           CE->getNumArgs() >= 1 &&
4094           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4095           "implicit CXXConstructExpr must have one argument");
4096       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
4097     }
4098     Out << "il";
4099     for (auto *E : CE->arguments())
4100       mangleExpression(E);
4101     Out << "E";
4102     break;
4103   }
4104 
4105   case Expr::CXXTemporaryObjectExprClass: {
4106     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4107     unsigned N = CE->getNumArgs();
4108     bool List = CE->isListInitialization();
4109 
4110     if (List)
4111       Out << "tl";
4112     else
4113       Out << "cv";
4114     mangleType(CE->getType());
4115     if (!List && N != 1)
4116       Out << '_';
4117     if (CE->isStdInitListInitialization()) {
4118       // We implicitly created a std::initializer_list<T> for the first argument
4119       // of a constructor of type U in an expression of the form U{a, b, c}.
4120       // Strip all the semantic gunk off the initializer list.
4121       auto *SILE =
4122           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4123       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4124       mangleInitListElements(ILE);
4125     } else {
4126       for (auto *E : CE->arguments())
4127         mangleExpression(E);
4128     }
4129     if (List || N != 1)
4130       Out << 'E';
4131     break;
4132   }
4133 
4134   case Expr::CXXScalarValueInitExprClass:
4135     Out << "cv";
4136     mangleType(E->getType());
4137     Out << "_E";
4138     break;
4139 
4140   case Expr::CXXNoexceptExprClass:
4141     Out << "nx";
4142     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4143     break;
4144 
4145   case Expr::UnaryExprOrTypeTraitExprClass: {
4146     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4147 
4148     if (!SAE->isInstantiationDependent()) {
4149       // Itanium C++ ABI:
4150       //   If the operand of a sizeof or alignof operator is not
4151       //   instantiation-dependent it is encoded as an integer literal
4152       //   reflecting the result of the operator.
4153       //
4154       //   If the result of the operator is implicitly converted to a known
4155       //   integer type, that type is used for the literal; otherwise, the type
4156       //   of std::size_t or std::ptrdiff_t is used.
4157       QualType T = (ImplicitlyConvertedToType.isNull() ||
4158                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4159                                                     : ImplicitlyConvertedToType;
4160       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4161       mangleIntegerLiteral(T, V);
4162       break;
4163     }
4164 
4165     switch(SAE->getKind()) {
4166     case UETT_SizeOf:
4167       Out << 's';
4168       break;
4169     case UETT_PreferredAlignOf:
4170     case UETT_AlignOf:
4171       Out << 'a';
4172       break;
4173     case UETT_VecStep: {
4174       DiagnosticsEngine &Diags = Context.getDiags();
4175       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4176                                      "cannot yet mangle vec_step expression");
4177       Diags.Report(DiagID);
4178       return;
4179     }
4180     case UETT_OpenMPRequiredSimdAlign: {
4181       DiagnosticsEngine &Diags = Context.getDiags();
4182       unsigned DiagID = Diags.getCustomDiagID(
4183           DiagnosticsEngine::Error,
4184           "cannot yet mangle __builtin_omp_required_simd_align expression");
4185       Diags.Report(DiagID);
4186       return;
4187     }
4188     }
4189     if (SAE->isArgumentType()) {
4190       Out << 't';
4191       mangleType(SAE->getArgumentType());
4192     } else {
4193       Out << 'z';
4194       mangleExpression(SAE->getArgumentExpr());
4195     }
4196     break;
4197   }
4198 
4199   case Expr::CXXThrowExprClass: {
4200     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4201     //  <expression> ::= tw <expression>  # throw expression
4202     //               ::= tr               # rethrow
4203     if (TE->getSubExpr()) {
4204       Out << "tw";
4205       mangleExpression(TE->getSubExpr());
4206     } else {
4207       Out << "tr";
4208     }
4209     break;
4210   }
4211 
4212   case Expr::CXXTypeidExprClass: {
4213     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4214     //  <expression> ::= ti <type>        # typeid (type)
4215     //               ::= te <expression>  # typeid (expression)
4216     if (TIE->isTypeOperand()) {
4217       Out << "ti";
4218       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4219     } else {
4220       Out << "te";
4221       mangleExpression(TIE->getExprOperand());
4222     }
4223     break;
4224   }
4225 
4226   case Expr::CXXDeleteExprClass: {
4227     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4228     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4229     //               ::= [gs] da <expression>  # [::] delete [] expr
4230     if (DE->isGlobalDelete()) Out << "gs";
4231     Out << (DE->isArrayForm() ? "da" : "dl");
4232     mangleExpression(DE->getArgument());
4233     break;
4234   }
4235 
4236   case Expr::UnaryOperatorClass: {
4237     const UnaryOperator *UO = cast<UnaryOperator>(E);
4238     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4239                        /*Arity=*/1);
4240     mangleExpression(UO->getSubExpr());
4241     break;
4242   }
4243 
4244   case Expr::ArraySubscriptExprClass: {
4245     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4246 
4247     // Array subscript is treated as a syntactically weird form of
4248     // binary operator.
4249     Out << "ix";
4250     mangleExpression(AE->getLHS());
4251     mangleExpression(AE->getRHS());
4252     break;
4253   }
4254 
4255   case Expr::MatrixSubscriptExprClass: {
4256     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4257     Out << "ixix";
4258     mangleExpression(ME->getBase());
4259     mangleExpression(ME->getRowIdx());
4260     mangleExpression(ME->getColumnIdx());
4261     break;
4262   }
4263 
4264   case Expr::CompoundAssignOperatorClass: // fallthrough
4265   case Expr::BinaryOperatorClass: {
4266     const BinaryOperator *BO = cast<BinaryOperator>(E);
4267     if (BO->getOpcode() == BO_PtrMemD)
4268       Out << "ds";
4269     else
4270       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4271                          /*Arity=*/2);
4272     mangleExpression(BO->getLHS());
4273     mangleExpression(BO->getRHS());
4274     break;
4275   }
4276 
4277   case Expr::CXXRewrittenBinaryOperatorClass: {
4278     // The mangled form represents the original syntax.
4279     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4280         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4281     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4282                        /*Arity=*/2);
4283     mangleExpression(Decomposed.LHS);
4284     mangleExpression(Decomposed.RHS);
4285     break;
4286   }
4287 
4288   case Expr::ConditionalOperatorClass: {
4289     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4290     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4291     mangleExpression(CO->getCond());
4292     mangleExpression(CO->getLHS(), Arity);
4293     mangleExpression(CO->getRHS(), Arity);
4294     break;
4295   }
4296 
4297   case Expr::ImplicitCastExprClass: {
4298     ImplicitlyConvertedToType = E->getType();
4299     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4300     goto recurse;
4301   }
4302 
4303   case Expr::ObjCBridgedCastExprClass: {
4304     // Mangle ownership casts as a vendor extended operator __bridge,
4305     // __bridge_transfer, or __bridge_retain.
4306     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4307     Out << "v1U" << Kind.size() << Kind;
4308   }
4309   // Fall through to mangle the cast itself.
4310   LLVM_FALLTHROUGH;
4311 
4312   case Expr::CStyleCastExprClass:
4313     mangleCastExpression(E, "cv");
4314     break;
4315 
4316   case Expr::CXXFunctionalCastExprClass: {
4317     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4318     // FIXME: Add isImplicit to CXXConstructExpr.
4319     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4320       if (CCE->getParenOrBraceRange().isInvalid())
4321         Sub = CCE->getArg(0)->IgnoreImplicit();
4322     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4323       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4324     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4325       Out << "tl";
4326       mangleType(E->getType());
4327       mangleInitListElements(IL);
4328       Out << "E";
4329     } else {
4330       mangleCastExpression(E, "cv");
4331     }
4332     break;
4333   }
4334 
4335   case Expr::CXXStaticCastExprClass:
4336     mangleCastExpression(E, "sc");
4337     break;
4338   case Expr::CXXDynamicCastExprClass:
4339     mangleCastExpression(E, "dc");
4340     break;
4341   case Expr::CXXReinterpretCastExprClass:
4342     mangleCastExpression(E, "rc");
4343     break;
4344   case Expr::CXXConstCastExprClass:
4345     mangleCastExpression(E, "cc");
4346     break;
4347   case Expr::CXXAddrspaceCastExprClass:
4348     mangleCastExpression(E, "ac");
4349     break;
4350 
4351   case Expr::CXXOperatorCallExprClass: {
4352     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4353     unsigned NumArgs = CE->getNumArgs();
4354     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4355     // (the enclosing MemberExpr covers the syntactic portion).
4356     if (CE->getOperator() != OO_Arrow)
4357       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4358     // Mangle the arguments.
4359     for (unsigned i = 0; i != NumArgs; ++i)
4360       mangleExpression(CE->getArg(i));
4361     break;
4362   }
4363 
4364   case Expr::ParenExprClass:
4365     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4366     break;
4367 
4368 
4369   case Expr::ConceptSpecializationExprClass: {
4370     //  <expr-primary> ::= L <mangled-name> E # external name
4371     Out << "L_Z";
4372     auto *CSE = cast<ConceptSpecializationExpr>(E);
4373     mangleTemplateName(CSE->getNamedConcept(),
4374                        CSE->getTemplateArguments().data(),
4375                        CSE->getTemplateArguments().size());
4376     Out << 'E';
4377     break;
4378   }
4379 
4380   case Expr::DeclRefExprClass:
4381     mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4382     break;
4383 
4384   case Expr::SubstNonTypeTemplateParmPackExprClass:
4385     // FIXME: not clear how to mangle this!
4386     // template <unsigned N...> class A {
4387     //   template <class U...> void foo(U (&x)[N]...);
4388     // };
4389     Out << "_SUBSTPACK_";
4390     break;
4391 
4392   case Expr::FunctionParmPackExprClass: {
4393     // FIXME: not clear how to mangle this!
4394     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4395     Out << "v110_SUBSTPACK";
4396     mangleDeclRefExpr(FPPE->getParameterPack());
4397     break;
4398   }
4399 
4400   case Expr::DependentScopeDeclRefExprClass: {
4401     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4402     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4403                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4404                          Arity);
4405     break;
4406   }
4407 
4408   case Expr::CXXBindTemporaryExprClass:
4409     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4410     break;
4411 
4412   case Expr::ExprWithCleanupsClass:
4413     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4414     break;
4415 
4416   case Expr::FloatingLiteralClass: {
4417     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4418     Out << 'L';
4419     mangleType(FL->getType());
4420     mangleFloat(FL->getValue());
4421     Out << 'E';
4422     break;
4423   }
4424 
4425   case Expr::CharacterLiteralClass:
4426     Out << 'L';
4427     mangleType(E->getType());
4428     Out << cast<CharacterLiteral>(E)->getValue();
4429     Out << 'E';
4430     break;
4431 
4432   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4433   case Expr::ObjCBoolLiteralExprClass:
4434     Out << "Lb";
4435     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4436     Out << 'E';
4437     break;
4438 
4439   case Expr::CXXBoolLiteralExprClass:
4440     Out << "Lb";
4441     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4442     Out << 'E';
4443     break;
4444 
4445   case Expr::IntegerLiteralClass: {
4446     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4447     if (E->getType()->isSignedIntegerType())
4448       Value.setIsSigned(true);
4449     mangleIntegerLiteral(E->getType(), Value);
4450     break;
4451   }
4452 
4453   case Expr::ImaginaryLiteralClass: {
4454     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4455     // Mangle as if a complex literal.
4456     // Proposal from David Vandevoorde, 2010.06.30.
4457     Out << 'L';
4458     mangleType(E->getType());
4459     if (const FloatingLiteral *Imag =
4460           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4461       // Mangle a floating-point zero of the appropriate type.
4462       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4463       Out << '_';
4464       mangleFloat(Imag->getValue());
4465     } else {
4466       Out << "0_";
4467       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4468       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4469         Value.setIsSigned(true);
4470       mangleNumber(Value);
4471     }
4472     Out << 'E';
4473     break;
4474   }
4475 
4476   case Expr::StringLiteralClass: {
4477     // Revised proposal from David Vandervoorde, 2010.07.15.
4478     Out << 'L';
4479     assert(isa<ConstantArrayType>(E->getType()));
4480     mangleType(E->getType());
4481     Out << 'E';
4482     break;
4483   }
4484 
4485   case Expr::GNUNullExprClass:
4486     // Mangle as if an integer literal 0.
4487     Out << 'L';
4488     mangleType(E->getType());
4489     Out << "0E";
4490     break;
4491 
4492   case Expr::CXXNullPtrLiteralExprClass: {
4493     Out << "LDnE";
4494     break;
4495   }
4496 
4497   case Expr::PackExpansionExprClass:
4498     Out << "sp";
4499     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4500     break;
4501 
4502   case Expr::SizeOfPackExprClass: {
4503     auto *SPE = cast<SizeOfPackExpr>(E);
4504     if (SPE->isPartiallySubstituted()) {
4505       Out << "sP";
4506       for (const auto &A : SPE->getPartialArguments())
4507         mangleTemplateArg(A);
4508       Out << "E";
4509       break;
4510     }
4511 
4512     Out << "sZ";
4513     const NamedDecl *Pack = SPE->getPack();
4514     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4515       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4516     else if (const NonTypeTemplateParmDecl *NTTP
4517                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4518       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4519     else if (const TemplateTemplateParmDecl *TempTP
4520                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4521       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4522     else
4523       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4524     break;
4525   }
4526 
4527   case Expr::MaterializeTemporaryExprClass: {
4528     mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
4529     break;
4530   }
4531 
4532   case Expr::CXXFoldExprClass: {
4533     auto *FE = cast<CXXFoldExpr>(E);
4534     if (FE->isLeftFold())
4535       Out << (FE->getInit() ? "fL" : "fl");
4536     else
4537       Out << (FE->getInit() ? "fR" : "fr");
4538 
4539     if (FE->getOperator() == BO_PtrMemD)
4540       Out << "ds";
4541     else
4542       mangleOperatorName(
4543           BinaryOperator::getOverloadedOperator(FE->getOperator()),
4544           /*Arity=*/2);
4545 
4546     if (FE->getLHS())
4547       mangleExpression(FE->getLHS());
4548     if (FE->getRHS())
4549       mangleExpression(FE->getRHS());
4550     break;
4551   }
4552 
4553   case Expr::CXXThisExprClass:
4554     Out << "fpT";
4555     break;
4556 
4557   case Expr::CoawaitExprClass:
4558     // FIXME: Propose a non-vendor mangling.
4559     Out << "v18co_await";
4560     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4561     break;
4562 
4563   case Expr::DependentCoawaitExprClass:
4564     // FIXME: Propose a non-vendor mangling.
4565     Out << "v18co_await";
4566     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4567     break;
4568 
4569   case Expr::CoyieldExprClass:
4570     // FIXME: Propose a non-vendor mangling.
4571     Out << "v18co_yield";
4572     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4573     break;
4574   }
4575 }
4576 
4577 /// Mangle an expression which refers to a parameter variable.
4578 ///
4579 /// <expression>     ::= <function-param>
4580 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4581 /// <function-param> ::= fp <top-level CV-qualifiers>
4582 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4583 /// <function-param> ::= fL <L-1 non-negative number>
4584 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4585 /// <function-param> ::= fL <L-1 non-negative number>
4586 ///                      p <top-level CV-qualifiers>
4587 ///                      <I-1 non-negative number> _         # L > 0, I > 0
4588 ///
4589 /// L is the nesting depth of the parameter, defined as 1 if the
4590 /// parameter comes from the innermost function prototype scope
4591 /// enclosing the current context, 2 if from the next enclosing
4592 /// function prototype scope, and so on, with one special case: if
4593 /// we've processed the full parameter clause for the innermost
4594 /// function type, then L is one less.  This definition conveniently
4595 /// makes it irrelevant whether a function's result type was written
4596 /// trailing or leading, but is otherwise overly complicated; the
4597 /// numbering was first designed without considering references to
4598 /// parameter in locations other than return types, and then the
4599 /// mangling had to be generalized without changing the existing
4600 /// manglings.
4601 ///
4602 /// I is the zero-based index of the parameter within its parameter
4603 /// declaration clause.  Note that the original ABI document describes
4604 /// this using 1-based ordinals.
4605 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4606   unsigned parmDepth = parm->getFunctionScopeDepth();
4607   unsigned parmIndex = parm->getFunctionScopeIndex();
4608 
4609   // Compute 'L'.
4610   // parmDepth does not include the declaring function prototype.
4611   // FunctionTypeDepth does account for that.
4612   assert(parmDepth < FunctionTypeDepth.getDepth());
4613   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4614   if (FunctionTypeDepth.isInResultType())
4615     nestingDepth--;
4616 
4617   if (nestingDepth == 0) {
4618     Out << "fp";
4619   } else {
4620     Out << "fL" << (nestingDepth - 1) << 'p';
4621   }
4622 
4623   // Top-level qualifiers.  We don't have to worry about arrays here,
4624   // because parameters declared as arrays should already have been
4625   // transformed to have pointer type. FIXME: apparently these don't
4626   // get mangled if used as an rvalue of a known non-class type?
4627   assert(!parm->getType()->isArrayType()
4628          && "parameter's type is still an array type?");
4629 
4630   if (const DependentAddressSpaceType *DAST =
4631       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4632     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4633   } else {
4634     mangleQualifiers(parm->getType().getQualifiers());
4635   }
4636 
4637   // Parameter index.
4638   if (parmIndex != 0) {
4639     Out << (parmIndex - 1);
4640   }
4641   Out << '_';
4642 }
4643 
4644 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4645                                        const CXXRecordDecl *InheritedFrom) {
4646   // <ctor-dtor-name> ::= C1  # complete object constructor
4647   //                  ::= C2  # base object constructor
4648   //                  ::= CI1 <type> # complete inheriting constructor
4649   //                  ::= CI2 <type> # base inheriting constructor
4650   //
4651   // In addition, C5 is a comdat name with C1 and C2 in it.
4652   Out << 'C';
4653   if (InheritedFrom)
4654     Out << 'I';
4655   switch (T) {
4656   case Ctor_Complete:
4657     Out << '1';
4658     break;
4659   case Ctor_Base:
4660     Out << '2';
4661     break;
4662   case Ctor_Comdat:
4663     Out << '5';
4664     break;
4665   case Ctor_DefaultClosure:
4666   case Ctor_CopyingClosure:
4667     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4668   }
4669   if (InheritedFrom)
4670     mangleName(InheritedFrom);
4671 }
4672 
4673 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4674   // <ctor-dtor-name> ::= D0  # deleting destructor
4675   //                  ::= D1  # complete object destructor
4676   //                  ::= D2  # base object destructor
4677   //
4678   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4679   switch (T) {
4680   case Dtor_Deleting:
4681     Out << "D0";
4682     break;
4683   case Dtor_Complete:
4684     Out << "D1";
4685     break;
4686   case Dtor_Base:
4687     Out << "D2";
4688     break;
4689   case Dtor_Comdat:
4690     Out << "D5";
4691     break;
4692   }
4693 }
4694 
4695 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4696                                         unsigned NumTemplateArgs) {
4697   // <template-args> ::= I <template-arg>+ E
4698   Out << 'I';
4699   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4700     mangleTemplateArg(TemplateArgs[i].getArgument());
4701   Out << 'E';
4702 }
4703 
4704 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4705   // <template-args> ::= I <template-arg>+ E
4706   Out << 'I';
4707   for (unsigned i = 0, e = AL.size(); i != e; ++i)
4708     mangleTemplateArg(AL[i]);
4709   Out << 'E';
4710 }
4711 
4712 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4713                                         unsigned NumTemplateArgs) {
4714   // <template-args> ::= I <template-arg>+ E
4715   Out << 'I';
4716   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4717     mangleTemplateArg(TemplateArgs[i]);
4718   Out << 'E';
4719 }
4720 
4721 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4722   // <template-arg> ::= <type>              # type or template
4723   //                ::= X <expression> E    # expression
4724   //                ::= <expr-primary>      # simple expressions
4725   //                ::= J <template-arg>* E # argument pack
4726   if (!A.isInstantiationDependent() || A.isDependent())
4727     A = Context.getASTContext().getCanonicalTemplateArgument(A);
4728 
4729   switch (A.getKind()) {
4730   case TemplateArgument::Null:
4731     llvm_unreachable("Cannot mangle NULL template argument");
4732 
4733   case TemplateArgument::Type:
4734     mangleType(A.getAsType());
4735     break;
4736   case TemplateArgument::Template:
4737     // This is mangled as <type>.
4738     mangleType(A.getAsTemplate());
4739     break;
4740   case TemplateArgument::TemplateExpansion:
4741     // <type>  ::= Dp <type>          # pack expansion (C++0x)
4742     Out << "Dp";
4743     mangleType(A.getAsTemplateOrTemplatePattern());
4744     break;
4745   case TemplateArgument::Expression: {
4746     // It's possible to end up with a DeclRefExpr here in certain
4747     // dependent cases, in which case we should mangle as a
4748     // declaration.
4749     const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4750     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4751       const ValueDecl *D = DRE->getDecl();
4752       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4753         Out << 'L';
4754         mangle(D);
4755         Out << 'E';
4756         break;
4757       }
4758     }
4759 
4760     Out << 'X';
4761     mangleExpression(E);
4762     Out << 'E';
4763     break;
4764   }
4765   case TemplateArgument::Integral:
4766     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4767     break;
4768   case TemplateArgument::Declaration: {
4769     //  <expr-primary> ::= L <mangled-name> E # external name
4770     // Clang produces AST's where pointer-to-member-function expressions
4771     // and pointer-to-function expressions are represented as a declaration not
4772     // an expression. We compensate for it here to produce the correct mangling.
4773     ValueDecl *D = A.getAsDecl();
4774     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4775     if (compensateMangling) {
4776       Out << 'X';
4777       mangleOperatorName(OO_Amp, 1);
4778     }
4779 
4780     Out << 'L';
4781     // References to external entities use the mangled name; if the name would
4782     // not normally be mangled then mangle it as unqualified.
4783     mangle(D);
4784     Out << 'E';
4785 
4786     if (compensateMangling)
4787       Out << 'E';
4788 
4789     break;
4790   }
4791   case TemplateArgument::NullPtr: {
4792     //  <expr-primary> ::= L <type> 0 E
4793     Out << 'L';
4794     mangleType(A.getNullPtrType());
4795     Out << "0E";
4796     break;
4797   }
4798   case TemplateArgument::Pack: {
4799     //  <template-arg> ::= J <template-arg>* E
4800     Out << 'J';
4801     for (const auto &P : A.pack_elements())
4802       mangleTemplateArg(P);
4803     Out << 'E';
4804   }
4805   }
4806 }
4807 
4808 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
4809   // <template-param> ::= T_    # first template parameter
4810   //                  ::= T <parameter-2 non-negative number> _
4811   //                  ::= TL <L-1 non-negative number> __
4812   //                  ::= TL <L-1 non-negative number> _
4813   //                         <parameter-2 non-negative number> _
4814   //
4815   // The latter two manglings are from a proposal here:
4816   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
4817   Out << 'T';
4818   if (Depth != 0)
4819     Out << 'L' << (Depth - 1) << '_';
4820   if (Index != 0)
4821     Out << (Index - 1);
4822   Out << '_';
4823 }
4824 
4825 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4826   if (SeqID == 1)
4827     Out << '0';
4828   else if (SeqID > 1) {
4829     SeqID--;
4830 
4831     // <seq-id> is encoded in base-36, using digits and upper case letters.
4832     char Buffer[7]; // log(2**32) / log(36) ~= 7
4833     MutableArrayRef<char> BufferRef(Buffer);
4834     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4835 
4836     for (; SeqID != 0; SeqID /= 36) {
4837       unsigned C = SeqID % 36;
4838       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4839     }
4840 
4841     Out.write(I.base(), I - BufferRef.rbegin());
4842   }
4843   Out << '_';
4844 }
4845 
4846 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4847   bool result = mangleSubstitution(tname);
4848   assert(result && "no existing substitution for template name");
4849   (void) result;
4850 }
4851 
4852 // <substitution> ::= S <seq-id> _
4853 //                ::= S_
4854 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4855   // Try one of the standard substitutions first.
4856   if (mangleStandardSubstitution(ND))
4857     return true;
4858 
4859   ND = cast<NamedDecl>(ND->getCanonicalDecl());
4860   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4861 }
4862 
4863 /// Determine whether the given type has any qualifiers that are relevant for
4864 /// substitutions.
4865 static bool hasMangledSubstitutionQualifiers(QualType T) {
4866   Qualifiers Qs = T.getQualifiers();
4867   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4868 }
4869 
4870 bool CXXNameMangler::mangleSubstitution(QualType T) {
4871   if (!hasMangledSubstitutionQualifiers(T)) {
4872     if (const RecordType *RT = T->getAs<RecordType>())
4873       return mangleSubstitution(RT->getDecl());
4874   }
4875 
4876   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4877 
4878   return mangleSubstitution(TypePtr);
4879 }
4880 
4881 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4882   if (TemplateDecl *TD = Template.getAsTemplateDecl())
4883     return mangleSubstitution(TD);
4884 
4885   Template = Context.getASTContext().getCanonicalTemplateName(Template);
4886   return mangleSubstitution(
4887                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4888 }
4889 
4890 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4891   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4892   if (I == Substitutions.end())
4893     return false;
4894 
4895   unsigned SeqID = I->second;
4896   Out << 'S';
4897   mangleSeqID(SeqID);
4898 
4899   return true;
4900 }
4901 
4902 static bool isCharType(QualType T) {
4903   if (T.isNull())
4904     return false;
4905 
4906   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4907     T->isSpecificBuiltinType(BuiltinType::Char_U);
4908 }
4909 
4910 /// Returns whether a given type is a template specialization of a given name
4911 /// with a single argument of type char.
4912 static bool isCharSpecialization(QualType T, const char *Name) {
4913   if (T.isNull())
4914     return false;
4915 
4916   const RecordType *RT = T->getAs<RecordType>();
4917   if (!RT)
4918     return false;
4919 
4920   const ClassTemplateSpecializationDecl *SD =
4921     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4922   if (!SD)
4923     return false;
4924 
4925   if (!isStdNamespace(getEffectiveDeclContext(SD)))
4926     return false;
4927 
4928   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4929   if (TemplateArgs.size() != 1)
4930     return false;
4931 
4932   if (!isCharType(TemplateArgs[0].getAsType()))
4933     return false;
4934 
4935   return SD->getIdentifier()->getName() == Name;
4936 }
4937 
4938 template <std::size_t StrLen>
4939 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4940                                        const char (&Str)[StrLen]) {
4941   if (!SD->getIdentifier()->isStr(Str))
4942     return false;
4943 
4944   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4945   if (TemplateArgs.size() != 2)
4946     return false;
4947 
4948   if (!isCharType(TemplateArgs[0].getAsType()))
4949     return false;
4950 
4951   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4952     return false;
4953 
4954   return true;
4955 }
4956 
4957 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4958   // <substitution> ::= St # ::std::
4959   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4960     if (isStd(NS)) {
4961       Out << "St";
4962       return true;
4963     }
4964   }
4965 
4966   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4967     if (!isStdNamespace(getEffectiveDeclContext(TD)))
4968       return false;
4969 
4970     // <substitution> ::= Sa # ::std::allocator
4971     if (TD->getIdentifier()->isStr("allocator")) {
4972       Out << "Sa";
4973       return true;
4974     }
4975 
4976     // <<substitution> ::= Sb # ::std::basic_string
4977     if (TD->getIdentifier()->isStr("basic_string")) {
4978       Out << "Sb";
4979       return true;
4980     }
4981   }
4982 
4983   if (const ClassTemplateSpecializationDecl *SD =
4984         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4985     if (!isStdNamespace(getEffectiveDeclContext(SD)))
4986       return false;
4987 
4988     //    <substitution> ::= Ss # ::std::basic_string<char,
4989     //                            ::std::char_traits<char>,
4990     //                            ::std::allocator<char> >
4991     if (SD->getIdentifier()->isStr("basic_string")) {
4992       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4993 
4994       if (TemplateArgs.size() != 3)
4995         return false;
4996 
4997       if (!isCharType(TemplateArgs[0].getAsType()))
4998         return false;
4999 
5000       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5001         return false;
5002 
5003       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
5004         return false;
5005 
5006       Out << "Ss";
5007       return true;
5008     }
5009 
5010     //    <substitution> ::= Si # ::std::basic_istream<char,
5011     //                            ::std::char_traits<char> >
5012     if (isStreamCharSpecialization(SD, "basic_istream")) {
5013       Out << "Si";
5014       return true;
5015     }
5016 
5017     //    <substitution> ::= So # ::std::basic_ostream<char,
5018     //                            ::std::char_traits<char> >
5019     if (isStreamCharSpecialization(SD, "basic_ostream")) {
5020       Out << "So";
5021       return true;
5022     }
5023 
5024     //    <substitution> ::= Sd # ::std::basic_iostream<char,
5025     //                            ::std::char_traits<char> >
5026     if (isStreamCharSpecialization(SD, "basic_iostream")) {
5027       Out << "Sd";
5028       return true;
5029     }
5030   }
5031   return false;
5032 }
5033 
5034 void CXXNameMangler::addSubstitution(QualType T) {
5035   if (!hasMangledSubstitutionQualifiers(T)) {
5036     if (const RecordType *RT = T->getAs<RecordType>()) {
5037       addSubstitution(RT->getDecl());
5038       return;
5039     }
5040   }
5041 
5042   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5043   addSubstitution(TypePtr);
5044 }
5045 
5046 void CXXNameMangler::addSubstitution(TemplateName Template) {
5047   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5048     return addSubstitution(TD);
5049 
5050   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5051   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5052 }
5053 
5054 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
5055   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
5056   Substitutions[Ptr] = SeqID++;
5057 }
5058 
5059 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
5060   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
5061   if (Other->SeqID > SeqID) {
5062     Substitutions.swap(Other->Substitutions);
5063     SeqID = Other->SeqID;
5064   }
5065 }
5066 
5067 CXXNameMangler::AbiTagList
5068 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
5069   // When derived abi tags are disabled there is no need to make any list.
5070   if (DisableDerivedAbiTags)
5071     return AbiTagList();
5072 
5073   llvm::raw_null_ostream NullOutStream;
5074   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
5075   TrackReturnTypeTags.disableDerivedAbiTags();
5076 
5077   const FunctionProtoType *Proto =
5078       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
5079   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
5080   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
5081   TrackReturnTypeTags.mangleType(Proto->getReturnType());
5082   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
5083   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
5084 
5085   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5086 }
5087 
5088 CXXNameMangler::AbiTagList
5089 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
5090   // When derived abi tags are disabled there is no need to make any list.
5091   if (DisableDerivedAbiTags)
5092     return AbiTagList();
5093 
5094   llvm::raw_null_ostream NullOutStream;
5095   CXXNameMangler TrackVariableType(*this, NullOutStream);
5096   TrackVariableType.disableDerivedAbiTags();
5097 
5098   TrackVariableType.mangleType(VD->getType());
5099 
5100   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5101 }
5102 
5103 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
5104                                        const VarDecl *VD) {
5105   llvm::raw_null_ostream NullOutStream;
5106   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
5107   TrackAbiTags.mangle(VD);
5108   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
5109 }
5110 
5111 //
5112 
5113 /// Mangles the name of the declaration D and emits that name to the given
5114 /// output stream.
5115 ///
5116 /// If the declaration D requires a mangled name, this routine will emit that
5117 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
5118 /// and this routine will return false. In this case, the caller should just
5119 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
5120 /// name.
5121 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
5122                                              raw_ostream &Out) {
5123   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
5124   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
5125           "Invalid mangleName() call, argument is not a variable or function!");
5126 
5127   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
5128                                  getASTContext().getSourceManager(),
5129                                  "Mangling declaration");
5130 
5131   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
5132     auto Type = GD.getCtorType();
5133     CXXNameMangler Mangler(*this, Out, CD, Type);
5134     return Mangler.mangle(GlobalDecl(CD, Type));
5135   }
5136 
5137   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
5138     auto Type = GD.getDtorType();
5139     CXXNameMangler Mangler(*this, Out, DD, Type);
5140     return Mangler.mangle(GlobalDecl(DD, Type));
5141   }
5142 
5143   CXXNameMangler Mangler(*this, Out, D);
5144   Mangler.mangle(GD);
5145 }
5146 
5147 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
5148                                                    raw_ostream &Out) {
5149   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
5150   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
5151 }
5152 
5153 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
5154                                                    raw_ostream &Out) {
5155   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
5156   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
5157 }
5158 
5159 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
5160                                            const ThunkInfo &Thunk,
5161                                            raw_ostream &Out) {
5162   //  <special-name> ::= T <call-offset> <base encoding>
5163   //                      # base is the nominal target function of thunk
5164   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
5165   //                      # base is the nominal target function of thunk
5166   //                      # first call-offset is 'this' adjustment
5167   //                      # second call-offset is result adjustment
5168 
5169   assert(!isa<CXXDestructorDecl>(MD) &&
5170          "Use mangleCXXDtor for destructor decls!");
5171   CXXNameMangler Mangler(*this, Out);
5172   Mangler.getStream() << "_ZT";
5173   if (!Thunk.Return.isEmpty())
5174     Mangler.getStream() << 'c';
5175 
5176   // Mangle the 'this' pointer adjustment.
5177   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
5178                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
5179 
5180   // Mangle the return pointer adjustment if there is one.
5181   if (!Thunk.Return.isEmpty())
5182     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5183                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
5184 
5185   Mangler.mangleFunctionEncoding(MD);
5186 }
5187 
5188 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5189     const CXXDestructorDecl *DD, CXXDtorType Type,
5190     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5191   //  <special-name> ::= T <call-offset> <base encoding>
5192   //                      # base is the nominal target function of thunk
5193   CXXNameMangler Mangler(*this, Out, DD, Type);
5194   Mangler.getStream() << "_ZT";
5195 
5196   // Mangle the 'this' pointer adjustment.
5197   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5198                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5199 
5200   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
5201 }
5202 
5203 /// Returns the mangled name for a guard variable for the passed in VarDecl.
5204 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5205                                                          raw_ostream &Out) {
5206   //  <special-name> ::= GV <object name>       # Guard variable for one-time
5207   //                                            # initialization
5208   CXXNameMangler Mangler(*this, Out);
5209   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5210   // be a bug that is fixed in trunk.
5211   Mangler.getStream() << "_ZGV";
5212   Mangler.mangleName(D);
5213 }
5214 
5215 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5216                                                         raw_ostream &Out) {
5217   // These symbols are internal in the Itanium ABI, so the names don't matter.
5218   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5219   // avoid duplicate symbols.
5220   Out << "__cxx_global_var_init";
5221 }
5222 
5223 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5224                                                              raw_ostream &Out) {
5225   // Prefix the mangling of D with __dtor_.
5226   CXXNameMangler Mangler(*this, Out);
5227   Mangler.getStream() << "__dtor_";
5228   if (shouldMangleDeclName(D))
5229     Mangler.mangle(D);
5230   else
5231     Mangler.getStream() << D->getName();
5232 }
5233 
5234 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
5235                                                            raw_ostream &Out) {
5236   // Clang generates these internal-linkage functions as part of its
5237   // implementation of the XL ABI.
5238   CXXNameMangler Mangler(*this, Out);
5239   Mangler.getStream() << "__finalize_";
5240   if (shouldMangleDeclName(D))
5241     Mangler.mangle(D);
5242   else
5243     Mangler.getStream() << D->getName();
5244 }
5245 
5246 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5247     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5248   CXXNameMangler Mangler(*this, Out);
5249   Mangler.getStream() << "__filt_";
5250   if (shouldMangleDeclName(EnclosingDecl))
5251     Mangler.mangle(EnclosingDecl);
5252   else
5253     Mangler.getStream() << EnclosingDecl->getName();
5254 }
5255 
5256 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5257     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5258   CXXNameMangler Mangler(*this, Out);
5259   Mangler.getStream() << "__fin_";
5260   if (shouldMangleDeclName(EnclosingDecl))
5261     Mangler.mangle(EnclosingDecl);
5262   else
5263     Mangler.getStream() << EnclosingDecl->getName();
5264 }
5265 
5266 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5267                                                             raw_ostream &Out) {
5268   //  <special-name> ::= TH <object name>
5269   CXXNameMangler Mangler(*this, Out);
5270   Mangler.getStream() << "_ZTH";
5271   Mangler.mangleName(D);
5272 }
5273 
5274 void
5275 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5276                                                           raw_ostream &Out) {
5277   //  <special-name> ::= TW <object name>
5278   CXXNameMangler Mangler(*this, Out);
5279   Mangler.getStream() << "_ZTW";
5280   Mangler.mangleName(D);
5281 }
5282 
5283 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5284                                                         unsigned ManglingNumber,
5285                                                         raw_ostream &Out) {
5286   // We match the GCC mangling here.
5287   //  <special-name> ::= GR <object name>
5288   CXXNameMangler Mangler(*this, Out);
5289   Mangler.getStream() << "_ZGR";
5290   Mangler.mangleName(D);
5291   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5292   Mangler.mangleSeqID(ManglingNumber - 1);
5293 }
5294 
5295 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5296                                                raw_ostream &Out) {
5297   // <special-name> ::= TV <type>  # virtual table
5298   CXXNameMangler Mangler(*this, Out);
5299   Mangler.getStream() << "_ZTV";
5300   Mangler.mangleNameOrStandardSubstitution(RD);
5301 }
5302 
5303 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
5304                                             raw_ostream &Out) {
5305   // <special-name> ::= TT <type>  # VTT structure
5306   CXXNameMangler Mangler(*this, Out);
5307   Mangler.getStream() << "_ZTT";
5308   Mangler.mangleNameOrStandardSubstitution(RD);
5309 }
5310 
5311 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5312                                                    int64_t Offset,
5313                                                    const CXXRecordDecl *Type,
5314                                                    raw_ostream &Out) {
5315   // <special-name> ::= TC <type> <offset number> _ <base type>
5316   CXXNameMangler Mangler(*this, Out);
5317   Mangler.getStream() << "_ZTC";
5318   Mangler.mangleNameOrStandardSubstitution(RD);
5319   Mangler.getStream() << Offset;
5320   Mangler.getStream() << '_';
5321   Mangler.mangleNameOrStandardSubstitution(Type);
5322 }
5323 
5324 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5325   // <special-name> ::= TI <type>  # typeinfo structure
5326   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5327   CXXNameMangler Mangler(*this, Out);
5328   Mangler.getStream() << "_ZTI";
5329   Mangler.mangleType(Ty);
5330 }
5331 
5332 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5333                                                  raw_ostream &Out) {
5334   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
5335   CXXNameMangler Mangler(*this, Out);
5336   Mangler.getStream() << "_ZTS";
5337   Mangler.mangleType(Ty);
5338 }
5339 
5340 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5341   mangleCXXRTTIName(Ty, Out);
5342 }
5343 
5344 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5345   llvm_unreachable("Can't mangle string literals");
5346 }
5347 
5348 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
5349                                                raw_ostream &Out) {
5350   CXXNameMangler Mangler(*this, Out);
5351   Mangler.mangleLambdaSig(Lambda);
5352 }
5353 
5354 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
5355                                                    DiagnosticsEngine &Diags,
5356                                                    bool IsUniqueNameMangler) {
5357   return new ItaniumMangleContextImpl(Context, Diags, IsUniqueNameMangler);
5358 }
5359