xref: /freebsd/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace clang;
40 
41 namespace {
42 
43 /// Retrieve the declaration context that should be used when mangling the given
44 /// declaration.
45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46   // The ABI assumes that lambda closure types that occur within
47   // default arguments live in the context of the function. However, due to
48   // the way in which Clang parses and creates function declarations, this is
49   // not the case: the lambda closure type ends up living in the context
50   // where the function itself resides, because the function declaration itself
51   // had not yet been created. Fix the context here.
52   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53     if (RD->isLambda())
54       if (ParmVarDecl *ContextParam
55             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56         return ContextParam->getDeclContext();
57   }
58 
59   // Perform the same check for block literals.
60   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
61     if (ParmVarDecl *ContextParam
62           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
63       return ContextParam->getDeclContext();
64   }
65 
66   const DeclContext *DC = D->getDeclContext();
67   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
68       isa<OMPDeclareMapperDecl>(DC)) {
69     return getEffectiveDeclContext(cast<Decl>(DC));
70   }
71 
72   if (const auto *VD = dyn_cast<VarDecl>(D))
73     if (VD->isExternC())
74       return VD->getASTContext().getTranslationUnitDecl();
75 
76   if (const auto *FD = dyn_cast<FunctionDecl>(D))
77     if (FD->isExternC())
78       return FD->getASTContext().getTranslationUnitDecl();
79 
80   return DC->getRedeclContext();
81 }
82 
83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84   return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86 
87 static bool isLocalContainerContext(const DeclContext *DC) {
88   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90 
91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92   const DeclContext *DC = getEffectiveDeclContext(D);
93   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94     if (isLocalContainerContext(DC))
95       return dyn_cast<RecordDecl>(D);
96     D = cast<Decl>(DC);
97     DC = getEffectiveDeclContext(D);
98   }
99   return nullptr;
100 }
101 
102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104     return ftd->getTemplatedDecl();
105 
106   return fn;
107 }
108 
109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111   return (fn ? getStructor(fn) : decl);
112 }
113 
114 static bool isLambda(const NamedDecl *ND) {
115   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116   if (!Record)
117     return false;
118 
119   return Record->isLambda();
120 }
121 
122 static const unsigned UnknownArity = ~0U;
123 
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128   const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
129 
130   bool NeedsUniqueInternalLinkageNames = false;
131 
132 public:
133   explicit ItaniumMangleContextImpl(
134       ASTContext &Context, DiagnosticsEngine &Diags,
135       DiscriminatorOverrideTy DiscriminatorOverride)
136       : ItaniumMangleContext(Context, Diags),
137         DiscriminatorOverride(DiscriminatorOverride) {}
138 
139   /// @name Mangler Entry Points
140   /// @{
141 
142   bool shouldMangleCXXName(const NamedDecl *D) override;
143   bool shouldMangleStringLiteral(const StringLiteral *) override {
144     return false;
145   }
146 
147   bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
148   void needsUniqueInternalLinkageNames() override {
149     NeedsUniqueInternalLinkageNames = true;
150   }
151 
152   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
153   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
154                    raw_ostream &) override;
155   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
156                           const ThisAdjustment &ThisAdjustment,
157                           raw_ostream &) override;
158   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
159                                 raw_ostream &) override;
160   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
161   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
162   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
163                            const CXXRecordDecl *Type, raw_ostream &) override;
164   void mangleCXXRTTI(QualType T, raw_ostream &) override;
165   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
166   void mangleTypeName(QualType T, raw_ostream &) override;
167 
168   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
169   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
170   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
171   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
172   void mangleDynamicAtExitDestructor(const VarDecl *D,
173                                      raw_ostream &Out) override;
174   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
175   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
176                                  raw_ostream &Out) override;
177   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
178                              raw_ostream &Out) override;
179   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
180   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
181                                        raw_ostream &) override;
182 
183   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
184 
185   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
186 
187   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
188     // Lambda closure types are already numbered.
189     if (isLambda(ND))
190       return false;
191 
192     // Anonymous tags are already numbered.
193     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
194       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
195         return false;
196     }
197 
198     // Use the canonical number for externally visible decls.
199     if (ND->isExternallyVisible()) {
200       unsigned discriminator = getASTContext().getManglingNumber(ND);
201       if (discriminator == 1)
202         return false;
203       disc = discriminator - 2;
204       return true;
205     }
206 
207     // Make up a reasonable number for internal decls.
208     unsigned &discriminator = Uniquifier[ND];
209     if (!discriminator) {
210       const DeclContext *DC = getEffectiveDeclContext(ND);
211       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
212     }
213     if (discriminator == 1)
214       return false;
215     disc = discriminator-2;
216     return true;
217   }
218 
219   std::string getLambdaString(const CXXRecordDecl *Lambda) override {
220     // This function matches the one in MicrosoftMangle, which returns
221     // the string that is used in lambda mangled names.
222     assert(Lambda->isLambda() && "RD must be a lambda!");
223     std::string Name("<lambda");
224     Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
225     unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
226     unsigned LambdaId;
227     const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
228     const FunctionDecl *Func =
229         Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
230 
231     if (Func) {
232       unsigned DefaultArgNo =
233           Func->getNumParams() - Parm->getFunctionScopeIndex();
234       Name += llvm::utostr(DefaultArgNo);
235       Name += "_";
236     }
237 
238     if (LambdaManglingNumber)
239       LambdaId = LambdaManglingNumber;
240     else
241       LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
242 
243     Name += llvm::utostr(LambdaId);
244     Name += '>';
245     return Name;
246   }
247 
248   DiscriminatorOverrideTy getDiscriminatorOverride() const override {
249     return DiscriminatorOverride;
250   }
251 
252   /// @}
253 };
254 
255 /// Manage the mangling of a single name.
256 class CXXNameMangler {
257   ItaniumMangleContextImpl &Context;
258   raw_ostream &Out;
259   bool NullOut = false;
260   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
261   /// This mode is used when mangler creates another mangler recursively to
262   /// calculate ABI tags for the function return value or the variable type.
263   /// Also it is required to avoid infinite recursion in some cases.
264   bool DisableDerivedAbiTags = false;
265 
266   /// The "structor" is the top-level declaration being mangled, if
267   /// that's not a template specialization; otherwise it's the pattern
268   /// for that specialization.
269   const NamedDecl *Structor;
270   unsigned StructorType;
271 
272   /// The next substitution sequence number.
273   unsigned SeqID;
274 
275   class FunctionTypeDepthState {
276     unsigned Bits;
277 
278     enum { InResultTypeMask = 1 };
279 
280   public:
281     FunctionTypeDepthState() : Bits(0) {}
282 
283     /// The number of function types we're inside.
284     unsigned getDepth() const {
285       return Bits >> 1;
286     }
287 
288     /// True if we're in the return type of the innermost function type.
289     bool isInResultType() const {
290       return Bits & InResultTypeMask;
291     }
292 
293     FunctionTypeDepthState push() {
294       FunctionTypeDepthState tmp = *this;
295       Bits = (Bits & ~InResultTypeMask) + 2;
296       return tmp;
297     }
298 
299     void enterResultType() {
300       Bits |= InResultTypeMask;
301     }
302 
303     void leaveResultType() {
304       Bits &= ~InResultTypeMask;
305     }
306 
307     void pop(FunctionTypeDepthState saved) {
308       assert(getDepth() == saved.getDepth() + 1);
309       Bits = saved.Bits;
310     }
311 
312   } FunctionTypeDepth;
313 
314   // abi_tag is a gcc attribute, taking one or more strings called "tags".
315   // The goal is to annotate against which version of a library an object was
316   // built and to be able to provide backwards compatibility ("dual abi").
317   // For more information see docs/ItaniumMangleAbiTags.rst.
318   typedef SmallVector<StringRef, 4> AbiTagList;
319 
320   // State to gather all implicit and explicit tags used in a mangled name.
321   // Must always have an instance of this while emitting any name to keep
322   // track.
323   class AbiTagState final {
324   public:
325     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
326       Parent = LinkHead;
327       LinkHead = this;
328     }
329 
330     // No copy, no move.
331     AbiTagState(const AbiTagState &) = delete;
332     AbiTagState &operator=(const AbiTagState &) = delete;
333 
334     ~AbiTagState() { pop(); }
335 
336     void write(raw_ostream &Out, const NamedDecl *ND,
337                const AbiTagList *AdditionalAbiTags) {
338       ND = cast<NamedDecl>(ND->getCanonicalDecl());
339       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
340         assert(
341             !AdditionalAbiTags &&
342             "only function and variables need a list of additional abi tags");
343         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
344           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
345             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
346                                AbiTag->tags().end());
347           }
348           // Don't emit abi tags for namespaces.
349           return;
350         }
351       }
352 
353       AbiTagList TagList;
354       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
355         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
356                            AbiTag->tags().end());
357         TagList.insert(TagList.end(), AbiTag->tags().begin(),
358                        AbiTag->tags().end());
359       }
360 
361       if (AdditionalAbiTags) {
362         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
363                            AdditionalAbiTags->end());
364         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
365                        AdditionalAbiTags->end());
366       }
367 
368       llvm::sort(TagList);
369       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
370 
371       writeSortedUniqueAbiTags(Out, TagList);
372     }
373 
374     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
375     void setUsedAbiTags(const AbiTagList &AbiTags) {
376       UsedAbiTags = AbiTags;
377     }
378 
379     const AbiTagList &getEmittedAbiTags() const {
380       return EmittedAbiTags;
381     }
382 
383     const AbiTagList &getSortedUniqueUsedAbiTags() {
384       llvm::sort(UsedAbiTags);
385       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
386                         UsedAbiTags.end());
387       return UsedAbiTags;
388     }
389 
390   private:
391     //! All abi tags used implicitly or explicitly.
392     AbiTagList UsedAbiTags;
393     //! All explicit abi tags (i.e. not from namespace).
394     AbiTagList EmittedAbiTags;
395 
396     AbiTagState *&LinkHead;
397     AbiTagState *Parent = nullptr;
398 
399     void pop() {
400       assert(LinkHead == this &&
401              "abi tag link head must point to us on destruction");
402       if (Parent) {
403         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
404                                    UsedAbiTags.begin(), UsedAbiTags.end());
405         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
406                                       EmittedAbiTags.begin(),
407                                       EmittedAbiTags.end());
408       }
409       LinkHead = Parent;
410     }
411 
412     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
413       for (const auto &Tag : AbiTags) {
414         EmittedAbiTags.push_back(Tag);
415         Out << "B";
416         Out << Tag.size();
417         Out << Tag;
418       }
419     }
420   };
421 
422   AbiTagState *AbiTags = nullptr;
423   AbiTagState AbiTagsRoot;
424 
425   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
426   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
427 
428   ASTContext &getASTContext() const { return Context.getASTContext(); }
429 
430 public:
431   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
432                  const NamedDecl *D = nullptr, bool NullOut_ = false)
433     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
434       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
435     // These can't be mangled without a ctor type or dtor type.
436     assert(!D || (!isa<CXXDestructorDecl>(D) &&
437                   !isa<CXXConstructorDecl>(D)));
438   }
439   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
440                  const CXXConstructorDecl *D, CXXCtorType Type)
441     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
442       SeqID(0), AbiTagsRoot(AbiTags) { }
443   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
444                  const CXXDestructorDecl *D, CXXDtorType Type)
445     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
446       SeqID(0), AbiTagsRoot(AbiTags) { }
447 
448   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
449       : Context(Outer.Context), Out(Out_), NullOut(false),
450         Structor(Outer.Structor), StructorType(Outer.StructorType),
451         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
452         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
453 
454   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
455       : Context(Outer.Context), Out(Out_), NullOut(true),
456         Structor(Outer.Structor), StructorType(Outer.StructorType),
457         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
458         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
459 
460   raw_ostream &getStream() { return Out; }
461 
462   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
463   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
464 
465   void mangle(GlobalDecl GD);
466   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
467   void mangleNumber(const llvm::APSInt &I);
468   void mangleNumber(int64_t Number);
469   void mangleFloat(const llvm::APFloat &F);
470   void mangleFunctionEncoding(GlobalDecl GD);
471   void mangleSeqID(unsigned SeqID);
472   void mangleName(GlobalDecl GD);
473   void mangleType(QualType T);
474   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
475   void mangleLambdaSig(const CXXRecordDecl *Lambda);
476 
477 private:
478 
479   bool mangleSubstitution(const NamedDecl *ND);
480   bool mangleSubstitution(QualType T);
481   bool mangleSubstitution(TemplateName Template);
482   bool mangleSubstitution(uintptr_t Ptr);
483 
484   void mangleExistingSubstitution(TemplateName name);
485 
486   bool mangleStandardSubstitution(const NamedDecl *ND);
487 
488   void addSubstitution(const NamedDecl *ND) {
489     ND = cast<NamedDecl>(ND->getCanonicalDecl());
490 
491     addSubstitution(reinterpret_cast<uintptr_t>(ND));
492   }
493   void addSubstitution(QualType T);
494   void addSubstitution(TemplateName Template);
495   void addSubstitution(uintptr_t Ptr);
496   // Destructive copy substitutions from other mangler.
497   void extendSubstitutions(CXXNameMangler* Other);
498 
499   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
500                               bool recursive = false);
501   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
502                             DeclarationName name,
503                             const TemplateArgumentLoc *TemplateArgs,
504                             unsigned NumTemplateArgs,
505                             unsigned KnownArity = UnknownArity);
506 
507   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
508 
509   void mangleNameWithAbiTags(GlobalDecl GD,
510                              const AbiTagList *AdditionalAbiTags);
511   void mangleModuleName(const Module *M);
512   void mangleModuleNamePrefix(StringRef Name);
513   void mangleTemplateName(const TemplateDecl *TD,
514                           const TemplateArgument *TemplateArgs,
515                           unsigned NumTemplateArgs);
516   void mangleUnqualifiedName(GlobalDecl GD,
517                              const AbiTagList *AdditionalAbiTags) {
518     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
519                           AdditionalAbiTags);
520   }
521   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
522                              unsigned KnownArity,
523                              const AbiTagList *AdditionalAbiTags);
524   void mangleUnscopedName(GlobalDecl GD,
525                           const AbiTagList *AdditionalAbiTags);
526   void mangleUnscopedTemplateName(GlobalDecl GD,
527                                   const AbiTagList *AdditionalAbiTags);
528   void mangleSourceName(const IdentifierInfo *II);
529   void mangleRegCallName(const IdentifierInfo *II);
530   void mangleDeviceStubName(const IdentifierInfo *II);
531   void mangleSourceNameWithAbiTags(
532       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
533   void mangleLocalName(GlobalDecl GD,
534                        const AbiTagList *AdditionalAbiTags);
535   void mangleBlockForPrefix(const BlockDecl *Block);
536   void mangleUnqualifiedBlock(const BlockDecl *Block);
537   void mangleTemplateParamDecl(const NamedDecl *Decl);
538   void mangleLambda(const CXXRecordDecl *Lambda);
539   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
540                         const AbiTagList *AdditionalAbiTags,
541                         bool NoFunction=false);
542   void mangleNestedName(const TemplateDecl *TD,
543                         const TemplateArgument *TemplateArgs,
544                         unsigned NumTemplateArgs);
545   void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
546                                          const NamedDecl *PrefixND,
547                                          const AbiTagList *AdditionalAbiTags);
548   void manglePrefix(NestedNameSpecifier *qualifier);
549   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
550   void manglePrefix(QualType type);
551   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
552   void mangleTemplatePrefix(TemplateName Template);
553   const NamedDecl *getClosurePrefix(const Decl *ND);
554   void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
555   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
556                                       StringRef Prefix = "");
557   void mangleOperatorName(DeclarationName Name, unsigned Arity);
558   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
559   void mangleVendorQualifier(StringRef qualifier);
560   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
561   void mangleRefQualifier(RefQualifierKind RefQualifier);
562 
563   void mangleObjCMethodName(const ObjCMethodDecl *MD);
564 
565   // Declare manglers for every type class.
566 #define ABSTRACT_TYPE(CLASS, PARENT)
567 #define NON_CANONICAL_TYPE(CLASS, PARENT)
568 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
569 #include "clang/AST/TypeNodes.inc"
570 
571   void mangleType(const TagType*);
572   void mangleType(TemplateName);
573   static StringRef getCallingConvQualifierName(CallingConv CC);
574   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
575   void mangleExtFunctionInfo(const FunctionType *T);
576   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
577                               const FunctionDecl *FD = nullptr);
578   void mangleNeonVectorType(const VectorType *T);
579   void mangleNeonVectorType(const DependentVectorType *T);
580   void mangleAArch64NeonVectorType(const VectorType *T);
581   void mangleAArch64NeonVectorType(const DependentVectorType *T);
582   void mangleAArch64FixedSveVectorType(const VectorType *T);
583   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
584 
585   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
586   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
587   void mangleFixedPointLiteral();
588   void mangleNullPointer(QualType T);
589 
590   void mangleMemberExprBase(const Expr *base, bool isArrow);
591   void mangleMemberExpr(const Expr *base, bool isArrow,
592                         NestedNameSpecifier *qualifier,
593                         NamedDecl *firstQualifierLookup,
594                         DeclarationName name,
595                         const TemplateArgumentLoc *TemplateArgs,
596                         unsigned NumTemplateArgs,
597                         unsigned knownArity);
598   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
599   void mangleInitListElements(const InitListExpr *InitList);
600   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
601                         bool AsTemplateArg = false);
602   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
603   void mangleCXXDtorType(CXXDtorType T);
604 
605   void mangleTemplateArgs(TemplateName TN,
606                           const TemplateArgumentLoc *TemplateArgs,
607                           unsigned NumTemplateArgs);
608   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
609                           unsigned NumTemplateArgs);
610   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
611   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
612   void mangleTemplateArgExpr(const Expr *E);
613   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
614                                 bool NeedExactType = false);
615 
616   void mangleTemplateParameter(unsigned Depth, unsigned Index);
617 
618   void mangleFunctionParam(const ParmVarDecl *parm);
619 
620   void writeAbiTags(const NamedDecl *ND,
621                     const AbiTagList *AdditionalAbiTags);
622 
623   // Returns sorted unique list of ABI tags.
624   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
625   // Returns sorted unique list of ABI tags.
626   AbiTagList makeVariableTypeTags(const VarDecl *VD);
627 };
628 
629 }
630 
631 static bool isInternalLinkageDecl(const NamedDecl *ND) {
632   if (ND && ND->getFormalLinkage() == InternalLinkage &&
633       !ND->isExternallyVisible() &&
634       getEffectiveDeclContext(ND)->isFileContext() &&
635       !ND->isInAnonymousNamespace())
636     return true;
637   return false;
638 }
639 
640 // Check if this Function Decl needs a unique internal linkage name.
641 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
642     const NamedDecl *ND) {
643   if (!NeedsUniqueInternalLinkageNames || !ND)
644     return false;
645 
646   const auto *FD = dyn_cast<FunctionDecl>(ND);
647   if (!FD)
648     return false;
649 
650   // For C functions without prototypes, return false as their
651   // names should not be mangled.
652   if (!FD->getType()->getAs<FunctionProtoType>())
653     return false;
654 
655   if (isInternalLinkageDecl(ND))
656     return true;
657 
658   return false;
659 }
660 
661 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
662   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
663   if (FD) {
664     LanguageLinkage L = FD->getLanguageLinkage();
665     // Overloadable functions need mangling.
666     if (FD->hasAttr<OverloadableAttr>())
667       return true;
668 
669     // "main" is not mangled.
670     if (FD->isMain())
671       return false;
672 
673     // The Windows ABI expects that we would never mangle "typical"
674     // user-defined entry points regardless of visibility or freestanding-ness.
675     //
676     // N.B. This is distinct from asking about "main".  "main" has a lot of
677     // special rules associated with it in the standard while these
678     // user-defined entry points are outside of the purview of the standard.
679     // For example, there can be only one definition for "main" in a standards
680     // compliant program; however nothing forbids the existence of wmain and
681     // WinMain in the same translation unit.
682     if (FD->isMSVCRTEntryPoint())
683       return false;
684 
685     // C++ functions and those whose names are not a simple identifier need
686     // mangling.
687     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
688       return true;
689 
690     // C functions are not mangled.
691     if (L == CLanguageLinkage)
692       return false;
693   }
694 
695   // Otherwise, no mangling is done outside C++ mode.
696   if (!getASTContext().getLangOpts().CPlusPlus)
697     return false;
698 
699   const VarDecl *VD = dyn_cast<VarDecl>(D);
700   if (VD && !isa<DecompositionDecl>(D)) {
701     // C variables are not mangled.
702     if (VD->isExternC())
703       return false;
704 
705     // Variables at global scope with non-internal linkage are not mangled
706     const DeclContext *DC = getEffectiveDeclContext(D);
707     // Check for extern variable declared locally.
708     if (DC->isFunctionOrMethod() && D->hasLinkage())
709       while (!DC->isNamespace() && !DC->isTranslationUnit())
710         DC = getEffectiveParentContext(DC);
711     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
712         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
713         !isa<VarTemplateSpecializationDecl>(D))
714       return false;
715   }
716 
717   return true;
718 }
719 
720 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
721                                   const AbiTagList *AdditionalAbiTags) {
722   assert(AbiTags && "require AbiTagState");
723   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
724 }
725 
726 void CXXNameMangler::mangleSourceNameWithAbiTags(
727     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
728   mangleSourceName(ND->getIdentifier());
729   writeAbiTags(ND, AdditionalAbiTags);
730 }
731 
732 void CXXNameMangler::mangle(GlobalDecl GD) {
733   // <mangled-name> ::= _Z <encoding>
734   //            ::= <data name>
735   //            ::= <special-name>
736   Out << "_Z";
737   if (isa<FunctionDecl>(GD.getDecl()))
738     mangleFunctionEncoding(GD);
739   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
740                BindingDecl>(GD.getDecl()))
741     mangleName(GD);
742   else if (const IndirectFieldDecl *IFD =
743                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
744     mangleName(IFD->getAnonField());
745   else
746     llvm_unreachable("unexpected kind of global decl");
747 }
748 
749 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
750   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
751   // <encoding> ::= <function name> <bare-function-type>
752 
753   // Don't mangle in the type if this isn't a decl we should typically mangle.
754   if (!Context.shouldMangleDeclName(FD)) {
755     mangleName(GD);
756     return;
757   }
758 
759   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
760   if (ReturnTypeAbiTags.empty()) {
761     // There are no tags for return type, the simplest case.
762     mangleName(GD);
763     mangleFunctionEncodingBareType(FD);
764     return;
765   }
766 
767   // Mangle function name and encoding to temporary buffer.
768   // We have to output name and encoding to the same mangler to get the same
769   // substitution as it will be in final mangling.
770   SmallString<256> FunctionEncodingBuf;
771   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
772   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
773   // Output name of the function.
774   FunctionEncodingMangler.disableDerivedAbiTags();
775   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
776 
777   // Remember length of the function name in the buffer.
778   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
779   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
780 
781   // Get tags from return type that are not present in function name or
782   // encoding.
783   const AbiTagList &UsedAbiTags =
784       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
785   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
786   AdditionalAbiTags.erase(
787       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
788                           UsedAbiTags.begin(), UsedAbiTags.end(),
789                           AdditionalAbiTags.begin()),
790       AdditionalAbiTags.end());
791 
792   // Output name with implicit tags and function encoding from temporary buffer.
793   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
794   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
795 
796   // Function encoding could create new substitutions so we have to add
797   // temp mangled substitutions to main mangler.
798   extendSubstitutions(&FunctionEncodingMangler);
799 }
800 
801 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
802   if (FD->hasAttr<EnableIfAttr>()) {
803     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
804     Out << "Ua9enable_ifI";
805     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
806                                  E = FD->getAttrs().end();
807          I != E; ++I) {
808       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
809       if (!EIA)
810         continue;
811       if (Context.getASTContext().getLangOpts().getClangABICompat() >
812           LangOptions::ClangABI::Ver11) {
813         mangleTemplateArgExpr(EIA->getCond());
814       } else {
815         // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
816         // even though <template-arg> should not include an X/E around
817         // <expr-primary>.
818         Out << 'X';
819         mangleExpression(EIA->getCond());
820         Out << 'E';
821       }
822     }
823     Out << 'E';
824     FunctionTypeDepth.pop(Saved);
825   }
826 
827   // When mangling an inheriting constructor, the bare function type used is
828   // that of the inherited constructor.
829   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
830     if (auto Inherited = CD->getInheritedConstructor())
831       FD = Inherited.getConstructor();
832 
833   // Whether the mangling of a function type includes the return type depends on
834   // the context and the nature of the function. The rules for deciding whether
835   // the return type is included are:
836   //
837   //   1. Template functions (names or types) have return types encoded, with
838   //   the exceptions listed below.
839   //   2. Function types not appearing as part of a function name mangling,
840   //   e.g. parameters, pointer types, etc., have return type encoded, with the
841   //   exceptions listed below.
842   //   3. Non-template function names do not have return types encoded.
843   //
844   // The exceptions mentioned in (1) and (2) above, for which the return type is
845   // never included, are
846   //   1. Constructors.
847   //   2. Destructors.
848   //   3. Conversion operator functions, e.g. operator int.
849   bool MangleReturnType = false;
850   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
851     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
852           isa<CXXConversionDecl>(FD)))
853       MangleReturnType = true;
854 
855     // Mangle the type of the primary template.
856     FD = PrimaryTemplate->getTemplatedDecl();
857   }
858 
859   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
860                          MangleReturnType, FD);
861 }
862 
863 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
864   while (isa<LinkageSpecDecl>(DC)) {
865     DC = getEffectiveParentContext(DC);
866   }
867 
868   return DC;
869 }
870 
871 /// Return whether a given namespace is the 'std' namespace.
872 static bool isStd(const NamespaceDecl *NS) {
873   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
874                                 ->isTranslationUnit())
875     return false;
876 
877   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
878   return II && II->isStr("std");
879 }
880 
881 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
882 // namespace.
883 static bool isStdNamespace(const DeclContext *DC) {
884   if (!DC->isNamespace())
885     return false;
886 
887   return isStd(cast<NamespaceDecl>(DC));
888 }
889 
890 static const GlobalDecl
891 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
892   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
893   // Check if we have a function template.
894   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
895     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
896       TemplateArgs = FD->getTemplateSpecializationArgs();
897       return GD.getWithDecl(TD);
898     }
899   }
900 
901   // Check if we have a class template.
902   if (const ClassTemplateSpecializationDecl *Spec =
903         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
904     TemplateArgs = &Spec->getTemplateArgs();
905     return GD.getWithDecl(Spec->getSpecializedTemplate());
906   }
907 
908   // Check if we have a variable template.
909   if (const VarTemplateSpecializationDecl *Spec =
910           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
911     TemplateArgs = &Spec->getTemplateArgs();
912     return GD.getWithDecl(Spec->getSpecializedTemplate());
913   }
914 
915   return GlobalDecl();
916 }
917 
918 static TemplateName asTemplateName(GlobalDecl GD) {
919   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
920   return TemplateName(const_cast<TemplateDecl*>(TD));
921 }
922 
923 void CXXNameMangler::mangleName(GlobalDecl GD) {
924   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
925   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
926     // Variables should have implicit tags from its type.
927     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
928     if (VariableTypeAbiTags.empty()) {
929       // Simple case no variable type tags.
930       mangleNameWithAbiTags(VD, nullptr);
931       return;
932     }
933 
934     // Mangle variable name to null stream to collect tags.
935     llvm::raw_null_ostream NullOutStream;
936     CXXNameMangler VariableNameMangler(*this, NullOutStream);
937     VariableNameMangler.disableDerivedAbiTags();
938     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
939 
940     // Get tags from variable type that are not present in its name.
941     const AbiTagList &UsedAbiTags =
942         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
943     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
944     AdditionalAbiTags.erase(
945         std::set_difference(VariableTypeAbiTags.begin(),
946                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
947                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
948         AdditionalAbiTags.end());
949 
950     // Output name with implicit tags.
951     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
952   } else {
953     mangleNameWithAbiTags(GD, nullptr);
954   }
955 }
956 
957 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
958                                            const AbiTagList *AdditionalAbiTags) {
959   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
960   //  <name> ::= [<module-name>] <nested-name>
961   //         ::= [<module-name>] <unscoped-name>
962   //         ::= [<module-name>] <unscoped-template-name> <template-args>
963   //         ::= <local-name>
964   //
965   const DeclContext *DC = getEffectiveDeclContext(ND);
966 
967   // If this is an extern variable declared locally, the relevant DeclContext
968   // is that of the containing namespace, or the translation unit.
969   // FIXME: This is a hack; extern variables declared locally should have
970   // a proper semantic declaration context!
971   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
972     while (!DC->isNamespace() && !DC->isTranslationUnit())
973       DC = getEffectiveParentContext(DC);
974   else if (GetLocalClassDecl(ND)) {
975     mangleLocalName(GD, AdditionalAbiTags);
976     return;
977   }
978 
979   DC = IgnoreLinkageSpecDecls(DC);
980 
981   if (isLocalContainerContext(DC)) {
982     mangleLocalName(GD, AdditionalAbiTags);
983     return;
984   }
985 
986   // Do not mangle the owning module for an external linkage declaration.
987   // This enables backwards-compatibility with non-modular code, and is
988   // a valid choice since conflicts are not permitted by C++ Modules TS
989   // [basic.def.odr]/6.2.
990   if (!ND->hasExternalFormalLinkage())
991     if (Module *M = ND->getOwningModuleForLinkage())
992       mangleModuleName(M);
993 
994   // Closures can require a nested-name mangling even if they're semantically
995   // in the global namespace.
996   if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
997     mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
998     return;
999   }
1000 
1001   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1002     // Check if we have a template.
1003     const TemplateArgumentList *TemplateArgs = nullptr;
1004     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1005       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
1006       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1007       return;
1008     }
1009 
1010     mangleUnscopedName(GD, AdditionalAbiTags);
1011     return;
1012   }
1013 
1014   mangleNestedName(GD, DC, AdditionalAbiTags);
1015 }
1016 
1017 void CXXNameMangler::mangleModuleName(const Module *M) {
1018   // Implement the C++ Modules TS name mangling proposal; see
1019   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
1020   //
1021   //   <module-name> ::= W <unscoped-name>+ E
1022   //                 ::= W <module-subst> <unscoped-name>* E
1023   Out << 'W';
1024   mangleModuleNamePrefix(M->Name);
1025   Out << 'E';
1026 }
1027 
1028 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
1029   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
1030   //                 ::= W <seq-id - 10> _   # otherwise
1031   auto It = ModuleSubstitutions.find(Name);
1032   if (It != ModuleSubstitutions.end()) {
1033     if (It->second < 10)
1034       Out << '_' << static_cast<char>('0' + It->second);
1035     else
1036       Out << 'W' << (It->second - 10) << '_';
1037     return;
1038   }
1039 
1040   // FIXME: Preserve hierarchy in module names rather than flattening
1041   // them to strings; use Module*s as substitution keys.
1042   auto Parts = Name.rsplit('.');
1043   if (Parts.second.empty())
1044     Parts.second = Parts.first;
1045   else
1046     mangleModuleNamePrefix(Parts.first);
1047 
1048   Out << Parts.second.size() << Parts.second;
1049   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
1050 }
1051 
1052 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1053                                         const TemplateArgument *TemplateArgs,
1054                                         unsigned NumTemplateArgs) {
1055   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
1056 
1057   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1058     mangleUnscopedTemplateName(TD, nullptr);
1059     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1060   } else {
1061     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
1062   }
1063 }
1064 
1065 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
1066                                         const AbiTagList *AdditionalAbiTags) {
1067   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1068   //  <unscoped-name> ::= <unqualified-name>
1069   //                  ::= St <unqualified-name>   # ::std::
1070 
1071   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
1072     Out << "St";
1073 
1074   mangleUnqualifiedName(GD, AdditionalAbiTags);
1075 }
1076 
1077 void CXXNameMangler::mangleUnscopedTemplateName(
1078     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
1079   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1080   //     <unscoped-template-name> ::= <unscoped-name>
1081   //                              ::= <substitution>
1082   if (mangleSubstitution(ND))
1083     return;
1084 
1085   // <template-template-param> ::= <template-param>
1086   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1087     assert(!AdditionalAbiTags &&
1088            "template template param cannot have abi tags");
1089     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1090   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1091     mangleUnscopedName(GD, AdditionalAbiTags);
1092   } else {
1093     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
1094   }
1095 
1096   addSubstitution(ND);
1097 }
1098 
1099 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1100   // ABI:
1101   //   Floating-point literals are encoded using a fixed-length
1102   //   lowercase hexadecimal string corresponding to the internal
1103   //   representation (IEEE on Itanium), high-order bytes first,
1104   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1105   //   on Itanium.
1106   // The 'without leading zeroes' thing seems to be an editorial
1107   // mistake; see the discussion on cxx-abi-dev beginning on
1108   // 2012-01-16.
1109 
1110   // Our requirements here are just barely weird enough to justify
1111   // using a custom algorithm instead of post-processing APInt::toString().
1112 
1113   llvm::APInt valueBits = f.bitcastToAPInt();
1114   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1115   assert(numCharacters != 0);
1116 
1117   // Allocate a buffer of the right number of characters.
1118   SmallVector<char, 20> buffer(numCharacters);
1119 
1120   // Fill the buffer left-to-right.
1121   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1122     // The bit-index of the next hex digit.
1123     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1124 
1125     // Project out 4 bits starting at 'digitIndex'.
1126     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1127     hexDigit >>= (digitBitIndex % 64);
1128     hexDigit &= 0xF;
1129 
1130     // Map that over to a lowercase hex digit.
1131     static const char charForHex[16] = {
1132       '0', '1', '2', '3', '4', '5', '6', '7',
1133       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1134     };
1135     buffer[stringIndex] = charForHex[hexDigit];
1136   }
1137 
1138   Out.write(buffer.data(), numCharacters);
1139 }
1140 
1141 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1142   Out << 'L';
1143   mangleType(T);
1144   mangleFloat(V);
1145   Out << 'E';
1146 }
1147 
1148 void CXXNameMangler::mangleFixedPointLiteral() {
1149   DiagnosticsEngine &Diags = Context.getDiags();
1150   unsigned DiagID = Diags.getCustomDiagID(
1151       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1152   Diags.Report(DiagID);
1153 }
1154 
1155 void CXXNameMangler::mangleNullPointer(QualType T) {
1156   //  <expr-primary> ::= L <type> 0 E
1157   Out << 'L';
1158   mangleType(T);
1159   Out << "0E";
1160 }
1161 
1162 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1163   if (Value.isSigned() && Value.isNegative()) {
1164     Out << 'n';
1165     Value.abs().print(Out, /*signed*/ false);
1166   } else {
1167     Value.print(Out, /*signed*/ false);
1168   }
1169 }
1170 
1171 void CXXNameMangler::mangleNumber(int64_t Number) {
1172   //  <number> ::= [n] <non-negative decimal integer>
1173   if (Number < 0) {
1174     Out << 'n';
1175     Number = -Number;
1176   }
1177 
1178   Out << Number;
1179 }
1180 
1181 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1182   //  <call-offset>  ::= h <nv-offset> _
1183   //                 ::= v <v-offset> _
1184   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1185   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1186   //                      # virtual base override, with vcall offset
1187   if (!Virtual) {
1188     Out << 'h';
1189     mangleNumber(NonVirtual);
1190     Out << '_';
1191     return;
1192   }
1193 
1194   Out << 'v';
1195   mangleNumber(NonVirtual);
1196   Out << '_';
1197   mangleNumber(Virtual);
1198   Out << '_';
1199 }
1200 
1201 void CXXNameMangler::manglePrefix(QualType type) {
1202   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1203     if (!mangleSubstitution(QualType(TST, 0))) {
1204       mangleTemplatePrefix(TST->getTemplateName());
1205 
1206       // FIXME: GCC does not appear to mangle the template arguments when
1207       // the template in question is a dependent template name. Should we
1208       // emulate that badness?
1209       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1210                          TST->getNumArgs());
1211       addSubstitution(QualType(TST, 0));
1212     }
1213   } else if (const auto *DTST =
1214                  type->getAs<DependentTemplateSpecializationType>()) {
1215     if (!mangleSubstitution(QualType(DTST, 0))) {
1216       TemplateName Template = getASTContext().getDependentTemplateName(
1217           DTST->getQualifier(), DTST->getIdentifier());
1218       mangleTemplatePrefix(Template);
1219 
1220       // FIXME: GCC does not appear to mangle the template arguments when
1221       // the template in question is a dependent template name. Should we
1222       // emulate that badness?
1223       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1224       addSubstitution(QualType(DTST, 0));
1225     }
1226   } else {
1227     // We use the QualType mangle type variant here because it handles
1228     // substitutions.
1229     mangleType(type);
1230   }
1231 }
1232 
1233 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1234 ///
1235 /// \param recursive - true if this is being called recursively,
1236 ///   i.e. if there is more prefix "to the right".
1237 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1238                                             bool recursive) {
1239 
1240   // x, ::x
1241   // <unresolved-name> ::= [gs] <base-unresolved-name>
1242 
1243   // T::x / decltype(p)::x
1244   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1245 
1246   // T::N::x /decltype(p)::N::x
1247   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1248   //                       <base-unresolved-name>
1249 
1250   // A::x, N::y, A<T>::z; "gs" means leading "::"
1251   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1252   //                       <base-unresolved-name>
1253 
1254   switch (qualifier->getKind()) {
1255   case NestedNameSpecifier::Global:
1256     Out << "gs";
1257 
1258     // We want an 'sr' unless this is the entire NNS.
1259     if (recursive)
1260       Out << "sr";
1261 
1262     // We never want an 'E' here.
1263     return;
1264 
1265   case NestedNameSpecifier::Super:
1266     llvm_unreachable("Can't mangle __super specifier");
1267 
1268   case NestedNameSpecifier::Namespace:
1269     if (qualifier->getPrefix())
1270       mangleUnresolvedPrefix(qualifier->getPrefix(),
1271                              /*recursive*/ true);
1272     else
1273       Out << "sr";
1274     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1275     break;
1276   case NestedNameSpecifier::NamespaceAlias:
1277     if (qualifier->getPrefix())
1278       mangleUnresolvedPrefix(qualifier->getPrefix(),
1279                              /*recursive*/ true);
1280     else
1281       Out << "sr";
1282     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1283     break;
1284 
1285   case NestedNameSpecifier::TypeSpec:
1286   case NestedNameSpecifier::TypeSpecWithTemplate: {
1287     const Type *type = qualifier->getAsType();
1288 
1289     // We only want to use an unresolved-type encoding if this is one of:
1290     //   - a decltype
1291     //   - a template type parameter
1292     //   - a template template parameter with arguments
1293     // In all of these cases, we should have no prefix.
1294     if (qualifier->getPrefix()) {
1295       mangleUnresolvedPrefix(qualifier->getPrefix(),
1296                              /*recursive*/ true);
1297     } else {
1298       // Otherwise, all the cases want this.
1299       Out << "sr";
1300     }
1301 
1302     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1303       return;
1304 
1305     break;
1306   }
1307 
1308   case NestedNameSpecifier::Identifier:
1309     // Member expressions can have these without prefixes.
1310     if (qualifier->getPrefix())
1311       mangleUnresolvedPrefix(qualifier->getPrefix(),
1312                              /*recursive*/ true);
1313     else
1314       Out << "sr";
1315 
1316     mangleSourceName(qualifier->getAsIdentifier());
1317     // An Identifier has no type information, so we can't emit abi tags for it.
1318     break;
1319   }
1320 
1321   // If this was the innermost part of the NNS, and we fell out to
1322   // here, append an 'E'.
1323   if (!recursive)
1324     Out << 'E';
1325 }
1326 
1327 /// Mangle an unresolved-name, which is generally used for names which
1328 /// weren't resolved to specific entities.
1329 void CXXNameMangler::mangleUnresolvedName(
1330     NestedNameSpecifier *qualifier, DeclarationName name,
1331     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1332     unsigned knownArity) {
1333   if (qualifier) mangleUnresolvedPrefix(qualifier);
1334   switch (name.getNameKind()) {
1335     // <base-unresolved-name> ::= <simple-id>
1336     case DeclarationName::Identifier:
1337       mangleSourceName(name.getAsIdentifierInfo());
1338       break;
1339     // <base-unresolved-name> ::= dn <destructor-name>
1340     case DeclarationName::CXXDestructorName:
1341       Out << "dn";
1342       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1343       break;
1344     // <base-unresolved-name> ::= on <operator-name>
1345     case DeclarationName::CXXConversionFunctionName:
1346     case DeclarationName::CXXLiteralOperatorName:
1347     case DeclarationName::CXXOperatorName:
1348       Out << "on";
1349       mangleOperatorName(name, knownArity);
1350       break;
1351     case DeclarationName::CXXConstructorName:
1352       llvm_unreachable("Can't mangle a constructor name!");
1353     case DeclarationName::CXXUsingDirective:
1354       llvm_unreachable("Can't mangle a using directive name!");
1355     case DeclarationName::CXXDeductionGuideName:
1356       llvm_unreachable("Can't mangle a deduction guide name!");
1357     case DeclarationName::ObjCMultiArgSelector:
1358     case DeclarationName::ObjCOneArgSelector:
1359     case DeclarationName::ObjCZeroArgSelector:
1360       llvm_unreachable("Can't mangle Objective-C selector names here!");
1361   }
1362 
1363   // The <simple-id> and on <operator-name> productions end in an optional
1364   // <template-args>.
1365   if (TemplateArgs)
1366     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1367 }
1368 
1369 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1370                                            DeclarationName Name,
1371                                            unsigned KnownArity,
1372                                            const AbiTagList *AdditionalAbiTags) {
1373   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1374   unsigned Arity = KnownArity;
1375   //  <unqualified-name> ::= <operator-name>
1376   //                     ::= <ctor-dtor-name>
1377   //                     ::= <source-name>
1378   switch (Name.getNameKind()) {
1379   case DeclarationName::Identifier: {
1380     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1381 
1382     // We mangle decomposition declarations as the names of their bindings.
1383     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1384       // FIXME: Non-standard mangling for decomposition declarations:
1385       //
1386       //  <unqualified-name> ::= DC <source-name>* E
1387       //
1388       // These can never be referenced across translation units, so we do
1389       // not need a cross-vendor mangling for anything other than demanglers.
1390       // Proposed on cxx-abi-dev on 2016-08-12
1391       Out << "DC";
1392       for (auto *BD : DD->bindings())
1393         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1394       Out << 'E';
1395       writeAbiTags(ND, AdditionalAbiTags);
1396       break;
1397     }
1398 
1399     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1400       // We follow MSVC in mangling GUID declarations as if they were variables
1401       // with a particular reserved name. Continue the pretense here.
1402       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1403       llvm::raw_svector_ostream GUIDOS(GUID);
1404       Context.mangleMSGuidDecl(GD, GUIDOS);
1405       Out << GUID.size() << GUID;
1406       break;
1407     }
1408 
1409     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1410       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1411       Out << "TA";
1412       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1413                                TPO->getValue(), /*TopLevel=*/true);
1414       break;
1415     }
1416 
1417     if (II) {
1418       // Match GCC's naming convention for internal linkage symbols, for
1419       // symbols that are not actually visible outside of this TU. GCC
1420       // distinguishes between internal and external linkage symbols in
1421       // its mangling, to support cases like this that were valid C++ prior
1422       // to DR426:
1423       //
1424       //   void test() { extern void foo(); }
1425       //   static void foo();
1426       //
1427       // Don't bother with the L marker for names in anonymous namespaces; the
1428       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1429       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1430       // implying internal linkage.
1431       if (isInternalLinkageDecl(ND))
1432         Out << 'L';
1433 
1434       auto *FD = dyn_cast<FunctionDecl>(ND);
1435       bool IsRegCall = FD &&
1436                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1437                            clang::CC_X86RegCall;
1438       bool IsDeviceStub =
1439           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1440           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1441       if (IsDeviceStub)
1442         mangleDeviceStubName(II);
1443       else if (IsRegCall)
1444         mangleRegCallName(II);
1445       else
1446         mangleSourceName(II);
1447 
1448       writeAbiTags(ND, AdditionalAbiTags);
1449       break;
1450     }
1451 
1452     // Otherwise, an anonymous entity.  We must have a declaration.
1453     assert(ND && "mangling empty name without declaration");
1454 
1455     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1456       if (NS->isAnonymousNamespace()) {
1457         // This is how gcc mangles these names.
1458         Out << "12_GLOBAL__N_1";
1459         break;
1460       }
1461     }
1462 
1463     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1464       // We must have an anonymous union or struct declaration.
1465       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1466 
1467       // Itanium C++ ABI 5.1.2:
1468       //
1469       //   For the purposes of mangling, the name of an anonymous union is
1470       //   considered to be the name of the first named data member found by a
1471       //   pre-order, depth-first, declaration-order walk of the data members of
1472       //   the anonymous union. If there is no such data member (i.e., if all of
1473       //   the data members in the union are unnamed), then there is no way for
1474       //   a program to refer to the anonymous union, and there is therefore no
1475       //   need to mangle its name.
1476       assert(RD->isAnonymousStructOrUnion()
1477              && "Expected anonymous struct or union!");
1478       const FieldDecl *FD = RD->findFirstNamedDataMember();
1479 
1480       // It's actually possible for various reasons for us to get here
1481       // with an empty anonymous struct / union.  Fortunately, it
1482       // doesn't really matter what name we generate.
1483       if (!FD) break;
1484       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1485 
1486       mangleSourceName(FD->getIdentifier());
1487       // Not emitting abi tags: internal name anyway.
1488       break;
1489     }
1490 
1491     // Class extensions have no name as a category, and it's possible
1492     // for them to be the semantic parent of certain declarations
1493     // (primarily, tag decls defined within declarations).  Such
1494     // declarations will always have internal linkage, so the name
1495     // doesn't really matter, but we shouldn't crash on them.  For
1496     // safety, just handle all ObjC containers here.
1497     if (isa<ObjCContainerDecl>(ND))
1498       break;
1499 
1500     // We must have an anonymous struct.
1501     const TagDecl *TD = cast<TagDecl>(ND);
1502     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1503       assert(TD->getDeclContext() == D->getDeclContext() &&
1504              "Typedef should not be in another decl context!");
1505       assert(D->getDeclName().getAsIdentifierInfo() &&
1506              "Typedef was not named!");
1507       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1508       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1509       // Explicit abi tags are still possible; take from underlying type, not
1510       // from typedef.
1511       writeAbiTags(TD, nullptr);
1512       break;
1513     }
1514 
1515     // <unnamed-type-name> ::= <closure-type-name>
1516     //
1517     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1518     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1519     //     # Parameter types or 'v' for 'void'.
1520     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1521       llvm::Optional<unsigned> DeviceNumber =
1522           Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1523 
1524       // If we have a device-number via the discriminator, use that to mangle
1525       // the lambda, otherwise use the typical lambda-mangling-number. In either
1526       // case, a '0' should be mangled as a normal unnamed class instead of as a
1527       // lambda.
1528       if (Record->isLambda() &&
1529           ((DeviceNumber && *DeviceNumber > 0) ||
1530            (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1531         assert(!AdditionalAbiTags &&
1532                "Lambda type cannot have additional abi tags");
1533         mangleLambda(Record);
1534         break;
1535       }
1536     }
1537 
1538     if (TD->isExternallyVisible()) {
1539       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1540       Out << "Ut";
1541       if (UnnamedMangle > 1)
1542         Out << UnnamedMangle - 2;
1543       Out << '_';
1544       writeAbiTags(TD, AdditionalAbiTags);
1545       break;
1546     }
1547 
1548     // Get a unique id for the anonymous struct. If it is not a real output
1549     // ID doesn't matter so use fake one.
1550     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1551 
1552     // Mangle it as a source name in the form
1553     // [n] $_<id>
1554     // where n is the length of the string.
1555     SmallString<8> Str;
1556     Str += "$_";
1557     Str += llvm::utostr(AnonStructId);
1558 
1559     Out << Str.size();
1560     Out << Str;
1561     break;
1562   }
1563 
1564   case DeclarationName::ObjCZeroArgSelector:
1565   case DeclarationName::ObjCOneArgSelector:
1566   case DeclarationName::ObjCMultiArgSelector:
1567     llvm_unreachable("Can't mangle Objective-C selector names here!");
1568 
1569   case DeclarationName::CXXConstructorName: {
1570     const CXXRecordDecl *InheritedFrom = nullptr;
1571     TemplateName InheritedTemplateName;
1572     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1573     if (auto Inherited =
1574             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1575       InheritedFrom = Inherited.getConstructor()->getParent();
1576       InheritedTemplateName =
1577           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1578       InheritedTemplateArgs =
1579           Inherited.getConstructor()->getTemplateSpecializationArgs();
1580     }
1581 
1582     if (ND == Structor)
1583       // If the named decl is the C++ constructor we're mangling, use the type
1584       // we were given.
1585       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1586     else
1587       // Otherwise, use the complete constructor name. This is relevant if a
1588       // class with a constructor is declared within a constructor.
1589       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1590 
1591     // FIXME: The template arguments are part of the enclosing prefix or
1592     // nested-name, but it's more convenient to mangle them here.
1593     if (InheritedTemplateArgs)
1594       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1595 
1596     writeAbiTags(ND, AdditionalAbiTags);
1597     break;
1598   }
1599 
1600   case DeclarationName::CXXDestructorName:
1601     if (ND == Structor)
1602       // If the named decl is the C++ destructor we're mangling, use the type we
1603       // were given.
1604       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1605     else
1606       // Otherwise, use the complete destructor name. This is relevant if a
1607       // class with a destructor is declared within a destructor.
1608       mangleCXXDtorType(Dtor_Complete);
1609     writeAbiTags(ND, AdditionalAbiTags);
1610     break;
1611 
1612   case DeclarationName::CXXOperatorName:
1613     if (ND && Arity == UnknownArity) {
1614       Arity = cast<FunctionDecl>(ND)->getNumParams();
1615 
1616       // If we have a member function, we need to include the 'this' pointer.
1617       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1618         if (!MD->isStatic())
1619           Arity++;
1620     }
1621     LLVM_FALLTHROUGH;
1622   case DeclarationName::CXXConversionFunctionName:
1623   case DeclarationName::CXXLiteralOperatorName:
1624     mangleOperatorName(Name, Arity);
1625     writeAbiTags(ND, AdditionalAbiTags);
1626     break;
1627 
1628   case DeclarationName::CXXDeductionGuideName:
1629     llvm_unreachable("Can't mangle a deduction guide name!");
1630 
1631   case DeclarationName::CXXUsingDirective:
1632     llvm_unreachable("Can't mangle a using directive name!");
1633   }
1634 }
1635 
1636 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1637   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1638   // <number> ::= [n] <non-negative decimal integer>
1639   // <identifier> ::= <unqualified source code identifier>
1640   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1641       << II->getName();
1642 }
1643 
1644 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1645   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1646   // <number> ::= [n] <non-negative decimal integer>
1647   // <identifier> ::= <unqualified source code identifier>
1648   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1649       << II->getName();
1650 }
1651 
1652 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1653   // <source-name> ::= <positive length number> <identifier>
1654   // <number> ::= [n] <non-negative decimal integer>
1655   // <identifier> ::= <unqualified source code identifier>
1656   Out << II->getLength() << II->getName();
1657 }
1658 
1659 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1660                                       const DeclContext *DC,
1661                                       const AbiTagList *AdditionalAbiTags,
1662                                       bool NoFunction) {
1663   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1664   // <nested-name>
1665   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1666   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1667   //       <template-args> E
1668 
1669   Out << 'N';
1670   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1671     Qualifiers MethodQuals = Method->getMethodQualifiers();
1672     // We do not consider restrict a distinguishing attribute for overloading
1673     // purposes so we must not mangle it.
1674     MethodQuals.removeRestrict();
1675     mangleQualifiers(MethodQuals);
1676     mangleRefQualifier(Method->getRefQualifier());
1677   }
1678 
1679   // Check if we have a template.
1680   const TemplateArgumentList *TemplateArgs = nullptr;
1681   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1682     mangleTemplatePrefix(TD, NoFunction);
1683     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1684   } else {
1685     manglePrefix(DC, NoFunction);
1686     mangleUnqualifiedName(GD, AdditionalAbiTags);
1687   }
1688 
1689   Out << 'E';
1690 }
1691 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1692                                       const TemplateArgument *TemplateArgs,
1693                                       unsigned NumTemplateArgs) {
1694   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1695 
1696   Out << 'N';
1697 
1698   mangleTemplatePrefix(TD);
1699   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1700 
1701   Out << 'E';
1702 }
1703 
1704 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1705     GlobalDecl GD, const NamedDecl *PrefixND,
1706     const AbiTagList *AdditionalAbiTags) {
1707   // A <closure-prefix> represents a variable or field, not a regular
1708   // DeclContext, so needs special handling. In this case we're mangling a
1709   // limited form of <nested-name>:
1710   //
1711   // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1712 
1713   Out << 'N';
1714 
1715   mangleClosurePrefix(PrefixND);
1716   mangleUnqualifiedName(GD, AdditionalAbiTags);
1717 
1718   Out << 'E';
1719 }
1720 
1721 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1722   GlobalDecl GD;
1723   // The Itanium spec says:
1724   // For entities in constructors and destructors, the mangling of the
1725   // complete object constructor or destructor is used as the base function
1726   // name, i.e. the C1 or D1 version.
1727   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1728     GD = GlobalDecl(CD, Ctor_Complete);
1729   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1730     GD = GlobalDecl(DD, Dtor_Complete);
1731   else
1732     GD = GlobalDecl(cast<FunctionDecl>(DC));
1733   return GD;
1734 }
1735 
1736 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1737                                      const AbiTagList *AdditionalAbiTags) {
1738   const Decl *D = GD.getDecl();
1739   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1740   //              := Z <function encoding> E s [<discriminator>]
1741   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1742   //                 _ <entity name>
1743   // <discriminator> := _ <non-negative number>
1744   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1745   const RecordDecl *RD = GetLocalClassDecl(D);
1746   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1747 
1748   Out << 'Z';
1749 
1750   {
1751     AbiTagState LocalAbiTags(AbiTags);
1752 
1753     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1754       mangleObjCMethodName(MD);
1755     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1756       mangleBlockForPrefix(BD);
1757     else
1758       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1759 
1760     // Implicit ABI tags (from namespace) are not available in the following
1761     // entity; reset to actually emitted tags, which are available.
1762     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1763   }
1764 
1765   Out << 'E';
1766 
1767   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1768   // be a bug that is fixed in trunk.
1769 
1770   if (RD) {
1771     // The parameter number is omitted for the last parameter, 0 for the
1772     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1773     // <entity name> will of course contain a <closure-type-name>: Its
1774     // numbering will be local to the particular argument in which it appears
1775     // -- other default arguments do not affect its encoding.
1776     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1777     if (CXXRD && CXXRD->isLambda()) {
1778       if (const ParmVarDecl *Parm
1779               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1780         if (const FunctionDecl *Func
1781               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1782           Out << 'd';
1783           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1784           if (Num > 1)
1785             mangleNumber(Num - 2);
1786           Out << '_';
1787         }
1788       }
1789     }
1790 
1791     // Mangle the name relative to the closest enclosing function.
1792     // equality ok because RD derived from ND above
1793     if (D == RD)  {
1794       mangleUnqualifiedName(RD, AdditionalAbiTags);
1795     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1796       if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1797         mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1798       else
1799         manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1800       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1801       mangleUnqualifiedBlock(BD);
1802     } else {
1803       const NamedDecl *ND = cast<NamedDecl>(D);
1804       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1805                        true /*NoFunction*/);
1806     }
1807   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1808     // Mangle a block in a default parameter; see above explanation for
1809     // lambdas.
1810     if (const ParmVarDecl *Parm
1811             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1812       if (const FunctionDecl *Func
1813             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1814         Out << 'd';
1815         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1816         if (Num > 1)
1817           mangleNumber(Num - 2);
1818         Out << '_';
1819       }
1820     }
1821 
1822     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1823     mangleUnqualifiedBlock(BD);
1824   } else {
1825     mangleUnqualifiedName(GD, AdditionalAbiTags);
1826   }
1827 
1828   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1829     unsigned disc;
1830     if (Context.getNextDiscriminator(ND, disc)) {
1831       if (disc < 10)
1832         Out << '_' << disc;
1833       else
1834         Out << "__" << disc << '_';
1835     }
1836   }
1837 }
1838 
1839 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1840   if (GetLocalClassDecl(Block)) {
1841     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1842     return;
1843   }
1844   const DeclContext *DC = getEffectiveDeclContext(Block);
1845   if (isLocalContainerContext(DC)) {
1846     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1847     return;
1848   }
1849   if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1850     mangleClosurePrefix(PrefixND);
1851   else
1852     manglePrefix(DC);
1853   mangleUnqualifiedBlock(Block);
1854 }
1855 
1856 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1857   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1858   // <data-member-prefix> now, with no substitutions and no <template-args>.
1859   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1860     if (getASTContext().getLangOpts().getClangABICompat() <=
1861             LangOptions::ClangABI::Ver12 &&
1862         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1863         Context->getDeclContext()->isRecord()) {
1864       const auto *ND = cast<NamedDecl>(Context);
1865       if (ND->getIdentifier()) {
1866         mangleSourceNameWithAbiTags(ND);
1867         Out << 'M';
1868       }
1869     }
1870   }
1871 
1872   // If we have a block mangling number, use it.
1873   unsigned Number = Block->getBlockManglingNumber();
1874   // Otherwise, just make up a number. It doesn't matter what it is because
1875   // the symbol in question isn't externally visible.
1876   if (!Number)
1877     Number = Context.getBlockId(Block, false);
1878   else {
1879     // Stored mangling numbers are 1-based.
1880     --Number;
1881   }
1882   Out << "Ub";
1883   if (Number > 0)
1884     Out << Number - 1;
1885   Out << '_';
1886 }
1887 
1888 // <template-param-decl>
1889 //   ::= Ty                              # template type parameter
1890 //   ::= Tn <type>                       # template non-type parameter
1891 //   ::= Tt <template-param-decl>* E     # template template parameter
1892 //   ::= Tp <template-param-decl>        # template parameter pack
1893 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1894   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1895     if (Ty->isParameterPack())
1896       Out << "Tp";
1897     Out << "Ty";
1898   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1899     if (Tn->isExpandedParameterPack()) {
1900       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1901         Out << "Tn";
1902         mangleType(Tn->getExpansionType(I));
1903       }
1904     } else {
1905       QualType T = Tn->getType();
1906       if (Tn->isParameterPack()) {
1907         Out << "Tp";
1908         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1909           T = PackExpansion->getPattern();
1910       }
1911       Out << "Tn";
1912       mangleType(T);
1913     }
1914   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1915     if (Tt->isExpandedParameterPack()) {
1916       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1917            ++I) {
1918         Out << "Tt";
1919         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1920           mangleTemplateParamDecl(Param);
1921         Out << "E";
1922       }
1923     } else {
1924       if (Tt->isParameterPack())
1925         Out << "Tp";
1926       Out << "Tt";
1927       for (auto *Param : *Tt->getTemplateParameters())
1928         mangleTemplateParamDecl(Param);
1929       Out << "E";
1930     }
1931   }
1932 }
1933 
1934 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1935   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1936   // <data-member-prefix> now, with no substitutions.
1937   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1938     if (getASTContext().getLangOpts().getClangABICompat() <=
1939             LangOptions::ClangABI::Ver12 &&
1940         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1941         !isa<ParmVarDecl>(Context)) {
1942       if (const IdentifierInfo *Name
1943             = cast<NamedDecl>(Context)->getIdentifier()) {
1944         mangleSourceName(Name);
1945         const TemplateArgumentList *TemplateArgs = nullptr;
1946         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1947           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1948         Out << 'M';
1949       }
1950     }
1951   }
1952 
1953   Out << "Ul";
1954   mangleLambdaSig(Lambda);
1955   Out << "E";
1956 
1957   // The number is omitted for the first closure type with a given
1958   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1959   // (in lexical order) with that same <lambda-sig> and context.
1960   //
1961   // The AST keeps track of the number for us.
1962   //
1963   // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
1964   // and host-side compilations, an extra device mangle context may be created
1965   // if the host-side CXX ABI has different numbering for lambda. In such case,
1966   // if the mangle context is that device-side one, use the device-side lambda
1967   // mangling number for this lambda.
1968   llvm::Optional<unsigned> DeviceNumber =
1969       Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
1970   unsigned Number =
1971       DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
1972 
1973   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1974   if (Number > 1)
1975     mangleNumber(Number - 2);
1976   Out << '_';
1977 }
1978 
1979 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1980   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1981     mangleTemplateParamDecl(D);
1982   auto *Proto =
1983       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1984   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1985                          Lambda->getLambdaStaticInvoker());
1986 }
1987 
1988 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1989   switch (qualifier->getKind()) {
1990   case NestedNameSpecifier::Global:
1991     // nothing
1992     return;
1993 
1994   case NestedNameSpecifier::Super:
1995     llvm_unreachable("Can't mangle __super specifier");
1996 
1997   case NestedNameSpecifier::Namespace:
1998     mangleName(qualifier->getAsNamespace());
1999     return;
2000 
2001   case NestedNameSpecifier::NamespaceAlias:
2002     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
2003     return;
2004 
2005   case NestedNameSpecifier::TypeSpec:
2006   case NestedNameSpecifier::TypeSpecWithTemplate:
2007     manglePrefix(QualType(qualifier->getAsType(), 0));
2008     return;
2009 
2010   case NestedNameSpecifier::Identifier:
2011     // Member expressions can have these without prefixes, but that
2012     // should end up in mangleUnresolvedPrefix instead.
2013     assert(qualifier->getPrefix());
2014     manglePrefix(qualifier->getPrefix());
2015 
2016     mangleSourceName(qualifier->getAsIdentifier());
2017     return;
2018   }
2019 
2020   llvm_unreachable("unexpected nested name specifier");
2021 }
2022 
2023 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2024   //  <prefix> ::= <prefix> <unqualified-name>
2025   //           ::= <template-prefix> <template-args>
2026   //           ::= <closure-prefix>
2027   //           ::= <template-param>
2028   //           ::= # empty
2029   //           ::= <substitution>
2030 
2031   DC = IgnoreLinkageSpecDecls(DC);
2032 
2033   if (DC->isTranslationUnit())
2034     return;
2035 
2036   if (NoFunction && isLocalContainerContext(DC))
2037     return;
2038 
2039   assert(!isLocalContainerContext(DC));
2040 
2041   const NamedDecl *ND = cast<NamedDecl>(DC);
2042   if (mangleSubstitution(ND))
2043     return;
2044 
2045   // Check if we have a template-prefix or a closure-prefix.
2046   const TemplateArgumentList *TemplateArgs = nullptr;
2047   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2048     mangleTemplatePrefix(TD);
2049     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2050   } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2051     mangleClosurePrefix(PrefixND, NoFunction);
2052     mangleUnqualifiedName(ND, nullptr);
2053   } else {
2054     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2055     mangleUnqualifiedName(ND, nullptr);
2056   }
2057 
2058   addSubstitution(ND);
2059 }
2060 
2061 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2062   // <template-prefix> ::= <prefix> <template unqualified-name>
2063   //                   ::= <template-param>
2064   //                   ::= <substitution>
2065   if (TemplateDecl *TD = Template.getAsTemplateDecl())
2066     return mangleTemplatePrefix(TD);
2067 
2068   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2069   assert(Dependent && "unexpected template name kind");
2070 
2071   // Clang 11 and before mangled the substitution for a dependent template name
2072   // after already having emitted (a substitution for) the prefix.
2073   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2074                        LangOptions::ClangABI::Ver11;
2075   if (!Clang11Compat && mangleSubstitution(Template))
2076     return;
2077 
2078   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2079     manglePrefix(Qualifier);
2080 
2081   if (Clang11Compat && mangleSubstitution(Template))
2082     return;
2083 
2084   if (const IdentifierInfo *Id = Dependent->getIdentifier())
2085     mangleSourceName(Id);
2086   else
2087     mangleOperatorName(Dependent->getOperator(), UnknownArity);
2088 
2089   addSubstitution(Template);
2090 }
2091 
2092 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2093                                           bool NoFunction) {
2094   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2095   // <template-prefix> ::= <prefix> <template unqualified-name>
2096   //                   ::= <template-param>
2097   //                   ::= <substitution>
2098   // <template-template-param> ::= <template-param>
2099   //                               <substitution>
2100 
2101   if (mangleSubstitution(ND))
2102     return;
2103 
2104   // <template-template-param> ::= <template-param>
2105   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2106     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2107   } else {
2108     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2109     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2110       mangleUnqualifiedName(GD, nullptr);
2111     else
2112       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
2113   }
2114 
2115   addSubstitution(ND);
2116 }
2117 
2118 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2119   if (getASTContext().getLangOpts().getClangABICompat() <=
2120       LangOptions::ClangABI::Ver12)
2121     return nullptr;
2122 
2123   const NamedDecl *Context = nullptr;
2124   if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2125     Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2126   } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2127     if (RD->isLambda())
2128       Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2129   }
2130   if (!Context)
2131     return nullptr;
2132 
2133   // Only lambdas within the initializer of a non-local variable or non-static
2134   // data member get a <closure-prefix>.
2135   if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2136       isa<FieldDecl>(Context))
2137     return Context;
2138 
2139   return nullptr;
2140 }
2141 
2142 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2143   //  <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2144   //                   ::= <template-prefix> <template-args> M
2145   if (mangleSubstitution(ND))
2146     return;
2147 
2148   const TemplateArgumentList *TemplateArgs = nullptr;
2149   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2150     mangleTemplatePrefix(TD, NoFunction);
2151     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2152   } else {
2153     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2154     mangleUnqualifiedName(ND, nullptr);
2155   }
2156 
2157   Out << 'M';
2158 
2159   addSubstitution(ND);
2160 }
2161 
2162 /// Mangles a template name under the production <type>.  Required for
2163 /// template template arguments.
2164 ///   <type> ::= <class-enum-type>
2165 ///          ::= <template-param>
2166 ///          ::= <substitution>
2167 void CXXNameMangler::mangleType(TemplateName TN) {
2168   if (mangleSubstitution(TN))
2169     return;
2170 
2171   TemplateDecl *TD = nullptr;
2172 
2173   switch (TN.getKind()) {
2174   case TemplateName::QualifiedTemplate:
2175     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
2176     goto HaveDecl;
2177 
2178   case TemplateName::Template:
2179     TD = TN.getAsTemplateDecl();
2180     goto HaveDecl;
2181 
2182   HaveDecl:
2183     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2184       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2185     else
2186       mangleName(TD);
2187     break;
2188 
2189   case TemplateName::OverloadedTemplate:
2190   case TemplateName::AssumedTemplate:
2191     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2192 
2193   case TemplateName::DependentTemplate: {
2194     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2195     assert(Dependent->isIdentifier());
2196 
2197     // <class-enum-type> ::= <name>
2198     // <name> ::= <nested-name>
2199     mangleUnresolvedPrefix(Dependent->getQualifier());
2200     mangleSourceName(Dependent->getIdentifier());
2201     break;
2202   }
2203 
2204   case TemplateName::SubstTemplateTemplateParm: {
2205     // Substituted template parameters are mangled as the substituted
2206     // template.  This will check for the substitution twice, which is
2207     // fine, but we have to return early so that we don't try to *add*
2208     // the substitution twice.
2209     SubstTemplateTemplateParmStorage *subst
2210       = TN.getAsSubstTemplateTemplateParm();
2211     mangleType(subst->getReplacement());
2212     return;
2213   }
2214 
2215   case TemplateName::SubstTemplateTemplateParmPack: {
2216     // FIXME: not clear how to mangle this!
2217     // template <template <class> class T...> class A {
2218     //   template <template <class> class U...> void foo(B<T,U> x...);
2219     // };
2220     Out << "_SUBSTPACK_";
2221     break;
2222   }
2223   }
2224 
2225   addSubstitution(TN);
2226 }
2227 
2228 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2229                                                     StringRef Prefix) {
2230   // Only certain other types are valid as prefixes;  enumerate them.
2231   switch (Ty->getTypeClass()) {
2232   case Type::Builtin:
2233   case Type::Complex:
2234   case Type::Adjusted:
2235   case Type::Decayed:
2236   case Type::Pointer:
2237   case Type::BlockPointer:
2238   case Type::LValueReference:
2239   case Type::RValueReference:
2240   case Type::MemberPointer:
2241   case Type::ConstantArray:
2242   case Type::IncompleteArray:
2243   case Type::VariableArray:
2244   case Type::DependentSizedArray:
2245   case Type::DependentAddressSpace:
2246   case Type::DependentVector:
2247   case Type::DependentSizedExtVector:
2248   case Type::Vector:
2249   case Type::ExtVector:
2250   case Type::ConstantMatrix:
2251   case Type::DependentSizedMatrix:
2252   case Type::FunctionProto:
2253   case Type::FunctionNoProto:
2254   case Type::Paren:
2255   case Type::Attributed:
2256   case Type::Auto:
2257   case Type::DeducedTemplateSpecialization:
2258   case Type::PackExpansion:
2259   case Type::ObjCObject:
2260   case Type::ObjCInterface:
2261   case Type::ObjCObjectPointer:
2262   case Type::ObjCTypeParam:
2263   case Type::Atomic:
2264   case Type::Pipe:
2265   case Type::MacroQualified:
2266   case Type::ExtInt:
2267   case Type::DependentExtInt:
2268     llvm_unreachable("type is illegal as a nested name specifier");
2269 
2270   case Type::SubstTemplateTypeParmPack:
2271     // FIXME: not clear how to mangle this!
2272     // template <class T...> class A {
2273     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2274     // };
2275     Out << "_SUBSTPACK_";
2276     break;
2277 
2278   // <unresolved-type> ::= <template-param>
2279   //                   ::= <decltype>
2280   //                   ::= <template-template-param> <template-args>
2281   // (this last is not official yet)
2282   case Type::TypeOfExpr:
2283   case Type::TypeOf:
2284   case Type::Decltype:
2285   case Type::TemplateTypeParm:
2286   case Type::UnaryTransform:
2287   case Type::SubstTemplateTypeParm:
2288   unresolvedType:
2289     // Some callers want a prefix before the mangled type.
2290     Out << Prefix;
2291 
2292     // This seems to do everything we want.  It's not really
2293     // sanctioned for a substituted template parameter, though.
2294     mangleType(Ty);
2295 
2296     // We never want to print 'E' directly after an unresolved-type,
2297     // so we return directly.
2298     return true;
2299 
2300   case Type::Typedef:
2301     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2302     break;
2303 
2304   case Type::UnresolvedUsing:
2305     mangleSourceNameWithAbiTags(
2306         cast<UnresolvedUsingType>(Ty)->getDecl());
2307     break;
2308 
2309   case Type::Enum:
2310   case Type::Record:
2311     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2312     break;
2313 
2314   case Type::TemplateSpecialization: {
2315     const TemplateSpecializationType *TST =
2316         cast<TemplateSpecializationType>(Ty);
2317     TemplateName TN = TST->getTemplateName();
2318     switch (TN.getKind()) {
2319     case TemplateName::Template:
2320     case TemplateName::QualifiedTemplate: {
2321       TemplateDecl *TD = TN.getAsTemplateDecl();
2322 
2323       // If the base is a template template parameter, this is an
2324       // unresolved type.
2325       assert(TD && "no template for template specialization type");
2326       if (isa<TemplateTemplateParmDecl>(TD))
2327         goto unresolvedType;
2328 
2329       mangleSourceNameWithAbiTags(TD);
2330       break;
2331     }
2332 
2333     case TemplateName::OverloadedTemplate:
2334     case TemplateName::AssumedTemplate:
2335     case TemplateName::DependentTemplate:
2336       llvm_unreachable("invalid base for a template specialization type");
2337 
2338     case TemplateName::SubstTemplateTemplateParm: {
2339       SubstTemplateTemplateParmStorage *subst =
2340           TN.getAsSubstTemplateTemplateParm();
2341       mangleExistingSubstitution(subst->getReplacement());
2342       break;
2343     }
2344 
2345     case TemplateName::SubstTemplateTemplateParmPack: {
2346       // FIXME: not clear how to mangle this!
2347       // template <template <class U> class T...> class A {
2348       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2349       // };
2350       Out << "_SUBSTPACK_";
2351       break;
2352     }
2353     }
2354 
2355     // Note: we don't pass in the template name here. We are mangling the
2356     // original source-level template arguments, so we shouldn't consider
2357     // conversions to the corresponding template parameter.
2358     // FIXME: Other compilers mangle partially-resolved template arguments in
2359     // unresolved-qualifier-levels.
2360     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2361     break;
2362   }
2363 
2364   case Type::InjectedClassName:
2365     mangleSourceNameWithAbiTags(
2366         cast<InjectedClassNameType>(Ty)->getDecl());
2367     break;
2368 
2369   case Type::DependentName:
2370     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2371     break;
2372 
2373   case Type::DependentTemplateSpecialization: {
2374     const DependentTemplateSpecializationType *DTST =
2375         cast<DependentTemplateSpecializationType>(Ty);
2376     TemplateName Template = getASTContext().getDependentTemplateName(
2377         DTST->getQualifier(), DTST->getIdentifier());
2378     mangleSourceName(DTST->getIdentifier());
2379     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2380     break;
2381   }
2382 
2383   case Type::Elaborated:
2384     return mangleUnresolvedTypeOrSimpleId(
2385         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2386   }
2387 
2388   return false;
2389 }
2390 
2391 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2392   switch (Name.getNameKind()) {
2393   case DeclarationName::CXXConstructorName:
2394   case DeclarationName::CXXDestructorName:
2395   case DeclarationName::CXXDeductionGuideName:
2396   case DeclarationName::CXXUsingDirective:
2397   case DeclarationName::Identifier:
2398   case DeclarationName::ObjCMultiArgSelector:
2399   case DeclarationName::ObjCOneArgSelector:
2400   case DeclarationName::ObjCZeroArgSelector:
2401     llvm_unreachable("Not an operator name");
2402 
2403   case DeclarationName::CXXConversionFunctionName:
2404     // <operator-name> ::= cv <type>    # (cast)
2405     Out << "cv";
2406     mangleType(Name.getCXXNameType());
2407     break;
2408 
2409   case DeclarationName::CXXLiteralOperatorName:
2410     Out << "li";
2411     mangleSourceName(Name.getCXXLiteralIdentifier());
2412     return;
2413 
2414   case DeclarationName::CXXOperatorName:
2415     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2416     break;
2417   }
2418 }
2419 
2420 void
2421 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2422   switch (OO) {
2423   // <operator-name> ::= nw     # new
2424   case OO_New: Out << "nw"; break;
2425   //              ::= na        # new[]
2426   case OO_Array_New: Out << "na"; break;
2427   //              ::= dl        # delete
2428   case OO_Delete: Out << "dl"; break;
2429   //              ::= da        # delete[]
2430   case OO_Array_Delete: Out << "da"; break;
2431   //              ::= ps        # + (unary)
2432   //              ::= pl        # + (binary or unknown)
2433   case OO_Plus:
2434     Out << (Arity == 1? "ps" : "pl"); break;
2435   //              ::= ng        # - (unary)
2436   //              ::= mi        # - (binary or unknown)
2437   case OO_Minus:
2438     Out << (Arity == 1? "ng" : "mi"); break;
2439   //              ::= ad        # & (unary)
2440   //              ::= an        # & (binary or unknown)
2441   case OO_Amp:
2442     Out << (Arity == 1? "ad" : "an"); break;
2443   //              ::= de        # * (unary)
2444   //              ::= ml        # * (binary or unknown)
2445   case OO_Star:
2446     // Use binary when unknown.
2447     Out << (Arity == 1? "de" : "ml"); break;
2448   //              ::= co        # ~
2449   case OO_Tilde: Out << "co"; break;
2450   //              ::= dv        # /
2451   case OO_Slash: Out << "dv"; break;
2452   //              ::= rm        # %
2453   case OO_Percent: Out << "rm"; break;
2454   //              ::= or        # |
2455   case OO_Pipe: Out << "or"; break;
2456   //              ::= eo        # ^
2457   case OO_Caret: Out << "eo"; break;
2458   //              ::= aS        # =
2459   case OO_Equal: Out << "aS"; break;
2460   //              ::= pL        # +=
2461   case OO_PlusEqual: Out << "pL"; break;
2462   //              ::= mI        # -=
2463   case OO_MinusEqual: Out << "mI"; break;
2464   //              ::= mL        # *=
2465   case OO_StarEqual: Out << "mL"; break;
2466   //              ::= dV        # /=
2467   case OO_SlashEqual: Out << "dV"; break;
2468   //              ::= rM        # %=
2469   case OO_PercentEqual: Out << "rM"; break;
2470   //              ::= aN        # &=
2471   case OO_AmpEqual: Out << "aN"; break;
2472   //              ::= oR        # |=
2473   case OO_PipeEqual: Out << "oR"; break;
2474   //              ::= eO        # ^=
2475   case OO_CaretEqual: Out << "eO"; break;
2476   //              ::= ls        # <<
2477   case OO_LessLess: Out << "ls"; break;
2478   //              ::= rs        # >>
2479   case OO_GreaterGreater: Out << "rs"; break;
2480   //              ::= lS        # <<=
2481   case OO_LessLessEqual: Out << "lS"; break;
2482   //              ::= rS        # >>=
2483   case OO_GreaterGreaterEqual: Out << "rS"; break;
2484   //              ::= eq        # ==
2485   case OO_EqualEqual: Out << "eq"; break;
2486   //              ::= ne        # !=
2487   case OO_ExclaimEqual: Out << "ne"; break;
2488   //              ::= lt        # <
2489   case OO_Less: Out << "lt"; break;
2490   //              ::= gt        # >
2491   case OO_Greater: Out << "gt"; break;
2492   //              ::= le        # <=
2493   case OO_LessEqual: Out << "le"; break;
2494   //              ::= ge        # >=
2495   case OO_GreaterEqual: Out << "ge"; break;
2496   //              ::= nt        # !
2497   case OO_Exclaim: Out << "nt"; break;
2498   //              ::= aa        # &&
2499   case OO_AmpAmp: Out << "aa"; break;
2500   //              ::= oo        # ||
2501   case OO_PipePipe: Out << "oo"; break;
2502   //              ::= pp        # ++
2503   case OO_PlusPlus: Out << "pp"; break;
2504   //              ::= mm        # --
2505   case OO_MinusMinus: Out << "mm"; break;
2506   //              ::= cm        # ,
2507   case OO_Comma: Out << "cm"; break;
2508   //              ::= pm        # ->*
2509   case OO_ArrowStar: Out << "pm"; break;
2510   //              ::= pt        # ->
2511   case OO_Arrow: Out << "pt"; break;
2512   //              ::= cl        # ()
2513   case OO_Call: Out << "cl"; break;
2514   //              ::= ix        # []
2515   case OO_Subscript: Out << "ix"; break;
2516 
2517   //              ::= qu        # ?
2518   // The conditional operator can't be overloaded, but we still handle it when
2519   // mangling expressions.
2520   case OO_Conditional: Out << "qu"; break;
2521   // Proposal on cxx-abi-dev, 2015-10-21.
2522   //              ::= aw        # co_await
2523   case OO_Coawait: Out << "aw"; break;
2524   // Proposed in cxx-abi github issue 43.
2525   //              ::= ss        # <=>
2526   case OO_Spaceship: Out << "ss"; break;
2527 
2528   case OO_None:
2529   case NUM_OVERLOADED_OPERATORS:
2530     llvm_unreachable("Not an overloaded operator");
2531   }
2532 }
2533 
2534 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2535   // Vendor qualifiers come first and if they are order-insensitive they must
2536   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2537 
2538   // <type> ::= U <addrspace-expr>
2539   if (DAST) {
2540     Out << "U2ASI";
2541     mangleExpression(DAST->getAddrSpaceExpr());
2542     Out << "E";
2543   }
2544 
2545   // Address space qualifiers start with an ordinary letter.
2546   if (Quals.hasAddressSpace()) {
2547     // Address space extension:
2548     //
2549     //   <type> ::= U <target-addrspace>
2550     //   <type> ::= U <OpenCL-addrspace>
2551     //   <type> ::= U <CUDA-addrspace>
2552 
2553     SmallString<64> ASString;
2554     LangAS AS = Quals.getAddressSpace();
2555 
2556     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2557       //  <target-addrspace> ::= "AS" <address-space-number>
2558       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2559       if (TargetAS != 0 ||
2560           Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2561         ASString = "AS" + llvm::utostr(TargetAS);
2562     } else {
2563       switch (AS) {
2564       default: llvm_unreachable("Not a language specific address space");
2565       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2566       //                                "private"| "generic" | "device" |
2567       //                                "host" ]
2568       case LangAS::opencl_global:
2569         ASString = "CLglobal";
2570         break;
2571       case LangAS::opencl_global_device:
2572         ASString = "CLdevice";
2573         break;
2574       case LangAS::opencl_global_host:
2575         ASString = "CLhost";
2576         break;
2577       case LangAS::opencl_local:
2578         ASString = "CLlocal";
2579         break;
2580       case LangAS::opencl_constant:
2581         ASString = "CLconstant";
2582         break;
2583       case LangAS::opencl_private:
2584         ASString = "CLprivate";
2585         break;
2586       case LangAS::opencl_generic:
2587         ASString = "CLgeneric";
2588         break;
2589       //  <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2590       //                              "device" | "host" ]
2591       case LangAS::sycl_global:
2592         ASString = "SYglobal";
2593         break;
2594       case LangAS::sycl_global_device:
2595         ASString = "SYdevice";
2596         break;
2597       case LangAS::sycl_global_host:
2598         ASString = "SYhost";
2599         break;
2600       case LangAS::sycl_local:
2601         ASString = "SYlocal";
2602         break;
2603       case LangAS::sycl_private:
2604         ASString = "SYprivate";
2605         break;
2606       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2607       case LangAS::cuda_device:
2608         ASString = "CUdevice";
2609         break;
2610       case LangAS::cuda_constant:
2611         ASString = "CUconstant";
2612         break;
2613       case LangAS::cuda_shared:
2614         ASString = "CUshared";
2615         break;
2616       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2617       case LangAS::ptr32_sptr:
2618         ASString = "ptr32_sptr";
2619         break;
2620       case LangAS::ptr32_uptr:
2621         ASString = "ptr32_uptr";
2622         break;
2623       case LangAS::ptr64:
2624         ASString = "ptr64";
2625         break;
2626       }
2627     }
2628     if (!ASString.empty())
2629       mangleVendorQualifier(ASString);
2630   }
2631 
2632   // The ARC ownership qualifiers start with underscores.
2633   // Objective-C ARC Extension:
2634   //
2635   //   <type> ::= U "__strong"
2636   //   <type> ::= U "__weak"
2637   //   <type> ::= U "__autoreleasing"
2638   //
2639   // Note: we emit __weak first to preserve the order as
2640   // required by the Itanium ABI.
2641   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2642     mangleVendorQualifier("__weak");
2643 
2644   // __unaligned (from -fms-extensions)
2645   if (Quals.hasUnaligned())
2646     mangleVendorQualifier("__unaligned");
2647 
2648   // Remaining ARC ownership qualifiers.
2649   switch (Quals.getObjCLifetime()) {
2650   case Qualifiers::OCL_None:
2651     break;
2652 
2653   case Qualifiers::OCL_Weak:
2654     // Do nothing as we already handled this case above.
2655     break;
2656 
2657   case Qualifiers::OCL_Strong:
2658     mangleVendorQualifier("__strong");
2659     break;
2660 
2661   case Qualifiers::OCL_Autoreleasing:
2662     mangleVendorQualifier("__autoreleasing");
2663     break;
2664 
2665   case Qualifiers::OCL_ExplicitNone:
2666     // The __unsafe_unretained qualifier is *not* mangled, so that
2667     // __unsafe_unretained types in ARC produce the same manglings as the
2668     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2669     // better ABI compatibility.
2670     //
2671     // It's safe to do this because unqualified 'id' won't show up
2672     // in any type signatures that need to be mangled.
2673     break;
2674   }
2675 
2676   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2677   if (Quals.hasRestrict())
2678     Out << 'r';
2679   if (Quals.hasVolatile())
2680     Out << 'V';
2681   if (Quals.hasConst())
2682     Out << 'K';
2683 }
2684 
2685 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2686   Out << 'U' << name.size() << name;
2687 }
2688 
2689 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2690   // <ref-qualifier> ::= R                # lvalue reference
2691   //                 ::= O                # rvalue-reference
2692   switch (RefQualifier) {
2693   case RQ_None:
2694     break;
2695 
2696   case RQ_LValue:
2697     Out << 'R';
2698     break;
2699 
2700   case RQ_RValue:
2701     Out << 'O';
2702     break;
2703   }
2704 }
2705 
2706 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2707   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2708 }
2709 
2710 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2711                                 ASTContext &Ctx) {
2712   if (Quals)
2713     return true;
2714   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2715     return true;
2716   if (Ty->isOpenCLSpecificType())
2717     return true;
2718   if (Ty->isBuiltinType())
2719     return false;
2720   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2721   // substitution candidates.
2722   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2723       isa<AutoType>(Ty))
2724     return false;
2725   // A placeholder type for class template deduction is substitutable with
2726   // its corresponding template name; this is handled specially when mangling
2727   // the type.
2728   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2729     if (DeducedTST->getDeducedType().isNull())
2730       return false;
2731   return true;
2732 }
2733 
2734 void CXXNameMangler::mangleType(QualType T) {
2735   // If our type is instantiation-dependent but not dependent, we mangle
2736   // it as it was written in the source, removing any top-level sugar.
2737   // Otherwise, use the canonical type.
2738   //
2739   // FIXME: This is an approximation of the instantiation-dependent name
2740   // mangling rules, since we should really be using the type as written and
2741   // augmented via semantic analysis (i.e., with implicit conversions and
2742   // default template arguments) for any instantiation-dependent type.
2743   // Unfortunately, that requires several changes to our AST:
2744   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2745   //     uniqued, so that we can handle substitutions properly
2746   //   - Default template arguments will need to be represented in the
2747   //     TemplateSpecializationType, since they need to be mangled even though
2748   //     they aren't written.
2749   //   - Conversions on non-type template arguments need to be expressed, since
2750   //     they can affect the mangling of sizeof/alignof.
2751   //
2752   // FIXME: This is wrong when mapping to the canonical type for a dependent
2753   // type discards instantiation-dependent portions of the type, such as for:
2754   //
2755   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2756   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2757   //
2758   // It's also wrong in the opposite direction when instantiation-dependent,
2759   // canonically-equivalent types differ in some irrelevant portion of inner
2760   // type sugar. In such cases, we fail to form correct substitutions, eg:
2761   //
2762   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2763   //
2764   // We should instead canonicalize the non-instantiation-dependent parts,
2765   // regardless of whether the type as a whole is dependent or instantiation
2766   // dependent.
2767   if (!T->isInstantiationDependentType() || T->isDependentType())
2768     T = T.getCanonicalType();
2769   else {
2770     // Desugar any types that are purely sugar.
2771     do {
2772       // Don't desugar through template specialization types that aren't
2773       // type aliases. We need to mangle the template arguments as written.
2774       if (const TemplateSpecializationType *TST
2775                                       = dyn_cast<TemplateSpecializationType>(T))
2776         if (!TST->isTypeAlias())
2777           break;
2778 
2779       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2780       // instantation-dependent qualifiers. See
2781       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2782 
2783       QualType Desugared
2784         = T.getSingleStepDesugaredType(Context.getASTContext());
2785       if (Desugared == T)
2786         break;
2787 
2788       T = Desugared;
2789     } while (true);
2790   }
2791   SplitQualType split = T.split();
2792   Qualifiers quals = split.Quals;
2793   const Type *ty = split.Ty;
2794 
2795   bool isSubstitutable =
2796     isTypeSubstitutable(quals, ty, Context.getASTContext());
2797   if (isSubstitutable && mangleSubstitution(T))
2798     return;
2799 
2800   // If we're mangling a qualified array type, push the qualifiers to
2801   // the element type.
2802   if (quals && isa<ArrayType>(T)) {
2803     ty = Context.getASTContext().getAsArrayType(T);
2804     quals = Qualifiers();
2805 
2806     // Note that we don't update T: we want to add the
2807     // substitution at the original type.
2808   }
2809 
2810   if (quals || ty->isDependentAddressSpaceType()) {
2811     if (const DependentAddressSpaceType *DAST =
2812         dyn_cast<DependentAddressSpaceType>(ty)) {
2813       SplitQualType splitDAST = DAST->getPointeeType().split();
2814       mangleQualifiers(splitDAST.Quals, DAST);
2815       mangleType(QualType(splitDAST.Ty, 0));
2816     } else {
2817       mangleQualifiers(quals);
2818 
2819       // Recurse:  even if the qualified type isn't yet substitutable,
2820       // the unqualified type might be.
2821       mangleType(QualType(ty, 0));
2822     }
2823   } else {
2824     switch (ty->getTypeClass()) {
2825 #define ABSTRACT_TYPE(CLASS, PARENT)
2826 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2827     case Type::CLASS: \
2828       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2829       return;
2830 #define TYPE(CLASS, PARENT) \
2831     case Type::CLASS: \
2832       mangleType(static_cast<const CLASS##Type*>(ty)); \
2833       break;
2834 #include "clang/AST/TypeNodes.inc"
2835     }
2836   }
2837 
2838   // Add the substitution.
2839   if (isSubstitutable)
2840     addSubstitution(T);
2841 }
2842 
2843 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2844   if (!mangleStandardSubstitution(ND))
2845     mangleName(ND);
2846 }
2847 
2848 void CXXNameMangler::mangleType(const BuiltinType *T) {
2849   //  <type>         ::= <builtin-type>
2850   //  <builtin-type> ::= v  # void
2851   //                 ::= w  # wchar_t
2852   //                 ::= b  # bool
2853   //                 ::= c  # char
2854   //                 ::= a  # signed char
2855   //                 ::= h  # unsigned char
2856   //                 ::= s  # short
2857   //                 ::= t  # unsigned short
2858   //                 ::= i  # int
2859   //                 ::= j  # unsigned int
2860   //                 ::= l  # long
2861   //                 ::= m  # unsigned long
2862   //                 ::= x  # long long, __int64
2863   //                 ::= y  # unsigned long long, __int64
2864   //                 ::= n  # __int128
2865   //                 ::= o  # unsigned __int128
2866   //                 ::= f  # float
2867   //                 ::= d  # double
2868   //                 ::= e  # long double, __float80
2869   //                 ::= g  # __float128
2870   //                 ::= g  # __ibm128
2871   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2872   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2873   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2874   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2875   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2876   //                 ::= Di # char32_t
2877   //                 ::= Ds # char16_t
2878   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2879   //                 ::= u <source-name>    # vendor extended type
2880   std::string type_name;
2881   switch (T->getKind()) {
2882   case BuiltinType::Void:
2883     Out << 'v';
2884     break;
2885   case BuiltinType::Bool:
2886     Out << 'b';
2887     break;
2888   case BuiltinType::Char_U:
2889   case BuiltinType::Char_S:
2890     Out << 'c';
2891     break;
2892   case BuiltinType::UChar:
2893     Out << 'h';
2894     break;
2895   case BuiltinType::UShort:
2896     Out << 't';
2897     break;
2898   case BuiltinType::UInt:
2899     Out << 'j';
2900     break;
2901   case BuiltinType::ULong:
2902     Out << 'm';
2903     break;
2904   case BuiltinType::ULongLong:
2905     Out << 'y';
2906     break;
2907   case BuiltinType::UInt128:
2908     Out << 'o';
2909     break;
2910   case BuiltinType::SChar:
2911     Out << 'a';
2912     break;
2913   case BuiltinType::WChar_S:
2914   case BuiltinType::WChar_U:
2915     Out << 'w';
2916     break;
2917   case BuiltinType::Char8:
2918     Out << "Du";
2919     break;
2920   case BuiltinType::Char16:
2921     Out << "Ds";
2922     break;
2923   case BuiltinType::Char32:
2924     Out << "Di";
2925     break;
2926   case BuiltinType::Short:
2927     Out << 's';
2928     break;
2929   case BuiltinType::Int:
2930     Out << 'i';
2931     break;
2932   case BuiltinType::Long:
2933     Out << 'l';
2934     break;
2935   case BuiltinType::LongLong:
2936     Out << 'x';
2937     break;
2938   case BuiltinType::Int128:
2939     Out << 'n';
2940     break;
2941   case BuiltinType::Float16:
2942     Out << "DF16_";
2943     break;
2944   case BuiltinType::ShortAccum:
2945   case BuiltinType::Accum:
2946   case BuiltinType::LongAccum:
2947   case BuiltinType::UShortAccum:
2948   case BuiltinType::UAccum:
2949   case BuiltinType::ULongAccum:
2950   case BuiltinType::ShortFract:
2951   case BuiltinType::Fract:
2952   case BuiltinType::LongFract:
2953   case BuiltinType::UShortFract:
2954   case BuiltinType::UFract:
2955   case BuiltinType::ULongFract:
2956   case BuiltinType::SatShortAccum:
2957   case BuiltinType::SatAccum:
2958   case BuiltinType::SatLongAccum:
2959   case BuiltinType::SatUShortAccum:
2960   case BuiltinType::SatUAccum:
2961   case BuiltinType::SatULongAccum:
2962   case BuiltinType::SatShortFract:
2963   case BuiltinType::SatFract:
2964   case BuiltinType::SatLongFract:
2965   case BuiltinType::SatUShortFract:
2966   case BuiltinType::SatUFract:
2967   case BuiltinType::SatULongFract:
2968     llvm_unreachable("Fixed point types are disabled for c++");
2969   case BuiltinType::Half:
2970     Out << "Dh";
2971     break;
2972   case BuiltinType::Float:
2973     Out << 'f';
2974     break;
2975   case BuiltinType::Double:
2976     Out << 'd';
2977     break;
2978   case BuiltinType::LongDouble: {
2979     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2980                                    getASTContext().getLangOpts().OpenMPIsDevice
2981                                ? getASTContext().getAuxTargetInfo()
2982                                : &getASTContext().getTargetInfo();
2983     Out << TI->getLongDoubleMangling();
2984     break;
2985   }
2986   case BuiltinType::Float128: {
2987     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2988                                    getASTContext().getLangOpts().OpenMPIsDevice
2989                                ? getASTContext().getAuxTargetInfo()
2990                                : &getASTContext().getTargetInfo();
2991     Out << TI->getFloat128Mangling();
2992     break;
2993   }
2994   case BuiltinType::BFloat16: {
2995     const TargetInfo *TI = &getASTContext().getTargetInfo();
2996     Out << TI->getBFloat16Mangling();
2997     break;
2998   }
2999   case BuiltinType::Ibm128: {
3000     const TargetInfo *TI = &getASTContext().getTargetInfo();
3001     Out << TI->getIbm128Mangling();
3002     break;
3003   }
3004   case BuiltinType::NullPtr:
3005     Out << "Dn";
3006     break;
3007 
3008 #define BUILTIN_TYPE(Id, SingletonId)
3009 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3010   case BuiltinType::Id:
3011 #include "clang/AST/BuiltinTypes.def"
3012   case BuiltinType::Dependent:
3013     if (!NullOut)
3014       llvm_unreachable("mangling a placeholder type");
3015     break;
3016   case BuiltinType::ObjCId:
3017     Out << "11objc_object";
3018     break;
3019   case BuiltinType::ObjCClass:
3020     Out << "10objc_class";
3021     break;
3022   case BuiltinType::ObjCSel:
3023     Out << "13objc_selector";
3024     break;
3025 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3026   case BuiltinType::Id: \
3027     type_name = "ocl_" #ImgType "_" #Suffix; \
3028     Out << type_name.size() << type_name; \
3029     break;
3030 #include "clang/Basic/OpenCLImageTypes.def"
3031   case BuiltinType::OCLSampler:
3032     Out << "11ocl_sampler";
3033     break;
3034   case BuiltinType::OCLEvent:
3035     Out << "9ocl_event";
3036     break;
3037   case BuiltinType::OCLClkEvent:
3038     Out << "12ocl_clkevent";
3039     break;
3040   case BuiltinType::OCLQueue:
3041     Out << "9ocl_queue";
3042     break;
3043   case BuiltinType::OCLReserveID:
3044     Out << "13ocl_reserveid";
3045     break;
3046 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3047   case BuiltinType::Id: \
3048     type_name = "ocl_" #ExtType; \
3049     Out << type_name.size() << type_name; \
3050     break;
3051 #include "clang/Basic/OpenCLExtensionTypes.def"
3052   // The SVE types are effectively target-specific.  The mangling scheme
3053   // is defined in the appendices to the Procedure Call Standard for the
3054   // Arm Architecture.
3055 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
3056                         ElBits, IsSigned, IsFP, IsBF)                          \
3057   case BuiltinType::Id:                                                        \
3058     type_name = MangledName;                                                   \
3059     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3060         << type_name;                                                          \
3061     break;
3062 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3063   case BuiltinType::Id:                                                        \
3064     type_name = MangledName;                                                   \
3065     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3066         << type_name;                                                          \
3067     break;
3068 #include "clang/Basic/AArch64SVEACLETypes.def"
3069 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3070   case BuiltinType::Id: \
3071     type_name = #Name; \
3072     Out << 'u' << type_name.size() << type_name; \
3073     break;
3074 #include "clang/Basic/PPCTypes.def"
3075     // TODO: Check the mangling scheme for RISC-V V.
3076 #define RVV_TYPE(Name, Id, SingletonId)                                        \
3077   case BuiltinType::Id:                                                        \
3078     type_name = Name;                                                          \
3079     Out << 'u' << type_name.size() << type_name;                               \
3080     break;
3081 #include "clang/Basic/RISCVVTypes.def"
3082   }
3083 }
3084 
3085 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3086   switch (CC) {
3087   case CC_C:
3088     return "";
3089 
3090   case CC_X86VectorCall:
3091   case CC_X86Pascal:
3092   case CC_X86RegCall:
3093   case CC_AAPCS:
3094   case CC_AAPCS_VFP:
3095   case CC_AArch64VectorCall:
3096   case CC_IntelOclBicc:
3097   case CC_SpirFunction:
3098   case CC_OpenCLKernel:
3099   case CC_PreserveMost:
3100   case CC_PreserveAll:
3101     // FIXME: we should be mangling all of the above.
3102     return "";
3103 
3104   case CC_X86ThisCall:
3105     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3106     // used explicitly. At this point, we don't have that much information in
3107     // the AST, since clang tends to bake the convention into the canonical
3108     // function type. thiscall only rarely used explicitly, so don't mangle it
3109     // for now.
3110     return "";
3111 
3112   case CC_X86StdCall:
3113     return "stdcall";
3114   case CC_X86FastCall:
3115     return "fastcall";
3116   case CC_X86_64SysV:
3117     return "sysv_abi";
3118   case CC_Win64:
3119     return "ms_abi";
3120   case CC_Swift:
3121     return "swiftcall";
3122   case CC_SwiftAsync:
3123     return "swiftasynccall";
3124   }
3125   llvm_unreachable("bad calling convention");
3126 }
3127 
3128 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3129   // Fast path.
3130   if (T->getExtInfo() == FunctionType::ExtInfo())
3131     return;
3132 
3133   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3134   // This will get more complicated in the future if we mangle other
3135   // things here; but for now, since we mangle ns_returns_retained as
3136   // a qualifier on the result type, we can get away with this:
3137   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3138   if (!CCQualifier.empty())
3139     mangleVendorQualifier(CCQualifier);
3140 
3141   // FIXME: regparm
3142   // FIXME: noreturn
3143 }
3144 
3145 void
3146 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3147   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3148 
3149   // Note that these are *not* substitution candidates.  Demanglers might
3150   // have trouble with this if the parameter type is fully substituted.
3151 
3152   switch (PI.getABI()) {
3153   case ParameterABI::Ordinary:
3154     break;
3155 
3156   // All of these start with "swift", so they come before "ns_consumed".
3157   case ParameterABI::SwiftContext:
3158   case ParameterABI::SwiftAsyncContext:
3159   case ParameterABI::SwiftErrorResult:
3160   case ParameterABI::SwiftIndirectResult:
3161     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3162     break;
3163   }
3164 
3165   if (PI.isConsumed())
3166     mangleVendorQualifier("ns_consumed");
3167 
3168   if (PI.isNoEscape())
3169     mangleVendorQualifier("noescape");
3170 }
3171 
3172 // <type>          ::= <function-type>
3173 // <function-type> ::= [<CV-qualifiers>] F [Y]
3174 //                      <bare-function-type> [<ref-qualifier>] E
3175 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3176   mangleExtFunctionInfo(T);
3177 
3178   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
3179   // e.g. "const" in "int (A::*)() const".
3180   mangleQualifiers(T->getMethodQuals());
3181 
3182   // Mangle instantiation-dependent exception-specification, if present,
3183   // per cxx-abi-dev proposal on 2016-10-11.
3184   if (T->hasInstantiationDependentExceptionSpec()) {
3185     if (isComputedNoexcept(T->getExceptionSpecType())) {
3186       Out << "DO";
3187       mangleExpression(T->getNoexceptExpr());
3188       Out << "E";
3189     } else {
3190       assert(T->getExceptionSpecType() == EST_Dynamic);
3191       Out << "Dw";
3192       for (auto ExceptTy : T->exceptions())
3193         mangleType(ExceptTy);
3194       Out << "E";
3195     }
3196   } else if (T->isNothrow()) {
3197     Out << "Do";
3198   }
3199 
3200   Out << 'F';
3201 
3202   // FIXME: We don't have enough information in the AST to produce the 'Y'
3203   // encoding for extern "C" function types.
3204   mangleBareFunctionType(T, /*MangleReturnType=*/true);
3205 
3206   // Mangle the ref-qualifier, if present.
3207   mangleRefQualifier(T->getRefQualifier());
3208 
3209   Out << 'E';
3210 }
3211 
3212 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3213   // Function types without prototypes can arise when mangling a function type
3214   // within an overloadable function in C. We mangle these as the absence of any
3215   // parameter types (not even an empty parameter list).
3216   Out << 'F';
3217 
3218   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3219 
3220   FunctionTypeDepth.enterResultType();
3221   mangleType(T->getReturnType());
3222   FunctionTypeDepth.leaveResultType();
3223 
3224   FunctionTypeDepth.pop(saved);
3225   Out << 'E';
3226 }
3227 
3228 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3229                                             bool MangleReturnType,
3230                                             const FunctionDecl *FD) {
3231   // Record that we're in a function type.  See mangleFunctionParam
3232   // for details on what we're trying to achieve here.
3233   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3234 
3235   // <bare-function-type> ::= <signature type>+
3236   if (MangleReturnType) {
3237     FunctionTypeDepth.enterResultType();
3238 
3239     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3240     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3241       mangleVendorQualifier("ns_returns_retained");
3242 
3243     // Mangle the return type without any direct ARC ownership qualifiers.
3244     QualType ReturnTy = Proto->getReturnType();
3245     if (ReturnTy.getObjCLifetime()) {
3246       auto SplitReturnTy = ReturnTy.split();
3247       SplitReturnTy.Quals.removeObjCLifetime();
3248       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3249     }
3250     mangleType(ReturnTy);
3251 
3252     FunctionTypeDepth.leaveResultType();
3253   }
3254 
3255   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3256     //   <builtin-type> ::= v   # void
3257     Out << 'v';
3258 
3259     FunctionTypeDepth.pop(saved);
3260     return;
3261   }
3262 
3263   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3264   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3265     // Mangle extended parameter info as order-sensitive qualifiers here.
3266     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3267       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3268     }
3269 
3270     // Mangle the type.
3271     QualType ParamTy = Proto->getParamType(I);
3272     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3273 
3274     if (FD) {
3275       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3276         // Attr can only take 1 character, so we can hardcode the length below.
3277         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3278         if (Attr->isDynamic())
3279           Out << "U25pass_dynamic_object_size" << Attr->getType();
3280         else
3281           Out << "U17pass_object_size" << Attr->getType();
3282       }
3283     }
3284   }
3285 
3286   FunctionTypeDepth.pop(saved);
3287 
3288   // <builtin-type>      ::= z  # ellipsis
3289   if (Proto->isVariadic())
3290     Out << 'z';
3291 }
3292 
3293 // <type>            ::= <class-enum-type>
3294 // <class-enum-type> ::= <name>
3295 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3296   mangleName(T->getDecl());
3297 }
3298 
3299 // <type>            ::= <class-enum-type>
3300 // <class-enum-type> ::= <name>
3301 void CXXNameMangler::mangleType(const EnumType *T) {
3302   mangleType(static_cast<const TagType*>(T));
3303 }
3304 void CXXNameMangler::mangleType(const RecordType *T) {
3305   mangleType(static_cast<const TagType*>(T));
3306 }
3307 void CXXNameMangler::mangleType(const TagType *T) {
3308   mangleName(T->getDecl());
3309 }
3310 
3311 // <type>       ::= <array-type>
3312 // <array-type> ::= A <positive dimension number> _ <element type>
3313 //              ::= A [<dimension expression>] _ <element type>
3314 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3315   Out << 'A' << T->getSize() << '_';
3316   mangleType(T->getElementType());
3317 }
3318 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3319   Out << 'A';
3320   // decayed vla types (size 0) will just be skipped.
3321   if (T->getSizeExpr())
3322     mangleExpression(T->getSizeExpr());
3323   Out << '_';
3324   mangleType(T->getElementType());
3325 }
3326 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3327   Out << 'A';
3328   // A DependentSizedArrayType might not have size expression as below
3329   //
3330   // template<int ...N> int arr[] = {N...};
3331   if (T->getSizeExpr())
3332     mangleExpression(T->getSizeExpr());
3333   Out << '_';
3334   mangleType(T->getElementType());
3335 }
3336 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3337   Out << "A_";
3338   mangleType(T->getElementType());
3339 }
3340 
3341 // <type>                   ::= <pointer-to-member-type>
3342 // <pointer-to-member-type> ::= M <class type> <member type>
3343 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3344   Out << 'M';
3345   mangleType(QualType(T->getClass(), 0));
3346   QualType PointeeType = T->getPointeeType();
3347   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3348     mangleType(FPT);
3349 
3350     // Itanium C++ ABI 5.1.8:
3351     //
3352     //   The type of a non-static member function is considered to be different,
3353     //   for the purposes of substitution, from the type of a namespace-scope or
3354     //   static member function whose type appears similar. The types of two
3355     //   non-static member functions are considered to be different, for the
3356     //   purposes of substitution, if the functions are members of different
3357     //   classes. In other words, for the purposes of substitution, the class of
3358     //   which the function is a member is considered part of the type of
3359     //   function.
3360 
3361     // Given that we already substitute member function pointers as a
3362     // whole, the net effect of this rule is just to unconditionally
3363     // suppress substitution on the function type in a member pointer.
3364     // We increment the SeqID here to emulate adding an entry to the
3365     // substitution table.
3366     ++SeqID;
3367   } else
3368     mangleType(PointeeType);
3369 }
3370 
3371 // <type>           ::= <template-param>
3372 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3373   mangleTemplateParameter(T->getDepth(), T->getIndex());
3374 }
3375 
3376 // <type>           ::= <template-param>
3377 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3378   // FIXME: not clear how to mangle this!
3379   // template <class T...> class A {
3380   //   template <class U...> void foo(T(*)(U) x...);
3381   // };
3382   Out << "_SUBSTPACK_";
3383 }
3384 
3385 // <type> ::= P <type>   # pointer-to
3386 void CXXNameMangler::mangleType(const PointerType *T) {
3387   Out << 'P';
3388   mangleType(T->getPointeeType());
3389 }
3390 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3391   Out << 'P';
3392   mangleType(T->getPointeeType());
3393 }
3394 
3395 // <type> ::= R <type>   # reference-to
3396 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3397   Out << 'R';
3398   mangleType(T->getPointeeType());
3399 }
3400 
3401 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3402 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3403   Out << 'O';
3404   mangleType(T->getPointeeType());
3405 }
3406 
3407 // <type> ::= C <type>   # complex pair (C 2000)
3408 void CXXNameMangler::mangleType(const ComplexType *T) {
3409   Out << 'C';
3410   mangleType(T->getElementType());
3411 }
3412 
3413 // ARM's ABI for Neon vector types specifies that they should be mangled as
3414 // if they are structs (to match ARM's initial implementation).  The
3415 // vector type must be one of the special types predefined by ARM.
3416 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3417   QualType EltType = T->getElementType();
3418   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3419   const char *EltName = nullptr;
3420   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3421     switch (cast<BuiltinType>(EltType)->getKind()) {
3422     case BuiltinType::SChar:
3423     case BuiltinType::UChar:
3424       EltName = "poly8_t";
3425       break;
3426     case BuiltinType::Short:
3427     case BuiltinType::UShort:
3428       EltName = "poly16_t";
3429       break;
3430     case BuiltinType::LongLong:
3431     case BuiltinType::ULongLong:
3432       EltName = "poly64_t";
3433       break;
3434     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3435     }
3436   } else {
3437     switch (cast<BuiltinType>(EltType)->getKind()) {
3438     case BuiltinType::SChar:     EltName = "int8_t"; break;
3439     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3440     case BuiltinType::Short:     EltName = "int16_t"; break;
3441     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3442     case BuiltinType::Int:       EltName = "int32_t"; break;
3443     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3444     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3445     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3446     case BuiltinType::Double:    EltName = "float64_t"; break;
3447     case BuiltinType::Float:     EltName = "float32_t"; break;
3448     case BuiltinType::Half:      EltName = "float16_t"; break;
3449     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3450     default:
3451       llvm_unreachable("unexpected Neon vector element type");
3452     }
3453   }
3454   const char *BaseName = nullptr;
3455   unsigned BitSize = (T->getNumElements() *
3456                       getASTContext().getTypeSize(EltType));
3457   if (BitSize == 64)
3458     BaseName = "__simd64_";
3459   else {
3460     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3461     BaseName = "__simd128_";
3462   }
3463   Out << strlen(BaseName) + strlen(EltName);
3464   Out << BaseName << EltName;
3465 }
3466 
3467 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3468   DiagnosticsEngine &Diags = Context.getDiags();
3469   unsigned DiagID = Diags.getCustomDiagID(
3470       DiagnosticsEngine::Error,
3471       "cannot mangle this dependent neon vector type yet");
3472   Diags.Report(T->getAttributeLoc(), DiagID);
3473 }
3474 
3475 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3476   switch (EltType->getKind()) {
3477   case BuiltinType::SChar:
3478     return "Int8";
3479   case BuiltinType::Short:
3480     return "Int16";
3481   case BuiltinType::Int:
3482     return "Int32";
3483   case BuiltinType::Long:
3484   case BuiltinType::LongLong:
3485     return "Int64";
3486   case BuiltinType::UChar:
3487     return "Uint8";
3488   case BuiltinType::UShort:
3489     return "Uint16";
3490   case BuiltinType::UInt:
3491     return "Uint32";
3492   case BuiltinType::ULong:
3493   case BuiltinType::ULongLong:
3494     return "Uint64";
3495   case BuiltinType::Half:
3496     return "Float16";
3497   case BuiltinType::Float:
3498     return "Float32";
3499   case BuiltinType::Double:
3500     return "Float64";
3501   case BuiltinType::BFloat16:
3502     return "Bfloat16";
3503   default:
3504     llvm_unreachable("Unexpected vector element base type");
3505   }
3506 }
3507 
3508 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3509 // the equivalent internal name. The vector type must be one of the special
3510 // types predefined by ARM.
3511 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3512   QualType EltType = T->getElementType();
3513   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3514   unsigned BitSize =
3515       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3516   (void)BitSize; // Silence warning.
3517 
3518   assert((BitSize == 64 || BitSize == 128) &&
3519          "Neon vector type not 64 or 128 bits");
3520 
3521   StringRef EltName;
3522   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3523     switch (cast<BuiltinType>(EltType)->getKind()) {
3524     case BuiltinType::UChar:
3525       EltName = "Poly8";
3526       break;
3527     case BuiltinType::UShort:
3528       EltName = "Poly16";
3529       break;
3530     case BuiltinType::ULong:
3531     case BuiltinType::ULongLong:
3532       EltName = "Poly64";
3533       break;
3534     default:
3535       llvm_unreachable("unexpected Neon polynomial vector element type");
3536     }
3537   } else
3538     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3539 
3540   std::string TypeName =
3541       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3542   Out << TypeName.length() << TypeName;
3543 }
3544 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3545   DiagnosticsEngine &Diags = Context.getDiags();
3546   unsigned DiagID = Diags.getCustomDiagID(
3547       DiagnosticsEngine::Error,
3548       "cannot mangle this dependent neon vector type yet");
3549   Diags.Report(T->getAttributeLoc(), DiagID);
3550 }
3551 
3552 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3553 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3554 // type as the sizeless variants.
3555 //
3556 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3557 //
3558 //   '__SVE_VLS<<type>, <vector length>>'
3559 //
3560 // Combining the existing SVE type and a specific vector length (in bits).
3561 // For example:
3562 //
3563 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3564 //
3565 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3566 //
3567 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3568 //
3569 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3570 //
3571 // The latest ACLE specification (00bet5) does not contain details of this
3572 // mangling scheme, it will be specified in the next revision. The mangling
3573 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3574 // for the Arm Architecture, see
3575 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling
3576 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3577   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3578           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3579          "expected fixed-length SVE vector!");
3580 
3581   QualType EltType = T->getElementType();
3582   assert(EltType->isBuiltinType() &&
3583          "expected builtin type for fixed-length SVE vector!");
3584 
3585   StringRef TypeName;
3586   switch (cast<BuiltinType>(EltType)->getKind()) {
3587   case BuiltinType::SChar:
3588     TypeName = "__SVInt8_t";
3589     break;
3590   case BuiltinType::UChar: {
3591     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3592       TypeName = "__SVUint8_t";
3593     else
3594       TypeName = "__SVBool_t";
3595     break;
3596   }
3597   case BuiltinType::Short:
3598     TypeName = "__SVInt16_t";
3599     break;
3600   case BuiltinType::UShort:
3601     TypeName = "__SVUint16_t";
3602     break;
3603   case BuiltinType::Int:
3604     TypeName = "__SVInt32_t";
3605     break;
3606   case BuiltinType::UInt:
3607     TypeName = "__SVUint32_t";
3608     break;
3609   case BuiltinType::Long:
3610     TypeName = "__SVInt64_t";
3611     break;
3612   case BuiltinType::ULong:
3613     TypeName = "__SVUint64_t";
3614     break;
3615   case BuiltinType::Half:
3616     TypeName = "__SVFloat16_t";
3617     break;
3618   case BuiltinType::Float:
3619     TypeName = "__SVFloat32_t";
3620     break;
3621   case BuiltinType::Double:
3622     TypeName = "__SVFloat64_t";
3623     break;
3624   case BuiltinType::BFloat16:
3625     TypeName = "__SVBfloat16_t";
3626     break;
3627   default:
3628     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3629   }
3630 
3631   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3632 
3633   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3634     VecSizeInBits *= 8;
3635 
3636   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3637       << VecSizeInBits << "EE";
3638 }
3639 
3640 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3641     const DependentVectorType *T) {
3642   DiagnosticsEngine &Diags = Context.getDiags();
3643   unsigned DiagID = Diags.getCustomDiagID(
3644       DiagnosticsEngine::Error,
3645       "cannot mangle this dependent fixed-length SVE vector type yet");
3646   Diags.Report(T->getAttributeLoc(), DiagID);
3647 }
3648 
3649 // GNU extension: vector types
3650 // <type>                  ::= <vector-type>
3651 // <vector-type>           ::= Dv <positive dimension number> _
3652 //                                    <extended element type>
3653 //                         ::= Dv [<dimension expression>] _ <element type>
3654 // <extended element type> ::= <element type>
3655 //                         ::= p # AltiVec vector pixel
3656 //                         ::= b # Altivec vector bool
3657 void CXXNameMangler::mangleType(const VectorType *T) {
3658   if ((T->getVectorKind() == VectorType::NeonVector ||
3659        T->getVectorKind() == VectorType::NeonPolyVector)) {
3660     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3661     llvm::Triple::ArchType Arch =
3662         getASTContext().getTargetInfo().getTriple().getArch();
3663     if ((Arch == llvm::Triple::aarch64 ||
3664          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3665       mangleAArch64NeonVectorType(T);
3666     else
3667       mangleNeonVectorType(T);
3668     return;
3669   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3670              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3671     mangleAArch64FixedSveVectorType(T);
3672     return;
3673   }
3674   Out << "Dv" << T->getNumElements() << '_';
3675   if (T->getVectorKind() == VectorType::AltiVecPixel)
3676     Out << 'p';
3677   else if (T->getVectorKind() == VectorType::AltiVecBool)
3678     Out << 'b';
3679   else
3680     mangleType(T->getElementType());
3681 }
3682 
3683 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3684   if ((T->getVectorKind() == VectorType::NeonVector ||
3685        T->getVectorKind() == VectorType::NeonPolyVector)) {
3686     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3687     llvm::Triple::ArchType Arch =
3688         getASTContext().getTargetInfo().getTriple().getArch();
3689     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3690         !Target.isOSDarwin())
3691       mangleAArch64NeonVectorType(T);
3692     else
3693       mangleNeonVectorType(T);
3694     return;
3695   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3696              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3697     mangleAArch64FixedSveVectorType(T);
3698     return;
3699   }
3700 
3701   Out << "Dv";
3702   mangleExpression(T->getSizeExpr());
3703   Out << '_';
3704   if (T->getVectorKind() == VectorType::AltiVecPixel)
3705     Out << 'p';
3706   else if (T->getVectorKind() == VectorType::AltiVecBool)
3707     Out << 'b';
3708   else
3709     mangleType(T->getElementType());
3710 }
3711 
3712 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3713   mangleType(static_cast<const VectorType*>(T));
3714 }
3715 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3716   Out << "Dv";
3717   mangleExpression(T->getSizeExpr());
3718   Out << '_';
3719   mangleType(T->getElementType());
3720 }
3721 
3722 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3723   // Mangle matrix types as a vendor extended type:
3724   // u<Len>matrix_typeI<Rows><Columns><element type>E
3725 
3726   StringRef VendorQualifier = "matrix_type";
3727   Out << "u" << VendorQualifier.size() << VendorQualifier;
3728 
3729   Out << "I";
3730   auto &ASTCtx = getASTContext();
3731   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3732   llvm::APSInt Rows(BitWidth);
3733   Rows = T->getNumRows();
3734   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3735   llvm::APSInt Columns(BitWidth);
3736   Columns = T->getNumColumns();
3737   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3738   mangleType(T->getElementType());
3739   Out << "E";
3740 }
3741 
3742 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3743   // Mangle matrix types as a vendor extended type:
3744   // u<Len>matrix_typeI<row expr><column expr><element type>E
3745   StringRef VendorQualifier = "matrix_type";
3746   Out << "u" << VendorQualifier.size() << VendorQualifier;
3747 
3748   Out << "I";
3749   mangleTemplateArgExpr(T->getRowExpr());
3750   mangleTemplateArgExpr(T->getColumnExpr());
3751   mangleType(T->getElementType());
3752   Out << "E";
3753 }
3754 
3755 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3756   SplitQualType split = T->getPointeeType().split();
3757   mangleQualifiers(split.Quals, T);
3758   mangleType(QualType(split.Ty, 0));
3759 }
3760 
3761 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3762   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3763   Out << "Dp";
3764   mangleType(T->getPattern());
3765 }
3766 
3767 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3768   mangleSourceName(T->getDecl()->getIdentifier());
3769 }
3770 
3771 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3772   // Treat __kindof as a vendor extended type qualifier.
3773   if (T->isKindOfType())
3774     Out << "U8__kindof";
3775 
3776   if (!T->qual_empty()) {
3777     // Mangle protocol qualifiers.
3778     SmallString<64> QualStr;
3779     llvm::raw_svector_ostream QualOS(QualStr);
3780     QualOS << "objcproto";
3781     for (const auto *I : T->quals()) {
3782       StringRef name = I->getName();
3783       QualOS << name.size() << name;
3784     }
3785     Out << 'U' << QualStr.size() << QualStr;
3786   }
3787 
3788   mangleType(T->getBaseType());
3789 
3790   if (T->isSpecialized()) {
3791     // Mangle type arguments as I <type>+ E
3792     Out << 'I';
3793     for (auto typeArg : T->getTypeArgs())
3794       mangleType(typeArg);
3795     Out << 'E';
3796   }
3797 }
3798 
3799 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3800   Out << "U13block_pointer";
3801   mangleType(T->getPointeeType());
3802 }
3803 
3804 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3805   // Mangle injected class name types as if the user had written the
3806   // specialization out fully.  It may not actually be possible to see
3807   // this mangling, though.
3808   mangleType(T->getInjectedSpecializationType());
3809 }
3810 
3811 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3812   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3813     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3814   } else {
3815     if (mangleSubstitution(QualType(T, 0)))
3816       return;
3817 
3818     mangleTemplatePrefix(T->getTemplateName());
3819 
3820     // FIXME: GCC does not appear to mangle the template arguments when
3821     // the template in question is a dependent template name. Should we
3822     // emulate that badness?
3823     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3824     addSubstitution(QualType(T, 0));
3825   }
3826 }
3827 
3828 void CXXNameMangler::mangleType(const DependentNameType *T) {
3829   // Proposal by cxx-abi-dev, 2014-03-26
3830   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3831   //                                 # dependent elaborated type specifier using
3832   //                                 # 'typename'
3833   //                   ::= Ts <name> # dependent elaborated type specifier using
3834   //                                 # 'struct' or 'class'
3835   //                   ::= Tu <name> # dependent elaborated type specifier using
3836   //                                 # 'union'
3837   //                   ::= Te <name> # dependent elaborated type specifier using
3838   //                                 # 'enum'
3839   switch (T->getKeyword()) {
3840     case ETK_None:
3841     case ETK_Typename:
3842       break;
3843     case ETK_Struct:
3844     case ETK_Class:
3845     case ETK_Interface:
3846       Out << "Ts";
3847       break;
3848     case ETK_Union:
3849       Out << "Tu";
3850       break;
3851     case ETK_Enum:
3852       Out << "Te";
3853       break;
3854   }
3855   // Typename types are always nested
3856   Out << 'N';
3857   manglePrefix(T->getQualifier());
3858   mangleSourceName(T->getIdentifier());
3859   Out << 'E';
3860 }
3861 
3862 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3863   // Dependently-scoped template types are nested if they have a prefix.
3864   Out << 'N';
3865 
3866   // TODO: avoid making this TemplateName.
3867   TemplateName Prefix =
3868     getASTContext().getDependentTemplateName(T->getQualifier(),
3869                                              T->getIdentifier());
3870   mangleTemplatePrefix(Prefix);
3871 
3872   // FIXME: GCC does not appear to mangle the template arguments when
3873   // the template in question is a dependent template name. Should we
3874   // emulate that badness?
3875   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3876   Out << 'E';
3877 }
3878 
3879 void CXXNameMangler::mangleType(const TypeOfType *T) {
3880   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3881   // "extension with parameters" mangling.
3882   Out << "u6typeof";
3883 }
3884 
3885 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3886   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3887   // "extension with parameters" mangling.
3888   Out << "u6typeof";
3889 }
3890 
3891 void CXXNameMangler::mangleType(const DecltypeType *T) {
3892   Expr *E = T->getUnderlyingExpr();
3893 
3894   // type ::= Dt <expression> E  # decltype of an id-expression
3895   //                             #   or class member access
3896   //      ::= DT <expression> E  # decltype of an expression
3897 
3898   // This purports to be an exhaustive list of id-expressions and
3899   // class member accesses.  Note that we do not ignore parentheses;
3900   // parentheses change the semantics of decltype for these
3901   // expressions (and cause the mangler to use the other form).
3902   if (isa<DeclRefExpr>(E) ||
3903       isa<MemberExpr>(E) ||
3904       isa<UnresolvedLookupExpr>(E) ||
3905       isa<DependentScopeDeclRefExpr>(E) ||
3906       isa<CXXDependentScopeMemberExpr>(E) ||
3907       isa<UnresolvedMemberExpr>(E))
3908     Out << "Dt";
3909   else
3910     Out << "DT";
3911   mangleExpression(E);
3912   Out << 'E';
3913 }
3914 
3915 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3916   // If this is dependent, we need to record that. If not, we simply
3917   // mangle it as the underlying type since they are equivalent.
3918   if (T->isDependentType()) {
3919     Out << 'U';
3920 
3921     switch (T->getUTTKind()) {
3922       case UnaryTransformType::EnumUnderlyingType:
3923         Out << "3eut";
3924         break;
3925     }
3926   }
3927 
3928   mangleType(T->getBaseType());
3929 }
3930 
3931 void CXXNameMangler::mangleType(const AutoType *T) {
3932   assert(T->getDeducedType().isNull() &&
3933          "Deduced AutoType shouldn't be handled here!");
3934   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3935          "shouldn't need to mangle __auto_type!");
3936   // <builtin-type> ::= Da # auto
3937   //                ::= Dc # decltype(auto)
3938   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3939 }
3940 
3941 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3942   QualType Deduced = T->getDeducedType();
3943   if (!Deduced.isNull())
3944     return mangleType(Deduced);
3945 
3946   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
3947   assert(TD && "shouldn't form deduced TST unless we know we have a template");
3948 
3949   if (mangleSubstitution(TD))
3950     return;
3951 
3952   mangleName(GlobalDecl(TD));
3953   addSubstitution(TD);
3954 }
3955 
3956 void CXXNameMangler::mangleType(const AtomicType *T) {
3957   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3958   // (Until there's a standardized mangling...)
3959   Out << "U7_Atomic";
3960   mangleType(T->getValueType());
3961 }
3962 
3963 void CXXNameMangler::mangleType(const PipeType *T) {
3964   // Pipe type mangling rules are described in SPIR 2.0 specification
3965   // A.1 Data types and A.3 Summary of changes
3966   // <type> ::= 8ocl_pipe
3967   Out << "8ocl_pipe";
3968 }
3969 
3970 void CXXNameMangler::mangleType(const ExtIntType *T) {
3971   Out << "U7_ExtInt";
3972   llvm::APSInt BW(32, true);
3973   BW = T->getNumBits();
3974   TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3975   mangleTemplateArgs(TemplateName(), &TA, 1);
3976   if (T->isUnsigned())
3977     Out << "j";
3978   else
3979     Out << "i";
3980 }
3981 
3982 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3983   Out << "U7_ExtInt";
3984   TemplateArgument TA(T->getNumBitsExpr());
3985   mangleTemplateArgs(TemplateName(), &TA, 1);
3986   if (T->isUnsigned())
3987     Out << "j";
3988   else
3989     Out << "i";
3990 }
3991 
3992 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3993                                           const llvm::APSInt &Value) {
3994   //  <expr-primary> ::= L <type> <value number> E # integer literal
3995   Out << 'L';
3996 
3997   mangleType(T);
3998   if (T->isBooleanType()) {
3999     // Boolean values are encoded as 0/1.
4000     Out << (Value.getBoolValue() ? '1' : '0');
4001   } else {
4002     mangleNumber(Value);
4003   }
4004   Out << 'E';
4005 
4006 }
4007 
4008 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
4009   // Ignore member expressions involving anonymous unions.
4010   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4011     if (!RT->getDecl()->isAnonymousStructOrUnion())
4012       break;
4013     const auto *ME = dyn_cast<MemberExpr>(Base);
4014     if (!ME)
4015       break;
4016     Base = ME->getBase();
4017     IsArrow = ME->isArrow();
4018   }
4019 
4020   if (Base->isImplicitCXXThis()) {
4021     // Note: GCC mangles member expressions to the implicit 'this' as
4022     // *this., whereas we represent them as this->. The Itanium C++ ABI
4023     // does not specify anything here, so we follow GCC.
4024     Out << "dtdefpT";
4025   } else {
4026     Out << (IsArrow ? "pt" : "dt");
4027     mangleExpression(Base);
4028   }
4029 }
4030 
4031 /// Mangles a member expression.
4032 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4033                                       bool isArrow,
4034                                       NestedNameSpecifier *qualifier,
4035                                       NamedDecl *firstQualifierLookup,
4036                                       DeclarationName member,
4037                                       const TemplateArgumentLoc *TemplateArgs,
4038                                       unsigned NumTemplateArgs,
4039                                       unsigned arity) {
4040   // <expression> ::= dt <expression> <unresolved-name>
4041   //              ::= pt <expression> <unresolved-name>
4042   if (base)
4043     mangleMemberExprBase(base, isArrow);
4044   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4045 }
4046 
4047 /// Look at the callee of the given call expression and determine if
4048 /// it's a parenthesized id-expression which would have triggered ADL
4049 /// otherwise.
4050 static bool isParenthesizedADLCallee(const CallExpr *call) {
4051   const Expr *callee = call->getCallee();
4052   const Expr *fn = callee->IgnoreParens();
4053 
4054   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
4055   // too, but for those to appear in the callee, it would have to be
4056   // parenthesized.
4057   if (callee == fn) return false;
4058 
4059   // Must be an unresolved lookup.
4060   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4061   if (!lookup) return false;
4062 
4063   assert(!lookup->requiresADL());
4064 
4065   // Must be an unqualified lookup.
4066   if (lookup->getQualifier()) return false;
4067 
4068   // Must not have found a class member.  Note that if one is a class
4069   // member, they're all class members.
4070   if (lookup->getNumDecls() > 0 &&
4071       (*lookup->decls_begin())->isCXXClassMember())
4072     return false;
4073 
4074   // Otherwise, ADL would have been triggered.
4075   return true;
4076 }
4077 
4078 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4079   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4080   Out << CastEncoding;
4081   mangleType(ECE->getType());
4082   mangleExpression(ECE->getSubExpr());
4083 }
4084 
4085 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4086   if (auto *Syntactic = InitList->getSyntacticForm())
4087     InitList = Syntactic;
4088   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4089     mangleExpression(InitList->getInit(i));
4090 }
4091 
4092 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4093                                       bool AsTemplateArg) {
4094   // <expression> ::= <unary operator-name> <expression>
4095   //              ::= <binary operator-name> <expression> <expression>
4096   //              ::= <trinary operator-name> <expression> <expression> <expression>
4097   //              ::= cv <type> expression           # conversion with one argument
4098   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4099   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
4100   //              ::= sc <type> <expression>         # static_cast<type> (expression)
4101   //              ::= cc <type> <expression>         # const_cast<type> (expression)
4102   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
4103   //              ::= st <type>                      # sizeof (a type)
4104   //              ::= at <type>                      # alignof (a type)
4105   //              ::= <template-param>
4106   //              ::= <function-param>
4107   //              ::= fpT                            # 'this' expression (part of <function-param>)
4108   //              ::= sr <type> <unqualified-name>                   # dependent name
4109   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
4110   //              ::= ds <expression> <expression>                   # expr.*expr
4111   //              ::= sZ <template-param>                            # size of a parameter pack
4112   //              ::= sZ <function-param>    # size of a function parameter pack
4113   //              ::= u <source-name> <template-arg>* E # vendor extended expression
4114   //              ::= <expr-primary>
4115   // <expr-primary> ::= L <type> <value number> E    # integer literal
4116   //                ::= L <type> <value float> E     # floating literal
4117   //                ::= L <type> <string type> E     # string literal
4118   //                ::= L <nullptr type> E           # nullptr literal "LDnE"
4119   //                ::= L <pointer type> 0 E         # null pointer template argument
4120   //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
4121   //                ::= L <mangled-name> E           # external name
4122   QualType ImplicitlyConvertedToType;
4123 
4124   // A top-level expression that's not <expr-primary> needs to be wrapped in
4125   // X...E in a template arg.
4126   bool IsPrimaryExpr = true;
4127   auto NotPrimaryExpr = [&] {
4128     if (AsTemplateArg && IsPrimaryExpr)
4129       Out << 'X';
4130     IsPrimaryExpr = false;
4131   };
4132 
4133   auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4134     switch (D->getKind()) {
4135     default:
4136       //  <expr-primary> ::= L <mangled-name> E # external name
4137       Out << 'L';
4138       mangle(D);
4139       Out << 'E';
4140       break;
4141 
4142     case Decl::ParmVar:
4143       NotPrimaryExpr();
4144       mangleFunctionParam(cast<ParmVarDecl>(D));
4145       break;
4146 
4147     case Decl::EnumConstant: {
4148       // <expr-primary>
4149       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4150       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4151       break;
4152     }
4153 
4154     case Decl::NonTypeTemplateParm:
4155       NotPrimaryExpr();
4156       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4157       mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4158       break;
4159     }
4160   };
4161 
4162   // 'goto recurse' is used when handling a simple "unwrapping" node which
4163   // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4164   // to be preserved.
4165 recurse:
4166   switch (E->getStmtClass()) {
4167   case Expr::NoStmtClass:
4168 #define ABSTRACT_STMT(Type)
4169 #define EXPR(Type, Base)
4170 #define STMT(Type, Base) \
4171   case Expr::Type##Class:
4172 #include "clang/AST/StmtNodes.inc"
4173     // fallthrough
4174 
4175   // These all can only appear in local or variable-initialization
4176   // contexts and so should never appear in a mangling.
4177   case Expr::AddrLabelExprClass:
4178   case Expr::DesignatedInitUpdateExprClass:
4179   case Expr::ImplicitValueInitExprClass:
4180   case Expr::ArrayInitLoopExprClass:
4181   case Expr::ArrayInitIndexExprClass:
4182   case Expr::NoInitExprClass:
4183   case Expr::ParenListExprClass:
4184   case Expr::MSPropertyRefExprClass:
4185   case Expr::MSPropertySubscriptExprClass:
4186   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4187   case Expr::RecoveryExprClass:
4188   case Expr::OMPArraySectionExprClass:
4189   case Expr::OMPArrayShapingExprClass:
4190   case Expr::OMPIteratorExprClass:
4191   case Expr::CXXInheritedCtorInitExprClass:
4192     llvm_unreachable("unexpected statement kind");
4193 
4194   case Expr::ConstantExprClass:
4195     E = cast<ConstantExpr>(E)->getSubExpr();
4196     goto recurse;
4197 
4198   // FIXME: invent manglings for all these.
4199   case Expr::BlockExprClass:
4200   case Expr::ChooseExprClass:
4201   case Expr::CompoundLiteralExprClass:
4202   case Expr::ExtVectorElementExprClass:
4203   case Expr::GenericSelectionExprClass:
4204   case Expr::ObjCEncodeExprClass:
4205   case Expr::ObjCIsaExprClass:
4206   case Expr::ObjCIvarRefExprClass:
4207   case Expr::ObjCMessageExprClass:
4208   case Expr::ObjCPropertyRefExprClass:
4209   case Expr::ObjCProtocolExprClass:
4210   case Expr::ObjCSelectorExprClass:
4211   case Expr::ObjCStringLiteralClass:
4212   case Expr::ObjCBoxedExprClass:
4213   case Expr::ObjCArrayLiteralClass:
4214   case Expr::ObjCDictionaryLiteralClass:
4215   case Expr::ObjCSubscriptRefExprClass:
4216   case Expr::ObjCIndirectCopyRestoreExprClass:
4217   case Expr::ObjCAvailabilityCheckExprClass:
4218   case Expr::OffsetOfExprClass:
4219   case Expr::PredefinedExprClass:
4220   case Expr::ShuffleVectorExprClass:
4221   case Expr::ConvertVectorExprClass:
4222   case Expr::StmtExprClass:
4223   case Expr::TypeTraitExprClass:
4224   case Expr::RequiresExprClass:
4225   case Expr::ArrayTypeTraitExprClass:
4226   case Expr::ExpressionTraitExprClass:
4227   case Expr::VAArgExprClass:
4228   case Expr::CUDAKernelCallExprClass:
4229   case Expr::AsTypeExprClass:
4230   case Expr::PseudoObjectExprClass:
4231   case Expr::AtomicExprClass:
4232   case Expr::SourceLocExprClass:
4233   case Expr::BuiltinBitCastExprClass:
4234   {
4235     NotPrimaryExpr();
4236     if (!NullOut) {
4237       // As bad as this diagnostic is, it's better than crashing.
4238       DiagnosticsEngine &Diags = Context.getDiags();
4239       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4240                                        "cannot yet mangle expression type %0");
4241       Diags.Report(E->getExprLoc(), DiagID)
4242         << E->getStmtClassName() << E->getSourceRange();
4243       return;
4244     }
4245     break;
4246   }
4247 
4248   case Expr::CXXUuidofExprClass: {
4249     NotPrimaryExpr();
4250     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4251     // As of clang 12, uuidof uses the vendor extended expression
4252     // mangling. Previously, it used a special-cased nonstandard extension.
4253     if (Context.getASTContext().getLangOpts().getClangABICompat() >
4254         LangOptions::ClangABI::Ver11) {
4255       Out << "u8__uuidof";
4256       if (UE->isTypeOperand())
4257         mangleType(UE->getTypeOperand(Context.getASTContext()));
4258       else
4259         mangleTemplateArgExpr(UE->getExprOperand());
4260       Out << 'E';
4261     } else {
4262       if (UE->isTypeOperand()) {
4263         QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4264         Out << "u8__uuidoft";
4265         mangleType(UuidT);
4266       } else {
4267         Expr *UuidExp = UE->getExprOperand();
4268         Out << "u8__uuidofz";
4269         mangleExpression(UuidExp);
4270       }
4271     }
4272     break;
4273   }
4274 
4275   // Even gcc-4.5 doesn't mangle this.
4276   case Expr::BinaryConditionalOperatorClass: {
4277     NotPrimaryExpr();
4278     DiagnosticsEngine &Diags = Context.getDiags();
4279     unsigned DiagID =
4280       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4281                 "?: operator with omitted middle operand cannot be mangled");
4282     Diags.Report(E->getExprLoc(), DiagID)
4283       << E->getStmtClassName() << E->getSourceRange();
4284     return;
4285   }
4286 
4287   // These are used for internal purposes and cannot be meaningfully mangled.
4288   case Expr::OpaqueValueExprClass:
4289     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4290 
4291   case Expr::InitListExprClass: {
4292     NotPrimaryExpr();
4293     Out << "il";
4294     mangleInitListElements(cast<InitListExpr>(E));
4295     Out << "E";
4296     break;
4297   }
4298 
4299   case Expr::DesignatedInitExprClass: {
4300     NotPrimaryExpr();
4301     auto *DIE = cast<DesignatedInitExpr>(E);
4302     for (const auto &Designator : DIE->designators()) {
4303       if (Designator.isFieldDesignator()) {
4304         Out << "di";
4305         mangleSourceName(Designator.getFieldName());
4306       } else if (Designator.isArrayDesignator()) {
4307         Out << "dx";
4308         mangleExpression(DIE->getArrayIndex(Designator));
4309       } else {
4310         assert(Designator.isArrayRangeDesignator() &&
4311                "unknown designator kind");
4312         Out << "dX";
4313         mangleExpression(DIE->getArrayRangeStart(Designator));
4314         mangleExpression(DIE->getArrayRangeEnd(Designator));
4315       }
4316     }
4317     mangleExpression(DIE->getInit());
4318     break;
4319   }
4320 
4321   case Expr::CXXDefaultArgExprClass:
4322     E = cast<CXXDefaultArgExpr>(E)->getExpr();
4323     goto recurse;
4324 
4325   case Expr::CXXDefaultInitExprClass:
4326     E = cast<CXXDefaultInitExpr>(E)->getExpr();
4327     goto recurse;
4328 
4329   case Expr::CXXStdInitializerListExprClass:
4330     E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4331     goto recurse;
4332 
4333   case Expr::SubstNonTypeTemplateParmExprClass:
4334     E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4335     goto recurse;
4336 
4337   case Expr::UserDefinedLiteralClass:
4338     // We follow g++'s approach of mangling a UDL as a call to the literal
4339     // operator.
4340   case Expr::CXXMemberCallExprClass: // fallthrough
4341   case Expr::CallExprClass: {
4342     NotPrimaryExpr();
4343     const CallExpr *CE = cast<CallExpr>(E);
4344 
4345     // <expression> ::= cp <simple-id> <expression>* E
4346     // We use this mangling only when the call would use ADL except
4347     // for being parenthesized.  Per discussion with David
4348     // Vandervoorde, 2011.04.25.
4349     if (isParenthesizedADLCallee(CE)) {
4350       Out << "cp";
4351       // The callee here is a parenthesized UnresolvedLookupExpr with
4352       // no qualifier and should always get mangled as a <simple-id>
4353       // anyway.
4354 
4355     // <expression> ::= cl <expression>* E
4356     } else {
4357       Out << "cl";
4358     }
4359 
4360     unsigned CallArity = CE->getNumArgs();
4361     for (const Expr *Arg : CE->arguments())
4362       if (isa<PackExpansionExpr>(Arg))
4363         CallArity = UnknownArity;
4364 
4365     mangleExpression(CE->getCallee(), CallArity);
4366     for (const Expr *Arg : CE->arguments())
4367       mangleExpression(Arg);
4368     Out << 'E';
4369     break;
4370   }
4371 
4372   case Expr::CXXNewExprClass: {
4373     NotPrimaryExpr();
4374     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4375     if (New->isGlobalNew()) Out << "gs";
4376     Out << (New->isArray() ? "na" : "nw");
4377     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4378            E = New->placement_arg_end(); I != E; ++I)
4379       mangleExpression(*I);
4380     Out << '_';
4381     mangleType(New->getAllocatedType());
4382     if (New->hasInitializer()) {
4383       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4384         Out << "il";
4385       else
4386         Out << "pi";
4387       const Expr *Init = New->getInitializer();
4388       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4389         // Directly inline the initializers.
4390         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4391                                                   E = CCE->arg_end();
4392              I != E; ++I)
4393           mangleExpression(*I);
4394       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4395         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4396           mangleExpression(PLE->getExpr(i));
4397       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4398                  isa<InitListExpr>(Init)) {
4399         // Only take InitListExprs apart for list-initialization.
4400         mangleInitListElements(cast<InitListExpr>(Init));
4401       } else
4402         mangleExpression(Init);
4403     }
4404     Out << 'E';
4405     break;
4406   }
4407 
4408   case Expr::CXXPseudoDestructorExprClass: {
4409     NotPrimaryExpr();
4410     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4411     if (const Expr *Base = PDE->getBase())
4412       mangleMemberExprBase(Base, PDE->isArrow());
4413     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4414     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4415       if (Qualifier) {
4416         mangleUnresolvedPrefix(Qualifier,
4417                                /*recursive=*/true);
4418         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4419         Out << 'E';
4420       } else {
4421         Out << "sr";
4422         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4423           Out << 'E';
4424       }
4425     } else if (Qualifier) {
4426       mangleUnresolvedPrefix(Qualifier);
4427     }
4428     // <base-unresolved-name> ::= dn <destructor-name>
4429     Out << "dn";
4430     QualType DestroyedType = PDE->getDestroyedType();
4431     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4432     break;
4433   }
4434 
4435   case Expr::MemberExprClass: {
4436     NotPrimaryExpr();
4437     const MemberExpr *ME = cast<MemberExpr>(E);
4438     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4439                      ME->getQualifier(), nullptr,
4440                      ME->getMemberDecl()->getDeclName(),
4441                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4442                      Arity);
4443     break;
4444   }
4445 
4446   case Expr::UnresolvedMemberExprClass: {
4447     NotPrimaryExpr();
4448     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4449     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4450                      ME->isArrow(), ME->getQualifier(), nullptr,
4451                      ME->getMemberName(),
4452                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4453                      Arity);
4454     break;
4455   }
4456 
4457   case Expr::CXXDependentScopeMemberExprClass: {
4458     NotPrimaryExpr();
4459     const CXXDependentScopeMemberExpr *ME
4460       = cast<CXXDependentScopeMemberExpr>(E);
4461     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4462                      ME->isArrow(), ME->getQualifier(),
4463                      ME->getFirstQualifierFoundInScope(),
4464                      ME->getMember(),
4465                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4466                      Arity);
4467     break;
4468   }
4469 
4470   case Expr::UnresolvedLookupExprClass: {
4471     NotPrimaryExpr();
4472     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4473     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4474                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4475                          Arity);
4476     break;
4477   }
4478 
4479   case Expr::CXXUnresolvedConstructExprClass: {
4480     NotPrimaryExpr();
4481     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4482     unsigned N = CE->getNumArgs();
4483 
4484     if (CE->isListInitialization()) {
4485       assert(N == 1 && "unexpected form for list initialization");
4486       auto *IL = cast<InitListExpr>(CE->getArg(0));
4487       Out << "tl";
4488       mangleType(CE->getType());
4489       mangleInitListElements(IL);
4490       Out << "E";
4491       break;
4492     }
4493 
4494     Out << "cv";
4495     mangleType(CE->getType());
4496     if (N != 1) Out << '_';
4497     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4498     if (N != 1) Out << 'E';
4499     break;
4500   }
4501 
4502   case Expr::CXXConstructExprClass: {
4503     // An implicit cast is silent, thus may contain <expr-primary>.
4504     const auto *CE = cast<CXXConstructExpr>(E);
4505     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4506       assert(
4507           CE->getNumArgs() >= 1 &&
4508           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4509           "implicit CXXConstructExpr must have one argument");
4510       E = cast<CXXConstructExpr>(E)->getArg(0);
4511       goto recurse;
4512     }
4513     NotPrimaryExpr();
4514     Out << "il";
4515     for (auto *E : CE->arguments())
4516       mangleExpression(E);
4517     Out << "E";
4518     break;
4519   }
4520 
4521   case Expr::CXXTemporaryObjectExprClass: {
4522     NotPrimaryExpr();
4523     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4524     unsigned N = CE->getNumArgs();
4525     bool List = CE->isListInitialization();
4526 
4527     if (List)
4528       Out << "tl";
4529     else
4530       Out << "cv";
4531     mangleType(CE->getType());
4532     if (!List && N != 1)
4533       Out << '_';
4534     if (CE->isStdInitListInitialization()) {
4535       // We implicitly created a std::initializer_list<T> for the first argument
4536       // of a constructor of type U in an expression of the form U{a, b, c}.
4537       // Strip all the semantic gunk off the initializer list.
4538       auto *SILE =
4539           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4540       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4541       mangleInitListElements(ILE);
4542     } else {
4543       for (auto *E : CE->arguments())
4544         mangleExpression(E);
4545     }
4546     if (List || N != 1)
4547       Out << 'E';
4548     break;
4549   }
4550 
4551   case Expr::CXXScalarValueInitExprClass:
4552     NotPrimaryExpr();
4553     Out << "cv";
4554     mangleType(E->getType());
4555     Out << "_E";
4556     break;
4557 
4558   case Expr::CXXNoexceptExprClass:
4559     NotPrimaryExpr();
4560     Out << "nx";
4561     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4562     break;
4563 
4564   case Expr::UnaryExprOrTypeTraitExprClass: {
4565     // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4566     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4567 
4568     if (!SAE->isInstantiationDependent()) {
4569       // Itanium C++ ABI:
4570       //   If the operand of a sizeof or alignof operator is not
4571       //   instantiation-dependent it is encoded as an integer literal
4572       //   reflecting the result of the operator.
4573       //
4574       //   If the result of the operator is implicitly converted to a known
4575       //   integer type, that type is used for the literal; otherwise, the type
4576       //   of std::size_t or std::ptrdiff_t is used.
4577       QualType T = (ImplicitlyConvertedToType.isNull() ||
4578                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4579                                                     : ImplicitlyConvertedToType;
4580       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4581       mangleIntegerLiteral(T, V);
4582       break;
4583     }
4584 
4585     NotPrimaryExpr(); // But otherwise, they are not.
4586 
4587     auto MangleAlignofSizeofArg = [&] {
4588       if (SAE->isArgumentType()) {
4589         Out << 't';
4590         mangleType(SAE->getArgumentType());
4591       } else {
4592         Out << 'z';
4593         mangleExpression(SAE->getArgumentExpr());
4594       }
4595     };
4596 
4597     switch(SAE->getKind()) {
4598     case UETT_SizeOf:
4599       Out << 's';
4600       MangleAlignofSizeofArg();
4601       break;
4602     case UETT_PreferredAlignOf:
4603       // As of clang 12, we mangle __alignof__ differently than alignof. (They
4604       // have acted differently since Clang 8, but were previously mangled the
4605       // same.)
4606       if (Context.getASTContext().getLangOpts().getClangABICompat() >
4607           LangOptions::ClangABI::Ver11) {
4608         Out << "u11__alignof__";
4609         if (SAE->isArgumentType())
4610           mangleType(SAE->getArgumentType());
4611         else
4612           mangleTemplateArgExpr(SAE->getArgumentExpr());
4613         Out << 'E';
4614         break;
4615       }
4616       LLVM_FALLTHROUGH;
4617     case UETT_AlignOf:
4618       Out << 'a';
4619       MangleAlignofSizeofArg();
4620       break;
4621     case UETT_VecStep: {
4622       DiagnosticsEngine &Diags = Context.getDiags();
4623       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4624                                      "cannot yet mangle vec_step expression");
4625       Diags.Report(DiagID);
4626       return;
4627     }
4628     case UETT_OpenMPRequiredSimdAlign: {
4629       DiagnosticsEngine &Diags = Context.getDiags();
4630       unsigned DiagID = Diags.getCustomDiagID(
4631           DiagnosticsEngine::Error,
4632           "cannot yet mangle __builtin_omp_required_simd_align expression");
4633       Diags.Report(DiagID);
4634       return;
4635     }
4636     }
4637     break;
4638   }
4639 
4640   case Expr::CXXThrowExprClass: {
4641     NotPrimaryExpr();
4642     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4643     //  <expression> ::= tw <expression>  # throw expression
4644     //               ::= tr               # rethrow
4645     if (TE->getSubExpr()) {
4646       Out << "tw";
4647       mangleExpression(TE->getSubExpr());
4648     } else {
4649       Out << "tr";
4650     }
4651     break;
4652   }
4653 
4654   case Expr::CXXTypeidExprClass: {
4655     NotPrimaryExpr();
4656     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4657     //  <expression> ::= ti <type>        # typeid (type)
4658     //               ::= te <expression>  # typeid (expression)
4659     if (TIE->isTypeOperand()) {
4660       Out << "ti";
4661       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4662     } else {
4663       Out << "te";
4664       mangleExpression(TIE->getExprOperand());
4665     }
4666     break;
4667   }
4668 
4669   case Expr::CXXDeleteExprClass: {
4670     NotPrimaryExpr();
4671     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4672     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4673     //               ::= [gs] da <expression>  # [::] delete [] expr
4674     if (DE->isGlobalDelete()) Out << "gs";
4675     Out << (DE->isArrayForm() ? "da" : "dl");
4676     mangleExpression(DE->getArgument());
4677     break;
4678   }
4679 
4680   case Expr::UnaryOperatorClass: {
4681     NotPrimaryExpr();
4682     const UnaryOperator *UO = cast<UnaryOperator>(E);
4683     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4684                        /*Arity=*/1);
4685     mangleExpression(UO->getSubExpr());
4686     break;
4687   }
4688 
4689   case Expr::ArraySubscriptExprClass: {
4690     NotPrimaryExpr();
4691     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4692 
4693     // Array subscript is treated as a syntactically weird form of
4694     // binary operator.
4695     Out << "ix";
4696     mangleExpression(AE->getLHS());
4697     mangleExpression(AE->getRHS());
4698     break;
4699   }
4700 
4701   case Expr::MatrixSubscriptExprClass: {
4702     NotPrimaryExpr();
4703     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4704     Out << "ixix";
4705     mangleExpression(ME->getBase());
4706     mangleExpression(ME->getRowIdx());
4707     mangleExpression(ME->getColumnIdx());
4708     break;
4709   }
4710 
4711   case Expr::CompoundAssignOperatorClass: // fallthrough
4712   case Expr::BinaryOperatorClass: {
4713     NotPrimaryExpr();
4714     const BinaryOperator *BO = cast<BinaryOperator>(E);
4715     if (BO->getOpcode() == BO_PtrMemD)
4716       Out << "ds";
4717     else
4718       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4719                          /*Arity=*/2);
4720     mangleExpression(BO->getLHS());
4721     mangleExpression(BO->getRHS());
4722     break;
4723   }
4724 
4725   case Expr::CXXRewrittenBinaryOperatorClass: {
4726     NotPrimaryExpr();
4727     // The mangled form represents the original syntax.
4728     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4729         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4730     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4731                        /*Arity=*/2);
4732     mangleExpression(Decomposed.LHS);
4733     mangleExpression(Decomposed.RHS);
4734     break;
4735   }
4736 
4737   case Expr::ConditionalOperatorClass: {
4738     NotPrimaryExpr();
4739     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4740     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4741     mangleExpression(CO->getCond());
4742     mangleExpression(CO->getLHS(), Arity);
4743     mangleExpression(CO->getRHS(), Arity);
4744     break;
4745   }
4746 
4747   case Expr::ImplicitCastExprClass: {
4748     ImplicitlyConvertedToType = E->getType();
4749     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4750     goto recurse;
4751   }
4752 
4753   case Expr::ObjCBridgedCastExprClass: {
4754     NotPrimaryExpr();
4755     // Mangle ownership casts as a vendor extended operator __bridge,
4756     // __bridge_transfer, or __bridge_retain.
4757     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4758     Out << "v1U" << Kind.size() << Kind;
4759     mangleCastExpression(E, "cv");
4760     break;
4761   }
4762 
4763   case Expr::CStyleCastExprClass:
4764     NotPrimaryExpr();
4765     mangleCastExpression(E, "cv");
4766     break;
4767 
4768   case Expr::CXXFunctionalCastExprClass: {
4769     NotPrimaryExpr();
4770     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4771     // FIXME: Add isImplicit to CXXConstructExpr.
4772     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4773       if (CCE->getParenOrBraceRange().isInvalid())
4774         Sub = CCE->getArg(0)->IgnoreImplicit();
4775     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4776       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4777     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4778       Out << "tl";
4779       mangleType(E->getType());
4780       mangleInitListElements(IL);
4781       Out << "E";
4782     } else {
4783       mangleCastExpression(E, "cv");
4784     }
4785     break;
4786   }
4787 
4788   case Expr::CXXStaticCastExprClass:
4789     NotPrimaryExpr();
4790     mangleCastExpression(E, "sc");
4791     break;
4792   case Expr::CXXDynamicCastExprClass:
4793     NotPrimaryExpr();
4794     mangleCastExpression(E, "dc");
4795     break;
4796   case Expr::CXXReinterpretCastExprClass:
4797     NotPrimaryExpr();
4798     mangleCastExpression(E, "rc");
4799     break;
4800   case Expr::CXXConstCastExprClass:
4801     NotPrimaryExpr();
4802     mangleCastExpression(E, "cc");
4803     break;
4804   case Expr::CXXAddrspaceCastExprClass:
4805     NotPrimaryExpr();
4806     mangleCastExpression(E, "ac");
4807     break;
4808 
4809   case Expr::CXXOperatorCallExprClass: {
4810     NotPrimaryExpr();
4811     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4812     unsigned NumArgs = CE->getNumArgs();
4813     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4814     // (the enclosing MemberExpr covers the syntactic portion).
4815     if (CE->getOperator() != OO_Arrow)
4816       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4817     // Mangle the arguments.
4818     for (unsigned i = 0; i != NumArgs; ++i)
4819       mangleExpression(CE->getArg(i));
4820     break;
4821   }
4822 
4823   case Expr::ParenExprClass:
4824     E = cast<ParenExpr>(E)->getSubExpr();
4825     goto recurse;
4826 
4827   case Expr::ConceptSpecializationExprClass: {
4828     //  <expr-primary> ::= L <mangled-name> E # external name
4829     Out << "L_Z";
4830     auto *CSE = cast<ConceptSpecializationExpr>(E);
4831     mangleTemplateName(CSE->getNamedConcept(),
4832                        CSE->getTemplateArguments().data(),
4833                        CSE->getTemplateArguments().size());
4834     Out << 'E';
4835     break;
4836   }
4837 
4838   case Expr::DeclRefExprClass:
4839     // MangleDeclRefExpr helper handles primary-vs-nonprimary
4840     MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4841     break;
4842 
4843   case Expr::SubstNonTypeTemplateParmPackExprClass:
4844     NotPrimaryExpr();
4845     // FIXME: not clear how to mangle this!
4846     // template <unsigned N...> class A {
4847     //   template <class U...> void foo(U (&x)[N]...);
4848     // };
4849     Out << "_SUBSTPACK_";
4850     break;
4851 
4852   case Expr::FunctionParmPackExprClass: {
4853     NotPrimaryExpr();
4854     // FIXME: not clear how to mangle this!
4855     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4856     Out << "v110_SUBSTPACK";
4857     MangleDeclRefExpr(FPPE->getParameterPack());
4858     break;
4859   }
4860 
4861   case Expr::DependentScopeDeclRefExprClass: {
4862     NotPrimaryExpr();
4863     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4864     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4865                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4866                          Arity);
4867     break;
4868   }
4869 
4870   case Expr::CXXBindTemporaryExprClass:
4871     E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4872     goto recurse;
4873 
4874   case Expr::ExprWithCleanupsClass:
4875     E = cast<ExprWithCleanups>(E)->getSubExpr();
4876     goto recurse;
4877 
4878   case Expr::FloatingLiteralClass: {
4879     // <expr-primary>
4880     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4881     mangleFloatLiteral(FL->getType(), FL->getValue());
4882     break;
4883   }
4884 
4885   case Expr::FixedPointLiteralClass:
4886     // Currently unimplemented -- might be <expr-primary> in future?
4887     mangleFixedPointLiteral();
4888     break;
4889 
4890   case Expr::CharacterLiteralClass:
4891     // <expr-primary>
4892     Out << 'L';
4893     mangleType(E->getType());
4894     Out << cast<CharacterLiteral>(E)->getValue();
4895     Out << 'E';
4896     break;
4897 
4898   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4899   case Expr::ObjCBoolLiteralExprClass:
4900     // <expr-primary>
4901     Out << "Lb";
4902     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4903     Out << 'E';
4904     break;
4905 
4906   case Expr::CXXBoolLiteralExprClass:
4907     // <expr-primary>
4908     Out << "Lb";
4909     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4910     Out << 'E';
4911     break;
4912 
4913   case Expr::IntegerLiteralClass: {
4914     // <expr-primary>
4915     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4916     if (E->getType()->isSignedIntegerType())
4917       Value.setIsSigned(true);
4918     mangleIntegerLiteral(E->getType(), Value);
4919     break;
4920   }
4921 
4922   case Expr::ImaginaryLiteralClass: {
4923     // <expr-primary>
4924     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4925     // Mangle as if a complex literal.
4926     // Proposal from David Vandevoorde, 2010.06.30.
4927     Out << 'L';
4928     mangleType(E->getType());
4929     if (const FloatingLiteral *Imag =
4930           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4931       // Mangle a floating-point zero of the appropriate type.
4932       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4933       Out << '_';
4934       mangleFloat(Imag->getValue());
4935     } else {
4936       Out << "0_";
4937       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4938       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4939         Value.setIsSigned(true);
4940       mangleNumber(Value);
4941     }
4942     Out << 'E';
4943     break;
4944   }
4945 
4946   case Expr::StringLiteralClass: {
4947     // <expr-primary>
4948     // Revised proposal from David Vandervoorde, 2010.07.15.
4949     Out << 'L';
4950     assert(isa<ConstantArrayType>(E->getType()));
4951     mangleType(E->getType());
4952     Out << 'E';
4953     break;
4954   }
4955 
4956   case Expr::GNUNullExprClass:
4957     // <expr-primary>
4958     // Mangle as if an integer literal 0.
4959     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4960     break;
4961 
4962   case Expr::CXXNullPtrLiteralExprClass: {
4963     // <expr-primary>
4964     Out << "LDnE";
4965     break;
4966   }
4967 
4968   case Expr::LambdaExprClass: {
4969     // A lambda-expression can't appear in the signature of an
4970     // externally-visible declaration, so there's no standard mangling for
4971     // this, but mangling as a literal of the closure type seems reasonable.
4972     Out << "L";
4973     mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
4974     Out << "E";
4975     break;
4976   }
4977 
4978   case Expr::PackExpansionExprClass:
4979     NotPrimaryExpr();
4980     Out << "sp";
4981     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4982     break;
4983 
4984   case Expr::SizeOfPackExprClass: {
4985     NotPrimaryExpr();
4986     auto *SPE = cast<SizeOfPackExpr>(E);
4987     if (SPE->isPartiallySubstituted()) {
4988       Out << "sP";
4989       for (const auto &A : SPE->getPartialArguments())
4990         mangleTemplateArg(A, false);
4991       Out << "E";
4992       break;
4993     }
4994 
4995     Out << "sZ";
4996     const NamedDecl *Pack = SPE->getPack();
4997     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4998       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4999     else if (const NonTypeTemplateParmDecl *NTTP
5000                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
5001       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
5002     else if (const TemplateTemplateParmDecl *TempTP
5003                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
5004       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
5005     else
5006       mangleFunctionParam(cast<ParmVarDecl>(Pack));
5007     break;
5008   }
5009 
5010   case Expr::MaterializeTemporaryExprClass:
5011     E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5012     goto recurse;
5013 
5014   case Expr::CXXFoldExprClass: {
5015     NotPrimaryExpr();
5016     auto *FE = cast<CXXFoldExpr>(E);
5017     if (FE->isLeftFold())
5018       Out << (FE->getInit() ? "fL" : "fl");
5019     else
5020       Out << (FE->getInit() ? "fR" : "fr");
5021 
5022     if (FE->getOperator() == BO_PtrMemD)
5023       Out << "ds";
5024     else
5025       mangleOperatorName(
5026           BinaryOperator::getOverloadedOperator(FE->getOperator()),
5027           /*Arity=*/2);
5028 
5029     if (FE->getLHS())
5030       mangleExpression(FE->getLHS());
5031     if (FE->getRHS())
5032       mangleExpression(FE->getRHS());
5033     break;
5034   }
5035 
5036   case Expr::CXXThisExprClass:
5037     NotPrimaryExpr();
5038     Out << "fpT";
5039     break;
5040 
5041   case Expr::CoawaitExprClass:
5042     // FIXME: Propose a non-vendor mangling.
5043     NotPrimaryExpr();
5044     Out << "v18co_await";
5045     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5046     break;
5047 
5048   case Expr::DependentCoawaitExprClass:
5049     // FIXME: Propose a non-vendor mangling.
5050     NotPrimaryExpr();
5051     Out << "v18co_await";
5052     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5053     break;
5054 
5055   case Expr::CoyieldExprClass:
5056     // FIXME: Propose a non-vendor mangling.
5057     NotPrimaryExpr();
5058     Out << "v18co_yield";
5059     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5060     break;
5061   case Expr::SYCLUniqueStableNameExprClass: {
5062     const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5063     NotPrimaryExpr();
5064 
5065     Out << "u33__builtin_sycl_unique_stable_name";
5066     mangleType(USN->getTypeSourceInfo()->getType());
5067 
5068     Out << "E";
5069     break;
5070   }
5071   }
5072 
5073   if (AsTemplateArg && !IsPrimaryExpr)
5074     Out << 'E';
5075 }
5076 
5077 /// Mangle an expression which refers to a parameter variable.
5078 ///
5079 /// <expression>     ::= <function-param>
5080 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
5081 /// <function-param> ::= fp <top-level CV-qualifiers>
5082 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
5083 /// <function-param> ::= fL <L-1 non-negative number>
5084 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
5085 /// <function-param> ::= fL <L-1 non-negative number>
5086 ///                      p <top-level CV-qualifiers>
5087 ///                      <I-1 non-negative number> _         # L > 0, I > 0
5088 ///
5089 /// L is the nesting depth of the parameter, defined as 1 if the
5090 /// parameter comes from the innermost function prototype scope
5091 /// enclosing the current context, 2 if from the next enclosing
5092 /// function prototype scope, and so on, with one special case: if
5093 /// we've processed the full parameter clause for the innermost
5094 /// function type, then L is one less.  This definition conveniently
5095 /// makes it irrelevant whether a function's result type was written
5096 /// trailing or leading, but is otherwise overly complicated; the
5097 /// numbering was first designed without considering references to
5098 /// parameter in locations other than return types, and then the
5099 /// mangling had to be generalized without changing the existing
5100 /// manglings.
5101 ///
5102 /// I is the zero-based index of the parameter within its parameter
5103 /// declaration clause.  Note that the original ABI document describes
5104 /// this using 1-based ordinals.
5105 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5106   unsigned parmDepth = parm->getFunctionScopeDepth();
5107   unsigned parmIndex = parm->getFunctionScopeIndex();
5108 
5109   // Compute 'L'.
5110   // parmDepth does not include the declaring function prototype.
5111   // FunctionTypeDepth does account for that.
5112   assert(parmDepth < FunctionTypeDepth.getDepth());
5113   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5114   if (FunctionTypeDepth.isInResultType())
5115     nestingDepth--;
5116 
5117   if (nestingDepth == 0) {
5118     Out << "fp";
5119   } else {
5120     Out << "fL" << (nestingDepth - 1) << 'p';
5121   }
5122 
5123   // Top-level qualifiers.  We don't have to worry about arrays here,
5124   // because parameters declared as arrays should already have been
5125   // transformed to have pointer type. FIXME: apparently these don't
5126   // get mangled if used as an rvalue of a known non-class type?
5127   assert(!parm->getType()->isArrayType()
5128          && "parameter's type is still an array type?");
5129 
5130   if (const DependentAddressSpaceType *DAST =
5131       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5132     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5133   } else {
5134     mangleQualifiers(parm->getType().getQualifiers());
5135   }
5136 
5137   // Parameter index.
5138   if (parmIndex != 0) {
5139     Out << (parmIndex - 1);
5140   }
5141   Out << '_';
5142 }
5143 
5144 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5145                                        const CXXRecordDecl *InheritedFrom) {
5146   // <ctor-dtor-name> ::= C1  # complete object constructor
5147   //                  ::= C2  # base object constructor
5148   //                  ::= CI1 <type> # complete inheriting constructor
5149   //                  ::= CI2 <type> # base inheriting constructor
5150   //
5151   // In addition, C5 is a comdat name with C1 and C2 in it.
5152   Out << 'C';
5153   if (InheritedFrom)
5154     Out << 'I';
5155   switch (T) {
5156   case Ctor_Complete:
5157     Out << '1';
5158     break;
5159   case Ctor_Base:
5160     Out << '2';
5161     break;
5162   case Ctor_Comdat:
5163     Out << '5';
5164     break;
5165   case Ctor_DefaultClosure:
5166   case Ctor_CopyingClosure:
5167     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5168   }
5169   if (InheritedFrom)
5170     mangleName(InheritedFrom);
5171 }
5172 
5173 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5174   // <ctor-dtor-name> ::= D0  # deleting destructor
5175   //                  ::= D1  # complete object destructor
5176   //                  ::= D2  # base object destructor
5177   //
5178   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5179   switch (T) {
5180   case Dtor_Deleting:
5181     Out << "D0";
5182     break;
5183   case Dtor_Complete:
5184     Out << "D1";
5185     break;
5186   case Dtor_Base:
5187     Out << "D2";
5188     break;
5189   case Dtor_Comdat:
5190     Out << "D5";
5191     break;
5192   }
5193 }
5194 
5195 namespace {
5196 // Helper to provide ancillary information on a template used to mangle its
5197 // arguments.
5198 struct TemplateArgManglingInfo {
5199   TemplateDecl *ResolvedTemplate = nullptr;
5200   bool SeenPackExpansionIntoNonPack = false;
5201   const NamedDecl *UnresolvedExpandedPack = nullptr;
5202 
5203   TemplateArgManglingInfo(TemplateName TN) {
5204     if (TemplateDecl *TD = TN.getAsTemplateDecl())
5205       ResolvedTemplate = TD;
5206   }
5207 
5208   /// Do we need to mangle template arguments with exactly correct types?
5209   ///
5210   /// This should be called exactly once for each parameter / argument pair, in
5211   /// order.
5212   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5213     // We need correct types when the template-name is unresolved or when it
5214     // names a template that is able to be overloaded.
5215     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5216       return true;
5217 
5218     // Move to the next parameter.
5219     const NamedDecl *Param = UnresolvedExpandedPack;
5220     if (!Param) {
5221       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5222              "no parameter for argument");
5223       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5224 
5225       // If we reach an expanded parameter pack whose argument isn't in pack
5226       // form, that means Sema couldn't figure out which arguments belonged to
5227       // it, because it contains a pack expansion. Track the expanded pack for
5228       // all further template arguments until we hit that pack expansion.
5229       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5230         assert(getExpandedPackSize(Param) &&
5231                "failed to form pack argument for parameter pack");
5232         UnresolvedExpandedPack = Param;
5233       }
5234     }
5235 
5236     // If we encounter a pack argument that is expanded into a non-pack
5237     // parameter, we can no longer track parameter / argument correspondence,
5238     // and need to use exact types from this point onwards.
5239     if (Arg.isPackExpansion() &&
5240         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5241       SeenPackExpansionIntoNonPack = true;
5242       return true;
5243     }
5244 
5245     // We need exact types for function template arguments because they might be
5246     // overloaded on template parameter type. As a special case, a member
5247     // function template of a generic lambda is not overloadable.
5248     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5249       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5250       if (!RD || !RD->isGenericLambda())
5251         return true;
5252     }
5253 
5254     // Otherwise, we only need a correct type if the parameter has a deduced
5255     // type.
5256     //
5257     // Note: for an expanded parameter pack, getType() returns the type prior
5258     // to expansion. We could ask for the expanded type with getExpansionType(),
5259     // but it doesn't matter because substitution and expansion don't affect
5260     // whether a deduced type appears in the type.
5261     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5262     return NTTP && NTTP->getType()->getContainedDeducedType();
5263   }
5264 };
5265 }
5266 
5267 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5268                                         const TemplateArgumentLoc *TemplateArgs,
5269                                         unsigned NumTemplateArgs) {
5270   // <template-args> ::= I <template-arg>+ E
5271   Out << 'I';
5272   TemplateArgManglingInfo Info(TN);
5273   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5274     mangleTemplateArg(TemplateArgs[i].getArgument(),
5275                       Info.needExactType(i, TemplateArgs[i].getArgument()));
5276   Out << 'E';
5277 }
5278 
5279 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5280                                         const TemplateArgumentList &AL) {
5281   // <template-args> ::= I <template-arg>+ E
5282   Out << 'I';
5283   TemplateArgManglingInfo Info(TN);
5284   for (unsigned i = 0, e = AL.size(); i != e; ++i)
5285     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5286   Out << 'E';
5287 }
5288 
5289 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5290                                         const TemplateArgument *TemplateArgs,
5291                                         unsigned NumTemplateArgs) {
5292   // <template-args> ::= I <template-arg>+ E
5293   Out << 'I';
5294   TemplateArgManglingInfo Info(TN);
5295   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5296     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5297   Out << 'E';
5298 }
5299 
5300 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5301   // <template-arg> ::= <type>              # type or template
5302   //                ::= X <expression> E    # expression
5303   //                ::= <expr-primary>      # simple expressions
5304   //                ::= J <template-arg>* E # argument pack
5305   if (!A.isInstantiationDependent() || A.isDependent())
5306     A = Context.getASTContext().getCanonicalTemplateArgument(A);
5307 
5308   switch (A.getKind()) {
5309   case TemplateArgument::Null:
5310     llvm_unreachable("Cannot mangle NULL template argument");
5311 
5312   case TemplateArgument::Type:
5313     mangleType(A.getAsType());
5314     break;
5315   case TemplateArgument::Template:
5316     // This is mangled as <type>.
5317     mangleType(A.getAsTemplate());
5318     break;
5319   case TemplateArgument::TemplateExpansion:
5320     // <type>  ::= Dp <type>          # pack expansion (C++0x)
5321     Out << "Dp";
5322     mangleType(A.getAsTemplateOrTemplatePattern());
5323     break;
5324   case TemplateArgument::Expression:
5325     mangleTemplateArgExpr(A.getAsExpr());
5326     break;
5327   case TemplateArgument::Integral:
5328     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5329     break;
5330   case TemplateArgument::Declaration: {
5331     //  <expr-primary> ::= L <mangled-name> E # external name
5332     ValueDecl *D = A.getAsDecl();
5333 
5334     // Template parameter objects are modeled by reproducing a source form
5335     // produced as if by aggregate initialization.
5336     if (A.getParamTypeForDecl()->isRecordType()) {
5337       auto *TPO = cast<TemplateParamObjectDecl>(D);
5338       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5339                                TPO->getValue(), /*TopLevel=*/true,
5340                                NeedExactType);
5341       break;
5342     }
5343 
5344     ASTContext &Ctx = Context.getASTContext();
5345     APValue Value;
5346     if (D->isCXXInstanceMember())
5347       // Simple pointer-to-member with no conversion.
5348       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5349     else if (D->getType()->isArrayType() &&
5350              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5351                                 A.getParamTypeForDecl()) &&
5352              Ctx.getLangOpts().getClangABICompat() >
5353                  LangOptions::ClangABI::Ver11)
5354       // Build a value corresponding to this implicit array-to-pointer decay.
5355       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5356                       {APValue::LValuePathEntry::ArrayIndex(0)},
5357                       /*OnePastTheEnd=*/false);
5358     else
5359       // Regular pointer or reference to a declaration.
5360       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5361                       ArrayRef<APValue::LValuePathEntry>(),
5362                       /*OnePastTheEnd=*/false);
5363     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5364                              NeedExactType);
5365     break;
5366   }
5367   case TemplateArgument::NullPtr: {
5368     mangleNullPointer(A.getNullPtrType());
5369     break;
5370   }
5371   case TemplateArgument::Pack: {
5372     //  <template-arg> ::= J <template-arg>* E
5373     Out << 'J';
5374     for (const auto &P : A.pack_elements())
5375       mangleTemplateArg(P, NeedExactType);
5376     Out << 'E';
5377   }
5378   }
5379 }
5380 
5381 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5382   ASTContext &Ctx = Context.getASTContext();
5383   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5384     mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5385     return;
5386   }
5387 
5388   // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5389   // correctly in cases where the template argument was
5390   // constructed from an expression rather than an already-evaluated
5391   // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5392   // 'Li0E'.
5393   //
5394   // We did special-case DeclRefExpr to attempt to DTRT for that one
5395   // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5396   // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5397   // the proper 'Xfp_E'.
5398   E = E->IgnoreParenImpCasts();
5399   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5400     const ValueDecl *D = DRE->getDecl();
5401     if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5402       Out << 'L';
5403       mangle(D);
5404       Out << 'E';
5405       return;
5406     }
5407   }
5408   Out << 'X';
5409   mangleExpression(E);
5410   Out << 'E';
5411 }
5412 
5413 /// Determine whether a given value is equivalent to zero-initialization for
5414 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5415 ///
5416 /// Note that this is not in general equivalent to determining whether the
5417 /// value has an all-zeroes bit pattern.
5418 static bool isZeroInitialized(QualType T, const APValue &V) {
5419   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5420   // pathological cases due to using this, but it's a little awkward
5421   // to do this in linear time in general.
5422   switch (V.getKind()) {
5423   case APValue::None:
5424   case APValue::Indeterminate:
5425   case APValue::AddrLabelDiff:
5426     return false;
5427 
5428   case APValue::Struct: {
5429     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5430     assert(RD && "unexpected type for record value");
5431     unsigned I = 0;
5432     for (const CXXBaseSpecifier &BS : RD->bases()) {
5433       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5434         return false;
5435       ++I;
5436     }
5437     I = 0;
5438     for (const FieldDecl *FD : RD->fields()) {
5439       if (!FD->isUnnamedBitfield() &&
5440           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5441         return false;
5442       ++I;
5443     }
5444     return true;
5445   }
5446 
5447   case APValue::Union: {
5448     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5449     assert(RD && "unexpected type for union value");
5450     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5451     for (const FieldDecl *FD : RD->fields()) {
5452       if (!FD->isUnnamedBitfield())
5453         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5454                isZeroInitialized(FD->getType(), V.getUnionValue());
5455     }
5456     // If there are no fields (other than unnamed bitfields), the value is
5457     // necessarily zero-initialized.
5458     return true;
5459   }
5460 
5461   case APValue::Array: {
5462     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5463     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5464       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5465         return false;
5466     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5467   }
5468 
5469   case APValue::Vector: {
5470     const VectorType *VT = T->castAs<VectorType>();
5471     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5472       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5473         return false;
5474     return true;
5475   }
5476 
5477   case APValue::Int:
5478     return !V.getInt();
5479 
5480   case APValue::Float:
5481     return V.getFloat().isPosZero();
5482 
5483   case APValue::FixedPoint:
5484     return !V.getFixedPoint().getValue();
5485 
5486   case APValue::ComplexFloat:
5487     return V.getComplexFloatReal().isPosZero() &&
5488            V.getComplexFloatImag().isPosZero();
5489 
5490   case APValue::ComplexInt:
5491     return !V.getComplexIntReal() && !V.getComplexIntImag();
5492 
5493   case APValue::LValue:
5494     return V.isNullPointer();
5495 
5496   case APValue::MemberPointer:
5497     return !V.getMemberPointerDecl();
5498   }
5499 
5500   llvm_unreachable("Unhandled APValue::ValueKind enum");
5501 }
5502 
5503 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5504   QualType T = LV.getLValueBase().getType();
5505   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5506     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5507       T = AT->getElementType();
5508     else if (const FieldDecl *FD =
5509                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5510       T = FD->getType();
5511     else
5512       T = Ctx.getRecordType(
5513           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5514   }
5515   return T;
5516 }
5517 
5518 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5519                                               bool TopLevel,
5520                                               bool NeedExactType) {
5521   // Ignore all top-level cv-qualifiers, to match GCC.
5522   Qualifiers Quals;
5523   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5524 
5525   // A top-level expression that's not a primary expression is wrapped in X...E.
5526   bool IsPrimaryExpr = true;
5527   auto NotPrimaryExpr = [&] {
5528     if (TopLevel && IsPrimaryExpr)
5529       Out << 'X';
5530     IsPrimaryExpr = false;
5531   };
5532 
5533   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5534   switch (V.getKind()) {
5535   case APValue::None:
5536   case APValue::Indeterminate:
5537     Out << 'L';
5538     mangleType(T);
5539     Out << 'E';
5540     break;
5541 
5542   case APValue::AddrLabelDiff:
5543     llvm_unreachable("unexpected value kind in template argument");
5544 
5545   case APValue::Struct: {
5546     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5547     assert(RD && "unexpected type for record value");
5548 
5549     // Drop trailing zero-initialized elements.
5550     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
5551                                                     RD->field_end());
5552     while (
5553         !Fields.empty() &&
5554         (Fields.back()->isUnnamedBitfield() ||
5555          isZeroInitialized(Fields.back()->getType(),
5556                            V.getStructField(Fields.back()->getFieldIndex())))) {
5557       Fields.pop_back();
5558     }
5559     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5560     if (Fields.empty()) {
5561       while (!Bases.empty() &&
5562              isZeroInitialized(Bases.back().getType(),
5563                                V.getStructBase(Bases.size() - 1)))
5564         Bases = Bases.drop_back();
5565     }
5566 
5567     // <expression> ::= tl <type> <braced-expression>* E
5568     NotPrimaryExpr();
5569     Out << "tl";
5570     mangleType(T);
5571     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5572       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5573     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5574       if (Fields[I]->isUnnamedBitfield())
5575         continue;
5576       mangleValueInTemplateArg(Fields[I]->getType(),
5577                                V.getStructField(Fields[I]->getFieldIndex()),
5578                                false);
5579     }
5580     Out << 'E';
5581     break;
5582   }
5583 
5584   case APValue::Union: {
5585     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5586     const FieldDecl *FD = V.getUnionField();
5587 
5588     if (!FD) {
5589       Out << 'L';
5590       mangleType(T);
5591       Out << 'E';
5592       break;
5593     }
5594 
5595     // <braced-expression> ::= di <field source-name> <braced-expression>
5596     NotPrimaryExpr();
5597     Out << "tl";
5598     mangleType(T);
5599     if (!isZeroInitialized(T, V)) {
5600       Out << "di";
5601       mangleSourceName(FD->getIdentifier());
5602       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5603     }
5604     Out << 'E';
5605     break;
5606   }
5607 
5608   case APValue::Array: {
5609     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5610 
5611     NotPrimaryExpr();
5612     Out << "tl";
5613     mangleType(T);
5614 
5615     // Drop trailing zero-initialized elements.
5616     unsigned N = V.getArraySize();
5617     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5618       N = V.getArrayInitializedElts();
5619       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5620         --N;
5621     }
5622 
5623     for (unsigned I = 0; I != N; ++I) {
5624       const APValue &Elem = I < V.getArrayInitializedElts()
5625                                 ? V.getArrayInitializedElt(I)
5626                                 : V.getArrayFiller();
5627       mangleValueInTemplateArg(ElemT, Elem, false);
5628     }
5629     Out << 'E';
5630     break;
5631   }
5632 
5633   case APValue::Vector: {
5634     const VectorType *VT = T->castAs<VectorType>();
5635 
5636     NotPrimaryExpr();
5637     Out << "tl";
5638     mangleType(T);
5639     unsigned N = V.getVectorLength();
5640     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5641       --N;
5642     for (unsigned I = 0; I != N; ++I)
5643       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5644     Out << 'E';
5645     break;
5646   }
5647 
5648   case APValue::Int:
5649     mangleIntegerLiteral(T, V.getInt());
5650     break;
5651 
5652   case APValue::Float:
5653     mangleFloatLiteral(T, V.getFloat());
5654     break;
5655 
5656   case APValue::FixedPoint:
5657     mangleFixedPointLiteral();
5658     break;
5659 
5660   case APValue::ComplexFloat: {
5661     const ComplexType *CT = T->castAs<ComplexType>();
5662     NotPrimaryExpr();
5663     Out << "tl";
5664     mangleType(T);
5665     if (!V.getComplexFloatReal().isPosZero() ||
5666         !V.getComplexFloatImag().isPosZero())
5667       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5668     if (!V.getComplexFloatImag().isPosZero())
5669       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5670     Out << 'E';
5671     break;
5672   }
5673 
5674   case APValue::ComplexInt: {
5675     const ComplexType *CT = T->castAs<ComplexType>();
5676     NotPrimaryExpr();
5677     Out << "tl";
5678     mangleType(T);
5679     if (V.getComplexIntReal().getBoolValue() ||
5680         V.getComplexIntImag().getBoolValue())
5681       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5682     if (V.getComplexIntImag().getBoolValue())
5683       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5684     Out << 'E';
5685     break;
5686   }
5687 
5688   case APValue::LValue: {
5689     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5690     assert((T->isPointerType() || T->isReferenceType()) &&
5691            "unexpected type for LValue template arg");
5692 
5693     if (V.isNullPointer()) {
5694       mangleNullPointer(T);
5695       break;
5696     }
5697 
5698     APValue::LValueBase B = V.getLValueBase();
5699     if (!B) {
5700       // Non-standard mangling for integer cast to a pointer; this can only
5701       // occur as an extension.
5702       CharUnits Offset = V.getLValueOffset();
5703       if (Offset.isZero()) {
5704         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5705         // a cast, because L <type> 0 E means something else.
5706         NotPrimaryExpr();
5707         Out << "rc";
5708         mangleType(T);
5709         Out << "Li0E";
5710         if (TopLevel)
5711           Out << 'E';
5712       } else {
5713         Out << "L";
5714         mangleType(T);
5715         Out << Offset.getQuantity() << 'E';
5716       }
5717       break;
5718     }
5719 
5720     ASTContext &Ctx = Context.getASTContext();
5721 
5722     enum { Base, Offset, Path } Kind;
5723     if (!V.hasLValuePath()) {
5724       // Mangle as (T*)((char*)&base + N).
5725       if (T->isReferenceType()) {
5726         NotPrimaryExpr();
5727         Out << "decvP";
5728         mangleType(T->getPointeeType());
5729       } else {
5730         NotPrimaryExpr();
5731         Out << "cv";
5732         mangleType(T);
5733       }
5734       Out << "plcvPcad";
5735       Kind = Offset;
5736     } else {
5737       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5738         NotPrimaryExpr();
5739         // A final conversion to the template parameter's type is usually
5740         // folded into the 'so' mangling, but we can't do that for 'void*'
5741         // parameters without introducing collisions.
5742         if (NeedExactType && T->isVoidPointerType()) {
5743           Out << "cv";
5744           mangleType(T);
5745         }
5746         if (T->isPointerType())
5747           Out << "ad";
5748         Out << "so";
5749         mangleType(T->isVoidPointerType()
5750                        ? getLValueType(Ctx, V).getUnqualifiedType()
5751                        : T->getPointeeType());
5752         Kind = Path;
5753       } else {
5754         if (NeedExactType &&
5755             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5756             Ctx.getLangOpts().getClangABICompat() >
5757                 LangOptions::ClangABI::Ver11) {
5758           NotPrimaryExpr();
5759           Out << "cv";
5760           mangleType(T);
5761         }
5762         if (T->isPointerType()) {
5763           NotPrimaryExpr();
5764           Out << "ad";
5765         }
5766         Kind = Base;
5767       }
5768     }
5769 
5770     QualType TypeSoFar = B.getType();
5771     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5772       Out << 'L';
5773       mangle(VD);
5774       Out << 'E';
5775     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5776       NotPrimaryExpr();
5777       mangleExpression(E);
5778     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5779       NotPrimaryExpr();
5780       Out << "ti";
5781       mangleType(QualType(TI.getType(), 0));
5782     } else {
5783       // We should never see dynamic allocations here.
5784       llvm_unreachable("unexpected lvalue base kind in template argument");
5785     }
5786 
5787     switch (Kind) {
5788     case Base:
5789       break;
5790 
5791     case Offset:
5792       Out << 'L';
5793       mangleType(Ctx.getPointerDiffType());
5794       mangleNumber(V.getLValueOffset().getQuantity());
5795       Out << 'E';
5796       break;
5797 
5798     case Path:
5799       // <expression> ::= so <referent type> <expr> [<offset number>]
5800       //                  <union-selector>* [p] E
5801       if (!V.getLValueOffset().isZero())
5802         mangleNumber(V.getLValueOffset().getQuantity());
5803 
5804       // We model a past-the-end array pointer as array indexing with index N,
5805       // not with the "past the end" flag. Compensate for that.
5806       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5807 
5808       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5809         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5810           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5811             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5812           TypeSoFar = AT->getElementType();
5813         } else {
5814           const Decl *D = E.getAsBaseOrMember().getPointer();
5815           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5816             // <union-selector> ::= _ <number>
5817             if (FD->getParent()->isUnion()) {
5818               Out << '_';
5819               if (FD->getFieldIndex())
5820                 Out << (FD->getFieldIndex() - 1);
5821             }
5822             TypeSoFar = FD->getType();
5823           } else {
5824             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5825           }
5826         }
5827       }
5828 
5829       if (OnePastTheEnd)
5830         Out << 'p';
5831       Out << 'E';
5832       break;
5833     }
5834 
5835     break;
5836   }
5837 
5838   case APValue::MemberPointer:
5839     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5840     if (!V.getMemberPointerDecl()) {
5841       mangleNullPointer(T);
5842       break;
5843     }
5844 
5845     ASTContext &Ctx = Context.getASTContext();
5846 
5847     NotPrimaryExpr();
5848     if (!V.getMemberPointerPath().empty()) {
5849       Out << "mc";
5850       mangleType(T);
5851     } else if (NeedExactType &&
5852                !Ctx.hasSameType(
5853                    T->castAs<MemberPointerType>()->getPointeeType(),
5854                    V.getMemberPointerDecl()->getType()) &&
5855                Ctx.getLangOpts().getClangABICompat() >
5856                    LangOptions::ClangABI::Ver11) {
5857       Out << "cv";
5858       mangleType(T);
5859     }
5860     Out << "adL";
5861     mangle(V.getMemberPointerDecl());
5862     Out << 'E';
5863     if (!V.getMemberPointerPath().empty()) {
5864       CharUnits Offset =
5865           Context.getASTContext().getMemberPointerPathAdjustment(V);
5866       if (!Offset.isZero())
5867         mangleNumber(Offset.getQuantity());
5868       Out << 'E';
5869     }
5870     break;
5871   }
5872 
5873   if (TopLevel && !IsPrimaryExpr)
5874     Out << 'E';
5875 }
5876 
5877 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5878   // <template-param> ::= T_    # first template parameter
5879   //                  ::= T <parameter-2 non-negative number> _
5880   //                  ::= TL <L-1 non-negative number> __
5881   //                  ::= TL <L-1 non-negative number> _
5882   //                         <parameter-2 non-negative number> _
5883   //
5884   // The latter two manglings are from a proposal here:
5885   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5886   Out << 'T';
5887   if (Depth != 0)
5888     Out << 'L' << (Depth - 1) << '_';
5889   if (Index != 0)
5890     Out << (Index - 1);
5891   Out << '_';
5892 }
5893 
5894 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5895   if (SeqID == 1)
5896     Out << '0';
5897   else if (SeqID > 1) {
5898     SeqID--;
5899 
5900     // <seq-id> is encoded in base-36, using digits and upper case letters.
5901     char Buffer[7]; // log(2**32) / log(36) ~= 7
5902     MutableArrayRef<char> BufferRef(Buffer);
5903     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5904 
5905     for (; SeqID != 0; SeqID /= 36) {
5906       unsigned C = SeqID % 36;
5907       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5908     }
5909 
5910     Out.write(I.base(), I - BufferRef.rbegin());
5911   }
5912   Out << '_';
5913 }
5914 
5915 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5916   bool result = mangleSubstitution(tname);
5917   assert(result && "no existing substitution for template name");
5918   (void) result;
5919 }
5920 
5921 // <substitution> ::= S <seq-id> _
5922 //                ::= S_
5923 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5924   // Try one of the standard substitutions first.
5925   if (mangleStandardSubstitution(ND))
5926     return true;
5927 
5928   ND = cast<NamedDecl>(ND->getCanonicalDecl());
5929   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5930 }
5931 
5932 /// Determine whether the given type has any qualifiers that are relevant for
5933 /// substitutions.
5934 static bool hasMangledSubstitutionQualifiers(QualType T) {
5935   Qualifiers Qs = T.getQualifiers();
5936   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5937 }
5938 
5939 bool CXXNameMangler::mangleSubstitution(QualType T) {
5940   if (!hasMangledSubstitutionQualifiers(T)) {
5941     if (const RecordType *RT = T->getAs<RecordType>())
5942       return mangleSubstitution(RT->getDecl());
5943   }
5944 
5945   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5946 
5947   return mangleSubstitution(TypePtr);
5948 }
5949 
5950 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5951   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5952     return mangleSubstitution(TD);
5953 
5954   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5955   return mangleSubstitution(
5956                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5957 }
5958 
5959 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5960   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5961   if (I == Substitutions.end())
5962     return false;
5963 
5964   unsigned SeqID = I->second;
5965   Out << 'S';
5966   mangleSeqID(SeqID);
5967 
5968   return true;
5969 }
5970 
5971 static bool isCharType(QualType T) {
5972   if (T.isNull())
5973     return false;
5974 
5975   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
5976     T->isSpecificBuiltinType(BuiltinType::Char_U);
5977 }
5978 
5979 /// Returns whether a given type is a template specialization of a given name
5980 /// with a single argument of type char.
5981 static bool isCharSpecialization(QualType T, const char *Name) {
5982   if (T.isNull())
5983     return false;
5984 
5985   const RecordType *RT = T->getAs<RecordType>();
5986   if (!RT)
5987     return false;
5988 
5989   const ClassTemplateSpecializationDecl *SD =
5990     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5991   if (!SD)
5992     return false;
5993 
5994   if (!isStdNamespace(getEffectiveDeclContext(SD)))
5995     return false;
5996 
5997   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5998   if (TemplateArgs.size() != 1)
5999     return false;
6000 
6001   if (!isCharType(TemplateArgs[0].getAsType()))
6002     return false;
6003 
6004   return SD->getIdentifier()->getName() == Name;
6005 }
6006 
6007 template <std::size_t StrLen>
6008 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
6009                                        const char (&Str)[StrLen]) {
6010   if (!SD->getIdentifier()->isStr(Str))
6011     return false;
6012 
6013   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6014   if (TemplateArgs.size() != 2)
6015     return false;
6016 
6017   if (!isCharType(TemplateArgs[0].getAsType()))
6018     return false;
6019 
6020   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
6021     return false;
6022 
6023   return true;
6024 }
6025 
6026 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
6027   // <substitution> ::= St # ::std::
6028   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
6029     if (isStd(NS)) {
6030       Out << "St";
6031       return true;
6032     }
6033   }
6034 
6035   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
6036     if (!isStdNamespace(getEffectiveDeclContext(TD)))
6037       return false;
6038 
6039     // <substitution> ::= Sa # ::std::allocator
6040     if (TD->getIdentifier()->isStr("allocator")) {
6041       Out << "Sa";
6042       return true;
6043     }
6044 
6045     // <<substitution> ::= Sb # ::std::basic_string
6046     if (TD->getIdentifier()->isStr("basic_string")) {
6047       Out << "Sb";
6048       return true;
6049     }
6050   }
6051 
6052   if (const ClassTemplateSpecializationDecl *SD =
6053         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6054     if (!isStdNamespace(getEffectiveDeclContext(SD)))
6055       return false;
6056 
6057     //    <substitution> ::= Ss # ::std::basic_string<char,
6058     //                            ::std::char_traits<char>,
6059     //                            ::std::allocator<char> >
6060     if (SD->getIdentifier()->isStr("basic_string")) {
6061       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6062 
6063       if (TemplateArgs.size() != 3)
6064         return false;
6065 
6066       if (!isCharType(TemplateArgs[0].getAsType()))
6067         return false;
6068 
6069       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
6070         return false;
6071 
6072       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
6073         return false;
6074 
6075       Out << "Ss";
6076       return true;
6077     }
6078 
6079     //    <substitution> ::= Si # ::std::basic_istream<char,
6080     //                            ::std::char_traits<char> >
6081     if (isStreamCharSpecialization(SD, "basic_istream")) {
6082       Out << "Si";
6083       return true;
6084     }
6085 
6086     //    <substitution> ::= So # ::std::basic_ostream<char,
6087     //                            ::std::char_traits<char> >
6088     if (isStreamCharSpecialization(SD, "basic_ostream")) {
6089       Out << "So";
6090       return true;
6091     }
6092 
6093     //    <substitution> ::= Sd # ::std::basic_iostream<char,
6094     //                            ::std::char_traits<char> >
6095     if (isStreamCharSpecialization(SD, "basic_iostream")) {
6096       Out << "Sd";
6097       return true;
6098     }
6099   }
6100   return false;
6101 }
6102 
6103 void CXXNameMangler::addSubstitution(QualType T) {
6104   if (!hasMangledSubstitutionQualifiers(T)) {
6105     if (const RecordType *RT = T->getAs<RecordType>()) {
6106       addSubstitution(RT->getDecl());
6107       return;
6108     }
6109   }
6110 
6111   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6112   addSubstitution(TypePtr);
6113 }
6114 
6115 void CXXNameMangler::addSubstitution(TemplateName Template) {
6116   if (TemplateDecl *TD = Template.getAsTemplateDecl())
6117     return addSubstitution(TD);
6118 
6119   Template = Context.getASTContext().getCanonicalTemplateName(Template);
6120   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6121 }
6122 
6123 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
6124   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
6125   Substitutions[Ptr] = SeqID++;
6126 }
6127 
6128 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
6129   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
6130   if (Other->SeqID > SeqID) {
6131     Substitutions.swap(Other->Substitutions);
6132     SeqID = Other->SeqID;
6133   }
6134 }
6135 
6136 CXXNameMangler::AbiTagList
6137 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
6138   // When derived abi tags are disabled there is no need to make any list.
6139   if (DisableDerivedAbiTags)
6140     return AbiTagList();
6141 
6142   llvm::raw_null_ostream NullOutStream;
6143   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
6144   TrackReturnTypeTags.disableDerivedAbiTags();
6145 
6146   const FunctionProtoType *Proto =
6147       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
6148   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
6149   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
6150   TrackReturnTypeTags.mangleType(Proto->getReturnType());
6151   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
6152   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
6153 
6154   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6155 }
6156 
6157 CXXNameMangler::AbiTagList
6158 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
6159   // When derived abi tags are disabled there is no need to make any list.
6160   if (DisableDerivedAbiTags)
6161     return AbiTagList();
6162 
6163   llvm::raw_null_ostream NullOutStream;
6164   CXXNameMangler TrackVariableType(*this, NullOutStream);
6165   TrackVariableType.disableDerivedAbiTags();
6166 
6167   TrackVariableType.mangleType(VD->getType());
6168 
6169   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6170 }
6171 
6172 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
6173                                        const VarDecl *VD) {
6174   llvm::raw_null_ostream NullOutStream;
6175   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
6176   TrackAbiTags.mangle(VD);
6177   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
6178 }
6179 
6180 //
6181 
6182 /// Mangles the name of the declaration D and emits that name to the given
6183 /// output stream.
6184 ///
6185 /// If the declaration D requires a mangled name, this routine will emit that
6186 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
6187 /// and this routine will return false. In this case, the caller should just
6188 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
6189 /// name.
6190 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
6191                                              raw_ostream &Out) {
6192   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
6193   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
6194          "Invalid mangleName() call, argument is not a variable or function!");
6195 
6196   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
6197                                  getASTContext().getSourceManager(),
6198                                  "Mangling declaration");
6199 
6200   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
6201     auto Type = GD.getCtorType();
6202     CXXNameMangler Mangler(*this, Out, CD, Type);
6203     return Mangler.mangle(GlobalDecl(CD, Type));
6204   }
6205 
6206   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
6207     auto Type = GD.getDtorType();
6208     CXXNameMangler Mangler(*this, Out, DD, Type);
6209     return Mangler.mangle(GlobalDecl(DD, Type));
6210   }
6211 
6212   CXXNameMangler Mangler(*this, Out, D);
6213   Mangler.mangle(GD);
6214 }
6215 
6216 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
6217                                                    raw_ostream &Out) {
6218   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
6219   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
6220 }
6221 
6222 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
6223                                                    raw_ostream &Out) {
6224   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
6225   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
6226 }
6227 
6228 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
6229                                            const ThunkInfo &Thunk,
6230                                            raw_ostream &Out) {
6231   //  <special-name> ::= T <call-offset> <base encoding>
6232   //                      # base is the nominal target function of thunk
6233   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
6234   //                      # base is the nominal target function of thunk
6235   //                      # first call-offset is 'this' adjustment
6236   //                      # second call-offset is result adjustment
6237 
6238   assert(!isa<CXXDestructorDecl>(MD) &&
6239          "Use mangleCXXDtor for destructor decls!");
6240   CXXNameMangler Mangler(*this, Out);
6241   Mangler.getStream() << "_ZT";
6242   if (!Thunk.Return.isEmpty())
6243     Mangler.getStream() << 'c';
6244 
6245   // Mangle the 'this' pointer adjustment.
6246   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
6247                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
6248 
6249   // Mangle the return pointer adjustment if there is one.
6250   if (!Thunk.Return.isEmpty())
6251     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
6252                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
6253 
6254   Mangler.mangleFunctionEncoding(MD);
6255 }
6256 
6257 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
6258     const CXXDestructorDecl *DD, CXXDtorType Type,
6259     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
6260   //  <special-name> ::= T <call-offset> <base encoding>
6261   //                      # base is the nominal target function of thunk
6262   CXXNameMangler Mangler(*this, Out, DD, Type);
6263   Mangler.getStream() << "_ZT";
6264 
6265   // Mangle the 'this' pointer adjustment.
6266   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
6267                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
6268 
6269   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
6270 }
6271 
6272 /// Returns the mangled name for a guard variable for the passed in VarDecl.
6273 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
6274                                                          raw_ostream &Out) {
6275   //  <special-name> ::= GV <object name>       # Guard variable for one-time
6276   //                                            # initialization
6277   CXXNameMangler Mangler(*this, Out);
6278   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
6279   // be a bug that is fixed in trunk.
6280   Mangler.getStream() << "_ZGV";
6281   Mangler.mangleName(D);
6282 }
6283 
6284 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
6285                                                         raw_ostream &Out) {
6286   // These symbols are internal in the Itanium ABI, so the names don't matter.
6287   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
6288   // avoid duplicate symbols.
6289   Out << "__cxx_global_var_init";
6290 }
6291 
6292 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
6293                                                              raw_ostream &Out) {
6294   // Prefix the mangling of D with __dtor_.
6295   CXXNameMangler Mangler(*this, Out);
6296   Mangler.getStream() << "__dtor_";
6297   if (shouldMangleDeclName(D))
6298     Mangler.mangle(D);
6299   else
6300     Mangler.getStream() << D->getName();
6301 }
6302 
6303 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
6304                                                            raw_ostream &Out) {
6305   // Clang generates these internal-linkage functions as part of its
6306   // implementation of the XL ABI.
6307   CXXNameMangler Mangler(*this, Out);
6308   Mangler.getStream() << "__finalize_";
6309   if (shouldMangleDeclName(D))
6310     Mangler.mangle(D);
6311   else
6312     Mangler.getStream() << D->getName();
6313 }
6314 
6315 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
6316     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6317   CXXNameMangler Mangler(*this, Out);
6318   Mangler.getStream() << "__filt_";
6319   if (shouldMangleDeclName(EnclosingDecl))
6320     Mangler.mangle(EnclosingDecl);
6321   else
6322     Mangler.getStream() << EnclosingDecl->getName();
6323 }
6324 
6325 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
6326     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6327   CXXNameMangler Mangler(*this, Out);
6328   Mangler.getStream() << "__fin_";
6329   if (shouldMangleDeclName(EnclosingDecl))
6330     Mangler.mangle(EnclosingDecl);
6331   else
6332     Mangler.getStream() << EnclosingDecl->getName();
6333 }
6334 
6335 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
6336                                                             raw_ostream &Out) {
6337   //  <special-name> ::= TH <object name>
6338   CXXNameMangler Mangler(*this, Out);
6339   Mangler.getStream() << "_ZTH";
6340   Mangler.mangleName(D);
6341 }
6342 
6343 void
6344 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
6345                                                           raw_ostream &Out) {
6346   //  <special-name> ::= TW <object name>
6347   CXXNameMangler Mangler(*this, Out);
6348   Mangler.getStream() << "_ZTW";
6349   Mangler.mangleName(D);
6350 }
6351 
6352 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
6353                                                         unsigned ManglingNumber,
6354                                                         raw_ostream &Out) {
6355   // We match the GCC mangling here.
6356   //  <special-name> ::= GR <object name>
6357   CXXNameMangler Mangler(*this, Out);
6358   Mangler.getStream() << "_ZGR";
6359   Mangler.mangleName(D);
6360   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
6361   Mangler.mangleSeqID(ManglingNumber - 1);
6362 }
6363 
6364 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
6365                                                raw_ostream &Out) {
6366   // <special-name> ::= TV <type>  # virtual table
6367   CXXNameMangler Mangler(*this, Out);
6368   Mangler.getStream() << "_ZTV";
6369   Mangler.mangleNameOrStandardSubstitution(RD);
6370 }
6371 
6372 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6373                                             raw_ostream &Out) {
6374   // <special-name> ::= TT <type>  # VTT structure
6375   CXXNameMangler Mangler(*this, Out);
6376   Mangler.getStream() << "_ZTT";
6377   Mangler.mangleNameOrStandardSubstitution(RD);
6378 }
6379 
6380 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6381                                                    int64_t Offset,
6382                                                    const CXXRecordDecl *Type,
6383                                                    raw_ostream &Out) {
6384   // <special-name> ::= TC <type> <offset number> _ <base type>
6385   CXXNameMangler Mangler(*this, Out);
6386   Mangler.getStream() << "_ZTC";
6387   Mangler.mangleNameOrStandardSubstitution(RD);
6388   Mangler.getStream() << Offset;
6389   Mangler.getStream() << '_';
6390   Mangler.mangleNameOrStandardSubstitution(Type);
6391 }
6392 
6393 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6394   // <special-name> ::= TI <type>  # typeinfo structure
6395   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6396   CXXNameMangler Mangler(*this, Out);
6397   Mangler.getStream() << "_ZTI";
6398   Mangler.mangleType(Ty);
6399 }
6400 
6401 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6402                                                  raw_ostream &Out) {
6403   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6404   CXXNameMangler Mangler(*this, Out);
6405   Mangler.getStream() << "_ZTS";
6406   Mangler.mangleType(Ty);
6407 }
6408 
6409 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6410   mangleCXXRTTIName(Ty, Out);
6411 }
6412 
6413 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6414   llvm_unreachable("Can't mangle string literals");
6415 }
6416 
6417 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6418                                                raw_ostream &Out) {
6419   CXXNameMangler Mangler(*this, Out);
6420   Mangler.mangleLambdaSig(Lambda);
6421 }
6422 
6423 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
6424                                                    DiagnosticsEngine &Diags) {
6425   return new ItaniumMangleContextImpl(
6426       Context, Diags,
6427       [](ASTContext &, const NamedDecl *) -> llvm::Optional<unsigned> {
6428         return llvm::None;
6429       });
6430 }
6431 
6432 ItaniumMangleContext *
6433 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags,
6434                              DiscriminatorOverrideTy DiscriminatorOverride) {
6435   return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride);
6436 }
6437