1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implements C++ name mangling according to the Itanium C++ ABI, 10 // which is used in GCC 3.2 and newer (and many compilers that are 11 // ABI-compatible with GCC): 12 // 13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 14 // 15 //===----------------------------------------------------------------------===// 16 #include "clang/AST/Mangle.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclOpenMP.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprConcepts.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/TypeLoc.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 using namespace clang; 37 38 namespace { 39 40 /// Retrieve the declaration context that should be used when mangling the given 41 /// declaration. 42 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 43 // The ABI assumes that lambda closure types that occur within 44 // default arguments live in the context of the function. However, due to 45 // the way in which Clang parses and creates function declarations, this is 46 // not the case: the lambda closure type ends up living in the context 47 // where the function itself resides, because the function declaration itself 48 // had not yet been created. Fix the context here. 49 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 50 if (RD->isLambda()) 51 if (ParmVarDecl *ContextParam 52 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 53 return ContextParam->getDeclContext(); 54 } 55 56 // Perform the same check for block literals. 57 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 58 if (ParmVarDecl *ContextParam 59 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 60 return ContextParam->getDeclContext(); 61 } 62 63 const DeclContext *DC = D->getDeclContext(); 64 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 65 isa<OMPDeclareMapperDecl>(DC)) { 66 return getEffectiveDeclContext(cast<Decl>(DC)); 67 } 68 69 if (const auto *VD = dyn_cast<VarDecl>(D)) 70 if (VD->isExternC()) 71 return VD->getASTContext().getTranslationUnitDecl(); 72 73 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 74 if (FD->isExternC()) 75 return FD->getASTContext().getTranslationUnitDecl(); 76 77 return DC->getRedeclContext(); 78 } 79 80 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 81 return getEffectiveDeclContext(cast<Decl>(DC)); 82 } 83 84 static bool isLocalContainerContext(const DeclContext *DC) { 85 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 86 } 87 88 static const RecordDecl *GetLocalClassDecl(const Decl *D) { 89 const DeclContext *DC = getEffectiveDeclContext(D); 90 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 91 if (isLocalContainerContext(DC)) 92 return dyn_cast<RecordDecl>(D); 93 D = cast<Decl>(DC); 94 DC = getEffectiveDeclContext(D); 95 } 96 return nullptr; 97 } 98 99 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 100 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 101 return ftd->getTemplatedDecl(); 102 103 return fn; 104 } 105 106 static const NamedDecl *getStructor(const NamedDecl *decl) { 107 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 108 return (fn ? getStructor(fn) : decl); 109 } 110 111 static bool isLambda(const NamedDecl *ND) { 112 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 113 if (!Record) 114 return false; 115 116 return Record->isLambda(); 117 } 118 119 static const unsigned UnknownArity = ~0U; 120 121 class ItaniumMangleContextImpl : public ItaniumMangleContext { 122 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 123 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 124 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 125 126 public: 127 explicit ItaniumMangleContextImpl(ASTContext &Context, 128 DiagnosticsEngine &Diags) 129 : ItaniumMangleContext(Context, Diags) {} 130 131 /// @name Mangler Entry Points 132 /// @{ 133 134 bool shouldMangleCXXName(const NamedDecl *D) override; 135 bool shouldMangleStringLiteral(const StringLiteral *) override { 136 return false; 137 } 138 void mangleCXXName(const NamedDecl *D, raw_ostream &) override; 139 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 140 raw_ostream &) override; 141 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 142 const ThisAdjustment &ThisAdjustment, 143 raw_ostream &) override; 144 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 145 raw_ostream &) override; 146 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 147 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 148 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 149 const CXXRecordDecl *Type, raw_ostream &) override; 150 void mangleCXXRTTI(QualType T, raw_ostream &) override; 151 void mangleCXXRTTIName(QualType T, raw_ostream &) override; 152 void mangleTypeName(QualType T, raw_ostream &) override; 153 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 154 raw_ostream &) override; 155 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 156 raw_ostream &) override; 157 158 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 159 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 160 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 161 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 162 void mangleDynamicAtExitDestructor(const VarDecl *D, 163 raw_ostream &Out) override; 164 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 165 raw_ostream &Out) override; 166 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 167 raw_ostream &Out) override; 168 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 169 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 170 raw_ostream &) override; 171 172 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 173 174 void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; 175 176 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 177 // Lambda closure types are already numbered. 178 if (isLambda(ND)) 179 return false; 180 181 // Anonymous tags are already numbered. 182 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 183 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 184 return false; 185 } 186 187 // Use the canonical number for externally visible decls. 188 if (ND->isExternallyVisible()) { 189 unsigned discriminator = getASTContext().getManglingNumber(ND); 190 if (discriminator == 1) 191 return false; 192 disc = discriminator - 2; 193 return true; 194 } 195 196 // Make up a reasonable number for internal decls. 197 unsigned &discriminator = Uniquifier[ND]; 198 if (!discriminator) { 199 const DeclContext *DC = getEffectiveDeclContext(ND); 200 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 201 } 202 if (discriminator == 1) 203 return false; 204 disc = discriminator-2; 205 return true; 206 } 207 /// @} 208 }; 209 210 /// Manage the mangling of a single name. 211 class CXXNameMangler { 212 ItaniumMangleContextImpl &Context; 213 raw_ostream &Out; 214 bool NullOut = false; 215 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 216 /// This mode is used when mangler creates another mangler recursively to 217 /// calculate ABI tags for the function return value or the variable type. 218 /// Also it is required to avoid infinite recursion in some cases. 219 bool DisableDerivedAbiTags = false; 220 221 /// The "structor" is the top-level declaration being mangled, if 222 /// that's not a template specialization; otherwise it's the pattern 223 /// for that specialization. 224 const NamedDecl *Structor; 225 unsigned StructorType; 226 227 /// The next substitution sequence number. 228 unsigned SeqID; 229 230 class FunctionTypeDepthState { 231 unsigned Bits; 232 233 enum { InResultTypeMask = 1 }; 234 235 public: 236 FunctionTypeDepthState() : Bits(0) {} 237 238 /// The number of function types we're inside. 239 unsigned getDepth() const { 240 return Bits >> 1; 241 } 242 243 /// True if we're in the return type of the innermost function type. 244 bool isInResultType() const { 245 return Bits & InResultTypeMask; 246 } 247 248 FunctionTypeDepthState push() { 249 FunctionTypeDepthState tmp = *this; 250 Bits = (Bits & ~InResultTypeMask) + 2; 251 return tmp; 252 } 253 254 void enterResultType() { 255 Bits |= InResultTypeMask; 256 } 257 258 void leaveResultType() { 259 Bits &= ~InResultTypeMask; 260 } 261 262 void pop(FunctionTypeDepthState saved) { 263 assert(getDepth() == saved.getDepth() + 1); 264 Bits = saved.Bits; 265 } 266 267 } FunctionTypeDepth; 268 269 // abi_tag is a gcc attribute, taking one or more strings called "tags". 270 // The goal is to annotate against which version of a library an object was 271 // built and to be able to provide backwards compatibility ("dual abi"). 272 // For more information see docs/ItaniumMangleAbiTags.rst. 273 typedef SmallVector<StringRef, 4> AbiTagList; 274 275 // State to gather all implicit and explicit tags used in a mangled name. 276 // Must always have an instance of this while emitting any name to keep 277 // track. 278 class AbiTagState final { 279 public: 280 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 281 Parent = LinkHead; 282 LinkHead = this; 283 } 284 285 // No copy, no move. 286 AbiTagState(const AbiTagState &) = delete; 287 AbiTagState &operator=(const AbiTagState &) = delete; 288 289 ~AbiTagState() { pop(); } 290 291 void write(raw_ostream &Out, const NamedDecl *ND, 292 const AbiTagList *AdditionalAbiTags) { 293 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 294 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 295 assert( 296 !AdditionalAbiTags && 297 "only function and variables need a list of additional abi tags"); 298 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 299 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 300 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 301 AbiTag->tags().end()); 302 } 303 // Don't emit abi tags for namespaces. 304 return; 305 } 306 } 307 308 AbiTagList TagList; 309 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 310 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 311 AbiTag->tags().end()); 312 TagList.insert(TagList.end(), AbiTag->tags().begin(), 313 AbiTag->tags().end()); 314 } 315 316 if (AdditionalAbiTags) { 317 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 318 AdditionalAbiTags->end()); 319 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 320 AdditionalAbiTags->end()); 321 } 322 323 llvm::sort(TagList); 324 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 325 326 writeSortedUniqueAbiTags(Out, TagList); 327 } 328 329 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 330 void setUsedAbiTags(const AbiTagList &AbiTags) { 331 UsedAbiTags = AbiTags; 332 } 333 334 const AbiTagList &getEmittedAbiTags() const { 335 return EmittedAbiTags; 336 } 337 338 const AbiTagList &getSortedUniqueUsedAbiTags() { 339 llvm::sort(UsedAbiTags); 340 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 341 UsedAbiTags.end()); 342 return UsedAbiTags; 343 } 344 345 private: 346 //! All abi tags used implicitly or explicitly. 347 AbiTagList UsedAbiTags; 348 //! All explicit abi tags (i.e. not from namespace). 349 AbiTagList EmittedAbiTags; 350 351 AbiTagState *&LinkHead; 352 AbiTagState *Parent = nullptr; 353 354 void pop() { 355 assert(LinkHead == this && 356 "abi tag link head must point to us on destruction"); 357 if (Parent) { 358 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 359 UsedAbiTags.begin(), UsedAbiTags.end()); 360 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 361 EmittedAbiTags.begin(), 362 EmittedAbiTags.end()); 363 } 364 LinkHead = Parent; 365 } 366 367 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 368 for (const auto &Tag : AbiTags) { 369 EmittedAbiTags.push_back(Tag); 370 Out << "B"; 371 Out << Tag.size(); 372 Out << Tag; 373 } 374 } 375 }; 376 377 AbiTagState *AbiTags = nullptr; 378 AbiTagState AbiTagsRoot; 379 380 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 381 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 382 383 ASTContext &getASTContext() const { return Context.getASTContext(); } 384 385 public: 386 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 387 const NamedDecl *D = nullptr, bool NullOut_ = false) 388 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 389 StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { 390 // These can't be mangled without a ctor type or dtor type. 391 assert(!D || (!isa<CXXDestructorDecl>(D) && 392 !isa<CXXConstructorDecl>(D))); 393 } 394 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 395 const CXXConstructorDecl *D, CXXCtorType Type) 396 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 397 SeqID(0), AbiTagsRoot(AbiTags) { } 398 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 399 const CXXDestructorDecl *D, CXXDtorType Type) 400 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 401 SeqID(0), AbiTagsRoot(AbiTags) { } 402 403 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 404 : Context(Outer.Context), Out(Out_), NullOut(false), 405 Structor(Outer.Structor), StructorType(Outer.StructorType), 406 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 407 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 408 409 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 410 : Context(Outer.Context), Out(Out_), NullOut(true), 411 Structor(Outer.Structor), StructorType(Outer.StructorType), 412 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 413 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 414 415 raw_ostream &getStream() { return Out; } 416 417 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 418 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 419 420 void mangle(const NamedDecl *D); 421 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 422 void mangleNumber(const llvm::APSInt &I); 423 void mangleNumber(int64_t Number); 424 void mangleFloat(const llvm::APFloat &F); 425 void mangleFunctionEncoding(const FunctionDecl *FD); 426 void mangleSeqID(unsigned SeqID); 427 void mangleName(const NamedDecl *ND); 428 void mangleType(QualType T); 429 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 430 void mangleLambdaSig(const CXXRecordDecl *Lambda); 431 432 private: 433 434 bool mangleSubstitution(const NamedDecl *ND); 435 bool mangleSubstitution(QualType T); 436 bool mangleSubstitution(TemplateName Template); 437 bool mangleSubstitution(uintptr_t Ptr); 438 439 void mangleExistingSubstitution(TemplateName name); 440 441 bool mangleStandardSubstitution(const NamedDecl *ND); 442 443 void addSubstitution(const NamedDecl *ND) { 444 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 445 446 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 447 } 448 void addSubstitution(QualType T); 449 void addSubstitution(TemplateName Template); 450 void addSubstitution(uintptr_t Ptr); 451 // Destructive copy substitutions from other mangler. 452 void extendSubstitutions(CXXNameMangler* Other); 453 454 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 455 bool recursive = false); 456 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 457 DeclarationName name, 458 const TemplateArgumentLoc *TemplateArgs, 459 unsigned NumTemplateArgs, 460 unsigned KnownArity = UnknownArity); 461 462 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 463 464 void mangleNameWithAbiTags(const NamedDecl *ND, 465 const AbiTagList *AdditionalAbiTags); 466 void mangleModuleName(const Module *M); 467 void mangleModuleNamePrefix(StringRef Name); 468 void mangleTemplateName(const TemplateDecl *TD, 469 const TemplateArgument *TemplateArgs, 470 unsigned NumTemplateArgs); 471 void mangleUnqualifiedName(const NamedDecl *ND, 472 const AbiTagList *AdditionalAbiTags) { 473 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity, 474 AdditionalAbiTags); 475 } 476 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, 477 unsigned KnownArity, 478 const AbiTagList *AdditionalAbiTags); 479 void mangleUnscopedName(const NamedDecl *ND, 480 const AbiTagList *AdditionalAbiTags); 481 void mangleUnscopedTemplateName(const TemplateDecl *ND, 482 const AbiTagList *AdditionalAbiTags); 483 void mangleUnscopedTemplateName(TemplateName, 484 const AbiTagList *AdditionalAbiTags); 485 void mangleSourceName(const IdentifierInfo *II); 486 void mangleRegCallName(const IdentifierInfo *II); 487 void mangleSourceNameWithAbiTags( 488 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 489 void mangleLocalName(const Decl *D, 490 const AbiTagList *AdditionalAbiTags); 491 void mangleBlockForPrefix(const BlockDecl *Block); 492 void mangleUnqualifiedBlock(const BlockDecl *Block); 493 void mangleTemplateParamDecl(const NamedDecl *Decl); 494 void mangleLambda(const CXXRecordDecl *Lambda); 495 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, 496 const AbiTagList *AdditionalAbiTags, 497 bool NoFunction=false); 498 void mangleNestedName(const TemplateDecl *TD, 499 const TemplateArgument *TemplateArgs, 500 unsigned NumTemplateArgs); 501 void manglePrefix(NestedNameSpecifier *qualifier); 502 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 503 void manglePrefix(QualType type); 504 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false); 505 void mangleTemplatePrefix(TemplateName Template); 506 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 507 StringRef Prefix = ""); 508 void mangleOperatorName(DeclarationName Name, unsigned Arity); 509 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 510 void mangleVendorQualifier(StringRef qualifier); 511 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 512 void mangleRefQualifier(RefQualifierKind RefQualifier); 513 514 void mangleObjCMethodName(const ObjCMethodDecl *MD); 515 516 // Declare manglers for every type class. 517 #define ABSTRACT_TYPE(CLASS, PARENT) 518 #define NON_CANONICAL_TYPE(CLASS, PARENT) 519 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 520 #include "clang/AST/TypeNodes.inc" 521 522 void mangleType(const TagType*); 523 void mangleType(TemplateName); 524 static StringRef getCallingConvQualifierName(CallingConv CC); 525 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 526 void mangleExtFunctionInfo(const FunctionType *T); 527 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 528 const FunctionDecl *FD = nullptr); 529 void mangleNeonVectorType(const VectorType *T); 530 void mangleNeonVectorType(const DependentVectorType *T); 531 void mangleAArch64NeonVectorType(const VectorType *T); 532 void mangleAArch64NeonVectorType(const DependentVectorType *T); 533 534 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 535 void mangleMemberExprBase(const Expr *base, bool isArrow); 536 void mangleMemberExpr(const Expr *base, bool isArrow, 537 NestedNameSpecifier *qualifier, 538 NamedDecl *firstQualifierLookup, 539 DeclarationName name, 540 const TemplateArgumentLoc *TemplateArgs, 541 unsigned NumTemplateArgs, 542 unsigned knownArity); 543 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 544 void mangleInitListElements(const InitListExpr *InitList); 545 void mangleDeclRefExpr(const NamedDecl *D); 546 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); 547 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 548 void mangleCXXDtorType(CXXDtorType T); 549 550 void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, 551 unsigned NumTemplateArgs); 552 void mangleTemplateArgs(const TemplateArgument *TemplateArgs, 553 unsigned NumTemplateArgs); 554 void mangleTemplateArgs(const TemplateArgumentList &AL); 555 void mangleTemplateArg(TemplateArgument A); 556 557 void mangleTemplateParameter(unsigned Depth, unsigned Index); 558 559 void mangleFunctionParam(const ParmVarDecl *parm); 560 561 void writeAbiTags(const NamedDecl *ND, 562 const AbiTagList *AdditionalAbiTags); 563 564 // Returns sorted unique list of ABI tags. 565 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 566 // Returns sorted unique list of ABI tags. 567 AbiTagList makeVariableTypeTags(const VarDecl *VD); 568 }; 569 570 } 571 572 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 573 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 574 if (FD) { 575 LanguageLinkage L = FD->getLanguageLinkage(); 576 // Overloadable functions need mangling. 577 if (FD->hasAttr<OverloadableAttr>()) 578 return true; 579 580 // "main" is not mangled. 581 if (FD->isMain()) 582 return false; 583 584 // The Windows ABI expects that we would never mangle "typical" 585 // user-defined entry points regardless of visibility or freestanding-ness. 586 // 587 // N.B. This is distinct from asking about "main". "main" has a lot of 588 // special rules associated with it in the standard while these 589 // user-defined entry points are outside of the purview of the standard. 590 // For example, there can be only one definition for "main" in a standards 591 // compliant program; however nothing forbids the existence of wmain and 592 // WinMain in the same translation unit. 593 if (FD->isMSVCRTEntryPoint()) 594 return false; 595 596 // C++ functions and those whose names are not a simple identifier need 597 // mangling. 598 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 599 return true; 600 601 // C functions are not mangled. 602 if (L == CLanguageLinkage) 603 return false; 604 } 605 606 // Otherwise, no mangling is done outside C++ mode. 607 if (!getASTContext().getLangOpts().CPlusPlus) 608 return false; 609 610 const VarDecl *VD = dyn_cast<VarDecl>(D); 611 if (VD && !isa<DecompositionDecl>(D)) { 612 // C variables are not mangled. 613 if (VD->isExternC()) 614 return false; 615 616 // Variables at global scope with non-internal linkage are not mangled 617 const DeclContext *DC = getEffectiveDeclContext(D); 618 // Check for extern variable declared locally. 619 if (DC->isFunctionOrMethod() && D->hasLinkage()) 620 while (!DC->isNamespace() && !DC->isTranslationUnit()) 621 DC = getEffectiveParentContext(DC); 622 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && 623 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 624 !isa<VarTemplateSpecializationDecl>(D)) 625 return false; 626 } 627 628 return true; 629 } 630 631 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 632 const AbiTagList *AdditionalAbiTags) { 633 assert(AbiTags && "require AbiTagState"); 634 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 635 } 636 637 void CXXNameMangler::mangleSourceNameWithAbiTags( 638 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 639 mangleSourceName(ND->getIdentifier()); 640 writeAbiTags(ND, AdditionalAbiTags); 641 } 642 643 void CXXNameMangler::mangle(const NamedDecl *D) { 644 // <mangled-name> ::= _Z <encoding> 645 // ::= <data name> 646 // ::= <special-name> 647 Out << "_Z"; 648 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 649 mangleFunctionEncoding(FD); 650 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 651 mangleName(VD); 652 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) 653 mangleName(IFD->getAnonField()); 654 else 655 mangleName(cast<FieldDecl>(D)); 656 } 657 658 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { 659 // <encoding> ::= <function name> <bare-function-type> 660 661 // Don't mangle in the type if this isn't a decl we should typically mangle. 662 if (!Context.shouldMangleDeclName(FD)) { 663 mangleName(FD); 664 return; 665 } 666 667 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 668 if (ReturnTypeAbiTags.empty()) { 669 // There are no tags for return type, the simplest case. 670 mangleName(FD); 671 mangleFunctionEncodingBareType(FD); 672 return; 673 } 674 675 // Mangle function name and encoding to temporary buffer. 676 // We have to output name and encoding to the same mangler to get the same 677 // substitution as it will be in final mangling. 678 SmallString<256> FunctionEncodingBuf; 679 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 680 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 681 // Output name of the function. 682 FunctionEncodingMangler.disableDerivedAbiTags(); 683 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 684 685 // Remember length of the function name in the buffer. 686 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 687 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 688 689 // Get tags from return type that are not present in function name or 690 // encoding. 691 const AbiTagList &UsedAbiTags = 692 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 693 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 694 AdditionalAbiTags.erase( 695 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 696 UsedAbiTags.begin(), UsedAbiTags.end(), 697 AdditionalAbiTags.begin()), 698 AdditionalAbiTags.end()); 699 700 // Output name with implicit tags and function encoding from temporary buffer. 701 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 702 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 703 704 // Function encoding could create new substitutions so we have to add 705 // temp mangled substitutions to main mangler. 706 extendSubstitutions(&FunctionEncodingMangler); 707 } 708 709 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 710 if (FD->hasAttr<EnableIfAttr>()) { 711 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 712 Out << "Ua9enable_ifI"; 713 for (AttrVec::const_iterator I = FD->getAttrs().begin(), 714 E = FD->getAttrs().end(); 715 I != E; ++I) { 716 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 717 if (!EIA) 718 continue; 719 Out << 'X'; 720 mangleExpression(EIA->getCond()); 721 Out << 'E'; 722 } 723 Out << 'E'; 724 FunctionTypeDepth.pop(Saved); 725 } 726 727 // When mangling an inheriting constructor, the bare function type used is 728 // that of the inherited constructor. 729 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 730 if (auto Inherited = CD->getInheritedConstructor()) 731 FD = Inherited.getConstructor(); 732 733 // Whether the mangling of a function type includes the return type depends on 734 // the context and the nature of the function. The rules for deciding whether 735 // the return type is included are: 736 // 737 // 1. Template functions (names or types) have return types encoded, with 738 // the exceptions listed below. 739 // 2. Function types not appearing as part of a function name mangling, 740 // e.g. parameters, pointer types, etc., have return type encoded, with the 741 // exceptions listed below. 742 // 3. Non-template function names do not have return types encoded. 743 // 744 // The exceptions mentioned in (1) and (2) above, for which the return type is 745 // never included, are 746 // 1. Constructors. 747 // 2. Destructors. 748 // 3. Conversion operator functions, e.g. operator int. 749 bool MangleReturnType = false; 750 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 751 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 752 isa<CXXConversionDecl>(FD))) 753 MangleReturnType = true; 754 755 // Mangle the type of the primary template. 756 FD = PrimaryTemplate->getTemplatedDecl(); 757 } 758 759 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 760 MangleReturnType, FD); 761 } 762 763 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { 764 while (isa<LinkageSpecDecl>(DC)) { 765 DC = getEffectiveParentContext(DC); 766 } 767 768 return DC; 769 } 770 771 /// Return whether a given namespace is the 'std' namespace. 772 static bool isStd(const NamespaceDecl *NS) { 773 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) 774 ->isTranslationUnit()) 775 return false; 776 777 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 778 return II && II->isStr("std"); 779 } 780 781 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 782 // namespace. 783 static bool isStdNamespace(const DeclContext *DC) { 784 if (!DC->isNamespace()) 785 return false; 786 787 return isStd(cast<NamespaceDecl>(DC)); 788 } 789 790 static const TemplateDecl * 791 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 792 // Check if we have a function template. 793 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 794 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 795 TemplateArgs = FD->getTemplateSpecializationArgs(); 796 return TD; 797 } 798 } 799 800 // Check if we have a class template. 801 if (const ClassTemplateSpecializationDecl *Spec = 802 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 803 TemplateArgs = &Spec->getTemplateArgs(); 804 return Spec->getSpecializedTemplate(); 805 } 806 807 // Check if we have a variable template. 808 if (const VarTemplateSpecializationDecl *Spec = 809 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 810 TemplateArgs = &Spec->getTemplateArgs(); 811 return Spec->getSpecializedTemplate(); 812 } 813 814 return nullptr; 815 } 816 817 void CXXNameMangler::mangleName(const NamedDecl *ND) { 818 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 819 // Variables should have implicit tags from its type. 820 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 821 if (VariableTypeAbiTags.empty()) { 822 // Simple case no variable type tags. 823 mangleNameWithAbiTags(VD, nullptr); 824 return; 825 } 826 827 // Mangle variable name to null stream to collect tags. 828 llvm::raw_null_ostream NullOutStream; 829 CXXNameMangler VariableNameMangler(*this, NullOutStream); 830 VariableNameMangler.disableDerivedAbiTags(); 831 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 832 833 // Get tags from variable type that are not present in its name. 834 const AbiTagList &UsedAbiTags = 835 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 836 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 837 AdditionalAbiTags.erase( 838 std::set_difference(VariableTypeAbiTags.begin(), 839 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 840 UsedAbiTags.end(), AdditionalAbiTags.begin()), 841 AdditionalAbiTags.end()); 842 843 // Output name with implicit tags. 844 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 845 } else { 846 mangleNameWithAbiTags(ND, nullptr); 847 } 848 } 849 850 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND, 851 const AbiTagList *AdditionalAbiTags) { 852 // <name> ::= [<module-name>] <nested-name> 853 // ::= [<module-name>] <unscoped-name> 854 // ::= [<module-name>] <unscoped-template-name> <template-args> 855 // ::= <local-name> 856 // 857 const DeclContext *DC = getEffectiveDeclContext(ND); 858 859 // If this is an extern variable declared locally, the relevant DeclContext 860 // is that of the containing namespace, or the translation unit. 861 // FIXME: This is a hack; extern variables declared locally should have 862 // a proper semantic declaration context! 863 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) 864 while (!DC->isNamespace() && !DC->isTranslationUnit()) 865 DC = getEffectiveParentContext(DC); 866 else if (GetLocalClassDecl(ND)) { 867 mangleLocalName(ND, AdditionalAbiTags); 868 return; 869 } 870 871 DC = IgnoreLinkageSpecDecls(DC); 872 873 if (isLocalContainerContext(DC)) { 874 mangleLocalName(ND, AdditionalAbiTags); 875 return; 876 } 877 878 // Do not mangle the owning module for an external linkage declaration. 879 // This enables backwards-compatibility with non-modular code, and is 880 // a valid choice since conflicts are not permitted by C++ Modules TS 881 // [basic.def.odr]/6.2. 882 if (!ND->hasExternalFormalLinkage()) 883 if (Module *M = ND->getOwningModuleForLinkage()) 884 mangleModuleName(M); 885 886 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 887 // Check if we have a template. 888 const TemplateArgumentList *TemplateArgs = nullptr; 889 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 890 mangleUnscopedTemplateName(TD, AdditionalAbiTags); 891 mangleTemplateArgs(*TemplateArgs); 892 return; 893 } 894 895 mangleUnscopedName(ND, AdditionalAbiTags); 896 return; 897 } 898 899 mangleNestedName(ND, DC, AdditionalAbiTags); 900 } 901 902 void CXXNameMangler::mangleModuleName(const Module *M) { 903 // Implement the C++ Modules TS name mangling proposal; see 904 // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile 905 // 906 // <module-name> ::= W <unscoped-name>+ E 907 // ::= W <module-subst> <unscoped-name>* E 908 Out << 'W'; 909 mangleModuleNamePrefix(M->Name); 910 Out << 'E'; 911 } 912 913 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { 914 // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 915 // ::= W <seq-id - 10> _ # otherwise 916 auto It = ModuleSubstitutions.find(Name); 917 if (It != ModuleSubstitutions.end()) { 918 if (It->second < 10) 919 Out << '_' << static_cast<char>('0' + It->second); 920 else 921 Out << 'W' << (It->second - 10) << '_'; 922 return; 923 } 924 925 // FIXME: Preserve hierarchy in module names rather than flattening 926 // them to strings; use Module*s as substitution keys. 927 auto Parts = Name.rsplit('.'); 928 if (Parts.second.empty()) 929 Parts.second = Parts.first; 930 else 931 mangleModuleNamePrefix(Parts.first); 932 933 Out << Parts.second.size() << Parts.second; 934 ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); 935 } 936 937 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 938 const TemplateArgument *TemplateArgs, 939 unsigned NumTemplateArgs) { 940 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); 941 942 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 943 mangleUnscopedTemplateName(TD, nullptr); 944 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 945 } else { 946 mangleNestedName(TD, TemplateArgs, NumTemplateArgs); 947 } 948 } 949 950 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND, 951 const AbiTagList *AdditionalAbiTags) { 952 // <unscoped-name> ::= <unqualified-name> 953 // ::= St <unqualified-name> # ::std:: 954 955 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) 956 Out << "St"; 957 958 mangleUnqualifiedName(ND, AdditionalAbiTags); 959 } 960 961 void CXXNameMangler::mangleUnscopedTemplateName( 962 const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) { 963 // <unscoped-template-name> ::= <unscoped-name> 964 // ::= <substitution> 965 if (mangleSubstitution(ND)) 966 return; 967 968 // <template-template-param> ::= <template-param> 969 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 970 assert(!AdditionalAbiTags && 971 "template template param cannot have abi tags"); 972 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 973 } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) { 974 mangleUnscopedName(ND, AdditionalAbiTags); 975 } else { 976 mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags); 977 } 978 979 addSubstitution(ND); 980 } 981 982 void CXXNameMangler::mangleUnscopedTemplateName( 983 TemplateName Template, const AbiTagList *AdditionalAbiTags) { 984 // <unscoped-template-name> ::= <unscoped-name> 985 // ::= <substitution> 986 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 987 return mangleUnscopedTemplateName(TD, AdditionalAbiTags); 988 989 if (mangleSubstitution(Template)) 990 return; 991 992 assert(!AdditionalAbiTags && 993 "dependent template name cannot have abi tags"); 994 995 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 996 assert(Dependent && "Not a dependent template name?"); 997 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 998 mangleSourceName(Id); 999 else 1000 mangleOperatorName(Dependent->getOperator(), UnknownArity); 1001 1002 addSubstitution(Template); 1003 } 1004 1005 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1006 // ABI: 1007 // Floating-point literals are encoded using a fixed-length 1008 // lowercase hexadecimal string corresponding to the internal 1009 // representation (IEEE on Itanium), high-order bytes first, 1010 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1011 // on Itanium. 1012 // The 'without leading zeroes' thing seems to be an editorial 1013 // mistake; see the discussion on cxx-abi-dev beginning on 1014 // 2012-01-16. 1015 1016 // Our requirements here are just barely weird enough to justify 1017 // using a custom algorithm instead of post-processing APInt::toString(). 1018 1019 llvm::APInt valueBits = f.bitcastToAPInt(); 1020 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1021 assert(numCharacters != 0); 1022 1023 // Allocate a buffer of the right number of characters. 1024 SmallVector<char, 20> buffer(numCharacters); 1025 1026 // Fill the buffer left-to-right. 1027 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1028 // The bit-index of the next hex digit. 1029 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1030 1031 // Project out 4 bits starting at 'digitIndex'. 1032 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1033 hexDigit >>= (digitBitIndex % 64); 1034 hexDigit &= 0xF; 1035 1036 // Map that over to a lowercase hex digit. 1037 static const char charForHex[16] = { 1038 '0', '1', '2', '3', '4', '5', '6', '7', 1039 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1040 }; 1041 buffer[stringIndex] = charForHex[hexDigit]; 1042 } 1043 1044 Out.write(buffer.data(), numCharacters); 1045 } 1046 1047 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1048 if (Value.isSigned() && Value.isNegative()) { 1049 Out << 'n'; 1050 Value.abs().print(Out, /*signed*/ false); 1051 } else { 1052 Value.print(Out, /*signed*/ false); 1053 } 1054 } 1055 1056 void CXXNameMangler::mangleNumber(int64_t Number) { 1057 // <number> ::= [n] <non-negative decimal integer> 1058 if (Number < 0) { 1059 Out << 'n'; 1060 Number = -Number; 1061 } 1062 1063 Out << Number; 1064 } 1065 1066 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1067 // <call-offset> ::= h <nv-offset> _ 1068 // ::= v <v-offset> _ 1069 // <nv-offset> ::= <offset number> # non-virtual base override 1070 // <v-offset> ::= <offset number> _ <virtual offset number> 1071 // # virtual base override, with vcall offset 1072 if (!Virtual) { 1073 Out << 'h'; 1074 mangleNumber(NonVirtual); 1075 Out << '_'; 1076 return; 1077 } 1078 1079 Out << 'v'; 1080 mangleNumber(NonVirtual); 1081 Out << '_'; 1082 mangleNumber(Virtual); 1083 Out << '_'; 1084 } 1085 1086 void CXXNameMangler::manglePrefix(QualType type) { 1087 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1088 if (!mangleSubstitution(QualType(TST, 0))) { 1089 mangleTemplatePrefix(TST->getTemplateName()); 1090 1091 // FIXME: GCC does not appear to mangle the template arguments when 1092 // the template in question is a dependent template name. Should we 1093 // emulate that badness? 1094 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); 1095 addSubstitution(QualType(TST, 0)); 1096 } 1097 } else if (const auto *DTST = 1098 type->getAs<DependentTemplateSpecializationType>()) { 1099 if (!mangleSubstitution(QualType(DTST, 0))) { 1100 TemplateName Template = getASTContext().getDependentTemplateName( 1101 DTST->getQualifier(), DTST->getIdentifier()); 1102 mangleTemplatePrefix(Template); 1103 1104 // FIXME: GCC does not appear to mangle the template arguments when 1105 // the template in question is a dependent template name. Should we 1106 // emulate that badness? 1107 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); 1108 addSubstitution(QualType(DTST, 0)); 1109 } 1110 } else { 1111 // We use the QualType mangle type variant here because it handles 1112 // substitutions. 1113 mangleType(type); 1114 } 1115 } 1116 1117 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1118 /// 1119 /// \param recursive - true if this is being called recursively, 1120 /// i.e. if there is more prefix "to the right". 1121 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1122 bool recursive) { 1123 1124 // x, ::x 1125 // <unresolved-name> ::= [gs] <base-unresolved-name> 1126 1127 // T::x / decltype(p)::x 1128 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1129 1130 // T::N::x /decltype(p)::N::x 1131 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1132 // <base-unresolved-name> 1133 1134 // A::x, N::y, A<T>::z; "gs" means leading "::" 1135 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1136 // <base-unresolved-name> 1137 1138 switch (qualifier->getKind()) { 1139 case NestedNameSpecifier::Global: 1140 Out << "gs"; 1141 1142 // We want an 'sr' unless this is the entire NNS. 1143 if (recursive) 1144 Out << "sr"; 1145 1146 // We never want an 'E' here. 1147 return; 1148 1149 case NestedNameSpecifier::Super: 1150 llvm_unreachable("Can't mangle __super specifier"); 1151 1152 case NestedNameSpecifier::Namespace: 1153 if (qualifier->getPrefix()) 1154 mangleUnresolvedPrefix(qualifier->getPrefix(), 1155 /*recursive*/ true); 1156 else 1157 Out << "sr"; 1158 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1159 break; 1160 case NestedNameSpecifier::NamespaceAlias: 1161 if (qualifier->getPrefix()) 1162 mangleUnresolvedPrefix(qualifier->getPrefix(), 1163 /*recursive*/ true); 1164 else 1165 Out << "sr"; 1166 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1167 break; 1168 1169 case NestedNameSpecifier::TypeSpec: 1170 case NestedNameSpecifier::TypeSpecWithTemplate: { 1171 const Type *type = qualifier->getAsType(); 1172 1173 // We only want to use an unresolved-type encoding if this is one of: 1174 // - a decltype 1175 // - a template type parameter 1176 // - a template template parameter with arguments 1177 // In all of these cases, we should have no prefix. 1178 if (qualifier->getPrefix()) { 1179 mangleUnresolvedPrefix(qualifier->getPrefix(), 1180 /*recursive*/ true); 1181 } else { 1182 // Otherwise, all the cases want this. 1183 Out << "sr"; 1184 } 1185 1186 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1187 return; 1188 1189 break; 1190 } 1191 1192 case NestedNameSpecifier::Identifier: 1193 // Member expressions can have these without prefixes. 1194 if (qualifier->getPrefix()) 1195 mangleUnresolvedPrefix(qualifier->getPrefix(), 1196 /*recursive*/ true); 1197 else 1198 Out << "sr"; 1199 1200 mangleSourceName(qualifier->getAsIdentifier()); 1201 // An Identifier has no type information, so we can't emit abi tags for it. 1202 break; 1203 } 1204 1205 // If this was the innermost part of the NNS, and we fell out to 1206 // here, append an 'E'. 1207 if (!recursive) 1208 Out << 'E'; 1209 } 1210 1211 /// Mangle an unresolved-name, which is generally used for names which 1212 /// weren't resolved to specific entities. 1213 void CXXNameMangler::mangleUnresolvedName( 1214 NestedNameSpecifier *qualifier, DeclarationName name, 1215 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1216 unsigned knownArity) { 1217 if (qualifier) mangleUnresolvedPrefix(qualifier); 1218 switch (name.getNameKind()) { 1219 // <base-unresolved-name> ::= <simple-id> 1220 case DeclarationName::Identifier: 1221 mangleSourceName(name.getAsIdentifierInfo()); 1222 break; 1223 // <base-unresolved-name> ::= dn <destructor-name> 1224 case DeclarationName::CXXDestructorName: 1225 Out << "dn"; 1226 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1227 break; 1228 // <base-unresolved-name> ::= on <operator-name> 1229 case DeclarationName::CXXConversionFunctionName: 1230 case DeclarationName::CXXLiteralOperatorName: 1231 case DeclarationName::CXXOperatorName: 1232 Out << "on"; 1233 mangleOperatorName(name, knownArity); 1234 break; 1235 case DeclarationName::CXXConstructorName: 1236 llvm_unreachable("Can't mangle a constructor name!"); 1237 case DeclarationName::CXXUsingDirective: 1238 llvm_unreachable("Can't mangle a using directive name!"); 1239 case DeclarationName::CXXDeductionGuideName: 1240 llvm_unreachable("Can't mangle a deduction guide name!"); 1241 case DeclarationName::ObjCMultiArgSelector: 1242 case DeclarationName::ObjCOneArgSelector: 1243 case DeclarationName::ObjCZeroArgSelector: 1244 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1245 } 1246 1247 // The <simple-id> and on <operator-name> productions end in an optional 1248 // <template-args>. 1249 if (TemplateArgs) 1250 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 1251 } 1252 1253 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 1254 DeclarationName Name, 1255 unsigned KnownArity, 1256 const AbiTagList *AdditionalAbiTags) { 1257 unsigned Arity = KnownArity; 1258 // <unqualified-name> ::= <operator-name> 1259 // ::= <ctor-dtor-name> 1260 // ::= <source-name> 1261 switch (Name.getNameKind()) { 1262 case DeclarationName::Identifier: { 1263 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1264 1265 // We mangle decomposition declarations as the names of their bindings. 1266 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1267 // FIXME: Non-standard mangling for decomposition declarations: 1268 // 1269 // <unqualified-name> ::= DC <source-name>* E 1270 // 1271 // These can never be referenced across translation units, so we do 1272 // not need a cross-vendor mangling for anything other than demanglers. 1273 // Proposed on cxx-abi-dev on 2016-08-12 1274 Out << "DC"; 1275 for (auto *BD : DD->bindings()) 1276 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1277 Out << 'E'; 1278 writeAbiTags(ND, AdditionalAbiTags); 1279 break; 1280 } 1281 1282 if (II) { 1283 // Match GCC's naming convention for internal linkage symbols, for 1284 // symbols that are not actually visible outside of this TU. GCC 1285 // distinguishes between internal and external linkage symbols in 1286 // its mangling, to support cases like this that were valid C++ prior 1287 // to DR426: 1288 // 1289 // void test() { extern void foo(); } 1290 // static void foo(); 1291 // 1292 // Don't bother with the L marker for names in anonymous namespaces; the 1293 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1294 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1295 // implying internal linkage. 1296 if (ND && ND->getFormalLinkage() == InternalLinkage && 1297 !ND->isExternallyVisible() && 1298 getEffectiveDeclContext(ND)->isFileContext() && 1299 !ND->isInAnonymousNamespace()) 1300 Out << 'L'; 1301 1302 auto *FD = dyn_cast<FunctionDecl>(ND); 1303 bool IsRegCall = FD && 1304 FD->getType()->castAs<FunctionType>()->getCallConv() == 1305 clang::CC_X86RegCall; 1306 if (IsRegCall) 1307 mangleRegCallName(II); 1308 else 1309 mangleSourceName(II); 1310 1311 writeAbiTags(ND, AdditionalAbiTags); 1312 break; 1313 } 1314 1315 // Otherwise, an anonymous entity. We must have a declaration. 1316 assert(ND && "mangling empty name without declaration"); 1317 1318 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1319 if (NS->isAnonymousNamespace()) { 1320 // This is how gcc mangles these names. 1321 Out << "12_GLOBAL__N_1"; 1322 break; 1323 } 1324 } 1325 1326 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1327 // We must have an anonymous union or struct declaration. 1328 const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); 1329 1330 // Itanium C++ ABI 5.1.2: 1331 // 1332 // For the purposes of mangling, the name of an anonymous union is 1333 // considered to be the name of the first named data member found by a 1334 // pre-order, depth-first, declaration-order walk of the data members of 1335 // the anonymous union. If there is no such data member (i.e., if all of 1336 // the data members in the union are unnamed), then there is no way for 1337 // a program to refer to the anonymous union, and there is therefore no 1338 // need to mangle its name. 1339 assert(RD->isAnonymousStructOrUnion() 1340 && "Expected anonymous struct or union!"); 1341 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1342 1343 // It's actually possible for various reasons for us to get here 1344 // with an empty anonymous struct / union. Fortunately, it 1345 // doesn't really matter what name we generate. 1346 if (!FD) break; 1347 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1348 1349 mangleSourceName(FD->getIdentifier()); 1350 // Not emitting abi tags: internal name anyway. 1351 break; 1352 } 1353 1354 // Class extensions have no name as a category, and it's possible 1355 // for them to be the semantic parent of certain declarations 1356 // (primarily, tag decls defined within declarations). Such 1357 // declarations will always have internal linkage, so the name 1358 // doesn't really matter, but we shouldn't crash on them. For 1359 // safety, just handle all ObjC containers here. 1360 if (isa<ObjCContainerDecl>(ND)) 1361 break; 1362 1363 // We must have an anonymous struct. 1364 const TagDecl *TD = cast<TagDecl>(ND); 1365 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1366 assert(TD->getDeclContext() == D->getDeclContext() && 1367 "Typedef should not be in another decl context!"); 1368 assert(D->getDeclName().getAsIdentifierInfo() && 1369 "Typedef was not named!"); 1370 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1371 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1372 // Explicit abi tags are still possible; take from underlying type, not 1373 // from typedef. 1374 writeAbiTags(TD, nullptr); 1375 break; 1376 } 1377 1378 // <unnamed-type-name> ::= <closure-type-name> 1379 // 1380 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1381 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ 1382 // # Parameter types or 'v' for 'void'. 1383 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1384 if (Record->isLambda() && Record->getLambdaManglingNumber()) { 1385 assert(!AdditionalAbiTags && 1386 "Lambda type cannot have additional abi tags"); 1387 mangleLambda(Record); 1388 break; 1389 } 1390 } 1391 1392 if (TD->isExternallyVisible()) { 1393 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); 1394 Out << "Ut"; 1395 if (UnnamedMangle > 1) 1396 Out << UnnamedMangle - 2; 1397 Out << '_'; 1398 writeAbiTags(TD, AdditionalAbiTags); 1399 break; 1400 } 1401 1402 // Get a unique id for the anonymous struct. If it is not a real output 1403 // ID doesn't matter so use fake one. 1404 unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); 1405 1406 // Mangle it as a source name in the form 1407 // [n] $_<id> 1408 // where n is the length of the string. 1409 SmallString<8> Str; 1410 Str += "$_"; 1411 Str += llvm::utostr(AnonStructId); 1412 1413 Out << Str.size(); 1414 Out << Str; 1415 break; 1416 } 1417 1418 case DeclarationName::ObjCZeroArgSelector: 1419 case DeclarationName::ObjCOneArgSelector: 1420 case DeclarationName::ObjCMultiArgSelector: 1421 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1422 1423 case DeclarationName::CXXConstructorName: { 1424 const CXXRecordDecl *InheritedFrom = nullptr; 1425 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1426 if (auto Inherited = 1427 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1428 InheritedFrom = Inherited.getConstructor()->getParent(); 1429 InheritedTemplateArgs = 1430 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1431 } 1432 1433 if (ND == Structor) 1434 // If the named decl is the C++ constructor we're mangling, use the type 1435 // we were given. 1436 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1437 else 1438 // Otherwise, use the complete constructor name. This is relevant if a 1439 // class with a constructor is declared within a constructor. 1440 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1441 1442 // FIXME: The template arguments are part of the enclosing prefix or 1443 // nested-name, but it's more convenient to mangle them here. 1444 if (InheritedTemplateArgs) 1445 mangleTemplateArgs(*InheritedTemplateArgs); 1446 1447 writeAbiTags(ND, AdditionalAbiTags); 1448 break; 1449 } 1450 1451 case DeclarationName::CXXDestructorName: 1452 if (ND == Structor) 1453 // If the named decl is the C++ destructor we're mangling, use the type we 1454 // were given. 1455 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1456 else 1457 // Otherwise, use the complete destructor name. This is relevant if a 1458 // class with a destructor is declared within a destructor. 1459 mangleCXXDtorType(Dtor_Complete); 1460 writeAbiTags(ND, AdditionalAbiTags); 1461 break; 1462 1463 case DeclarationName::CXXOperatorName: 1464 if (ND && Arity == UnknownArity) { 1465 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1466 1467 // If we have a member function, we need to include the 'this' pointer. 1468 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1469 if (!MD->isStatic()) 1470 Arity++; 1471 } 1472 LLVM_FALLTHROUGH; 1473 case DeclarationName::CXXConversionFunctionName: 1474 case DeclarationName::CXXLiteralOperatorName: 1475 mangleOperatorName(Name, Arity); 1476 writeAbiTags(ND, AdditionalAbiTags); 1477 break; 1478 1479 case DeclarationName::CXXDeductionGuideName: 1480 llvm_unreachable("Can't mangle a deduction guide name!"); 1481 1482 case DeclarationName::CXXUsingDirective: 1483 llvm_unreachable("Can't mangle a using directive name!"); 1484 } 1485 } 1486 1487 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1488 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1489 // <number> ::= [n] <non-negative decimal integer> 1490 // <identifier> ::= <unqualified source code identifier> 1491 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1492 << II->getName(); 1493 } 1494 1495 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1496 // <source-name> ::= <positive length number> <identifier> 1497 // <number> ::= [n] <non-negative decimal integer> 1498 // <identifier> ::= <unqualified source code identifier> 1499 Out << II->getLength() << II->getName(); 1500 } 1501 1502 void CXXNameMangler::mangleNestedName(const NamedDecl *ND, 1503 const DeclContext *DC, 1504 const AbiTagList *AdditionalAbiTags, 1505 bool NoFunction) { 1506 // <nested-name> 1507 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1508 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1509 // <template-args> E 1510 1511 Out << 'N'; 1512 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1513 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1514 // We do not consider restrict a distinguishing attribute for overloading 1515 // purposes so we must not mangle it. 1516 MethodQuals.removeRestrict(); 1517 mangleQualifiers(MethodQuals); 1518 mangleRefQualifier(Method->getRefQualifier()); 1519 } 1520 1521 // Check if we have a template. 1522 const TemplateArgumentList *TemplateArgs = nullptr; 1523 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1524 mangleTemplatePrefix(TD, NoFunction); 1525 mangleTemplateArgs(*TemplateArgs); 1526 } 1527 else { 1528 manglePrefix(DC, NoFunction); 1529 mangleUnqualifiedName(ND, AdditionalAbiTags); 1530 } 1531 1532 Out << 'E'; 1533 } 1534 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1535 const TemplateArgument *TemplateArgs, 1536 unsigned NumTemplateArgs) { 1537 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1538 1539 Out << 'N'; 1540 1541 mangleTemplatePrefix(TD); 1542 mangleTemplateArgs(TemplateArgs, NumTemplateArgs); 1543 1544 Out << 'E'; 1545 } 1546 1547 void CXXNameMangler::mangleLocalName(const Decl *D, 1548 const AbiTagList *AdditionalAbiTags) { 1549 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1550 // := Z <function encoding> E s [<discriminator>] 1551 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1552 // _ <entity name> 1553 // <discriminator> := _ <non-negative number> 1554 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1555 const RecordDecl *RD = GetLocalClassDecl(D); 1556 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); 1557 1558 Out << 'Z'; 1559 1560 { 1561 AbiTagState LocalAbiTags(AbiTags); 1562 1563 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1564 mangleObjCMethodName(MD); 1565 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1566 mangleBlockForPrefix(BD); 1567 else 1568 mangleFunctionEncoding(cast<FunctionDecl>(DC)); 1569 1570 // Implicit ABI tags (from namespace) are not available in the following 1571 // entity; reset to actually emitted tags, which are available. 1572 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1573 } 1574 1575 Out << 'E'; 1576 1577 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1578 // be a bug that is fixed in trunk. 1579 1580 if (RD) { 1581 // The parameter number is omitted for the last parameter, 0 for the 1582 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1583 // <entity name> will of course contain a <closure-type-name>: Its 1584 // numbering will be local to the particular argument in which it appears 1585 // -- other default arguments do not affect its encoding. 1586 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1587 if (CXXRD && CXXRD->isLambda()) { 1588 if (const ParmVarDecl *Parm 1589 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1590 if (const FunctionDecl *Func 1591 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1592 Out << 'd'; 1593 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1594 if (Num > 1) 1595 mangleNumber(Num - 2); 1596 Out << '_'; 1597 } 1598 } 1599 } 1600 1601 // Mangle the name relative to the closest enclosing function. 1602 // equality ok because RD derived from ND above 1603 if (D == RD) { 1604 mangleUnqualifiedName(RD, AdditionalAbiTags); 1605 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1606 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); 1607 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1608 mangleUnqualifiedBlock(BD); 1609 } else { 1610 const NamedDecl *ND = cast<NamedDecl>(D); 1611 mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags, 1612 true /*NoFunction*/); 1613 } 1614 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1615 // Mangle a block in a default parameter; see above explanation for 1616 // lambdas. 1617 if (const ParmVarDecl *Parm 1618 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1619 if (const FunctionDecl *Func 1620 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1621 Out << 'd'; 1622 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1623 if (Num > 1) 1624 mangleNumber(Num - 2); 1625 Out << '_'; 1626 } 1627 } 1628 1629 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1630 mangleUnqualifiedBlock(BD); 1631 } else { 1632 mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags); 1633 } 1634 1635 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1636 unsigned disc; 1637 if (Context.getNextDiscriminator(ND, disc)) { 1638 if (disc < 10) 1639 Out << '_' << disc; 1640 else 1641 Out << "__" << disc << '_'; 1642 } 1643 } 1644 } 1645 1646 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1647 if (GetLocalClassDecl(Block)) { 1648 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1649 return; 1650 } 1651 const DeclContext *DC = getEffectiveDeclContext(Block); 1652 if (isLocalContainerContext(DC)) { 1653 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1654 return; 1655 } 1656 manglePrefix(getEffectiveDeclContext(Block)); 1657 mangleUnqualifiedBlock(Block); 1658 } 1659 1660 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1661 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1662 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1663 Context->getDeclContext()->isRecord()) { 1664 const auto *ND = cast<NamedDecl>(Context); 1665 if (ND->getIdentifier()) { 1666 mangleSourceNameWithAbiTags(ND); 1667 Out << 'M'; 1668 } 1669 } 1670 } 1671 1672 // If we have a block mangling number, use it. 1673 unsigned Number = Block->getBlockManglingNumber(); 1674 // Otherwise, just make up a number. It doesn't matter what it is because 1675 // the symbol in question isn't externally visible. 1676 if (!Number) 1677 Number = Context.getBlockId(Block, false); 1678 else { 1679 // Stored mangling numbers are 1-based. 1680 --Number; 1681 } 1682 Out << "Ub"; 1683 if (Number > 0) 1684 Out << Number - 1; 1685 Out << '_'; 1686 } 1687 1688 // <template-param-decl> 1689 // ::= Ty # template type parameter 1690 // ::= Tn <type> # template non-type parameter 1691 // ::= Tt <template-param-decl>* E # template template parameter 1692 // ::= Tp <template-param-decl> # template parameter pack 1693 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { 1694 if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) { 1695 if (Ty->isParameterPack()) 1696 Out << "Tp"; 1697 Out << "Ty"; 1698 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { 1699 if (Tn->isExpandedParameterPack()) { 1700 for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { 1701 Out << "Tn"; 1702 mangleType(Tn->getExpansionType(I)); 1703 } 1704 } else { 1705 QualType T = Tn->getType(); 1706 if (Tn->isParameterPack()) { 1707 Out << "Tp"; 1708 if (auto *PackExpansion = T->getAs<PackExpansionType>()) 1709 T = PackExpansion->getPattern(); 1710 } 1711 Out << "Tn"; 1712 mangleType(T); 1713 } 1714 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { 1715 if (Tt->isExpandedParameterPack()) { 1716 for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; 1717 ++I) { 1718 Out << "Tt"; 1719 for (auto *Param : *Tt->getExpansionTemplateParameters(I)) 1720 mangleTemplateParamDecl(Param); 1721 Out << "E"; 1722 } 1723 } else { 1724 if (Tt->isParameterPack()) 1725 Out << "Tp"; 1726 Out << "Tt"; 1727 for (auto *Param : *Tt->getTemplateParameters()) 1728 mangleTemplateParamDecl(Param); 1729 Out << "E"; 1730 } 1731 } 1732 } 1733 1734 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 1735 // If the context of a closure type is an initializer for a class member 1736 // (static or nonstatic), it is encoded in a qualified name with a final 1737 // <prefix> of the form: 1738 // 1739 // <data-member-prefix> := <member source-name> M 1740 // 1741 // Technically, the data-member-prefix is part of the <prefix>. However, 1742 // since a closure type will always be mangled with a prefix, it's easier 1743 // to emit that last part of the prefix here. 1744 if (Decl *Context = Lambda->getLambdaContextDecl()) { 1745 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1746 !isa<ParmVarDecl>(Context)) { 1747 // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a 1748 // reasonable mangling here. 1749 if (const IdentifierInfo *Name 1750 = cast<NamedDecl>(Context)->getIdentifier()) { 1751 mangleSourceName(Name); 1752 const TemplateArgumentList *TemplateArgs = nullptr; 1753 if (isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 1754 mangleTemplateArgs(*TemplateArgs); 1755 Out << 'M'; 1756 } 1757 } 1758 } 1759 1760 Out << "Ul"; 1761 mangleLambdaSig(Lambda); 1762 Out << "E"; 1763 1764 // The number is omitted for the first closure type with a given 1765 // <lambda-sig> in a given context; it is n-2 for the nth closure type 1766 // (in lexical order) with that same <lambda-sig> and context. 1767 // 1768 // The AST keeps track of the number for us. 1769 unsigned Number = Lambda->getLambdaManglingNumber(); 1770 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 1771 if (Number > 1) 1772 mangleNumber(Number - 2); 1773 Out << '_'; 1774 } 1775 1776 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { 1777 for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) 1778 mangleTemplateParamDecl(D); 1779 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> 1780 getAs<FunctionProtoType>(); 1781 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 1782 Lambda->getLambdaStaticInvoker()); 1783 } 1784 1785 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 1786 switch (qualifier->getKind()) { 1787 case NestedNameSpecifier::Global: 1788 // nothing 1789 return; 1790 1791 case NestedNameSpecifier::Super: 1792 llvm_unreachable("Can't mangle __super specifier"); 1793 1794 case NestedNameSpecifier::Namespace: 1795 mangleName(qualifier->getAsNamespace()); 1796 return; 1797 1798 case NestedNameSpecifier::NamespaceAlias: 1799 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 1800 return; 1801 1802 case NestedNameSpecifier::TypeSpec: 1803 case NestedNameSpecifier::TypeSpecWithTemplate: 1804 manglePrefix(QualType(qualifier->getAsType(), 0)); 1805 return; 1806 1807 case NestedNameSpecifier::Identifier: 1808 // Member expressions can have these without prefixes, but that 1809 // should end up in mangleUnresolvedPrefix instead. 1810 assert(qualifier->getPrefix()); 1811 manglePrefix(qualifier->getPrefix()); 1812 1813 mangleSourceName(qualifier->getAsIdentifier()); 1814 return; 1815 } 1816 1817 llvm_unreachable("unexpected nested name specifier"); 1818 } 1819 1820 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 1821 // <prefix> ::= <prefix> <unqualified-name> 1822 // ::= <template-prefix> <template-args> 1823 // ::= <template-param> 1824 // ::= # empty 1825 // ::= <substitution> 1826 1827 DC = IgnoreLinkageSpecDecls(DC); 1828 1829 if (DC->isTranslationUnit()) 1830 return; 1831 1832 if (NoFunction && isLocalContainerContext(DC)) 1833 return; 1834 1835 assert(!isLocalContainerContext(DC)); 1836 1837 const NamedDecl *ND = cast<NamedDecl>(DC); 1838 if (mangleSubstitution(ND)) 1839 return; 1840 1841 // Check if we have a template. 1842 const TemplateArgumentList *TemplateArgs = nullptr; 1843 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 1844 mangleTemplatePrefix(TD); 1845 mangleTemplateArgs(*TemplateArgs); 1846 } else { 1847 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 1848 mangleUnqualifiedName(ND, nullptr); 1849 } 1850 1851 addSubstitution(ND); 1852 } 1853 1854 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 1855 // <template-prefix> ::= <prefix> <template unqualified-name> 1856 // ::= <template-param> 1857 // ::= <substitution> 1858 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 1859 return mangleTemplatePrefix(TD); 1860 1861 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) 1862 manglePrefix(Qualified->getQualifier()); 1863 1864 if (OverloadedTemplateStorage *Overloaded 1865 = Template.getAsOverloadedTemplate()) { 1866 mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(), 1867 UnknownArity, nullptr); 1868 return; 1869 } 1870 1871 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 1872 assert(Dependent && "Unknown template name kind?"); 1873 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 1874 manglePrefix(Qualifier); 1875 mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr); 1876 } 1877 1878 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND, 1879 bool NoFunction) { 1880 // <template-prefix> ::= <prefix> <template unqualified-name> 1881 // ::= <template-param> 1882 // ::= <substitution> 1883 // <template-template-param> ::= <template-param> 1884 // <substitution> 1885 1886 if (mangleSubstitution(ND)) 1887 return; 1888 1889 // <template-template-param> ::= <template-param> 1890 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1891 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 1892 } else { 1893 manglePrefix(getEffectiveDeclContext(ND), NoFunction); 1894 if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) 1895 mangleUnqualifiedName(ND, nullptr); 1896 else 1897 mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr); 1898 } 1899 1900 addSubstitution(ND); 1901 } 1902 1903 /// Mangles a template name under the production <type>. Required for 1904 /// template template arguments. 1905 /// <type> ::= <class-enum-type> 1906 /// ::= <template-param> 1907 /// ::= <substitution> 1908 void CXXNameMangler::mangleType(TemplateName TN) { 1909 if (mangleSubstitution(TN)) 1910 return; 1911 1912 TemplateDecl *TD = nullptr; 1913 1914 switch (TN.getKind()) { 1915 case TemplateName::QualifiedTemplate: 1916 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); 1917 goto HaveDecl; 1918 1919 case TemplateName::Template: 1920 TD = TN.getAsTemplateDecl(); 1921 goto HaveDecl; 1922 1923 HaveDecl: 1924 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD)) 1925 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 1926 else 1927 mangleName(TD); 1928 break; 1929 1930 case TemplateName::OverloadedTemplate: 1931 case TemplateName::AssumedTemplate: 1932 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 1933 1934 case TemplateName::DependentTemplate: { 1935 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 1936 assert(Dependent->isIdentifier()); 1937 1938 // <class-enum-type> ::= <name> 1939 // <name> ::= <nested-name> 1940 mangleUnresolvedPrefix(Dependent->getQualifier()); 1941 mangleSourceName(Dependent->getIdentifier()); 1942 break; 1943 } 1944 1945 case TemplateName::SubstTemplateTemplateParm: { 1946 // Substituted template parameters are mangled as the substituted 1947 // template. This will check for the substitution twice, which is 1948 // fine, but we have to return early so that we don't try to *add* 1949 // the substitution twice. 1950 SubstTemplateTemplateParmStorage *subst 1951 = TN.getAsSubstTemplateTemplateParm(); 1952 mangleType(subst->getReplacement()); 1953 return; 1954 } 1955 1956 case TemplateName::SubstTemplateTemplateParmPack: { 1957 // FIXME: not clear how to mangle this! 1958 // template <template <class> class T...> class A { 1959 // template <template <class> class U...> void foo(B<T,U> x...); 1960 // }; 1961 Out << "_SUBSTPACK_"; 1962 break; 1963 } 1964 } 1965 1966 addSubstitution(TN); 1967 } 1968 1969 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 1970 StringRef Prefix) { 1971 // Only certain other types are valid as prefixes; enumerate them. 1972 switch (Ty->getTypeClass()) { 1973 case Type::Builtin: 1974 case Type::Complex: 1975 case Type::Adjusted: 1976 case Type::Decayed: 1977 case Type::Pointer: 1978 case Type::BlockPointer: 1979 case Type::LValueReference: 1980 case Type::RValueReference: 1981 case Type::MemberPointer: 1982 case Type::ConstantArray: 1983 case Type::IncompleteArray: 1984 case Type::VariableArray: 1985 case Type::DependentSizedArray: 1986 case Type::DependentAddressSpace: 1987 case Type::DependentVector: 1988 case Type::DependentSizedExtVector: 1989 case Type::Vector: 1990 case Type::ExtVector: 1991 case Type::FunctionProto: 1992 case Type::FunctionNoProto: 1993 case Type::Paren: 1994 case Type::Attributed: 1995 case Type::Auto: 1996 case Type::DeducedTemplateSpecialization: 1997 case Type::PackExpansion: 1998 case Type::ObjCObject: 1999 case Type::ObjCInterface: 2000 case Type::ObjCObjectPointer: 2001 case Type::ObjCTypeParam: 2002 case Type::Atomic: 2003 case Type::Pipe: 2004 case Type::MacroQualified: 2005 llvm_unreachable("type is illegal as a nested name specifier"); 2006 2007 case Type::SubstTemplateTypeParmPack: 2008 // FIXME: not clear how to mangle this! 2009 // template <class T...> class A { 2010 // template <class U...> void foo(decltype(T::foo(U())) x...); 2011 // }; 2012 Out << "_SUBSTPACK_"; 2013 break; 2014 2015 // <unresolved-type> ::= <template-param> 2016 // ::= <decltype> 2017 // ::= <template-template-param> <template-args> 2018 // (this last is not official yet) 2019 case Type::TypeOfExpr: 2020 case Type::TypeOf: 2021 case Type::Decltype: 2022 case Type::TemplateTypeParm: 2023 case Type::UnaryTransform: 2024 case Type::SubstTemplateTypeParm: 2025 unresolvedType: 2026 // Some callers want a prefix before the mangled type. 2027 Out << Prefix; 2028 2029 // This seems to do everything we want. It's not really 2030 // sanctioned for a substituted template parameter, though. 2031 mangleType(Ty); 2032 2033 // We never want to print 'E' directly after an unresolved-type, 2034 // so we return directly. 2035 return true; 2036 2037 case Type::Typedef: 2038 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 2039 break; 2040 2041 case Type::UnresolvedUsing: 2042 mangleSourceNameWithAbiTags( 2043 cast<UnresolvedUsingType>(Ty)->getDecl()); 2044 break; 2045 2046 case Type::Enum: 2047 case Type::Record: 2048 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 2049 break; 2050 2051 case Type::TemplateSpecialization: { 2052 const TemplateSpecializationType *TST = 2053 cast<TemplateSpecializationType>(Ty); 2054 TemplateName TN = TST->getTemplateName(); 2055 switch (TN.getKind()) { 2056 case TemplateName::Template: 2057 case TemplateName::QualifiedTemplate: { 2058 TemplateDecl *TD = TN.getAsTemplateDecl(); 2059 2060 // If the base is a template template parameter, this is an 2061 // unresolved type. 2062 assert(TD && "no template for template specialization type"); 2063 if (isa<TemplateTemplateParmDecl>(TD)) 2064 goto unresolvedType; 2065 2066 mangleSourceNameWithAbiTags(TD); 2067 break; 2068 } 2069 2070 case TemplateName::OverloadedTemplate: 2071 case TemplateName::AssumedTemplate: 2072 case TemplateName::DependentTemplate: 2073 llvm_unreachable("invalid base for a template specialization type"); 2074 2075 case TemplateName::SubstTemplateTemplateParm: { 2076 SubstTemplateTemplateParmStorage *subst = 2077 TN.getAsSubstTemplateTemplateParm(); 2078 mangleExistingSubstitution(subst->getReplacement()); 2079 break; 2080 } 2081 2082 case TemplateName::SubstTemplateTemplateParmPack: { 2083 // FIXME: not clear how to mangle this! 2084 // template <template <class U> class T...> class A { 2085 // template <class U...> void foo(decltype(T<U>::foo) x...); 2086 // }; 2087 Out << "_SUBSTPACK_"; 2088 break; 2089 } 2090 } 2091 2092 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); 2093 break; 2094 } 2095 2096 case Type::InjectedClassName: 2097 mangleSourceNameWithAbiTags( 2098 cast<InjectedClassNameType>(Ty)->getDecl()); 2099 break; 2100 2101 case Type::DependentName: 2102 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2103 break; 2104 2105 case Type::DependentTemplateSpecialization: { 2106 const DependentTemplateSpecializationType *DTST = 2107 cast<DependentTemplateSpecializationType>(Ty); 2108 mangleSourceName(DTST->getIdentifier()); 2109 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); 2110 break; 2111 } 2112 2113 case Type::Elaborated: 2114 return mangleUnresolvedTypeOrSimpleId( 2115 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2116 } 2117 2118 return false; 2119 } 2120 2121 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2122 switch (Name.getNameKind()) { 2123 case DeclarationName::CXXConstructorName: 2124 case DeclarationName::CXXDestructorName: 2125 case DeclarationName::CXXDeductionGuideName: 2126 case DeclarationName::CXXUsingDirective: 2127 case DeclarationName::Identifier: 2128 case DeclarationName::ObjCMultiArgSelector: 2129 case DeclarationName::ObjCOneArgSelector: 2130 case DeclarationName::ObjCZeroArgSelector: 2131 llvm_unreachable("Not an operator name"); 2132 2133 case DeclarationName::CXXConversionFunctionName: 2134 // <operator-name> ::= cv <type> # (cast) 2135 Out << "cv"; 2136 mangleType(Name.getCXXNameType()); 2137 break; 2138 2139 case DeclarationName::CXXLiteralOperatorName: 2140 Out << "li"; 2141 mangleSourceName(Name.getCXXLiteralIdentifier()); 2142 return; 2143 2144 case DeclarationName::CXXOperatorName: 2145 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2146 break; 2147 } 2148 } 2149 2150 void 2151 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2152 switch (OO) { 2153 // <operator-name> ::= nw # new 2154 case OO_New: Out << "nw"; break; 2155 // ::= na # new[] 2156 case OO_Array_New: Out << "na"; break; 2157 // ::= dl # delete 2158 case OO_Delete: Out << "dl"; break; 2159 // ::= da # delete[] 2160 case OO_Array_Delete: Out << "da"; break; 2161 // ::= ps # + (unary) 2162 // ::= pl # + (binary or unknown) 2163 case OO_Plus: 2164 Out << (Arity == 1? "ps" : "pl"); break; 2165 // ::= ng # - (unary) 2166 // ::= mi # - (binary or unknown) 2167 case OO_Minus: 2168 Out << (Arity == 1? "ng" : "mi"); break; 2169 // ::= ad # & (unary) 2170 // ::= an # & (binary or unknown) 2171 case OO_Amp: 2172 Out << (Arity == 1? "ad" : "an"); break; 2173 // ::= de # * (unary) 2174 // ::= ml # * (binary or unknown) 2175 case OO_Star: 2176 // Use binary when unknown. 2177 Out << (Arity == 1? "de" : "ml"); break; 2178 // ::= co # ~ 2179 case OO_Tilde: Out << "co"; break; 2180 // ::= dv # / 2181 case OO_Slash: Out << "dv"; break; 2182 // ::= rm # % 2183 case OO_Percent: Out << "rm"; break; 2184 // ::= or # | 2185 case OO_Pipe: Out << "or"; break; 2186 // ::= eo # ^ 2187 case OO_Caret: Out << "eo"; break; 2188 // ::= aS # = 2189 case OO_Equal: Out << "aS"; break; 2190 // ::= pL # += 2191 case OO_PlusEqual: Out << "pL"; break; 2192 // ::= mI # -= 2193 case OO_MinusEqual: Out << "mI"; break; 2194 // ::= mL # *= 2195 case OO_StarEqual: Out << "mL"; break; 2196 // ::= dV # /= 2197 case OO_SlashEqual: Out << "dV"; break; 2198 // ::= rM # %= 2199 case OO_PercentEqual: Out << "rM"; break; 2200 // ::= aN # &= 2201 case OO_AmpEqual: Out << "aN"; break; 2202 // ::= oR # |= 2203 case OO_PipeEqual: Out << "oR"; break; 2204 // ::= eO # ^= 2205 case OO_CaretEqual: Out << "eO"; break; 2206 // ::= ls # << 2207 case OO_LessLess: Out << "ls"; break; 2208 // ::= rs # >> 2209 case OO_GreaterGreater: Out << "rs"; break; 2210 // ::= lS # <<= 2211 case OO_LessLessEqual: Out << "lS"; break; 2212 // ::= rS # >>= 2213 case OO_GreaterGreaterEqual: Out << "rS"; break; 2214 // ::= eq # == 2215 case OO_EqualEqual: Out << "eq"; break; 2216 // ::= ne # != 2217 case OO_ExclaimEqual: Out << "ne"; break; 2218 // ::= lt # < 2219 case OO_Less: Out << "lt"; break; 2220 // ::= gt # > 2221 case OO_Greater: Out << "gt"; break; 2222 // ::= le # <= 2223 case OO_LessEqual: Out << "le"; break; 2224 // ::= ge # >= 2225 case OO_GreaterEqual: Out << "ge"; break; 2226 // ::= nt # ! 2227 case OO_Exclaim: Out << "nt"; break; 2228 // ::= aa # && 2229 case OO_AmpAmp: Out << "aa"; break; 2230 // ::= oo # || 2231 case OO_PipePipe: Out << "oo"; break; 2232 // ::= pp # ++ 2233 case OO_PlusPlus: Out << "pp"; break; 2234 // ::= mm # -- 2235 case OO_MinusMinus: Out << "mm"; break; 2236 // ::= cm # , 2237 case OO_Comma: Out << "cm"; break; 2238 // ::= pm # ->* 2239 case OO_ArrowStar: Out << "pm"; break; 2240 // ::= pt # -> 2241 case OO_Arrow: Out << "pt"; break; 2242 // ::= cl # () 2243 case OO_Call: Out << "cl"; break; 2244 // ::= ix # [] 2245 case OO_Subscript: Out << "ix"; break; 2246 2247 // ::= qu # ? 2248 // The conditional operator can't be overloaded, but we still handle it when 2249 // mangling expressions. 2250 case OO_Conditional: Out << "qu"; break; 2251 // Proposal on cxx-abi-dev, 2015-10-21. 2252 // ::= aw # co_await 2253 case OO_Coawait: Out << "aw"; break; 2254 // Proposed in cxx-abi github issue 43. 2255 // ::= ss # <=> 2256 case OO_Spaceship: Out << "ss"; break; 2257 2258 case OO_None: 2259 case NUM_OVERLOADED_OPERATORS: 2260 llvm_unreachable("Not an overloaded operator"); 2261 } 2262 } 2263 2264 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2265 // Vendor qualifiers come first and if they are order-insensitive they must 2266 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2267 2268 // <type> ::= U <addrspace-expr> 2269 if (DAST) { 2270 Out << "U2ASI"; 2271 mangleExpression(DAST->getAddrSpaceExpr()); 2272 Out << "E"; 2273 } 2274 2275 // Address space qualifiers start with an ordinary letter. 2276 if (Quals.hasAddressSpace()) { 2277 // Address space extension: 2278 // 2279 // <type> ::= U <target-addrspace> 2280 // <type> ::= U <OpenCL-addrspace> 2281 // <type> ::= U <CUDA-addrspace> 2282 2283 SmallString<64> ASString; 2284 LangAS AS = Quals.getAddressSpace(); 2285 2286 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2287 // <target-addrspace> ::= "AS" <address-space-number> 2288 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2289 if (TargetAS != 0) 2290 ASString = "AS" + llvm::utostr(TargetAS); 2291 } else { 2292 switch (AS) { 2293 default: llvm_unreachable("Not a language specific address space"); 2294 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2295 // "private"| "generic" ] 2296 case LangAS::opencl_global: ASString = "CLglobal"; break; 2297 case LangAS::opencl_local: ASString = "CLlocal"; break; 2298 case LangAS::opencl_constant: ASString = "CLconstant"; break; 2299 case LangAS::opencl_private: ASString = "CLprivate"; break; 2300 case LangAS::opencl_generic: ASString = "CLgeneric"; break; 2301 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2302 case LangAS::cuda_device: ASString = "CUdevice"; break; 2303 case LangAS::cuda_constant: ASString = "CUconstant"; break; 2304 case LangAS::cuda_shared: ASString = "CUshared"; break; 2305 // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] 2306 case LangAS::ptr32_sptr: 2307 ASString = "ptr32_sptr"; 2308 break; 2309 case LangAS::ptr32_uptr: 2310 ASString = "ptr32_uptr"; 2311 break; 2312 case LangAS::ptr64: 2313 ASString = "ptr64"; 2314 break; 2315 } 2316 } 2317 if (!ASString.empty()) 2318 mangleVendorQualifier(ASString); 2319 } 2320 2321 // The ARC ownership qualifiers start with underscores. 2322 // Objective-C ARC Extension: 2323 // 2324 // <type> ::= U "__strong" 2325 // <type> ::= U "__weak" 2326 // <type> ::= U "__autoreleasing" 2327 // 2328 // Note: we emit __weak first to preserve the order as 2329 // required by the Itanium ABI. 2330 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2331 mangleVendorQualifier("__weak"); 2332 2333 // __unaligned (from -fms-extensions) 2334 if (Quals.hasUnaligned()) 2335 mangleVendorQualifier("__unaligned"); 2336 2337 // Remaining ARC ownership qualifiers. 2338 switch (Quals.getObjCLifetime()) { 2339 case Qualifiers::OCL_None: 2340 break; 2341 2342 case Qualifiers::OCL_Weak: 2343 // Do nothing as we already handled this case above. 2344 break; 2345 2346 case Qualifiers::OCL_Strong: 2347 mangleVendorQualifier("__strong"); 2348 break; 2349 2350 case Qualifiers::OCL_Autoreleasing: 2351 mangleVendorQualifier("__autoreleasing"); 2352 break; 2353 2354 case Qualifiers::OCL_ExplicitNone: 2355 // The __unsafe_unretained qualifier is *not* mangled, so that 2356 // __unsafe_unretained types in ARC produce the same manglings as the 2357 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2358 // better ABI compatibility. 2359 // 2360 // It's safe to do this because unqualified 'id' won't show up 2361 // in any type signatures that need to be mangled. 2362 break; 2363 } 2364 2365 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2366 if (Quals.hasRestrict()) 2367 Out << 'r'; 2368 if (Quals.hasVolatile()) 2369 Out << 'V'; 2370 if (Quals.hasConst()) 2371 Out << 'K'; 2372 } 2373 2374 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2375 Out << 'U' << name.size() << name; 2376 } 2377 2378 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2379 // <ref-qualifier> ::= R # lvalue reference 2380 // ::= O # rvalue-reference 2381 switch (RefQualifier) { 2382 case RQ_None: 2383 break; 2384 2385 case RQ_LValue: 2386 Out << 'R'; 2387 break; 2388 2389 case RQ_RValue: 2390 Out << 'O'; 2391 break; 2392 } 2393 } 2394 2395 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2396 Context.mangleObjCMethodName(MD, Out); 2397 } 2398 2399 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2400 ASTContext &Ctx) { 2401 if (Quals) 2402 return true; 2403 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2404 return true; 2405 if (Ty->isOpenCLSpecificType()) 2406 return true; 2407 if (Ty->isBuiltinType()) 2408 return false; 2409 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2410 // substitution candidates. 2411 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2412 isa<AutoType>(Ty)) 2413 return false; 2414 return true; 2415 } 2416 2417 void CXXNameMangler::mangleType(QualType T) { 2418 // If our type is instantiation-dependent but not dependent, we mangle 2419 // it as it was written in the source, removing any top-level sugar. 2420 // Otherwise, use the canonical type. 2421 // 2422 // FIXME: This is an approximation of the instantiation-dependent name 2423 // mangling rules, since we should really be using the type as written and 2424 // augmented via semantic analysis (i.e., with implicit conversions and 2425 // default template arguments) for any instantiation-dependent type. 2426 // Unfortunately, that requires several changes to our AST: 2427 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2428 // uniqued, so that we can handle substitutions properly 2429 // - Default template arguments will need to be represented in the 2430 // TemplateSpecializationType, since they need to be mangled even though 2431 // they aren't written. 2432 // - Conversions on non-type template arguments need to be expressed, since 2433 // they can affect the mangling of sizeof/alignof. 2434 // 2435 // FIXME: This is wrong when mapping to the canonical type for a dependent 2436 // type discards instantiation-dependent portions of the type, such as for: 2437 // 2438 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2439 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2440 // 2441 // It's also wrong in the opposite direction when instantiation-dependent, 2442 // canonically-equivalent types differ in some irrelevant portion of inner 2443 // type sugar. In such cases, we fail to form correct substitutions, eg: 2444 // 2445 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2446 // 2447 // We should instead canonicalize the non-instantiation-dependent parts, 2448 // regardless of whether the type as a whole is dependent or instantiation 2449 // dependent. 2450 if (!T->isInstantiationDependentType() || T->isDependentType()) 2451 T = T.getCanonicalType(); 2452 else { 2453 // Desugar any types that are purely sugar. 2454 do { 2455 // Don't desugar through template specialization types that aren't 2456 // type aliases. We need to mangle the template arguments as written. 2457 if (const TemplateSpecializationType *TST 2458 = dyn_cast<TemplateSpecializationType>(T)) 2459 if (!TST->isTypeAlias()) 2460 break; 2461 2462 QualType Desugared 2463 = T.getSingleStepDesugaredType(Context.getASTContext()); 2464 if (Desugared == T) 2465 break; 2466 2467 T = Desugared; 2468 } while (true); 2469 } 2470 SplitQualType split = T.split(); 2471 Qualifiers quals = split.Quals; 2472 const Type *ty = split.Ty; 2473 2474 bool isSubstitutable = 2475 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2476 if (isSubstitutable && mangleSubstitution(T)) 2477 return; 2478 2479 // If we're mangling a qualified array type, push the qualifiers to 2480 // the element type. 2481 if (quals && isa<ArrayType>(T)) { 2482 ty = Context.getASTContext().getAsArrayType(T); 2483 quals = Qualifiers(); 2484 2485 // Note that we don't update T: we want to add the 2486 // substitution at the original type. 2487 } 2488 2489 if (quals || ty->isDependentAddressSpaceType()) { 2490 if (const DependentAddressSpaceType *DAST = 2491 dyn_cast<DependentAddressSpaceType>(ty)) { 2492 SplitQualType splitDAST = DAST->getPointeeType().split(); 2493 mangleQualifiers(splitDAST.Quals, DAST); 2494 mangleType(QualType(splitDAST.Ty, 0)); 2495 } else { 2496 mangleQualifiers(quals); 2497 2498 // Recurse: even if the qualified type isn't yet substitutable, 2499 // the unqualified type might be. 2500 mangleType(QualType(ty, 0)); 2501 } 2502 } else { 2503 switch (ty->getTypeClass()) { 2504 #define ABSTRACT_TYPE(CLASS, PARENT) 2505 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2506 case Type::CLASS: \ 2507 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2508 return; 2509 #define TYPE(CLASS, PARENT) \ 2510 case Type::CLASS: \ 2511 mangleType(static_cast<const CLASS##Type*>(ty)); \ 2512 break; 2513 #include "clang/AST/TypeNodes.inc" 2514 } 2515 } 2516 2517 // Add the substitution. 2518 if (isSubstitutable) 2519 addSubstitution(T); 2520 } 2521 2522 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 2523 if (!mangleStandardSubstitution(ND)) 2524 mangleName(ND); 2525 } 2526 2527 void CXXNameMangler::mangleType(const BuiltinType *T) { 2528 // <type> ::= <builtin-type> 2529 // <builtin-type> ::= v # void 2530 // ::= w # wchar_t 2531 // ::= b # bool 2532 // ::= c # char 2533 // ::= a # signed char 2534 // ::= h # unsigned char 2535 // ::= s # short 2536 // ::= t # unsigned short 2537 // ::= i # int 2538 // ::= j # unsigned int 2539 // ::= l # long 2540 // ::= m # unsigned long 2541 // ::= x # long long, __int64 2542 // ::= y # unsigned long long, __int64 2543 // ::= n # __int128 2544 // ::= o # unsigned __int128 2545 // ::= f # float 2546 // ::= d # double 2547 // ::= e # long double, __float80 2548 // ::= g # __float128 2549 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 2550 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 2551 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 2552 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 2553 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 2554 // ::= Di # char32_t 2555 // ::= Ds # char16_t 2556 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 2557 // ::= u <source-name> # vendor extended type 2558 std::string type_name; 2559 switch (T->getKind()) { 2560 case BuiltinType::Void: 2561 Out << 'v'; 2562 break; 2563 case BuiltinType::Bool: 2564 Out << 'b'; 2565 break; 2566 case BuiltinType::Char_U: 2567 case BuiltinType::Char_S: 2568 Out << 'c'; 2569 break; 2570 case BuiltinType::UChar: 2571 Out << 'h'; 2572 break; 2573 case BuiltinType::UShort: 2574 Out << 't'; 2575 break; 2576 case BuiltinType::UInt: 2577 Out << 'j'; 2578 break; 2579 case BuiltinType::ULong: 2580 Out << 'm'; 2581 break; 2582 case BuiltinType::ULongLong: 2583 Out << 'y'; 2584 break; 2585 case BuiltinType::UInt128: 2586 Out << 'o'; 2587 break; 2588 case BuiltinType::SChar: 2589 Out << 'a'; 2590 break; 2591 case BuiltinType::WChar_S: 2592 case BuiltinType::WChar_U: 2593 Out << 'w'; 2594 break; 2595 case BuiltinType::Char8: 2596 Out << "Du"; 2597 break; 2598 case BuiltinType::Char16: 2599 Out << "Ds"; 2600 break; 2601 case BuiltinType::Char32: 2602 Out << "Di"; 2603 break; 2604 case BuiltinType::Short: 2605 Out << 's'; 2606 break; 2607 case BuiltinType::Int: 2608 Out << 'i'; 2609 break; 2610 case BuiltinType::Long: 2611 Out << 'l'; 2612 break; 2613 case BuiltinType::LongLong: 2614 Out << 'x'; 2615 break; 2616 case BuiltinType::Int128: 2617 Out << 'n'; 2618 break; 2619 case BuiltinType::Float16: 2620 Out << "DF16_"; 2621 break; 2622 case BuiltinType::ShortAccum: 2623 case BuiltinType::Accum: 2624 case BuiltinType::LongAccum: 2625 case BuiltinType::UShortAccum: 2626 case BuiltinType::UAccum: 2627 case BuiltinType::ULongAccum: 2628 case BuiltinType::ShortFract: 2629 case BuiltinType::Fract: 2630 case BuiltinType::LongFract: 2631 case BuiltinType::UShortFract: 2632 case BuiltinType::UFract: 2633 case BuiltinType::ULongFract: 2634 case BuiltinType::SatShortAccum: 2635 case BuiltinType::SatAccum: 2636 case BuiltinType::SatLongAccum: 2637 case BuiltinType::SatUShortAccum: 2638 case BuiltinType::SatUAccum: 2639 case BuiltinType::SatULongAccum: 2640 case BuiltinType::SatShortFract: 2641 case BuiltinType::SatFract: 2642 case BuiltinType::SatLongFract: 2643 case BuiltinType::SatUShortFract: 2644 case BuiltinType::SatUFract: 2645 case BuiltinType::SatULongFract: 2646 llvm_unreachable("Fixed point types are disabled for c++"); 2647 case BuiltinType::Half: 2648 Out << "Dh"; 2649 break; 2650 case BuiltinType::Float: 2651 Out << 'f'; 2652 break; 2653 case BuiltinType::Double: 2654 Out << 'd'; 2655 break; 2656 case BuiltinType::LongDouble: { 2657 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && 2658 getASTContext().getLangOpts().OpenMPIsDevice 2659 ? getASTContext().getAuxTargetInfo() 2660 : &getASTContext().getTargetInfo(); 2661 Out << TI->getLongDoubleMangling(); 2662 break; 2663 } 2664 case BuiltinType::Float128: { 2665 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && 2666 getASTContext().getLangOpts().OpenMPIsDevice 2667 ? getASTContext().getAuxTargetInfo() 2668 : &getASTContext().getTargetInfo(); 2669 Out << TI->getFloat128Mangling(); 2670 break; 2671 } 2672 case BuiltinType::NullPtr: 2673 Out << "Dn"; 2674 break; 2675 2676 #define BUILTIN_TYPE(Id, SingletonId) 2677 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2678 case BuiltinType::Id: 2679 #include "clang/AST/BuiltinTypes.def" 2680 case BuiltinType::Dependent: 2681 if (!NullOut) 2682 llvm_unreachable("mangling a placeholder type"); 2683 break; 2684 case BuiltinType::ObjCId: 2685 Out << "11objc_object"; 2686 break; 2687 case BuiltinType::ObjCClass: 2688 Out << "10objc_class"; 2689 break; 2690 case BuiltinType::ObjCSel: 2691 Out << "13objc_selector"; 2692 break; 2693 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2694 case BuiltinType::Id: \ 2695 type_name = "ocl_" #ImgType "_" #Suffix; \ 2696 Out << type_name.size() << type_name; \ 2697 break; 2698 #include "clang/Basic/OpenCLImageTypes.def" 2699 case BuiltinType::OCLSampler: 2700 Out << "11ocl_sampler"; 2701 break; 2702 case BuiltinType::OCLEvent: 2703 Out << "9ocl_event"; 2704 break; 2705 case BuiltinType::OCLClkEvent: 2706 Out << "12ocl_clkevent"; 2707 break; 2708 case BuiltinType::OCLQueue: 2709 Out << "9ocl_queue"; 2710 break; 2711 case BuiltinType::OCLReserveID: 2712 Out << "13ocl_reserveid"; 2713 break; 2714 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2715 case BuiltinType::Id: \ 2716 type_name = "ocl_" #ExtType; \ 2717 Out << type_name.size() << type_name; \ 2718 break; 2719 #include "clang/Basic/OpenCLExtensionTypes.def" 2720 // The SVE types are effectively target-specific. The mangling scheme 2721 // is defined in the appendices to the Procedure Call Standard for the 2722 // Arm Architecture. 2723 #define SVE_TYPE(Name, Id, SingletonId) \ 2724 case BuiltinType::Id: \ 2725 type_name = Name; \ 2726 Out << 'u' << type_name.size() << type_name; \ 2727 break; 2728 #include "clang/Basic/AArch64SVEACLETypes.def" 2729 } 2730 } 2731 2732 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 2733 switch (CC) { 2734 case CC_C: 2735 return ""; 2736 2737 case CC_X86VectorCall: 2738 case CC_X86Pascal: 2739 case CC_X86RegCall: 2740 case CC_AAPCS: 2741 case CC_AAPCS_VFP: 2742 case CC_AArch64VectorCall: 2743 case CC_IntelOclBicc: 2744 case CC_SpirFunction: 2745 case CC_OpenCLKernel: 2746 case CC_PreserveMost: 2747 case CC_PreserveAll: 2748 // FIXME: we should be mangling all of the above. 2749 return ""; 2750 2751 case CC_X86ThisCall: 2752 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is 2753 // used explicitly. At this point, we don't have that much information in 2754 // the AST, since clang tends to bake the convention into the canonical 2755 // function type. thiscall only rarely used explicitly, so don't mangle it 2756 // for now. 2757 return ""; 2758 2759 case CC_X86StdCall: 2760 return "stdcall"; 2761 case CC_X86FastCall: 2762 return "fastcall"; 2763 case CC_X86_64SysV: 2764 return "sysv_abi"; 2765 case CC_Win64: 2766 return "ms_abi"; 2767 case CC_Swift: 2768 return "swiftcall"; 2769 } 2770 llvm_unreachable("bad calling convention"); 2771 } 2772 2773 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 2774 // Fast path. 2775 if (T->getExtInfo() == FunctionType::ExtInfo()) 2776 return; 2777 2778 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 2779 // This will get more complicated in the future if we mangle other 2780 // things here; but for now, since we mangle ns_returns_retained as 2781 // a qualifier on the result type, we can get away with this: 2782 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 2783 if (!CCQualifier.empty()) 2784 mangleVendorQualifier(CCQualifier); 2785 2786 // FIXME: regparm 2787 // FIXME: noreturn 2788 } 2789 2790 void 2791 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 2792 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 2793 2794 // Note that these are *not* substitution candidates. Demanglers might 2795 // have trouble with this if the parameter type is fully substituted. 2796 2797 switch (PI.getABI()) { 2798 case ParameterABI::Ordinary: 2799 break; 2800 2801 // All of these start with "swift", so they come before "ns_consumed". 2802 case ParameterABI::SwiftContext: 2803 case ParameterABI::SwiftErrorResult: 2804 case ParameterABI::SwiftIndirectResult: 2805 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 2806 break; 2807 } 2808 2809 if (PI.isConsumed()) 2810 mangleVendorQualifier("ns_consumed"); 2811 2812 if (PI.isNoEscape()) 2813 mangleVendorQualifier("noescape"); 2814 } 2815 2816 // <type> ::= <function-type> 2817 // <function-type> ::= [<CV-qualifiers>] F [Y] 2818 // <bare-function-type> [<ref-qualifier>] E 2819 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 2820 mangleExtFunctionInfo(T); 2821 2822 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 2823 // e.g. "const" in "int (A::*)() const". 2824 mangleQualifiers(T->getMethodQuals()); 2825 2826 // Mangle instantiation-dependent exception-specification, if present, 2827 // per cxx-abi-dev proposal on 2016-10-11. 2828 if (T->hasInstantiationDependentExceptionSpec()) { 2829 if (isComputedNoexcept(T->getExceptionSpecType())) { 2830 Out << "DO"; 2831 mangleExpression(T->getNoexceptExpr()); 2832 Out << "E"; 2833 } else { 2834 assert(T->getExceptionSpecType() == EST_Dynamic); 2835 Out << "Dw"; 2836 for (auto ExceptTy : T->exceptions()) 2837 mangleType(ExceptTy); 2838 Out << "E"; 2839 } 2840 } else if (T->isNothrow()) { 2841 Out << "Do"; 2842 } 2843 2844 Out << 'F'; 2845 2846 // FIXME: We don't have enough information in the AST to produce the 'Y' 2847 // encoding for extern "C" function types. 2848 mangleBareFunctionType(T, /*MangleReturnType=*/true); 2849 2850 // Mangle the ref-qualifier, if present. 2851 mangleRefQualifier(T->getRefQualifier()); 2852 2853 Out << 'E'; 2854 } 2855 2856 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 2857 // Function types without prototypes can arise when mangling a function type 2858 // within an overloadable function in C. We mangle these as the absence of any 2859 // parameter types (not even an empty parameter list). 2860 Out << 'F'; 2861 2862 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 2863 2864 FunctionTypeDepth.enterResultType(); 2865 mangleType(T->getReturnType()); 2866 FunctionTypeDepth.leaveResultType(); 2867 2868 FunctionTypeDepth.pop(saved); 2869 Out << 'E'; 2870 } 2871 2872 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 2873 bool MangleReturnType, 2874 const FunctionDecl *FD) { 2875 // Record that we're in a function type. See mangleFunctionParam 2876 // for details on what we're trying to achieve here. 2877 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 2878 2879 // <bare-function-type> ::= <signature type>+ 2880 if (MangleReturnType) { 2881 FunctionTypeDepth.enterResultType(); 2882 2883 // Mangle ns_returns_retained as an order-sensitive qualifier here. 2884 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 2885 mangleVendorQualifier("ns_returns_retained"); 2886 2887 // Mangle the return type without any direct ARC ownership qualifiers. 2888 QualType ReturnTy = Proto->getReturnType(); 2889 if (ReturnTy.getObjCLifetime()) { 2890 auto SplitReturnTy = ReturnTy.split(); 2891 SplitReturnTy.Quals.removeObjCLifetime(); 2892 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 2893 } 2894 mangleType(ReturnTy); 2895 2896 FunctionTypeDepth.leaveResultType(); 2897 } 2898 2899 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2900 // <builtin-type> ::= v # void 2901 Out << 'v'; 2902 2903 FunctionTypeDepth.pop(saved); 2904 return; 2905 } 2906 2907 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 2908 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2909 // Mangle extended parameter info as order-sensitive qualifiers here. 2910 if (Proto->hasExtParameterInfos() && FD == nullptr) { 2911 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 2912 } 2913 2914 // Mangle the type. 2915 QualType ParamTy = Proto->getParamType(I); 2916 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 2917 2918 if (FD) { 2919 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 2920 // Attr can only take 1 character, so we can hardcode the length below. 2921 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 2922 if (Attr->isDynamic()) 2923 Out << "U25pass_dynamic_object_size" << Attr->getType(); 2924 else 2925 Out << "U17pass_object_size" << Attr->getType(); 2926 } 2927 } 2928 } 2929 2930 FunctionTypeDepth.pop(saved); 2931 2932 // <builtin-type> ::= z # ellipsis 2933 if (Proto->isVariadic()) 2934 Out << 'z'; 2935 } 2936 2937 // <type> ::= <class-enum-type> 2938 // <class-enum-type> ::= <name> 2939 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 2940 mangleName(T->getDecl()); 2941 } 2942 2943 // <type> ::= <class-enum-type> 2944 // <class-enum-type> ::= <name> 2945 void CXXNameMangler::mangleType(const EnumType *T) { 2946 mangleType(static_cast<const TagType*>(T)); 2947 } 2948 void CXXNameMangler::mangleType(const RecordType *T) { 2949 mangleType(static_cast<const TagType*>(T)); 2950 } 2951 void CXXNameMangler::mangleType(const TagType *T) { 2952 mangleName(T->getDecl()); 2953 } 2954 2955 // <type> ::= <array-type> 2956 // <array-type> ::= A <positive dimension number> _ <element type> 2957 // ::= A [<dimension expression>] _ <element type> 2958 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 2959 Out << 'A' << T->getSize() << '_'; 2960 mangleType(T->getElementType()); 2961 } 2962 void CXXNameMangler::mangleType(const VariableArrayType *T) { 2963 Out << 'A'; 2964 // decayed vla types (size 0) will just be skipped. 2965 if (T->getSizeExpr()) 2966 mangleExpression(T->getSizeExpr()); 2967 Out << '_'; 2968 mangleType(T->getElementType()); 2969 } 2970 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 2971 Out << 'A'; 2972 mangleExpression(T->getSizeExpr()); 2973 Out << '_'; 2974 mangleType(T->getElementType()); 2975 } 2976 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 2977 Out << "A_"; 2978 mangleType(T->getElementType()); 2979 } 2980 2981 // <type> ::= <pointer-to-member-type> 2982 // <pointer-to-member-type> ::= M <class type> <member type> 2983 void CXXNameMangler::mangleType(const MemberPointerType *T) { 2984 Out << 'M'; 2985 mangleType(QualType(T->getClass(), 0)); 2986 QualType PointeeType = T->getPointeeType(); 2987 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 2988 mangleType(FPT); 2989 2990 // Itanium C++ ABI 5.1.8: 2991 // 2992 // The type of a non-static member function is considered to be different, 2993 // for the purposes of substitution, from the type of a namespace-scope or 2994 // static member function whose type appears similar. The types of two 2995 // non-static member functions are considered to be different, for the 2996 // purposes of substitution, if the functions are members of different 2997 // classes. In other words, for the purposes of substitution, the class of 2998 // which the function is a member is considered part of the type of 2999 // function. 3000 3001 // Given that we already substitute member function pointers as a 3002 // whole, the net effect of this rule is just to unconditionally 3003 // suppress substitution on the function type in a member pointer. 3004 // We increment the SeqID here to emulate adding an entry to the 3005 // substitution table. 3006 ++SeqID; 3007 } else 3008 mangleType(PointeeType); 3009 } 3010 3011 // <type> ::= <template-param> 3012 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 3013 mangleTemplateParameter(T->getDepth(), T->getIndex()); 3014 } 3015 3016 // <type> ::= <template-param> 3017 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 3018 // FIXME: not clear how to mangle this! 3019 // template <class T...> class A { 3020 // template <class U...> void foo(T(*)(U) x...); 3021 // }; 3022 Out << "_SUBSTPACK_"; 3023 } 3024 3025 // <type> ::= P <type> # pointer-to 3026 void CXXNameMangler::mangleType(const PointerType *T) { 3027 Out << 'P'; 3028 mangleType(T->getPointeeType()); 3029 } 3030 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 3031 Out << 'P'; 3032 mangleType(T->getPointeeType()); 3033 } 3034 3035 // <type> ::= R <type> # reference-to 3036 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 3037 Out << 'R'; 3038 mangleType(T->getPointeeType()); 3039 } 3040 3041 // <type> ::= O <type> # rvalue reference-to (C++0x) 3042 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 3043 Out << 'O'; 3044 mangleType(T->getPointeeType()); 3045 } 3046 3047 // <type> ::= C <type> # complex pair (C 2000) 3048 void CXXNameMangler::mangleType(const ComplexType *T) { 3049 Out << 'C'; 3050 mangleType(T->getElementType()); 3051 } 3052 3053 // ARM's ABI for Neon vector types specifies that they should be mangled as 3054 // if they are structs (to match ARM's initial implementation). The 3055 // vector type must be one of the special types predefined by ARM. 3056 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 3057 QualType EltType = T->getElementType(); 3058 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3059 const char *EltName = nullptr; 3060 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3061 switch (cast<BuiltinType>(EltType)->getKind()) { 3062 case BuiltinType::SChar: 3063 case BuiltinType::UChar: 3064 EltName = "poly8_t"; 3065 break; 3066 case BuiltinType::Short: 3067 case BuiltinType::UShort: 3068 EltName = "poly16_t"; 3069 break; 3070 case BuiltinType::ULongLong: 3071 EltName = "poly64_t"; 3072 break; 3073 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 3074 } 3075 } else { 3076 switch (cast<BuiltinType>(EltType)->getKind()) { 3077 case BuiltinType::SChar: EltName = "int8_t"; break; 3078 case BuiltinType::UChar: EltName = "uint8_t"; break; 3079 case BuiltinType::Short: EltName = "int16_t"; break; 3080 case BuiltinType::UShort: EltName = "uint16_t"; break; 3081 case BuiltinType::Int: EltName = "int32_t"; break; 3082 case BuiltinType::UInt: EltName = "uint32_t"; break; 3083 case BuiltinType::LongLong: EltName = "int64_t"; break; 3084 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 3085 case BuiltinType::Double: EltName = "float64_t"; break; 3086 case BuiltinType::Float: EltName = "float32_t"; break; 3087 case BuiltinType::Half: EltName = "float16_t";break; 3088 default: 3089 llvm_unreachable("unexpected Neon vector element type"); 3090 } 3091 } 3092 const char *BaseName = nullptr; 3093 unsigned BitSize = (T->getNumElements() * 3094 getASTContext().getTypeSize(EltType)); 3095 if (BitSize == 64) 3096 BaseName = "__simd64_"; 3097 else { 3098 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 3099 BaseName = "__simd128_"; 3100 } 3101 Out << strlen(BaseName) + strlen(EltName); 3102 Out << BaseName << EltName; 3103 } 3104 3105 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { 3106 DiagnosticsEngine &Diags = Context.getDiags(); 3107 unsigned DiagID = Diags.getCustomDiagID( 3108 DiagnosticsEngine::Error, 3109 "cannot mangle this dependent neon vector type yet"); 3110 Diags.Report(T->getAttributeLoc(), DiagID); 3111 } 3112 3113 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 3114 switch (EltType->getKind()) { 3115 case BuiltinType::SChar: 3116 return "Int8"; 3117 case BuiltinType::Short: 3118 return "Int16"; 3119 case BuiltinType::Int: 3120 return "Int32"; 3121 case BuiltinType::Long: 3122 case BuiltinType::LongLong: 3123 return "Int64"; 3124 case BuiltinType::UChar: 3125 return "Uint8"; 3126 case BuiltinType::UShort: 3127 return "Uint16"; 3128 case BuiltinType::UInt: 3129 return "Uint32"; 3130 case BuiltinType::ULong: 3131 case BuiltinType::ULongLong: 3132 return "Uint64"; 3133 case BuiltinType::Half: 3134 return "Float16"; 3135 case BuiltinType::Float: 3136 return "Float32"; 3137 case BuiltinType::Double: 3138 return "Float64"; 3139 default: 3140 llvm_unreachable("Unexpected vector element base type"); 3141 } 3142 } 3143 3144 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3145 // the equivalent internal name. The vector type must be one of the special 3146 // types predefined by ARM. 3147 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3148 QualType EltType = T->getElementType(); 3149 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3150 unsigned BitSize = 3151 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3152 (void)BitSize; // Silence warning. 3153 3154 assert((BitSize == 64 || BitSize == 128) && 3155 "Neon vector type not 64 or 128 bits"); 3156 3157 StringRef EltName; 3158 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3159 switch (cast<BuiltinType>(EltType)->getKind()) { 3160 case BuiltinType::UChar: 3161 EltName = "Poly8"; 3162 break; 3163 case BuiltinType::UShort: 3164 EltName = "Poly16"; 3165 break; 3166 case BuiltinType::ULong: 3167 case BuiltinType::ULongLong: 3168 EltName = "Poly64"; 3169 break; 3170 default: 3171 llvm_unreachable("unexpected Neon polynomial vector element type"); 3172 } 3173 } else 3174 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3175 3176 std::string TypeName = 3177 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3178 Out << TypeName.length() << TypeName; 3179 } 3180 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { 3181 DiagnosticsEngine &Diags = Context.getDiags(); 3182 unsigned DiagID = Diags.getCustomDiagID( 3183 DiagnosticsEngine::Error, 3184 "cannot mangle this dependent neon vector type yet"); 3185 Diags.Report(T->getAttributeLoc(), DiagID); 3186 } 3187 3188 // GNU extension: vector types 3189 // <type> ::= <vector-type> 3190 // <vector-type> ::= Dv <positive dimension number> _ 3191 // <extended element type> 3192 // ::= Dv [<dimension expression>] _ <element type> 3193 // <extended element type> ::= <element type> 3194 // ::= p # AltiVec vector pixel 3195 // ::= b # Altivec vector bool 3196 void CXXNameMangler::mangleType(const VectorType *T) { 3197 if ((T->getVectorKind() == VectorType::NeonVector || 3198 T->getVectorKind() == VectorType::NeonPolyVector)) { 3199 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3200 llvm::Triple::ArchType Arch = 3201 getASTContext().getTargetInfo().getTriple().getArch(); 3202 if ((Arch == llvm::Triple::aarch64 || 3203 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 3204 mangleAArch64NeonVectorType(T); 3205 else 3206 mangleNeonVectorType(T); 3207 return; 3208 } 3209 Out << "Dv" << T->getNumElements() << '_'; 3210 if (T->getVectorKind() == VectorType::AltiVecPixel) 3211 Out << 'p'; 3212 else if (T->getVectorKind() == VectorType::AltiVecBool) 3213 Out << 'b'; 3214 else 3215 mangleType(T->getElementType()); 3216 } 3217 3218 void CXXNameMangler::mangleType(const DependentVectorType *T) { 3219 if ((T->getVectorKind() == VectorType::NeonVector || 3220 T->getVectorKind() == VectorType::NeonPolyVector)) { 3221 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3222 llvm::Triple::ArchType Arch = 3223 getASTContext().getTargetInfo().getTriple().getArch(); 3224 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && 3225 !Target.isOSDarwin()) 3226 mangleAArch64NeonVectorType(T); 3227 else 3228 mangleNeonVectorType(T); 3229 return; 3230 } 3231 3232 Out << "Dv"; 3233 mangleExpression(T->getSizeExpr()); 3234 Out << '_'; 3235 if (T->getVectorKind() == VectorType::AltiVecPixel) 3236 Out << 'p'; 3237 else if (T->getVectorKind() == VectorType::AltiVecBool) 3238 Out << 'b'; 3239 else 3240 mangleType(T->getElementType()); 3241 } 3242 3243 void CXXNameMangler::mangleType(const ExtVectorType *T) { 3244 mangleType(static_cast<const VectorType*>(T)); 3245 } 3246 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 3247 Out << "Dv"; 3248 mangleExpression(T->getSizeExpr()); 3249 Out << '_'; 3250 mangleType(T->getElementType()); 3251 } 3252 3253 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 3254 SplitQualType split = T->getPointeeType().split(); 3255 mangleQualifiers(split.Quals, T); 3256 mangleType(QualType(split.Ty, 0)); 3257 } 3258 3259 void CXXNameMangler::mangleType(const PackExpansionType *T) { 3260 // <type> ::= Dp <type> # pack expansion (C++0x) 3261 Out << "Dp"; 3262 mangleType(T->getPattern()); 3263 } 3264 3265 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 3266 mangleSourceName(T->getDecl()->getIdentifier()); 3267 } 3268 3269 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 3270 // Treat __kindof as a vendor extended type qualifier. 3271 if (T->isKindOfType()) 3272 Out << "U8__kindof"; 3273 3274 if (!T->qual_empty()) { 3275 // Mangle protocol qualifiers. 3276 SmallString<64> QualStr; 3277 llvm::raw_svector_ostream QualOS(QualStr); 3278 QualOS << "objcproto"; 3279 for (const auto *I : T->quals()) { 3280 StringRef name = I->getName(); 3281 QualOS << name.size() << name; 3282 } 3283 Out << 'U' << QualStr.size() << QualStr; 3284 } 3285 3286 mangleType(T->getBaseType()); 3287 3288 if (T->isSpecialized()) { 3289 // Mangle type arguments as I <type>+ E 3290 Out << 'I'; 3291 for (auto typeArg : T->getTypeArgs()) 3292 mangleType(typeArg); 3293 Out << 'E'; 3294 } 3295 } 3296 3297 void CXXNameMangler::mangleType(const BlockPointerType *T) { 3298 Out << "U13block_pointer"; 3299 mangleType(T->getPointeeType()); 3300 } 3301 3302 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 3303 // Mangle injected class name types as if the user had written the 3304 // specialization out fully. It may not actually be possible to see 3305 // this mangling, though. 3306 mangleType(T->getInjectedSpecializationType()); 3307 } 3308 3309 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 3310 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 3311 mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); 3312 } else { 3313 if (mangleSubstitution(QualType(T, 0))) 3314 return; 3315 3316 mangleTemplatePrefix(T->getTemplateName()); 3317 3318 // FIXME: GCC does not appear to mangle the template arguments when 3319 // the template in question is a dependent template name. Should we 3320 // emulate that badness? 3321 mangleTemplateArgs(T->getArgs(), T->getNumArgs()); 3322 addSubstitution(QualType(T, 0)); 3323 } 3324 } 3325 3326 void CXXNameMangler::mangleType(const DependentNameType *T) { 3327 // Proposal by cxx-abi-dev, 2014-03-26 3328 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 3329 // # dependent elaborated type specifier using 3330 // # 'typename' 3331 // ::= Ts <name> # dependent elaborated type specifier using 3332 // # 'struct' or 'class' 3333 // ::= Tu <name> # dependent elaborated type specifier using 3334 // # 'union' 3335 // ::= Te <name> # dependent elaborated type specifier using 3336 // # 'enum' 3337 switch (T->getKeyword()) { 3338 case ETK_None: 3339 case ETK_Typename: 3340 break; 3341 case ETK_Struct: 3342 case ETK_Class: 3343 case ETK_Interface: 3344 Out << "Ts"; 3345 break; 3346 case ETK_Union: 3347 Out << "Tu"; 3348 break; 3349 case ETK_Enum: 3350 Out << "Te"; 3351 break; 3352 } 3353 // Typename types are always nested 3354 Out << 'N'; 3355 manglePrefix(T->getQualifier()); 3356 mangleSourceName(T->getIdentifier()); 3357 Out << 'E'; 3358 } 3359 3360 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 3361 // Dependently-scoped template types are nested if they have a prefix. 3362 Out << 'N'; 3363 3364 // TODO: avoid making this TemplateName. 3365 TemplateName Prefix = 3366 getASTContext().getDependentTemplateName(T->getQualifier(), 3367 T->getIdentifier()); 3368 mangleTemplatePrefix(Prefix); 3369 3370 // FIXME: GCC does not appear to mangle the template arguments when 3371 // the template in question is a dependent template name. Should we 3372 // emulate that badness? 3373 mangleTemplateArgs(T->getArgs(), T->getNumArgs()); 3374 Out << 'E'; 3375 } 3376 3377 void CXXNameMangler::mangleType(const TypeOfType *T) { 3378 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3379 // "extension with parameters" mangling. 3380 Out << "u6typeof"; 3381 } 3382 3383 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 3384 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3385 // "extension with parameters" mangling. 3386 Out << "u6typeof"; 3387 } 3388 3389 void CXXNameMangler::mangleType(const DecltypeType *T) { 3390 Expr *E = T->getUnderlyingExpr(); 3391 3392 // type ::= Dt <expression> E # decltype of an id-expression 3393 // # or class member access 3394 // ::= DT <expression> E # decltype of an expression 3395 3396 // This purports to be an exhaustive list of id-expressions and 3397 // class member accesses. Note that we do not ignore parentheses; 3398 // parentheses change the semantics of decltype for these 3399 // expressions (and cause the mangler to use the other form). 3400 if (isa<DeclRefExpr>(E) || 3401 isa<MemberExpr>(E) || 3402 isa<UnresolvedLookupExpr>(E) || 3403 isa<DependentScopeDeclRefExpr>(E) || 3404 isa<CXXDependentScopeMemberExpr>(E) || 3405 isa<UnresolvedMemberExpr>(E)) 3406 Out << "Dt"; 3407 else 3408 Out << "DT"; 3409 mangleExpression(E); 3410 Out << 'E'; 3411 } 3412 3413 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 3414 // If this is dependent, we need to record that. If not, we simply 3415 // mangle it as the underlying type since they are equivalent. 3416 if (T->isDependentType()) { 3417 Out << 'U'; 3418 3419 switch (T->getUTTKind()) { 3420 case UnaryTransformType::EnumUnderlyingType: 3421 Out << "3eut"; 3422 break; 3423 } 3424 } 3425 3426 mangleType(T->getBaseType()); 3427 } 3428 3429 void CXXNameMangler::mangleType(const AutoType *T) { 3430 assert(T->getDeducedType().isNull() && 3431 "Deduced AutoType shouldn't be handled here!"); 3432 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 3433 "shouldn't need to mangle __auto_type!"); 3434 // <builtin-type> ::= Da # auto 3435 // ::= Dc # decltype(auto) 3436 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 3437 } 3438 3439 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 3440 // FIXME: This is not the right mangling. We also need to include a scope 3441 // here in some cases. 3442 QualType D = T->getDeducedType(); 3443 if (D.isNull()) 3444 mangleUnscopedTemplateName(T->getTemplateName(), nullptr); 3445 else 3446 mangleType(D); 3447 } 3448 3449 void CXXNameMangler::mangleType(const AtomicType *T) { 3450 // <type> ::= U <source-name> <type> # vendor extended type qualifier 3451 // (Until there's a standardized mangling...) 3452 Out << "U7_Atomic"; 3453 mangleType(T->getValueType()); 3454 } 3455 3456 void CXXNameMangler::mangleType(const PipeType *T) { 3457 // Pipe type mangling rules are described in SPIR 2.0 specification 3458 // A.1 Data types and A.3 Summary of changes 3459 // <type> ::= 8ocl_pipe 3460 Out << "8ocl_pipe"; 3461 } 3462 3463 void CXXNameMangler::mangleIntegerLiteral(QualType T, 3464 const llvm::APSInt &Value) { 3465 // <expr-primary> ::= L <type> <value number> E # integer literal 3466 Out << 'L'; 3467 3468 mangleType(T); 3469 if (T->isBooleanType()) { 3470 // Boolean values are encoded as 0/1. 3471 Out << (Value.getBoolValue() ? '1' : '0'); 3472 } else { 3473 mangleNumber(Value); 3474 } 3475 Out << 'E'; 3476 3477 } 3478 3479 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 3480 // Ignore member expressions involving anonymous unions. 3481 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 3482 if (!RT->getDecl()->isAnonymousStructOrUnion()) 3483 break; 3484 const auto *ME = dyn_cast<MemberExpr>(Base); 3485 if (!ME) 3486 break; 3487 Base = ME->getBase(); 3488 IsArrow = ME->isArrow(); 3489 } 3490 3491 if (Base->isImplicitCXXThis()) { 3492 // Note: GCC mangles member expressions to the implicit 'this' as 3493 // *this., whereas we represent them as this->. The Itanium C++ ABI 3494 // does not specify anything here, so we follow GCC. 3495 Out << "dtdefpT"; 3496 } else { 3497 Out << (IsArrow ? "pt" : "dt"); 3498 mangleExpression(Base); 3499 } 3500 } 3501 3502 /// Mangles a member expression. 3503 void CXXNameMangler::mangleMemberExpr(const Expr *base, 3504 bool isArrow, 3505 NestedNameSpecifier *qualifier, 3506 NamedDecl *firstQualifierLookup, 3507 DeclarationName member, 3508 const TemplateArgumentLoc *TemplateArgs, 3509 unsigned NumTemplateArgs, 3510 unsigned arity) { 3511 // <expression> ::= dt <expression> <unresolved-name> 3512 // ::= pt <expression> <unresolved-name> 3513 if (base) 3514 mangleMemberExprBase(base, isArrow); 3515 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 3516 } 3517 3518 /// Look at the callee of the given call expression and determine if 3519 /// it's a parenthesized id-expression which would have triggered ADL 3520 /// otherwise. 3521 static bool isParenthesizedADLCallee(const CallExpr *call) { 3522 const Expr *callee = call->getCallee(); 3523 const Expr *fn = callee->IgnoreParens(); 3524 3525 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 3526 // too, but for those to appear in the callee, it would have to be 3527 // parenthesized. 3528 if (callee == fn) return false; 3529 3530 // Must be an unresolved lookup. 3531 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 3532 if (!lookup) return false; 3533 3534 assert(!lookup->requiresADL()); 3535 3536 // Must be an unqualified lookup. 3537 if (lookup->getQualifier()) return false; 3538 3539 // Must not have found a class member. Note that if one is a class 3540 // member, they're all class members. 3541 if (lookup->getNumDecls() > 0 && 3542 (*lookup->decls_begin())->isCXXClassMember()) 3543 return false; 3544 3545 // Otherwise, ADL would have been triggered. 3546 return true; 3547 } 3548 3549 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 3550 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 3551 Out << CastEncoding; 3552 mangleType(ECE->getType()); 3553 mangleExpression(ECE->getSubExpr()); 3554 } 3555 3556 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 3557 if (auto *Syntactic = InitList->getSyntacticForm()) 3558 InitList = Syntactic; 3559 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 3560 mangleExpression(InitList->getInit(i)); 3561 } 3562 3563 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) { 3564 switch (D->getKind()) { 3565 default: 3566 // <expr-primary> ::= L <mangled-name> E # external name 3567 Out << 'L'; 3568 mangle(D); 3569 Out << 'E'; 3570 break; 3571 3572 case Decl::ParmVar: 3573 mangleFunctionParam(cast<ParmVarDecl>(D)); 3574 break; 3575 3576 case Decl::EnumConstant: { 3577 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 3578 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 3579 break; 3580 } 3581 3582 case Decl::NonTypeTemplateParm: 3583 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 3584 mangleTemplateParameter(PD->getDepth(), PD->getIndex()); 3585 break; 3586 } 3587 } 3588 3589 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { 3590 // <expression> ::= <unary operator-name> <expression> 3591 // ::= <binary operator-name> <expression> <expression> 3592 // ::= <trinary operator-name> <expression> <expression> <expression> 3593 // ::= cv <type> expression # conversion with one argument 3594 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 3595 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 3596 // ::= sc <type> <expression> # static_cast<type> (expression) 3597 // ::= cc <type> <expression> # const_cast<type> (expression) 3598 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 3599 // ::= st <type> # sizeof (a type) 3600 // ::= at <type> # alignof (a type) 3601 // ::= <template-param> 3602 // ::= <function-param> 3603 // ::= sr <type> <unqualified-name> # dependent name 3604 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 3605 // ::= ds <expression> <expression> # expr.*expr 3606 // ::= sZ <template-param> # size of a parameter pack 3607 // ::= sZ <function-param> # size of a function parameter pack 3608 // ::= <expr-primary> 3609 // <expr-primary> ::= L <type> <value number> E # integer literal 3610 // ::= L <type <value float> E # floating literal 3611 // ::= L <mangled-name> E # external name 3612 // ::= fpT # 'this' expression 3613 QualType ImplicitlyConvertedToType; 3614 3615 recurse: 3616 switch (E->getStmtClass()) { 3617 case Expr::NoStmtClass: 3618 #define ABSTRACT_STMT(Type) 3619 #define EXPR(Type, Base) 3620 #define STMT(Type, Base) \ 3621 case Expr::Type##Class: 3622 #include "clang/AST/StmtNodes.inc" 3623 // fallthrough 3624 3625 // These all can only appear in local or variable-initialization 3626 // contexts and so should never appear in a mangling. 3627 case Expr::AddrLabelExprClass: 3628 case Expr::DesignatedInitUpdateExprClass: 3629 case Expr::ImplicitValueInitExprClass: 3630 case Expr::ArrayInitLoopExprClass: 3631 case Expr::ArrayInitIndexExprClass: 3632 case Expr::NoInitExprClass: 3633 case Expr::ParenListExprClass: 3634 case Expr::LambdaExprClass: 3635 case Expr::MSPropertyRefExprClass: 3636 case Expr::MSPropertySubscriptExprClass: 3637 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 3638 case Expr::OMPArraySectionExprClass: 3639 case Expr::CXXInheritedCtorInitExprClass: 3640 llvm_unreachable("unexpected statement kind"); 3641 3642 case Expr::ConstantExprClass: 3643 E = cast<ConstantExpr>(E)->getSubExpr(); 3644 goto recurse; 3645 3646 // FIXME: invent manglings for all these. 3647 case Expr::BlockExprClass: 3648 case Expr::ChooseExprClass: 3649 case Expr::CompoundLiteralExprClass: 3650 case Expr::ExtVectorElementExprClass: 3651 case Expr::GenericSelectionExprClass: 3652 case Expr::ObjCEncodeExprClass: 3653 case Expr::ObjCIsaExprClass: 3654 case Expr::ObjCIvarRefExprClass: 3655 case Expr::ObjCMessageExprClass: 3656 case Expr::ObjCPropertyRefExprClass: 3657 case Expr::ObjCProtocolExprClass: 3658 case Expr::ObjCSelectorExprClass: 3659 case Expr::ObjCStringLiteralClass: 3660 case Expr::ObjCBoxedExprClass: 3661 case Expr::ObjCArrayLiteralClass: 3662 case Expr::ObjCDictionaryLiteralClass: 3663 case Expr::ObjCSubscriptRefExprClass: 3664 case Expr::ObjCIndirectCopyRestoreExprClass: 3665 case Expr::ObjCAvailabilityCheckExprClass: 3666 case Expr::OffsetOfExprClass: 3667 case Expr::PredefinedExprClass: 3668 case Expr::ShuffleVectorExprClass: 3669 case Expr::ConvertVectorExprClass: 3670 case Expr::StmtExprClass: 3671 case Expr::TypeTraitExprClass: 3672 case Expr::RequiresExprClass: 3673 case Expr::ArrayTypeTraitExprClass: 3674 case Expr::ExpressionTraitExprClass: 3675 case Expr::VAArgExprClass: 3676 case Expr::CUDAKernelCallExprClass: 3677 case Expr::AsTypeExprClass: 3678 case Expr::PseudoObjectExprClass: 3679 case Expr::AtomicExprClass: 3680 case Expr::SourceLocExprClass: 3681 case Expr::FixedPointLiteralClass: 3682 case Expr::BuiltinBitCastExprClass: 3683 { 3684 if (!NullOut) { 3685 // As bad as this diagnostic is, it's better than crashing. 3686 DiagnosticsEngine &Diags = Context.getDiags(); 3687 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3688 "cannot yet mangle expression type %0"); 3689 Diags.Report(E->getExprLoc(), DiagID) 3690 << E->getStmtClassName() << E->getSourceRange(); 3691 } 3692 break; 3693 } 3694 3695 case Expr::CXXUuidofExprClass: { 3696 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 3697 if (UE->isTypeOperand()) { 3698 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 3699 Out << "u8__uuidoft"; 3700 mangleType(UuidT); 3701 } else { 3702 Expr *UuidExp = UE->getExprOperand(); 3703 Out << "u8__uuidofz"; 3704 mangleExpression(UuidExp, Arity); 3705 } 3706 break; 3707 } 3708 3709 // Even gcc-4.5 doesn't mangle this. 3710 case Expr::BinaryConditionalOperatorClass: { 3711 DiagnosticsEngine &Diags = Context.getDiags(); 3712 unsigned DiagID = 3713 Diags.getCustomDiagID(DiagnosticsEngine::Error, 3714 "?: operator with omitted middle operand cannot be mangled"); 3715 Diags.Report(E->getExprLoc(), DiagID) 3716 << E->getStmtClassName() << E->getSourceRange(); 3717 break; 3718 } 3719 3720 // These are used for internal purposes and cannot be meaningfully mangled. 3721 case Expr::OpaqueValueExprClass: 3722 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 3723 3724 case Expr::InitListExprClass: { 3725 Out << "il"; 3726 mangleInitListElements(cast<InitListExpr>(E)); 3727 Out << "E"; 3728 break; 3729 } 3730 3731 case Expr::DesignatedInitExprClass: { 3732 auto *DIE = cast<DesignatedInitExpr>(E); 3733 for (const auto &Designator : DIE->designators()) { 3734 if (Designator.isFieldDesignator()) { 3735 Out << "di"; 3736 mangleSourceName(Designator.getFieldName()); 3737 } else if (Designator.isArrayDesignator()) { 3738 Out << "dx"; 3739 mangleExpression(DIE->getArrayIndex(Designator)); 3740 } else { 3741 assert(Designator.isArrayRangeDesignator() && 3742 "unknown designator kind"); 3743 Out << "dX"; 3744 mangleExpression(DIE->getArrayRangeStart(Designator)); 3745 mangleExpression(DIE->getArrayRangeEnd(Designator)); 3746 } 3747 } 3748 mangleExpression(DIE->getInit()); 3749 break; 3750 } 3751 3752 case Expr::CXXDefaultArgExprClass: 3753 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); 3754 break; 3755 3756 case Expr::CXXDefaultInitExprClass: 3757 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity); 3758 break; 3759 3760 case Expr::CXXStdInitializerListExprClass: 3761 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity); 3762 break; 3763 3764 case Expr::SubstNonTypeTemplateParmExprClass: 3765 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), 3766 Arity); 3767 break; 3768 3769 case Expr::UserDefinedLiteralClass: 3770 // We follow g++'s approach of mangling a UDL as a call to the literal 3771 // operator. 3772 case Expr::CXXMemberCallExprClass: // fallthrough 3773 case Expr::CallExprClass: { 3774 const CallExpr *CE = cast<CallExpr>(E); 3775 3776 // <expression> ::= cp <simple-id> <expression>* E 3777 // We use this mangling only when the call would use ADL except 3778 // for being parenthesized. Per discussion with David 3779 // Vandervoorde, 2011.04.25. 3780 if (isParenthesizedADLCallee(CE)) { 3781 Out << "cp"; 3782 // The callee here is a parenthesized UnresolvedLookupExpr with 3783 // no qualifier and should always get mangled as a <simple-id> 3784 // anyway. 3785 3786 // <expression> ::= cl <expression>* E 3787 } else { 3788 Out << "cl"; 3789 } 3790 3791 unsigned CallArity = CE->getNumArgs(); 3792 for (const Expr *Arg : CE->arguments()) 3793 if (isa<PackExpansionExpr>(Arg)) 3794 CallArity = UnknownArity; 3795 3796 mangleExpression(CE->getCallee(), CallArity); 3797 for (const Expr *Arg : CE->arguments()) 3798 mangleExpression(Arg); 3799 Out << 'E'; 3800 break; 3801 } 3802 3803 case Expr::CXXNewExprClass: { 3804 const CXXNewExpr *New = cast<CXXNewExpr>(E); 3805 if (New->isGlobalNew()) Out << "gs"; 3806 Out << (New->isArray() ? "na" : "nw"); 3807 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 3808 E = New->placement_arg_end(); I != E; ++I) 3809 mangleExpression(*I); 3810 Out << '_'; 3811 mangleType(New->getAllocatedType()); 3812 if (New->hasInitializer()) { 3813 if (New->getInitializationStyle() == CXXNewExpr::ListInit) 3814 Out << "il"; 3815 else 3816 Out << "pi"; 3817 const Expr *Init = New->getInitializer(); 3818 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 3819 // Directly inline the initializers. 3820 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 3821 E = CCE->arg_end(); 3822 I != E; ++I) 3823 mangleExpression(*I); 3824 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 3825 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 3826 mangleExpression(PLE->getExpr(i)); 3827 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && 3828 isa<InitListExpr>(Init)) { 3829 // Only take InitListExprs apart for list-initialization. 3830 mangleInitListElements(cast<InitListExpr>(Init)); 3831 } else 3832 mangleExpression(Init); 3833 } 3834 Out << 'E'; 3835 break; 3836 } 3837 3838 case Expr::CXXPseudoDestructorExprClass: { 3839 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 3840 if (const Expr *Base = PDE->getBase()) 3841 mangleMemberExprBase(Base, PDE->isArrow()); 3842 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 3843 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 3844 if (Qualifier) { 3845 mangleUnresolvedPrefix(Qualifier, 3846 /*recursive=*/true); 3847 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 3848 Out << 'E'; 3849 } else { 3850 Out << "sr"; 3851 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 3852 Out << 'E'; 3853 } 3854 } else if (Qualifier) { 3855 mangleUnresolvedPrefix(Qualifier); 3856 } 3857 // <base-unresolved-name> ::= dn <destructor-name> 3858 Out << "dn"; 3859 QualType DestroyedType = PDE->getDestroyedType(); 3860 mangleUnresolvedTypeOrSimpleId(DestroyedType); 3861 break; 3862 } 3863 3864 case Expr::MemberExprClass: { 3865 const MemberExpr *ME = cast<MemberExpr>(E); 3866 mangleMemberExpr(ME->getBase(), ME->isArrow(), 3867 ME->getQualifier(), nullptr, 3868 ME->getMemberDecl()->getDeclName(), 3869 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3870 Arity); 3871 break; 3872 } 3873 3874 case Expr::UnresolvedMemberExprClass: { 3875 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 3876 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 3877 ME->isArrow(), ME->getQualifier(), nullptr, 3878 ME->getMemberName(), 3879 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3880 Arity); 3881 break; 3882 } 3883 3884 case Expr::CXXDependentScopeMemberExprClass: { 3885 const CXXDependentScopeMemberExpr *ME 3886 = cast<CXXDependentScopeMemberExpr>(E); 3887 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 3888 ME->isArrow(), ME->getQualifier(), 3889 ME->getFirstQualifierFoundInScope(), 3890 ME->getMember(), 3891 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 3892 Arity); 3893 break; 3894 } 3895 3896 case Expr::UnresolvedLookupExprClass: { 3897 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 3898 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 3899 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 3900 Arity); 3901 break; 3902 } 3903 3904 case Expr::CXXUnresolvedConstructExprClass: { 3905 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 3906 unsigned N = CE->arg_size(); 3907 3908 if (CE->isListInitialization()) { 3909 assert(N == 1 && "unexpected form for list initialization"); 3910 auto *IL = cast<InitListExpr>(CE->getArg(0)); 3911 Out << "tl"; 3912 mangleType(CE->getType()); 3913 mangleInitListElements(IL); 3914 Out << "E"; 3915 return; 3916 } 3917 3918 Out << "cv"; 3919 mangleType(CE->getType()); 3920 if (N != 1) Out << '_'; 3921 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 3922 if (N != 1) Out << 'E'; 3923 break; 3924 } 3925 3926 case Expr::CXXConstructExprClass: { 3927 const auto *CE = cast<CXXConstructExpr>(E); 3928 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 3929 assert( 3930 CE->getNumArgs() >= 1 && 3931 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 3932 "implicit CXXConstructExpr must have one argument"); 3933 return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0)); 3934 } 3935 Out << "il"; 3936 for (auto *E : CE->arguments()) 3937 mangleExpression(E); 3938 Out << "E"; 3939 break; 3940 } 3941 3942 case Expr::CXXTemporaryObjectExprClass: { 3943 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 3944 unsigned N = CE->getNumArgs(); 3945 bool List = CE->isListInitialization(); 3946 3947 if (List) 3948 Out << "tl"; 3949 else 3950 Out << "cv"; 3951 mangleType(CE->getType()); 3952 if (!List && N != 1) 3953 Out << '_'; 3954 if (CE->isStdInitListInitialization()) { 3955 // We implicitly created a std::initializer_list<T> for the first argument 3956 // of a constructor of type U in an expression of the form U{a, b, c}. 3957 // Strip all the semantic gunk off the initializer list. 3958 auto *SILE = 3959 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 3960 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 3961 mangleInitListElements(ILE); 3962 } else { 3963 for (auto *E : CE->arguments()) 3964 mangleExpression(E); 3965 } 3966 if (List || N != 1) 3967 Out << 'E'; 3968 break; 3969 } 3970 3971 case Expr::CXXScalarValueInitExprClass: 3972 Out << "cv"; 3973 mangleType(E->getType()); 3974 Out << "_E"; 3975 break; 3976 3977 case Expr::CXXNoexceptExprClass: 3978 Out << "nx"; 3979 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 3980 break; 3981 3982 case Expr::UnaryExprOrTypeTraitExprClass: { 3983 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 3984 3985 if (!SAE->isInstantiationDependent()) { 3986 // Itanium C++ ABI: 3987 // If the operand of a sizeof or alignof operator is not 3988 // instantiation-dependent it is encoded as an integer literal 3989 // reflecting the result of the operator. 3990 // 3991 // If the result of the operator is implicitly converted to a known 3992 // integer type, that type is used for the literal; otherwise, the type 3993 // of std::size_t or std::ptrdiff_t is used. 3994 QualType T = (ImplicitlyConvertedToType.isNull() || 3995 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 3996 : ImplicitlyConvertedToType; 3997 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 3998 mangleIntegerLiteral(T, V); 3999 break; 4000 } 4001 4002 switch(SAE->getKind()) { 4003 case UETT_SizeOf: 4004 Out << 's'; 4005 break; 4006 case UETT_PreferredAlignOf: 4007 case UETT_AlignOf: 4008 Out << 'a'; 4009 break; 4010 case UETT_VecStep: { 4011 DiagnosticsEngine &Diags = Context.getDiags(); 4012 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4013 "cannot yet mangle vec_step expression"); 4014 Diags.Report(DiagID); 4015 return; 4016 } 4017 case UETT_OpenMPRequiredSimdAlign: { 4018 DiagnosticsEngine &Diags = Context.getDiags(); 4019 unsigned DiagID = Diags.getCustomDiagID( 4020 DiagnosticsEngine::Error, 4021 "cannot yet mangle __builtin_omp_required_simd_align expression"); 4022 Diags.Report(DiagID); 4023 return; 4024 } 4025 } 4026 if (SAE->isArgumentType()) { 4027 Out << 't'; 4028 mangleType(SAE->getArgumentType()); 4029 } else { 4030 Out << 'z'; 4031 mangleExpression(SAE->getArgumentExpr()); 4032 } 4033 break; 4034 } 4035 4036 case Expr::CXXThrowExprClass: { 4037 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 4038 // <expression> ::= tw <expression> # throw expression 4039 // ::= tr # rethrow 4040 if (TE->getSubExpr()) { 4041 Out << "tw"; 4042 mangleExpression(TE->getSubExpr()); 4043 } else { 4044 Out << "tr"; 4045 } 4046 break; 4047 } 4048 4049 case Expr::CXXTypeidExprClass: { 4050 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 4051 // <expression> ::= ti <type> # typeid (type) 4052 // ::= te <expression> # typeid (expression) 4053 if (TIE->isTypeOperand()) { 4054 Out << "ti"; 4055 mangleType(TIE->getTypeOperand(Context.getASTContext())); 4056 } else { 4057 Out << "te"; 4058 mangleExpression(TIE->getExprOperand()); 4059 } 4060 break; 4061 } 4062 4063 case Expr::CXXDeleteExprClass: { 4064 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 4065 // <expression> ::= [gs] dl <expression> # [::] delete expr 4066 // ::= [gs] da <expression> # [::] delete [] expr 4067 if (DE->isGlobalDelete()) Out << "gs"; 4068 Out << (DE->isArrayForm() ? "da" : "dl"); 4069 mangleExpression(DE->getArgument()); 4070 break; 4071 } 4072 4073 case Expr::UnaryOperatorClass: { 4074 const UnaryOperator *UO = cast<UnaryOperator>(E); 4075 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 4076 /*Arity=*/1); 4077 mangleExpression(UO->getSubExpr()); 4078 break; 4079 } 4080 4081 case Expr::ArraySubscriptExprClass: { 4082 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 4083 4084 // Array subscript is treated as a syntactically weird form of 4085 // binary operator. 4086 Out << "ix"; 4087 mangleExpression(AE->getLHS()); 4088 mangleExpression(AE->getRHS()); 4089 break; 4090 } 4091 4092 case Expr::CompoundAssignOperatorClass: // fallthrough 4093 case Expr::BinaryOperatorClass: { 4094 const BinaryOperator *BO = cast<BinaryOperator>(E); 4095 if (BO->getOpcode() == BO_PtrMemD) 4096 Out << "ds"; 4097 else 4098 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 4099 /*Arity=*/2); 4100 mangleExpression(BO->getLHS()); 4101 mangleExpression(BO->getRHS()); 4102 break; 4103 } 4104 4105 case Expr::CXXRewrittenBinaryOperatorClass: { 4106 // The mangled form represents the original syntax. 4107 CXXRewrittenBinaryOperator::DecomposedForm Decomposed = 4108 cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); 4109 mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode), 4110 /*Arity=*/2); 4111 mangleExpression(Decomposed.LHS); 4112 mangleExpression(Decomposed.RHS); 4113 break; 4114 } 4115 4116 case Expr::ConditionalOperatorClass: { 4117 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 4118 mangleOperatorName(OO_Conditional, /*Arity=*/3); 4119 mangleExpression(CO->getCond()); 4120 mangleExpression(CO->getLHS(), Arity); 4121 mangleExpression(CO->getRHS(), Arity); 4122 break; 4123 } 4124 4125 case Expr::ImplicitCastExprClass: { 4126 ImplicitlyConvertedToType = E->getType(); 4127 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 4128 goto recurse; 4129 } 4130 4131 case Expr::ObjCBridgedCastExprClass: { 4132 // Mangle ownership casts as a vendor extended operator __bridge, 4133 // __bridge_transfer, or __bridge_retain. 4134 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 4135 Out << "v1U" << Kind.size() << Kind; 4136 } 4137 // Fall through to mangle the cast itself. 4138 LLVM_FALLTHROUGH; 4139 4140 case Expr::CStyleCastExprClass: 4141 mangleCastExpression(E, "cv"); 4142 break; 4143 4144 case Expr::CXXFunctionalCastExprClass: { 4145 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 4146 // FIXME: Add isImplicit to CXXConstructExpr. 4147 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 4148 if (CCE->getParenOrBraceRange().isInvalid()) 4149 Sub = CCE->getArg(0)->IgnoreImplicit(); 4150 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 4151 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 4152 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 4153 Out << "tl"; 4154 mangleType(E->getType()); 4155 mangleInitListElements(IL); 4156 Out << "E"; 4157 } else { 4158 mangleCastExpression(E, "cv"); 4159 } 4160 break; 4161 } 4162 4163 case Expr::CXXStaticCastExprClass: 4164 mangleCastExpression(E, "sc"); 4165 break; 4166 case Expr::CXXDynamicCastExprClass: 4167 mangleCastExpression(E, "dc"); 4168 break; 4169 case Expr::CXXReinterpretCastExprClass: 4170 mangleCastExpression(E, "rc"); 4171 break; 4172 case Expr::CXXConstCastExprClass: 4173 mangleCastExpression(E, "cc"); 4174 break; 4175 4176 case Expr::CXXOperatorCallExprClass: { 4177 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 4178 unsigned NumArgs = CE->getNumArgs(); 4179 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 4180 // (the enclosing MemberExpr covers the syntactic portion). 4181 if (CE->getOperator() != OO_Arrow) 4182 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 4183 // Mangle the arguments. 4184 for (unsigned i = 0; i != NumArgs; ++i) 4185 mangleExpression(CE->getArg(i)); 4186 break; 4187 } 4188 4189 case Expr::ParenExprClass: 4190 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); 4191 break; 4192 4193 4194 case Expr::ConceptSpecializationExprClass: { 4195 // <expr-primary> ::= L <mangled-name> E # external name 4196 Out << "L_Z"; 4197 auto *CSE = cast<ConceptSpecializationExpr>(E); 4198 mangleTemplateName(CSE->getNamedConcept(), 4199 CSE->getTemplateArguments().data(), 4200 CSE->getTemplateArguments().size()); 4201 Out << 'E'; 4202 break; 4203 } 4204 4205 case Expr::DeclRefExprClass: 4206 mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); 4207 break; 4208 4209 case Expr::SubstNonTypeTemplateParmPackExprClass: 4210 // FIXME: not clear how to mangle this! 4211 // template <unsigned N...> class A { 4212 // template <class U...> void foo(U (&x)[N]...); 4213 // }; 4214 Out << "_SUBSTPACK_"; 4215 break; 4216 4217 case Expr::FunctionParmPackExprClass: { 4218 // FIXME: not clear how to mangle this! 4219 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 4220 Out << "v110_SUBSTPACK"; 4221 mangleDeclRefExpr(FPPE->getParameterPack()); 4222 break; 4223 } 4224 4225 case Expr::DependentScopeDeclRefExprClass: { 4226 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 4227 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 4228 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 4229 Arity); 4230 break; 4231 } 4232 4233 case Expr::CXXBindTemporaryExprClass: 4234 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); 4235 break; 4236 4237 case Expr::ExprWithCleanupsClass: 4238 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); 4239 break; 4240 4241 case Expr::FloatingLiteralClass: { 4242 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 4243 Out << 'L'; 4244 mangleType(FL->getType()); 4245 mangleFloat(FL->getValue()); 4246 Out << 'E'; 4247 break; 4248 } 4249 4250 case Expr::CharacterLiteralClass: 4251 Out << 'L'; 4252 mangleType(E->getType()); 4253 Out << cast<CharacterLiteral>(E)->getValue(); 4254 Out << 'E'; 4255 break; 4256 4257 // FIXME. __objc_yes/__objc_no are mangled same as true/false 4258 case Expr::ObjCBoolLiteralExprClass: 4259 Out << "Lb"; 4260 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4261 Out << 'E'; 4262 break; 4263 4264 case Expr::CXXBoolLiteralExprClass: 4265 Out << "Lb"; 4266 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4267 Out << 'E'; 4268 break; 4269 4270 case Expr::IntegerLiteralClass: { 4271 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 4272 if (E->getType()->isSignedIntegerType()) 4273 Value.setIsSigned(true); 4274 mangleIntegerLiteral(E->getType(), Value); 4275 break; 4276 } 4277 4278 case Expr::ImaginaryLiteralClass: { 4279 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 4280 // Mangle as if a complex literal. 4281 // Proposal from David Vandevoorde, 2010.06.30. 4282 Out << 'L'; 4283 mangleType(E->getType()); 4284 if (const FloatingLiteral *Imag = 4285 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 4286 // Mangle a floating-point zero of the appropriate type. 4287 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 4288 Out << '_'; 4289 mangleFloat(Imag->getValue()); 4290 } else { 4291 Out << "0_"; 4292 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 4293 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 4294 Value.setIsSigned(true); 4295 mangleNumber(Value); 4296 } 4297 Out << 'E'; 4298 break; 4299 } 4300 4301 case Expr::StringLiteralClass: { 4302 // Revised proposal from David Vandervoorde, 2010.07.15. 4303 Out << 'L'; 4304 assert(isa<ConstantArrayType>(E->getType())); 4305 mangleType(E->getType()); 4306 Out << 'E'; 4307 break; 4308 } 4309 4310 case Expr::GNUNullExprClass: 4311 // Mangle as if an integer literal 0. 4312 Out << 'L'; 4313 mangleType(E->getType()); 4314 Out << "0E"; 4315 break; 4316 4317 case Expr::CXXNullPtrLiteralExprClass: { 4318 Out << "LDnE"; 4319 break; 4320 } 4321 4322 case Expr::PackExpansionExprClass: 4323 Out << "sp"; 4324 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 4325 break; 4326 4327 case Expr::SizeOfPackExprClass: { 4328 auto *SPE = cast<SizeOfPackExpr>(E); 4329 if (SPE->isPartiallySubstituted()) { 4330 Out << "sP"; 4331 for (const auto &A : SPE->getPartialArguments()) 4332 mangleTemplateArg(A); 4333 Out << "E"; 4334 break; 4335 } 4336 4337 Out << "sZ"; 4338 const NamedDecl *Pack = SPE->getPack(); 4339 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 4340 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 4341 else if (const NonTypeTemplateParmDecl *NTTP 4342 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 4343 mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex()); 4344 else if (const TemplateTemplateParmDecl *TempTP 4345 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 4346 mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex()); 4347 else 4348 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 4349 break; 4350 } 4351 4352 case Expr::MaterializeTemporaryExprClass: { 4353 mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr()); 4354 break; 4355 } 4356 4357 case Expr::CXXFoldExprClass: { 4358 auto *FE = cast<CXXFoldExpr>(E); 4359 if (FE->isLeftFold()) 4360 Out << (FE->getInit() ? "fL" : "fl"); 4361 else 4362 Out << (FE->getInit() ? "fR" : "fr"); 4363 4364 if (FE->getOperator() == BO_PtrMemD) 4365 Out << "ds"; 4366 else 4367 mangleOperatorName( 4368 BinaryOperator::getOverloadedOperator(FE->getOperator()), 4369 /*Arity=*/2); 4370 4371 if (FE->getLHS()) 4372 mangleExpression(FE->getLHS()); 4373 if (FE->getRHS()) 4374 mangleExpression(FE->getRHS()); 4375 break; 4376 } 4377 4378 case Expr::CXXThisExprClass: 4379 Out << "fpT"; 4380 break; 4381 4382 case Expr::CoawaitExprClass: 4383 // FIXME: Propose a non-vendor mangling. 4384 Out << "v18co_await"; 4385 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 4386 break; 4387 4388 case Expr::DependentCoawaitExprClass: 4389 // FIXME: Propose a non-vendor mangling. 4390 Out << "v18co_await"; 4391 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 4392 break; 4393 4394 case Expr::CoyieldExprClass: 4395 // FIXME: Propose a non-vendor mangling. 4396 Out << "v18co_yield"; 4397 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 4398 break; 4399 } 4400 } 4401 4402 /// Mangle an expression which refers to a parameter variable. 4403 /// 4404 /// <expression> ::= <function-param> 4405 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 4406 /// <function-param> ::= fp <top-level CV-qualifiers> 4407 /// <parameter-2 non-negative number> _ # L == 0, I > 0 4408 /// <function-param> ::= fL <L-1 non-negative number> 4409 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 4410 /// <function-param> ::= fL <L-1 non-negative number> 4411 /// p <top-level CV-qualifiers> 4412 /// <I-1 non-negative number> _ # L > 0, I > 0 4413 /// 4414 /// L is the nesting depth of the parameter, defined as 1 if the 4415 /// parameter comes from the innermost function prototype scope 4416 /// enclosing the current context, 2 if from the next enclosing 4417 /// function prototype scope, and so on, with one special case: if 4418 /// we've processed the full parameter clause for the innermost 4419 /// function type, then L is one less. This definition conveniently 4420 /// makes it irrelevant whether a function's result type was written 4421 /// trailing or leading, but is otherwise overly complicated; the 4422 /// numbering was first designed without considering references to 4423 /// parameter in locations other than return types, and then the 4424 /// mangling had to be generalized without changing the existing 4425 /// manglings. 4426 /// 4427 /// I is the zero-based index of the parameter within its parameter 4428 /// declaration clause. Note that the original ABI document describes 4429 /// this using 1-based ordinals. 4430 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 4431 unsigned parmDepth = parm->getFunctionScopeDepth(); 4432 unsigned parmIndex = parm->getFunctionScopeIndex(); 4433 4434 // Compute 'L'. 4435 // parmDepth does not include the declaring function prototype. 4436 // FunctionTypeDepth does account for that. 4437 assert(parmDepth < FunctionTypeDepth.getDepth()); 4438 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 4439 if (FunctionTypeDepth.isInResultType()) 4440 nestingDepth--; 4441 4442 if (nestingDepth == 0) { 4443 Out << "fp"; 4444 } else { 4445 Out << "fL" << (nestingDepth - 1) << 'p'; 4446 } 4447 4448 // Top-level qualifiers. We don't have to worry about arrays here, 4449 // because parameters declared as arrays should already have been 4450 // transformed to have pointer type. FIXME: apparently these don't 4451 // get mangled if used as an rvalue of a known non-class type? 4452 assert(!parm->getType()->isArrayType() 4453 && "parameter's type is still an array type?"); 4454 4455 if (const DependentAddressSpaceType *DAST = 4456 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 4457 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 4458 } else { 4459 mangleQualifiers(parm->getType().getQualifiers()); 4460 } 4461 4462 // Parameter index. 4463 if (parmIndex != 0) { 4464 Out << (parmIndex - 1); 4465 } 4466 Out << '_'; 4467 } 4468 4469 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 4470 const CXXRecordDecl *InheritedFrom) { 4471 // <ctor-dtor-name> ::= C1 # complete object constructor 4472 // ::= C2 # base object constructor 4473 // ::= CI1 <type> # complete inheriting constructor 4474 // ::= CI2 <type> # base inheriting constructor 4475 // 4476 // In addition, C5 is a comdat name with C1 and C2 in it. 4477 Out << 'C'; 4478 if (InheritedFrom) 4479 Out << 'I'; 4480 switch (T) { 4481 case Ctor_Complete: 4482 Out << '1'; 4483 break; 4484 case Ctor_Base: 4485 Out << '2'; 4486 break; 4487 case Ctor_Comdat: 4488 Out << '5'; 4489 break; 4490 case Ctor_DefaultClosure: 4491 case Ctor_CopyingClosure: 4492 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 4493 } 4494 if (InheritedFrom) 4495 mangleName(InheritedFrom); 4496 } 4497 4498 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 4499 // <ctor-dtor-name> ::= D0 # deleting destructor 4500 // ::= D1 # complete object destructor 4501 // ::= D2 # base object destructor 4502 // 4503 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 4504 switch (T) { 4505 case Dtor_Deleting: 4506 Out << "D0"; 4507 break; 4508 case Dtor_Complete: 4509 Out << "D1"; 4510 break; 4511 case Dtor_Base: 4512 Out << "D2"; 4513 break; 4514 case Dtor_Comdat: 4515 Out << "D5"; 4516 break; 4517 } 4518 } 4519 4520 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, 4521 unsigned NumTemplateArgs) { 4522 // <template-args> ::= I <template-arg>+ E 4523 Out << 'I'; 4524 for (unsigned i = 0; i != NumTemplateArgs; ++i) 4525 mangleTemplateArg(TemplateArgs[i].getArgument()); 4526 Out << 'E'; 4527 } 4528 4529 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) { 4530 // <template-args> ::= I <template-arg>+ E 4531 Out << 'I'; 4532 for (unsigned i = 0, e = AL.size(); i != e; ++i) 4533 mangleTemplateArg(AL[i]); 4534 Out << 'E'; 4535 } 4536 4537 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs, 4538 unsigned NumTemplateArgs) { 4539 // <template-args> ::= I <template-arg>+ E 4540 Out << 'I'; 4541 for (unsigned i = 0; i != NumTemplateArgs; ++i) 4542 mangleTemplateArg(TemplateArgs[i]); 4543 Out << 'E'; 4544 } 4545 4546 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) { 4547 // <template-arg> ::= <type> # type or template 4548 // ::= X <expression> E # expression 4549 // ::= <expr-primary> # simple expressions 4550 // ::= J <template-arg>* E # argument pack 4551 if (!A.isInstantiationDependent() || A.isDependent()) 4552 A = Context.getASTContext().getCanonicalTemplateArgument(A); 4553 4554 switch (A.getKind()) { 4555 case TemplateArgument::Null: 4556 llvm_unreachable("Cannot mangle NULL template argument"); 4557 4558 case TemplateArgument::Type: 4559 mangleType(A.getAsType()); 4560 break; 4561 case TemplateArgument::Template: 4562 // This is mangled as <type>. 4563 mangleType(A.getAsTemplate()); 4564 break; 4565 case TemplateArgument::TemplateExpansion: 4566 // <type> ::= Dp <type> # pack expansion (C++0x) 4567 Out << "Dp"; 4568 mangleType(A.getAsTemplateOrTemplatePattern()); 4569 break; 4570 case TemplateArgument::Expression: { 4571 // It's possible to end up with a DeclRefExpr here in certain 4572 // dependent cases, in which case we should mangle as a 4573 // declaration. 4574 const Expr *E = A.getAsExpr()->IgnoreParenImpCasts(); 4575 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 4576 const ValueDecl *D = DRE->getDecl(); 4577 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 4578 Out << 'L'; 4579 mangle(D); 4580 Out << 'E'; 4581 break; 4582 } 4583 } 4584 4585 Out << 'X'; 4586 mangleExpression(E); 4587 Out << 'E'; 4588 break; 4589 } 4590 case TemplateArgument::Integral: 4591 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 4592 break; 4593 case TemplateArgument::Declaration: { 4594 // <expr-primary> ::= L <mangled-name> E # external name 4595 // Clang produces AST's where pointer-to-member-function expressions 4596 // and pointer-to-function expressions are represented as a declaration not 4597 // an expression. We compensate for it here to produce the correct mangling. 4598 ValueDecl *D = A.getAsDecl(); 4599 bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType(); 4600 if (compensateMangling) { 4601 Out << 'X'; 4602 mangleOperatorName(OO_Amp, 1); 4603 } 4604 4605 Out << 'L'; 4606 // References to external entities use the mangled name; if the name would 4607 // not normally be mangled then mangle it as unqualified. 4608 mangle(D); 4609 Out << 'E'; 4610 4611 if (compensateMangling) 4612 Out << 'E'; 4613 4614 break; 4615 } 4616 case TemplateArgument::NullPtr: { 4617 // <expr-primary> ::= L <type> 0 E 4618 Out << 'L'; 4619 mangleType(A.getNullPtrType()); 4620 Out << "0E"; 4621 break; 4622 } 4623 case TemplateArgument::Pack: { 4624 // <template-arg> ::= J <template-arg>* E 4625 Out << 'J'; 4626 for (const auto &P : A.pack_elements()) 4627 mangleTemplateArg(P); 4628 Out << 'E'; 4629 } 4630 } 4631 } 4632 4633 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { 4634 // <template-param> ::= T_ # first template parameter 4635 // ::= T <parameter-2 non-negative number> _ 4636 // ::= TL <L-1 non-negative number> __ 4637 // ::= TL <L-1 non-negative number> _ 4638 // <parameter-2 non-negative number> _ 4639 // 4640 // The latter two manglings are from a proposal here: 4641 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 4642 Out << 'T'; 4643 if (Depth != 0) 4644 Out << 'L' << (Depth - 1) << '_'; 4645 if (Index != 0) 4646 Out << (Index - 1); 4647 Out << '_'; 4648 } 4649 4650 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 4651 if (SeqID == 1) 4652 Out << '0'; 4653 else if (SeqID > 1) { 4654 SeqID--; 4655 4656 // <seq-id> is encoded in base-36, using digits and upper case letters. 4657 char Buffer[7]; // log(2**32) / log(36) ~= 7 4658 MutableArrayRef<char> BufferRef(Buffer); 4659 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 4660 4661 for (; SeqID != 0; SeqID /= 36) { 4662 unsigned C = SeqID % 36; 4663 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 4664 } 4665 4666 Out.write(I.base(), I - BufferRef.rbegin()); 4667 } 4668 Out << '_'; 4669 } 4670 4671 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 4672 bool result = mangleSubstitution(tname); 4673 assert(result && "no existing substitution for template name"); 4674 (void) result; 4675 } 4676 4677 // <substitution> ::= S <seq-id> _ 4678 // ::= S_ 4679 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 4680 // Try one of the standard substitutions first. 4681 if (mangleStandardSubstitution(ND)) 4682 return true; 4683 4684 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 4685 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 4686 } 4687 4688 /// Determine whether the given type has any qualifiers that are relevant for 4689 /// substitutions. 4690 static bool hasMangledSubstitutionQualifiers(QualType T) { 4691 Qualifiers Qs = T.getQualifiers(); 4692 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 4693 } 4694 4695 bool CXXNameMangler::mangleSubstitution(QualType T) { 4696 if (!hasMangledSubstitutionQualifiers(T)) { 4697 if (const RecordType *RT = T->getAs<RecordType>()) 4698 return mangleSubstitution(RT->getDecl()); 4699 } 4700 4701 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 4702 4703 return mangleSubstitution(TypePtr); 4704 } 4705 4706 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 4707 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 4708 return mangleSubstitution(TD); 4709 4710 Template = Context.getASTContext().getCanonicalTemplateName(Template); 4711 return mangleSubstitution( 4712 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 4713 } 4714 4715 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 4716 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 4717 if (I == Substitutions.end()) 4718 return false; 4719 4720 unsigned SeqID = I->second; 4721 Out << 'S'; 4722 mangleSeqID(SeqID); 4723 4724 return true; 4725 } 4726 4727 static bool isCharType(QualType T) { 4728 if (T.isNull()) 4729 return false; 4730 4731 return T->isSpecificBuiltinType(BuiltinType::Char_S) || 4732 T->isSpecificBuiltinType(BuiltinType::Char_U); 4733 } 4734 4735 /// Returns whether a given type is a template specialization of a given name 4736 /// with a single argument of type char. 4737 static bool isCharSpecialization(QualType T, const char *Name) { 4738 if (T.isNull()) 4739 return false; 4740 4741 const RecordType *RT = T->getAs<RecordType>(); 4742 if (!RT) 4743 return false; 4744 4745 const ClassTemplateSpecializationDecl *SD = 4746 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 4747 if (!SD) 4748 return false; 4749 4750 if (!isStdNamespace(getEffectiveDeclContext(SD))) 4751 return false; 4752 4753 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4754 if (TemplateArgs.size() != 1) 4755 return false; 4756 4757 if (!isCharType(TemplateArgs[0].getAsType())) 4758 return false; 4759 4760 return SD->getIdentifier()->getName() == Name; 4761 } 4762 4763 template <std::size_t StrLen> 4764 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, 4765 const char (&Str)[StrLen]) { 4766 if (!SD->getIdentifier()->isStr(Str)) 4767 return false; 4768 4769 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4770 if (TemplateArgs.size() != 2) 4771 return false; 4772 4773 if (!isCharType(TemplateArgs[0].getAsType())) 4774 return false; 4775 4776 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 4777 return false; 4778 4779 return true; 4780 } 4781 4782 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 4783 // <substitution> ::= St # ::std:: 4784 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 4785 if (isStd(NS)) { 4786 Out << "St"; 4787 return true; 4788 } 4789 } 4790 4791 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 4792 if (!isStdNamespace(getEffectiveDeclContext(TD))) 4793 return false; 4794 4795 // <substitution> ::= Sa # ::std::allocator 4796 if (TD->getIdentifier()->isStr("allocator")) { 4797 Out << "Sa"; 4798 return true; 4799 } 4800 4801 // <<substitution> ::= Sb # ::std::basic_string 4802 if (TD->getIdentifier()->isStr("basic_string")) { 4803 Out << "Sb"; 4804 return true; 4805 } 4806 } 4807 4808 if (const ClassTemplateSpecializationDecl *SD = 4809 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 4810 if (!isStdNamespace(getEffectiveDeclContext(SD))) 4811 return false; 4812 4813 // <substitution> ::= Ss # ::std::basic_string<char, 4814 // ::std::char_traits<char>, 4815 // ::std::allocator<char> > 4816 if (SD->getIdentifier()->isStr("basic_string")) { 4817 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 4818 4819 if (TemplateArgs.size() != 3) 4820 return false; 4821 4822 if (!isCharType(TemplateArgs[0].getAsType())) 4823 return false; 4824 4825 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) 4826 return false; 4827 4828 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) 4829 return false; 4830 4831 Out << "Ss"; 4832 return true; 4833 } 4834 4835 // <substitution> ::= Si # ::std::basic_istream<char, 4836 // ::std::char_traits<char> > 4837 if (isStreamCharSpecialization(SD, "basic_istream")) { 4838 Out << "Si"; 4839 return true; 4840 } 4841 4842 // <substitution> ::= So # ::std::basic_ostream<char, 4843 // ::std::char_traits<char> > 4844 if (isStreamCharSpecialization(SD, "basic_ostream")) { 4845 Out << "So"; 4846 return true; 4847 } 4848 4849 // <substitution> ::= Sd # ::std::basic_iostream<char, 4850 // ::std::char_traits<char> > 4851 if (isStreamCharSpecialization(SD, "basic_iostream")) { 4852 Out << "Sd"; 4853 return true; 4854 } 4855 } 4856 return false; 4857 } 4858 4859 void CXXNameMangler::addSubstitution(QualType T) { 4860 if (!hasMangledSubstitutionQualifiers(T)) { 4861 if (const RecordType *RT = T->getAs<RecordType>()) { 4862 addSubstitution(RT->getDecl()); 4863 return; 4864 } 4865 } 4866 4867 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 4868 addSubstitution(TypePtr); 4869 } 4870 4871 void CXXNameMangler::addSubstitution(TemplateName Template) { 4872 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 4873 return addSubstitution(TD); 4874 4875 Template = Context.getASTContext().getCanonicalTemplateName(Template); 4876 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 4877 } 4878 4879 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 4880 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 4881 Substitutions[Ptr] = SeqID++; 4882 } 4883 4884 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 4885 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 4886 if (Other->SeqID > SeqID) { 4887 Substitutions.swap(Other->Substitutions); 4888 SeqID = Other->SeqID; 4889 } 4890 } 4891 4892 CXXNameMangler::AbiTagList 4893 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 4894 // When derived abi tags are disabled there is no need to make any list. 4895 if (DisableDerivedAbiTags) 4896 return AbiTagList(); 4897 4898 llvm::raw_null_ostream NullOutStream; 4899 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 4900 TrackReturnTypeTags.disableDerivedAbiTags(); 4901 4902 const FunctionProtoType *Proto = 4903 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 4904 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 4905 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 4906 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 4907 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 4908 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 4909 4910 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 4911 } 4912 4913 CXXNameMangler::AbiTagList 4914 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 4915 // When derived abi tags are disabled there is no need to make any list. 4916 if (DisableDerivedAbiTags) 4917 return AbiTagList(); 4918 4919 llvm::raw_null_ostream NullOutStream; 4920 CXXNameMangler TrackVariableType(*this, NullOutStream); 4921 TrackVariableType.disableDerivedAbiTags(); 4922 4923 TrackVariableType.mangleType(VD->getType()); 4924 4925 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 4926 } 4927 4928 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 4929 const VarDecl *VD) { 4930 llvm::raw_null_ostream NullOutStream; 4931 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 4932 TrackAbiTags.mangle(VD); 4933 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 4934 } 4935 4936 // 4937 4938 /// Mangles the name of the declaration D and emits that name to the given 4939 /// output stream. 4940 /// 4941 /// If the declaration D requires a mangled name, this routine will emit that 4942 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 4943 /// and this routine will return false. In this case, the caller should just 4944 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 4945 /// name. 4946 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D, 4947 raw_ostream &Out) { 4948 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 4949 "Invalid mangleName() call, argument is not a variable or function!"); 4950 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 4951 "Invalid mangleName() call on 'structor decl!"); 4952 4953 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 4954 getASTContext().getSourceManager(), 4955 "Mangling declaration"); 4956 4957 CXXNameMangler Mangler(*this, Out, D); 4958 Mangler.mangle(D); 4959 } 4960 4961 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, 4962 CXXCtorType Type, 4963 raw_ostream &Out) { 4964 CXXNameMangler Mangler(*this, Out, D, Type); 4965 Mangler.mangle(D); 4966 } 4967 4968 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, 4969 CXXDtorType Type, 4970 raw_ostream &Out) { 4971 CXXNameMangler Mangler(*this, Out, D, Type); 4972 Mangler.mangle(D); 4973 } 4974 4975 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 4976 raw_ostream &Out) { 4977 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 4978 Mangler.mangle(D); 4979 } 4980 4981 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 4982 raw_ostream &Out) { 4983 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 4984 Mangler.mangle(D); 4985 } 4986 4987 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 4988 const ThunkInfo &Thunk, 4989 raw_ostream &Out) { 4990 // <special-name> ::= T <call-offset> <base encoding> 4991 // # base is the nominal target function of thunk 4992 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 4993 // # base is the nominal target function of thunk 4994 // # first call-offset is 'this' adjustment 4995 // # second call-offset is result adjustment 4996 4997 assert(!isa<CXXDestructorDecl>(MD) && 4998 "Use mangleCXXDtor for destructor decls!"); 4999 CXXNameMangler Mangler(*this, Out); 5000 Mangler.getStream() << "_ZT"; 5001 if (!Thunk.Return.isEmpty()) 5002 Mangler.getStream() << 'c'; 5003 5004 // Mangle the 'this' pointer adjustment. 5005 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 5006 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 5007 5008 // Mangle the return pointer adjustment if there is one. 5009 if (!Thunk.Return.isEmpty()) 5010 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 5011 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 5012 5013 Mangler.mangleFunctionEncoding(MD); 5014 } 5015 5016 void ItaniumMangleContextImpl::mangleCXXDtorThunk( 5017 const CXXDestructorDecl *DD, CXXDtorType Type, 5018 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { 5019 // <special-name> ::= T <call-offset> <base encoding> 5020 // # base is the nominal target function of thunk 5021 CXXNameMangler Mangler(*this, Out, DD, Type); 5022 Mangler.getStream() << "_ZT"; 5023 5024 // Mangle the 'this' pointer adjustment. 5025 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 5026 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 5027 5028 Mangler.mangleFunctionEncoding(DD); 5029 } 5030 5031 /// Returns the mangled name for a guard variable for the passed in VarDecl. 5032 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 5033 raw_ostream &Out) { 5034 // <special-name> ::= GV <object name> # Guard variable for one-time 5035 // # initialization 5036 CXXNameMangler Mangler(*this, Out); 5037 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 5038 // be a bug that is fixed in trunk. 5039 Mangler.getStream() << "_ZGV"; 5040 Mangler.mangleName(D); 5041 } 5042 5043 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 5044 raw_ostream &Out) { 5045 // These symbols are internal in the Itanium ABI, so the names don't matter. 5046 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 5047 // avoid duplicate symbols. 5048 Out << "__cxx_global_var_init"; 5049 } 5050 5051 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 5052 raw_ostream &Out) { 5053 // Prefix the mangling of D with __dtor_. 5054 CXXNameMangler Mangler(*this, Out); 5055 Mangler.getStream() << "__dtor_"; 5056 if (shouldMangleDeclName(D)) 5057 Mangler.mangle(D); 5058 else 5059 Mangler.getStream() << D->getName(); 5060 } 5061 5062 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 5063 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 5064 CXXNameMangler Mangler(*this, Out); 5065 Mangler.getStream() << "__filt_"; 5066 if (shouldMangleDeclName(EnclosingDecl)) 5067 Mangler.mangle(EnclosingDecl); 5068 else 5069 Mangler.getStream() << EnclosingDecl->getName(); 5070 } 5071 5072 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 5073 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 5074 CXXNameMangler Mangler(*this, Out); 5075 Mangler.getStream() << "__fin_"; 5076 if (shouldMangleDeclName(EnclosingDecl)) 5077 Mangler.mangle(EnclosingDecl); 5078 else 5079 Mangler.getStream() << EnclosingDecl->getName(); 5080 } 5081 5082 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 5083 raw_ostream &Out) { 5084 // <special-name> ::= TH <object name> 5085 CXXNameMangler Mangler(*this, Out); 5086 Mangler.getStream() << "_ZTH"; 5087 Mangler.mangleName(D); 5088 } 5089 5090 void 5091 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 5092 raw_ostream &Out) { 5093 // <special-name> ::= TW <object name> 5094 CXXNameMangler Mangler(*this, Out); 5095 Mangler.getStream() << "_ZTW"; 5096 Mangler.mangleName(D); 5097 } 5098 5099 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 5100 unsigned ManglingNumber, 5101 raw_ostream &Out) { 5102 // We match the GCC mangling here. 5103 // <special-name> ::= GR <object name> 5104 CXXNameMangler Mangler(*this, Out); 5105 Mangler.getStream() << "_ZGR"; 5106 Mangler.mangleName(D); 5107 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 5108 Mangler.mangleSeqID(ManglingNumber - 1); 5109 } 5110 5111 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 5112 raw_ostream &Out) { 5113 // <special-name> ::= TV <type> # virtual table 5114 CXXNameMangler Mangler(*this, Out); 5115 Mangler.getStream() << "_ZTV"; 5116 Mangler.mangleNameOrStandardSubstitution(RD); 5117 } 5118 5119 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 5120 raw_ostream &Out) { 5121 // <special-name> ::= TT <type> # VTT structure 5122 CXXNameMangler Mangler(*this, Out); 5123 Mangler.getStream() << "_ZTT"; 5124 Mangler.mangleNameOrStandardSubstitution(RD); 5125 } 5126 5127 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 5128 int64_t Offset, 5129 const CXXRecordDecl *Type, 5130 raw_ostream &Out) { 5131 // <special-name> ::= TC <type> <offset number> _ <base type> 5132 CXXNameMangler Mangler(*this, Out); 5133 Mangler.getStream() << "_ZTC"; 5134 Mangler.mangleNameOrStandardSubstitution(RD); 5135 Mangler.getStream() << Offset; 5136 Mangler.getStream() << '_'; 5137 Mangler.mangleNameOrStandardSubstitution(Type); 5138 } 5139 5140 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 5141 // <special-name> ::= TI <type> # typeinfo structure 5142 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 5143 CXXNameMangler Mangler(*this, Out); 5144 Mangler.getStream() << "_ZTI"; 5145 Mangler.mangleType(Ty); 5146 } 5147 5148 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, 5149 raw_ostream &Out) { 5150 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 5151 CXXNameMangler Mangler(*this, Out); 5152 Mangler.getStream() << "_ZTS"; 5153 Mangler.mangleType(Ty); 5154 } 5155 5156 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { 5157 mangleCXXRTTIName(Ty, Out); 5158 } 5159 5160 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 5161 llvm_unreachable("Can't mangle string literals"); 5162 } 5163 5164 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, 5165 raw_ostream &Out) { 5166 CXXNameMangler Mangler(*this, Out); 5167 Mangler.mangleLambdaSig(Lambda); 5168 } 5169 5170 ItaniumMangleContext * 5171 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 5172 return new ItaniumMangleContextImpl(Context, Diags); 5173 } 5174