1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implements C++ name mangling according to the Itanium C++ ABI, 10 // which is used in GCC 3.2 and newer (and many compilers that are 11 // ABI-compatible with GCC): 12 // 13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclOpenMP.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprConcepts.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/DiagnosticAST.h" 32 #include "clang/Basic/Module.h" 33 #include "clang/Basic/SourceManager.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "clang/Basic/Thunk.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/TargetParser/RISCVTargetParser.h" 40 #include <optional> 41 42 using namespace clang; 43 44 namespace { 45 46 static bool isLocalContainerContext(const DeclContext *DC) { 47 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 48 } 49 50 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 51 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 52 return ftd->getTemplatedDecl(); 53 54 return fn; 55 } 56 57 static const NamedDecl *getStructor(const NamedDecl *decl) { 58 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 59 return (fn ? getStructor(fn) : decl); 60 } 61 62 static bool isLambda(const NamedDecl *ND) { 63 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 64 if (!Record) 65 return false; 66 67 return Record->isLambda(); 68 } 69 70 static const unsigned UnknownArity = ~0U; 71 72 class ItaniumMangleContextImpl : public ItaniumMangleContext { 73 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 74 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 75 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 76 const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; 77 NamespaceDecl *StdNamespace = nullptr; 78 79 bool NeedsUniqueInternalLinkageNames = false; 80 81 public: 82 explicit ItaniumMangleContextImpl( 83 ASTContext &Context, DiagnosticsEngine &Diags, 84 DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false) 85 : ItaniumMangleContext(Context, Diags, IsAux), 86 DiscriminatorOverride(DiscriminatorOverride) {} 87 88 /// @name Mangler Entry Points 89 /// @{ 90 91 bool shouldMangleCXXName(const NamedDecl *D) override; 92 bool shouldMangleStringLiteral(const StringLiteral *) override { 93 return false; 94 } 95 96 bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; 97 void needsUniqueInternalLinkageNames() override { 98 NeedsUniqueInternalLinkageNames = true; 99 } 100 101 void mangleCXXName(GlobalDecl GD, raw_ostream &) override; 102 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, bool, 103 raw_ostream &) override; 104 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 105 const ThunkInfo &Thunk, bool, raw_ostream &) override; 106 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 107 raw_ostream &) override; 108 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 109 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 110 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 111 const CXXRecordDecl *Type, raw_ostream &) override; 112 void mangleCXXRTTI(QualType T, raw_ostream &) override; 113 void mangleCXXRTTIName(QualType T, raw_ostream &, 114 bool NormalizeIntegers) override; 115 void mangleCanonicalTypeName(QualType T, raw_ostream &, 116 bool NormalizeIntegers) override; 117 118 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 119 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 120 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 121 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 122 void mangleDynamicAtExitDestructor(const VarDecl *D, 123 raw_ostream &Out) override; 124 void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; 125 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, 126 raw_ostream &Out) override; 127 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, 128 raw_ostream &Out) override; 129 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 130 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 131 raw_ostream &) override; 132 133 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 134 135 void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; 136 137 void mangleModuleInitializer(const Module *Module, raw_ostream &) override; 138 139 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 140 // Lambda closure types are already numbered. 141 if (isLambda(ND)) 142 return false; 143 144 // Anonymous tags are already numbered. 145 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 146 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 147 return false; 148 } 149 150 // Use the canonical number for externally visible decls. 151 if (ND->isExternallyVisible()) { 152 unsigned discriminator = getASTContext().getManglingNumber(ND, isAux()); 153 if (discriminator == 1) 154 return false; 155 disc = discriminator - 2; 156 return true; 157 } 158 159 // Make up a reasonable number for internal decls. 160 unsigned &discriminator = Uniquifier[ND]; 161 if (!discriminator) { 162 const DeclContext *DC = getEffectiveDeclContext(ND); 163 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 164 } 165 if (discriminator == 1) 166 return false; 167 disc = discriminator-2; 168 return true; 169 } 170 171 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 172 // This function matches the one in MicrosoftMangle, which returns 173 // the string that is used in lambda mangled names. 174 assert(Lambda->isLambda() && "RD must be a lambda!"); 175 std::string Name("<lambda"); 176 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 177 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 178 unsigned LambdaId; 179 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 180 const FunctionDecl *Func = 181 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 182 183 if (Func) { 184 unsigned DefaultArgNo = 185 Func->getNumParams() - Parm->getFunctionScopeIndex(); 186 Name += llvm::utostr(DefaultArgNo); 187 Name += "_"; 188 } 189 190 if (LambdaManglingNumber) 191 LambdaId = LambdaManglingNumber; 192 else 193 LambdaId = getAnonymousStructIdForDebugInfo(Lambda); 194 195 Name += llvm::utostr(LambdaId); 196 Name += '>'; 197 return Name; 198 } 199 200 DiscriminatorOverrideTy getDiscriminatorOverride() const override { 201 return DiscriminatorOverride; 202 } 203 204 NamespaceDecl *getStdNamespace(); 205 206 const DeclContext *getEffectiveDeclContext(const Decl *D); 207 const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 208 return getEffectiveDeclContext(cast<Decl>(DC)); 209 } 210 211 bool isInternalLinkageDecl(const NamedDecl *ND); 212 213 /// @} 214 }; 215 216 /// Manage the mangling of a single name. 217 class CXXNameMangler { 218 ItaniumMangleContextImpl &Context; 219 raw_ostream &Out; 220 /// Normalize integer types for cross-language CFI support with other 221 /// languages that can't represent and encode C/C++ integer types. 222 bool NormalizeIntegers = false; 223 224 bool NullOut = false; 225 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 226 /// This mode is used when mangler creates another mangler recursively to 227 /// calculate ABI tags for the function return value or the variable type. 228 /// Also it is required to avoid infinite recursion in some cases. 229 bool DisableDerivedAbiTags = false; 230 231 /// The "structor" is the top-level declaration being mangled, if 232 /// that's not a template specialization; otherwise it's the pattern 233 /// for that specialization. 234 const NamedDecl *Structor; 235 unsigned StructorType = 0; 236 237 // An offset to add to all template parameter depths while mangling. Used 238 // when mangling a template parameter list to see if it matches a template 239 // template parameter exactly. 240 unsigned TemplateDepthOffset = 0; 241 242 /// The next substitution sequence number. 243 unsigned SeqID = 0; 244 245 class FunctionTypeDepthState { 246 unsigned Bits = 0; 247 248 enum { InResultTypeMask = 1 }; 249 250 public: 251 FunctionTypeDepthState() = default; 252 253 /// The number of function types we're inside. 254 unsigned getDepth() const { 255 return Bits >> 1; 256 } 257 258 /// True if we're in the return type of the innermost function type. 259 bool isInResultType() const { 260 return Bits & InResultTypeMask; 261 } 262 263 FunctionTypeDepthState push() { 264 FunctionTypeDepthState tmp = *this; 265 Bits = (Bits & ~InResultTypeMask) + 2; 266 return tmp; 267 } 268 269 void enterResultType() { 270 Bits |= InResultTypeMask; 271 } 272 273 void leaveResultType() { 274 Bits &= ~InResultTypeMask; 275 } 276 277 void pop(FunctionTypeDepthState saved) { 278 assert(getDepth() == saved.getDepth() + 1); 279 Bits = saved.Bits; 280 } 281 282 } FunctionTypeDepth; 283 284 // abi_tag is a gcc attribute, taking one or more strings called "tags". 285 // The goal is to annotate against which version of a library an object was 286 // built and to be able to provide backwards compatibility ("dual abi"). 287 // For more information see docs/ItaniumMangleAbiTags.rst. 288 typedef SmallVector<StringRef, 4> AbiTagList; 289 290 // State to gather all implicit and explicit tags used in a mangled name. 291 // Must always have an instance of this while emitting any name to keep 292 // track. 293 class AbiTagState final { 294 public: 295 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 296 Parent = LinkHead; 297 LinkHead = this; 298 } 299 300 // No copy, no move. 301 AbiTagState(const AbiTagState &) = delete; 302 AbiTagState &operator=(const AbiTagState &) = delete; 303 304 ~AbiTagState() { pop(); } 305 306 void write(raw_ostream &Out, const NamedDecl *ND, 307 const AbiTagList *AdditionalAbiTags) { 308 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 309 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 310 assert( 311 !AdditionalAbiTags && 312 "only function and variables need a list of additional abi tags"); 313 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 314 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 315 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 316 AbiTag->tags().end()); 317 } 318 // Don't emit abi tags for namespaces. 319 return; 320 } 321 } 322 323 AbiTagList TagList; 324 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 325 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 326 AbiTag->tags().end()); 327 TagList.insert(TagList.end(), AbiTag->tags().begin(), 328 AbiTag->tags().end()); 329 } 330 331 if (AdditionalAbiTags) { 332 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 333 AdditionalAbiTags->end()); 334 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 335 AdditionalAbiTags->end()); 336 } 337 338 llvm::sort(TagList); 339 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 340 341 writeSortedUniqueAbiTags(Out, TagList); 342 } 343 344 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 345 void setUsedAbiTags(const AbiTagList &AbiTags) { 346 UsedAbiTags = AbiTags; 347 } 348 349 const AbiTagList &getEmittedAbiTags() const { 350 return EmittedAbiTags; 351 } 352 353 const AbiTagList &getSortedUniqueUsedAbiTags() { 354 llvm::sort(UsedAbiTags); 355 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 356 UsedAbiTags.end()); 357 return UsedAbiTags; 358 } 359 360 private: 361 //! All abi tags used implicitly or explicitly. 362 AbiTagList UsedAbiTags; 363 //! All explicit abi tags (i.e. not from namespace). 364 AbiTagList EmittedAbiTags; 365 366 AbiTagState *&LinkHead; 367 AbiTagState *Parent = nullptr; 368 369 void pop() { 370 assert(LinkHead == this && 371 "abi tag link head must point to us on destruction"); 372 if (Parent) { 373 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 374 UsedAbiTags.begin(), UsedAbiTags.end()); 375 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 376 EmittedAbiTags.begin(), 377 EmittedAbiTags.end()); 378 } 379 LinkHead = Parent; 380 } 381 382 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 383 for (const auto &Tag : AbiTags) { 384 EmittedAbiTags.push_back(Tag); 385 Out << "B"; 386 Out << Tag.size(); 387 Out << Tag; 388 } 389 } 390 }; 391 392 AbiTagState *AbiTags = nullptr; 393 AbiTagState AbiTagsRoot; 394 395 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 396 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 397 398 ASTContext &getASTContext() const { return Context.getASTContext(); } 399 400 bool isCompatibleWith(LangOptions::ClangABI Ver) { 401 return Context.getASTContext().getLangOpts().getClangABICompat() <= Ver; 402 } 403 404 bool isStd(const NamespaceDecl *NS); 405 bool isStdNamespace(const DeclContext *DC); 406 407 const RecordDecl *GetLocalClassDecl(const Decl *D); 408 bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); 409 bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, 410 llvm::StringRef Name, bool HasAllocator); 411 412 public: 413 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 414 const NamedDecl *D = nullptr, bool NullOut_ = false) 415 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 416 AbiTagsRoot(AbiTags) { 417 // These can't be mangled without a ctor type or dtor type. 418 assert(!D || (!isa<CXXDestructorDecl>(D) && 419 !isa<CXXConstructorDecl>(D))); 420 } 421 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 422 const CXXConstructorDecl *D, CXXCtorType Type) 423 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 424 AbiTagsRoot(AbiTags) {} 425 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 426 const CXXDestructorDecl *D, CXXDtorType Type) 427 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 428 AbiTagsRoot(AbiTags) {} 429 430 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 431 bool NormalizeIntegers_) 432 : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_), 433 NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {} 434 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 435 : Context(Outer.Context), Out(Out_), Structor(Outer.Structor), 436 StructorType(Outer.StructorType), SeqID(Outer.SeqID), 437 FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags), 438 Substitutions(Outer.Substitutions), 439 ModuleSubstitutions(Outer.ModuleSubstitutions) {} 440 441 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 442 : CXXNameMangler(Outer, (raw_ostream &)Out_) { 443 NullOut = true; 444 } 445 446 struct WithTemplateDepthOffset { unsigned Offset; }; 447 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out, 448 WithTemplateDepthOffset Offset) 449 : CXXNameMangler(C, Out) { 450 TemplateDepthOffset = Offset.Offset; 451 } 452 453 raw_ostream &getStream() { return Out; } 454 455 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 456 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 457 458 void mangle(GlobalDecl GD); 459 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 460 void mangleNumber(const llvm::APSInt &I); 461 void mangleNumber(int64_t Number); 462 void mangleFloat(const llvm::APFloat &F); 463 void mangleFunctionEncoding(GlobalDecl GD); 464 void mangleSeqID(unsigned SeqID); 465 void mangleName(GlobalDecl GD); 466 void mangleType(QualType T); 467 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 468 void mangleLambdaSig(const CXXRecordDecl *Lambda); 469 void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false); 470 void mangleVendorQualifier(StringRef Name); 471 472 private: 473 474 bool mangleSubstitution(const NamedDecl *ND); 475 bool mangleSubstitution(NestedNameSpecifier *NNS); 476 bool mangleSubstitution(QualType T); 477 bool mangleSubstitution(TemplateName Template); 478 bool mangleSubstitution(uintptr_t Ptr); 479 480 void mangleExistingSubstitution(TemplateName name); 481 482 bool mangleStandardSubstitution(const NamedDecl *ND); 483 484 void addSubstitution(const NamedDecl *ND) { 485 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 486 487 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 488 } 489 void addSubstitution(NestedNameSpecifier *NNS) { 490 NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); 491 492 addSubstitution(reinterpret_cast<uintptr_t>(NNS)); 493 } 494 void addSubstitution(QualType T); 495 void addSubstitution(TemplateName Template); 496 void addSubstitution(uintptr_t Ptr); 497 // Destructive copy substitutions from other mangler. 498 void extendSubstitutions(CXXNameMangler* Other); 499 500 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 501 bool recursive = false); 502 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 503 DeclarationName name, 504 const TemplateArgumentLoc *TemplateArgs, 505 unsigned NumTemplateArgs, 506 unsigned KnownArity = UnknownArity); 507 508 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 509 510 void mangleNameWithAbiTags(GlobalDecl GD, 511 const AbiTagList *AdditionalAbiTags); 512 void mangleModuleName(const NamedDecl *ND); 513 void mangleTemplateName(const TemplateDecl *TD, 514 ArrayRef<TemplateArgument> Args); 515 void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC, 516 const AbiTagList *AdditionalAbiTags) { 517 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC, 518 UnknownArity, AdditionalAbiTags); 519 } 520 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, 521 const DeclContext *DC, unsigned KnownArity, 522 const AbiTagList *AdditionalAbiTags); 523 void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, 524 const AbiTagList *AdditionalAbiTags); 525 void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC, 526 const AbiTagList *AdditionalAbiTags); 527 void mangleSourceName(const IdentifierInfo *II); 528 void mangleRegCallName(const IdentifierInfo *II); 529 void mangleDeviceStubName(const IdentifierInfo *II); 530 void mangleSourceNameWithAbiTags( 531 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 532 void mangleLocalName(GlobalDecl GD, 533 const AbiTagList *AdditionalAbiTags); 534 void mangleBlockForPrefix(const BlockDecl *Block); 535 void mangleUnqualifiedBlock(const BlockDecl *Block); 536 void mangleTemplateParamDecl(const NamedDecl *Decl); 537 void mangleTemplateParameterList(const TemplateParameterList *Params); 538 void mangleTypeConstraint(const ConceptDecl *Concept, 539 ArrayRef<TemplateArgument> Arguments); 540 void mangleTypeConstraint(const TypeConstraint *Constraint); 541 void mangleRequiresClause(const Expr *RequiresClause); 542 void mangleLambda(const CXXRecordDecl *Lambda); 543 void mangleNestedName(GlobalDecl GD, const DeclContext *DC, 544 const AbiTagList *AdditionalAbiTags, 545 bool NoFunction=false); 546 void mangleNestedName(const TemplateDecl *TD, 547 ArrayRef<TemplateArgument> Args); 548 void mangleNestedNameWithClosurePrefix(GlobalDecl GD, 549 const NamedDecl *PrefixND, 550 const AbiTagList *AdditionalAbiTags); 551 void manglePrefix(NestedNameSpecifier *qualifier); 552 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 553 void manglePrefix(QualType type); 554 void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); 555 void mangleTemplatePrefix(TemplateName Template); 556 const NamedDecl *getClosurePrefix(const Decl *ND); 557 void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); 558 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 559 StringRef Prefix = ""); 560 void mangleOperatorName(DeclarationName Name, unsigned Arity); 561 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 562 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 563 void mangleRefQualifier(RefQualifierKind RefQualifier); 564 565 void mangleObjCMethodName(const ObjCMethodDecl *MD); 566 567 // Declare manglers for every type class. 568 #define ABSTRACT_TYPE(CLASS, PARENT) 569 #define NON_CANONICAL_TYPE(CLASS, PARENT) 570 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 571 #include "clang/AST/TypeNodes.inc" 572 573 void mangleType(const TagType*); 574 void mangleType(TemplateName); 575 static StringRef getCallingConvQualifierName(CallingConv CC); 576 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 577 void mangleExtFunctionInfo(const FunctionType *T); 578 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 579 const FunctionDecl *FD = nullptr); 580 void mangleNeonVectorType(const VectorType *T); 581 void mangleNeonVectorType(const DependentVectorType *T); 582 void mangleAArch64NeonVectorType(const VectorType *T); 583 void mangleAArch64NeonVectorType(const DependentVectorType *T); 584 void mangleAArch64FixedSveVectorType(const VectorType *T); 585 void mangleAArch64FixedSveVectorType(const DependentVectorType *T); 586 void mangleRISCVFixedRVVVectorType(const VectorType *T); 587 void mangleRISCVFixedRVVVectorType(const DependentVectorType *T); 588 589 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 590 void mangleFloatLiteral(QualType T, const llvm::APFloat &V); 591 void mangleFixedPointLiteral(); 592 void mangleNullPointer(QualType T); 593 594 void mangleMemberExprBase(const Expr *base, bool isArrow); 595 void mangleMemberExpr(const Expr *base, bool isArrow, 596 NestedNameSpecifier *qualifier, 597 NamedDecl *firstQualifierLookup, 598 DeclarationName name, 599 const TemplateArgumentLoc *TemplateArgs, 600 unsigned NumTemplateArgs, 601 unsigned knownArity); 602 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 603 void mangleInitListElements(const InitListExpr *InitList); 604 void mangleRequirement(SourceLocation RequiresExprLoc, 605 const concepts::Requirement *Req); 606 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, 607 bool AsTemplateArg = false); 608 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 609 void mangleCXXDtorType(CXXDtorType T); 610 611 struct TemplateArgManglingInfo; 612 void mangleTemplateArgs(TemplateName TN, 613 const TemplateArgumentLoc *TemplateArgs, 614 unsigned NumTemplateArgs); 615 void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args); 616 void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); 617 void mangleTemplateArg(TemplateArgManglingInfo &Info, unsigned Index, 618 TemplateArgument A); 619 void mangleTemplateArg(TemplateArgument A, bool NeedExactType); 620 void mangleTemplateArgExpr(const Expr *E); 621 void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, 622 bool NeedExactType = false); 623 624 void mangleTemplateParameter(unsigned Depth, unsigned Index); 625 626 void mangleFunctionParam(const ParmVarDecl *parm); 627 628 void writeAbiTags(const NamedDecl *ND, 629 const AbiTagList *AdditionalAbiTags); 630 631 // Returns sorted unique list of ABI tags. 632 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 633 // Returns sorted unique list of ABI tags. 634 AbiTagList makeVariableTypeTags(const VarDecl *VD); 635 }; 636 637 } 638 639 NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { 640 if (!StdNamespace) { 641 StdNamespace = NamespaceDecl::Create( 642 getASTContext(), getASTContext().getTranslationUnitDecl(), 643 /*Inline=*/false, SourceLocation(), SourceLocation(), 644 &getASTContext().Idents.get("std"), 645 /*PrevDecl=*/nullptr, /*Nested=*/false); 646 StdNamespace->setImplicit(); 647 } 648 return StdNamespace; 649 } 650 651 /// Retrieve the declaration context that should be used when mangling the given 652 /// declaration. 653 const DeclContext * 654 ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { 655 // The ABI assumes that lambda closure types that occur within 656 // default arguments live in the context of the function. However, due to 657 // the way in which Clang parses and creates function declarations, this is 658 // not the case: the lambda closure type ends up living in the context 659 // where the function itself resides, because the function declaration itself 660 // had not yet been created. Fix the context here. 661 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 662 if (RD->isLambda()) 663 if (ParmVarDecl *ContextParam = 664 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 665 return ContextParam->getDeclContext(); 666 } 667 668 // Perform the same check for block literals. 669 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 670 if (ParmVarDecl *ContextParam = 671 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 672 return ContextParam->getDeclContext(); 673 } 674 675 // On ARM and AArch64, the va_list tag is always mangled as if in the std 676 // namespace. We do not represent va_list as actually being in the std 677 // namespace in C because this would result in incorrect debug info in C, 678 // among other things. It is important for both languages to have the same 679 // mangling in order for -fsanitize=cfi-icall to work. 680 if (D == getASTContext().getVaListTagDecl()) { 681 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 682 if (T.isARM() || T.isThumb() || T.isAArch64()) 683 return getStdNamespace(); 684 } 685 686 const DeclContext *DC = D->getDeclContext(); 687 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 688 isa<OMPDeclareMapperDecl>(DC)) { 689 return getEffectiveDeclContext(cast<Decl>(DC)); 690 } 691 692 if (const auto *VD = dyn_cast<VarDecl>(D)) 693 if (VD->isExternC()) 694 return getASTContext().getTranslationUnitDecl(); 695 696 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 697 if (FD->isExternC()) 698 return getASTContext().getTranslationUnitDecl(); 699 // Member-like constrained friends are mangled as if they were members of 700 // the enclosing class. 701 if (FD->isMemberLikeConstrainedFriend() && 702 getASTContext().getLangOpts().getClangABICompat() > 703 LangOptions::ClangABI::Ver17) 704 return D->getLexicalDeclContext()->getRedeclContext(); 705 } 706 707 return DC->getRedeclContext(); 708 } 709 710 bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { 711 if (ND && ND->getFormalLinkage() == Linkage::Internal && 712 !ND->isExternallyVisible() && 713 getEffectiveDeclContext(ND)->isFileContext() && 714 !ND->isInAnonymousNamespace()) 715 return true; 716 return false; 717 } 718 719 // Check if this Function Decl needs a unique internal linkage name. 720 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( 721 const NamedDecl *ND) { 722 if (!NeedsUniqueInternalLinkageNames || !ND) 723 return false; 724 725 const auto *FD = dyn_cast<FunctionDecl>(ND); 726 if (!FD) 727 return false; 728 729 // For C functions without prototypes, return false as their 730 // names should not be mangled. 731 if (!FD->getType()->getAs<FunctionProtoType>()) 732 return false; 733 734 if (isInternalLinkageDecl(ND)) 735 return true; 736 737 return false; 738 } 739 740 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 741 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 742 LanguageLinkage L = FD->getLanguageLinkage(); 743 // Overloadable functions need mangling. 744 if (FD->hasAttr<OverloadableAttr>()) 745 return true; 746 747 // "main" is not mangled. 748 if (FD->isMain()) 749 return false; 750 751 // The Windows ABI expects that we would never mangle "typical" 752 // user-defined entry points regardless of visibility or freestanding-ness. 753 // 754 // N.B. This is distinct from asking about "main". "main" has a lot of 755 // special rules associated with it in the standard while these 756 // user-defined entry points are outside of the purview of the standard. 757 // For example, there can be only one definition for "main" in a standards 758 // compliant program; however nothing forbids the existence of wmain and 759 // WinMain in the same translation unit. 760 if (FD->isMSVCRTEntryPoint()) 761 return false; 762 763 // C++ functions and those whose names are not a simple identifier need 764 // mangling. 765 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 766 return true; 767 768 // C functions are not mangled. 769 if (L == CLanguageLinkage) 770 return false; 771 } 772 773 // Otherwise, no mangling is done outside C++ mode. 774 if (!getASTContext().getLangOpts().CPlusPlus) 775 return false; 776 777 if (const auto *VD = dyn_cast<VarDecl>(D)) { 778 // Decompositions are mangled. 779 if (isa<DecompositionDecl>(VD)) 780 return true; 781 782 // C variables are not mangled. 783 if (VD->isExternC()) 784 return false; 785 786 // Variables at global scope are not mangled unless they have internal 787 // linkage or are specializations or are attached to a named module. 788 const DeclContext *DC = getEffectiveDeclContext(D); 789 // Check for extern variable declared locally. 790 if (DC->isFunctionOrMethod() && D->hasLinkage()) 791 while (!DC->isFileContext()) 792 DC = getEffectiveParentContext(DC); 793 if (DC->isTranslationUnit() && D->getFormalLinkage() != Linkage::Internal && 794 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 795 !isa<VarTemplateSpecializationDecl>(VD) && 796 !VD->getOwningModuleForLinkage()) 797 return false; 798 } 799 800 return true; 801 } 802 803 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 804 const AbiTagList *AdditionalAbiTags) { 805 assert(AbiTags && "require AbiTagState"); 806 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 807 } 808 809 void CXXNameMangler::mangleSourceNameWithAbiTags( 810 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 811 mangleSourceName(ND->getIdentifier()); 812 writeAbiTags(ND, AdditionalAbiTags); 813 } 814 815 void CXXNameMangler::mangle(GlobalDecl GD) { 816 // <mangled-name> ::= _Z <encoding> 817 // ::= <data name> 818 // ::= <special-name> 819 Out << "_Z"; 820 if (isa<FunctionDecl>(GD.getDecl())) 821 mangleFunctionEncoding(GD); 822 else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, 823 BindingDecl>(GD.getDecl())) 824 mangleName(GD); 825 else if (const IndirectFieldDecl *IFD = 826 dyn_cast<IndirectFieldDecl>(GD.getDecl())) 827 mangleName(IFD->getAnonField()); 828 else 829 llvm_unreachable("unexpected kind of global decl"); 830 } 831 832 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { 833 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 834 // <encoding> ::= <function name> <bare-function-type> 835 836 // Don't mangle in the type if this isn't a decl we should typically mangle. 837 if (!Context.shouldMangleDeclName(FD)) { 838 mangleName(GD); 839 return; 840 } 841 842 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 843 if (ReturnTypeAbiTags.empty()) { 844 // There are no tags for return type, the simplest case. Enter the function 845 // parameter scope before mangling the name, because a template using 846 // constrained `auto` can have references to its parameters within its 847 // template argument list: 848 // 849 // template<typename T> void f(T x, C<decltype(x)> auto) 850 // ... is mangled as ... 851 // template<typename T, C<decltype(param 1)> U> void f(T, U) 852 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 853 mangleName(GD); 854 FunctionTypeDepth.pop(Saved); 855 mangleFunctionEncodingBareType(FD); 856 return; 857 } 858 859 // Mangle function name and encoding to temporary buffer. 860 // We have to output name and encoding to the same mangler to get the same 861 // substitution as it will be in final mangling. 862 SmallString<256> FunctionEncodingBuf; 863 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 864 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 865 // Output name of the function. 866 FunctionEncodingMangler.disableDerivedAbiTags(); 867 868 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 869 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 870 FunctionTypeDepth.pop(Saved); 871 872 // Remember length of the function name in the buffer. 873 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 874 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 875 876 // Get tags from return type that are not present in function name or 877 // encoding. 878 const AbiTagList &UsedAbiTags = 879 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 880 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 881 AdditionalAbiTags.erase( 882 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 883 UsedAbiTags.begin(), UsedAbiTags.end(), 884 AdditionalAbiTags.begin()), 885 AdditionalAbiTags.end()); 886 887 // Output name with implicit tags and function encoding from temporary buffer. 888 Saved = FunctionTypeDepth.push(); 889 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 890 FunctionTypeDepth.pop(Saved); 891 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 892 893 // Function encoding could create new substitutions so we have to add 894 // temp mangled substitutions to main mangler. 895 extendSubstitutions(&FunctionEncodingMangler); 896 } 897 898 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 899 if (FD->hasAttr<EnableIfAttr>()) { 900 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 901 Out << "Ua9enable_ifI"; 902 for (AttrVec::const_iterator I = FD->getAttrs().begin(), 903 E = FD->getAttrs().end(); 904 I != E; ++I) { 905 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 906 if (!EIA) 907 continue; 908 if (isCompatibleWith(LangOptions::ClangABI::Ver11)) { 909 // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, 910 // even though <template-arg> should not include an X/E around 911 // <expr-primary>. 912 Out << 'X'; 913 mangleExpression(EIA->getCond()); 914 Out << 'E'; 915 } else { 916 mangleTemplateArgExpr(EIA->getCond()); 917 } 918 } 919 Out << 'E'; 920 FunctionTypeDepth.pop(Saved); 921 } 922 923 // When mangling an inheriting constructor, the bare function type used is 924 // that of the inherited constructor. 925 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 926 if (auto Inherited = CD->getInheritedConstructor()) 927 FD = Inherited.getConstructor(); 928 929 // Whether the mangling of a function type includes the return type depends on 930 // the context and the nature of the function. The rules for deciding whether 931 // the return type is included are: 932 // 933 // 1. Template functions (names or types) have return types encoded, with 934 // the exceptions listed below. 935 // 2. Function types not appearing as part of a function name mangling, 936 // e.g. parameters, pointer types, etc., have return type encoded, with the 937 // exceptions listed below. 938 // 3. Non-template function names do not have return types encoded. 939 // 940 // The exceptions mentioned in (1) and (2) above, for which the return type is 941 // never included, are 942 // 1. Constructors. 943 // 2. Destructors. 944 // 3. Conversion operator functions, e.g. operator int. 945 bool MangleReturnType = false; 946 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 947 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 948 isa<CXXConversionDecl>(FD))) 949 MangleReturnType = true; 950 951 // Mangle the type of the primary template. 952 FD = PrimaryTemplate->getTemplatedDecl(); 953 } 954 955 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 956 MangleReturnType, FD); 957 } 958 959 /// Return whether a given namespace is the 'std' namespace. 960 bool CXXNameMangler::isStd(const NamespaceDecl *NS) { 961 if (!Context.getEffectiveParentContext(NS)->isTranslationUnit()) 962 return false; 963 964 const IdentifierInfo *II = NS->getFirstDecl()->getIdentifier(); 965 return II && II->isStr("std"); 966 } 967 968 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 969 // namespace. 970 bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { 971 if (!DC->isNamespace()) 972 return false; 973 974 return isStd(cast<NamespaceDecl>(DC)); 975 } 976 977 static const GlobalDecl 978 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { 979 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 980 // Check if we have a function template. 981 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 982 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 983 TemplateArgs = FD->getTemplateSpecializationArgs(); 984 return GD.getWithDecl(TD); 985 } 986 } 987 988 // Check if we have a class template. 989 if (const ClassTemplateSpecializationDecl *Spec = 990 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 991 TemplateArgs = &Spec->getTemplateArgs(); 992 return GD.getWithDecl(Spec->getSpecializedTemplate()); 993 } 994 995 // Check if we have a variable template. 996 if (const VarTemplateSpecializationDecl *Spec = 997 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 998 TemplateArgs = &Spec->getTemplateArgs(); 999 return GD.getWithDecl(Spec->getSpecializedTemplate()); 1000 } 1001 1002 return GlobalDecl(); 1003 } 1004 1005 static TemplateName asTemplateName(GlobalDecl GD) { 1006 const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl()); 1007 return TemplateName(const_cast<TemplateDecl*>(TD)); 1008 } 1009 1010 void CXXNameMangler::mangleName(GlobalDecl GD) { 1011 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1012 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1013 // Variables should have implicit tags from its type. 1014 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 1015 if (VariableTypeAbiTags.empty()) { 1016 // Simple case no variable type tags. 1017 mangleNameWithAbiTags(VD, nullptr); 1018 return; 1019 } 1020 1021 // Mangle variable name to null stream to collect tags. 1022 llvm::raw_null_ostream NullOutStream; 1023 CXXNameMangler VariableNameMangler(*this, NullOutStream); 1024 VariableNameMangler.disableDerivedAbiTags(); 1025 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 1026 1027 // Get tags from variable type that are not present in its name. 1028 const AbiTagList &UsedAbiTags = 1029 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 1030 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 1031 AdditionalAbiTags.erase( 1032 std::set_difference(VariableTypeAbiTags.begin(), 1033 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 1034 UsedAbiTags.end(), AdditionalAbiTags.begin()), 1035 AdditionalAbiTags.end()); 1036 1037 // Output name with implicit tags. 1038 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 1039 } else { 1040 mangleNameWithAbiTags(GD, nullptr); 1041 } 1042 } 1043 1044 const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { 1045 const DeclContext *DC = Context.getEffectiveDeclContext(D); 1046 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 1047 if (isLocalContainerContext(DC)) 1048 return dyn_cast<RecordDecl>(D); 1049 D = cast<Decl>(DC); 1050 DC = Context.getEffectiveDeclContext(D); 1051 } 1052 return nullptr; 1053 } 1054 1055 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, 1056 const AbiTagList *AdditionalAbiTags) { 1057 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1058 // <name> ::= [<module-name>] <nested-name> 1059 // ::= [<module-name>] <unscoped-name> 1060 // ::= [<module-name>] <unscoped-template-name> <template-args> 1061 // ::= <local-name> 1062 // 1063 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 1064 bool IsLambda = isLambda(ND); 1065 1066 // If this is an extern variable declared locally, the relevant DeclContext 1067 // is that of the containing namespace, or the translation unit. 1068 // FIXME: This is a hack; extern variables declared locally should have 1069 // a proper semantic declaration context! 1070 if (isLocalContainerContext(DC) && ND->hasLinkage() && !IsLambda) 1071 while (!DC->isNamespace() && !DC->isTranslationUnit()) 1072 DC = Context.getEffectiveParentContext(DC); 1073 else if (GetLocalClassDecl(ND) && 1074 (!IsLambda || isCompatibleWith(LangOptions::ClangABI::Ver18))) { 1075 mangleLocalName(GD, AdditionalAbiTags); 1076 return; 1077 } 1078 1079 assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl"); 1080 1081 // Closures can require a nested-name mangling even if they're semantically 1082 // in the global namespace. 1083 if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 1084 mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); 1085 return; 1086 } 1087 1088 if (isLocalContainerContext(DC)) { 1089 mangleLocalName(GD, AdditionalAbiTags); 1090 return; 1091 } 1092 1093 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1094 // Check if we have a template. 1095 const TemplateArgumentList *TemplateArgs = nullptr; 1096 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1097 mangleUnscopedTemplateName(TD, DC, AdditionalAbiTags); 1098 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1099 return; 1100 } 1101 1102 mangleUnscopedName(GD, DC, AdditionalAbiTags); 1103 return; 1104 } 1105 1106 mangleNestedName(GD, DC, AdditionalAbiTags); 1107 } 1108 1109 void CXXNameMangler::mangleModuleName(const NamedDecl *ND) { 1110 if (ND->isExternallyVisible()) 1111 if (Module *M = ND->getOwningModuleForLinkage()) 1112 mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName()); 1113 } 1114 1115 // <module-name> ::= <module-subname> 1116 // ::= <module-name> <module-subname> 1117 // ::= <substitution> 1118 // <module-subname> ::= W <source-name> 1119 // ::= W P <source-name> 1120 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) { 1121 // <substitution> ::= S <seq-id> _ 1122 auto It = ModuleSubstitutions.find(Name); 1123 if (It != ModuleSubstitutions.end()) { 1124 Out << 'S'; 1125 mangleSeqID(It->second); 1126 return; 1127 } 1128 1129 // FIXME: Preserve hierarchy in module names rather than flattening 1130 // them to strings; use Module*s as substitution keys. 1131 auto Parts = Name.rsplit('.'); 1132 if (Parts.second.empty()) 1133 Parts.second = Parts.first; 1134 else { 1135 mangleModuleNamePrefix(Parts.first, IsPartition); 1136 IsPartition = false; 1137 } 1138 1139 Out << 'W'; 1140 if (IsPartition) 1141 Out << 'P'; 1142 Out << Parts.second.size() << Parts.second; 1143 ModuleSubstitutions.insert({Name, SeqID++}); 1144 } 1145 1146 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 1147 ArrayRef<TemplateArgument> Args) { 1148 const DeclContext *DC = Context.getEffectiveDeclContext(TD); 1149 1150 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1151 mangleUnscopedTemplateName(TD, DC, nullptr); 1152 mangleTemplateArgs(asTemplateName(TD), Args); 1153 } else { 1154 mangleNestedName(TD, Args); 1155 } 1156 } 1157 1158 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, 1159 const AbiTagList *AdditionalAbiTags) { 1160 // <unscoped-name> ::= <unqualified-name> 1161 // ::= St <unqualified-name> # ::std:: 1162 1163 assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl"); 1164 if (isStdNamespace(DC)) 1165 Out << "St"; 1166 1167 mangleUnqualifiedName(GD, DC, AdditionalAbiTags); 1168 } 1169 1170 void CXXNameMangler::mangleUnscopedTemplateName( 1171 GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) { 1172 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 1173 // <unscoped-template-name> ::= <unscoped-name> 1174 // ::= <substitution> 1175 if (mangleSubstitution(ND)) 1176 return; 1177 1178 // <template-template-param> ::= <template-param> 1179 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1180 assert(!AdditionalAbiTags && 1181 "template template param cannot have abi tags"); 1182 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 1183 } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) { 1184 mangleUnscopedName(GD, DC, AdditionalAbiTags); 1185 } else { 1186 mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), DC, 1187 AdditionalAbiTags); 1188 } 1189 1190 addSubstitution(ND); 1191 } 1192 1193 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1194 // ABI: 1195 // Floating-point literals are encoded using a fixed-length 1196 // lowercase hexadecimal string corresponding to the internal 1197 // representation (IEEE on Itanium), high-order bytes first, 1198 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1199 // on Itanium. 1200 // The 'without leading zeroes' thing seems to be an editorial 1201 // mistake; see the discussion on cxx-abi-dev beginning on 1202 // 2012-01-16. 1203 1204 // Our requirements here are just barely weird enough to justify 1205 // using a custom algorithm instead of post-processing APInt::toString(). 1206 1207 llvm::APInt valueBits = f.bitcastToAPInt(); 1208 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1209 assert(numCharacters != 0); 1210 1211 // Allocate a buffer of the right number of characters. 1212 SmallVector<char, 20> buffer(numCharacters); 1213 1214 // Fill the buffer left-to-right. 1215 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1216 // The bit-index of the next hex digit. 1217 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1218 1219 // Project out 4 bits starting at 'digitIndex'. 1220 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1221 hexDigit >>= (digitBitIndex % 64); 1222 hexDigit &= 0xF; 1223 1224 // Map that over to a lowercase hex digit. 1225 static const char charForHex[16] = { 1226 '0', '1', '2', '3', '4', '5', '6', '7', 1227 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1228 }; 1229 buffer[stringIndex] = charForHex[hexDigit]; 1230 } 1231 1232 Out.write(buffer.data(), numCharacters); 1233 } 1234 1235 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { 1236 Out << 'L'; 1237 mangleType(T); 1238 mangleFloat(V); 1239 Out << 'E'; 1240 } 1241 1242 void CXXNameMangler::mangleFixedPointLiteral() { 1243 DiagnosticsEngine &Diags = Context.getDiags(); 1244 unsigned DiagID = Diags.getCustomDiagID( 1245 DiagnosticsEngine::Error, "cannot mangle fixed point literals yet"); 1246 Diags.Report(DiagID); 1247 } 1248 1249 void CXXNameMangler::mangleNullPointer(QualType T) { 1250 // <expr-primary> ::= L <type> 0 E 1251 Out << 'L'; 1252 mangleType(T); 1253 Out << "0E"; 1254 } 1255 1256 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1257 if (Value.isSigned() && Value.isNegative()) { 1258 Out << 'n'; 1259 Value.abs().print(Out, /*signed*/ false); 1260 } else { 1261 Value.print(Out, /*signed*/ false); 1262 } 1263 } 1264 1265 void CXXNameMangler::mangleNumber(int64_t Number) { 1266 // <number> ::= [n] <non-negative decimal integer> 1267 if (Number < 0) { 1268 Out << 'n'; 1269 Number = -Number; 1270 } 1271 1272 Out << Number; 1273 } 1274 1275 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1276 // <call-offset> ::= h <nv-offset> _ 1277 // ::= v <v-offset> _ 1278 // <nv-offset> ::= <offset number> # non-virtual base override 1279 // <v-offset> ::= <offset number> _ <virtual offset number> 1280 // # virtual base override, with vcall offset 1281 if (!Virtual) { 1282 Out << 'h'; 1283 mangleNumber(NonVirtual); 1284 Out << '_'; 1285 return; 1286 } 1287 1288 Out << 'v'; 1289 mangleNumber(NonVirtual); 1290 Out << '_'; 1291 mangleNumber(Virtual); 1292 Out << '_'; 1293 } 1294 1295 void CXXNameMangler::manglePrefix(QualType type) { 1296 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1297 if (!mangleSubstitution(QualType(TST, 0))) { 1298 mangleTemplatePrefix(TST->getTemplateName()); 1299 1300 // FIXME: GCC does not appear to mangle the template arguments when 1301 // the template in question is a dependent template name. Should we 1302 // emulate that badness? 1303 mangleTemplateArgs(TST->getTemplateName(), TST->template_arguments()); 1304 addSubstitution(QualType(TST, 0)); 1305 } 1306 } else if (const auto *DTST = 1307 type->getAs<DependentTemplateSpecializationType>()) { 1308 if (!mangleSubstitution(QualType(DTST, 0))) { 1309 TemplateName Template = getASTContext().getDependentTemplateName( 1310 DTST->getQualifier(), DTST->getIdentifier()); 1311 mangleTemplatePrefix(Template); 1312 1313 // FIXME: GCC does not appear to mangle the template arguments when 1314 // the template in question is a dependent template name. Should we 1315 // emulate that badness? 1316 mangleTemplateArgs(Template, DTST->template_arguments()); 1317 addSubstitution(QualType(DTST, 0)); 1318 } 1319 } else { 1320 // We use the QualType mangle type variant here because it handles 1321 // substitutions. 1322 mangleType(type); 1323 } 1324 } 1325 1326 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1327 /// 1328 /// \param recursive - true if this is being called recursively, 1329 /// i.e. if there is more prefix "to the right". 1330 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1331 bool recursive) { 1332 1333 // x, ::x 1334 // <unresolved-name> ::= [gs] <base-unresolved-name> 1335 1336 // T::x / decltype(p)::x 1337 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1338 1339 // T::N::x /decltype(p)::N::x 1340 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1341 // <base-unresolved-name> 1342 1343 // A::x, N::y, A<T>::z; "gs" means leading "::" 1344 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1345 // <base-unresolved-name> 1346 1347 switch (qualifier->getKind()) { 1348 case NestedNameSpecifier::Global: 1349 Out << "gs"; 1350 1351 // We want an 'sr' unless this is the entire NNS. 1352 if (recursive) 1353 Out << "sr"; 1354 1355 // We never want an 'E' here. 1356 return; 1357 1358 case NestedNameSpecifier::Super: 1359 llvm_unreachable("Can't mangle __super specifier"); 1360 1361 case NestedNameSpecifier::Namespace: 1362 if (qualifier->getPrefix()) 1363 mangleUnresolvedPrefix(qualifier->getPrefix(), 1364 /*recursive*/ true); 1365 else 1366 Out << "sr"; 1367 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1368 break; 1369 case NestedNameSpecifier::NamespaceAlias: 1370 if (qualifier->getPrefix()) 1371 mangleUnresolvedPrefix(qualifier->getPrefix(), 1372 /*recursive*/ true); 1373 else 1374 Out << "sr"; 1375 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1376 break; 1377 1378 case NestedNameSpecifier::TypeSpec: 1379 case NestedNameSpecifier::TypeSpecWithTemplate: { 1380 const Type *type = qualifier->getAsType(); 1381 1382 // We only want to use an unresolved-type encoding if this is one of: 1383 // - a decltype 1384 // - a template type parameter 1385 // - a template template parameter with arguments 1386 // In all of these cases, we should have no prefix. 1387 if (qualifier->getPrefix()) { 1388 mangleUnresolvedPrefix(qualifier->getPrefix(), 1389 /*recursive*/ true); 1390 } else { 1391 // Otherwise, all the cases want this. 1392 Out << "sr"; 1393 } 1394 1395 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1396 return; 1397 1398 break; 1399 } 1400 1401 case NestedNameSpecifier::Identifier: 1402 // Member expressions can have these without prefixes. 1403 if (qualifier->getPrefix()) 1404 mangleUnresolvedPrefix(qualifier->getPrefix(), 1405 /*recursive*/ true); 1406 else 1407 Out << "sr"; 1408 1409 mangleSourceName(qualifier->getAsIdentifier()); 1410 // An Identifier has no type information, so we can't emit abi tags for it. 1411 break; 1412 } 1413 1414 // If this was the innermost part of the NNS, and we fell out to 1415 // here, append an 'E'. 1416 if (!recursive) 1417 Out << 'E'; 1418 } 1419 1420 /// Mangle an unresolved-name, which is generally used for names which 1421 /// weren't resolved to specific entities. 1422 void CXXNameMangler::mangleUnresolvedName( 1423 NestedNameSpecifier *qualifier, DeclarationName name, 1424 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1425 unsigned knownArity) { 1426 if (qualifier) mangleUnresolvedPrefix(qualifier); 1427 switch (name.getNameKind()) { 1428 // <base-unresolved-name> ::= <simple-id> 1429 case DeclarationName::Identifier: 1430 mangleSourceName(name.getAsIdentifierInfo()); 1431 break; 1432 // <base-unresolved-name> ::= dn <destructor-name> 1433 case DeclarationName::CXXDestructorName: 1434 Out << "dn"; 1435 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1436 break; 1437 // <base-unresolved-name> ::= on <operator-name> 1438 case DeclarationName::CXXConversionFunctionName: 1439 case DeclarationName::CXXLiteralOperatorName: 1440 case DeclarationName::CXXOperatorName: 1441 Out << "on"; 1442 mangleOperatorName(name, knownArity); 1443 break; 1444 case DeclarationName::CXXConstructorName: 1445 llvm_unreachable("Can't mangle a constructor name!"); 1446 case DeclarationName::CXXUsingDirective: 1447 llvm_unreachable("Can't mangle a using directive name!"); 1448 case DeclarationName::CXXDeductionGuideName: 1449 llvm_unreachable("Can't mangle a deduction guide name!"); 1450 case DeclarationName::ObjCMultiArgSelector: 1451 case DeclarationName::ObjCOneArgSelector: 1452 case DeclarationName::ObjCZeroArgSelector: 1453 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1454 } 1455 1456 // The <simple-id> and on <operator-name> productions end in an optional 1457 // <template-args>. 1458 if (TemplateArgs) 1459 mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs); 1460 } 1461 1462 void CXXNameMangler::mangleUnqualifiedName( 1463 GlobalDecl GD, DeclarationName Name, const DeclContext *DC, 1464 unsigned KnownArity, const AbiTagList *AdditionalAbiTags) { 1465 const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl()); 1466 // <unqualified-name> ::= [<module-name>] [F] <operator-name> 1467 // ::= <ctor-dtor-name> 1468 // ::= [<module-name>] [F] <source-name> 1469 // ::= [<module-name>] DC <source-name>* E 1470 1471 if (ND && DC && DC->isFileContext()) 1472 mangleModuleName(ND); 1473 1474 // A member-like constrained friend is mangled with a leading 'F'. 1475 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. 1476 auto *FD = dyn_cast<FunctionDecl>(ND); 1477 auto *FTD = dyn_cast<FunctionTemplateDecl>(ND); 1478 if ((FD && FD->isMemberLikeConstrainedFriend()) || 1479 (FTD && FTD->getTemplatedDecl()->isMemberLikeConstrainedFriend())) { 1480 if (!isCompatibleWith(LangOptions::ClangABI::Ver17)) 1481 Out << 'F'; 1482 } 1483 1484 unsigned Arity = KnownArity; 1485 switch (Name.getNameKind()) { 1486 case DeclarationName::Identifier: { 1487 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1488 1489 // We mangle decomposition declarations as the names of their bindings. 1490 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1491 // FIXME: Non-standard mangling for decomposition declarations: 1492 // 1493 // <unqualified-name> ::= DC <source-name>* E 1494 // 1495 // Proposed on cxx-abi-dev on 2016-08-12 1496 Out << "DC"; 1497 for (auto *BD : DD->bindings()) 1498 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1499 Out << 'E'; 1500 writeAbiTags(ND, AdditionalAbiTags); 1501 break; 1502 } 1503 1504 if (auto *GD = dyn_cast<MSGuidDecl>(ND)) { 1505 // We follow MSVC in mangling GUID declarations as if they were variables 1506 // with a particular reserved name. Continue the pretense here. 1507 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1508 llvm::raw_svector_ostream GUIDOS(GUID); 1509 Context.mangleMSGuidDecl(GD, GUIDOS); 1510 Out << GUID.size() << GUID; 1511 break; 1512 } 1513 1514 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1515 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 1516 Out << "TA"; 1517 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 1518 TPO->getValue(), /*TopLevel=*/true); 1519 break; 1520 } 1521 1522 if (II) { 1523 // Match GCC's naming convention for internal linkage symbols, for 1524 // symbols that are not actually visible outside of this TU. GCC 1525 // distinguishes between internal and external linkage symbols in 1526 // its mangling, to support cases like this that were valid C++ prior 1527 // to DR426: 1528 // 1529 // void test() { extern void foo(); } 1530 // static void foo(); 1531 // 1532 // Don't bother with the L marker for names in anonymous namespaces; the 1533 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1534 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1535 // implying internal linkage. 1536 if (Context.isInternalLinkageDecl(ND)) 1537 Out << 'L'; 1538 1539 bool IsRegCall = FD && 1540 FD->getType()->castAs<FunctionType>()->getCallConv() == 1541 clang::CC_X86RegCall; 1542 bool IsDeviceStub = 1543 FD && FD->hasAttr<CUDAGlobalAttr>() && 1544 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1545 if (IsDeviceStub) 1546 mangleDeviceStubName(II); 1547 else if (IsRegCall) 1548 mangleRegCallName(II); 1549 else 1550 mangleSourceName(II); 1551 1552 writeAbiTags(ND, AdditionalAbiTags); 1553 break; 1554 } 1555 1556 // Otherwise, an anonymous entity. We must have a declaration. 1557 assert(ND && "mangling empty name without declaration"); 1558 1559 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1560 if (NS->isAnonymousNamespace()) { 1561 // This is how gcc mangles these names. 1562 Out << "12_GLOBAL__N_1"; 1563 break; 1564 } 1565 } 1566 1567 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1568 // We must have an anonymous union or struct declaration. 1569 const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); 1570 1571 // Itanium C++ ABI 5.1.2: 1572 // 1573 // For the purposes of mangling, the name of an anonymous union is 1574 // considered to be the name of the first named data member found by a 1575 // pre-order, depth-first, declaration-order walk of the data members of 1576 // the anonymous union. If there is no such data member (i.e., if all of 1577 // the data members in the union are unnamed), then there is no way for 1578 // a program to refer to the anonymous union, and there is therefore no 1579 // need to mangle its name. 1580 assert(RD->isAnonymousStructOrUnion() 1581 && "Expected anonymous struct or union!"); 1582 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1583 1584 // It's actually possible for various reasons for us to get here 1585 // with an empty anonymous struct / union. Fortunately, it 1586 // doesn't really matter what name we generate. 1587 if (!FD) break; 1588 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1589 1590 mangleSourceName(FD->getIdentifier()); 1591 // Not emitting abi tags: internal name anyway. 1592 break; 1593 } 1594 1595 // Class extensions have no name as a category, and it's possible 1596 // for them to be the semantic parent of certain declarations 1597 // (primarily, tag decls defined within declarations). Such 1598 // declarations will always have internal linkage, so the name 1599 // doesn't really matter, but we shouldn't crash on them. For 1600 // safety, just handle all ObjC containers here. 1601 if (isa<ObjCContainerDecl>(ND)) 1602 break; 1603 1604 // We must have an anonymous struct. 1605 const TagDecl *TD = cast<TagDecl>(ND); 1606 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1607 assert(TD->getDeclContext() == D->getDeclContext() && 1608 "Typedef should not be in another decl context!"); 1609 assert(D->getDeclName().getAsIdentifierInfo() && 1610 "Typedef was not named!"); 1611 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1612 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1613 // Explicit abi tags are still possible; take from underlying type, not 1614 // from typedef. 1615 writeAbiTags(TD, nullptr); 1616 break; 1617 } 1618 1619 // <unnamed-type-name> ::= <closure-type-name> 1620 // 1621 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1622 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ 1623 // # Parameter types or 'v' for 'void'. 1624 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1625 std::optional<unsigned> DeviceNumber = 1626 Context.getDiscriminatorOverride()(Context.getASTContext(), Record); 1627 1628 // If we have a device-number via the discriminator, use that to mangle 1629 // the lambda, otherwise use the typical lambda-mangling-number. In either 1630 // case, a '0' should be mangled as a normal unnamed class instead of as a 1631 // lambda. 1632 if (Record->isLambda() && 1633 ((DeviceNumber && *DeviceNumber > 0) || 1634 (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { 1635 assert(!AdditionalAbiTags && 1636 "Lambda type cannot have additional abi tags"); 1637 mangleLambda(Record); 1638 break; 1639 } 1640 } 1641 1642 if (TD->isExternallyVisible()) { 1643 unsigned UnnamedMangle = 1644 getASTContext().getManglingNumber(TD, Context.isAux()); 1645 Out << "Ut"; 1646 if (UnnamedMangle > 1) 1647 Out << UnnamedMangle - 2; 1648 Out << '_'; 1649 writeAbiTags(TD, AdditionalAbiTags); 1650 break; 1651 } 1652 1653 // Get a unique id for the anonymous struct. If it is not a real output 1654 // ID doesn't matter so use fake one. 1655 unsigned AnonStructId = 1656 NullOut ? 0 1657 : Context.getAnonymousStructId(TD, dyn_cast<FunctionDecl>(DC)); 1658 1659 // Mangle it as a source name in the form 1660 // [n] $_<id> 1661 // where n is the length of the string. 1662 SmallString<8> Str; 1663 Str += "$_"; 1664 Str += llvm::utostr(AnonStructId); 1665 1666 Out << Str.size(); 1667 Out << Str; 1668 break; 1669 } 1670 1671 case DeclarationName::ObjCZeroArgSelector: 1672 case DeclarationName::ObjCOneArgSelector: 1673 case DeclarationName::ObjCMultiArgSelector: 1674 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1675 1676 case DeclarationName::CXXConstructorName: { 1677 const CXXRecordDecl *InheritedFrom = nullptr; 1678 TemplateName InheritedTemplateName; 1679 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1680 if (auto Inherited = 1681 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1682 InheritedFrom = Inherited.getConstructor()->getParent(); 1683 InheritedTemplateName = 1684 TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); 1685 InheritedTemplateArgs = 1686 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1687 } 1688 1689 if (ND == Structor) 1690 // If the named decl is the C++ constructor we're mangling, use the type 1691 // we were given. 1692 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1693 else 1694 // Otherwise, use the complete constructor name. This is relevant if a 1695 // class with a constructor is declared within a constructor. 1696 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1697 1698 // FIXME: The template arguments are part of the enclosing prefix or 1699 // nested-name, but it's more convenient to mangle them here. 1700 if (InheritedTemplateArgs) 1701 mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs); 1702 1703 writeAbiTags(ND, AdditionalAbiTags); 1704 break; 1705 } 1706 1707 case DeclarationName::CXXDestructorName: 1708 if (ND == Structor) 1709 // If the named decl is the C++ destructor we're mangling, use the type we 1710 // were given. 1711 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1712 else 1713 // Otherwise, use the complete destructor name. This is relevant if a 1714 // class with a destructor is declared within a destructor. 1715 mangleCXXDtorType(Dtor_Complete); 1716 assert(ND); 1717 writeAbiTags(ND, AdditionalAbiTags); 1718 break; 1719 1720 case DeclarationName::CXXOperatorName: 1721 if (ND && Arity == UnknownArity) { 1722 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1723 1724 // If we have a member function, we need to include the 'this' pointer. 1725 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1726 if (MD->isImplicitObjectMemberFunction()) 1727 Arity++; 1728 } 1729 [[fallthrough]]; 1730 case DeclarationName::CXXConversionFunctionName: 1731 case DeclarationName::CXXLiteralOperatorName: 1732 mangleOperatorName(Name, Arity); 1733 writeAbiTags(ND, AdditionalAbiTags); 1734 break; 1735 1736 case DeclarationName::CXXDeductionGuideName: 1737 llvm_unreachable("Can't mangle a deduction guide name!"); 1738 1739 case DeclarationName::CXXUsingDirective: 1740 llvm_unreachable("Can't mangle a using directive name!"); 1741 } 1742 } 1743 1744 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1745 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1746 // <number> ::= [n] <non-negative decimal integer> 1747 // <identifier> ::= <unqualified source code identifier> 1748 if (getASTContext().getLangOpts().RegCall4) 1749 Out << II->getLength() + sizeof("__regcall4__") - 1 << "__regcall4__" 1750 << II->getName(); 1751 else 1752 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1753 << II->getName(); 1754 } 1755 1756 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { 1757 // <source-name> ::= <positive length number> __device_stub__ <identifier> 1758 // <number> ::= [n] <non-negative decimal integer> 1759 // <identifier> ::= <unqualified source code identifier> 1760 Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__" 1761 << II->getName(); 1762 } 1763 1764 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1765 // <source-name> ::= <positive length number> <identifier> 1766 // <number> ::= [n] <non-negative decimal integer> 1767 // <identifier> ::= <unqualified source code identifier> 1768 Out << II->getLength() << II->getName(); 1769 } 1770 1771 void CXXNameMangler::mangleNestedName(GlobalDecl GD, 1772 const DeclContext *DC, 1773 const AbiTagList *AdditionalAbiTags, 1774 bool NoFunction) { 1775 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1776 // <nested-name> 1777 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1778 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1779 // <template-args> E 1780 1781 Out << 'N'; 1782 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1783 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1784 // We do not consider restrict a distinguishing attribute for overloading 1785 // purposes so we must not mangle it. 1786 if (Method->isExplicitObjectMemberFunction()) 1787 Out << 'H'; 1788 MethodQuals.removeRestrict(); 1789 mangleQualifiers(MethodQuals); 1790 mangleRefQualifier(Method->getRefQualifier()); 1791 } 1792 1793 // Check if we have a template. 1794 const TemplateArgumentList *TemplateArgs = nullptr; 1795 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1796 mangleTemplatePrefix(TD, NoFunction); 1797 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1798 } else { 1799 manglePrefix(DC, NoFunction); 1800 mangleUnqualifiedName(GD, DC, AdditionalAbiTags); 1801 } 1802 1803 Out << 'E'; 1804 } 1805 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1806 ArrayRef<TemplateArgument> Args) { 1807 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1808 1809 Out << 'N'; 1810 1811 mangleTemplatePrefix(TD); 1812 mangleTemplateArgs(asTemplateName(TD), Args); 1813 1814 Out << 'E'; 1815 } 1816 1817 void CXXNameMangler::mangleNestedNameWithClosurePrefix( 1818 GlobalDecl GD, const NamedDecl *PrefixND, 1819 const AbiTagList *AdditionalAbiTags) { 1820 // A <closure-prefix> represents a variable or field, not a regular 1821 // DeclContext, so needs special handling. In this case we're mangling a 1822 // limited form of <nested-name>: 1823 // 1824 // <nested-name> ::= N <closure-prefix> <closure-type-name> E 1825 1826 Out << 'N'; 1827 1828 mangleClosurePrefix(PrefixND); 1829 mangleUnqualifiedName(GD, nullptr, AdditionalAbiTags); 1830 1831 Out << 'E'; 1832 } 1833 1834 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { 1835 GlobalDecl GD; 1836 // The Itanium spec says: 1837 // For entities in constructors and destructors, the mangling of the 1838 // complete object constructor or destructor is used as the base function 1839 // name, i.e. the C1 or D1 version. 1840 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 1841 GD = GlobalDecl(CD, Ctor_Complete); 1842 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 1843 GD = GlobalDecl(DD, Dtor_Complete); 1844 else 1845 GD = GlobalDecl(cast<FunctionDecl>(DC)); 1846 return GD; 1847 } 1848 1849 void CXXNameMangler::mangleLocalName(GlobalDecl GD, 1850 const AbiTagList *AdditionalAbiTags) { 1851 const Decl *D = GD.getDecl(); 1852 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1853 // := Z <function encoding> E s [<discriminator>] 1854 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1855 // _ <entity name> 1856 // <discriminator> := _ <non-negative number> 1857 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1858 const RecordDecl *RD = GetLocalClassDecl(D); 1859 const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D); 1860 1861 Out << 'Z'; 1862 1863 { 1864 AbiTagState LocalAbiTags(AbiTags); 1865 1866 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1867 mangleObjCMethodName(MD); 1868 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1869 mangleBlockForPrefix(BD); 1870 else 1871 mangleFunctionEncoding(getParentOfLocalEntity(DC)); 1872 1873 // Implicit ABI tags (from namespace) are not available in the following 1874 // entity; reset to actually emitted tags, which are available. 1875 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1876 } 1877 1878 Out << 'E'; 1879 1880 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1881 // be a bug that is fixed in trunk. 1882 1883 if (RD) { 1884 // The parameter number is omitted for the last parameter, 0 for the 1885 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1886 // <entity name> will of course contain a <closure-type-name>: Its 1887 // numbering will be local to the particular argument in which it appears 1888 // -- other default arguments do not affect its encoding. 1889 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1890 if (CXXRD && CXXRD->isLambda()) { 1891 if (const ParmVarDecl *Parm 1892 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1893 if (const FunctionDecl *Func 1894 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1895 Out << 'd'; 1896 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1897 if (Num > 1) 1898 mangleNumber(Num - 2); 1899 Out << '_'; 1900 } 1901 } 1902 } 1903 1904 // Mangle the name relative to the closest enclosing function. 1905 // equality ok because RD derived from ND above 1906 if (D == RD) { 1907 mangleUnqualifiedName(RD, DC, AdditionalAbiTags); 1908 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1909 if (const NamedDecl *PrefixND = getClosurePrefix(BD)) 1910 mangleClosurePrefix(PrefixND, true /*NoFunction*/); 1911 else 1912 manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/); 1913 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1914 mangleUnqualifiedBlock(BD); 1915 } else { 1916 const NamedDecl *ND = cast<NamedDecl>(D); 1917 mangleNestedName(GD, Context.getEffectiveDeclContext(ND), 1918 AdditionalAbiTags, true /*NoFunction*/); 1919 } 1920 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1921 // Mangle a block in a default parameter; see above explanation for 1922 // lambdas. 1923 if (const ParmVarDecl *Parm 1924 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1925 if (const FunctionDecl *Func 1926 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1927 Out << 'd'; 1928 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1929 if (Num > 1) 1930 mangleNumber(Num - 2); 1931 Out << '_'; 1932 } 1933 } 1934 1935 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1936 mangleUnqualifiedBlock(BD); 1937 } else { 1938 mangleUnqualifiedName(GD, DC, AdditionalAbiTags); 1939 } 1940 1941 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1942 unsigned disc; 1943 if (Context.getNextDiscriminator(ND, disc)) { 1944 if (disc < 10) 1945 Out << '_' << disc; 1946 else 1947 Out << "__" << disc << '_'; 1948 } 1949 } 1950 } 1951 1952 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1953 if (GetLocalClassDecl(Block)) { 1954 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1955 return; 1956 } 1957 const DeclContext *DC = Context.getEffectiveDeclContext(Block); 1958 if (isLocalContainerContext(DC)) { 1959 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1960 return; 1961 } 1962 if (const NamedDecl *PrefixND = getClosurePrefix(Block)) 1963 mangleClosurePrefix(PrefixND); 1964 else 1965 manglePrefix(DC); 1966 mangleUnqualifiedBlock(Block); 1967 } 1968 1969 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1970 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1971 // <data-member-prefix> now, with no substitutions and no <template-args>. 1972 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1973 if (isCompatibleWith(LangOptions::ClangABI::Ver12) && 1974 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1975 Context->getDeclContext()->isRecord()) { 1976 const auto *ND = cast<NamedDecl>(Context); 1977 if (ND->getIdentifier()) { 1978 mangleSourceNameWithAbiTags(ND); 1979 Out << 'M'; 1980 } 1981 } 1982 } 1983 1984 // If we have a block mangling number, use it. 1985 unsigned Number = Block->getBlockManglingNumber(); 1986 // Otherwise, just make up a number. It doesn't matter what it is because 1987 // the symbol in question isn't externally visible. 1988 if (!Number) 1989 Number = Context.getBlockId(Block, false); 1990 else { 1991 // Stored mangling numbers are 1-based. 1992 --Number; 1993 } 1994 Out << "Ub"; 1995 if (Number > 0) 1996 Out << Number - 1; 1997 Out << '_'; 1998 } 1999 2000 // <template-param-decl> 2001 // ::= Ty # template type parameter 2002 // ::= Tk <concept name> [<template-args>] # constrained type parameter 2003 // ::= Tn <type> # template non-type parameter 2004 // ::= Tt <template-param-decl>* E [Q <requires-clause expr>] 2005 // # template template parameter 2006 // ::= Tp <template-param-decl> # template parameter pack 2007 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { 2008 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 2009 if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) { 2010 if (Ty->isParameterPack()) 2011 Out << "Tp"; 2012 const TypeConstraint *Constraint = Ty->getTypeConstraint(); 2013 if (Constraint && !isCompatibleWith(LangOptions::ClangABI::Ver17)) { 2014 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. 2015 Out << "Tk"; 2016 mangleTypeConstraint(Constraint); 2017 } else { 2018 Out << "Ty"; 2019 } 2020 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { 2021 if (Tn->isExpandedParameterPack()) { 2022 for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { 2023 Out << "Tn"; 2024 mangleType(Tn->getExpansionType(I)); 2025 } 2026 } else { 2027 QualType T = Tn->getType(); 2028 if (Tn->isParameterPack()) { 2029 Out << "Tp"; 2030 if (auto *PackExpansion = T->getAs<PackExpansionType>()) 2031 T = PackExpansion->getPattern(); 2032 } 2033 Out << "Tn"; 2034 mangleType(T); 2035 } 2036 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { 2037 if (Tt->isExpandedParameterPack()) { 2038 for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; 2039 ++I) 2040 mangleTemplateParameterList(Tt->getExpansionTemplateParameters(I)); 2041 } else { 2042 if (Tt->isParameterPack()) 2043 Out << "Tp"; 2044 mangleTemplateParameterList(Tt->getTemplateParameters()); 2045 } 2046 } 2047 } 2048 2049 void CXXNameMangler::mangleTemplateParameterList( 2050 const TemplateParameterList *Params) { 2051 Out << "Tt"; 2052 for (auto *Param : *Params) 2053 mangleTemplateParamDecl(Param); 2054 mangleRequiresClause(Params->getRequiresClause()); 2055 Out << "E"; 2056 } 2057 2058 void CXXNameMangler::mangleTypeConstraint( 2059 const ConceptDecl *Concept, ArrayRef<TemplateArgument> Arguments) { 2060 const DeclContext *DC = Context.getEffectiveDeclContext(Concept); 2061 if (!Arguments.empty()) 2062 mangleTemplateName(Concept, Arguments); 2063 else if (DC->isTranslationUnit() || isStdNamespace(DC)) 2064 mangleUnscopedName(Concept, DC, nullptr); 2065 else 2066 mangleNestedName(Concept, DC, nullptr); 2067 } 2068 2069 void CXXNameMangler::mangleTypeConstraint(const TypeConstraint *Constraint) { 2070 llvm::SmallVector<TemplateArgument, 8> Args; 2071 if (Constraint->getTemplateArgsAsWritten()) { 2072 for (const TemplateArgumentLoc &ArgLoc : 2073 Constraint->getTemplateArgsAsWritten()->arguments()) 2074 Args.push_back(ArgLoc.getArgument()); 2075 } 2076 return mangleTypeConstraint(Constraint->getNamedConcept(), Args); 2077 } 2078 2079 void CXXNameMangler::mangleRequiresClause(const Expr *RequiresClause) { 2080 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. 2081 if (RequiresClause && !isCompatibleWith(LangOptions::ClangABI::Ver17)) { 2082 Out << 'Q'; 2083 mangleExpression(RequiresClause); 2084 } 2085 } 2086 2087 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 2088 // When trying to be ABI-compatibility with clang 12 and before, mangle a 2089 // <data-member-prefix> now, with no substitutions. 2090 if (Decl *Context = Lambda->getLambdaContextDecl()) { 2091 if (isCompatibleWith(LangOptions::ClangABI::Ver12) && 2092 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 2093 !isa<ParmVarDecl>(Context)) { 2094 if (const IdentifierInfo *Name 2095 = cast<NamedDecl>(Context)->getIdentifier()) { 2096 mangleSourceName(Name); 2097 const TemplateArgumentList *TemplateArgs = nullptr; 2098 if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 2099 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2100 Out << 'M'; 2101 } 2102 } 2103 } 2104 2105 Out << "Ul"; 2106 mangleLambdaSig(Lambda); 2107 Out << "E"; 2108 2109 // The number is omitted for the first closure type with a given 2110 // <lambda-sig> in a given context; it is n-2 for the nth closure type 2111 // (in lexical order) with that same <lambda-sig> and context. 2112 // 2113 // The AST keeps track of the number for us. 2114 // 2115 // In CUDA/HIP, to ensure the consistent lamba numbering between the device- 2116 // and host-side compilations, an extra device mangle context may be created 2117 // if the host-side CXX ABI has different numbering for lambda. In such case, 2118 // if the mangle context is that device-side one, use the device-side lambda 2119 // mangling number for this lambda. 2120 std::optional<unsigned> DeviceNumber = 2121 Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); 2122 unsigned Number = 2123 DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); 2124 2125 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 2126 if (Number > 1) 2127 mangleNumber(Number - 2); 2128 Out << '_'; 2129 } 2130 2131 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { 2132 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/31. 2133 for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) 2134 mangleTemplateParamDecl(D); 2135 2136 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. 2137 if (auto *TPL = Lambda->getGenericLambdaTemplateParameterList()) 2138 mangleRequiresClause(TPL->getRequiresClause()); 2139 2140 auto *Proto = 2141 Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); 2142 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 2143 Lambda->getLambdaStaticInvoker()); 2144 } 2145 2146 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 2147 switch (qualifier->getKind()) { 2148 case NestedNameSpecifier::Global: 2149 // nothing 2150 return; 2151 2152 case NestedNameSpecifier::Super: 2153 llvm_unreachable("Can't mangle __super specifier"); 2154 2155 case NestedNameSpecifier::Namespace: 2156 mangleName(qualifier->getAsNamespace()); 2157 return; 2158 2159 case NestedNameSpecifier::NamespaceAlias: 2160 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 2161 return; 2162 2163 case NestedNameSpecifier::TypeSpec: 2164 case NestedNameSpecifier::TypeSpecWithTemplate: 2165 manglePrefix(QualType(qualifier->getAsType(), 0)); 2166 return; 2167 2168 case NestedNameSpecifier::Identifier: 2169 // Clang 14 and before did not consider this substitutable. 2170 bool Clang14Compat = isCompatibleWith(LangOptions::ClangABI::Ver14); 2171 if (!Clang14Compat && mangleSubstitution(qualifier)) 2172 return; 2173 2174 // Member expressions can have these without prefixes, but that 2175 // should end up in mangleUnresolvedPrefix instead. 2176 assert(qualifier->getPrefix()); 2177 manglePrefix(qualifier->getPrefix()); 2178 2179 mangleSourceName(qualifier->getAsIdentifier()); 2180 2181 if (!Clang14Compat) 2182 addSubstitution(qualifier); 2183 return; 2184 } 2185 2186 llvm_unreachable("unexpected nested name specifier"); 2187 } 2188 2189 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 2190 // <prefix> ::= <prefix> <unqualified-name> 2191 // ::= <template-prefix> <template-args> 2192 // ::= <closure-prefix> 2193 // ::= <template-param> 2194 // ::= # empty 2195 // ::= <substitution> 2196 2197 assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl"); 2198 2199 if (DC->isTranslationUnit()) 2200 return; 2201 2202 if (NoFunction && isLocalContainerContext(DC)) 2203 return; 2204 2205 const NamedDecl *ND = cast<NamedDecl>(DC); 2206 if (mangleSubstitution(ND)) 2207 return; 2208 2209 // Check if we have a template-prefix or a closure-prefix. 2210 const TemplateArgumentList *TemplateArgs = nullptr; 2211 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2212 mangleTemplatePrefix(TD); 2213 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2214 } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 2215 mangleClosurePrefix(PrefixND, NoFunction); 2216 mangleUnqualifiedName(ND, nullptr, nullptr); 2217 } else { 2218 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 2219 manglePrefix(DC, NoFunction); 2220 mangleUnqualifiedName(ND, DC, nullptr); 2221 } 2222 2223 addSubstitution(ND); 2224 } 2225 2226 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 2227 // <template-prefix> ::= <prefix> <template unqualified-name> 2228 // ::= <template-param> 2229 // ::= <substitution> 2230 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 2231 return mangleTemplatePrefix(TD); 2232 2233 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 2234 assert(Dependent && "unexpected template name kind"); 2235 2236 // Clang 11 and before mangled the substitution for a dependent template name 2237 // after already having emitted (a substitution for) the prefix. 2238 bool Clang11Compat = isCompatibleWith(LangOptions::ClangABI::Ver11); 2239 if (!Clang11Compat && mangleSubstitution(Template)) 2240 return; 2241 2242 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 2243 manglePrefix(Qualifier); 2244 2245 if (Clang11Compat && mangleSubstitution(Template)) 2246 return; 2247 2248 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 2249 mangleSourceName(Id); 2250 else 2251 mangleOperatorName(Dependent->getOperator(), UnknownArity); 2252 2253 addSubstitution(Template); 2254 } 2255 2256 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, 2257 bool NoFunction) { 2258 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 2259 // <template-prefix> ::= <prefix> <template unqualified-name> 2260 // ::= <template-param> 2261 // ::= <substitution> 2262 // <template-template-param> ::= <template-param> 2263 // <substitution> 2264 2265 if (mangleSubstitution(ND)) 2266 return; 2267 2268 // <template-template-param> ::= <template-param> 2269 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 2270 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2271 } else { 2272 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 2273 manglePrefix(DC, NoFunction); 2274 if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) 2275 mangleUnqualifiedName(GD, DC, nullptr); 2276 else 2277 mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), DC, 2278 nullptr); 2279 } 2280 2281 addSubstitution(ND); 2282 } 2283 2284 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { 2285 if (isCompatibleWith(LangOptions::ClangABI::Ver12)) 2286 return nullptr; 2287 2288 const NamedDecl *Context = nullptr; 2289 if (auto *Block = dyn_cast<BlockDecl>(ND)) { 2290 Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl()); 2291 } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 2292 if (RD->isLambda()) 2293 Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl()); 2294 } 2295 if (!Context) 2296 return nullptr; 2297 2298 // Only lambdas within the initializer of a non-local variable or non-static 2299 // data member get a <closure-prefix>. 2300 if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) || 2301 isa<FieldDecl>(Context)) 2302 return Context; 2303 2304 return nullptr; 2305 } 2306 2307 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { 2308 // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M 2309 // ::= <template-prefix> <template-args> M 2310 if (mangleSubstitution(ND)) 2311 return; 2312 2313 const TemplateArgumentList *TemplateArgs = nullptr; 2314 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2315 mangleTemplatePrefix(TD, NoFunction); 2316 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2317 } else { 2318 const auto *DC = Context.getEffectiveDeclContext(ND); 2319 manglePrefix(DC, NoFunction); 2320 mangleUnqualifiedName(ND, DC, nullptr); 2321 } 2322 2323 Out << 'M'; 2324 2325 addSubstitution(ND); 2326 } 2327 2328 /// Mangles a template name under the production <type>. Required for 2329 /// template template arguments. 2330 /// <type> ::= <class-enum-type> 2331 /// ::= <template-param> 2332 /// ::= <substitution> 2333 void CXXNameMangler::mangleType(TemplateName TN) { 2334 if (mangleSubstitution(TN)) 2335 return; 2336 2337 TemplateDecl *TD = nullptr; 2338 2339 switch (TN.getKind()) { 2340 case TemplateName::QualifiedTemplate: 2341 case TemplateName::UsingTemplate: 2342 case TemplateName::Template: 2343 TD = TN.getAsTemplateDecl(); 2344 goto HaveDecl; 2345 2346 HaveDecl: 2347 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD)) 2348 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2349 else 2350 mangleName(TD); 2351 break; 2352 2353 case TemplateName::OverloadedTemplate: 2354 case TemplateName::AssumedTemplate: 2355 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 2356 2357 case TemplateName::DependentTemplate: { 2358 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 2359 assert(Dependent->isIdentifier()); 2360 2361 // <class-enum-type> ::= <name> 2362 // <name> ::= <nested-name> 2363 mangleUnresolvedPrefix(Dependent->getQualifier()); 2364 mangleSourceName(Dependent->getIdentifier()); 2365 break; 2366 } 2367 2368 case TemplateName::SubstTemplateTemplateParm: { 2369 // Substituted template parameters are mangled as the substituted 2370 // template. This will check for the substitution twice, which is 2371 // fine, but we have to return early so that we don't try to *add* 2372 // the substitution twice. 2373 SubstTemplateTemplateParmStorage *subst 2374 = TN.getAsSubstTemplateTemplateParm(); 2375 mangleType(subst->getReplacement()); 2376 return; 2377 } 2378 2379 case TemplateName::SubstTemplateTemplateParmPack: { 2380 // FIXME: not clear how to mangle this! 2381 // template <template <class> class T...> class A { 2382 // template <template <class> class U...> void foo(B<T,U> x...); 2383 // }; 2384 Out << "_SUBSTPACK_"; 2385 break; 2386 } 2387 } 2388 2389 addSubstitution(TN); 2390 } 2391 2392 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 2393 StringRef Prefix) { 2394 // Only certain other types are valid as prefixes; enumerate them. 2395 switch (Ty->getTypeClass()) { 2396 case Type::Builtin: 2397 case Type::Complex: 2398 case Type::Adjusted: 2399 case Type::Decayed: 2400 case Type::ArrayParameter: 2401 case Type::Pointer: 2402 case Type::BlockPointer: 2403 case Type::LValueReference: 2404 case Type::RValueReference: 2405 case Type::MemberPointer: 2406 case Type::ConstantArray: 2407 case Type::IncompleteArray: 2408 case Type::VariableArray: 2409 case Type::DependentSizedArray: 2410 case Type::DependentAddressSpace: 2411 case Type::DependentVector: 2412 case Type::DependentSizedExtVector: 2413 case Type::Vector: 2414 case Type::ExtVector: 2415 case Type::ConstantMatrix: 2416 case Type::DependentSizedMatrix: 2417 case Type::FunctionProto: 2418 case Type::FunctionNoProto: 2419 case Type::Paren: 2420 case Type::Attributed: 2421 case Type::BTFTagAttributed: 2422 case Type::Auto: 2423 case Type::DeducedTemplateSpecialization: 2424 case Type::PackExpansion: 2425 case Type::ObjCObject: 2426 case Type::ObjCInterface: 2427 case Type::ObjCObjectPointer: 2428 case Type::ObjCTypeParam: 2429 case Type::Atomic: 2430 case Type::Pipe: 2431 case Type::MacroQualified: 2432 case Type::BitInt: 2433 case Type::DependentBitInt: 2434 case Type::CountAttributed: 2435 llvm_unreachable("type is illegal as a nested name specifier"); 2436 2437 case Type::SubstTemplateTypeParmPack: 2438 // FIXME: not clear how to mangle this! 2439 // template <class T...> class A { 2440 // template <class U...> void foo(decltype(T::foo(U())) x...); 2441 // }; 2442 Out << "_SUBSTPACK_"; 2443 break; 2444 2445 // <unresolved-type> ::= <template-param> 2446 // ::= <decltype> 2447 // ::= <template-template-param> <template-args> 2448 // (this last is not official yet) 2449 case Type::TypeOfExpr: 2450 case Type::TypeOf: 2451 case Type::Decltype: 2452 case Type::PackIndexing: 2453 case Type::TemplateTypeParm: 2454 case Type::UnaryTransform: 2455 case Type::SubstTemplateTypeParm: 2456 unresolvedType: 2457 // Some callers want a prefix before the mangled type. 2458 Out << Prefix; 2459 2460 // This seems to do everything we want. It's not really 2461 // sanctioned for a substituted template parameter, though. 2462 mangleType(Ty); 2463 2464 // We never want to print 'E' directly after an unresolved-type, 2465 // so we return directly. 2466 return true; 2467 2468 case Type::Typedef: 2469 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 2470 break; 2471 2472 case Type::UnresolvedUsing: 2473 mangleSourceNameWithAbiTags( 2474 cast<UnresolvedUsingType>(Ty)->getDecl()); 2475 break; 2476 2477 case Type::Enum: 2478 case Type::Record: 2479 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 2480 break; 2481 2482 case Type::TemplateSpecialization: { 2483 const TemplateSpecializationType *TST = 2484 cast<TemplateSpecializationType>(Ty); 2485 TemplateName TN = TST->getTemplateName(); 2486 switch (TN.getKind()) { 2487 case TemplateName::Template: 2488 case TemplateName::QualifiedTemplate: { 2489 TemplateDecl *TD = TN.getAsTemplateDecl(); 2490 2491 // If the base is a template template parameter, this is an 2492 // unresolved type. 2493 assert(TD && "no template for template specialization type"); 2494 if (isa<TemplateTemplateParmDecl>(TD)) 2495 goto unresolvedType; 2496 2497 mangleSourceNameWithAbiTags(TD); 2498 break; 2499 } 2500 2501 case TemplateName::OverloadedTemplate: 2502 case TemplateName::AssumedTemplate: 2503 case TemplateName::DependentTemplate: 2504 llvm_unreachable("invalid base for a template specialization type"); 2505 2506 case TemplateName::SubstTemplateTemplateParm: { 2507 SubstTemplateTemplateParmStorage *subst = 2508 TN.getAsSubstTemplateTemplateParm(); 2509 mangleExistingSubstitution(subst->getReplacement()); 2510 break; 2511 } 2512 2513 case TemplateName::SubstTemplateTemplateParmPack: { 2514 // FIXME: not clear how to mangle this! 2515 // template <template <class U> class T...> class A { 2516 // template <class U...> void foo(decltype(T<U>::foo) x...); 2517 // }; 2518 Out << "_SUBSTPACK_"; 2519 break; 2520 } 2521 case TemplateName::UsingTemplate: { 2522 TemplateDecl *TD = TN.getAsTemplateDecl(); 2523 assert(TD && !isa<TemplateTemplateParmDecl>(TD)); 2524 mangleSourceNameWithAbiTags(TD); 2525 break; 2526 } 2527 } 2528 2529 // Note: we don't pass in the template name here. We are mangling the 2530 // original source-level template arguments, so we shouldn't consider 2531 // conversions to the corresponding template parameter. 2532 // FIXME: Other compilers mangle partially-resolved template arguments in 2533 // unresolved-qualifier-levels. 2534 mangleTemplateArgs(TemplateName(), TST->template_arguments()); 2535 break; 2536 } 2537 2538 case Type::InjectedClassName: 2539 mangleSourceNameWithAbiTags( 2540 cast<InjectedClassNameType>(Ty)->getDecl()); 2541 break; 2542 2543 case Type::DependentName: 2544 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2545 break; 2546 2547 case Type::DependentTemplateSpecialization: { 2548 const DependentTemplateSpecializationType *DTST = 2549 cast<DependentTemplateSpecializationType>(Ty); 2550 TemplateName Template = getASTContext().getDependentTemplateName( 2551 DTST->getQualifier(), DTST->getIdentifier()); 2552 mangleSourceName(DTST->getIdentifier()); 2553 mangleTemplateArgs(Template, DTST->template_arguments()); 2554 break; 2555 } 2556 2557 case Type::Using: 2558 return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(), 2559 Prefix); 2560 case Type::Elaborated: 2561 return mangleUnresolvedTypeOrSimpleId( 2562 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2563 } 2564 2565 return false; 2566 } 2567 2568 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2569 switch (Name.getNameKind()) { 2570 case DeclarationName::CXXConstructorName: 2571 case DeclarationName::CXXDestructorName: 2572 case DeclarationName::CXXDeductionGuideName: 2573 case DeclarationName::CXXUsingDirective: 2574 case DeclarationName::Identifier: 2575 case DeclarationName::ObjCMultiArgSelector: 2576 case DeclarationName::ObjCOneArgSelector: 2577 case DeclarationName::ObjCZeroArgSelector: 2578 llvm_unreachable("Not an operator name"); 2579 2580 case DeclarationName::CXXConversionFunctionName: 2581 // <operator-name> ::= cv <type> # (cast) 2582 Out << "cv"; 2583 mangleType(Name.getCXXNameType()); 2584 break; 2585 2586 case DeclarationName::CXXLiteralOperatorName: 2587 Out << "li"; 2588 mangleSourceName(Name.getCXXLiteralIdentifier()); 2589 return; 2590 2591 case DeclarationName::CXXOperatorName: 2592 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2593 break; 2594 } 2595 } 2596 2597 void 2598 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2599 switch (OO) { 2600 // <operator-name> ::= nw # new 2601 case OO_New: Out << "nw"; break; 2602 // ::= na # new[] 2603 case OO_Array_New: Out << "na"; break; 2604 // ::= dl # delete 2605 case OO_Delete: Out << "dl"; break; 2606 // ::= da # delete[] 2607 case OO_Array_Delete: Out << "da"; break; 2608 // ::= ps # + (unary) 2609 // ::= pl # + (binary or unknown) 2610 case OO_Plus: 2611 Out << (Arity == 1? "ps" : "pl"); break; 2612 // ::= ng # - (unary) 2613 // ::= mi # - (binary or unknown) 2614 case OO_Minus: 2615 Out << (Arity == 1? "ng" : "mi"); break; 2616 // ::= ad # & (unary) 2617 // ::= an # & (binary or unknown) 2618 case OO_Amp: 2619 Out << (Arity == 1? "ad" : "an"); break; 2620 // ::= de # * (unary) 2621 // ::= ml # * (binary or unknown) 2622 case OO_Star: 2623 // Use binary when unknown. 2624 Out << (Arity == 1? "de" : "ml"); break; 2625 // ::= co # ~ 2626 case OO_Tilde: Out << "co"; break; 2627 // ::= dv # / 2628 case OO_Slash: Out << "dv"; break; 2629 // ::= rm # % 2630 case OO_Percent: Out << "rm"; break; 2631 // ::= or # | 2632 case OO_Pipe: Out << "or"; break; 2633 // ::= eo # ^ 2634 case OO_Caret: Out << "eo"; break; 2635 // ::= aS # = 2636 case OO_Equal: Out << "aS"; break; 2637 // ::= pL # += 2638 case OO_PlusEqual: Out << "pL"; break; 2639 // ::= mI # -= 2640 case OO_MinusEqual: Out << "mI"; break; 2641 // ::= mL # *= 2642 case OO_StarEqual: Out << "mL"; break; 2643 // ::= dV # /= 2644 case OO_SlashEqual: Out << "dV"; break; 2645 // ::= rM # %= 2646 case OO_PercentEqual: Out << "rM"; break; 2647 // ::= aN # &= 2648 case OO_AmpEqual: Out << "aN"; break; 2649 // ::= oR # |= 2650 case OO_PipeEqual: Out << "oR"; break; 2651 // ::= eO # ^= 2652 case OO_CaretEqual: Out << "eO"; break; 2653 // ::= ls # << 2654 case OO_LessLess: Out << "ls"; break; 2655 // ::= rs # >> 2656 case OO_GreaterGreater: Out << "rs"; break; 2657 // ::= lS # <<= 2658 case OO_LessLessEqual: Out << "lS"; break; 2659 // ::= rS # >>= 2660 case OO_GreaterGreaterEqual: Out << "rS"; break; 2661 // ::= eq # == 2662 case OO_EqualEqual: Out << "eq"; break; 2663 // ::= ne # != 2664 case OO_ExclaimEqual: Out << "ne"; break; 2665 // ::= lt # < 2666 case OO_Less: Out << "lt"; break; 2667 // ::= gt # > 2668 case OO_Greater: Out << "gt"; break; 2669 // ::= le # <= 2670 case OO_LessEqual: Out << "le"; break; 2671 // ::= ge # >= 2672 case OO_GreaterEqual: Out << "ge"; break; 2673 // ::= nt # ! 2674 case OO_Exclaim: Out << "nt"; break; 2675 // ::= aa # && 2676 case OO_AmpAmp: Out << "aa"; break; 2677 // ::= oo # || 2678 case OO_PipePipe: Out << "oo"; break; 2679 // ::= pp # ++ 2680 case OO_PlusPlus: Out << "pp"; break; 2681 // ::= mm # -- 2682 case OO_MinusMinus: Out << "mm"; break; 2683 // ::= cm # , 2684 case OO_Comma: Out << "cm"; break; 2685 // ::= pm # ->* 2686 case OO_ArrowStar: Out << "pm"; break; 2687 // ::= pt # -> 2688 case OO_Arrow: Out << "pt"; break; 2689 // ::= cl # () 2690 case OO_Call: Out << "cl"; break; 2691 // ::= ix # [] 2692 case OO_Subscript: Out << "ix"; break; 2693 2694 // ::= qu # ? 2695 // The conditional operator can't be overloaded, but we still handle it when 2696 // mangling expressions. 2697 case OO_Conditional: Out << "qu"; break; 2698 // Proposal on cxx-abi-dev, 2015-10-21. 2699 // ::= aw # co_await 2700 case OO_Coawait: Out << "aw"; break; 2701 // Proposed in cxx-abi github issue 43. 2702 // ::= ss # <=> 2703 case OO_Spaceship: Out << "ss"; break; 2704 2705 case OO_None: 2706 case NUM_OVERLOADED_OPERATORS: 2707 llvm_unreachable("Not an overloaded operator"); 2708 } 2709 } 2710 2711 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2712 // Vendor qualifiers come first and if they are order-insensitive they must 2713 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2714 2715 // <type> ::= U <addrspace-expr> 2716 if (DAST) { 2717 Out << "U2ASI"; 2718 mangleExpression(DAST->getAddrSpaceExpr()); 2719 Out << "E"; 2720 } 2721 2722 // Address space qualifiers start with an ordinary letter. 2723 if (Quals.hasAddressSpace()) { 2724 // Address space extension: 2725 // 2726 // <type> ::= U <target-addrspace> 2727 // <type> ::= U <OpenCL-addrspace> 2728 // <type> ::= U <CUDA-addrspace> 2729 2730 SmallString<64> ASString; 2731 LangAS AS = Quals.getAddressSpace(); 2732 2733 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2734 // <target-addrspace> ::= "AS" <address-space-number> 2735 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2736 if (TargetAS != 0 || 2737 Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0) 2738 ASString = "AS" + llvm::utostr(TargetAS); 2739 } else { 2740 switch (AS) { 2741 default: llvm_unreachable("Not a language specific address space"); 2742 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2743 // "private"| "generic" | "device" | 2744 // "host" ] 2745 case LangAS::opencl_global: 2746 ASString = "CLglobal"; 2747 break; 2748 case LangAS::opencl_global_device: 2749 ASString = "CLdevice"; 2750 break; 2751 case LangAS::opencl_global_host: 2752 ASString = "CLhost"; 2753 break; 2754 case LangAS::opencl_local: 2755 ASString = "CLlocal"; 2756 break; 2757 case LangAS::opencl_constant: 2758 ASString = "CLconstant"; 2759 break; 2760 case LangAS::opencl_private: 2761 ASString = "CLprivate"; 2762 break; 2763 case LangAS::opencl_generic: 2764 ASString = "CLgeneric"; 2765 break; 2766 // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | 2767 // "device" | "host" ] 2768 case LangAS::sycl_global: 2769 ASString = "SYglobal"; 2770 break; 2771 case LangAS::sycl_global_device: 2772 ASString = "SYdevice"; 2773 break; 2774 case LangAS::sycl_global_host: 2775 ASString = "SYhost"; 2776 break; 2777 case LangAS::sycl_local: 2778 ASString = "SYlocal"; 2779 break; 2780 case LangAS::sycl_private: 2781 ASString = "SYprivate"; 2782 break; 2783 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2784 case LangAS::cuda_device: 2785 ASString = "CUdevice"; 2786 break; 2787 case LangAS::cuda_constant: 2788 ASString = "CUconstant"; 2789 break; 2790 case LangAS::cuda_shared: 2791 ASString = "CUshared"; 2792 break; 2793 // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] 2794 case LangAS::ptr32_sptr: 2795 ASString = "ptr32_sptr"; 2796 break; 2797 case LangAS::ptr32_uptr: 2798 ASString = "ptr32_uptr"; 2799 break; 2800 case LangAS::ptr64: 2801 ASString = "ptr64"; 2802 break; 2803 } 2804 } 2805 if (!ASString.empty()) 2806 mangleVendorQualifier(ASString); 2807 } 2808 2809 // The ARC ownership qualifiers start with underscores. 2810 // Objective-C ARC Extension: 2811 // 2812 // <type> ::= U "__strong" 2813 // <type> ::= U "__weak" 2814 // <type> ::= U "__autoreleasing" 2815 // 2816 // Note: we emit __weak first to preserve the order as 2817 // required by the Itanium ABI. 2818 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2819 mangleVendorQualifier("__weak"); 2820 2821 // __unaligned (from -fms-extensions) 2822 if (Quals.hasUnaligned()) 2823 mangleVendorQualifier("__unaligned"); 2824 2825 // Remaining ARC ownership qualifiers. 2826 switch (Quals.getObjCLifetime()) { 2827 case Qualifiers::OCL_None: 2828 break; 2829 2830 case Qualifiers::OCL_Weak: 2831 // Do nothing as we already handled this case above. 2832 break; 2833 2834 case Qualifiers::OCL_Strong: 2835 mangleVendorQualifier("__strong"); 2836 break; 2837 2838 case Qualifiers::OCL_Autoreleasing: 2839 mangleVendorQualifier("__autoreleasing"); 2840 break; 2841 2842 case Qualifiers::OCL_ExplicitNone: 2843 // The __unsafe_unretained qualifier is *not* mangled, so that 2844 // __unsafe_unretained types in ARC produce the same manglings as the 2845 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2846 // better ABI compatibility. 2847 // 2848 // It's safe to do this because unqualified 'id' won't show up 2849 // in any type signatures that need to be mangled. 2850 break; 2851 } 2852 2853 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2854 if (Quals.hasRestrict()) 2855 Out << 'r'; 2856 if (Quals.hasVolatile()) 2857 Out << 'V'; 2858 if (Quals.hasConst()) 2859 Out << 'K'; 2860 } 2861 2862 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2863 Out << 'U' << name.size() << name; 2864 } 2865 2866 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2867 // <ref-qualifier> ::= R # lvalue reference 2868 // ::= O # rvalue-reference 2869 switch (RefQualifier) { 2870 case RQ_None: 2871 break; 2872 2873 case RQ_LValue: 2874 Out << 'R'; 2875 break; 2876 2877 case RQ_RValue: 2878 Out << 'O'; 2879 break; 2880 } 2881 } 2882 2883 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2884 Context.mangleObjCMethodNameAsSourceName(MD, Out); 2885 } 2886 2887 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2888 ASTContext &Ctx) { 2889 if (Quals) 2890 return true; 2891 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2892 return true; 2893 if (Ty->isOpenCLSpecificType()) 2894 return true; 2895 // From Clang 18.0 we correctly treat SVE types as substitution candidates. 2896 if (Ty->isSVESizelessBuiltinType() && 2897 Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver17) 2898 return true; 2899 if (Ty->isBuiltinType()) 2900 return false; 2901 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2902 // substitution candidates. 2903 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2904 isa<AutoType>(Ty)) 2905 return false; 2906 // A placeholder type for class template deduction is substitutable with 2907 // its corresponding template name; this is handled specially when mangling 2908 // the type. 2909 if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) 2910 if (DeducedTST->getDeducedType().isNull()) 2911 return false; 2912 return true; 2913 } 2914 2915 void CXXNameMangler::mangleType(QualType T) { 2916 // If our type is instantiation-dependent but not dependent, we mangle 2917 // it as it was written in the source, removing any top-level sugar. 2918 // Otherwise, use the canonical type. 2919 // 2920 // FIXME: This is an approximation of the instantiation-dependent name 2921 // mangling rules, since we should really be using the type as written and 2922 // augmented via semantic analysis (i.e., with implicit conversions and 2923 // default template arguments) for any instantiation-dependent type. 2924 // Unfortunately, that requires several changes to our AST: 2925 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2926 // uniqued, so that we can handle substitutions properly 2927 // - Default template arguments will need to be represented in the 2928 // TemplateSpecializationType, since they need to be mangled even though 2929 // they aren't written. 2930 // - Conversions on non-type template arguments need to be expressed, since 2931 // they can affect the mangling of sizeof/alignof. 2932 // 2933 // FIXME: This is wrong when mapping to the canonical type for a dependent 2934 // type discards instantiation-dependent portions of the type, such as for: 2935 // 2936 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2937 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2938 // 2939 // It's also wrong in the opposite direction when instantiation-dependent, 2940 // canonically-equivalent types differ in some irrelevant portion of inner 2941 // type sugar. In such cases, we fail to form correct substitutions, eg: 2942 // 2943 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2944 // 2945 // We should instead canonicalize the non-instantiation-dependent parts, 2946 // regardless of whether the type as a whole is dependent or instantiation 2947 // dependent. 2948 if (!T->isInstantiationDependentType() || T->isDependentType()) 2949 T = T.getCanonicalType(); 2950 else { 2951 // Desugar any types that are purely sugar. 2952 do { 2953 // Don't desugar through template specialization types that aren't 2954 // type aliases. We need to mangle the template arguments as written. 2955 if (const TemplateSpecializationType *TST 2956 = dyn_cast<TemplateSpecializationType>(T)) 2957 if (!TST->isTypeAlias()) 2958 break; 2959 2960 // FIXME: We presumably shouldn't strip off ElaboratedTypes with 2961 // instantation-dependent qualifiers. See 2962 // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. 2963 2964 QualType Desugared 2965 = T.getSingleStepDesugaredType(Context.getASTContext()); 2966 if (Desugared == T) 2967 break; 2968 2969 T = Desugared; 2970 } while (true); 2971 } 2972 SplitQualType split = T.split(); 2973 Qualifiers quals = split.Quals; 2974 const Type *ty = split.Ty; 2975 2976 bool isSubstitutable = 2977 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2978 if (isSubstitutable && mangleSubstitution(T)) 2979 return; 2980 2981 // If we're mangling a qualified array type, push the qualifiers to 2982 // the element type. 2983 if (quals && isa<ArrayType>(T)) { 2984 ty = Context.getASTContext().getAsArrayType(T); 2985 quals = Qualifiers(); 2986 2987 // Note that we don't update T: we want to add the 2988 // substitution at the original type. 2989 } 2990 2991 if (quals || ty->isDependentAddressSpaceType()) { 2992 if (const DependentAddressSpaceType *DAST = 2993 dyn_cast<DependentAddressSpaceType>(ty)) { 2994 SplitQualType splitDAST = DAST->getPointeeType().split(); 2995 mangleQualifiers(splitDAST.Quals, DAST); 2996 mangleType(QualType(splitDAST.Ty, 0)); 2997 } else { 2998 mangleQualifiers(quals); 2999 3000 // Recurse: even if the qualified type isn't yet substitutable, 3001 // the unqualified type might be. 3002 mangleType(QualType(ty, 0)); 3003 } 3004 } else { 3005 switch (ty->getTypeClass()) { 3006 #define ABSTRACT_TYPE(CLASS, PARENT) 3007 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 3008 case Type::CLASS: \ 3009 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 3010 return; 3011 #define TYPE(CLASS, PARENT) \ 3012 case Type::CLASS: \ 3013 mangleType(static_cast<const CLASS##Type*>(ty)); \ 3014 break; 3015 #include "clang/AST/TypeNodes.inc" 3016 } 3017 } 3018 3019 // Add the substitution. 3020 if (isSubstitutable) 3021 addSubstitution(T); 3022 } 3023 3024 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 3025 if (!mangleStandardSubstitution(ND)) 3026 mangleName(ND); 3027 } 3028 3029 void CXXNameMangler::mangleType(const BuiltinType *T) { 3030 // <type> ::= <builtin-type> 3031 // <builtin-type> ::= v # void 3032 // ::= w # wchar_t 3033 // ::= b # bool 3034 // ::= c # char 3035 // ::= a # signed char 3036 // ::= h # unsigned char 3037 // ::= s # short 3038 // ::= t # unsigned short 3039 // ::= i # int 3040 // ::= j # unsigned int 3041 // ::= l # long 3042 // ::= m # unsigned long 3043 // ::= x # long long, __int64 3044 // ::= y # unsigned long long, __int64 3045 // ::= n # __int128 3046 // ::= o # unsigned __int128 3047 // ::= f # float 3048 // ::= d # double 3049 // ::= e # long double, __float80 3050 // ::= g # __float128 3051 // ::= g # __ibm128 3052 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 3053 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 3054 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 3055 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 3056 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 3057 // ::= Di # char32_t 3058 // ::= Ds # char16_t 3059 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 3060 // ::= [DS] DA # N1169 fixed-point [_Sat] T _Accum 3061 // ::= [DS] DR # N1169 fixed-point [_Sat] T _Fract 3062 // ::= u <source-name> # vendor extended type 3063 // 3064 // <fixed-point-size> 3065 // ::= s # short 3066 // ::= t # unsigned short 3067 // ::= i # plain 3068 // ::= j # unsigned 3069 // ::= l # long 3070 // ::= m # unsigned long 3071 std::string type_name; 3072 // Normalize integer types as vendor extended types: 3073 // u<length>i<type size> 3074 // u<length>u<type size> 3075 if (NormalizeIntegers && T->isInteger()) { 3076 if (T->isSignedInteger()) { 3077 switch (getASTContext().getTypeSize(T)) { 3078 case 8: 3079 // Pick a representative for each integer size in the substitution 3080 // dictionary. (Its actual defined size is not relevant.) 3081 if (mangleSubstitution(BuiltinType::SChar)) 3082 break; 3083 Out << "u2i8"; 3084 addSubstitution(BuiltinType::SChar); 3085 break; 3086 case 16: 3087 if (mangleSubstitution(BuiltinType::Short)) 3088 break; 3089 Out << "u3i16"; 3090 addSubstitution(BuiltinType::Short); 3091 break; 3092 case 32: 3093 if (mangleSubstitution(BuiltinType::Int)) 3094 break; 3095 Out << "u3i32"; 3096 addSubstitution(BuiltinType::Int); 3097 break; 3098 case 64: 3099 if (mangleSubstitution(BuiltinType::Long)) 3100 break; 3101 Out << "u3i64"; 3102 addSubstitution(BuiltinType::Long); 3103 break; 3104 case 128: 3105 if (mangleSubstitution(BuiltinType::Int128)) 3106 break; 3107 Out << "u4i128"; 3108 addSubstitution(BuiltinType::Int128); 3109 break; 3110 default: 3111 llvm_unreachable("Unknown integer size for normalization"); 3112 } 3113 } else { 3114 switch (getASTContext().getTypeSize(T)) { 3115 case 8: 3116 if (mangleSubstitution(BuiltinType::UChar)) 3117 break; 3118 Out << "u2u8"; 3119 addSubstitution(BuiltinType::UChar); 3120 break; 3121 case 16: 3122 if (mangleSubstitution(BuiltinType::UShort)) 3123 break; 3124 Out << "u3u16"; 3125 addSubstitution(BuiltinType::UShort); 3126 break; 3127 case 32: 3128 if (mangleSubstitution(BuiltinType::UInt)) 3129 break; 3130 Out << "u3u32"; 3131 addSubstitution(BuiltinType::UInt); 3132 break; 3133 case 64: 3134 if (mangleSubstitution(BuiltinType::ULong)) 3135 break; 3136 Out << "u3u64"; 3137 addSubstitution(BuiltinType::ULong); 3138 break; 3139 case 128: 3140 if (mangleSubstitution(BuiltinType::UInt128)) 3141 break; 3142 Out << "u4u128"; 3143 addSubstitution(BuiltinType::UInt128); 3144 break; 3145 default: 3146 llvm_unreachable("Unknown integer size for normalization"); 3147 } 3148 } 3149 return; 3150 } 3151 switch (T->getKind()) { 3152 case BuiltinType::Void: 3153 Out << 'v'; 3154 break; 3155 case BuiltinType::Bool: 3156 Out << 'b'; 3157 break; 3158 case BuiltinType::Char_U: 3159 case BuiltinType::Char_S: 3160 Out << 'c'; 3161 break; 3162 case BuiltinType::UChar: 3163 Out << 'h'; 3164 break; 3165 case BuiltinType::UShort: 3166 Out << 't'; 3167 break; 3168 case BuiltinType::UInt: 3169 Out << 'j'; 3170 break; 3171 case BuiltinType::ULong: 3172 Out << 'm'; 3173 break; 3174 case BuiltinType::ULongLong: 3175 Out << 'y'; 3176 break; 3177 case BuiltinType::UInt128: 3178 Out << 'o'; 3179 break; 3180 case BuiltinType::SChar: 3181 Out << 'a'; 3182 break; 3183 case BuiltinType::WChar_S: 3184 case BuiltinType::WChar_U: 3185 Out << 'w'; 3186 break; 3187 case BuiltinType::Char8: 3188 Out << "Du"; 3189 break; 3190 case BuiltinType::Char16: 3191 Out << "Ds"; 3192 break; 3193 case BuiltinType::Char32: 3194 Out << "Di"; 3195 break; 3196 case BuiltinType::Short: 3197 Out << 's'; 3198 break; 3199 case BuiltinType::Int: 3200 Out << 'i'; 3201 break; 3202 case BuiltinType::Long: 3203 Out << 'l'; 3204 break; 3205 case BuiltinType::LongLong: 3206 Out << 'x'; 3207 break; 3208 case BuiltinType::Int128: 3209 Out << 'n'; 3210 break; 3211 case BuiltinType::Float16: 3212 Out << "DF16_"; 3213 break; 3214 case BuiltinType::ShortAccum: 3215 Out << "DAs"; 3216 break; 3217 case BuiltinType::Accum: 3218 Out << "DAi"; 3219 break; 3220 case BuiltinType::LongAccum: 3221 Out << "DAl"; 3222 break; 3223 case BuiltinType::UShortAccum: 3224 Out << "DAt"; 3225 break; 3226 case BuiltinType::UAccum: 3227 Out << "DAj"; 3228 break; 3229 case BuiltinType::ULongAccum: 3230 Out << "DAm"; 3231 break; 3232 case BuiltinType::ShortFract: 3233 Out << "DRs"; 3234 break; 3235 case BuiltinType::Fract: 3236 Out << "DRi"; 3237 break; 3238 case BuiltinType::LongFract: 3239 Out << "DRl"; 3240 break; 3241 case BuiltinType::UShortFract: 3242 Out << "DRt"; 3243 break; 3244 case BuiltinType::UFract: 3245 Out << "DRj"; 3246 break; 3247 case BuiltinType::ULongFract: 3248 Out << "DRm"; 3249 break; 3250 case BuiltinType::SatShortAccum: 3251 Out << "DSDAs"; 3252 break; 3253 case BuiltinType::SatAccum: 3254 Out << "DSDAi"; 3255 break; 3256 case BuiltinType::SatLongAccum: 3257 Out << "DSDAl"; 3258 break; 3259 case BuiltinType::SatUShortAccum: 3260 Out << "DSDAt"; 3261 break; 3262 case BuiltinType::SatUAccum: 3263 Out << "DSDAj"; 3264 break; 3265 case BuiltinType::SatULongAccum: 3266 Out << "DSDAm"; 3267 break; 3268 case BuiltinType::SatShortFract: 3269 Out << "DSDRs"; 3270 break; 3271 case BuiltinType::SatFract: 3272 Out << "DSDRi"; 3273 break; 3274 case BuiltinType::SatLongFract: 3275 Out << "DSDRl"; 3276 break; 3277 case BuiltinType::SatUShortFract: 3278 Out << "DSDRt"; 3279 break; 3280 case BuiltinType::SatUFract: 3281 Out << "DSDRj"; 3282 break; 3283 case BuiltinType::SatULongFract: 3284 Out << "DSDRm"; 3285 break; 3286 case BuiltinType::Half: 3287 Out << "Dh"; 3288 break; 3289 case BuiltinType::Float: 3290 Out << 'f'; 3291 break; 3292 case BuiltinType::Double: 3293 Out << 'd'; 3294 break; 3295 case BuiltinType::LongDouble: { 3296 const TargetInfo *TI = 3297 getASTContext().getLangOpts().OpenMP && 3298 getASTContext().getLangOpts().OpenMPIsTargetDevice 3299 ? getASTContext().getAuxTargetInfo() 3300 : &getASTContext().getTargetInfo(); 3301 Out << TI->getLongDoubleMangling(); 3302 break; 3303 } 3304 case BuiltinType::Float128: { 3305 const TargetInfo *TI = 3306 getASTContext().getLangOpts().OpenMP && 3307 getASTContext().getLangOpts().OpenMPIsTargetDevice 3308 ? getASTContext().getAuxTargetInfo() 3309 : &getASTContext().getTargetInfo(); 3310 Out << TI->getFloat128Mangling(); 3311 break; 3312 } 3313 case BuiltinType::BFloat16: { 3314 const TargetInfo *TI = 3315 ((getASTContext().getLangOpts().OpenMP && 3316 getASTContext().getLangOpts().OpenMPIsTargetDevice) || 3317 getASTContext().getLangOpts().SYCLIsDevice) 3318 ? getASTContext().getAuxTargetInfo() 3319 : &getASTContext().getTargetInfo(); 3320 Out << TI->getBFloat16Mangling(); 3321 break; 3322 } 3323 case BuiltinType::Ibm128: { 3324 const TargetInfo *TI = &getASTContext().getTargetInfo(); 3325 Out << TI->getIbm128Mangling(); 3326 break; 3327 } 3328 case BuiltinType::NullPtr: 3329 Out << "Dn"; 3330 break; 3331 3332 #define BUILTIN_TYPE(Id, SingletonId) 3333 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 3334 case BuiltinType::Id: 3335 #include "clang/AST/BuiltinTypes.def" 3336 case BuiltinType::Dependent: 3337 if (!NullOut) 3338 llvm_unreachable("mangling a placeholder type"); 3339 break; 3340 case BuiltinType::ObjCId: 3341 Out << "11objc_object"; 3342 break; 3343 case BuiltinType::ObjCClass: 3344 Out << "10objc_class"; 3345 break; 3346 case BuiltinType::ObjCSel: 3347 Out << "13objc_selector"; 3348 break; 3349 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 3350 case BuiltinType::Id: \ 3351 type_name = "ocl_" #ImgType "_" #Suffix; \ 3352 Out << type_name.size() << type_name; \ 3353 break; 3354 #include "clang/Basic/OpenCLImageTypes.def" 3355 case BuiltinType::OCLSampler: 3356 Out << "11ocl_sampler"; 3357 break; 3358 case BuiltinType::OCLEvent: 3359 Out << "9ocl_event"; 3360 break; 3361 case BuiltinType::OCLClkEvent: 3362 Out << "12ocl_clkevent"; 3363 break; 3364 case BuiltinType::OCLQueue: 3365 Out << "9ocl_queue"; 3366 break; 3367 case BuiltinType::OCLReserveID: 3368 Out << "13ocl_reserveid"; 3369 break; 3370 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 3371 case BuiltinType::Id: \ 3372 type_name = "ocl_" #ExtType; \ 3373 Out << type_name.size() << type_name; \ 3374 break; 3375 #include "clang/Basic/OpenCLExtensionTypes.def" 3376 // The SVE types are effectively target-specific. The mangling scheme 3377 // is defined in the appendices to the Procedure Call Standard for the 3378 // Arm Architecture. 3379 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ 3380 ElBits, IsSigned, IsFP, IsBF) \ 3381 case BuiltinType::Id: \ 3382 if (T->getKind() == BuiltinType::SveBFloat16 && \ 3383 isCompatibleWith(LangOptions::ClangABI::Ver17)) { \ 3384 /* Prior to Clang 18.0 we used this incorrect mangled name */ \ 3385 type_name = "__SVBFloat16_t"; \ 3386 Out << "u" << type_name.size() << type_name; \ 3387 } else { \ 3388 type_name = MangledName; \ 3389 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3390 << type_name; \ 3391 } \ 3392 break; 3393 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ 3394 case BuiltinType::Id: \ 3395 type_name = MangledName; \ 3396 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3397 << type_name; \ 3398 break; 3399 #define SVE_OPAQUE_TYPE(InternalName, MangledName, Id, SingletonId) \ 3400 case BuiltinType::Id: \ 3401 type_name = MangledName; \ 3402 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3403 << type_name; \ 3404 break; 3405 #include "clang/Basic/AArch64SVEACLETypes.def" 3406 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 3407 case BuiltinType::Id: \ 3408 type_name = #Name; \ 3409 Out << 'u' << type_name.size() << type_name; \ 3410 break; 3411 #include "clang/Basic/PPCTypes.def" 3412 // TODO: Check the mangling scheme for RISC-V V. 3413 #define RVV_TYPE(Name, Id, SingletonId) \ 3414 case BuiltinType::Id: \ 3415 type_name = Name; \ 3416 Out << 'u' << type_name.size() << type_name; \ 3417 break; 3418 #include "clang/Basic/RISCVVTypes.def" 3419 #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ 3420 case BuiltinType::Id: \ 3421 type_name = MangledName; \ 3422 Out << 'u' << type_name.size() << type_name; \ 3423 break; 3424 #include "clang/Basic/WebAssemblyReferenceTypes.def" 3425 #define AMDGPU_TYPE(Name, Id, SingletonId) \ 3426 case BuiltinType::Id: \ 3427 type_name = Name; \ 3428 Out << 'u' << type_name.size() << type_name; \ 3429 break; 3430 #include "clang/Basic/AMDGPUTypes.def" 3431 } 3432 } 3433 3434 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 3435 switch (CC) { 3436 case CC_C: 3437 return ""; 3438 3439 case CC_X86VectorCall: 3440 case CC_X86Pascal: 3441 case CC_X86RegCall: 3442 case CC_AAPCS: 3443 case CC_AAPCS_VFP: 3444 case CC_AArch64VectorCall: 3445 case CC_AArch64SVEPCS: 3446 case CC_AMDGPUKernelCall: 3447 case CC_IntelOclBicc: 3448 case CC_SpirFunction: 3449 case CC_OpenCLKernel: 3450 case CC_PreserveMost: 3451 case CC_PreserveAll: 3452 case CC_M68kRTD: 3453 case CC_PreserveNone: 3454 case CC_RISCVVectorCall: 3455 // FIXME: we should be mangling all of the above. 3456 return ""; 3457 3458 case CC_X86ThisCall: 3459 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is 3460 // used explicitly. At this point, we don't have that much information in 3461 // the AST, since clang tends to bake the convention into the canonical 3462 // function type. thiscall only rarely used explicitly, so don't mangle it 3463 // for now. 3464 return ""; 3465 3466 case CC_X86StdCall: 3467 return "stdcall"; 3468 case CC_X86FastCall: 3469 return "fastcall"; 3470 case CC_X86_64SysV: 3471 return "sysv_abi"; 3472 case CC_Win64: 3473 return "ms_abi"; 3474 case CC_Swift: 3475 return "swiftcall"; 3476 case CC_SwiftAsync: 3477 return "swiftasynccall"; 3478 } 3479 llvm_unreachable("bad calling convention"); 3480 } 3481 3482 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 3483 // Fast path. 3484 if (T->getExtInfo() == FunctionType::ExtInfo()) 3485 return; 3486 3487 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3488 // This will get more complicated in the future if we mangle other 3489 // things here; but for now, since we mangle ns_returns_retained as 3490 // a qualifier on the result type, we can get away with this: 3491 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 3492 if (!CCQualifier.empty()) 3493 mangleVendorQualifier(CCQualifier); 3494 3495 // FIXME: regparm 3496 // FIXME: noreturn 3497 } 3498 3499 void 3500 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 3501 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3502 3503 // Note that these are *not* substitution candidates. Demanglers might 3504 // have trouble with this if the parameter type is fully substituted. 3505 3506 switch (PI.getABI()) { 3507 case ParameterABI::Ordinary: 3508 break; 3509 3510 // All of these start with "swift", so they come before "ns_consumed". 3511 case ParameterABI::SwiftContext: 3512 case ParameterABI::SwiftAsyncContext: 3513 case ParameterABI::SwiftErrorResult: 3514 case ParameterABI::SwiftIndirectResult: 3515 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 3516 break; 3517 } 3518 3519 if (PI.isConsumed()) 3520 mangleVendorQualifier("ns_consumed"); 3521 3522 if (PI.isNoEscape()) 3523 mangleVendorQualifier("noescape"); 3524 } 3525 3526 // <type> ::= <function-type> 3527 // <function-type> ::= [<CV-qualifiers>] F [Y] 3528 // <bare-function-type> [<ref-qualifier>] E 3529 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 3530 mangleExtFunctionInfo(T); 3531 3532 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 3533 // e.g. "const" in "int (A::*)() const". 3534 mangleQualifiers(T->getMethodQuals()); 3535 3536 // Mangle instantiation-dependent exception-specification, if present, 3537 // per cxx-abi-dev proposal on 2016-10-11. 3538 if (T->hasInstantiationDependentExceptionSpec()) { 3539 if (isComputedNoexcept(T->getExceptionSpecType())) { 3540 Out << "DO"; 3541 mangleExpression(T->getNoexceptExpr()); 3542 Out << "E"; 3543 } else { 3544 assert(T->getExceptionSpecType() == EST_Dynamic); 3545 Out << "Dw"; 3546 for (auto ExceptTy : T->exceptions()) 3547 mangleType(ExceptTy); 3548 Out << "E"; 3549 } 3550 } else if (T->isNothrow()) { 3551 Out << "Do"; 3552 } 3553 3554 Out << 'F'; 3555 3556 // FIXME: We don't have enough information in the AST to produce the 'Y' 3557 // encoding for extern "C" function types. 3558 mangleBareFunctionType(T, /*MangleReturnType=*/true); 3559 3560 // Mangle the ref-qualifier, if present. 3561 mangleRefQualifier(T->getRefQualifier()); 3562 3563 Out << 'E'; 3564 } 3565 3566 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 3567 // Function types without prototypes can arise when mangling a function type 3568 // within an overloadable function in C. We mangle these as the absence of any 3569 // parameter types (not even an empty parameter list). 3570 Out << 'F'; 3571 3572 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3573 3574 FunctionTypeDepth.enterResultType(); 3575 mangleType(T->getReturnType()); 3576 FunctionTypeDepth.leaveResultType(); 3577 3578 FunctionTypeDepth.pop(saved); 3579 Out << 'E'; 3580 } 3581 3582 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 3583 bool MangleReturnType, 3584 const FunctionDecl *FD) { 3585 // Record that we're in a function type. See mangleFunctionParam 3586 // for details on what we're trying to achieve here. 3587 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3588 3589 // <bare-function-type> ::= <signature type>+ 3590 if (MangleReturnType) { 3591 FunctionTypeDepth.enterResultType(); 3592 3593 // Mangle ns_returns_retained as an order-sensitive qualifier here. 3594 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 3595 mangleVendorQualifier("ns_returns_retained"); 3596 3597 // Mangle the return type without any direct ARC ownership qualifiers. 3598 QualType ReturnTy = Proto->getReturnType(); 3599 if (ReturnTy.getObjCLifetime()) { 3600 auto SplitReturnTy = ReturnTy.split(); 3601 SplitReturnTy.Quals.removeObjCLifetime(); 3602 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 3603 } 3604 mangleType(ReturnTy); 3605 3606 FunctionTypeDepth.leaveResultType(); 3607 } 3608 3609 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 3610 // <builtin-type> ::= v # void 3611 Out << 'v'; 3612 } else { 3613 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 3614 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 3615 // Mangle extended parameter info as order-sensitive qualifiers here. 3616 if (Proto->hasExtParameterInfos() && FD == nullptr) { 3617 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 3618 } 3619 3620 // Mangle the type. 3621 QualType ParamTy = Proto->getParamType(I); 3622 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 3623 3624 if (FD) { 3625 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 3626 // Attr can only take 1 character, so we can hardcode the length 3627 // below. 3628 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 3629 if (Attr->isDynamic()) 3630 Out << "U25pass_dynamic_object_size" << Attr->getType(); 3631 else 3632 Out << "U17pass_object_size" << Attr->getType(); 3633 } 3634 } 3635 } 3636 3637 // <builtin-type> ::= z # ellipsis 3638 if (Proto->isVariadic()) 3639 Out << 'z'; 3640 } 3641 3642 if (FD) { 3643 FunctionTypeDepth.enterResultType(); 3644 mangleRequiresClause(FD->getTrailingRequiresClause()); 3645 } 3646 3647 FunctionTypeDepth.pop(saved); 3648 } 3649 3650 // <type> ::= <class-enum-type> 3651 // <class-enum-type> ::= <name> 3652 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 3653 mangleName(T->getDecl()); 3654 } 3655 3656 // <type> ::= <class-enum-type> 3657 // <class-enum-type> ::= <name> 3658 void CXXNameMangler::mangleType(const EnumType *T) { 3659 mangleType(static_cast<const TagType*>(T)); 3660 } 3661 void CXXNameMangler::mangleType(const RecordType *T) { 3662 mangleType(static_cast<const TagType*>(T)); 3663 } 3664 void CXXNameMangler::mangleType(const TagType *T) { 3665 mangleName(T->getDecl()); 3666 } 3667 3668 // <type> ::= <array-type> 3669 // <array-type> ::= A <positive dimension number> _ <element type> 3670 // ::= A [<dimension expression>] _ <element type> 3671 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 3672 Out << 'A' << T->getSize() << '_'; 3673 mangleType(T->getElementType()); 3674 } 3675 void CXXNameMangler::mangleType(const VariableArrayType *T) { 3676 Out << 'A'; 3677 // decayed vla types (size 0) will just be skipped. 3678 if (T->getSizeExpr()) 3679 mangleExpression(T->getSizeExpr()); 3680 Out << '_'; 3681 mangleType(T->getElementType()); 3682 } 3683 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 3684 Out << 'A'; 3685 // A DependentSizedArrayType might not have size expression as below 3686 // 3687 // template<int ...N> int arr[] = {N...}; 3688 if (T->getSizeExpr()) 3689 mangleExpression(T->getSizeExpr()); 3690 Out << '_'; 3691 mangleType(T->getElementType()); 3692 } 3693 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 3694 Out << "A_"; 3695 mangleType(T->getElementType()); 3696 } 3697 3698 // <type> ::= <pointer-to-member-type> 3699 // <pointer-to-member-type> ::= M <class type> <member type> 3700 void CXXNameMangler::mangleType(const MemberPointerType *T) { 3701 Out << 'M'; 3702 mangleType(QualType(T->getClass(), 0)); 3703 QualType PointeeType = T->getPointeeType(); 3704 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 3705 mangleType(FPT); 3706 3707 // Itanium C++ ABI 5.1.8: 3708 // 3709 // The type of a non-static member function is considered to be different, 3710 // for the purposes of substitution, from the type of a namespace-scope or 3711 // static member function whose type appears similar. The types of two 3712 // non-static member functions are considered to be different, for the 3713 // purposes of substitution, if the functions are members of different 3714 // classes. In other words, for the purposes of substitution, the class of 3715 // which the function is a member is considered part of the type of 3716 // function. 3717 3718 // Given that we already substitute member function pointers as a 3719 // whole, the net effect of this rule is just to unconditionally 3720 // suppress substitution on the function type in a member pointer. 3721 // We increment the SeqID here to emulate adding an entry to the 3722 // substitution table. 3723 ++SeqID; 3724 } else 3725 mangleType(PointeeType); 3726 } 3727 3728 // <type> ::= <template-param> 3729 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 3730 mangleTemplateParameter(T->getDepth(), T->getIndex()); 3731 } 3732 3733 // <type> ::= <template-param> 3734 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 3735 // FIXME: not clear how to mangle this! 3736 // template <class T...> class A { 3737 // template <class U...> void foo(T(*)(U) x...); 3738 // }; 3739 Out << "_SUBSTPACK_"; 3740 } 3741 3742 // <type> ::= P <type> # pointer-to 3743 void CXXNameMangler::mangleType(const PointerType *T) { 3744 Out << 'P'; 3745 mangleType(T->getPointeeType()); 3746 } 3747 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 3748 Out << 'P'; 3749 mangleType(T->getPointeeType()); 3750 } 3751 3752 // <type> ::= R <type> # reference-to 3753 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 3754 Out << 'R'; 3755 mangleType(T->getPointeeType()); 3756 } 3757 3758 // <type> ::= O <type> # rvalue reference-to (C++0x) 3759 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 3760 Out << 'O'; 3761 mangleType(T->getPointeeType()); 3762 } 3763 3764 // <type> ::= C <type> # complex pair (C 2000) 3765 void CXXNameMangler::mangleType(const ComplexType *T) { 3766 Out << 'C'; 3767 mangleType(T->getElementType()); 3768 } 3769 3770 // ARM's ABI for Neon vector types specifies that they should be mangled as 3771 // if they are structs (to match ARM's initial implementation). The 3772 // vector type must be one of the special types predefined by ARM. 3773 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 3774 QualType EltType = T->getElementType(); 3775 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3776 const char *EltName = nullptr; 3777 if (T->getVectorKind() == VectorKind::NeonPoly) { 3778 switch (cast<BuiltinType>(EltType)->getKind()) { 3779 case BuiltinType::SChar: 3780 case BuiltinType::UChar: 3781 EltName = "poly8_t"; 3782 break; 3783 case BuiltinType::Short: 3784 case BuiltinType::UShort: 3785 EltName = "poly16_t"; 3786 break; 3787 case BuiltinType::LongLong: 3788 case BuiltinType::ULongLong: 3789 EltName = "poly64_t"; 3790 break; 3791 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 3792 } 3793 } else { 3794 switch (cast<BuiltinType>(EltType)->getKind()) { 3795 case BuiltinType::SChar: EltName = "int8_t"; break; 3796 case BuiltinType::UChar: EltName = "uint8_t"; break; 3797 case BuiltinType::Short: EltName = "int16_t"; break; 3798 case BuiltinType::UShort: EltName = "uint16_t"; break; 3799 case BuiltinType::Int: EltName = "int32_t"; break; 3800 case BuiltinType::UInt: EltName = "uint32_t"; break; 3801 case BuiltinType::LongLong: EltName = "int64_t"; break; 3802 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 3803 case BuiltinType::Double: EltName = "float64_t"; break; 3804 case BuiltinType::Float: EltName = "float32_t"; break; 3805 case BuiltinType::Half: EltName = "float16_t"; break; 3806 case BuiltinType::BFloat16: EltName = "bfloat16_t"; break; 3807 default: 3808 llvm_unreachable("unexpected Neon vector element type"); 3809 } 3810 } 3811 const char *BaseName = nullptr; 3812 unsigned BitSize = (T->getNumElements() * 3813 getASTContext().getTypeSize(EltType)); 3814 if (BitSize == 64) 3815 BaseName = "__simd64_"; 3816 else { 3817 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 3818 BaseName = "__simd128_"; 3819 } 3820 Out << strlen(BaseName) + strlen(EltName); 3821 Out << BaseName << EltName; 3822 } 3823 3824 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { 3825 DiagnosticsEngine &Diags = Context.getDiags(); 3826 unsigned DiagID = Diags.getCustomDiagID( 3827 DiagnosticsEngine::Error, 3828 "cannot mangle this dependent neon vector type yet"); 3829 Diags.Report(T->getAttributeLoc(), DiagID); 3830 } 3831 3832 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 3833 switch (EltType->getKind()) { 3834 case BuiltinType::SChar: 3835 return "Int8"; 3836 case BuiltinType::Short: 3837 return "Int16"; 3838 case BuiltinType::Int: 3839 return "Int32"; 3840 case BuiltinType::Long: 3841 case BuiltinType::LongLong: 3842 return "Int64"; 3843 case BuiltinType::UChar: 3844 return "Uint8"; 3845 case BuiltinType::UShort: 3846 return "Uint16"; 3847 case BuiltinType::UInt: 3848 return "Uint32"; 3849 case BuiltinType::ULong: 3850 case BuiltinType::ULongLong: 3851 return "Uint64"; 3852 case BuiltinType::Half: 3853 return "Float16"; 3854 case BuiltinType::Float: 3855 return "Float32"; 3856 case BuiltinType::Double: 3857 return "Float64"; 3858 case BuiltinType::BFloat16: 3859 return "Bfloat16"; 3860 default: 3861 llvm_unreachable("Unexpected vector element base type"); 3862 } 3863 } 3864 3865 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3866 // the equivalent internal name. The vector type must be one of the special 3867 // types predefined by ARM. 3868 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3869 QualType EltType = T->getElementType(); 3870 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3871 unsigned BitSize = 3872 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3873 (void)BitSize; // Silence warning. 3874 3875 assert((BitSize == 64 || BitSize == 128) && 3876 "Neon vector type not 64 or 128 bits"); 3877 3878 StringRef EltName; 3879 if (T->getVectorKind() == VectorKind::NeonPoly) { 3880 switch (cast<BuiltinType>(EltType)->getKind()) { 3881 case BuiltinType::UChar: 3882 EltName = "Poly8"; 3883 break; 3884 case BuiltinType::UShort: 3885 EltName = "Poly16"; 3886 break; 3887 case BuiltinType::ULong: 3888 case BuiltinType::ULongLong: 3889 EltName = "Poly64"; 3890 break; 3891 default: 3892 llvm_unreachable("unexpected Neon polynomial vector element type"); 3893 } 3894 } else 3895 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3896 3897 std::string TypeName = 3898 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3899 Out << TypeName.length() << TypeName; 3900 } 3901 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { 3902 DiagnosticsEngine &Diags = Context.getDiags(); 3903 unsigned DiagID = Diags.getCustomDiagID( 3904 DiagnosticsEngine::Error, 3905 "cannot mangle this dependent neon vector type yet"); 3906 Diags.Report(T->getAttributeLoc(), DiagID); 3907 } 3908 3909 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types 3910 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 3911 // type as the sizeless variants. 3912 // 3913 // The mangling scheme for VLS types is implemented as a "pseudo" template: 3914 // 3915 // '__SVE_VLS<<type>, <vector length>>' 3916 // 3917 // Combining the existing SVE type and a specific vector length (in bits). 3918 // For example: 3919 // 3920 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); 3921 // 3922 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: 3923 // 3924 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" 3925 // 3926 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE 3927 // 3928 // The latest ACLE specification (00bet5) does not contain details of this 3929 // mangling scheme, it will be specified in the next revision. The mangling 3930 // scheme is otherwise defined in the appendices to the Procedure Call Standard 3931 // for the Arm Architecture, see 3932 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling 3933 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { 3934 assert((T->getVectorKind() == VectorKind::SveFixedLengthData || 3935 T->getVectorKind() == VectorKind::SveFixedLengthPredicate) && 3936 "expected fixed-length SVE vector!"); 3937 3938 QualType EltType = T->getElementType(); 3939 assert(EltType->isBuiltinType() && 3940 "expected builtin type for fixed-length SVE vector!"); 3941 3942 StringRef TypeName; 3943 switch (cast<BuiltinType>(EltType)->getKind()) { 3944 case BuiltinType::SChar: 3945 TypeName = "__SVInt8_t"; 3946 break; 3947 case BuiltinType::UChar: { 3948 if (T->getVectorKind() == VectorKind::SveFixedLengthData) 3949 TypeName = "__SVUint8_t"; 3950 else 3951 TypeName = "__SVBool_t"; 3952 break; 3953 } 3954 case BuiltinType::Short: 3955 TypeName = "__SVInt16_t"; 3956 break; 3957 case BuiltinType::UShort: 3958 TypeName = "__SVUint16_t"; 3959 break; 3960 case BuiltinType::Int: 3961 TypeName = "__SVInt32_t"; 3962 break; 3963 case BuiltinType::UInt: 3964 TypeName = "__SVUint32_t"; 3965 break; 3966 case BuiltinType::Long: 3967 TypeName = "__SVInt64_t"; 3968 break; 3969 case BuiltinType::ULong: 3970 TypeName = "__SVUint64_t"; 3971 break; 3972 case BuiltinType::Half: 3973 TypeName = "__SVFloat16_t"; 3974 break; 3975 case BuiltinType::Float: 3976 TypeName = "__SVFloat32_t"; 3977 break; 3978 case BuiltinType::Double: 3979 TypeName = "__SVFloat64_t"; 3980 break; 3981 case BuiltinType::BFloat16: 3982 TypeName = "__SVBfloat16_t"; 3983 break; 3984 default: 3985 llvm_unreachable("unexpected element type for fixed-length SVE vector!"); 3986 } 3987 3988 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; 3989 3990 if (T->getVectorKind() == VectorKind::SveFixedLengthPredicate) 3991 VecSizeInBits *= 8; 3992 3993 Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" 3994 << VecSizeInBits << "EE"; 3995 } 3996 3997 void CXXNameMangler::mangleAArch64FixedSveVectorType( 3998 const DependentVectorType *T) { 3999 DiagnosticsEngine &Diags = Context.getDiags(); 4000 unsigned DiagID = Diags.getCustomDiagID( 4001 DiagnosticsEngine::Error, 4002 "cannot mangle this dependent fixed-length SVE vector type yet"); 4003 Diags.Report(T->getAttributeLoc(), DiagID); 4004 } 4005 4006 void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) { 4007 assert((T->getVectorKind() == VectorKind::RVVFixedLengthData || 4008 T->getVectorKind() == VectorKind::RVVFixedLengthMask) && 4009 "expected fixed-length RVV vector!"); 4010 4011 QualType EltType = T->getElementType(); 4012 assert(EltType->isBuiltinType() && 4013 "expected builtin type for fixed-length RVV vector!"); 4014 4015 SmallString<20> TypeNameStr; 4016 llvm::raw_svector_ostream TypeNameOS(TypeNameStr); 4017 TypeNameOS << "__rvv_"; 4018 switch (cast<BuiltinType>(EltType)->getKind()) { 4019 case BuiltinType::SChar: 4020 TypeNameOS << "int8"; 4021 break; 4022 case BuiltinType::UChar: 4023 if (T->getVectorKind() == VectorKind::RVVFixedLengthData) 4024 TypeNameOS << "uint8"; 4025 else 4026 TypeNameOS << "bool"; 4027 break; 4028 case BuiltinType::Short: 4029 TypeNameOS << "int16"; 4030 break; 4031 case BuiltinType::UShort: 4032 TypeNameOS << "uint16"; 4033 break; 4034 case BuiltinType::Int: 4035 TypeNameOS << "int32"; 4036 break; 4037 case BuiltinType::UInt: 4038 TypeNameOS << "uint32"; 4039 break; 4040 case BuiltinType::Long: 4041 TypeNameOS << "int64"; 4042 break; 4043 case BuiltinType::ULong: 4044 TypeNameOS << "uint64"; 4045 break; 4046 case BuiltinType::Float16: 4047 TypeNameOS << "float16"; 4048 break; 4049 case BuiltinType::Float: 4050 TypeNameOS << "float32"; 4051 break; 4052 case BuiltinType::Double: 4053 TypeNameOS << "float64"; 4054 break; 4055 default: 4056 llvm_unreachable("unexpected element type for fixed-length RVV vector!"); 4057 } 4058 4059 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; 4060 4061 // Apend the LMUL suffix. 4062 auto VScale = getASTContext().getTargetInfo().getVScaleRange( 4063 getASTContext().getLangOpts()); 4064 unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock; 4065 4066 if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { 4067 TypeNameOS << 'm'; 4068 if (VecSizeInBits >= VLen) 4069 TypeNameOS << (VecSizeInBits / VLen); 4070 else 4071 TypeNameOS << 'f' << (VLen / VecSizeInBits); 4072 } else { 4073 TypeNameOS << (VLen / VecSizeInBits); 4074 } 4075 TypeNameOS << "_t"; 4076 4077 Out << "9__RVV_VLSI" << 'u' << TypeNameStr.size() << TypeNameStr << "Lj" 4078 << VecSizeInBits << "EE"; 4079 } 4080 4081 void CXXNameMangler::mangleRISCVFixedRVVVectorType( 4082 const DependentVectorType *T) { 4083 DiagnosticsEngine &Diags = Context.getDiags(); 4084 unsigned DiagID = Diags.getCustomDiagID( 4085 DiagnosticsEngine::Error, 4086 "cannot mangle this dependent fixed-length RVV vector type yet"); 4087 Diags.Report(T->getAttributeLoc(), DiagID); 4088 } 4089 4090 // GNU extension: vector types 4091 // <type> ::= <vector-type> 4092 // <vector-type> ::= Dv <positive dimension number> _ 4093 // <extended element type> 4094 // ::= Dv [<dimension expression>] _ <element type> 4095 // <extended element type> ::= <element type> 4096 // ::= p # AltiVec vector pixel 4097 // ::= b # Altivec vector bool 4098 void CXXNameMangler::mangleType(const VectorType *T) { 4099 if ((T->getVectorKind() == VectorKind::Neon || 4100 T->getVectorKind() == VectorKind::NeonPoly)) { 4101 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 4102 llvm::Triple::ArchType Arch = 4103 getASTContext().getTargetInfo().getTriple().getArch(); 4104 if ((Arch == llvm::Triple::aarch64 || 4105 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 4106 mangleAArch64NeonVectorType(T); 4107 else 4108 mangleNeonVectorType(T); 4109 return; 4110 } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || 4111 T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { 4112 mangleAArch64FixedSveVectorType(T); 4113 return; 4114 } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData || 4115 T->getVectorKind() == VectorKind::RVVFixedLengthMask) { 4116 mangleRISCVFixedRVVVectorType(T); 4117 return; 4118 } 4119 Out << "Dv" << T->getNumElements() << '_'; 4120 if (T->getVectorKind() == VectorKind::AltiVecPixel) 4121 Out << 'p'; 4122 else if (T->getVectorKind() == VectorKind::AltiVecBool) 4123 Out << 'b'; 4124 else 4125 mangleType(T->getElementType()); 4126 } 4127 4128 void CXXNameMangler::mangleType(const DependentVectorType *T) { 4129 if ((T->getVectorKind() == VectorKind::Neon || 4130 T->getVectorKind() == VectorKind::NeonPoly)) { 4131 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 4132 llvm::Triple::ArchType Arch = 4133 getASTContext().getTargetInfo().getTriple().getArch(); 4134 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && 4135 !Target.isOSDarwin()) 4136 mangleAArch64NeonVectorType(T); 4137 else 4138 mangleNeonVectorType(T); 4139 return; 4140 } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || 4141 T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { 4142 mangleAArch64FixedSveVectorType(T); 4143 return; 4144 } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { 4145 mangleRISCVFixedRVVVectorType(T); 4146 return; 4147 } 4148 4149 Out << "Dv"; 4150 mangleExpression(T->getSizeExpr()); 4151 Out << '_'; 4152 if (T->getVectorKind() == VectorKind::AltiVecPixel) 4153 Out << 'p'; 4154 else if (T->getVectorKind() == VectorKind::AltiVecBool) 4155 Out << 'b'; 4156 else 4157 mangleType(T->getElementType()); 4158 } 4159 4160 void CXXNameMangler::mangleType(const ExtVectorType *T) { 4161 mangleType(static_cast<const VectorType*>(T)); 4162 } 4163 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 4164 Out << "Dv"; 4165 mangleExpression(T->getSizeExpr()); 4166 Out << '_'; 4167 mangleType(T->getElementType()); 4168 } 4169 4170 void CXXNameMangler::mangleType(const ConstantMatrixType *T) { 4171 // Mangle matrix types as a vendor extended type: 4172 // u<Len>matrix_typeI<Rows><Columns><element type>E 4173 4174 StringRef VendorQualifier = "matrix_type"; 4175 Out << "u" << VendorQualifier.size() << VendorQualifier; 4176 4177 Out << "I"; 4178 auto &ASTCtx = getASTContext(); 4179 unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType()); 4180 llvm::APSInt Rows(BitWidth); 4181 Rows = T->getNumRows(); 4182 mangleIntegerLiteral(ASTCtx.getSizeType(), Rows); 4183 llvm::APSInt Columns(BitWidth); 4184 Columns = T->getNumColumns(); 4185 mangleIntegerLiteral(ASTCtx.getSizeType(), Columns); 4186 mangleType(T->getElementType()); 4187 Out << "E"; 4188 } 4189 4190 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { 4191 // Mangle matrix types as a vendor extended type: 4192 // u<Len>matrix_typeI<row expr><column expr><element type>E 4193 StringRef VendorQualifier = "matrix_type"; 4194 Out << "u" << VendorQualifier.size() << VendorQualifier; 4195 4196 Out << "I"; 4197 mangleTemplateArgExpr(T->getRowExpr()); 4198 mangleTemplateArgExpr(T->getColumnExpr()); 4199 mangleType(T->getElementType()); 4200 Out << "E"; 4201 } 4202 4203 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 4204 SplitQualType split = T->getPointeeType().split(); 4205 mangleQualifiers(split.Quals, T); 4206 mangleType(QualType(split.Ty, 0)); 4207 } 4208 4209 void CXXNameMangler::mangleType(const PackExpansionType *T) { 4210 // <type> ::= Dp <type> # pack expansion (C++0x) 4211 Out << "Dp"; 4212 mangleType(T->getPattern()); 4213 } 4214 4215 void CXXNameMangler::mangleType(const PackIndexingType *T) { 4216 if (!T->hasSelectedType()) 4217 mangleType(T->getPattern()); 4218 else 4219 mangleType(T->getSelectedType()); 4220 } 4221 4222 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 4223 mangleSourceName(T->getDecl()->getIdentifier()); 4224 } 4225 4226 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 4227 // Treat __kindof as a vendor extended type qualifier. 4228 if (T->isKindOfType()) 4229 Out << "U8__kindof"; 4230 4231 if (!T->qual_empty()) { 4232 // Mangle protocol qualifiers. 4233 SmallString<64> QualStr; 4234 llvm::raw_svector_ostream QualOS(QualStr); 4235 QualOS << "objcproto"; 4236 for (const auto *I : T->quals()) { 4237 StringRef name = I->getName(); 4238 QualOS << name.size() << name; 4239 } 4240 Out << 'U' << QualStr.size() << QualStr; 4241 } 4242 4243 mangleType(T->getBaseType()); 4244 4245 if (T->isSpecialized()) { 4246 // Mangle type arguments as I <type>+ E 4247 Out << 'I'; 4248 for (auto typeArg : T->getTypeArgs()) 4249 mangleType(typeArg); 4250 Out << 'E'; 4251 } 4252 } 4253 4254 void CXXNameMangler::mangleType(const BlockPointerType *T) { 4255 Out << "U13block_pointer"; 4256 mangleType(T->getPointeeType()); 4257 } 4258 4259 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 4260 // Mangle injected class name types as if the user had written the 4261 // specialization out fully. It may not actually be possible to see 4262 // this mangling, though. 4263 mangleType(T->getInjectedSpecializationType()); 4264 } 4265 4266 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 4267 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 4268 mangleTemplateName(TD, T->template_arguments()); 4269 } else { 4270 if (mangleSubstitution(QualType(T, 0))) 4271 return; 4272 4273 mangleTemplatePrefix(T->getTemplateName()); 4274 4275 // FIXME: GCC does not appear to mangle the template arguments when 4276 // the template in question is a dependent template name. Should we 4277 // emulate that badness? 4278 mangleTemplateArgs(T->getTemplateName(), T->template_arguments()); 4279 addSubstitution(QualType(T, 0)); 4280 } 4281 } 4282 4283 void CXXNameMangler::mangleType(const DependentNameType *T) { 4284 // Proposal by cxx-abi-dev, 2014-03-26 4285 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 4286 // # dependent elaborated type specifier using 4287 // # 'typename' 4288 // ::= Ts <name> # dependent elaborated type specifier using 4289 // # 'struct' or 'class' 4290 // ::= Tu <name> # dependent elaborated type specifier using 4291 // # 'union' 4292 // ::= Te <name> # dependent elaborated type specifier using 4293 // # 'enum' 4294 switch (T->getKeyword()) { 4295 case ElaboratedTypeKeyword::None: 4296 case ElaboratedTypeKeyword::Typename: 4297 break; 4298 case ElaboratedTypeKeyword::Struct: 4299 case ElaboratedTypeKeyword::Class: 4300 case ElaboratedTypeKeyword::Interface: 4301 Out << "Ts"; 4302 break; 4303 case ElaboratedTypeKeyword::Union: 4304 Out << "Tu"; 4305 break; 4306 case ElaboratedTypeKeyword::Enum: 4307 Out << "Te"; 4308 break; 4309 } 4310 // Typename types are always nested 4311 Out << 'N'; 4312 manglePrefix(T->getQualifier()); 4313 mangleSourceName(T->getIdentifier()); 4314 Out << 'E'; 4315 } 4316 4317 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 4318 // Dependently-scoped template types are nested if they have a prefix. 4319 Out << 'N'; 4320 4321 // TODO: avoid making this TemplateName. 4322 TemplateName Prefix = 4323 getASTContext().getDependentTemplateName(T->getQualifier(), 4324 T->getIdentifier()); 4325 mangleTemplatePrefix(Prefix); 4326 4327 // FIXME: GCC does not appear to mangle the template arguments when 4328 // the template in question is a dependent template name. Should we 4329 // emulate that badness? 4330 mangleTemplateArgs(Prefix, T->template_arguments()); 4331 Out << 'E'; 4332 } 4333 4334 void CXXNameMangler::mangleType(const TypeOfType *T) { 4335 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 4336 // "extension with parameters" mangling. 4337 Out << "u6typeof"; 4338 } 4339 4340 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 4341 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 4342 // "extension with parameters" mangling. 4343 Out << "u6typeof"; 4344 } 4345 4346 void CXXNameMangler::mangleType(const DecltypeType *T) { 4347 Expr *E = T->getUnderlyingExpr(); 4348 4349 // type ::= Dt <expression> E # decltype of an id-expression 4350 // # or class member access 4351 // ::= DT <expression> E # decltype of an expression 4352 4353 // This purports to be an exhaustive list of id-expressions and 4354 // class member accesses. Note that we do not ignore parentheses; 4355 // parentheses change the semantics of decltype for these 4356 // expressions (and cause the mangler to use the other form). 4357 if (isa<DeclRefExpr>(E) || 4358 isa<MemberExpr>(E) || 4359 isa<UnresolvedLookupExpr>(E) || 4360 isa<DependentScopeDeclRefExpr>(E) || 4361 isa<CXXDependentScopeMemberExpr>(E) || 4362 isa<UnresolvedMemberExpr>(E)) 4363 Out << "Dt"; 4364 else 4365 Out << "DT"; 4366 mangleExpression(E); 4367 Out << 'E'; 4368 } 4369 4370 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 4371 // If this is dependent, we need to record that. If not, we simply 4372 // mangle it as the underlying type since they are equivalent. 4373 if (T->isDependentType()) { 4374 Out << "u"; 4375 4376 StringRef BuiltinName; 4377 switch (T->getUTTKind()) { 4378 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ 4379 case UnaryTransformType::Enum: \ 4380 BuiltinName = "__" #Trait; \ 4381 break; 4382 #include "clang/Basic/TransformTypeTraits.def" 4383 } 4384 Out << BuiltinName.size() << BuiltinName; 4385 } 4386 4387 Out << "I"; 4388 mangleType(T->getBaseType()); 4389 Out << "E"; 4390 } 4391 4392 void CXXNameMangler::mangleType(const AutoType *T) { 4393 assert(T->getDeducedType().isNull() && 4394 "Deduced AutoType shouldn't be handled here!"); 4395 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 4396 "shouldn't need to mangle __auto_type!"); 4397 // <builtin-type> ::= Da # auto 4398 // ::= Dc # decltype(auto) 4399 // ::= Dk # constrained auto 4400 // ::= DK # constrained decltype(auto) 4401 if (T->isConstrained() && !isCompatibleWith(LangOptions::ClangABI::Ver17)) { 4402 Out << (T->isDecltypeAuto() ? "DK" : "Dk"); 4403 mangleTypeConstraint(T->getTypeConstraintConcept(), 4404 T->getTypeConstraintArguments()); 4405 } else { 4406 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 4407 } 4408 } 4409 4410 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 4411 QualType Deduced = T->getDeducedType(); 4412 if (!Deduced.isNull()) 4413 return mangleType(Deduced); 4414 4415 TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); 4416 assert(TD && "shouldn't form deduced TST unless we know we have a template"); 4417 4418 if (mangleSubstitution(TD)) 4419 return; 4420 4421 mangleName(GlobalDecl(TD)); 4422 addSubstitution(TD); 4423 } 4424 4425 void CXXNameMangler::mangleType(const AtomicType *T) { 4426 // <type> ::= U <source-name> <type> # vendor extended type qualifier 4427 // (Until there's a standardized mangling...) 4428 Out << "U7_Atomic"; 4429 mangleType(T->getValueType()); 4430 } 4431 4432 void CXXNameMangler::mangleType(const PipeType *T) { 4433 // Pipe type mangling rules are described in SPIR 2.0 specification 4434 // A.1 Data types and A.3 Summary of changes 4435 // <type> ::= 8ocl_pipe 4436 Out << "8ocl_pipe"; 4437 } 4438 4439 void CXXNameMangler::mangleType(const BitIntType *T) { 4440 // 5.1.5.2 Builtin types 4441 // <type> ::= DB <number | instantiation-dependent expression> _ 4442 // ::= DU <number | instantiation-dependent expression> _ 4443 Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_"; 4444 } 4445 4446 void CXXNameMangler::mangleType(const DependentBitIntType *T) { 4447 // 5.1.5.2 Builtin types 4448 // <type> ::= DB <number | instantiation-dependent expression> _ 4449 // ::= DU <number | instantiation-dependent expression> _ 4450 Out << "D" << (T->isUnsigned() ? "U" : "B"); 4451 mangleExpression(T->getNumBitsExpr()); 4452 Out << "_"; 4453 } 4454 4455 void CXXNameMangler::mangleType(const ArrayParameterType *T) { 4456 mangleType(cast<ConstantArrayType>(T)); 4457 } 4458 4459 void CXXNameMangler::mangleIntegerLiteral(QualType T, 4460 const llvm::APSInt &Value) { 4461 // <expr-primary> ::= L <type> <value number> E # integer literal 4462 Out << 'L'; 4463 4464 mangleType(T); 4465 if (T->isBooleanType()) { 4466 // Boolean values are encoded as 0/1. 4467 Out << (Value.getBoolValue() ? '1' : '0'); 4468 } else { 4469 mangleNumber(Value); 4470 } 4471 Out << 'E'; 4472 4473 } 4474 4475 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 4476 // Ignore member expressions involving anonymous unions. 4477 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 4478 if (!RT->getDecl()->isAnonymousStructOrUnion()) 4479 break; 4480 const auto *ME = dyn_cast<MemberExpr>(Base); 4481 if (!ME) 4482 break; 4483 Base = ME->getBase(); 4484 IsArrow = ME->isArrow(); 4485 } 4486 4487 if (Base->isImplicitCXXThis()) { 4488 // Note: GCC mangles member expressions to the implicit 'this' as 4489 // *this., whereas we represent them as this->. The Itanium C++ ABI 4490 // does not specify anything here, so we follow GCC. 4491 Out << "dtdefpT"; 4492 } else { 4493 Out << (IsArrow ? "pt" : "dt"); 4494 mangleExpression(Base); 4495 } 4496 } 4497 4498 /// Mangles a member expression. 4499 void CXXNameMangler::mangleMemberExpr(const Expr *base, 4500 bool isArrow, 4501 NestedNameSpecifier *qualifier, 4502 NamedDecl *firstQualifierLookup, 4503 DeclarationName member, 4504 const TemplateArgumentLoc *TemplateArgs, 4505 unsigned NumTemplateArgs, 4506 unsigned arity) { 4507 // <expression> ::= dt <expression> <unresolved-name> 4508 // ::= pt <expression> <unresolved-name> 4509 if (base) 4510 mangleMemberExprBase(base, isArrow); 4511 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 4512 } 4513 4514 /// Look at the callee of the given call expression and determine if 4515 /// it's a parenthesized id-expression which would have triggered ADL 4516 /// otherwise. 4517 static bool isParenthesizedADLCallee(const CallExpr *call) { 4518 const Expr *callee = call->getCallee(); 4519 const Expr *fn = callee->IgnoreParens(); 4520 4521 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 4522 // too, but for those to appear in the callee, it would have to be 4523 // parenthesized. 4524 if (callee == fn) return false; 4525 4526 // Must be an unresolved lookup. 4527 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 4528 if (!lookup) return false; 4529 4530 assert(!lookup->requiresADL()); 4531 4532 // Must be an unqualified lookup. 4533 if (lookup->getQualifier()) return false; 4534 4535 // Must not have found a class member. Note that if one is a class 4536 // member, they're all class members. 4537 if (lookup->getNumDecls() > 0 && 4538 (*lookup->decls_begin())->isCXXClassMember()) 4539 return false; 4540 4541 // Otherwise, ADL would have been triggered. 4542 return true; 4543 } 4544 4545 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 4546 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 4547 Out << CastEncoding; 4548 mangleType(ECE->getType()); 4549 mangleExpression(ECE->getSubExpr()); 4550 } 4551 4552 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 4553 if (auto *Syntactic = InitList->getSyntacticForm()) 4554 InitList = Syntactic; 4555 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 4556 mangleExpression(InitList->getInit(i)); 4557 } 4558 4559 void CXXNameMangler::mangleRequirement(SourceLocation RequiresExprLoc, 4560 const concepts::Requirement *Req) { 4561 using concepts::Requirement; 4562 4563 // TODO: We can't mangle the result of a failed substitution. It's not clear 4564 // whether we should be mangling the original form prior to any substitution 4565 // instead. See https://lists.isocpp.org/core/2023/04/14118.php 4566 auto HandleSubstitutionFailure = 4567 [&](SourceLocation Loc) { 4568 DiagnosticsEngine &Diags = Context.getDiags(); 4569 unsigned DiagID = Diags.getCustomDiagID( 4570 DiagnosticsEngine::Error, "cannot mangle this requires-expression " 4571 "containing a substitution failure"); 4572 Diags.Report(Loc, DiagID); 4573 Out << 'F'; 4574 }; 4575 4576 switch (Req->getKind()) { 4577 case Requirement::RK_Type: { 4578 const auto *TR = cast<concepts::TypeRequirement>(Req); 4579 if (TR->isSubstitutionFailure()) 4580 return HandleSubstitutionFailure( 4581 TR->getSubstitutionDiagnostic()->DiagLoc); 4582 4583 Out << 'T'; 4584 mangleType(TR->getType()->getType()); 4585 break; 4586 } 4587 4588 case Requirement::RK_Simple: 4589 case Requirement::RK_Compound: { 4590 const auto *ER = cast<concepts::ExprRequirement>(Req); 4591 if (ER->isExprSubstitutionFailure()) 4592 return HandleSubstitutionFailure( 4593 ER->getExprSubstitutionDiagnostic()->DiagLoc); 4594 4595 Out << 'X'; 4596 mangleExpression(ER->getExpr()); 4597 4598 if (ER->hasNoexceptRequirement()) 4599 Out << 'N'; 4600 4601 if (!ER->getReturnTypeRequirement().isEmpty()) { 4602 if (ER->getReturnTypeRequirement().isSubstitutionFailure()) 4603 return HandleSubstitutionFailure(ER->getReturnTypeRequirement() 4604 .getSubstitutionDiagnostic() 4605 ->DiagLoc); 4606 4607 Out << 'R'; 4608 mangleTypeConstraint(ER->getReturnTypeRequirement().getTypeConstraint()); 4609 } 4610 break; 4611 } 4612 4613 case Requirement::RK_Nested: 4614 const auto *NR = cast<concepts::NestedRequirement>(Req); 4615 if (NR->hasInvalidConstraint()) { 4616 // FIXME: NestedRequirement should track the location of its requires 4617 // keyword. 4618 return HandleSubstitutionFailure(RequiresExprLoc); 4619 } 4620 4621 Out << 'Q'; 4622 mangleExpression(NR->getConstraintExpr()); 4623 break; 4624 } 4625 } 4626 4627 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, 4628 bool AsTemplateArg) { 4629 // <expression> ::= <unary operator-name> <expression> 4630 // ::= <binary operator-name> <expression> <expression> 4631 // ::= <trinary operator-name> <expression> <expression> <expression> 4632 // ::= cv <type> expression # conversion with one argument 4633 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 4634 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 4635 // ::= sc <type> <expression> # static_cast<type> (expression) 4636 // ::= cc <type> <expression> # const_cast<type> (expression) 4637 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 4638 // ::= st <type> # sizeof (a type) 4639 // ::= at <type> # alignof (a type) 4640 // ::= <template-param> 4641 // ::= <function-param> 4642 // ::= fpT # 'this' expression (part of <function-param>) 4643 // ::= sr <type> <unqualified-name> # dependent name 4644 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 4645 // ::= ds <expression> <expression> # expr.*expr 4646 // ::= sZ <template-param> # size of a parameter pack 4647 // ::= sZ <function-param> # size of a function parameter pack 4648 // ::= u <source-name> <template-arg>* E # vendor extended expression 4649 // ::= <expr-primary> 4650 // <expr-primary> ::= L <type> <value number> E # integer literal 4651 // ::= L <type> <value float> E # floating literal 4652 // ::= L <type> <string type> E # string literal 4653 // ::= L <nullptr type> E # nullptr literal "LDnE" 4654 // ::= L <pointer type> 0 E # null pointer template argument 4655 // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang 4656 // ::= L <mangled-name> E # external name 4657 QualType ImplicitlyConvertedToType; 4658 4659 // A top-level expression that's not <expr-primary> needs to be wrapped in 4660 // X...E in a template arg. 4661 bool IsPrimaryExpr = true; 4662 auto NotPrimaryExpr = [&] { 4663 if (AsTemplateArg && IsPrimaryExpr) 4664 Out << 'X'; 4665 IsPrimaryExpr = false; 4666 }; 4667 4668 auto MangleDeclRefExpr = [&](const NamedDecl *D) { 4669 switch (D->getKind()) { 4670 default: 4671 // <expr-primary> ::= L <mangled-name> E # external name 4672 Out << 'L'; 4673 mangle(D); 4674 Out << 'E'; 4675 break; 4676 4677 case Decl::ParmVar: 4678 NotPrimaryExpr(); 4679 mangleFunctionParam(cast<ParmVarDecl>(D)); 4680 break; 4681 4682 case Decl::EnumConstant: { 4683 // <expr-primary> 4684 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 4685 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 4686 break; 4687 } 4688 4689 case Decl::NonTypeTemplateParm: 4690 NotPrimaryExpr(); 4691 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 4692 mangleTemplateParameter(PD->getDepth(), PD->getIndex()); 4693 break; 4694 } 4695 }; 4696 4697 // 'goto recurse' is used when handling a simple "unwrapping" node which 4698 // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need 4699 // to be preserved. 4700 recurse: 4701 switch (E->getStmtClass()) { 4702 case Expr::NoStmtClass: 4703 #define ABSTRACT_STMT(Type) 4704 #define EXPR(Type, Base) 4705 #define STMT(Type, Base) \ 4706 case Expr::Type##Class: 4707 #include "clang/AST/StmtNodes.inc" 4708 // fallthrough 4709 4710 // These all can only appear in local or variable-initialization 4711 // contexts and so should never appear in a mangling. 4712 case Expr::AddrLabelExprClass: 4713 case Expr::DesignatedInitUpdateExprClass: 4714 case Expr::ImplicitValueInitExprClass: 4715 case Expr::ArrayInitLoopExprClass: 4716 case Expr::ArrayInitIndexExprClass: 4717 case Expr::NoInitExprClass: 4718 case Expr::ParenListExprClass: 4719 case Expr::MSPropertyRefExprClass: 4720 case Expr::MSPropertySubscriptExprClass: 4721 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 4722 case Expr::RecoveryExprClass: 4723 case Expr::ArraySectionExprClass: 4724 case Expr::OMPArrayShapingExprClass: 4725 case Expr::OMPIteratorExprClass: 4726 case Expr::CXXInheritedCtorInitExprClass: 4727 case Expr::CXXParenListInitExprClass: 4728 case Expr::PackIndexingExprClass: 4729 llvm_unreachable("unexpected statement kind"); 4730 4731 case Expr::ConstantExprClass: 4732 E = cast<ConstantExpr>(E)->getSubExpr(); 4733 goto recurse; 4734 4735 // FIXME: invent manglings for all these. 4736 case Expr::BlockExprClass: 4737 case Expr::ChooseExprClass: 4738 case Expr::CompoundLiteralExprClass: 4739 case Expr::ExtVectorElementExprClass: 4740 case Expr::GenericSelectionExprClass: 4741 case Expr::ObjCEncodeExprClass: 4742 case Expr::ObjCIsaExprClass: 4743 case Expr::ObjCIvarRefExprClass: 4744 case Expr::ObjCMessageExprClass: 4745 case Expr::ObjCPropertyRefExprClass: 4746 case Expr::ObjCProtocolExprClass: 4747 case Expr::ObjCSelectorExprClass: 4748 case Expr::ObjCStringLiteralClass: 4749 case Expr::ObjCBoxedExprClass: 4750 case Expr::ObjCArrayLiteralClass: 4751 case Expr::ObjCDictionaryLiteralClass: 4752 case Expr::ObjCSubscriptRefExprClass: 4753 case Expr::ObjCIndirectCopyRestoreExprClass: 4754 case Expr::ObjCAvailabilityCheckExprClass: 4755 case Expr::OffsetOfExprClass: 4756 case Expr::PredefinedExprClass: 4757 case Expr::ShuffleVectorExprClass: 4758 case Expr::ConvertVectorExprClass: 4759 case Expr::StmtExprClass: 4760 case Expr::ArrayTypeTraitExprClass: 4761 case Expr::ExpressionTraitExprClass: 4762 case Expr::VAArgExprClass: 4763 case Expr::CUDAKernelCallExprClass: 4764 case Expr::AsTypeExprClass: 4765 case Expr::PseudoObjectExprClass: 4766 case Expr::AtomicExprClass: 4767 case Expr::SourceLocExprClass: 4768 case Expr::EmbedExprClass: 4769 case Expr::BuiltinBitCastExprClass: 4770 { 4771 NotPrimaryExpr(); 4772 if (!NullOut) { 4773 // As bad as this diagnostic is, it's better than crashing. 4774 DiagnosticsEngine &Diags = Context.getDiags(); 4775 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4776 "cannot yet mangle expression type %0"); 4777 Diags.Report(E->getExprLoc(), DiagID) 4778 << E->getStmtClassName() << E->getSourceRange(); 4779 return; 4780 } 4781 break; 4782 } 4783 4784 case Expr::CXXUuidofExprClass: { 4785 NotPrimaryExpr(); 4786 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 4787 // As of clang 12, uuidof uses the vendor extended expression 4788 // mangling. Previously, it used a special-cased nonstandard extension. 4789 if (!isCompatibleWith(LangOptions::ClangABI::Ver11)) { 4790 Out << "u8__uuidof"; 4791 if (UE->isTypeOperand()) 4792 mangleType(UE->getTypeOperand(Context.getASTContext())); 4793 else 4794 mangleTemplateArgExpr(UE->getExprOperand()); 4795 Out << 'E'; 4796 } else { 4797 if (UE->isTypeOperand()) { 4798 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 4799 Out << "u8__uuidoft"; 4800 mangleType(UuidT); 4801 } else { 4802 Expr *UuidExp = UE->getExprOperand(); 4803 Out << "u8__uuidofz"; 4804 mangleExpression(UuidExp); 4805 } 4806 } 4807 break; 4808 } 4809 4810 // Even gcc-4.5 doesn't mangle this. 4811 case Expr::BinaryConditionalOperatorClass: { 4812 NotPrimaryExpr(); 4813 DiagnosticsEngine &Diags = Context.getDiags(); 4814 unsigned DiagID = 4815 Diags.getCustomDiagID(DiagnosticsEngine::Error, 4816 "?: operator with omitted middle operand cannot be mangled"); 4817 Diags.Report(E->getExprLoc(), DiagID) 4818 << E->getStmtClassName() << E->getSourceRange(); 4819 return; 4820 } 4821 4822 // These are used for internal purposes and cannot be meaningfully mangled. 4823 case Expr::OpaqueValueExprClass: 4824 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 4825 4826 case Expr::InitListExprClass: { 4827 NotPrimaryExpr(); 4828 Out << "il"; 4829 mangleInitListElements(cast<InitListExpr>(E)); 4830 Out << "E"; 4831 break; 4832 } 4833 4834 case Expr::DesignatedInitExprClass: { 4835 NotPrimaryExpr(); 4836 auto *DIE = cast<DesignatedInitExpr>(E); 4837 for (const auto &Designator : DIE->designators()) { 4838 if (Designator.isFieldDesignator()) { 4839 Out << "di"; 4840 mangleSourceName(Designator.getFieldName()); 4841 } else if (Designator.isArrayDesignator()) { 4842 Out << "dx"; 4843 mangleExpression(DIE->getArrayIndex(Designator)); 4844 } else { 4845 assert(Designator.isArrayRangeDesignator() && 4846 "unknown designator kind"); 4847 Out << "dX"; 4848 mangleExpression(DIE->getArrayRangeStart(Designator)); 4849 mangleExpression(DIE->getArrayRangeEnd(Designator)); 4850 } 4851 } 4852 mangleExpression(DIE->getInit()); 4853 break; 4854 } 4855 4856 case Expr::CXXDefaultArgExprClass: 4857 E = cast<CXXDefaultArgExpr>(E)->getExpr(); 4858 goto recurse; 4859 4860 case Expr::CXXDefaultInitExprClass: 4861 E = cast<CXXDefaultInitExpr>(E)->getExpr(); 4862 goto recurse; 4863 4864 case Expr::CXXStdInitializerListExprClass: 4865 E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); 4866 goto recurse; 4867 4868 case Expr::SubstNonTypeTemplateParmExprClass: { 4869 // Mangle a substituted parameter the same way we mangle the template 4870 // argument. 4871 auto *SNTTPE = cast<SubstNonTypeTemplateParmExpr>(E); 4872 if (auto *CE = dyn_cast<ConstantExpr>(SNTTPE->getReplacement())) { 4873 // Pull out the constant value and mangle it as a template argument. 4874 QualType ParamType = SNTTPE->getParameterType(Context.getASTContext()); 4875 assert(CE->hasAPValueResult() && "expected the NTTP to have an APValue"); 4876 mangleValueInTemplateArg(ParamType, CE->getAPValueResult(), false, 4877 /*NeedExactType=*/true); 4878 break; 4879 } 4880 // The remaining cases all happen to be substituted with expressions that 4881 // mangle the same as a corresponding template argument anyway. 4882 E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); 4883 goto recurse; 4884 } 4885 4886 case Expr::UserDefinedLiteralClass: 4887 // We follow g++'s approach of mangling a UDL as a call to the literal 4888 // operator. 4889 case Expr::CXXMemberCallExprClass: // fallthrough 4890 case Expr::CallExprClass: { 4891 NotPrimaryExpr(); 4892 const CallExpr *CE = cast<CallExpr>(E); 4893 4894 // <expression> ::= cp <simple-id> <expression>* E 4895 // We use this mangling only when the call would use ADL except 4896 // for being parenthesized. Per discussion with David 4897 // Vandervoorde, 2011.04.25. 4898 if (isParenthesizedADLCallee(CE)) { 4899 Out << "cp"; 4900 // The callee here is a parenthesized UnresolvedLookupExpr with 4901 // no qualifier and should always get mangled as a <simple-id> 4902 // anyway. 4903 4904 // <expression> ::= cl <expression>* E 4905 } else { 4906 Out << "cl"; 4907 } 4908 4909 unsigned CallArity = CE->getNumArgs(); 4910 for (const Expr *Arg : CE->arguments()) 4911 if (isa<PackExpansionExpr>(Arg)) 4912 CallArity = UnknownArity; 4913 4914 mangleExpression(CE->getCallee(), CallArity); 4915 for (const Expr *Arg : CE->arguments()) 4916 mangleExpression(Arg); 4917 Out << 'E'; 4918 break; 4919 } 4920 4921 case Expr::CXXNewExprClass: { 4922 NotPrimaryExpr(); 4923 const CXXNewExpr *New = cast<CXXNewExpr>(E); 4924 if (New->isGlobalNew()) Out << "gs"; 4925 Out << (New->isArray() ? "na" : "nw"); 4926 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 4927 E = New->placement_arg_end(); I != E; ++I) 4928 mangleExpression(*I); 4929 Out << '_'; 4930 mangleType(New->getAllocatedType()); 4931 if (New->hasInitializer()) { 4932 if (New->getInitializationStyle() == CXXNewInitializationStyle::Braces) 4933 Out << "il"; 4934 else 4935 Out << "pi"; 4936 const Expr *Init = New->getInitializer(); 4937 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 4938 // Directly inline the initializers. 4939 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 4940 E = CCE->arg_end(); 4941 I != E; ++I) 4942 mangleExpression(*I); 4943 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 4944 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 4945 mangleExpression(PLE->getExpr(i)); 4946 } else if (New->getInitializationStyle() == 4947 CXXNewInitializationStyle::Braces && 4948 isa<InitListExpr>(Init)) { 4949 // Only take InitListExprs apart for list-initialization. 4950 mangleInitListElements(cast<InitListExpr>(Init)); 4951 } else 4952 mangleExpression(Init); 4953 } 4954 Out << 'E'; 4955 break; 4956 } 4957 4958 case Expr::CXXPseudoDestructorExprClass: { 4959 NotPrimaryExpr(); 4960 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 4961 if (const Expr *Base = PDE->getBase()) 4962 mangleMemberExprBase(Base, PDE->isArrow()); 4963 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 4964 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 4965 if (Qualifier) { 4966 mangleUnresolvedPrefix(Qualifier, 4967 /*recursive=*/true); 4968 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 4969 Out << 'E'; 4970 } else { 4971 Out << "sr"; 4972 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 4973 Out << 'E'; 4974 } 4975 } else if (Qualifier) { 4976 mangleUnresolvedPrefix(Qualifier); 4977 } 4978 // <base-unresolved-name> ::= dn <destructor-name> 4979 Out << "dn"; 4980 QualType DestroyedType = PDE->getDestroyedType(); 4981 mangleUnresolvedTypeOrSimpleId(DestroyedType); 4982 break; 4983 } 4984 4985 case Expr::MemberExprClass: { 4986 NotPrimaryExpr(); 4987 const MemberExpr *ME = cast<MemberExpr>(E); 4988 mangleMemberExpr(ME->getBase(), ME->isArrow(), 4989 ME->getQualifier(), nullptr, 4990 ME->getMemberDecl()->getDeclName(), 4991 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4992 Arity); 4993 break; 4994 } 4995 4996 case Expr::UnresolvedMemberExprClass: { 4997 NotPrimaryExpr(); 4998 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 4999 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 5000 ME->isArrow(), ME->getQualifier(), nullptr, 5001 ME->getMemberName(), 5002 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 5003 Arity); 5004 break; 5005 } 5006 5007 case Expr::CXXDependentScopeMemberExprClass: { 5008 NotPrimaryExpr(); 5009 const CXXDependentScopeMemberExpr *ME 5010 = cast<CXXDependentScopeMemberExpr>(E); 5011 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 5012 ME->isArrow(), ME->getQualifier(), 5013 ME->getFirstQualifierFoundInScope(), 5014 ME->getMember(), 5015 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 5016 Arity); 5017 break; 5018 } 5019 5020 case Expr::UnresolvedLookupExprClass: { 5021 NotPrimaryExpr(); 5022 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 5023 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 5024 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 5025 Arity); 5026 break; 5027 } 5028 5029 case Expr::CXXUnresolvedConstructExprClass: { 5030 NotPrimaryExpr(); 5031 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 5032 unsigned N = CE->getNumArgs(); 5033 5034 if (CE->isListInitialization()) { 5035 assert(N == 1 && "unexpected form for list initialization"); 5036 auto *IL = cast<InitListExpr>(CE->getArg(0)); 5037 Out << "tl"; 5038 mangleType(CE->getType()); 5039 mangleInitListElements(IL); 5040 Out << "E"; 5041 break; 5042 } 5043 5044 Out << "cv"; 5045 mangleType(CE->getType()); 5046 if (N != 1) Out << '_'; 5047 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 5048 if (N != 1) Out << 'E'; 5049 break; 5050 } 5051 5052 case Expr::CXXConstructExprClass: { 5053 // An implicit cast is silent, thus may contain <expr-primary>. 5054 const auto *CE = cast<CXXConstructExpr>(E); 5055 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 5056 assert( 5057 CE->getNumArgs() >= 1 && 5058 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 5059 "implicit CXXConstructExpr must have one argument"); 5060 E = cast<CXXConstructExpr>(E)->getArg(0); 5061 goto recurse; 5062 } 5063 NotPrimaryExpr(); 5064 Out << "il"; 5065 for (auto *E : CE->arguments()) 5066 mangleExpression(E); 5067 Out << "E"; 5068 break; 5069 } 5070 5071 case Expr::CXXTemporaryObjectExprClass: { 5072 NotPrimaryExpr(); 5073 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 5074 unsigned N = CE->getNumArgs(); 5075 bool List = CE->isListInitialization(); 5076 5077 if (List) 5078 Out << "tl"; 5079 else 5080 Out << "cv"; 5081 mangleType(CE->getType()); 5082 if (!List && N != 1) 5083 Out << '_'; 5084 if (CE->isStdInitListInitialization()) { 5085 // We implicitly created a std::initializer_list<T> for the first argument 5086 // of a constructor of type U in an expression of the form U{a, b, c}. 5087 // Strip all the semantic gunk off the initializer list. 5088 auto *SILE = 5089 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 5090 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 5091 mangleInitListElements(ILE); 5092 } else { 5093 for (auto *E : CE->arguments()) 5094 mangleExpression(E); 5095 } 5096 if (List || N != 1) 5097 Out << 'E'; 5098 break; 5099 } 5100 5101 case Expr::CXXScalarValueInitExprClass: 5102 NotPrimaryExpr(); 5103 Out << "cv"; 5104 mangleType(E->getType()); 5105 Out << "_E"; 5106 break; 5107 5108 case Expr::CXXNoexceptExprClass: 5109 NotPrimaryExpr(); 5110 Out << "nx"; 5111 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 5112 break; 5113 5114 case Expr::UnaryExprOrTypeTraitExprClass: { 5115 // Non-instantiation-dependent traits are an <expr-primary> integer literal. 5116 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 5117 5118 if (!SAE->isInstantiationDependent()) { 5119 // Itanium C++ ABI: 5120 // If the operand of a sizeof or alignof operator is not 5121 // instantiation-dependent it is encoded as an integer literal 5122 // reflecting the result of the operator. 5123 // 5124 // If the result of the operator is implicitly converted to a known 5125 // integer type, that type is used for the literal; otherwise, the type 5126 // of std::size_t or std::ptrdiff_t is used. 5127 // 5128 // FIXME: We still include the operand in the profile in this case. This 5129 // can lead to mangling collisions between function templates that we 5130 // consider to be different. 5131 QualType T = (ImplicitlyConvertedToType.isNull() || 5132 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 5133 : ImplicitlyConvertedToType; 5134 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 5135 mangleIntegerLiteral(T, V); 5136 break; 5137 } 5138 5139 NotPrimaryExpr(); // But otherwise, they are not. 5140 5141 auto MangleAlignofSizeofArg = [&] { 5142 if (SAE->isArgumentType()) { 5143 Out << 't'; 5144 mangleType(SAE->getArgumentType()); 5145 } else { 5146 Out << 'z'; 5147 mangleExpression(SAE->getArgumentExpr()); 5148 } 5149 }; 5150 5151 switch(SAE->getKind()) { 5152 case UETT_SizeOf: 5153 Out << 's'; 5154 MangleAlignofSizeofArg(); 5155 break; 5156 case UETT_PreferredAlignOf: 5157 // As of clang 12, we mangle __alignof__ differently than alignof. (They 5158 // have acted differently since Clang 8, but were previously mangled the 5159 // same.) 5160 if (!isCompatibleWith(LangOptions::ClangABI::Ver11)) { 5161 Out << "u11__alignof__"; 5162 if (SAE->isArgumentType()) 5163 mangleType(SAE->getArgumentType()); 5164 else 5165 mangleTemplateArgExpr(SAE->getArgumentExpr()); 5166 Out << 'E'; 5167 break; 5168 } 5169 [[fallthrough]]; 5170 case UETT_AlignOf: 5171 Out << 'a'; 5172 MangleAlignofSizeofArg(); 5173 break; 5174 case UETT_DataSizeOf: { 5175 DiagnosticsEngine &Diags = Context.getDiags(); 5176 unsigned DiagID = 5177 Diags.getCustomDiagID(DiagnosticsEngine::Error, 5178 "cannot yet mangle __datasizeof expression"); 5179 Diags.Report(DiagID); 5180 return; 5181 } 5182 case UETT_PtrAuthTypeDiscriminator: { 5183 DiagnosticsEngine &Diags = Context.getDiags(); 5184 unsigned DiagID = Diags.getCustomDiagID( 5185 DiagnosticsEngine::Error, 5186 "cannot yet mangle __builtin_ptrauth_type_discriminator expression"); 5187 Diags.Report(E->getExprLoc(), DiagID); 5188 return; 5189 } 5190 case UETT_VecStep: { 5191 DiagnosticsEngine &Diags = Context.getDiags(); 5192 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 5193 "cannot yet mangle vec_step expression"); 5194 Diags.Report(DiagID); 5195 return; 5196 } 5197 case UETT_OpenMPRequiredSimdAlign: { 5198 DiagnosticsEngine &Diags = Context.getDiags(); 5199 unsigned DiagID = Diags.getCustomDiagID( 5200 DiagnosticsEngine::Error, 5201 "cannot yet mangle __builtin_omp_required_simd_align expression"); 5202 Diags.Report(DiagID); 5203 return; 5204 } 5205 case UETT_VectorElements: { 5206 DiagnosticsEngine &Diags = Context.getDiags(); 5207 unsigned DiagID = Diags.getCustomDiagID( 5208 DiagnosticsEngine::Error, 5209 "cannot yet mangle __builtin_vectorelements expression"); 5210 Diags.Report(DiagID); 5211 return; 5212 } 5213 } 5214 break; 5215 } 5216 5217 case Expr::TypeTraitExprClass: { 5218 // <expression> ::= u <source-name> <template-arg>* E # vendor extension 5219 const TypeTraitExpr *TTE = cast<TypeTraitExpr>(E); 5220 NotPrimaryExpr(); 5221 Out << 'u'; 5222 llvm::StringRef Spelling = getTraitSpelling(TTE->getTrait()); 5223 Out << Spelling.size() << Spelling; 5224 for (TypeSourceInfo *TSI : TTE->getArgs()) { 5225 mangleType(TSI->getType()); 5226 } 5227 Out << 'E'; 5228 break; 5229 } 5230 5231 case Expr::CXXThrowExprClass: { 5232 NotPrimaryExpr(); 5233 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 5234 // <expression> ::= tw <expression> # throw expression 5235 // ::= tr # rethrow 5236 if (TE->getSubExpr()) { 5237 Out << "tw"; 5238 mangleExpression(TE->getSubExpr()); 5239 } else { 5240 Out << "tr"; 5241 } 5242 break; 5243 } 5244 5245 case Expr::CXXTypeidExprClass: { 5246 NotPrimaryExpr(); 5247 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 5248 // <expression> ::= ti <type> # typeid (type) 5249 // ::= te <expression> # typeid (expression) 5250 if (TIE->isTypeOperand()) { 5251 Out << "ti"; 5252 mangleType(TIE->getTypeOperand(Context.getASTContext())); 5253 } else { 5254 Out << "te"; 5255 mangleExpression(TIE->getExprOperand()); 5256 } 5257 break; 5258 } 5259 5260 case Expr::CXXDeleteExprClass: { 5261 NotPrimaryExpr(); 5262 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 5263 // <expression> ::= [gs] dl <expression> # [::] delete expr 5264 // ::= [gs] da <expression> # [::] delete [] expr 5265 if (DE->isGlobalDelete()) Out << "gs"; 5266 Out << (DE->isArrayForm() ? "da" : "dl"); 5267 mangleExpression(DE->getArgument()); 5268 break; 5269 } 5270 5271 case Expr::UnaryOperatorClass: { 5272 NotPrimaryExpr(); 5273 const UnaryOperator *UO = cast<UnaryOperator>(E); 5274 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 5275 /*Arity=*/1); 5276 mangleExpression(UO->getSubExpr()); 5277 break; 5278 } 5279 5280 case Expr::ArraySubscriptExprClass: { 5281 NotPrimaryExpr(); 5282 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 5283 5284 // Array subscript is treated as a syntactically weird form of 5285 // binary operator. 5286 Out << "ix"; 5287 mangleExpression(AE->getLHS()); 5288 mangleExpression(AE->getRHS()); 5289 break; 5290 } 5291 5292 case Expr::MatrixSubscriptExprClass: { 5293 NotPrimaryExpr(); 5294 const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); 5295 Out << "ixix"; 5296 mangleExpression(ME->getBase()); 5297 mangleExpression(ME->getRowIdx()); 5298 mangleExpression(ME->getColumnIdx()); 5299 break; 5300 } 5301 5302 case Expr::CompoundAssignOperatorClass: // fallthrough 5303 case Expr::BinaryOperatorClass: { 5304 NotPrimaryExpr(); 5305 const BinaryOperator *BO = cast<BinaryOperator>(E); 5306 if (BO->getOpcode() == BO_PtrMemD) 5307 Out << "ds"; 5308 else 5309 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 5310 /*Arity=*/2); 5311 mangleExpression(BO->getLHS()); 5312 mangleExpression(BO->getRHS()); 5313 break; 5314 } 5315 5316 case Expr::CXXRewrittenBinaryOperatorClass: { 5317 NotPrimaryExpr(); 5318 // The mangled form represents the original syntax. 5319 CXXRewrittenBinaryOperator::DecomposedForm Decomposed = 5320 cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); 5321 mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode), 5322 /*Arity=*/2); 5323 mangleExpression(Decomposed.LHS); 5324 mangleExpression(Decomposed.RHS); 5325 break; 5326 } 5327 5328 case Expr::ConditionalOperatorClass: { 5329 NotPrimaryExpr(); 5330 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 5331 mangleOperatorName(OO_Conditional, /*Arity=*/3); 5332 mangleExpression(CO->getCond()); 5333 mangleExpression(CO->getLHS(), Arity); 5334 mangleExpression(CO->getRHS(), Arity); 5335 break; 5336 } 5337 5338 case Expr::ImplicitCastExprClass: { 5339 ImplicitlyConvertedToType = E->getType(); 5340 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 5341 goto recurse; 5342 } 5343 5344 case Expr::ObjCBridgedCastExprClass: { 5345 NotPrimaryExpr(); 5346 // Mangle ownership casts as a vendor extended operator __bridge, 5347 // __bridge_transfer, or __bridge_retain. 5348 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 5349 Out << "v1U" << Kind.size() << Kind; 5350 mangleCastExpression(E, "cv"); 5351 break; 5352 } 5353 5354 case Expr::CStyleCastExprClass: 5355 NotPrimaryExpr(); 5356 mangleCastExpression(E, "cv"); 5357 break; 5358 5359 case Expr::CXXFunctionalCastExprClass: { 5360 NotPrimaryExpr(); 5361 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 5362 // FIXME: Add isImplicit to CXXConstructExpr. 5363 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 5364 if (CCE->getParenOrBraceRange().isInvalid()) 5365 Sub = CCE->getArg(0)->IgnoreImplicit(); 5366 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 5367 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 5368 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 5369 Out << "tl"; 5370 mangleType(E->getType()); 5371 mangleInitListElements(IL); 5372 Out << "E"; 5373 } else { 5374 mangleCastExpression(E, "cv"); 5375 } 5376 break; 5377 } 5378 5379 case Expr::CXXStaticCastExprClass: 5380 NotPrimaryExpr(); 5381 mangleCastExpression(E, "sc"); 5382 break; 5383 case Expr::CXXDynamicCastExprClass: 5384 NotPrimaryExpr(); 5385 mangleCastExpression(E, "dc"); 5386 break; 5387 case Expr::CXXReinterpretCastExprClass: 5388 NotPrimaryExpr(); 5389 mangleCastExpression(E, "rc"); 5390 break; 5391 case Expr::CXXConstCastExprClass: 5392 NotPrimaryExpr(); 5393 mangleCastExpression(E, "cc"); 5394 break; 5395 case Expr::CXXAddrspaceCastExprClass: 5396 NotPrimaryExpr(); 5397 mangleCastExpression(E, "ac"); 5398 break; 5399 5400 case Expr::CXXOperatorCallExprClass: { 5401 NotPrimaryExpr(); 5402 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 5403 unsigned NumArgs = CE->getNumArgs(); 5404 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 5405 // (the enclosing MemberExpr covers the syntactic portion). 5406 if (CE->getOperator() != OO_Arrow) 5407 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 5408 // Mangle the arguments. 5409 for (unsigned i = 0; i != NumArgs; ++i) 5410 mangleExpression(CE->getArg(i)); 5411 break; 5412 } 5413 5414 case Expr::ParenExprClass: 5415 E = cast<ParenExpr>(E)->getSubExpr(); 5416 goto recurse; 5417 5418 case Expr::ConceptSpecializationExprClass: { 5419 auto *CSE = cast<ConceptSpecializationExpr>(E); 5420 if (isCompatibleWith(LangOptions::ClangABI::Ver17)) { 5421 // Clang 17 and before mangled concept-ids as if they resolved to an 5422 // entity, meaning that references to enclosing template arguments don't 5423 // work. 5424 Out << "L_Z"; 5425 mangleTemplateName(CSE->getNamedConcept(), CSE->getTemplateArguments()); 5426 Out << 'E'; 5427 break; 5428 } 5429 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. 5430 NotPrimaryExpr(); 5431 mangleUnresolvedName( 5432 CSE->getNestedNameSpecifierLoc().getNestedNameSpecifier(), 5433 CSE->getConceptNameInfo().getName(), 5434 CSE->getTemplateArgsAsWritten()->getTemplateArgs(), 5435 CSE->getTemplateArgsAsWritten()->getNumTemplateArgs()); 5436 break; 5437 } 5438 5439 case Expr::RequiresExprClass: { 5440 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. 5441 auto *RE = cast<RequiresExpr>(E); 5442 // This is a primary-expression in the C++ grammar, but does not have an 5443 // <expr-primary> mangling (starting with 'L'). 5444 NotPrimaryExpr(); 5445 if (RE->getLParenLoc().isValid()) { 5446 Out << "rQ"; 5447 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 5448 if (RE->getLocalParameters().empty()) { 5449 Out << 'v'; 5450 } else { 5451 for (ParmVarDecl *Param : RE->getLocalParameters()) { 5452 mangleType(Context.getASTContext().getSignatureParameterType( 5453 Param->getType())); 5454 } 5455 } 5456 Out << '_'; 5457 5458 // The rest of the mangling is in the immediate scope of the parameters. 5459 FunctionTypeDepth.enterResultType(); 5460 for (const concepts::Requirement *Req : RE->getRequirements()) 5461 mangleRequirement(RE->getExprLoc(), Req); 5462 FunctionTypeDepth.pop(saved); 5463 Out << 'E'; 5464 } else { 5465 Out << "rq"; 5466 for (const concepts::Requirement *Req : RE->getRequirements()) 5467 mangleRequirement(RE->getExprLoc(), Req); 5468 Out << 'E'; 5469 } 5470 break; 5471 } 5472 5473 case Expr::DeclRefExprClass: 5474 // MangleDeclRefExpr helper handles primary-vs-nonprimary 5475 MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); 5476 break; 5477 5478 case Expr::SubstNonTypeTemplateParmPackExprClass: 5479 NotPrimaryExpr(); 5480 // FIXME: not clear how to mangle this! 5481 // template <unsigned N...> class A { 5482 // template <class U...> void foo(U (&x)[N]...); 5483 // }; 5484 Out << "_SUBSTPACK_"; 5485 break; 5486 5487 case Expr::FunctionParmPackExprClass: { 5488 NotPrimaryExpr(); 5489 // FIXME: not clear how to mangle this! 5490 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 5491 Out << "v110_SUBSTPACK"; 5492 MangleDeclRefExpr(FPPE->getParameterPack()); 5493 break; 5494 } 5495 5496 case Expr::DependentScopeDeclRefExprClass: { 5497 NotPrimaryExpr(); 5498 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 5499 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 5500 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 5501 Arity); 5502 break; 5503 } 5504 5505 case Expr::CXXBindTemporaryExprClass: 5506 E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); 5507 goto recurse; 5508 5509 case Expr::ExprWithCleanupsClass: 5510 E = cast<ExprWithCleanups>(E)->getSubExpr(); 5511 goto recurse; 5512 5513 case Expr::FloatingLiteralClass: { 5514 // <expr-primary> 5515 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 5516 mangleFloatLiteral(FL->getType(), FL->getValue()); 5517 break; 5518 } 5519 5520 case Expr::FixedPointLiteralClass: 5521 // Currently unimplemented -- might be <expr-primary> in future? 5522 mangleFixedPointLiteral(); 5523 break; 5524 5525 case Expr::CharacterLiteralClass: 5526 // <expr-primary> 5527 Out << 'L'; 5528 mangleType(E->getType()); 5529 Out << cast<CharacterLiteral>(E)->getValue(); 5530 Out << 'E'; 5531 break; 5532 5533 // FIXME. __objc_yes/__objc_no are mangled same as true/false 5534 case Expr::ObjCBoolLiteralExprClass: 5535 // <expr-primary> 5536 Out << "Lb"; 5537 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 5538 Out << 'E'; 5539 break; 5540 5541 case Expr::CXXBoolLiteralExprClass: 5542 // <expr-primary> 5543 Out << "Lb"; 5544 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 5545 Out << 'E'; 5546 break; 5547 5548 case Expr::IntegerLiteralClass: { 5549 // <expr-primary> 5550 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 5551 if (E->getType()->isSignedIntegerType()) 5552 Value.setIsSigned(true); 5553 mangleIntegerLiteral(E->getType(), Value); 5554 break; 5555 } 5556 5557 case Expr::ImaginaryLiteralClass: { 5558 // <expr-primary> 5559 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 5560 // Mangle as if a complex literal. 5561 // Proposal from David Vandevoorde, 2010.06.30. 5562 Out << 'L'; 5563 mangleType(E->getType()); 5564 if (const FloatingLiteral *Imag = 5565 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 5566 // Mangle a floating-point zero of the appropriate type. 5567 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 5568 Out << '_'; 5569 mangleFloat(Imag->getValue()); 5570 } else { 5571 Out << "0_"; 5572 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 5573 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 5574 Value.setIsSigned(true); 5575 mangleNumber(Value); 5576 } 5577 Out << 'E'; 5578 break; 5579 } 5580 5581 case Expr::StringLiteralClass: { 5582 // <expr-primary> 5583 // Revised proposal from David Vandervoorde, 2010.07.15. 5584 Out << 'L'; 5585 assert(isa<ConstantArrayType>(E->getType())); 5586 mangleType(E->getType()); 5587 Out << 'E'; 5588 break; 5589 } 5590 5591 case Expr::GNUNullExprClass: 5592 // <expr-primary> 5593 // Mangle as if an integer literal 0. 5594 mangleIntegerLiteral(E->getType(), llvm::APSInt(32)); 5595 break; 5596 5597 case Expr::CXXNullPtrLiteralExprClass: { 5598 // <expr-primary> 5599 Out << "LDnE"; 5600 break; 5601 } 5602 5603 case Expr::LambdaExprClass: { 5604 // A lambda-expression can't appear in the signature of an 5605 // externally-visible declaration, so there's no standard mangling for 5606 // this, but mangling as a literal of the closure type seems reasonable. 5607 Out << "L"; 5608 mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass())); 5609 Out << "E"; 5610 break; 5611 } 5612 5613 case Expr::PackExpansionExprClass: 5614 NotPrimaryExpr(); 5615 Out << "sp"; 5616 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 5617 break; 5618 5619 case Expr::SizeOfPackExprClass: { 5620 NotPrimaryExpr(); 5621 auto *SPE = cast<SizeOfPackExpr>(E); 5622 if (SPE->isPartiallySubstituted()) { 5623 Out << "sP"; 5624 for (const auto &A : SPE->getPartialArguments()) 5625 mangleTemplateArg(A, false); 5626 Out << "E"; 5627 break; 5628 } 5629 5630 Out << "sZ"; 5631 const NamedDecl *Pack = SPE->getPack(); 5632 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 5633 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 5634 else if (const NonTypeTemplateParmDecl *NTTP 5635 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 5636 mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex()); 5637 else if (const TemplateTemplateParmDecl *TempTP 5638 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 5639 mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex()); 5640 else 5641 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 5642 break; 5643 } 5644 5645 case Expr::MaterializeTemporaryExprClass: 5646 E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); 5647 goto recurse; 5648 5649 case Expr::CXXFoldExprClass: { 5650 NotPrimaryExpr(); 5651 auto *FE = cast<CXXFoldExpr>(E); 5652 if (FE->isLeftFold()) 5653 Out << (FE->getInit() ? "fL" : "fl"); 5654 else 5655 Out << (FE->getInit() ? "fR" : "fr"); 5656 5657 if (FE->getOperator() == BO_PtrMemD) 5658 Out << "ds"; 5659 else 5660 mangleOperatorName( 5661 BinaryOperator::getOverloadedOperator(FE->getOperator()), 5662 /*Arity=*/2); 5663 5664 if (FE->getLHS()) 5665 mangleExpression(FE->getLHS()); 5666 if (FE->getRHS()) 5667 mangleExpression(FE->getRHS()); 5668 break; 5669 } 5670 5671 case Expr::CXXThisExprClass: 5672 NotPrimaryExpr(); 5673 Out << "fpT"; 5674 break; 5675 5676 case Expr::CoawaitExprClass: 5677 // FIXME: Propose a non-vendor mangling. 5678 NotPrimaryExpr(); 5679 Out << "v18co_await"; 5680 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5681 break; 5682 5683 case Expr::DependentCoawaitExprClass: 5684 // FIXME: Propose a non-vendor mangling. 5685 NotPrimaryExpr(); 5686 Out << "v18co_await"; 5687 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 5688 break; 5689 5690 case Expr::CoyieldExprClass: 5691 // FIXME: Propose a non-vendor mangling. 5692 NotPrimaryExpr(); 5693 Out << "v18co_yield"; 5694 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5695 break; 5696 case Expr::SYCLUniqueStableNameExprClass: { 5697 const auto *USN = cast<SYCLUniqueStableNameExpr>(E); 5698 NotPrimaryExpr(); 5699 5700 Out << "u33__builtin_sycl_unique_stable_name"; 5701 mangleType(USN->getTypeSourceInfo()->getType()); 5702 5703 Out << "E"; 5704 break; 5705 } 5706 } 5707 5708 if (AsTemplateArg && !IsPrimaryExpr) 5709 Out << 'E'; 5710 } 5711 5712 /// Mangle an expression which refers to a parameter variable. 5713 /// 5714 /// <expression> ::= <function-param> 5715 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 5716 /// <function-param> ::= fp <top-level CV-qualifiers> 5717 /// <parameter-2 non-negative number> _ # L == 0, I > 0 5718 /// <function-param> ::= fL <L-1 non-negative number> 5719 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 5720 /// <function-param> ::= fL <L-1 non-negative number> 5721 /// p <top-level CV-qualifiers> 5722 /// <I-1 non-negative number> _ # L > 0, I > 0 5723 /// 5724 /// L is the nesting depth of the parameter, defined as 1 if the 5725 /// parameter comes from the innermost function prototype scope 5726 /// enclosing the current context, 2 if from the next enclosing 5727 /// function prototype scope, and so on, with one special case: if 5728 /// we've processed the full parameter clause for the innermost 5729 /// function type, then L is one less. This definition conveniently 5730 /// makes it irrelevant whether a function's result type was written 5731 /// trailing or leading, but is otherwise overly complicated; the 5732 /// numbering was first designed without considering references to 5733 /// parameter in locations other than return types, and then the 5734 /// mangling had to be generalized without changing the existing 5735 /// manglings. 5736 /// 5737 /// I is the zero-based index of the parameter within its parameter 5738 /// declaration clause. Note that the original ABI document describes 5739 /// this using 1-based ordinals. 5740 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 5741 unsigned parmDepth = parm->getFunctionScopeDepth(); 5742 unsigned parmIndex = parm->getFunctionScopeIndex(); 5743 5744 // Compute 'L'. 5745 // parmDepth does not include the declaring function prototype. 5746 // FunctionTypeDepth does account for that. 5747 assert(parmDepth < FunctionTypeDepth.getDepth()); 5748 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 5749 if (FunctionTypeDepth.isInResultType()) 5750 nestingDepth--; 5751 5752 if (nestingDepth == 0) { 5753 Out << "fp"; 5754 } else { 5755 Out << "fL" << (nestingDepth - 1) << 'p'; 5756 } 5757 5758 // Top-level qualifiers. We don't have to worry about arrays here, 5759 // because parameters declared as arrays should already have been 5760 // transformed to have pointer type. FIXME: apparently these don't 5761 // get mangled if used as an rvalue of a known non-class type? 5762 assert(!parm->getType()->isArrayType() 5763 && "parameter's type is still an array type?"); 5764 5765 if (const DependentAddressSpaceType *DAST = 5766 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 5767 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 5768 } else { 5769 mangleQualifiers(parm->getType().getQualifiers()); 5770 } 5771 5772 // Parameter index. 5773 if (parmIndex != 0) { 5774 Out << (parmIndex - 1); 5775 } 5776 Out << '_'; 5777 } 5778 5779 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 5780 const CXXRecordDecl *InheritedFrom) { 5781 // <ctor-dtor-name> ::= C1 # complete object constructor 5782 // ::= C2 # base object constructor 5783 // ::= CI1 <type> # complete inheriting constructor 5784 // ::= CI2 <type> # base inheriting constructor 5785 // 5786 // In addition, C5 is a comdat name with C1 and C2 in it. 5787 Out << 'C'; 5788 if (InheritedFrom) 5789 Out << 'I'; 5790 switch (T) { 5791 case Ctor_Complete: 5792 Out << '1'; 5793 break; 5794 case Ctor_Base: 5795 Out << '2'; 5796 break; 5797 case Ctor_Comdat: 5798 Out << '5'; 5799 break; 5800 case Ctor_DefaultClosure: 5801 case Ctor_CopyingClosure: 5802 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 5803 } 5804 if (InheritedFrom) 5805 mangleName(InheritedFrom); 5806 } 5807 5808 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 5809 // <ctor-dtor-name> ::= D0 # deleting destructor 5810 // ::= D1 # complete object destructor 5811 // ::= D2 # base object destructor 5812 // 5813 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 5814 switch (T) { 5815 case Dtor_Deleting: 5816 Out << "D0"; 5817 break; 5818 case Dtor_Complete: 5819 Out << "D1"; 5820 break; 5821 case Dtor_Base: 5822 Out << "D2"; 5823 break; 5824 case Dtor_Comdat: 5825 Out << "D5"; 5826 break; 5827 } 5828 } 5829 5830 // Helper to provide ancillary information on a template used to mangle its 5831 // arguments. 5832 struct CXXNameMangler::TemplateArgManglingInfo { 5833 const CXXNameMangler &Mangler; 5834 TemplateDecl *ResolvedTemplate = nullptr; 5835 bool SeenPackExpansionIntoNonPack = false; 5836 const NamedDecl *UnresolvedExpandedPack = nullptr; 5837 5838 TemplateArgManglingInfo(const CXXNameMangler &Mangler, TemplateName TN) 5839 : Mangler(Mangler) { 5840 if (TemplateDecl *TD = TN.getAsTemplateDecl()) 5841 ResolvedTemplate = TD; 5842 } 5843 5844 /// Information about how to mangle a template argument. 5845 struct Info { 5846 /// Do we need to mangle the template argument with an exactly correct type? 5847 bool NeedExactType; 5848 /// If we need to prefix the mangling with a mangling of the template 5849 /// parameter, the corresponding parameter. 5850 const NamedDecl *TemplateParameterToMangle; 5851 }; 5852 5853 /// Determine whether the resolved template might be overloaded on its 5854 /// template parameter list. If so, the mangling needs to include enough 5855 /// information to reconstruct the template parameter list. 5856 bool isOverloadable() { 5857 // Function templates are generally overloadable. As a special case, a 5858 // member function template of a generic lambda is not overloadable. 5859 if (auto *FTD = dyn_cast_or_null<FunctionTemplateDecl>(ResolvedTemplate)) { 5860 auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); 5861 if (!RD || !RD->isGenericLambda()) 5862 return true; 5863 } 5864 5865 // All other templates are not overloadable. Partial specializations would 5866 // be, but we never mangle them. 5867 return false; 5868 } 5869 5870 /// Determine whether we need to prefix this <template-arg> mangling with a 5871 /// <template-param-decl>. This happens if the natural template parameter for 5872 /// the argument mangling is not the same as the actual template parameter. 5873 bool needToMangleTemplateParam(const NamedDecl *Param, 5874 const TemplateArgument &Arg) { 5875 // For a template type parameter, the natural parameter is 'typename T'. 5876 // The actual parameter might be constrained. 5877 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5878 return TTP->hasTypeConstraint(); 5879 5880 if (Arg.getKind() == TemplateArgument::Pack) { 5881 // For an empty pack, the natural parameter is `typename...`. 5882 if (Arg.pack_size() == 0) 5883 return true; 5884 5885 // For any other pack, we use the first argument to determine the natural 5886 // template parameter. 5887 return needToMangleTemplateParam(Param, *Arg.pack_begin()); 5888 } 5889 5890 // For a non-type template parameter, the natural parameter is `T V` (for a 5891 // prvalue argument) or `T &V` (for a glvalue argument), where `T` is the 5892 // type of the argument, which we require to exactly match. If the actual 5893 // parameter has a deduced or instantiation-dependent type, it is not 5894 // equivalent to the natural parameter. 5895 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) 5896 return NTTP->getType()->isInstantiationDependentType() || 5897 NTTP->getType()->getContainedDeducedType(); 5898 5899 // For a template template parameter, the template-head might differ from 5900 // that of the template. 5901 auto *TTP = cast<TemplateTemplateParmDecl>(Param); 5902 TemplateName ArgTemplateName = Arg.getAsTemplateOrTemplatePattern(); 5903 const TemplateDecl *ArgTemplate = ArgTemplateName.getAsTemplateDecl(); 5904 if (!ArgTemplate) 5905 return true; 5906 5907 // Mangle the template parameter list of the parameter and argument to see 5908 // if they are the same. We can't use Profile for this, because it can't 5909 // model the depth difference between parameter and argument and might not 5910 // necessarily have the same definition of "identical" that we use here -- 5911 // that is, same mangling. 5912 auto MangleTemplateParamListToString = 5913 [&](SmallVectorImpl<char> &Buffer, const TemplateParameterList *Params, 5914 unsigned DepthOffset) { 5915 llvm::raw_svector_ostream Stream(Buffer); 5916 CXXNameMangler(Mangler.Context, Stream, 5917 WithTemplateDepthOffset{DepthOffset}) 5918 .mangleTemplateParameterList(Params); 5919 }; 5920 llvm::SmallString<128> ParamTemplateHead, ArgTemplateHead; 5921 MangleTemplateParamListToString(ParamTemplateHead, 5922 TTP->getTemplateParameters(), 0); 5923 // Add the depth of the parameter's template parameter list to all 5924 // parameters appearing in the argument to make the indexes line up 5925 // properly. 5926 MangleTemplateParamListToString(ArgTemplateHead, 5927 ArgTemplate->getTemplateParameters(), 5928 TTP->getTemplateParameters()->getDepth()); 5929 return ParamTemplateHead != ArgTemplateHead; 5930 } 5931 5932 /// Determine information about how this template argument should be mangled. 5933 /// This should be called exactly once for each parameter / argument pair, in 5934 /// order. 5935 Info getArgInfo(unsigned ParamIdx, const TemplateArgument &Arg) { 5936 // We need correct types when the template-name is unresolved or when it 5937 // names a template that is able to be overloaded. 5938 if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) 5939 return {true, nullptr}; 5940 5941 // Move to the next parameter. 5942 const NamedDecl *Param = UnresolvedExpandedPack; 5943 if (!Param) { 5944 assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && 5945 "no parameter for argument"); 5946 Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx); 5947 5948 // If we reach a parameter pack whose argument isn't in pack form, that 5949 // means Sema couldn't or didn't figure out which arguments belonged to 5950 // it, because it contains a pack expansion or because Sema bailed out of 5951 // computing parameter / argument correspondence before this point. Track 5952 // the pack as the corresponding parameter for all further template 5953 // arguments until we hit a pack expansion, at which point we don't know 5954 // the correspondence between parameters and arguments at all. 5955 if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { 5956 UnresolvedExpandedPack = Param; 5957 } 5958 } 5959 5960 // If we encounter a pack argument that is expanded into a non-pack 5961 // parameter, we can no longer track parameter / argument correspondence, 5962 // and need to use exact types from this point onwards. 5963 if (Arg.isPackExpansion() && 5964 (!Param->isParameterPack() || UnresolvedExpandedPack)) { 5965 SeenPackExpansionIntoNonPack = true; 5966 return {true, nullptr}; 5967 } 5968 5969 // We need exact types for arguments of a template that might be overloaded 5970 // on template parameter type. 5971 if (isOverloadable()) 5972 return {true, needToMangleTemplateParam(Param, Arg) ? Param : nullptr}; 5973 5974 // Otherwise, we only need a correct type if the parameter has a deduced 5975 // type. 5976 // 5977 // Note: for an expanded parameter pack, getType() returns the type prior 5978 // to expansion. We could ask for the expanded type with getExpansionType(), 5979 // but it doesn't matter because substitution and expansion don't affect 5980 // whether a deduced type appears in the type. 5981 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param); 5982 bool NeedExactType = NTTP && NTTP->getType()->getContainedDeducedType(); 5983 return {NeedExactType, nullptr}; 5984 } 5985 5986 /// Determine if we should mangle a requires-clause after the template 5987 /// argument list. If so, returns the expression to mangle. 5988 const Expr *getTrailingRequiresClauseToMangle() { 5989 if (!isOverloadable()) 5990 return nullptr; 5991 return ResolvedTemplate->getTemplateParameters()->getRequiresClause(); 5992 } 5993 }; 5994 5995 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5996 const TemplateArgumentLoc *TemplateArgs, 5997 unsigned NumTemplateArgs) { 5998 // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E 5999 Out << 'I'; 6000 TemplateArgManglingInfo Info(*this, TN); 6001 for (unsigned i = 0; i != NumTemplateArgs; ++i) { 6002 mangleTemplateArg(Info, i, TemplateArgs[i].getArgument()); 6003 } 6004 mangleRequiresClause(Info.getTrailingRequiresClauseToMangle()); 6005 Out << 'E'; 6006 } 6007 6008 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 6009 const TemplateArgumentList &AL) { 6010 // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E 6011 Out << 'I'; 6012 TemplateArgManglingInfo Info(*this, TN); 6013 for (unsigned i = 0, e = AL.size(); i != e; ++i) { 6014 mangleTemplateArg(Info, i, AL[i]); 6015 } 6016 mangleRequiresClause(Info.getTrailingRequiresClauseToMangle()); 6017 Out << 'E'; 6018 } 6019 6020 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 6021 ArrayRef<TemplateArgument> Args) { 6022 // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E 6023 Out << 'I'; 6024 TemplateArgManglingInfo Info(*this, TN); 6025 for (unsigned i = 0; i != Args.size(); ++i) { 6026 mangleTemplateArg(Info, i, Args[i]); 6027 } 6028 mangleRequiresClause(Info.getTrailingRequiresClauseToMangle()); 6029 Out << 'E'; 6030 } 6031 6032 void CXXNameMangler::mangleTemplateArg(TemplateArgManglingInfo &Info, 6033 unsigned Index, TemplateArgument A) { 6034 TemplateArgManglingInfo::Info ArgInfo = Info.getArgInfo(Index, A); 6035 6036 // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 6037 if (ArgInfo.TemplateParameterToMangle && 6038 !isCompatibleWith(LangOptions::ClangABI::Ver17)) { 6039 // The template parameter is mangled if the mangling would otherwise be 6040 // ambiguous. 6041 // 6042 // <template-arg> ::= <template-param-decl> <template-arg> 6043 // 6044 // Clang 17 and before did not do this. 6045 mangleTemplateParamDecl(ArgInfo.TemplateParameterToMangle); 6046 } 6047 6048 mangleTemplateArg(A, ArgInfo.NeedExactType); 6049 } 6050 6051 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { 6052 // <template-arg> ::= <type> # type or template 6053 // ::= X <expression> E # expression 6054 // ::= <expr-primary> # simple expressions 6055 // ::= J <template-arg>* E # argument pack 6056 if (!A.isInstantiationDependent() || A.isDependent()) 6057 A = Context.getASTContext().getCanonicalTemplateArgument(A); 6058 6059 switch (A.getKind()) { 6060 case TemplateArgument::Null: 6061 llvm_unreachable("Cannot mangle NULL template argument"); 6062 6063 case TemplateArgument::Type: 6064 mangleType(A.getAsType()); 6065 break; 6066 case TemplateArgument::Template: 6067 // This is mangled as <type>. 6068 mangleType(A.getAsTemplate()); 6069 break; 6070 case TemplateArgument::TemplateExpansion: 6071 // <type> ::= Dp <type> # pack expansion (C++0x) 6072 Out << "Dp"; 6073 mangleType(A.getAsTemplateOrTemplatePattern()); 6074 break; 6075 case TemplateArgument::Expression: 6076 mangleTemplateArgExpr(A.getAsExpr()); 6077 break; 6078 case TemplateArgument::Integral: 6079 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 6080 break; 6081 case TemplateArgument::Declaration: { 6082 // <expr-primary> ::= L <mangled-name> E # external name 6083 ValueDecl *D = A.getAsDecl(); 6084 6085 // Template parameter objects are modeled by reproducing a source form 6086 // produced as if by aggregate initialization. 6087 if (A.getParamTypeForDecl()->isRecordType()) { 6088 auto *TPO = cast<TemplateParamObjectDecl>(D); 6089 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 6090 TPO->getValue(), /*TopLevel=*/true, 6091 NeedExactType); 6092 break; 6093 } 6094 6095 ASTContext &Ctx = Context.getASTContext(); 6096 APValue Value; 6097 if (D->isCXXInstanceMember()) 6098 // Simple pointer-to-member with no conversion. 6099 Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); 6100 else if (D->getType()->isArrayType() && 6101 Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()), 6102 A.getParamTypeForDecl()) && 6103 !isCompatibleWith(LangOptions::ClangABI::Ver11)) 6104 // Build a value corresponding to this implicit array-to-pointer decay. 6105 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 6106 {APValue::LValuePathEntry::ArrayIndex(0)}, 6107 /*OnePastTheEnd=*/false); 6108 else 6109 // Regular pointer or reference to a declaration. 6110 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 6111 ArrayRef<APValue::LValuePathEntry>(), 6112 /*OnePastTheEnd=*/false); 6113 mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true, 6114 NeedExactType); 6115 break; 6116 } 6117 case TemplateArgument::NullPtr: { 6118 mangleNullPointer(A.getNullPtrType()); 6119 break; 6120 } 6121 case TemplateArgument::StructuralValue: 6122 mangleValueInTemplateArg(A.getStructuralValueType(), 6123 A.getAsStructuralValue(), 6124 /*TopLevel=*/true, NeedExactType); 6125 break; 6126 case TemplateArgument::Pack: { 6127 // <template-arg> ::= J <template-arg>* E 6128 Out << 'J'; 6129 for (const auto &P : A.pack_elements()) 6130 mangleTemplateArg(P, NeedExactType); 6131 Out << 'E'; 6132 } 6133 } 6134 } 6135 6136 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { 6137 if (!isCompatibleWith(LangOptions::ClangABI::Ver11)) { 6138 mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true); 6139 return; 6140 } 6141 6142 // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> 6143 // correctly in cases where the template argument was 6144 // constructed from an expression rather than an already-evaluated 6145 // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of 6146 // 'Li0E'. 6147 // 6148 // We did special-case DeclRefExpr to attempt to DTRT for that one 6149 // expression-kind, but while doing so, unfortunately handled ParmVarDecl 6150 // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of 6151 // the proper 'Xfp_E'. 6152 E = E->IgnoreParenImpCasts(); 6153 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 6154 const ValueDecl *D = DRE->getDecl(); 6155 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 6156 Out << 'L'; 6157 mangle(D); 6158 Out << 'E'; 6159 return; 6160 } 6161 } 6162 Out << 'X'; 6163 mangleExpression(E); 6164 Out << 'E'; 6165 } 6166 6167 /// Determine whether a given value is equivalent to zero-initialization for 6168 /// the purpose of discarding a trailing portion of a 'tl' mangling. 6169 /// 6170 /// Note that this is not in general equivalent to determining whether the 6171 /// value has an all-zeroes bit pattern. 6172 static bool isZeroInitialized(QualType T, const APValue &V) { 6173 // FIXME: mangleValueInTemplateArg has quadratic time complexity in 6174 // pathological cases due to using this, but it's a little awkward 6175 // to do this in linear time in general. 6176 switch (V.getKind()) { 6177 case APValue::None: 6178 case APValue::Indeterminate: 6179 case APValue::AddrLabelDiff: 6180 return false; 6181 6182 case APValue::Struct: { 6183 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6184 assert(RD && "unexpected type for record value"); 6185 unsigned I = 0; 6186 for (const CXXBaseSpecifier &BS : RD->bases()) { 6187 if (!isZeroInitialized(BS.getType(), V.getStructBase(I))) 6188 return false; 6189 ++I; 6190 } 6191 I = 0; 6192 for (const FieldDecl *FD : RD->fields()) { 6193 if (!FD->isUnnamedBitField() && 6194 !isZeroInitialized(FD->getType(), V.getStructField(I))) 6195 return false; 6196 ++I; 6197 } 6198 return true; 6199 } 6200 6201 case APValue::Union: { 6202 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6203 assert(RD && "unexpected type for union value"); 6204 // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. 6205 for (const FieldDecl *FD : RD->fields()) { 6206 if (!FD->isUnnamedBitField()) 6207 return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && 6208 isZeroInitialized(FD->getType(), V.getUnionValue()); 6209 } 6210 // If there are no fields (other than unnamed bitfields), the value is 6211 // necessarily zero-initialized. 6212 return true; 6213 } 6214 6215 case APValue::Array: { 6216 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 6217 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) 6218 if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I))) 6219 return false; 6220 return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller()); 6221 } 6222 6223 case APValue::Vector: { 6224 const VectorType *VT = T->castAs<VectorType>(); 6225 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) 6226 if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I))) 6227 return false; 6228 return true; 6229 } 6230 6231 case APValue::Int: 6232 return !V.getInt(); 6233 6234 case APValue::Float: 6235 return V.getFloat().isPosZero(); 6236 6237 case APValue::FixedPoint: 6238 return !V.getFixedPoint().getValue(); 6239 6240 case APValue::ComplexFloat: 6241 return V.getComplexFloatReal().isPosZero() && 6242 V.getComplexFloatImag().isPosZero(); 6243 6244 case APValue::ComplexInt: 6245 return !V.getComplexIntReal() && !V.getComplexIntImag(); 6246 6247 case APValue::LValue: 6248 return V.isNullPointer(); 6249 6250 case APValue::MemberPointer: 6251 return !V.getMemberPointerDecl(); 6252 } 6253 6254 llvm_unreachable("Unhandled APValue::ValueKind enum"); 6255 } 6256 6257 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { 6258 QualType T = LV.getLValueBase().getType(); 6259 for (APValue::LValuePathEntry E : LV.getLValuePath()) { 6260 if (const ArrayType *AT = Ctx.getAsArrayType(T)) 6261 T = AT->getElementType(); 6262 else if (const FieldDecl *FD = 6263 dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer())) 6264 T = FD->getType(); 6265 else 6266 T = Ctx.getRecordType( 6267 cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer())); 6268 } 6269 return T; 6270 } 6271 6272 static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc, 6273 DiagnosticsEngine &Diags, 6274 const FieldDecl *FD) { 6275 // According to: 6276 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous 6277 // For the purposes of mangling, the name of an anonymous union is considered 6278 // to be the name of the first named data member found by a pre-order, 6279 // depth-first, declaration-order walk of the data members of the anonymous 6280 // union. 6281 6282 if (FD->getIdentifier()) 6283 return FD->getIdentifier(); 6284 6285 // The only cases where the identifer of a FieldDecl would be blank is if the 6286 // field represents an anonymous record type or if it is an unnamed bitfield. 6287 // There is no type to descend into in the case of a bitfield, so we can just 6288 // return nullptr in that case. 6289 if (FD->isBitField()) 6290 return nullptr; 6291 const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); 6292 6293 // Consider only the fields in declaration order, searched depth-first. We 6294 // don't care about the active member of the union, as all we are doing is 6295 // looking for a valid name. We also don't check bases, due to guidance from 6296 // the Itanium ABI folks. 6297 for (const FieldDecl *RDField : RD->fields()) { 6298 if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField)) 6299 return II; 6300 } 6301 6302 // According to the Itanium ABI: If there is no such data member (i.e., if all 6303 // of the data members in the union are unnamed), then there is no way for a 6304 // program to refer to the anonymous union, and there is therefore no need to 6305 // mangle its name. However, we should diagnose this anyway. 6306 unsigned DiagID = Diags.getCustomDiagID( 6307 DiagnosticsEngine::Error, "cannot mangle this unnamed union NTTP yet"); 6308 Diags.Report(UnionLoc, DiagID); 6309 6310 return nullptr; 6311 } 6312 6313 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, 6314 bool TopLevel, 6315 bool NeedExactType) { 6316 // Ignore all top-level cv-qualifiers, to match GCC. 6317 Qualifiers Quals; 6318 T = getASTContext().getUnqualifiedArrayType(T, Quals); 6319 6320 // A top-level expression that's not a primary expression is wrapped in X...E. 6321 bool IsPrimaryExpr = true; 6322 auto NotPrimaryExpr = [&] { 6323 if (TopLevel && IsPrimaryExpr) 6324 Out << 'X'; 6325 IsPrimaryExpr = false; 6326 }; 6327 6328 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 6329 switch (V.getKind()) { 6330 case APValue::None: 6331 case APValue::Indeterminate: 6332 Out << 'L'; 6333 mangleType(T); 6334 Out << 'E'; 6335 break; 6336 6337 case APValue::AddrLabelDiff: 6338 llvm_unreachable("unexpected value kind in template argument"); 6339 6340 case APValue::Struct: { 6341 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6342 assert(RD && "unexpected type for record value"); 6343 6344 // Drop trailing zero-initialized elements. 6345 llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields()); 6346 while ( 6347 !Fields.empty() && 6348 (Fields.back()->isUnnamedBitField() || 6349 isZeroInitialized(Fields.back()->getType(), 6350 V.getStructField(Fields.back()->getFieldIndex())))) { 6351 Fields.pop_back(); 6352 } 6353 llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); 6354 if (Fields.empty()) { 6355 while (!Bases.empty() && 6356 isZeroInitialized(Bases.back().getType(), 6357 V.getStructBase(Bases.size() - 1))) 6358 Bases = Bases.drop_back(); 6359 } 6360 6361 // <expression> ::= tl <type> <braced-expression>* E 6362 NotPrimaryExpr(); 6363 Out << "tl"; 6364 mangleType(T); 6365 for (unsigned I = 0, N = Bases.size(); I != N; ++I) 6366 mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false); 6367 for (unsigned I = 0, N = Fields.size(); I != N; ++I) { 6368 if (Fields[I]->isUnnamedBitField()) 6369 continue; 6370 mangleValueInTemplateArg(Fields[I]->getType(), 6371 V.getStructField(Fields[I]->getFieldIndex()), 6372 false); 6373 } 6374 Out << 'E'; 6375 break; 6376 } 6377 6378 case APValue::Union: { 6379 assert(T->getAsCXXRecordDecl() && "unexpected type for union value"); 6380 const FieldDecl *FD = V.getUnionField(); 6381 6382 if (!FD) { 6383 Out << 'L'; 6384 mangleType(T); 6385 Out << 'E'; 6386 break; 6387 } 6388 6389 // <braced-expression> ::= di <field source-name> <braced-expression> 6390 NotPrimaryExpr(); 6391 Out << "tl"; 6392 mangleType(T); 6393 if (!isZeroInitialized(T, V)) { 6394 Out << "di"; 6395 IdentifierInfo *II = (getUnionInitName( 6396 T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD)); 6397 if (II) 6398 mangleSourceName(II); 6399 mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false); 6400 } 6401 Out << 'E'; 6402 break; 6403 } 6404 6405 case APValue::Array: { 6406 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 6407 6408 NotPrimaryExpr(); 6409 Out << "tl"; 6410 mangleType(T); 6411 6412 // Drop trailing zero-initialized elements. 6413 unsigned N = V.getArraySize(); 6414 if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) { 6415 N = V.getArrayInitializedElts(); 6416 while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1))) 6417 --N; 6418 } 6419 6420 for (unsigned I = 0; I != N; ++I) { 6421 const APValue &Elem = I < V.getArrayInitializedElts() 6422 ? V.getArrayInitializedElt(I) 6423 : V.getArrayFiller(); 6424 mangleValueInTemplateArg(ElemT, Elem, false); 6425 } 6426 Out << 'E'; 6427 break; 6428 } 6429 6430 case APValue::Vector: { 6431 const VectorType *VT = T->castAs<VectorType>(); 6432 6433 NotPrimaryExpr(); 6434 Out << "tl"; 6435 mangleType(T); 6436 unsigned N = V.getVectorLength(); 6437 while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1))) 6438 --N; 6439 for (unsigned I = 0; I != N; ++I) 6440 mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false); 6441 Out << 'E'; 6442 break; 6443 } 6444 6445 case APValue::Int: 6446 mangleIntegerLiteral(T, V.getInt()); 6447 break; 6448 6449 case APValue::Float: 6450 mangleFloatLiteral(T, V.getFloat()); 6451 break; 6452 6453 case APValue::FixedPoint: 6454 mangleFixedPointLiteral(); 6455 break; 6456 6457 case APValue::ComplexFloat: { 6458 const ComplexType *CT = T->castAs<ComplexType>(); 6459 NotPrimaryExpr(); 6460 Out << "tl"; 6461 mangleType(T); 6462 if (!V.getComplexFloatReal().isPosZero() || 6463 !V.getComplexFloatImag().isPosZero()) 6464 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal()); 6465 if (!V.getComplexFloatImag().isPosZero()) 6466 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag()); 6467 Out << 'E'; 6468 break; 6469 } 6470 6471 case APValue::ComplexInt: { 6472 const ComplexType *CT = T->castAs<ComplexType>(); 6473 NotPrimaryExpr(); 6474 Out << "tl"; 6475 mangleType(T); 6476 if (V.getComplexIntReal().getBoolValue() || 6477 V.getComplexIntImag().getBoolValue()) 6478 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal()); 6479 if (V.getComplexIntImag().getBoolValue()) 6480 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag()); 6481 Out << 'E'; 6482 break; 6483 } 6484 6485 case APValue::LValue: { 6486 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 6487 assert((T->isPointerType() || T->isReferenceType()) && 6488 "unexpected type for LValue template arg"); 6489 6490 if (V.isNullPointer()) { 6491 mangleNullPointer(T); 6492 break; 6493 } 6494 6495 APValue::LValueBase B = V.getLValueBase(); 6496 if (!B) { 6497 // Non-standard mangling for integer cast to a pointer; this can only 6498 // occur as an extension. 6499 CharUnits Offset = V.getLValueOffset(); 6500 if (Offset.isZero()) { 6501 // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as 6502 // a cast, because L <type> 0 E means something else. 6503 NotPrimaryExpr(); 6504 Out << "rc"; 6505 mangleType(T); 6506 Out << "Li0E"; 6507 if (TopLevel) 6508 Out << 'E'; 6509 } else { 6510 Out << "L"; 6511 mangleType(T); 6512 Out << Offset.getQuantity() << 'E'; 6513 } 6514 break; 6515 } 6516 6517 ASTContext &Ctx = Context.getASTContext(); 6518 6519 enum { Base, Offset, Path } Kind; 6520 if (!V.hasLValuePath()) { 6521 // Mangle as (T*)((char*)&base + N). 6522 if (T->isReferenceType()) { 6523 NotPrimaryExpr(); 6524 Out << "decvP"; 6525 mangleType(T->getPointeeType()); 6526 } else { 6527 NotPrimaryExpr(); 6528 Out << "cv"; 6529 mangleType(T); 6530 } 6531 Out << "plcvPcad"; 6532 Kind = Offset; 6533 } else { 6534 // Clang 11 and before mangled an array subject to array-to-pointer decay 6535 // as if it were the declaration itself. 6536 bool IsArrayToPointerDecayMangledAsDecl = false; 6537 if (TopLevel && Ctx.getLangOpts().getClangABICompat() <= 6538 LangOptions::ClangABI::Ver11) { 6539 QualType BType = B.getType(); 6540 IsArrayToPointerDecayMangledAsDecl = 6541 BType->isArrayType() && V.getLValuePath().size() == 1 && 6542 V.getLValuePath()[0].getAsArrayIndex() == 0 && 6543 Ctx.hasSimilarType(T, Ctx.getDecayedType(BType)); 6544 } 6545 6546 if ((!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) && 6547 !IsArrayToPointerDecayMangledAsDecl) { 6548 NotPrimaryExpr(); 6549 // A final conversion to the template parameter's type is usually 6550 // folded into the 'so' mangling, but we can't do that for 'void*' 6551 // parameters without introducing collisions. 6552 if (NeedExactType && T->isVoidPointerType()) { 6553 Out << "cv"; 6554 mangleType(T); 6555 } 6556 if (T->isPointerType()) 6557 Out << "ad"; 6558 Out << "so"; 6559 mangleType(T->isVoidPointerType() 6560 ? getLValueType(Ctx, V).getUnqualifiedType() 6561 : T->getPointeeType()); 6562 Kind = Path; 6563 } else { 6564 if (NeedExactType && 6565 !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) && 6566 !isCompatibleWith(LangOptions::ClangABI::Ver11)) { 6567 NotPrimaryExpr(); 6568 Out << "cv"; 6569 mangleType(T); 6570 } 6571 if (T->isPointerType()) { 6572 NotPrimaryExpr(); 6573 Out << "ad"; 6574 } 6575 Kind = Base; 6576 } 6577 } 6578 6579 QualType TypeSoFar = B.getType(); 6580 if (auto *VD = B.dyn_cast<const ValueDecl*>()) { 6581 Out << 'L'; 6582 mangle(VD); 6583 Out << 'E'; 6584 } else if (auto *E = B.dyn_cast<const Expr*>()) { 6585 NotPrimaryExpr(); 6586 mangleExpression(E); 6587 } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { 6588 NotPrimaryExpr(); 6589 Out << "ti"; 6590 mangleType(QualType(TI.getType(), 0)); 6591 } else { 6592 // We should never see dynamic allocations here. 6593 llvm_unreachable("unexpected lvalue base kind in template argument"); 6594 } 6595 6596 switch (Kind) { 6597 case Base: 6598 break; 6599 6600 case Offset: 6601 Out << 'L'; 6602 mangleType(Ctx.getPointerDiffType()); 6603 mangleNumber(V.getLValueOffset().getQuantity()); 6604 Out << 'E'; 6605 break; 6606 6607 case Path: 6608 // <expression> ::= so <referent type> <expr> [<offset number>] 6609 // <union-selector>* [p] E 6610 if (!V.getLValueOffset().isZero()) 6611 mangleNumber(V.getLValueOffset().getQuantity()); 6612 6613 // We model a past-the-end array pointer as array indexing with index N, 6614 // not with the "past the end" flag. Compensate for that. 6615 bool OnePastTheEnd = V.isLValueOnePastTheEnd(); 6616 6617 for (APValue::LValuePathEntry E : V.getLValuePath()) { 6618 if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { 6619 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 6620 OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); 6621 TypeSoFar = AT->getElementType(); 6622 } else { 6623 const Decl *D = E.getAsBaseOrMember().getPointer(); 6624 if (auto *FD = dyn_cast<FieldDecl>(D)) { 6625 // <union-selector> ::= _ <number> 6626 if (FD->getParent()->isUnion()) { 6627 Out << '_'; 6628 if (FD->getFieldIndex()) 6629 Out << (FD->getFieldIndex() - 1); 6630 } 6631 TypeSoFar = FD->getType(); 6632 } else { 6633 TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D)); 6634 } 6635 } 6636 } 6637 6638 if (OnePastTheEnd) 6639 Out << 'p'; 6640 Out << 'E'; 6641 break; 6642 } 6643 6644 break; 6645 } 6646 6647 case APValue::MemberPointer: 6648 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 6649 if (!V.getMemberPointerDecl()) { 6650 mangleNullPointer(T); 6651 break; 6652 } 6653 6654 ASTContext &Ctx = Context.getASTContext(); 6655 6656 NotPrimaryExpr(); 6657 if (!V.getMemberPointerPath().empty()) { 6658 Out << "mc"; 6659 mangleType(T); 6660 } else if (NeedExactType && 6661 !Ctx.hasSameType( 6662 T->castAs<MemberPointerType>()->getPointeeType(), 6663 V.getMemberPointerDecl()->getType()) && 6664 !isCompatibleWith(LangOptions::ClangABI::Ver11)) { 6665 Out << "cv"; 6666 mangleType(T); 6667 } 6668 Out << "adL"; 6669 mangle(V.getMemberPointerDecl()); 6670 Out << 'E'; 6671 if (!V.getMemberPointerPath().empty()) { 6672 CharUnits Offset = 6673 Context.getASTContext().getMemberPointerPathAdjustment(V); 6674 if (!Offset.isZero()) 6675 mangleNumber(Offset.getQuantity()); 6676 Out << 'E'; 6677 } 6678 break; 6679 } 6680 6681 if (TopLevel && !IsPrimaryExpr) 6682 Out << 'E'; 6683 } 6684 6685 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { 6686 // <template-param> ::= T_ # first template parameter 6687 // ::= T <parameter-2 non-negative number> _ 6688 // ::= TL <L-1 non-negative number> __ 6689 // ::= TL <L-1 non-negative number> _ 6690 // <parameter-2 non-negative number> _ 6691 // 6692 // The latter two manglings are from a proposal here: 6693 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 6694 Out << 'T'; 6695 Depth += TemplateDepthOffset; 6696 if (Depth != 0) 6697 Out << 'L' << (Depth - 1) << '_'; 6698 if (Index != 0) 6699 Out << (Index - 1); 6700 Out << '_'; 6701 } 6702 6703 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 6704 if (SeqID == 0) { 6705 // Nothing. 6706 } else if (SeqID == 1) { 6707 Out << '0'; 6708 } else { 6709 SeqID--; 6710 6711 // <seq-id> is encoded in base-36, using digits and upper case letters. 6712 char Buffer[7]; // log(2**32) / log(36) ~= 7 6713 MutableArrayRef<char> BufferRef(Buffer); 6714 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 6715 6716 for (; SeqID != 0; SeqID /= 36) { 6717 unsigned C = SeqID % 36; 6718 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 6719 } 6720 6721 Out.write(I.base(), I - BufferRef.rbegin()); 6722 } 6723 Out << '_'; 6724 } 6725 6726 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 6727 bool result = mangleSubstitution(tname); 6728 assert(result && "no existing substitution for template name"); 6729 (void) result; 6730 } 6731 6732 // <substitution> ::= S <seq-id> _ 6733 // ::= S_ 6734 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 6735 // Try one of the standard substitutions first. 6736 if (mangleStandardSubstitution(ND)) 6737 return true; 6738 6739 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 6740 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 6741 } 6742 6743 bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) { 6744 assert(NNS->getKind() == NestedNameSpecifier::Identifier && 6745 "mangleSubstitution(NestedNameSpecifier *) is only used for " 6746 "identifier nested name specifiers."); 6747 NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); 6748 return mangleSubstitution(reinterpret_cast<uintptr_t>(NNS)); 6749 } 6750 6751 /// Determine whether the given type has any qualifiers that are relevant for 6752 /// substitutions. 6753 static bool hasMangledSubstitutionQualifiers(QualType T) { 6754 Qualifiers Qs = T.getQualifiers(); 6755 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 6756 } 6757 6758 bool CXXNameMangler::mangleSubstitution(QualType T) { 6759 if (!hasMangledSubstitutionQualifiers(T)) { 6760 if (const RecordType *RT = T->getAs<RecordType>()) 6761 return mangleSubstitution(RT->getDecl()); 6762 } 6763 6764 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 6765 6766 return mangleSubstitution(TypePtr); 6767 } 6768 6769 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 6770 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 6771 return mangleSubstitution(TD); 6772 6773 Template = Context.getASTContext().getCanonicalTemplateName(Template); 6774 return mangleSubstitution( 6775 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 6776 } 6777 6778 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 6779 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 6780 if (I == Substitutions.end()) 6781 return false; 6782 6783 unsigned SeqID = I->second; 6784 Out << 'S'; 6785 mangleSeqID(SeqID); 6786 6787 return true; 6788 } 6789 6790 /// Returns whether S is a template specialization of std::Name with a single 6791 /// argument of type A. 6792 bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, 6793 QualType A) { 6794 if (S.isNull()) 6795 return false; 6796 6797 const RecordType *RT = S->getAs<RecordType>(); 6798 if (!RT) 6799 return false; 6800 6801 const ClassTemplateSpecializationDecl *SD = 6802 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 6803 if (!SD || !SD->getIdentifier()->isStr(Name)) 6804 return false; 6805 6806 if (!isStdNamespace(Context.getEffectiveDeclContext(SD))) 6807 return false; 6808 6809 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6810 if (TemplateArgs.size() != 1) 6811 return false; 6812 6813 if (TemplateArgs[0].getAsType() != A) 6814 return false; 6815 6816 if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) 6817 return false; 6818 6819 return true; 6820 } 6821 6822 /// Returns whether SD is a template specialization std::Name<char, 6823 /// std::char_traits<char> [, std::allocator<char>]> 6824 /// HasAllocator controls whether the 3rd template argument is needed. 6825 bool CXXNameMangler::isStdCharSpecialization( 6826 const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, 6827 bool HasAllocator) { 6828 if (!SD->getIdentifier()->isStr(Name)) 6829 return false; 6830 6831 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6832 if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) 6833 return false; 6834 6835 QualType A = TemplateArgs[0].getAsType(); 6836 if (A.isNull()) 6837 return false; 6838 // Plain 'char' is named Char_S or Char_U depending on the target ABI. 6839 if (!A->isSpecificBuiltinType(BuiltinType::Char_S) && 6840 !A->isSpecificBuiltinType(BuiltinType::Char_U)) 6841 return false; 6842 6843 if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A)) 6844 return false; 6845 6846 if (HasAllocator && 6847 !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A)) 6848 return false; 6849 6850 if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) 6851 return false; 6852 6853 return true; 6854 } 6855 6856 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 6857 // <substitution> ::= St # ::std:: 6858 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 6859 if (isStd(NS)) { 6860 Out << "St"; 6861 return true; 6862 } 6863 return false; 6864 } 6865 6866 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 6867 if (!isStdNamespace(Context.getEffectiveDeclContext(TD))) 6868 return false; 6869 6870 if (TD->getOwningModuleForLinkage()) 6871 return false; 6872 6873 // <substitution> ::= Sa # ::std::allocator 6874 if (TD->getIdentifier()->isStr("allocator")) { 6875 Out << "Sa"; 6876 return true; 6877 } 6878 6879 // <<substitution> ::= Sb # ::std::basic_string 6880 if (TD->getIdentifier()->isStr("basic_string")) { 6881 Out << "Sb"; 6882 return true; 6883 } 6884 return false; 6885 } 6886 6887 if (const ClassTemplateSpecializationDecl *SD = 6888 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 6889 if (!isStdNamespace(Context.getEffectiveDeclContext(SD))) 6890 return false; 6891 6892 if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) 6893 return false; 6894 6895 // <substitution> ::= Ss # ::std::basic_string<char, 6896 // ::std::char_traits<char>, 6897 // ::std::allocator<char> > 6898 if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) { 6899 Out << "Ss"; 6900 return true; 6901 } 6902 6903 // <substitution> ::= Si # ::std::basic_istream<char, 6904 // ::std::char_traits<char> > 6905 if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) { 6906 Out << "Si"; 6907 return true; 6908 } 6909 6910 // <substitution> ::= So # ::std::basic_ostream<char, 6911 // ::std::char_traits<char> > 6912 if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) { 6913 Out << "So"; 6914 return true; 6915 } 6916 6917 // <substitution> ::= Sd # ::std::basic_iostream<char, 6918 // ::std::char_traits<char> > 6919 if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) { 6920 Out << "Sd"; 6921 return true; 6922 } 6923 return false; 6924 } 6925 6926 return false; 6927 } 6928 6929 void CXXNameMangler::addSubstitution(QualType T) { 6930 if (!hasMangledSubstitutionQualifiers(T)) { 6931 if (const RecordType *RT = T->getAs<RecordType>()) { 6932 addSubstitution(RT->getDecl()); 6933 return; 6934 } 6935 } 6936 6937 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 6938 addSubstitution(TypePtr); 6939 } 6940 6941 void CXXNameMangler::addSubstitution(TemplateName Template) { 6942 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 6943 return addSubstitution(TD); 6944 6945 Template = Context.getASTContext().getCanonicalTemplateName(Template); 6946 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 6947 } 6948 6949 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 6950 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 6951 Substitutions[Ptr] = SeqID++; 6952 } 6953 6954 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 6955 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 6956 if (Other->SeqID > SeqID) { 6957 Substitutions.swap(Other->Substitutions); 6958 SeqID = Other->SeqID; 6959 } 6960 } 6961 6962 CXXNameMangler::AbiTagList 6963 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 6964 // When derived abi tags are disabled there is no need to make any list. 6965 if (DisableDerivedAbiTags) 6966 return AbiTagList(); 6967 6968 llvm::raw_null_ostream NullOutStream; 6969 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 6970 TrackReturnTypeTags.disableDerivedAbiTags(); 6971 6972 const FunctionProtoType *Proto = 6973 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 6974 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 6975 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 6976 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 6977 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 6978 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 6979 6980 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6981 } 6982 6983 CXXNameMangler::AbiTagList 6984 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 6985 // When derived abi tags are disabled there is no need to make any list. 6986 if (DisableDerivedAbiTags) 6987 return AbiTagList(); 6988 6989 llvm::raw_null_ostream NullOutStream; 6990 CXXNameMangler TrackVariableType(*this, NullOutStream); 6991 TrackVariableType.disableDerivedAbiTags(); 6992 6993 TrackVariableType.mangleType(VD->getType()); 6994 6995 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6996 } 6997 6998 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 6999 const VarDecl *VD) { 7000 llvm::raw_null_ostream NullOutStream; 7001 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 7002 TrackAbiTags.mangle(VD); 7003 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 7004 } 7005 7006 // 7007 7008 /// Mangles the name of the declaration D and emits that name to the given 7009 /// output stream. 7010 /// 7011 /// If the declaration D requires a mangled name, this routine will emit that 7012 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 7013 /// and this routine will return false. In this case, the caller should just 7014 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 7015 /// name. 7016 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, 7017 raw_ostream &Out) { 7018 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 7019 assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && 7020 "Invalid mangleName() call, argument is not a variable or function!"); 7021 7022 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 7023 getASTContext().getSourceManager(), 7024 "Mangling declaration"); 7025 7026 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 7027 auto Type = GD.getCtorType(); 7028 CXXNameMangler Mangler(*this, Out, CD, Type); 7029 return Mangler.mangle(GlobalDecl(CD, Type)); 7030 } 7031 7032 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 7033 auto Type = GD.getDtorType(); 7034 CXXNameMangler Mangler(*this, Out, DD, Type); 7035 return Mangler.mangle(GlobalDecl(DD, Type)); 7036 } 7037 7038 CXXNameMangler Mangler(*this, Out, D); 7039 Mangler.mangle(GD); 7040 } 7041 7042 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 7043 raw_ostream &Out) { 7044 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 7045 Mangler.mangle(GlobalDecl(D, Ctor_Comdat)); 7046 } 7047 7048 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 7049 raw_ostream &Out) { 7050 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 7051 Mangler.mangle(GlobalDecl(D, Dtor_Comdat)); 7052 } 7053 7054 /// Mangles the pointer authentication override attribute for classes 7055 /// that have explicit overrides for the vtable authentication schema. 7056 /// 7057 /// The override is mangled as a parameterized vendor extension as follows 7058 /// 7059 /// <type> ::= U "__vtptrauth" I 7060 /// <key> 7061 /// <addressDiscriminated> 7062 /// <extraDiscriminator> 7063 /// E 7064 /// 7065 /// The extra discriminator encodes the explicit value derived from the 7066 /// override schema, e.g. if the override has specified type based 7067 /// discrimination the encoded value will be the discriminator derived from the 7068 /// type name. 7069 static void mangleOverrideDiscrimination(CXXNameMangler &Mangler, 7070 ASTContext &Context, 7071 const ThunkInfo &Thunk) { 7072 auto &LangOpts = Context.getLangOpts(); 7073 const CXXRecordDecl *ThisRD = Thunk.ThisType->getPointeeCXXRecordDecl(); 7074 const CXXRecordDecl *PtrauthClassRD = 7075 Context.baseForVTableAuthentication(ThisRD); 7076 unsigned TypedDiscriminator = 7077 Context.getPointerAuthVTablePointerDiscriminator(ThisRD); 7078 Mangler.mangleVendorQualifier("__vtptrauth"); 7079 auto &ManglerStream = Mangler.getStream(); 7080 ManglerStream << "I"; 7081 if (const auto *ExplicitAuth = 7082 PtrauthClassRD->getAttr<VTablePointerAuthenticationAttr>()) { 7083 ManglerStream << "Lj" << ExplicitAuth->getKey(); 7084 7085 if (ExplicitAuth->getAddressDiscrimination() == 7086 VTablePointerAuthenticationAttr::DefaultAddressDiscrimination) 7087 ManglerStream << "Lb" << LangOpts.PointerAuthVTPtrAddressDiscrimination; 7088 else 7089 ManglerStream << "Lb" 7090 << (ExplicitAuth->getAddressDiscrimination() == 7091 VTablePointerAuthenticationAttr::AddressDiscrimination); 7092 7093 switch (ExplicitAuth->getExtraDiscrimination()) { 7094 case VTablePointerAuthenticationAttr::DefaultExtraDiscrimination: { 7095 if (LangOpts.PointerAuthVTPtrTypeDiscrimination) 7096 ManglerStream << "Lj" << TypedDiscriminator; 7097 else 7098 ManglerStream << "Lj" << 0; 7099 break; 7100 } 7101 case VTablePointerAuthenticationAttr::TypeDiscrimination: 7102 ManglerStream << "Lj" << TypedDiscriminator; 7103 break; 7104 case VTablePointerAuthenticationAttr::CustomDiscrimination: 7105 ManglerStream << "Lj" << ExplicitAuth->getCustomDiscriminationValue(); 7106 break; 7107 case VTablePointerAuthenticationAttr::NoExtraDiscrimination: 7108 ManglerStream << "Lj" << 0; 7109 break; 7110 } 7111 } else { 7112 ManglerStream << "Lj" 7113 << (unsigned)VTablePointerAuthenticationAttr::DefaultKey; 7114 ManglerStream << "Lb" << LangOpts.PointerAuthVTPtrAddressDiscrimination; 7115 if (LangOpts.PointerAuthVTPtrTypeDiscrimination) 7116 ManglerStream << "Lj" << TypedDiscriminator; 7117 else 7118 ManglerStream << "Lj" << 0; 7119 } 7120 ManglerStream << "E"; 7121 } 7122 7123 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 7124 const ThunkInfo &Thunk, 7125 bool ElideOverrideInfo, 7126 raw_ostream &Out) { 7127 // <special-name> ::= T <call-offset> <base encoding> 7128 // # base is the nominal target function of thunk 7129 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 7130 // # base is the nominal target function of thunk 7131 // # first call-offset is 'this' adjustment 7132 // # second call-offset is result adjustment 7133 7134 assert(!isa<CXXDestructorDecl>(MD) && 7135 "Use mangleCXXDtor for destructor decls!"); 7136 CXXNameMangler Mangler(*this, Out); 7137 Mangler.getStream() << "_ZT"; 7138 if (!Thunk.Return.isEmpty()) 7139 Mangler.getStream() << 'c'; 7140 7141 // Mangle the 'this' pointer adjustment. 7142 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 7143 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 7144 7145 // Mangle the return pointer adjustment if there is one. 7146 if (!Thunk.Return.isEmpty()) 7147 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 7148 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 7149 7150 Mangler.mangleFunctionEncoding(MD); 7151 if (!ElideOverrideInfo) 7152 mangleOverrideDiscrimination(Mangler, getASTContext(), Thunk); 7153 } 7154 7155 void ItaniumMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD, 7156 CXXDtorType Type, 7157 const ThunkInfo &Thunk, 7158 bool ElideOverrideInfo, 7159 raw_ostream &Out) { 7160 // <special-name> ::= T <call-offset> <base encoding> 7161 // # base is the nominal target function of thunk 7162 CXXNameMangler Mangler(*this, Out, DD, Type); 7163 Mangler.getStream() << "_ZT"; 7164 7165 auto &ThisAdjustment = Thunk.This; 7166 // Mangle the 'this' pointer adjustment. 7167 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 7168 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 7169 7170 Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type)); 7171 if (!ElideOverrideInfo) 7172 mangleOverrideDiscrimination(Mangler, getASTContext(), Thunk); 7173 } 7174 7175 /// Returns the mangled name for a guard variable for the passed in VarDecl. 7176 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 7177 raw_ostream &Out) { 7178 // <special-name> ::= GV <object name> # Guard variable for one-time 7179 // # initialization 7180 CXXNameMangler Mangler(*this, Out); 7181 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 7182 // be a bug that is fixed in trunk. 7183 Mangler.getStream() << "_ZGV"; 7184 Mangler.mangleName(D); 7185 } 7186 7187 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 7188 raw_ostream &Out) { 7189 // These symbols are internal in the Itanium ABI, so the names don't matter. 7190 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 7191 // avoid duplicate symbols. 7192 Out << "__cxx_global_var_init"; 7193 } 7194 7195 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 7196 raw_ostream &Out) { 7197 // Prefix the mangling of D with __dtor_. 7198 CXXNameMangler Mangler(*this, Out); 7199 Mangler.getStream() << "__dtor_"; 7200 if (shouldMangleDeclName(D)) 7201 Mangler.mangle(D); 7202 else 7203 Mangler.getStream() << D->getName(); 7204 } 7205 7206 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, 7207 raw_ostream &Out) { 7208 // Clang generates these internal-linkage functions as part of its 7209 // implementation of the XL ABI. 7210 CXXNameMangler Mangler(*this, Out); 7211 Mangler.getStream() << "__finalize_"; 7212 if (shouldMangleDeclName(D)) 7213 Mangler.mangle(D); 7214 else 7215 Mangler.getStream() << D->getName(); 7216 } 7217 7218 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 7219 GlobalDecl EnclosingDecl, raw_ostream &Out) { 7220 CXXNameMangler Mangler(*this, Out); 7221 Mangler.getStream() << "__filt_"; 7222 auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl()); 7223 if (shouldMangleDeclName(EnclosingFD)) 7224 Mangler.mangle(EnclosingDecl); 7225 else 7226 Mangler.getStream() << EnclosingFD->getName(); 7227 } 7228 7229 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 7230 GlobalDecl EnclosingDecl, raw_ostream &Out) { 7231 CXXNameMangler Mangler(*this, Out); 7232 Mangler.getStream() << "__fin_"; 7233 auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl()); 7234 if (shouldMangleDeclName(EnclosingFD)) 7235 Mangler.mangle(EnclosingDecl); 7236 else 7237 Mangler.getStream() << EnclosingFD->getName(); 7238 } 7239 7240 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 7241 raw_ostream &Out) { 7242 // <special-name> ::= TH <object name> 7243 CXXNameMangler Mangler(*this, Out); 7244 Mangler.getStream() << "_ZTH"; 7245 Mangler.mangleName(D); 7246 } 7247 7248 void 7249 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 7250 raw_ostream &Out) { 7251 // <special-name> ::= TW <object name> 7252 CXXNameMangler Mangler(*this, Out); 7253 Mangler.getStream() << "_ZTW"; 7254 Mangler.mangleName(D); 7255 } 7256 7257 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 7258 unsigned ManglingNumber, 7259 raw_ostream &Out) { 7260 // We match the GCC mangling here. 7261 // <special-name> ::= GR <object name> 7262 CXXNameMangler Mangler(*this, Out); 7263 Mangler.getStream() << "_ZGR"; 7264 Mangler.mangleName(D); 7265 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 7266 Mangler.mangleSeqID(ManglingNumber - 1); 7267 } 7268 7269 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 7270 raw_ostream &Out) { 7271 // <special-name> ::= TV <type> # virtual table 7272 CXXNameMangler Mangler(*this, Out); 7273 Mangler.getStream() << "_ZTV"; 7274 Mangler.mangleNameOrStandardSubstitution(RD); 7275 } 7276 7277 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 7278 raw_ostream &Out) { 7279 // <special-name> ::= TT <type> # VTT structure 7280 CXXNameMangler Mangler(*this, Out); 7281 Mangler.getStream() << "_ZTT"; 7282 Mangler.mangleNameOrStandardSubstitution(RD); 7283 } 7284 7285 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 7286 int64_t Offset, 7287 const CXXRecordDecl *Type, 7288 raw_ostream &Out) { 7289 // <special-name> ::= TC <type> <offset number> _ <base type> 7290 CXXNameMangler Mangler(*this, Out); 7291 Mangler.getStream() << "_ZTC"; 7292 Mangler.mangleNameOrStandardSubstitution(RD); 7293 Mangler.getStream() << Offset; 7294 Mangler.getStream() << '_'; 7295 Mangler.mangleNameOrStandardSubstitution(Type); 7296 } 7297 7298 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 7299 // <special-name> ::= TI <type> # typeinfo structure 7300 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 7301 CXXNameMangler Mangler(*this, Out); 7302 Mangler.getStream() << "_ZTI"; 7303 Mangler.mangleType(Ty); 7304 } 7305 7306 void ItaniumMangleContextImpl::mangleCXXRTTIName( 7307 QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { 7308 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 7309 CXXNameMangler Mangler(*this, Out, NormalizeIntegers); 7310 Mangler.getStream() << "_ZTS"; 7311 Mangler.mangleType(Ty); 7312 } 7313 7314 void ItaniumMangleContextImpl::mangleCanonicalTypeName( 7315 QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { 7316 mangleCXXRTTIName(Ty, Out, NormalizeIntegers); 7317 } 7318 7319 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 7320 llvm_unreachable("Can't mangle string literals"); 7321 } 7322 7323 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, 7324 raw_ostream &Out) { 7325 CXXNameMangler Mangler(*this, Out); 7326 Mangler.mangleLambdaSig(Lambda); 7327 } 7328 7329 void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M, 7330 raw_ostream &Out) { 7331 // <special-name> ::= GI <module-name> # module initializer function 7332 CXXNameMangler Mangler(*this, Out); 7333 Mangler.getStream() << "_ZGI"; 7334 Mangler.mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName()); 7335 if (M->isModulePartition()) { 7336 // The partition needs including, as partitions can have them too. 7337 auto Partition = M->Name.find(':'); 7338 Mangler.mangleModuleNamePrefix( 7339 StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1), 7340 /*IsPartition*/ true); 7341 } 7342 } 7343 7344 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, 7345 DiagnosticsEngine &Diags, 7346 bool IsAux) { 7347 return new ItaniumMangleContextImpl( 7348 Context, Diags, 7349 [](ASTContext &, const NamedDecl *) -> std::optional<unsigned> { 7350 return std::nullopt; 7351 }, 7352 IsAux); 7353 } 7354 7355 ItaniumMangleContext * 7356 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, 7357 DiscriminatorOverrideTy DiscriminatorOverride, 7358 bool IsAux) { 7359 return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride, 7360 IsAux); 7361 } 7362