xref: /freebsd/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace clang;
40 
41 namespace {
42 
43 static bool isLocalContainerContext(const DeclContext *DC) {
44   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
45 }
46 
47 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
48   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
49     return ftd->getTemplatedDecl();
50 
51   return fn;
52 }
53 
54 static const NamedDecl *getStructor(const NamedDecl *decl) {
55   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
56   return (fn ? getStructor(fn) : decl);
57 }
58 
59 static bool isLambda(const NamedDecl *ND) {
60   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
61   if (!Record)
62     return false;
63 
64   return Record->isLambda();
65 }
66 
67 static const unsigned UnknownArity = ~0U;
68 
69 class ItaniumMangleContextImpl : public ItaniumMangleContext {
70   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
71   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
72   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
73   const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
74   NamespaceDecl *StdNamespace = nullptr;
75 
76   bool NeedsUniqueInternalLinkageNames = false;
77 
78 public:
79   explicit ItaniumMangleContextImpl(
80       ASTContext &Context, DiagnosticsEngine &Diags,
81       DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false)
82       : ItaniumMangleContext(Context, Diags, IsAux),
83         DiscriminatorOverride(DiscriminatorOverride) {}
84 
85   /// @name Mangler Entry Points
86   /// @{
87 
88   bool shouldMangleCXXName(const NamedDecl *D) override;
89   bool shouldMangleStringLiteral(const StringLiteral *) override {
90     return false;
91   }
92 
93   bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
94   void needsUniqueInternalLinkageNames() override {
95     NeedsUniqueInternalLinkageNames = true;
96   }
97 
98   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
99   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
100                    raw_ostream &) override;
101   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
102                           const ThisAdjustment &ThisAdjustment,
103                           raw_ostream &) override;
104   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
105                                 raw_ostream &) override;
106   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
107   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
108   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
109                            const CXXRecordDecl *Type, raw_ostream &) override;
110   void mangleCXXRTTI(QualType T, raw_ostream &) override;
111   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
112   void mangleTypeName(QualType T, raw_ostream &) override;
113 
114   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
115   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
116   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
117   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
118   void mangleDynamicAtExitDestructor(const VarDecl *D,
119                                      raw_ostream &Out) override;
120   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
121   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
122                                  raw_ostream &Out) override;
123   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
124                              raw_ostream &Out) override;
125   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
126   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
127                                        raw_ostream &) override;
128 
129   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
130 
131   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
132 
133   void mangleModuleInitializer(const Module *Module, raw_ostream &) override;
134 
135   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
136     // Lambda closure types are already numbered.
137     if (isLambda(ND))
138       return false;
139 
140     // Anonymous tags are already numbered.
141     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
142       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
143         return false;
144     }
145 
146     // Use the canonical number for externally visible decls.
147     if (ND->isExternallyVisible()) {
148       unsigned discriminator = getASTContext().getManglingNumber(ND, isAux());
149       if (discriminator == 1)
150         return false;
151       disc = discriminator - 2;
152       return true;
153     }
154 
155     // Make up a reasonable number for internal decls.
156     unsigned &discriminator = Uniquifier[ND];
157     if (!discriminator) {
158       const DeclContext *DC = getEffectiveDeclContext(ND);
159       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
160     }
161     if (discriminator == 1)
162       return false;
163     disc = discriminator-2;
164     return true;
165   }
166 
167   std::string getLambdaString(const CXXRecordDecl *Lambda) override {
168     // This function matches the one in MicrosoftMangle, which returns
169     // the string that is used in lambda mangled names.
170     assert(Lambda->isLambda() && "RD must be a lambda!");
171     std::string Name("<lambda");
172     Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
173     unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
174     unsigned LambdaId;
175     const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
176     const FunctionDecl *Func =
177         Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
178 
179     if (Func) {
180       unsigned DefaultArgNo =
181           Func->getNumParams() - Parm->getFunctionScopeIndex();
182       Name += llvm::utostr(DefaultArgNo);
183       Name += "_";
184     }
185 
186     if (LambdaManglingNumber)
187       LambdaId = LambdaManglingNumber;
188     else
189       LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
190 
191     Name += llvm::utostr(LambdaId);
192     Name += '>';
193     return Name;
194   }
195 
196   DiscriminatorOverrideTy getDiscriminatorOverride() const override {
197     return DiscriminatorOverride;
198   }
199 
200   NamespaceDecl *getStdNamespace();
201 
202   const DeclContext *getEffectiveDeclContext(const Decl *D);
203   const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
204     return getEffectiveDeclContext(cast<Decl>(DC));
205   }
206 
207   bool isInternalLinkageDecl(const NamedDecl *ND);
208   const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC);
209 
210   /// @}
211 };
212 
213 /// Manage the mangling of a single name.
214 class CXXNameMangler {
215   ItaniumMangleContextImpl &Context;
216   raw_ostream &Out;
217   bool NullOut = false;
218   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219   /// This mode is used when mangler creates another mangler recursively to
220   /// calculate ABI tags for the function return value or the variable type.
221   /// Also it is required to avoid infinite recursion in some cases.
222   bool DisableDerivedAbiTags = false;
223 
224   /// The "structor" is the top-level declaration being mangled, if
225   /// that's not a template specialization; otherwise it's the pattern
226   /// for that specialization.
227   const NamedDecl *Structor;
228   unsigned StructorType = 0;
229 
230   /// The next substitution sequence number.
231   unsigned SeqID = 0;
232 
233   class FunctionTypeDepthState {
234     unsigned Bits;
235 
236     enum { InResultTypeMask = 1 };
237 
238   public:
239     FunctionTypeDepthState() : Bits(0) {}
240 
241     /// The number of function types we're inside.
242     unsigned getDepth() const {
243       return Bits >> 1;
244     }
245 
246     /// True if we're in the return type of the innermost function type.
247     bool isInResultType() const {
248       return Bits & InResultTypeMask;
249     }
250 
251     FunctionTypeDepthState push() {
252       FunctionTypeDepthState tmp = *this;
253       Bits = (Bits & ~InResultTypeMask) + 2;
254       return tmp;
255     }
256 
257     void enterResultType() {
258       Bits |= InResultTypeMask;
259     }
260 
261     void leaveResultType() {
262       Bits &= ~InResultTypeMask;
263     }
264 
265     void pop(FunctionTypeDepthState saved) {
266       assert(getDepth() == saved.getDepth() + 1);
267       Bits = saved.Bits;
268     }
269 
270   } FunctionTypeDepth;
271 
272   // abi_tag is a gcc attribute, taking one or more strings called "tags".
273   // The goal is to annotate against which version of a library an object was
274   // built and to be able to provide backwards compatibility ("dual abi").
275   // For more information see docs/ItaniumMangleAbiTags.rst.
276   typedef SmallVector<StringRef, 4> AbiTagList;
277 
278   // State to gather all implicit and explicit tags used in a mangled name.
279   // Must always have an instance of this while emitting any name to keep
280   // track.
281   class AbiTagState final {
282   public:
283     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284       Parent = LinkHead;
285       LinkHead = this;
286     }
287 
288     // No copy, no move.
289     AbiTagState(const AbiTagState &) = delete;
290     AbiTagState &operator=(const AbiTagState &) = delete;
291 
292     ~AbiTagState() { pop(); }
293 
294     void write(raw_ostream &Out, const NamedDecl *ND,
295                const AbiTagList *AdditionalAbiTags) {
296       ND = cast<NamedDecl>(ND->getCanonicalDecl());
297       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298         assert(
299             !AdditionalAbiTags &&
300             "only function and variables need a list of additional abi tags");
301         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304                                AbiTag->tags().end());
305           }
306           // Don't emit abi tags for namespaces.
307           return;
308         }
309       }
310 
311       AbiTagList TagList;
312       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314                            AbiTag->tags().end());
315         TagList.insert(TagList.end(), AbiTag->tags().begin(),
316                        AbiTag->tags().end());
317       }
318 
319       if (AdditionalAbiTags) {
320         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321                            AdditionalAbiTags->end());
322         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323                        AdditionalAbiTags->end());
324       }
325 
326       llvm::sort(TagList);
327       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328 
329       writeSortedUniqueAbiTags(Out, TagList);
330     }
331 
332     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333     void setUsedAbiTags(const AbiTagList &AbiTags) {
334       UsedAbiTags = AbiTags;
335     }
336 
337     const AbiTagList &getEmittedAbiTags() const {
338       return EmittedAbiTags;
339     }
340 
341     const AbiTagList &getSortedUniqueUsedAbiTags() {
342       llvm::sort(UsedAbiTags);
343       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344                         UsedAbiTags.end());
345       return UsedAbiTags;
346     }
347 
348   private:
349     //! All abi tags used implicitly or explicitly.
350     AbiTagList UsedAbiTags;
351     //! All explicit abi tags (i.e. not from namespace).
352     AbiTagList EmittedAbiTags;
353 
354     AbiTagState *&LinkHead;
355     AbiTagState *Parent = nullptr;
356 
357     void pop() {
358       assert(LinkHead == this &&
359              "abi tag link head must point to us on destruction");
360       if (Parent) {
361         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362                                    UsedAbiTags.begin(), UsedAbiTags.end());
363         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364                                       EmittedAbiTags.begin(),
365                                       EmittedAbiTags.end());
366       }
367       LinkHead = Parent;
368     }
369 
370     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371       for (const auto &Tag : AbiTags) {
372         EmittedAbiTags.push_back(Tag);
373         Out << "B";
374         Out << Tag.size();
375         Out << Tag;
376       }
377     }
378   };
379 
380   AbiTagState *AbiTags = nullptr;
381   AbiTagState AbiTagsRoot;
382 
383   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
385 
386   ASTContext &getASTContext() const { return Context.getASTContext(); }
387 
388   bool isStd(const NamespaceDecl *NS);
389   bool isStdNamespace(const DeclContext *DC);
390 
391   const RecordDecl *GetLocalClassDecl(const Decl *D);
392   const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC);
393   bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A);
394   bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD,
395                                llvm::StringRef Name, bool HasAllocator);
396 
397 public:
398   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399                  const NamedDecl *D = nullptr, bool NullOut_ = false)
400       : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
401         AbiTagsRoot(AbiTags) {
402     // These can't be mangled without a ctor type or dtor type.
403     assert(!D || (!isa<CXXDestructorDecl>(D) &&
404                   !isa<CXXConstructorDecl>(D)));
405   }
406   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
407                  const CXXConstructorDecl *D, CXXCtorType Type)
408       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
409         AbiTagsRoot(AbiTags) {}
410   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
411                  const CXXDestructorDecl *D, CXXDtorType Type)
412       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
413         AbiTagsRoot(AbiTags) {}
414 
415   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
416       : Context(Outer.Context), Out(Out_), Structor(Outer.Structor),
417         StructorType(Outer.StructorType), SeqID(Outer.SeqID),
418         FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags),
419         Substitutions(Outer.Substitutions),
420         ModuleSubstitutions(Outer.ModuleSubstitutions) {}
421 
422   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
423       : CXXNameMangler(Outer, (raw_ostream &)Out_) {
424     NullOut = true;
425   }
426 
427   raw_ostream &getStream() { return Out; }
428 
429   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
430   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
431 
432   void mangle(GlobalDecl GD);
433   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
434   void mangleNumber(const llvm::APSInt &I);
435   void mangleNumber(int64_t Number);
436   void mangleFloat(const llvm::APFloat &F);
437   void mangleFunctionEncoding(GlobalDecl GD);
438   void mangleSeqID(unsigned SeqID);
439   void mangleName(GlobalDecl GD);
440   void mangleType(QualType T);
441   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
442   void mangleLambdaSig(const CXXRecordDecl *Lambda);
443   void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false);
444 
445 private:
446 
447   bool mangleSubstitution(const NamedDecl *ND);
448   bool mangleSubstitution(NestedNameSpecifier *NNS);
449   bool mangleSubstitution(QualType T);
450   bool mangleSubstitution(TemplateName Template);
451   bool mangleSubstitution(uintptr_t Ptr);
452 
453   void mangleExistingSubstitution(TemplateName name);
454 
455   bool mangleStandardSubstitution(const NamedDecl *ND);
456 
457   void addSubstitution(const NamedDecl *ND) {
458     ND = cast<NamedDecl>(ND->getCanonicalDecl());
459 
460     addSubstitution(reinterpret_cast<uintptr_t>(ND));
461   }
462   void addSubstitution(NestedNameSpecifier *NNS) {
463     NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
464 
465     addSubstitution(reinterpret_cast<uintptr_t>(NNS));
466   }
467   void addSubstitution(QualType T);
468   void addSubstitution(TemplateName Template);
469   void addSubstitution(uintptr_t Ptr);
470   // Destructive copy substitutions from other mangler.
471   void extendSubstitutions(CXXNameMangler* Other);
472 
473   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
474                               bool recursive = false);
475   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
476                             DeclarationName name,
477                             const TemplateArgumentLoc *TemplateArgs,
478                             unsigned NumTemplateArgs,
479                             unsigned KnownArity = UnknownArity);
480 
481   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
482 
483   void mangleNameWithAbiTags(GlobalDecl GD,
484                              const AbiTagList *AdditionalAbiTags);
485   void mangleModuleName(const NamedDecl *ND);
486   void mangleTemplateName(const TemplateDecl *TD,
487                           const TemplateArgument *TemplateArgs,
488                           unsigned NumTemplateArgs);
489   void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC,
490                              const AbiTagList *AdditionalAbiTags) {
491     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC,
492                           UnknownArity, AdditionalAbiTags);
493   }
494   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
495                              const DeclContext *DC, unsigned KnownArity,
496                              const AbiTagList *AdditionalAbiTags);
497   void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
498                           const AbiTagList *AdditionalAbiTags);
499   void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC,
500                                   const AbiTagList *AdditionalAbiTags);
501   void mangleSourceName(const IdentifierInfo *II);
502   void mangleRegCallName(const IdentifierInfo *II);
503   void mangleDeviceStubName(const IdentifierInfo *II);
504   void mangleSourceNameWithAbiTags(
505       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
506   void mangleLocalName(GlobalDecl GD,
507                        const AbiTagList *AdditionalAbiTags);
508   void mangleBlockForPrefix(const BlockDecl *Block);
509   void mangleUnqualifiedBlock(const BlockDecl *Block);
510   void mangleTemplateParamDecl(const NamedDecl *Decl);
511   void mangleLambda(const CXXRecordDecl *Lambda);
512   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
513                         const AbiTagList *AdditionalAbiTags,
514                         bool NoFunction=false);
515   void mangleNestedName(const TemplateDecl *TD,
516                         const TemplateArgument *TemplateArgs,
517                         unsigned NumTemplateArgs);
518   void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
519                                          const NamedDecl *PrefixND,
520                                          const AbiTagList *AdditionalAbiTags);
521   void manglePrefix(NestedNameSpecifier *qualifier);
522   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
523   void manglePrefix(QualType type);
524   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
525   void mangleTemplatePrefix(TemplateName Template);
526   const NamedDecl *getClosurePrefix(const Decl *ND);
527   void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
528   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
529                                       StringRef Prefix = "");
530   void mangleOperatorName(DeclarationName Name, unsigned Arity);
531   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
532   void mangleVendorQualifier(StringRef qualifier);
533   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
534   void mangleRefQualifier(RefQualifierKind RefQualifier);
535 
536   void mangleObjCMethodName(const ObjCMethodDecl *MD);
537 
538   // Declare manglers for every type class.
539 #define ABSTRACT_TYPE(CLASS, PARENT)
540 #define NON_CANONICAL_TYPE(CLASS, PARENT)
541 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
542 #include "clang/AST/TypeNodes.inc"
543 
544   void mangleType(const TagType*);
545   void mangleType(TemplateName);
546   static StringRef getCallingConvQualifierName(CallingConv CC);
547   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
548   void mangleExtFunctionInfo(const FunctionType *T);
549   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
550                               const FunctionDecl *FD = nullptr);
551   void mangleNeonVectorType(const VectorType *T);
552   void mangleNeonVectorType(const DependentVectorType *T);
553   void mangleAArch64NeonVectorType(const VectorType *T);
554   void mangleAArch64NeonVectorType(const DependentVectorType *T);
555   void mangleAArch64FixedSveVectorType(const VectorType *T);
556   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
557 
558   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
559   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
560   void mangleFixedPointLiteral();
561   void mangleNullPointer(QualType T);
562 
563   void mangleMemberExprBase(const Expr *base, bool isArrow);
564   void mangleMemberExpr(const Expr *base, bool isArrow,
565                         NestedNameSpecifier *qualifier,
566                         NamedDecl *firstQualifierLookup,
567                         DeclarationName name,
568                         const TemplateArgumentLoc *TemplateArgs,
569                         unsigned NumTemplateArgs,
570                         unsigned knownArity);
571   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
572   void mangleInitListElements(const InitListExpr *InitList);
573   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
574                         bool AsTemplateArg = false);
575   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
576   void mangleCXXDtorType(CXXDtorType T);
577 
578   void mangleTemplateArgs(TemplateName TN,
579                           const TemplateArgumentLoc *TemplateArgs,
580                           unsigned NumTemplateArgs);
581   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
582                           unsigned NumTemplateArgs);
583   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
584   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
585   void mangleTemplateArgExpr(const Expr *E);
586   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
587                                 bool NeedExactType = false);
588 
589   void mangleTemplateParameter(unsigned Depth, unsigned Index);
590 
591   void mangleFunctionParam(const ParmVarDecl *parm);
592 
593   void writeAbiTags(const NamedDecl *ND,
594                     const AbiTagList *AdditionalAbiTags);
595 
596   // Returns sorted unique list of ABI tags.
597   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
598   // Returns sorted unique list of ABI tags.
599   AbiTagList makeVariableTypeTags(const VarDecl *VD);
600 };
601 
602 }
603 
604 NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() {
605   if (!StdNamespace) {
606     StdNamespace = NamespaceDecl::Create(
607         getASTContext(), getASTContext().getTranslationUnitDecl(),
608         /*Inline*/ false, SourceLocation(), SourceLocation(),
609         &getASTContext().Idents.get("std"),
610         /*PrevDecl*/ nullptr);
611     StdNamespace->setImplicit();
612   }
613   return StdNamespace;
614 }
615 
616 /// Retrieve the declaration context that should be used when mangling the given
617 /// declaration.
618 const DeclContext *
619 ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) {
620   // The ABI assumes that lambda closure types that occur within
621   // default arguments live in the context of the function. However, due to
622   // the way in which Clang parses and creates function declarations, this is
623   // not the case: the lambda closure type ends up living in the context
624   // where the function itself resides, because the function declaration itself
625   // had not yet been created. Fix the context here.
626   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
627     if (RD->isLambda())
628       if (ParmVarDecl *ContextParam =
629               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
630         return ContextParam->getDeclContext();
631   }
632 
633   // Perform the same check for block literals.
634   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
635     if (ParmVarDecl *ContextParam =
636             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
637       return ContextParam->getDeclContext();
638   }
639 
640   // On ARM and AArch64, the va_list tag is always mangled as if in the std
641   // namespace. We do not represent va_list as actually being in the std
642   // namespace in C because this would result in incorrect debug info in C,
643   // among other things. It is important for both languages to have the same
644   // mangling in order for -fsanitize=cfi-icall to work.
645   if (D == getASTContext().getVaListTagDecl()) {
646     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
647     if (T.isARM() || T.isThumb() || T.isAArch64())
648       return getStdNamespace();
649   }
650 
651   const DeclContext *DC = D->getDeclContext();
652   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
653       isa<OMPDeclareMapperDecl>(DC)) {
654     return getEffectiveDeclContext(cast<Decl>(DC));
655   }
656 
657   if (const auto *VD = dyn_cast<VarDecl>(D))
658     if (VD->isExternC())
659       return getASTContext().getTranslationUnitDecl();
660 
661   if (const auto *FD = dyn_cast<FunctionDecl>(D))
662     if (FD->isExternC())
663       return getASTContext().getTranslationUnitDecl();
664 
665   return DC->getRedeclContext();
666 }
667 
668 bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) {
669   if (ND && ND->getFormalLinkage() == InternalLinkage &&
670       !ND->isExternallyVisible() &&
671       getEffectiveDeclContext(ND)->isFileContext() &&
672       !ND->isInAnonymousNamespace())
673     return true;
674   return false;
675 }
676 
677 // Check if this Function Decl needs a unique internal linkage name.
678 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
679     const NamedDecl *ND) {
680   if (!NeedsUniqueInternalLinkageNames || !ND)
681     return false;
682 
683   const auto *FD = dyn_cast<FunctionDecl>(ND);
684   if (!FD)
685     return false;
686 
687   // For C functions without prototypes, return false as their
688   // names should not be mangled.
689   if (!FD->getType()->getAs<FunctionProtoType>())
690     return false;
691 
692   if (isInternalLinkageDecl(ND))
693     return true;
694 
695   return false;
696 }
697 
698 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
699   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
700     LanguageLinkage L = FD->getLanguageLinkage();
701     // Overloadable functions need mangling.
702     if (FD->hasAttr<OverloadableAttr>())
703       return true;
704 
705     // "main" is not mangled.
706     if (FD->isMain())
707       return false;
708 
709     // The Windows ABI expects that we would never mangle "typical"
710     // user-defined entry points regardless of visibility or freestanding-ness.
711     //
712     // N.B. This is distinct from asking about "main".  "main" has a lot of
713     // special rules associated with it in the standard while these
714     // user-defined entry points are outside of the purview of the standard.
715     // For example, there can be only one definition for "main" in a standards
716     // compliant program; however nothing forbids the existence of wmain and
717     // WinMain in the same translation unit.
718     if (FD->isMSVCRTEntryPoint())
719       return false;
720 
721     // C++ functions and those whose names are not a simple identifier need
722     // mangling.
723     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
724       return true;
725 
726     // C functions are not mangled.
727     if (L == CLanguageLinkage)
728       return false;
729   }
730 
731   // Otherwise, no mangling is done outside C++ mode.
732   if (!getASTContext().getLangOpts().CPlusPlus)
733     return false;
734 
735   if (const auto *VD = dyn_cast<VarDecl>(D)) {
736     // Decompositions are mangled.
737     if (isa<DecompositionDecl>(VD))
738       return true;
739 
740     // C variables are not mangled.
741     if (VD->isExternC())
742       return false;
743 
744     // Variables at global scope are not mangled unless they have internal
745     // linkage or are specializations or are attached to a named module.
746     const DeclContext *DC = getEffectiveDeclContext(D);
747     // Check for extern variable declared locally.
748     if (DC->isFunctionOrMethod() && D->hasLinkage())
749       while (!DC->isFileContext())
750         DC = getEffectiveParentContext(DC);
751     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
752         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
753         !isa<VarTemplateSpecializationDecl>(VD) &&
754         !VD->getOwningModuleForLinkage())
755       return false;
756   }
757 
758   return true;
759 }
760 
761 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
762                                   const AbiTagList *AdditionalAbiTags) {
763   assert(AbiTags && "require AbiTagState");
764   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
765 }
766 
767 void CXXNameMangler::mangleSourceNameWithAbiTags(
768     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
769   mangleSourceName(ND->getIdentifier());
770   writeAbiTags(ND, AdditionalAbiTags);
771 }
772 
773 void CXXNameMangler::mangle(GlobalDecl GD) {
774   // <mangled-name> ::= _Z <encoding>
775   //            ::= <data name>
776   //            ::= <special-name>
777   Out << "_Z";
778   if (isa<FunctionDecl>(GD.getDecl()))
779     mangleFunctionEncoding(GD);
780   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
781                BindingDecl>(GD.getDecl()))
782     mangleName(GD);
783   else if (const IndirectFieldDecl *IFD =
784                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
785     mangleName(IFD->getAnonField());
786   else
787     llvm_unreachable("unexpected kind of global decl");
788 }
789 
790 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
791   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
792   // <encoding> ::= <function name> <bare-function-type>
793 
794   // Don't mangle in the type if this isn't a decl we should typically mangle.
795   if (!Context.shouldMangleDeclName(FD)) {
796     mangleName(GD);
797     return;
798   }
799 
800   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
801   if (ReturnTypeAbiTags.empty()) {
802     // There are no tags for return type, the simplest case.
803     mangleName(GD);
804     mangleFunctionEncodingBareType(FD);
805     return;
806   }
807 
808   // Mangle function name and encoding to temporary buffer.
809   // We have to output name and encoding to the same mangler to get the same
810   // substitution as it will be in final mangling.
811   SmallString<256> FunctionEncodingBuf;
812   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
813   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
814   // Output name of the function.
815   FunctionEncodingMangler.disableDerivedAbiTags();
816   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
817 
818   // Remember length of the function name in the buffer.
819   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
820   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
821 
822   // Get tags from return type that are not present in function name or
823   // encoding.
824   const AbiTagList &UsedAbiTags =
825       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
826   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
827   AdditionalAbiTags.erase(
828       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
829                           UsedAbiTags.begin(), UsedAbiTags.end(),
830                           AdditionalAbiTags.begin()),
831       AdditionalAbiTags.end());
832 
833   // Output name with implicit tags and function encoding from temporary buffer.
834   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
835   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
836 
837   // Function encoding could create new substitutions so we have to add
838   // temp mangled substitutions to main mangler.
839   extendSubstitutions(&FunctionEncodingMangler);
840 }
841 
842 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
843   if (FD->hasAttr<EnableIfAttr>()) {
844     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
845     Out << "Ua9enable_ifI";
846     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
847                                  E = FD->getAttrs().end();
848          I != E; ++I) {
849       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
850       if (!EIA)
851         continue;
852       if (Context.getASTContext().getLangOpts().getClangABICompat() >
853           LangOptions::ClangABI::Ver11) {
854         mangleTemplateArgExpr(EIA->getCond());
855       } else {
856         // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
857         // even though <template-arg> should not include an X/E around
858         // <expr-primary>.
859         Out << 'X';
860         mangleExpression(EIA->getCond());
861         Out << 'E';
862       }
863     }
864     Out << 'E';
865     FunctionTypeDepth.pop(Saved);
866   }
867 
868   // When mangling an inheriting constructor, the bare function type used is
869   // that of the inherited constructor.
870   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
871     if (auto Inherited = CD->getInheritedConstructor())
872       FD = Inherited.getConstructor();
873 
874   // Whether the mangling of a function type includes the return type depends on
875   // the context and the nature of the function. The rules for deciding whether
876   // the return type is included are:
877   //
878   //   1. Template functions (names or types) have return types encoded, with
879   //   the exceptions listed below.
880   //   2. Function types not appearing as part of a function name mangling,
881   //   e.g. parameters, pointer types, etc., have return type encoded, with the
882   //   exceptions listed below.
883   //   3. Non-template function names do not have return types encoded.
884   //
885   // The exceptions mentioned in (1) and (2) above, for which the return type is
886   // never included, are
887   //   1. Constructors.
888   //   2. Destructors.
889   //   3. Conversion operator functions, e.g. operator int.
890   bool MangleReturnType = false;
891   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
892     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
893           isa<CXXConversionDecl>(FD)))
894       MangleReturnType = true;
895 
896     // Mangle the type of the primary template.
897     FD = PrimaryTemplate->getTemplatedDecl();
898   }
899 
900   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
901                          MangleReturnType, FD);
902 }
903 
904 /// Return whether a given namespace is the 'std' namespace.
905 bool CXXNameMangler::isStd(const NamespaceDecl *NS) {
906   if (!Context.getEffectiveParentContext(NS)->isTranslationUnit())
907     return false;
908 
909   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
910   return II && II->isStr("std");
911 }
912 
913 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
914 // namespace.
915 bool CXXNameMangler::isStdNamespace(const DeclContext *DC) {
916   if (!DC->isNamespace())
917     return false;
918 
919   return isStd(cast<NamespaceDecl>(DC));
920 }
921 
922 static const GlobalDecl
923 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
924   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
925   // Check if we have a function template.
926   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
927     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
928       TemplateArgs = FD->getTemplateSpecializationArgs();
929       return GD.getWithDecl(TD);
930     }
931   }
932 
933   // Check if we have a class template.
934   if (const ClassTemplateSpecializationDecl *Spec =
935         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
936     TemplateArgs = &Spec->getTemplateArgs();
937     return GD.getWithDecl(Spec->getSpecializedTemplate());
938   }
939 
940   // Check if we have a variable template.
941   if (const VarTemplateSpecializationDecl *Spec =
942           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
943     TemplateArgs = &Spec->getTemplateArgs();
944     return GD.getWithDecl(Spec->getSpecializedTemplate());
945   }
946 
947   return GlobalDecl();
948 }
949 
950 static TemplateName asTemplateName(GlobalDecl GD) {
951   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
952   return TemplateName(const_cast<TemplateDecl*>(TD));
953 }
954 
955 void CXXNameMangler::mangleName(GlobalDecl GD) {
956   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
957   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
958     // Variables should have implicit tags from its type.
959     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
960     if (VariableTypeAbiTags.empty()) {
961       // Simple case no variable type tags.
962       mangleNameWithAbiTags(VD, nullptr);
963       return;
964     }
965 
966     // Mangle variable name to null stream to collect tags.
967     llvm::raw_null_ostream NullOutStream;
968     CXXNameMangler VariableNameMangler(*this, NullOutStream);
969     VariableNameMangler.disableDerivedAbiTags();
970     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
971 
972     // Get tags from variable type that are not present in its name.
973     const AbiTagList &UsedAbiTags =
974         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
975     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
976     AdditionalAbiTags.erase(
977         std::set_difference(VariableTypeAbiTags.begin(),
978                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
979                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
980         AdditionalAbiTags.end());
981 
982     // Output name with implicit tags.
983     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
984   } else {
985     mangleNameWithAbiTags(GD, nullptr);
986   }
987 }
988 
989 const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) {
990   const DeclContext *DC = Context.getEffectiveDeclContext(D);
991   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
992     if (isLocalContainerContext(DC))
993       return dyn_cast<RecordDecl>(D);
994     D = cast<Decl>(DC);
995     DC = Context.getEffectiveDeclContext(D);
996   }
997   return nullptr;
998 }
999 
1000 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
1001                                            const AbiTagList *AdditionalAbiTags) {
1002   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1003   //  <name> ::= [<module-name>] <nested-name>
1004   //         ::= [<module-name>] <unscoped-name>
1005   //         ::= [<module-name>] <unscoped-template-name> <template-args>
1006   //         ::= <local-name>
1007   //
1008   const DeclContext *DC = Context.getEffectiveDeclContext(ND);
1009 
1010   // If this is an extern variable declared locally, the relevant DeclContext
1011   // is that of the containing namespace, or the translation unit.
1012   // FIXME: This is a hack; extern variables declared locally should have
1013   // a proper semantic declaration context!
1014   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
1015     while (!DC->isNamespace() && !DC->isTranslationUnit())
1016       DC = Context.getEffectiveParentContext(DC);
1017   else if (GetLocalClassDecl(ND)) {
1018     mangleLocalName(GD, AdditionalAbiTags);
1019     return;
1020   }
1021 
1022   assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl");
1023 
1024   if (isLocalContainerContext(DC)) {
1025     mangleLocalName(GD, AdditionalAbiTags);
1026     return;
1027   }
1028 
1029   // Closures can require a nested-name mangling even if they're semantically
1030   // in the global namespace.
1031   if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
1032     mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
1033     return;
1034   }
1035 
1036   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1037     // Check if we have a template.
1038     const TemplateArgumentList *TemplateArgs = nullptr;
1039     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1040       mangleUnscopedTemplateName(TD, DC, AdditionalAbiTags);
1041       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1042       return;
1043     }
1044 
1045     mangleUnscopedName(GD, DC, AdditionalAbiTags);
1046     return;
1047   }
1048 
1049   mangleNestedName(GD, DC, AdditionalAbiTags);
1050 }
1051 
1052 void CXXNameMangler::mangleModuleName(const NamedDecl *ND) {
1053   if (ND->isExternallyVisible())
1054     if (Module *M = ND->getOwningModuleForLinkage())
1055       mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
1056 }
1057 
1058 // <module-name> ::= <module-subname>
1059 //		 ::= <module-name> <module-subname>
1060 //	 	 ::= <substitution>
1061 // <module-subname> ::= W <source-name>
1062 //		    ::= W P <source-name>
1063 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) {
1064   //  <substitution> ::= S <seq-id> _
1065   auto It = ModuleSubstitutions.find(Name);
1066   if (It != ModuleSubstitutions.end()) {
1067     Out << 'S';
1068     mangleSeqID(It->second);
1069     return;
1070   }
1071 
1072   // FIXME: Preserve hierarchy in module names rather than flattening
1073   // them to strings; use Module*s as substitution keys.
1074   auto Parts = Name.rsplit('.');
1075   if (Parts.second.empty())
1076     Parts.second = Parts.first;
1077   else {
1078     mangleModuleNamePrefix(Parts.first, IsPartition);
1079     IsPartition = false;
1080   }
1081 
1082   Out << 'W';
1083   if (IsPartition)
1084     Out << 'P';
1085   Out << Parts.second.size() << Parts.second;
1086   ModuleSubstitutions.insert({Name, SeqID++});
1087 }
1088 
1089 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1090                                         const TemplateArgument *TemplateArgs,
1091                                         unsigned NumTemplateArgs) {
1092   const DeclContext *DC = Context.getEffectiveDeclContext(TD);
1093 
1094   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1095     mangleUnscopedTemplateName(TD, DC, nullptr);
1096     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1097   } else {
1098     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
1099   }
1100 }
1101 
1102 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
1103                                         const AbiTagList *AdditionalAbiTags) {
1104   //  <unscoped-name> ::= <unqualified-name>
1105   //                  ::= St <unqualified-name>   # ::std::
1106 
1107   assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl");
1108   if (isStdNamespace(DC))
1109     Out << "St";
1110 
1111   mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1112 }
1113 
1114 void CXXNameMangler::mangleUnscopedTemplateName(
1115     GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) {
1116   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1117   //     <unscoped-template-name> ::= <unscoped-name>
1118   //                              ::= <substitution>
1119   if (mangleSubstitution(ND))
1120     return;
1121 
1122   // <template-template-param> ::= <template-param>
1123   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1124     assert(!AdditionalAbiTags &&
1125            "template template param cannot have abi tags");
1126     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1127   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1128     mangleUnscopedName(GD, DC, AdditionalAbiTags);
1129   } else {
1130     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
1131                        AdditionalAbiTags);
1132   }
1133 
1134   addSubstitution(ND);
1135 }
1136 
1137 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1138   // ABI:
1139   //   Floating-point literals are encoded using a fixed-length
1140   //   lowercase hexadecimal string corresponding to the internal
1141   //   representation (IEEE on Itanium), high-order bytes first,
1142   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1143   //   on Itanium.
1144   // The 'without leading zeroes' thing seems to be an editorial
1145   // mistake; see the discussion on cxx-abi-dev beginning on
1146   // 2012-01-16.
1147 
1148   // Our requirements here are just barely weird enough to justify
1149   // using a custom algorithm instead of post-processing APInt::toString().
1150 
1151   llvm::APInt valueBits = f.bitcastToAPInt();
1152   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1153   assert(numCharacters != 0);
1154 
1155   // Allocate a buffer of the right number of characters.
1156   SmallVector<char, 20> buffer(numCharacters);
1157 
1158   // Fill the buffer left-to-right.
1159   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1160     // The bit-index of the next hex digit.
1161     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1162 
1163     // Project out 4 bits starting at 'digitIndex'.
1164     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1165     hexDigit >>= (digitBitIndex % 64);
1166     hexDigit &= 0xF;
1167 
1168     // Map that over to a lowercase hex digit.
1169     static const char charForHex[16] = {
1170       '0', '1', '2', '3', '4', '5', '6', '7',
1171       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1172     };
1173     buffer[stringIndex] = charForHex[hexDigit];
1174   }
1175 
1176   Out.write(buffer.data(), numCharacters);
1177 }
1178 
1179 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1180   Out << 'L';
1181   mangleType(T);
1182   mangleFloat(V);
1183   Out << 'E';
1184 }
1185 
1186 void CXXNameMangler::mangleFixedPointLiteral() {
1187   DiagnosticsEngine &Diags = Context.getDiags();
1188   unsigned DiagID = Diags.getCustomDiagID(
1189       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1190   Diags.Report(DiagID);
1191 }
1192 
1193 void CXXNameMangler::mangleNullPointer(QualType T) {
1194   //  <expr-primary> ::= L <type> 0 E
1195   Out << 'L';
1196   mangleType(T);
1197   Out << "0E";
1198 }
1199 
1200 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1201   if (Value.isSigned() && Value.isNegative()) {
1202     Out << 'n';
1203     Value.abs().print(Out, /*signed*/ false);
1204   } else {
1205     Value.print(Out, /*signed*/ false);
1206   }
1207 }
1208 
1209 void CXXNameMangler::mangleNumber(int64_t Number) {
1210   //  <number> ::= [n] <non-negative decimal integer>
1211   if (Number < 0) {
1212     Out << 'n';
1213     Number = -Number;
1214   }
1215 
1216   Out << Number;
1217 }
1218 
1219 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1220   //  <call-offset>  ::= h <nv-offset> _
1221   //                 ::= v <v-offset> _
1222   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1223   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1224   //                      # virtual base override, with vcall offset
1225   if (!Virtual) {
1226     Out << 'h';
1227     mangleNumber(NonVirtual);
1228     Out << '_';
1229     return;
1230   }
1231 
1232   Out << 'v';
1233   mangleNumber(NonVirtual);
1234   Out << '_';
1235   mangleNumber(Virtual);
1236   Out << '_';
1237 }
1238 
1239 void CXXNameMangler::manglePrefix(QualType type) {
1240   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1241     if (!mangleSubstitution(QualType(TST, 0))) {
1242       mangleTemplatePrefix(TST->getTemplateName());
1243 
1244       // FIXME: GCC does not appear to mangle the template arguments when
1245       // the template in question is a dependent template name. Should we
1246       // emulate that badness?
1247       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1248                          TST->getNumArgs());
1249       addSubstitution(QualType(TST, 0));
1250     }
1251   } else if (const auto *DTST =
1252                  type->getAs<DependentTemplateSpecializationType>()) {
1253     if (!mangleSubstitution(QualType(DTST, 0))) {
1254       TemplateName Template = getASTContext().getDependentTemplateName(
1255           DTST->getQualifier(), DTST->getIdentifier());
1256       mangleTemplatePrefix(Template);
1257 
1258       // FIXME: GCC does not appear to mangle the template arguments when
1259       // the template in question is a dependent template name. Should we
1260       // emulate that badness?
1261       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1262       addSubstitution(QualType(DTST, 0));
1263     }
1264   } else {
1265     // We use the QualType mangle type variant here because it handles
1266     // substitutions.
1267     mangleType(type);
1268   }
1269 }
1270 
1271 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1272 ///
1273 /// \param recursive - true if this is being called recursively,
1274 ///   i.e. if there is more prefix "to the right".
1275 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1276                                             bool recursive) {
1277 
1278   // x, ::x
1279   // <unresolved-name> ::= [gs] <base-unresolved-name>
1280 
1281   // T::x / decltype(p)::x
1282   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1283 
1284   // T::N::x /decltype(p)::N::x
1285   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1286   //                       <base-unresolved-name>
1287 
1288   // A::x, N::y, A<T>::z; "gs" means leading "::"
1289   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1290   //                       <base-unresolved-name>
1291 
1292   switch (qualifier->getKind()) {
1293   case NestedNameSpecifier::Global:
1294     Out << "gs";
1295 
1296     // We want an 'sr' unless this is the entire NNS.
1297     if (recursive)
1298       Out << "sr";
1299 
1300     // We never want an 'E' here.
1301     return;
1302 
1303   case NestedNameSpecifier::Super:
1304     llvm_unreachable("Can't mangle __super specifier");
1305 
1306   case NestedNameSpecifier::Namespace:
1307     if (qualifier->getPrefix())
1308       mangleUnresolvedPrefix(qualifier->getPrefix(),
1309                              /*recursive*/ true);
1310     else
1311       Out << "sr";
1312     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1313     break;
1314   case NestedNameSpecifier::NamespaceAlias:
1315     if (qualifier->getPrefix())
1316       mangleUnresolvedPrefix(qualifier->getPrefix(),
1317                              /*recursive*/ true);
1318     else
1319       Out << "sr";
1320     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1321     break;
1322 
1323   case NestedNameSpecifier::TypeSpec:
1324   case NestedNameSpecifier::TypeSpecWithTemplate: {
1325     const Type *type = qualifier->getAsType();
1326 
1327     // We only want to use an unresolved-type encoding if this is one of:
1328     //   - a decltype
1329     //   - a template type parameter
1330     //   - a template template parameter with arguments
1331     // In all of these cases, we should have no prefix.
1332     if (qualifier->getPrefix()) {
1333       mangleUnresolvedPrefix(qualifier->getPrefix(),
1334                              /*recursive*/ true);
1335     } else {
1336       // Otherwise, all the cases want this.
1337       Out << "sr";
1338     }
1339 
1340     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1341       return;
1342 
1343     break;
1344   }
1345 
1346   case NestedNameSpecifier::Identifier:
1347     // Member expressions can have these without prefixes.
1348     if (qualifier->getPrefix())
1349       mangleUnresolvedPrefix(qualifier->getPrefix(),
1350                              /*recursive*/ true);
1351     else
1352       Out << "sr";
1353 
1354     mangleSourceName(qualifier->getAsIdentifier());
1355     // An Identifier has no type information, so we can't emit abi tags for it.
1356     break;
1357   }
1358 
1359   // If this was the innermost part of the NNS, and we fell out to
1360   // here, append an 'E'.
1361   if (!recursive)
1362     Out << 'E';
1363 }
1364 
1365 /// Mangle an unresolved-name, which is generally used for names which
1366 /// weren't resolved to specific entities.
1367 void CXXNameMangler::mangleUnresolvedName(
1368     NestedNameSpecifier *qualifier, DeclarationName name,
1369     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1370     unsigned knownArity) {
1371   if (qualifier) mangleUnresolvedPrefix(qualifier);
1372   switch (name.getNameKind()) {
1373     // <base-unresolved-name> ::= <simple-id>
1374     case DeclarationName::Identifier:
1375       mangleSourceName(name.getAsIdentifierInfo());
1376       break;
1377     // <base-unresolved-name> ::= dn <destructor-name>
1378     case DeclarationName::CXXDestructorName:
1379       Out << "dn";
1380       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1381       break;
1382     // <base-unresolved-name> ::= on <operator-name>
1383     case DeclarationName::CXXConversionFunctionName:
1384     case DeclarationName::CXXLiteralOperatorName:
1385     case DeclarationName::CXXOperatorName:
1386       Out << "on";
1387       mangleOperatorName(name, knownArity);
1388       break;
1389     case DeclarationName::CXXConstructorName:
1390       llvm_unreachable("Can't mangle a constructor name!");
1391     case DeclarationName::CXXUsingDirective:
1392       llvm_unreachable("Can't mangle a using directive name!");
1393     case DeclarationName::CXXDeductionGuideName:
1394       llvm_unreachable("Can't mangle a deduction guide name!");
1395     case DeclarationName::ObjCMultiArgSelector:
1396     case DeclarationName::ObjCOneArgSelector:
1397     case DeclarationName::ObjCZeroArgSelector:
1398       llvm_unreachable("Can't mangle Objective-C selector names here!");
1399   }
1400 
1401   // The <simple-id> and on <operator-name> productions end in an optional
1402   // <template-args>.
1403   if (TemplateArgs)
1404     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1405 }
1406 
1407 void CXXNameMangler::mangleUnqualifiedName(
1408     GlobalDecl GD, DeclarationName Name, const DeclContext *DC,
1409     unsigned KnownArity, const AbiTagList *AdditionalAbiTags) {
1410   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1411   //  <unqualified-name> ::= [<module-name>] <operator-name>
1412   //                     ::= <ctor-dtor-name>
1413   //                     ::= [<module-name>] <source-name>
1414   //                     ::= [<module-name>] DC <source-name>* E
1415 
1416   if (ND && DC && DC->isFileContext())
1417     mangleModuleName(ND);
1418 
1419   unsigned Arity = KnownArity;
1420   switch (Name.getNameKind()) {
1421   case DeclarationName::Identifier: {
1422     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1423 
1424     // We mangle decomposition declarations as the names of their bindings.
1425     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1426       // FIXME: Non-standard mangling for decomposition declarations:
1427       //
1428       //  <unqualified-name> ::= DC <source-name>* E
1429       //
1430       // Proposed on cxx-abi-dev on 2016-08-12
1431       Out << "DC";
1432       for (auto *BD : DD->bindings())
1433         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1434       Out << 'E';
1435       writeAbiTags(ND, AdditionalAbiTags);
1436       break;
1437     }
1438 
1439     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1440       // We follow MSVC in mangling GUID declarations as if they were variables
1441       // with a particular reserved name. Continue the pretense here.
1442       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1443       llvm::raw_svector_ostream GUIDOS(GUID);
1444       Context.mangleMSGuidDecl(GD, GUIDOS);
1445       Out << GUID.size() << GUID;
1446       break;
1447     }
1448 
1449     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1450       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1451       Out << "TA";
1452       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1453                                TPO->getValue(), /*TopLevel=*/true);
1454       break;
1455     }
1456 
1457     if (II) {
1458       // Match GCC's naming convention for internal linkage symbols, for
1459       // symbols that are not actually visible outside of this TU. GCC
1460       // distinguishes between internal and external linkage symbols in
1461       // its mangling, to support cases like this that were valid C++ prior
1462       // to DR426:
1463       //
1464       //   void test() { extern void foo(); }
1465       //   static void foo();
1466       //
1467       // Don't bother with the L marker for names in anonymous namespaces; the
1468       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1469       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1470       // implying internal linkage.
1471       if (Context.isInternalLinkageDecl(ND))
1472         Out << 'L';
1473 
1474       auto *FD = dyn_cast<FunctionDecl>(ND);
1475       bool IsRegCall = FD &&
1476                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1477                            clang::CC_X86RegCall;
1478       bool IsDeviceStub =
1479           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1480           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1481       if (IsDeviceStub)
1482         mangleDeviceStubName(II);
1483       else if (IsRegCall)
1484         mangleRegCallName(II);
1485       else
1486         mangleSourceName(II);
1487 
1488       writeAbiTags(ND, AdditionalAbiTags);
1489       break;
1490     }
1491 
1492     // Otherwise, an anonymous entity.  We must have a declaration.
1493     assert(ND && "mangling empty name without declaration");
1494 
1495     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1496       if (NS->isAnonymousNamespace()) {
1497         // This is how gcc mangles these names.
1498         Out << "12_GLOBAL__N_1";
1499         break;
1500       }
1501     }
1502 
1503     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1504       // We must have an anonymous union or struct declaration.
1505       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1506 
1507       // Itanium C++ ABI 5.1.2:
1508       //
1509       //   For the purposes of mangling, the name of an anonymous union is
1510       //   considered to be the name of the first named data member found by a
1511       //   pre-order, depth-first, declaration-order walk of the data members of
1512       //   the anonymous union. If there is no such data member (i.e., if all of
1513       //   the data members in the union are unnamed), then there is no way for
1514       //   a program to refer to the anonymous union, and there is therefore no
1515       //   need to mangle its name.
1516       assert(RD->isAnonymousStructOrUnion()
1517              && "Expected anonymous struct or union!");
1518       const FieldDecl *FD = RD->findFirstNamedDataMember();
1519 
1520       // It's actually possible for various reasons for us to get here
1521       // with an empty anonymous struct / union.  Fortunately, it
1522       // doesn't really matter what name we generate.
1523       if (!FD) break;
1524       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1525 
1526       mangleSourceName(FD->getIdentifier());
1527       // Not emitting abi tags: internal name anyway.
1528       break;
1529     }
1530 
1531     // Class extensions have no name as a category, and it's possible
1532     // for them to be the semantic parent of certain declarations
1533     // (primarily, tag decls defined within declarations).  Such
1534     // declarations will always have internal linkage, so the name
1535     // doesn't really matter, but we shouldn't crash on them.  For
1536     // safety, just handle all ObjC containers here.
1537     if (isa<ObjCContainerDecl>(ND))
1538       break;
1539 
1540     // We must have an anonymous struct.
1541     const TagDecl *TD = cast<TagDecl>(ND);
1542     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1543       assert(TD->getDeclContext() == D->getDeclContext() &&
1544              "Typedef should not be in another decl context!");
1545       assert(D->getDeclName().getAsIdentifierInfo() &&
1546              "Typedef was not named!");
1547       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1548       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1549       // Explicit abi tags are still possible; take from underlying type, not
1550       // from typedef.
1551       writeAbiTags(TD, nullptr);
1552       break;
1553     }
1554 
1555     // <unnamed-type-name> ::= <closure-type-name>
1556     //
1557     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1558     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1559     //     # Parameter types or 'v' for 'void'.
1560     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1561       llvm::Optional<unsigned> DeviceNumber =
1562           Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1563 
1564       // If we have a device-number via the discriminator, use that to mangle
1565       // the lambda, otherwise use the typical lambda-mangling-number. In either
1566       // case, a '0' should be mangled as a normal unnamed class instead of as a
1567       // lambda.
1568       if (Record->isLambda() &&
1569           ((DeviceNumber && *DeviceNumber > 0) ||
1570            (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1571         assert(!AdditionalAbiTags &&
1572                "Lambda type cannot have additional abi tags");
1573         mangleLambda(Record);
1574         break;
1575       }
1576     }
1577 
1578     if (TD->isExternallyVisible()) {
1579       unsigned UnnamedMangle =
1580           getASTContext().getManglingNumber(TD, Context.isAux());
1581       Out << "Ut";
1582       if (UnnamedMangle > 1)
1583         Out << UnnamedMangle - 2;
1584       Out << '_';
1585       writeAbiTags(TD, AdditionalAbiTags);
1586       break;
1587     }
1588 
1589     // Get a unique id for the anonymous struct. If it is not a real output
1590     // ID doesn't matter so use fake one.
1591     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1592 
1593     // Mangle it as a source name in the form
1594     // [n] $_<id>
1595     // where n is the length of the string.
1596     SmallString<8> Str;
1597     Str += "$_";
1598     Str += llvm::utostr(AnonStructId);
1599 
1600     Out << Str.size();
1601     Out << Str;
1602     break;
1603   }
1604 
1605   case DeclarationName::ObjCZeroArgSelector:
1606   case DeclarationName::ObjCOneArgSelector:
1607   case DeclarationName::ObjCMultiArgSelector:
1608     llvm_unreachable("Can't mangle Objective-C selector names here!");
1609 
1610   case DeclarationName::CXXConstructorName: {
1611     const CXXRecordDecl *InheritedFrom = nullptr;
1612     TemplateName InheritedTemplateName;
1613     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1614     if (auto Inherited =
1615             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1616       InheritedFrom = Inherited.getConstructor()->getParent();
1617       InheritedTemplateName =
1618           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1619       InheritedTemplateArgs =
1620           Inherited.getConstructor()->getTemplateSpecializationArgs();
1621     }
1622 
1623     if (ND == Structor)
1624       // If the named decl is the C++ constructor we're mangling, use the type
1625       // we were given.
1626       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1627     else
1628       // Otherwise, use the complete constructor name. This is relevant if a
1629       // class with a constructor is declared within a constructor.
1630       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1631 
1632     // FIXME: The template arguments are part of the enclosing prefix or
1633     // nested-name, but it's more convenient to mangle them here.
1634     if (InheritedTemplateArgs)
1635       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1636 
1637     writeAbiTags(ND, AdditionalAbiTags);
1638     break;
1639   }
1640 
1641   case DeclarationName::CXXDestructorName:
1642     if (ND == Structor)
1643       // If the named decl is the C++ destructor we're mangling, use the type we
1644       // were given.
1645       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1646     else
1647       // Otherwise, use the complete destructor name. This is relevant if a
1648       // class with a destructor is declared within a destructor.
1649       mangleCXXDtorType(Dtor_Complete);
1650     writeAbiTags(ND, AdditionalAbiTags);
1651     break;
1652 
1653   case DeclarationName::CXXOperatorName:
1654     if (ND && Arity == UnknownArity) {
1655       Arity = cast<FunctionDecl>(ND)->getNumParams();
1656 
1657       // If we have a member function, we need to include the 'this' pointer.
1658       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1659         if (!MD->isStatic())
1660           Arity++;
1661     }
1662     LLVM_FALLTHROUGH;
1663   case DeclarationName::CXXConversionFunctionName:
1664   case DeclarationName::CXXLiteralOperatorName:
1665     mangleOperatorName(Name, Arity);
1666     writeAbiTags(ND, AdditionalAbiTags);
1667     break;
1668 
1669   case DeclarationName::CXXDeductionGuideName:
1670     llvm_unreachable("Can't mangle a deduction guide name!");
1671 
1672   case DeclarationName::CXXUsingDirective:
1673     llvm_unreachable("Can't mangle a using directive name!");
1674   }
1675 }
1676 
1677 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1678   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1679   // <number> ::= [n] <non-negative decimal integer>
1680   // <identifier> ::= <unqualified source code identifier>
1681   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1682       << II->getName();
1683 }
1684 
1685 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1686   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1687   // <number> ::= [n] <non-negative decimal integer>
1688   // <identifier> ::= <unqualified source code identifier>
1689   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1690       << II->getName();
1691 }
1692 
1693 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1694   // <source-name> ::= <positive length number> <identifier>
1695   // <number> ::= [n] <non-negative decimal integer>
1696   // <identifier> ::= <unqualified source code identifier>
1697   Out << II->getLength() << II->getName();
1698 }
1699 
1700 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1701                                       const DeclContext *DC,
1702                                       const AbiTagList *AdditionalAbiTags,
1703                                       bool NoFunction) {
1704   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1705   // <nested-name>
1706   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1707   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1708   //       <template-args> E
1709 
1710   Out << 'N';
1711   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1712     Qualifiers MethodQuals = Method->getMethodQualifiers();
1713     // We do not consider restrict a distinguishing attribute for overloading
1714     // purposes so we must not mangle it.
1715     MethodQuals.removeRestrict();
1716     mangleQualifiers(MethodQuals);
1717     mangleRefQualifier(Method->getRefQualifier());
1718   }
1719 
1720   // Check if we have a template.
1721   const TemplateArgumentList *TemplateArgs = nullptr;
1722   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1723     mangleTemplatePrefix(TD, NoFunction);
1724     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1725   } else {
1726     manglePrefix(DC, NoFunction);
1727     mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1728   }
1729 
1730   Out << 'E';
1731 }
1732 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1733                                       const TemplateArgument *TemplateArgs,
1734                                       unsigned NumTemplateArgs) {
1735   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1736 
1737   Out << 'N';
1738 
1739   mangleTemplatePrefix(TD);
1740   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1741 
1742   Out << 'E';
1743 }
1744 
1745 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1746     GlobalDecl GD, const NamedDecl *PrefixND,
1747     const AbiTagList *AdditionalAbiTags) {
1748   // A <closure-prefix> represents a variable or field, not a regular
1749   // DeclContext, so needs special handling. In this case we're mangling a
1750   // limited form of <nested-name>:
1751   //
1752   // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1753 
1754   Out << 'N';
1755 
1756   mangleClosurePrefix(PrefixND);
1757   mangleUnqualifiedName(GD, nullptr, AdditionalAbiTags);
1758 
1759   Out << 'E';
1760 }
1761 
1762 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1763   GlobalDecl GD;
1764   // The Itanium spec says:
1765   // For entities in constructors and destructors, the mangling of the
1766   // complete object constructor or destructor is used as the base function
1767   // name, i.e. the C1 or D1 version.
1768   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1769     GD = GlobalDecl(CD, Ctor_Complete);
1770   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1771     GD = GlobalDecl(DD, Dtor_Complete);
1772   else
1773     GD = GlobalDecl(cast<FunctionDecl>(DC));
1774   return GD;
1775 }
1776 
1777 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1778                                      const AbiTagList *AdditionalAbiTags) {
1779   const Decl *D = GD.getDecl();
1780   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1781   //              := Z <function encoding> E s [<discriminator>]
1782   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1783   //                 _ <entity name>
1784   // <discriminator> := _ <non-negative number>
1785   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1786   const RecordDecl *RD = GetLocalClassDecl(D);
1787   const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D);
1788 
1789   Out << 'Z';
1790 
1791   {
1792     AbiTagState LocalAbiTags(AbiTags);
1793 
1794     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1795       mangleObjCMethodName(MD);
1796     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1797       mangleBlockForPrefix(BD);
1798     else
1799       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1800 
1801     // Implicit ABI tags (from namespace) are not available in the following
1802     // entity; reset to actually emitted tags, which are available.
1803     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1804   }
1805 
1806   Out << 'E';
1807 
1808   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1809   // be a bug that is fixed in trunk.
1810 
1811   if (RD) {
1812     // The parameter number is omitted for the last parameter, 0 for the
1813     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1814     // <entity name> will of course contain a <closure-type-name>: Its
1815     // numbering will be local to the particular argument in which it appears
1816     // -- other default arguments do not affect its encoding.
1817     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1818     if (CXXRD && CXXRD->isLambda()) {
1819       if (const ParmVarDecl *Parm
1820               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1821         if (const FunctionDecl *Func
1822               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1823           Out << 'd';
1824           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1825           if (Num > 1)
1826             mangleNumber(Num - 2);
1827           Out << '_';
1828         }
1829       }
1830     }
1831 
1832     // Mangle the name relative to the closest enclosing function.
1833     // equality ok because RD derived from ND above
1834     if (D == RD)  {
1835       mangleUnqualifiedName(RD, DC, AdditionalAbiTags);
1836     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1837       if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1838         mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1839       else
1840         manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/);
1841       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1842       mangleUnqualifiedBlock(BD);
1843     } else {
1844       const NamedDecl *ND = cast<NamedDecl>(D);
1845       mangleNestedName(GD, Context.getEffectiveDeclContext(ND),
1846                        AdditionalAbiTags, true /*NoFunction*/);
1847     }
1848   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1849     // Mangle a block in a default parameter; see above explanation for
1850     // lambdas.
1851     if (const ParmVarDecl *Parm
1852             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1853       if (const FunctionDecl *Func
1854             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1855         Out << 'd';
1856         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1857         if (Num > 1)
1858           mangleNumber(Num - 2);
1859         Out << '_';
1860       }
1861     }
1862 
1863     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1864     mangleUnqualifiedBlock(BD);
1865   } else {
1866     mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1867   }
1868 
1869   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1870     unsigned disc;
1871     if (Context.getNextDiscriminator(ND, disc)) {
1872       if (disc < 10)
1873         Out << '_' << disc;
1874       else
1875         Out << "__" << disc << '_';
1876     }
1877   }
1878 }
1879 
1880 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1881   if (GetLocalClassDecl(Block)) {
1882     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1883     return;
1884   }
1885   const DeclContext *DC = Context.getEffectiveDeclContext(Block);
1886   if (isLocalContainerContext(DC)) {
1887     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1888     return;
1889   }
1890   if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1891     mangleClosurePrefix(PrefixND);
1892   else
1893     manglePrefix(DC);
1894   mangleUnqualifiedBlock(Block);
1895 }
1896 
1897 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1898   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1899   // <data-member-prefix> now, with no substitutions and no <template-args>.
1900   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1901     if (getASTContext().getLangOpts().getClangABICompat() <=
1902             LangOptions::ClangABI::Ver12 &&
1903         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1904         Context->getDeclContext()->isRecord()) {
1905       const auto *ND = cast<NamedDecl>(Context);
1906       if (ND->getIdentifier()) {
1907         mangleSourceNameWithAbiTags(ND);
1908         Out << 'M';
1909       }
1910     }
1911   }
1912 
1913   // If we have a block mangling number, use it.
1914   unsigned Number = Block->getBlockManglingNumber();
1915   // Otherwise, just make up a number. It doesn't matter what it is because
1916   // the symbol in question isn't externally visible.
1917   if (!Number)
1918     Number = Context.getBlockId(Block, false);
1919   else {
1920     // Stored mangling numbers are 1-based.
1921     --Number;
1922   }
1923   Out << "Ub";
1924   if (Number > 0)
1925     Out << Number - 1;
1926   Out << '_';
1927 }
1928 
1929 // <template-param-decl>
1930 //   ::= Ty                              # template type parameter
1931 //   ::= Tn <type>                       # template non-type parameter
1932 //   ::= Tt <template-param-decl>* E     # template template parameter
1933 //   ::= Tp <template-param-decl>        # template parameter pack
1934 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1935   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1936     if (Ty->isParameterPack())
1937       Out << "Tp";
1938     Out << "Ty";
1939   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1940     if (Tn->isExpandedParameterPack()) {
1941       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1942         Out << "Tn";
1943         mangleType(Tn->getExpansionType(I));
1944       }
1945     } else {
1946       QualType T = Tn->getType();
1947       if (Tn->isParameterPack()) {
1948         Out << "Tp";
1949         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1950           T = PackExpansion->getPattern();
1951       }
1952       Out << "Tn";
1953       mangleType(T);
1954     }
1955   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1956     if (Tt->isExpandedParameterPack()) {
1957       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1958            ++I) {
1959         Out << "Tt";
1960         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1961           mangleTemplateParamDecl(Param);
1962         Out << "E";
1963       }
1964     } else {
1965       if (Tt->isParameterPack())
1966         Out << "Tp";
1967       Out << "Tt";
1968       for (auto *Param : *Tt->getTemplateParameters())
1969         mangleTemplateParamDecl(Param);
1970       Out << "E";
1971     }
1972   }
1973 }
1974 
1975 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1976   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1977   // <data-member-prefix> now, with no substitutions.
1978   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1979     if (getASTContext().getLangOpts().getClangABICompat() <=
1980             LangOptions::ClangABI::Ver12 &&
1981         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1982         !isa<ParmVarDecl>(Context)) {
1983       if (const IdentifierInfo *Name
1984             = cast<NamedDecl>(Context)->getIdentifier()) {
1985         mangleSourceName(Name);
1986         const TemplateArgumentList *TemplateArgs = nullptr;
1987         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1988           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1989         Out << 'M';
1990       }
1991     }
1992   }
1993 
1994   Out << "Ul";
1995   mangleLambdaSig(Lambda);
1996   Out << "E";
1997 
1998   // The number is omitted for the first closure type with a given
1999   // <lambda-sig> in a given context; it is n-2 for the nth closure type
2000   // (in lexical order) with that same <lambda-sig> and context.
2001   //
2002   // The AST keeps track of the number for us.
2003   //
2004   // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
2005   // and host-side compilations, an extra device mangle context may be created
2006   // if the host-side CXX ABI has different numbering for lambda. In such case,
2007   // if the mangle context is that device-side one, use the device-side lambda
2008   // mangling number for this lambda.
2009   llvm::Optional<unsigned> DeviceNumber =
2010       Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
2011   unsigned Number =
2012       DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
2013 
2014   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
2015   if (Number > 1)
2016     mangleNumber(Number - 2);
2017   Out << '_';
2018 }
2019 
2020 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
2021   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
2022     mangleTemplateParamDecl(D);
2023   auto *Proto =
2024       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
2025   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
2026                          Lambda->getLambdaStaticInvoker());
2027 }
2028 
2029 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
2030   switch (qualifier->getKind()) {
2031   case NestedNameSpecifier::Global:
2032     // nothing
2033     return;
2034 
2035   case NestedNameSpecifier::Super:
2036     llvm_unreachable("Can't mangle __super specifier");
2037 
2038   case NestedNameSpecifier::Namespace:
2039     mangleName(qualifier->getAsNamespace());
2040     return;
2041 
2042   case NestedNameSpecifier::NamespaceAlias:
2043     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
2044     return;
2045 
2046   case NestedNameSpecifier::TypeSpec:
2047   case NestedNameSpecifier::TypeSpecWithTemplate:
2048     manglePrefix(QualType(qualifier->getAsType(), 0));
2049     return;
2050 
2051   case NestedNameSpecifier::Identifier:
2052     // Clang 14 and before did not consider this substitutable.
2053     bool Clang14Compat = getASTContext().getLangOpts().getClangABICompat() <=
2054                          LangOptions::ClangABI::Ver14;
2055     if (!Clang14Compat && mangleSubstitution(qualifier))
2056       return;
2057 
2058     // Member expressions can have these without prefixes, but that
2059     // should end up in mangleUnresolvedPrefix instead.
2060     assert(qualifier->getPrefix());
2061     manglePrefix(qualifier->getPrefix());
2062 
2063     mangleSourceName(qualifier->getAsIdentifier());
2064 
2065     if (!Clang14Compat)
2066       addSubstitution(qualifier);
2067     return;
2068   }
2069 
2070   llvm_unreachable("unexpected nested name specifier");
2071 }
2072 
2073 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2074   //  <prefix> ::= <prefix> <unqualified-name>
2075   //           ::= <template-prefix> <template-args>
2076   //           ::= <closure-prefix>
2077   //           ::= <template-param>
2078   //           ::= # empty
2079   //           ::= <substitution>
2080 
2081   assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl");
2082 
2083   if (DC->isTranslationUnit())
2084     return;
2085 
2086   if (NoFunction && isLocalContainerContext(DC))
2087     return;
2088 
2089   assert(!isLocalContainerContext(DC));
2090 
2091   const NamedDecl *ND = cast<NamedDecl>(DC);
2092   if (mangleSubstitution(ND))
2093     return;
2094 
2095   // Check if we have a template-prefix or a closure-prefix.
2096   const TemplateArgumentList *TemplateArgs = nullptr;
2097   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2098     mangleTemplatePrefix(TD);
2099     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2100   } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2101     mangleClosurePrefix(PrefixND, NoFunction);
2102     mangleUnqualifiedName(ND, nullptr, nullptr);
2103   } else {
2104     const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2105     manglePrefix(DC, NoFunction);
2106     mangleUnqualifiedName(ND, DC, nullptr);
2107   }
2108 
2109   addSubstitution(ND);
2110 }
2111 
2112 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2113   // <template-prefix> ::= <prefix> <template unqualified-name>
2114   //                   ::= <template-param>
2115   //                   ::= <substitution>
2116   if (TemplateDecl *TD = Template.getAsTemplateDecl())
2117     return mangleTemplatePrefix(TD);
2118 
2119   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2120   assert(Dependent && "unexpected template name kind");
2121 
2122   // Clang 11 and before mangled the substitution for a dependent template name
2123   // after already having emitted (a substitution for) the prefix.
2124   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2125                        LangOptions::ClangABI::Ver11;
2126   if (!Clang11Compat && mangleSubstitution(Template))
2127     return;
2128 
2129   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2130     manglePrefix(Qualifier);
2131 
2132   if (Clang11Compat && mangleSubstitution(Template))
2133     return;
2134 
2135   if (const IdentifierInfo *Id = Dependent->getIdentifier())
2136     mangleSourceName(Id);
2137   else
2138     mangleOperatorName(Dependent->getOperator(), UnknownArity);
2139 
2140   addSubstitution(Template);
2141 }
2142 
2143 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2144                                           bool NoFunction) {
2145   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2146   // <template-prefix> ::= <prefix> <template unqualified-name>
2147   //                   ::= <template-param>
2148   //                   ::= <substitution>
2149   // <template-template-param> ::= <template-param>
2150   //                               <substitution>
2151 
2152   if (mangleSubstitution(ND))
2153     return;
2154 
2155   // <template-template-param> ::= <template-param>
2156   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2157     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2158   } else {
2159     const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2160     manglePrefix(DC, NoFunction);
2161     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2162       mangleUnqualifiedName(GD, DC, nullptr);
2163     else
2164       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
2165                             nullptr);
2166   }
2167 
2168   addSubstitution(ND);
2169 }
2170 
2171 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2172   if (getASTContext().getLangOpts().getClangABICompat() <=
2173       LangOptions::ClangABI::Ver12)
2174     return nullptr;
2175 
2176   const NamedDecl *Context = nullptr;
2177   if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2178     Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2179   } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2180     if (RD->isLambda())
2181       Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2182   }
2183   if (!Context)
2184     return nullptr;
2185 
2186   // Only lambdas within the initializer of a non-local variable or non-static
2187   // data member get a <closure-prefix>.
2188   if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2189       isa<FieldDecl>(Context))
2190     return Context;
2191 
2192   return nullptr;
2193 }
2194 
2195 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2196   //  <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2197   //                   ::= <template-prefix> <template-args> M
2198   if (mangleSubstitution(ND))
2199     return;
2200 
2201   const TemplateArgumentList *TemplateArgs = nullptr;
2202   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2203     mangleTemplatePrefix(TD, NoFunction);
2204     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2205   } else {
2206     const auto *DC = Context.getEffectiveDeclContext(ND);
2207     manglePrefix(DC, NoFunction);
2208     mangleUnqualifiedName(ND, DC, nullptr);
2209   }
2210 
2211   Out << 'M';
2212 
2213   addSubstitution(ND);
2214 }
2215 
2216 /// Mangles a template name under the production <type>.  Required for
2217 /// template template arguments.
2218 ///   <type> ::= <class-enum-type>
2219 ///          ::= <template-param>
2220 ///          ::= <substitution>
2221 void CXXNameMangler::mangleType(TemplateName TN) {
2222   if (mangleSubstitution(TN))
2223     return;
2224 
2225   TemplateDecl *TD = nullptr;
2226 
2227   switch (TN.getKind()) {
2228   case TemplateName::QualifiedTemplate:
2229   case TemplateName::UsingTemplate:
2230   case TemplateName::Template:
2231     TD = TN.getAsTemplateDecl();
2232     goto HaveDecl;
2233 
2234   HaveDecl:
2235     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2236       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2237     else
2238       mangleName(TD);
2239     break;
2240 
2241   case TemplateName::OverloadedTemplate:
2242   case TemplateName::AssumedTemplate:
2243     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2244 
2245   case TemplateName::DependentTemplate: {
2246     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2247     assert(Dependent->isIdentifier());
2248 
2249     // <class-enum-type> ::= <name>
2250     // <name> ::= <nested-name>
2251     mangleUnresolvedPrefix(Dependent->getQualifier());
2252     mangleSourceName(Dependent->getIdentifier());
2253     break;
2254   }
2255 
2256   case TemplateName::SubstTemplateTemplateParm: {
2257     // Substituted template parameters are mangled as the substituted
2258     // template.  This will check for the substitution twice, which is
2259     // fine, but we have to return early so that we don't try to *add*
2260     // the substitution twice.
2261     SubstTemplateTemplateParmStorage *subst
2262       = TN.getAsSubstTemplateTemplateParm();
2263     mangleType(subst->getReplacement());
2264     return;
2265   }
2266 
2267   case TemplateName::SubstTemplateTemplateParmPack: {
2268     // FIXME: not clear how to mangle this!
2269     // template <template <class> class T...> class A {
2270     //   template <template <class> class U...> void foo(B<T,U> x...);
2271     // };
2272     Out << "_SUBSTPACK_";
2273     break;
2274   }
2275   }
2276 
2277   addSubstitution(TN);
2278 }
2279 
2280 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2281                                                     StringRef Prefix) {
2282   // Only certain other types are valid as prefixes;  enumerate them.
2283   switch (Ty->getTypeClass()) {
2284   case Type::Builtin:
2285   case Type::Complex:
2286   case Type::Adjusted:
2287   case Type::Decayed:
2288   case Type::Pointer:
2289   case Type::BlockPointer:
2290   case Type::LValueReference:
2291   case Type::RValueReference:
2292   case Type::MemberPointer:
2293   case Type::ConstantArray:
2294   case Type::IncompleteArray:
2295   case Type::VariableArray:
2296   case Type::DependentSizedArray:
2297   case Type::DependentAddressSpace:
2298   case Type::DependentVector:
2299   case Type::DependentSizedExtVector:
2300   case Type::Vector:
2301   case Type::ExtVector:
2302   case Type::ConstantMatrix:
2303   case Type::DependentSizedMatrix:
2304   case Type::FunctionProto:
2305   case Type::FunctionNoProto:
2306   case Type::Paren:
2307   case Type::Attributed:
2308   case Type::BTFTagAttributed:
2309   case Type::Auto:
2310   case Type::DeducedTemplateSpecialization:
2311   case Type::PackExpansion:
2312   case Type::ObjCObject:
2313   case Type::ObjCInterface:
2314   case Type::ObjCObjectPointer:
2315   case Type::ObjCTypeParam:
2316   case Type::Atomic:
2317   case Type::Pipe:
2318   case Type::MacroQualified:
2319   case Type::BitInt:
2320   case Type::DependentBitInt:
2321     llvm_unreachable("type is illegal as a nested name specifier");
2322 
2323   case Type::SubstTemplateTypeParmPack:
2324     // FIXME: not clear how to mangle this!
2325     // template <class T...> class A {
2326     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2327     // };
2328     Out << "_SUBSTPACK_";
2329     break;
2330 
2331   // <unresolved-type> ::= <template-param>
2332   //                   ::= <decltype>
2333   //                   ::= <template-template-param> <template-args>
2334   // (this last is not official yet)
2335   case Type::TypeOfExpr:
2336   case Type::TypeOf:
2337   case Type::Decltype:
2338   case Type::TemplateTypeParm:
2339   case Type::UnaryTransform:
2340   case Type::SubstTemplateTypeParm:
2341   unresolvedType:
2342     // Some callers want a prefix before the mangled type.
2343     Out << Prefix;
2344 
2345     // This seems to do everything we want.  It's not really
2346     // sanctioned for a substituted template parameter, though.
2347     mangleType(Ty);
2348 
2349     // We never want to print 'E' directly after an unresolved-type,
2350     // so we return directly.
2351     return true;
2352 
2353   case Type::Typedef:
2354     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2355     break;
2356 
2357   case Type::UnresolvedUsing:
2358     mangleSourceNameWithAbiTags(
2359         cast<UnresolvedUsingType>(Ty)->getDecl());
2360     break;
2361 
2362   case Type::Enum:
2363   case Type::Record:
2364     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2365     break;
2366 
2367   case Type::TemplateSpecialization: {
2368     const TemplateSpecializationType *TST =
2369         cast<TemplateSpecializationType>(Ty);
2370     TemplateName TN = TST->getTemplateName();
2371     switch (TN.getKind()) {
2372     case TemplateName::Template:
2373     case TemplateName::QualifiedTemplate: {
2374       TemplateDecl *TD = TN.getAsTemplateDecl();
2375 
2376       // If the base is a template template parameter, this is an
2377       // unresolved type.
2378       assert(TD && "no template for template specialization type");
2379       if (isa<TemplateTemplateParmDecl>(TD))
2380         goto unresolvedType;
2381 
2382       mangleSourceNameWithAbiTags(TD);
2383       break;
2384     }
2385 
2386     case TemplateName::OverloadedTemplate:
2387     case TemplateName::AssumedTemplate:
2388     case TemplateName::DependentTemplate:
2389       llvm_unreachable("invalid base for a template specialization type");
2390 
2391     case TemplateName::SubstTemplateTemplateParm: {
2392       SubstTemplateTemplateParmStorage *subst =
2393           TN.getAsSubstTemplateTemplateParm();
2394       mangleExistingSubstitution(subst->getReplacement());
2395       break;
2396     }
2397 
2398     case TemplateName::SubstTemplateTemplateParmPack: {
2399       // FIXME: not clear how to mangle this!
2400       // template <template <class U> class T...> class A {
2401       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2402       // };
2403       Out << "_SUBSTPACK_";
2404       break;
2405     }
2406     case TemplateName::UsingTemplate: {
2407       TemplateDecl *TD = TN.getAsTemplateDecl();
2408       assert(TD && !isa<TemplateTemplateParmDecl>(TD));
2409       mangleSourceNameWithAbiTags(TD);
2410       break;
2411     }
2412     }
2413 
2414     // Note: we don't pass in the template name here. We are mangling the
2415     // original source-level template arguments, so we shouldn't consider
2416     // conversions to the corresponding template parameter.
2417     // FIXME: Other compilers mangle partially-resolved template arguments in
2418     // unresolved-qualifier-levels.
2419     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2420     break;
2421   }
2422 
2423   case Type::InjectedClassName:
2424     mangleSourceNameWithAbiTags(
2425         cast<InjectedClassNameType>(Ty)->getDecl());
2426     break;
2427 
2428   case Type::DependentName:
2429     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2430     break;
2431 
2432   case Type::DependentTemplateSpecialization: {
2433     const DependentTemplateSpecializationType *DTST =
2434         cast<DependentTemplateSpecializationType>(Ty);
2435     TemplateName Template = getASTContext().getDependentTemplateName(
2436         DTST->getQualifier(), DTST->getIdentifier());
2437     mangleSourceName(DTST->getIdentifier());
2438     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2439     break;
2440   }
2441 
2442   case Type::Using:
2443     return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(),
2444                                           Prefix);
2445   case Type::Elaborated:
2446     return mangleUnresolvedTypeOrSimpleId(
2447         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2448   }
2449 
2450   return false;
2451 }
2452 
2453 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2454   switch (Name.getNameKind()) {
2455   case DeclarationName::CXXConstructorName:
2456   case DeclarationName::CXXDestructorName:
2457   case DeclarationName::CXXDeductionGuideName:
2458   case DeclarationName::CXXUsingDirective:
2459   case DeclarationName::Identifier:
2460   case DeclarationName::ObjCMultiArgSelector:
2461   case DeclarationName::ObjCOneArgSelector:
2462   case DeclarationName::ObjCZeroArgSelector:
2463     llvm_unreachable("Not an operator name");
2464 
2465   case DeclarationName::CXXConversionFunctionName:
2466     // <operator-name> ::= cv <type>    # (cast)
2467     Out << "cv";
2468     mangleType(Name.getCXXNameType());
2469     break;
2470 
2471   case DeclarationName::CXXLiteralOperatorName:
2472     Out << "li";
2473     mangleSourceName(Name.getCXXLiteralIdentifier());
2474     return;
2475 
2476   case DeclarationName::CXXOperatorName:
2477     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2478     break;
2479   }
2480 }
2481 
2482 void
2483 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2484   switch (OO) {
2485   // <operator-name> ::= nw     # new
2486   case OO_New: Out << "nw"; break;
2487   //              ::= na        # new[]
2488   case OO_Array_New: Out << "na"; break;
2489   //              ::= dl        # delete
2490   case OO_Delete: Out << "dl"; break;
2491   //              ::= da        # delete[]
2492   case OO_Array_Delete: Out << "da"; break;
2493   //              ::= ps        # + (unary)
2494   //              ::= pl        # + (binary or unknown)
2495   case OO_Plus:
2496     Out << (Arity == 1? "ps" : "pl"); break;
2497   //              ::= ng        # - (unary)
2498   //              ::= mi        # - (binary or unknown)
2499   case OO_Minus:
2500     Out << (Arity == 1? "ng" : "mi"); break;
2501   //              ::= ad        # & (unary)
2502   //              ::= an        # & (binary or unknown)
2503   case OO_Amp:
2504     Out << (Arity == 1? "ad" : "an"); break;
2505   //              ::= de        # * (unary)
2506   //              ::= ml        # * (binary or unknown)
2507   case OO_Star:
2508     // Use binary when unknown.
2509     Out << (Arity == 1? "de" : "ml"); break;
2510   //              ::= co        # ~
2511   case OO_Tilde: Out << "co"; break;
2512   //              ::= dv        # /
2513   case OO_Slash: Out << "dv"; break;
2514   //              ::= rm        # %
2515   case OO_Percent: Out << "rm"; break;
2516   //              ::= or        # |
2517   case OO_Pipe: Out << "or"; break;
2518   //              ::= eo        # ^
2519   case OO_Caret: Out << "eo"; break;
2520   //              ::= aS        # =
2521   case OO_Equal: Out << "aS"; break;
2522   //              ::= pL        # +=
2523   case OO_PlusEqual: Out << "pL"; break;
2524   //              ::= mI        # -=
2525   case OO_MinusEqual: Out << "mI"; break;
2526   //              ::= mL        # *=
2527   case OO_StarEqual: Out << "mL"; break;
2528   //              ::= dV        # /=
2529   case OO_SlashEqual: Out << "dV"; break;
2530   //              ::= rM        # %=
2531   case OO_PercentEqual: Out << "rM"; break;
2532   //              ::= aN        # &=
2533   case OO_AmpEqual: Out << "aN"; break;
2534   //              ::= oR        # |=
2535   case OO_PipeEqual: Out << "oR"; break;
2536   //              ::= eO        # ^=
2537   case OO_CaretEqual: Out << "eO"; break;
2538   //              ::= ls        # <<
2539   case OO_LessLess: Out << "ls"; break;
2540   //              ::= rs        # >>
2541   case OO_GreaterGreater: Out << "rs"; break;
2542   //              ::= lS        # <<=
2543   case OO_LessLessEqual: Out << "lS"; break;
2544   //              ::= rS        # >>=
2545   case OO_GreaterGreaterEqual: Out << "rS"; break;
2546   //              ::= eq        # ==
2547   case OO_EqualEqual: Out << "eq"; break;
2548   //              ::= ne        # !=
2549   case OO_ExclaimEqual: Out << "ne"; break;
2550   //              ::= lt        # <
2551   case OO_Less: Out << "lt"; break;
2552   //              ::= gt        # >
2553   case OO_Greater: Out << "gt"; break;
2554   //              ::= le        # <=
2555   case OO_LessEqual: Out << "le"; break;
2556   //              ::= ge        # >=
2557   case OO_GreaterEqual: Out << "ge"; break;
2558   //              ::= nt        # !
2559   case OO_Exclaim: Out << "nt"; break;
2560   //              ::= aa        # &&
2561   case OO_AmpAmp: Out << "aa"; break;
2562   //              ::= oo        # ||
2563   case OO_PipePipe: Out << "oo"; break;
2564   //              ::= pp        # ++
2565   case OO_PlusPlus: Out << "pp"; break;
2566   //              ::= mm        # --
2567   case OO_MinusMinus: Out << "mm"; break;
2568   //              ::= cm        # ,
2569   case OO_Comma: Out << "cm"; break;
2570   //              ::= pm        # ->*
2571   case OO_ArrowStar: Out << "pm"; break;
2572   //              ::= pt        # ->
2573   case OO_Arrow: Out << "pt"; break;
2574   //              ::= cl        # ()
2575   case OO_Call: Out << "cl"; break;
2576   //              ::= ix        # []
2577   case OO_Subscript: Out << "ix"; break;
2578 
2579   //              ::= qu        # ?
2580   // The conditional operator can't be overloaded, but we still handle it when
2581   // mangling expressions.
2582   case OO_Conditional: Out << "qu"; break;
2583   // Proposal on cxx-abi-dev, 2015-10-21.
2584   //              ::= aw        # co_await
2585   case OO_Coawait: Out << "aw"; break;
2586   // Proposed in cxx-abi github issue 43.
2587   //              ::= ss        # <=>
2588   case OO_Spaceship: Out << "ss"; break;
2589 
2590   case OO_None:
2591   case NUM_OVERLOADED_OPERATORS:
2592     llvm_unreachable("Not an overloaded operator");
2593   }
2594 }
2595 
2596 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2597   // Vendor qualifiers come first and if they are order-insensitive they must
2598   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2599 
2600   // <type> ::= U <addrspace-expr>
2601   if (DAST) {
2602     Out << "U2ASI";
2603     mangleExpression(DAST->getAddrSpaceExpr());
2604     Out << "E";
2605   }
2606 
2607   // Address space qualifiers start with an ordinary letter.
2608   if (Quals.hasAddressSpace()) {
2609     // Address space extension:
2610     //
2611     //   <type> ::= U <target-addrspace>
2612     //   <type> ::= U <OpenCL-addrspace>
2613     //   <type> ::= U <CUDA-addrspace>
2614 
2615     SmallString<64> ASString;
2616     LangAS AS = Quals.getAddressSpace();
2617 
2618     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2619       //  <target-addrspace> ::= "AS" <address-space-number>
2620       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2621       if (TargetAS != 0 ||
2622           Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2623         ASString = "AS" + llvm::utostr(TargetAS);
2624     } else {
2625       switch (AS) {
2626       default: llvm_unreachable("Not a language specific address space");
2627       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2628       //                                "private"| "generic" | "device" |
2629       //                                "host" ]
2630       case LangAS::opencl_global:
2631         ASString = "CLglobal";
2632         break;
2633       case LangAS::opencl_global_device:
2634         ASString = "CLdevice";
2635         break;
2636       case LangAS::opencl_global_host:
2637         ASString = "CLhost";
2638         break;
2639       case LangAS::opencl_local:
2640         ASString = "CLlocal";
2641         break;
2642       case LangAS::opencl_constant:
2643         ASString = "CLconstant";
2644         break;
2645       case LangAS::opencl_private:
2646         ASString = "CLprivate";
2647         break;
2648       case LangAS::opencl_generic:
2649         ASString = "CLgeneric";
2650         break;
2651       //  <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2652       //                              "device" | "host" ]
2653       case LangAS::sycl_global:
2654         ASString = "SYglobal";
2655         break;
2656       case LangAS::sycl_global_device:
2657         ASString = "SYdevice";
2658         break;
2659       case LangAS::sycl_global_host:
2660         ASString = "SYhost";
2661         break;
2662       case LangAS::sycl_local:
2663         ASString = "SYlocal";
2664         break;
2665       case LangAS::sycl_private:
2666         ASString = "SYprivate";
2667         break;
2668       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2669       case LangAS::cuda_device:
2670         ASString = "CUdevice";
2671         break;
2672       case LangAS::cuda_constant:
2673         ASString = "CUconstant";
2674         break;
2675       case LangAS::cuda_shared:
2676         ASString = "CUshared";
2677         break;
2678       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2679       case LangAS::ptr32_sptr:
2680         ASString = "ptr32_sptr";
2681         break;
2682       case LangAS::ptr32_uptr:
2683         ASString = "ptr32_uptr";
2684         break;
2685       case LangAS::ptr64:
2686         ASString = "ptr64";
2687         break;
2688       }
2689     }
2690     if (!ASString.empty())
2691       mangleVendorQualifier(ASString);
2692   }
2693 
2694   // The ARC ownership qualifiers start with underscores.
2695   // Objective-C ARC Extension:
2696   //
2697   //   <type> ::= U "__strong"
2698   //   <type> ::= U "__weak"
2699   //   <type> ::= U "__autoreleasing"
2700   //
2701   // Note: we emit __weak first to preserve the order as
2702   // required by the Itanium ABI.
2703   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2704     mangleVendorQualifier("__weak");
2705 
2706   // __unaligned (from -fms-extensions)
2707   if (Quals.hasUnaligned())
2708     mangleVendorQualifier("__unaligned");
2709 
2710   // Remaining ARC ownership qualifiers.
2711   switch (Quals.getObjCLifetime()) {
2712   case Qualifiers::OCL_None:
2713     break;
2714 
2715   case Qualifiers::OCL_Weak:
2716     // Do nothing as we already handled this case above.
2717     break;
2718 
2719   case Qualifiers::OCL_Strong:
2720     mangleVendorQualifier("__strong");
2721     break;
2722 
2723   case Qualifiers::OCL_Autoreleasing:
2724     mangleVendorQualifier("__autoreleasing");
2725     break;
2726 
2727   case Qualifiers::OCL_ExplicitNone:
2728     // The __unsafe_unretained qualifier is *not* mangled, so that
2729     // __unsafe_unretained types in ARC produce the same manglings as the
2730     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2731     // better ABI compatibility.
2732     //
2733     // It's safe to do this because unqualified 'id' won't show up
2734     // in any type signatures that need to be mangled.
2735     break;
2736   }
2737 
2738   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2739   if (Quals.hasRestrict())
2740     Out << 'r';
2741   if (Quals.hasVolatile())
2742     Out << 'V';
2743   if (Quals.hasConst())
2744     Out << 'K';
2745 }
2746 
2747 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2748   Out << 'U' << name.size() << name;
2749 }
2750 
2751 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2752   // <ref-qualifier> ::= R                # lvalue reference
2753   //                 ::= O                # rvalue-reference
2754   switch (RefQualifier) {
2755   case RQ_None:
2756     break;
2757 
2758   case RQ_LValue:
2759     Out << 'R';
2760     break;
2761 
2762   case RQ_RValue:
2763     Out << 'O';
2764     break;
2765   }
2766 }
2767 
2768 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2769   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2770 }
2771 
2772 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2773                                 ASTContext &Ctx) {
2774   if (Quals)
2775     return true;
2776   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2777     return true;
2778   if (Ty->isOpenCLSpecificType())
2779     return true;
2780   if (Ty->isBuiltinType())
2781     return false;
2782   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2783   // substitution candidates.
2784   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2785       isa<AutoType>(Ty))
2786     return false;
2787   // A placeholder type for class template deduction is substitutable with
2788   // its corresponding template name; this is handled specially when mangling
2789   // the type.
2790   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2791     if (DeducedTST->getDeducedType().isNull())
2792       return false;
2793   return true;
2794 }
2795 
2796 void CXXNameMangler::mangleType(QualType T) {
2797   // If our type is instantiation-dependent but not dependent, we mangle
2798   // it as it was written in the source, removing any top-level sugar.
2799   // Otherwise, use the canonical type.
2800   //
2801   // FIXME: This is an approximation of the instantiation-dependent name
2802   // mangling rules, since we should really be using the type as written and
2803   // augmented via semantic analysis (i.e., with implicit conversions and
2804   // default template arguments) for any instantiation-dependent type.
2805   // Unfortunately, that requires several changes to our AST:
2806   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2807   //     uniqued, so that we can handle substitutions properly
2808   //   - Default template arguments will need to be represented in the
2809   //     TemplateSpecializationType, since they need to be mangled even though
2810   //     they aren't written.
2811   //   - Conversions on non-type template arguments need to be expressed, since
2812   //     they can affect the mangling of sizeof/alignof.
2813   //
2814   // FIXME: This is wrong when mapping to the canonical type for a dependent
2815   // type discards instantiation-dependent portions of the type, such as for:
2816   //
2817   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2818   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2819   //
2820   // It's also wrong in the opposite direction when instantiation-dependent,
2821   // canonically-equivalent types differ in some irrelevant portion of inner
2822   // type sugar. In such cases, we fail to form correct substitutions, eg:
2823   //
2824   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2825   //
2826   // We should instead canonicalize the non-instantiation-dependent parts,
2827   // regardless of whether the type as a whole is dependent or instantiation
2828   // dependent.
2829   if (!T->isInstantiationDependentType() || T->isDependentType())
2830     T = T.getCanonicalType();
2831   else {
2832     // Desugar any types that are purely sugar.
2833     do {
2834       // Don't desugar through template specialization types that aren't
2835       // type aliases. We need to mangle the template arguments as written.
2836       if (const TemplateSpecializationType *TST
2837                                       = dyn_cast<TemplateSpecializationType>(T))
2838         if (!TST->isTypeAlias())
2839           break;
2840 
2841       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2842       // instantation-dependent qualifiers. See
2843       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2844 
2845       QualType Desugared
2846         = T.getSingleStepDesugaredType(Context.getASTContext());
2847       if (Desugared == T)
2848         break;
2849 
2850       T = Desugared;
2851     } while (true);
2852   }
2853   SplitQualType split = T.split();
2854   Qualifiers quals = split.Quals;
2855   const Type *ty = split.Ty;
2856 
2857   bool isSubstitutable =
2858     isTypeSubstitutable(quals, ty, Context.getASTContext());
2859   if (isSubstitutable && mangleSubstitution(T))
2860     return;
2861 
2862   // If we're mangling a qualified array type, push the qualifiers to
2863   // the element type.
2864   if (quals && isa<ArrayType>(T)) {
2865     ty = Context.getASTContext().getAsArrayType(T);
2866     quals = Qualifiers();
2867 
2868     // Note that we don't update T: we want to add the
2869     // substitution at the original type.
2870   }
2871 
2872   if (quals || ty->isDependentAddressSpaceType()) {
2873     if (const DependentAddressSpaceType *DAST =
2874         dyn_cast<DependentAddressSpaceType>(ty)) {
2875       SplitQualType splitDAST = DAST->getPointeeType().split();
2876       mangleQualifiers(splitDAST.Quals, DAST);
2877       mangleType(QualType(splitDAST.Ty, 0));
2878     } else {
2879       mangleQualifiers(quals);
2880 
2881       // Recurse:  even if the qualified type isn't yet substitutable,
2882       // the unqualified type might be.
2883       mangleType(QualType(ty, 0));
2884     }
2885   } else {
2886     switch (ty->getTypeClass()) {
2887 #define ABSTRACT_TYPE(CLASS, PARENT)
2888 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2889     case Type::CLASS: \
2890       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2891       return;
2892 #define TYPE(CLASS, PARENT) \
2893     case Type::CLASS: \
2894       mangleType(static_cast<const CLASS##Type*>(ty)); \
2895       break;
2896 #include "clang/AST/TypeNodes.inc"
2897     }
2898   }
2899 
2900   // Add the substitution.
2901   if (isSubstitutable)
2902     addSubstitution(T);
2903 }
2904 
2905 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2906   if (!mangleStandardSubstitution(ND))
2907     mangleName(ND);
2908 }
2909 
2910 void CXXNameMangler::mangleType(const BuiltinType *T) {
2911   //  <type>         ::= <builtin-type>
2912   //  <builtin-type> ::= v  # void
2913   //                 ::= w  # wchar_t
2914   //                 ::= b  # bool
2915   //                 ::= c  # char
2916   //                 ::= a  # signed char
2917   //                 ::= h  # unsigned char
2918   //                 ::= s  # short
2919   //                 ::= t  # unsigned short
2920   //                 ::= i  # int
2921   //                 ::= j  # unsigned int
2922   //                 ::= l  # long
2923   //                 ::= m  # unsigned long
2924   //                 ::= x  # long long, __int64
2925   //                 ::= y  # unsigned long long, __int64
2926   //                 ::= n  # __int128
2927   //                 ::= o  # unsigned __int128
2928   //                 ::= f  # float
2929   //                 ::= d  # double
2930   //                 ::= e  # long double, __float80
2931   //                 ::= g  # __float128
2932   //                 ::= g  # __ibm128
2933   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2934   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2935   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2936   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2937   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2938   //                 ::= Di # char32_t
2939   //                 ::= Ds # char16_t
2940   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2941   //                 ::= u <source-name>    # vendor extended type
2942   std::string type_name;
2943   switch (T->getKind()) {
2944   case BuiltinType::Void:
2945     Out << 'v';
2946     break;
2947   case BuiltinType::Bool:
2948     Out << 'b';
2949     break;
2950   case BuiltinType::Char_U:
2951   case BuiltinType::Char_S:
2952     Out << 'c';
2953     break;
2954   case BuiltinType::UChar:
2955     Out << 'h';
2956     break;
2957   case BuiltinType::UShort:
2958     Out << 't';
2959     break;
2960   case BuiltinType::UInt:
2961     Out << 'j';
2962     break;
2963   case BuiltinType::ULong:
2964     Out << 'm';
2965     break;
2966   case BuiltinType::ULongLong:
2967     Out << 'y';
2968     break;
2969   case BuiltinType::UInt128:
2970     Out << 'o';
2971     break;
2972   case BuiltinType::SChar:
2973     Out << 'a';
2974     break;
2975   case BuiltinType::WChar_S:
2976   case BuiltinType::WChar_U:
2977     Out << 'w';
2978     break;
2979   case BuiltinType::Char8:
2980     Out << "Du";
2981     break;
2982   case BuiltinType::Char16:
2983     Out << "Ds";
2984     break;
2985   case BuiltinType::Char32:
2986     Out << "Di";
2987     break;
2988   case BuiltinType::Short:
2989     Out << 's';
2990     break;
2991   case BuiltinType::Int:
2992     Out << 'i';
2993     break;
2994   case BuiltinType::Long:
2995     Out << 'l';
2996     break;
2997   case BuiltinType::LongLong:
2998     Out << 'x';
2999     break;
3000   case BuiltinType::Int128:
3001     Out << 'n';
3002     break;
3003   case BuiltinType::Float16:
3004     Out << "DF16_";
3005     break;
3006   case BuiltinType::ShortAccum:
3007   case BuiltinType::Accum:
3008   case BuiltinType::LongAccum:
3009   case BuiltinType::UShortAccum:
3010   case BuiltinType::UAccum:
3011   case BuiltinType::ULongAccum:
3012   case BuiltinType::ShortFract:
3013   case BuiltinType::Fract:
3014   case BuiltinType::LongFract:
3015   case BuiltinType::UShortFract:
3016   case BuiltinType::UFract:
3017   case BuiltinType::ULongFract:
3018   case BuiltinType::SatShortAccum:
3019   case BuiltinType::SatAccum:
3020   case BuiltinType::SatLongAccum:
3021   case BuiltinType::SatUShortAccum:
3022   case BuiltinType::SatUAccum:
3023   case BuiltinType::SatULongAccum:
3024   case BuiltinType::SatShortFract:
3025   case BuiltinType::SatFract:
3026   case BuiltinType::SatLongFract:
3027   case BuiltinType::SatUShortFract:
3028   case BuiltinType::SatUFract:
3029   case BuiltinType::SatULongFract:
3030     llvm_unreachable("Fixed point types are disabled for c++");
3031   case BuiltinType::Half:
3032     Out << "Dh";
3033     break;
3034   case BuiltinType::Float:
3035     Out << 'f';
3036     break;
3037   case BuiltinType::Double:
3038     Out << 'd';
3039     break;
3040   case BuiltinType::LongDouble: {
3041     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
3042                                    getASTContext().getLangOpts().OpenMPIsDevice
3043                                ? getASTContext().getAuxTargetInfo()
3044                                : &getASTContext().getTargetInfo();
3045     Out << TI->getLongDoubleMangling();
3046     break;
3047   }
3048   case BuiltinType::Float128: {
3049     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
3050                                    getASTContext().getLangOpts().OpenMPIsDevice
3051                                ? getASTContext().getAuxTargetInfo()
3052                                : &getASTContext().getTargetInfo();
3053     Out << TI->getFloat128Mangling();
3054     break;
3055   }
3056   case BuiltinType::BFloat16: {
3057     const TargetInfo *TI = &getASTContext().getTargetInfo();
3058     Out << TI->getBFloat16Mangling();
3059     break;
3060   }
3061   case BuiltinType::Ibm128: {
3062     const TargetInfo *TI = &getASTContext().getTargetInfo();
3063     Out << TI->getIbm128Mangling();
3064     break;
3065   }
3066   case BuiltinType::NullPtr:
3067     Out << "Dn";
3068     break;
3069 
3070 #define BUILTIN_TYPE(Id, SingletonId)
3071 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3072   case BuiltinType::Id:
3073 #include "clang/AST/BuiltinTypes.def"
3074   case BuiltinType::Dependent:
3075     if (!NullOut)
3076       llvm_unreachable("mangling a placeholder type");
3077     break;
3078   case BuiltinType::ObjCId:
3079     Out << "11objc_object";
3080     break;
3081   case BuiltinType::ObjCClass:
3082     Out << "10objc_class";
3083     break;
3084   case BuiltinType::ObjCSel:
3085     Out << "13objc_selector";
3086     break;
3087 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3088   case BuiltinType::Id: \
3089     type_name = "ocl_" #ImgType "_" #Suffix; \
3090     Out << type_name.size() << type_name; \
3091     break;
3092 #include "clang/Basic/OpenCLImageTypes.def"
3093   case BuiltinType::OCLSampler:
3094     Out << "11ocl_sampler";
3095     break;
3096   case BuiltinType::OCLEvent:
3097     Out << "9ocl_event";
3098     break;
3099   case BuiltinType::OCLClkEvent:
3100     Out << "12ocl_clkevent";
3101     break;
3102   case BuiltinType::OCLQueue:
3103     Out << "9ocl_queue";
3104     break;
3105   case BuiltinType::OCLReserveID:
3106     Out << "13ocl_reserveid";
3107     break;
3108 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3109   case BuiltinType::Id: \
3110     type_name = "ocl_" #ExtType; \
3111     Out << type_name.size() << type_name; \
3112     break;
3113 #include "clang/Basic/OpenCLExtensionTypes.def"
3114   // The SVE types are effectively target-specific.  The mangling scheme
3115   // is defined in the appendices to the Procedure Call Standard for the
3116   // Arm Architecture.
3117 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
3118                         ElBits, IsSigned, IsFP, IsBF)                          \
3119   case BuiltinType::Id:                                                        \
3120     type_name = MangledName;                                                   \
3121     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3122         << type_name;                                                          \
3123     break;
3124 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3125   case BuiltinType::Id:                                                        \
3126     type_name = MangledName;                                                   \
3127     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3128         << type_name;                                                          \
3129     break;
3130 #include "clang/Basic/AArch64SVEACLETypes.def"
3131 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3132   case BuiltinType::Id: \
3133     type_name = #Name; \
3134     Out << 'u' << type_name.size() << type_name; \
3135     break;
3136 #include "clang/Basic/PPCTypes.def"
3137     // TODO: Check the mangling scheme for RISC-V V.
3138 #define RVV_TYPE(Name, Id, SingletonId)                                        \
3139   case BuiltinType::Id:                                                        \
3140     type_name = Name;                                                          \
3141     Out << 'u' << type_name.size() << type_name;                               \
3142     break;
3143 #include "clang/Basic/RISCVVTypes.def"
3144   }
3145 }
3146 
3147 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3148   switch (CC) {
3149   case CC_C:
3150     return "";
3151 
3152   case CC_X86VectorCall:
3153   case CC_X86Pascal:
3154   case CC_X86RegCall:
3155   case CC_AAPCS:
3156   case CC_AAPCS_VFP:
3157   case CC_AArch64VectorCall:
3158   case CC_AArch64SVEPCS:
3159   case CC_AMDGPUKernelCall:
3160   case CC_IntelOclBicc:
3161   case CC_SpirFunction:
3162   case CC_OpenCLKernel:
3163   case CC_PreserveMost:
3164   case CC_PreserveAll:
3165     // FIXME: we should be mangling all of the above.
3166     return "";
3167 
3168   case CC_X86ThisCall:
3169     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3170     // used explicitly. At this point, we don't have that much information in
3171     // the AST, since clang tends to bake the convention into the canonical
3172     // function type. thiscall only rarely used explicitly, so don't mangle it
3173     // for now.
3174     return "";
3175 
3176   case CC_X86StdCall:
3177     return "stdcall";
3178   case CC_X86FastCall:
3179     return "fastcall";
3180   case CC_X86_64SysV:
3181     return "sysv_abi";
3182   case CC_Win64:
3183     return "ms_abi";
3184   case CC_Swift:
3185     return "swiftcall";
3186   case CC_SwiftAsync:
3187     return "swiftasynccall";
3188   }
3189   llvm_unreachable("bad calling convention");
3190 }
3191 
3192 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3193   // Fast path.
3194   if (T->getExtInfo() == FunctionType::ExtInfo())
3195     return;
3196 
3197   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3198   // This will get more complicated in the future if we mangle other
3199   // things here; but for now, since we mangle ns_returns_retained as
3200   // a qualifier on the result type, we can get away with this:
3201   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3202   if (!CCQualifier.empty())
3203     mangleVendorQualifier(CCQualifier);
3204 
3205   // FIXME: regparm
3206   // FIXME: noreturn
3207 }
3208 
3209 void
3210 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3211   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3212 
3213   // Note that these are *not* substitution candidates.  Demanglers might
3214   // have trouble with this if the parameter type is fully substituted.
3215 
3216   switch (PI.getABI()) {
3217   case ParameterABI::Ordinary:
3218     break;
3219 
3220   // All of these start with "swift", so they come before "ns_consumed".
3221   case ParameterABI::SwiftContext:
3222   case ParameterABI::SwiftAsyncContext:
3223   case ParameterABI::SwiftErrorResult:
3224   case ParameterABI::SwiftIndirectResult:
3225     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3226     break;
3227   }
3228 
3229   if (PI.isConsumed())
3230     mangleVendorQualifier("ns_consumed");
3231 
3232   if (PI.isNoEscape())
3233     mangleVendorQualifier("noescape");
3234 }
3235 
3236 // <type>          ::= <function-type>
3237 // <function-type> ::= [<CV-qualifiers>] F [Y]
3238 //                      <bare-function-type> [<ref-qualifier>] E
3239 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3240   mangleExtFunctionInfo(T);
3241 
3242   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
3243   // e.g. "const" in "int (A::*)() const".
3244   mangleQualifiers(T->getMethodQuals());
3245 
3246   // Mangle instantiation-dependent exception-specification, if present,
3247   // per cxx-abi-dev proposal on 2016-10-11.
3248   if (T->hasInstantiationDependentExceptionSpec()) {
3249     if (isComputedNoexcept(T->getExceptionSpecType())) {
3250       Out << "DO";
3251       mangleExpression(T->getNoexceptExpr());
3252       Out << "E";
3253     } else {
3254       assert(T->getExceptionSpecType() == EST_Dynamic);
3255       Out << "Dw";
3256       for (auto ExceptTy : T->exceptions())
3257         mangleType(ExceptTy);
3258       Out << "E";
3259     }
3260   } else if (T->isNothrow()) {
3261     Out << "Do";
3262   }
3263 
3264   Out << 'F';
3265 
3266   // FIXME: We don't have enough information in the AST to produce the 'Y'
3267   // encoding for extern "C" function types.
3268   mangleBareFunctionType(T, /*MangleReturnType=*/true);
3269 
3270   // Mangle the ref-qualifier, if present.
3271   mangleRefQualifier(T->getRefQualifier());
3272 
3273   Out << 'E';
3274 }
3275 
3276 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3277   // Function types without prototypes can arise when mangling a function type
3278   // within an overloadable function in C. We mangle these as the absence of any
3279   // parameter types (not even an empty parameter list).
3280   Out << 'F';
3281 
3282   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3283 
3284   FunctionTypeDepth.enterResultType();
3285   mangleType(T->getReturnType());
3286   FunctionTypeDepth.leaveResultType();
3287 
3288   FunctionTypeDepth.pop(saved);
3289   Out << 'E';
3290 }
3291 
3292 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3293                                             bool MangleReturnType,
3294                                             const FunctionDecl *FD) {
3295   // Record that we're in a function type.  See mangleFunctionParam
3296   // for details on what we're trying to achieve here.
3297   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3298 
3299   // <bare-function-type> ::= <signature type>+
3300   if (MangleReturnType) {
3301     FunctionTypeDepth.enterResultType();
3302 
3303     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3304     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3305       mangleVendorQualifier("ns_returns_retained");
3306 
3307     // Mangle the return type without any direct ARC ownership qualifiers.
3308     QualType ReturnTy = Proto->getReturnType();
3309     if (ReturnTy.getObjCLifetime()) {
3310       auto SplitReturnTy = ReturnTy.split();
3311       SplitReturnTy.Quals.removeObjCLifetime();
3312       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3313     }
3314     mangleType(ReturnTy);
3315 
3316     FunctionTypeDepth.leaveResultType();
3317   }
3318 
3319   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3320     //   <builtin-type> ::= v   # void
3321     Out << 'v';
3322 
3323     FunctionTypeDepth.pop(saved);
3324     return;
3325   }
3326 
3327   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3328   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3329     // Mangle extended parameter info as order-sensitive qualifiers here.
3330     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3331       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3332     }
3333 
3334     // Mangle the type.
3335     QualType ParamTy = Proto->getParamType(I);
3336     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3337 
3338     if (FD) {
3339       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3340         // Attr can only take 1 character, so we can hardcode the length below.
3341         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3342         if (Attr->isDynamic())
3343           Out << "U25pass_dynamic_object_size" << Attr->getType();
3344         else
3345           Out << "U17pass_object_size" << Attr->getType();
3346       }
3347     }
3348   }
3349 
3350   FunctionTypeDepth.pop(saved);
3351 
3352   // <builtin-type>      ::= z  # ellipsis
3353   if (Proto->isVariadic())
3354     Out << 'z';
3355 }
3356 
3357 // <type>            ::= <class-enum-type>
3358 // <class-enum-type> ::= <name>
3359 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3360   mangleName(T->getDecl());
3361 }
3362 
3363 // <type>            ::= <class-enum-type>
3364 // <class-enum-type> ::= <name>
3365 void CXXNameMangler::mangleType(const EnumType *T) {
3366   mangleType(static_cast<const TagType*>(T));
3367 }
3368 void CXXNameMangler::mangleType(const RecordType *T) {
3369   mangleType(static_cast<const TagType*>(T));
3370 }
3371 void CXXNameMangler::mangleType(const TagType *T) {
3372   mangleName(T->getDecl());
3373 }
3374 
3375 // <type>       ::= <array-type>
3376 // <array-type> ::= A <positive dimension number> _ <element type>
3377 //              ::= A [<dimension expression>] _ <element type>
3378 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3379   Out << 'A' << T->getSize() << '_';
3380   mangleType(T->getElementType());
3381 }
3382 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3383   Out << 'A';
3384   // decayed vla types (size 0) will just be skipped.
3385   if (T->getSizeExpr())
3386     mangleExpression(T->getSizeExpr());
3387   Out << '_';
3388   mangleType(T->getElementType());
3389 }
3390 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3391   Out << 'A';
3392   // A DependentSizedArrayType might not have size expression as below
3393   //
3394   // template<int ...N> int arr[] = {N...};
3395   if (T->getSizeExpr())
3396     mangleExpression(T->getSizeExpr());
3397   Out << '_';
3398   mangleType(T->getElementType());
3399 }
3400 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3401   Out << "A_";
3402   mangleType(T->getElementType());
3403 }
3404 
3405 // <type>                   ::= <pointer-to-member-type>
3406 // <pointer-to-member-type> ::= M <class type> <member type>
3407 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3408   Out << 'M';
3409   mangleType(QualType(T->getClass(), 0));
3410   QualType PointeeType = T->getPointeeType();
3411   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3412     mangleType(FPT);
3413 
3414     // Itanium C++ ABI 5.1.8:
3415     //
3416     //   The type of a non-static member function is considered to be different,
3417     //   for the purposes of substitution, from the type of a namespace-scope or
3418     //   static member function whose type appears similar. The types of two
3419     //   non-static member functions are considered to be different, for the
3420     //   purposes of substitution, if the functions are members of different
3421     //   classes. In other words, for the purposes of substitution, the class of
3422     //   which the function is a member is considered part of the type of
3423     //   function.
3424 
3425     // Given that we already substitute member function pointers as a
3426     // whole, the net effect of this rule is just to unconditionally
3427     // suppress substitution on the function type in a member pointer.
3428     // We increment the SeqID here to emulate adding an entry to the
3429     // substitution table.
3430     ++SeqID;
3431   } else
3432     mangleType(PointeeType);
3433 }
3434 
3435 // <type>           ::= <template-param>
3436 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3437   mangleTemplateParameter(T->getDepth(), T->getIndex());
3438 }
3439 
3440 // <type>           ::= <template-param>
3441 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3442   // FIXME: not clear how to mangle this!
3443   // template <class T...> class A {
3444   //   template <class U...> void foo(T(*)(U) x...);
3445   // };
3446   Out << "_SUBSTPACK_";
3447 }
3448 
3449 // <type> ::= P <type>   # pointer-to
3450 void CXXNameMangler::mangleType(const PointerType *T) {
3451   Out << 'P';
3452   mangleType(T->getPointeeType());
3453 }
3454 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3455   Out << 'P';
3456   mangleType(T->getPointeeType());
3457 }
3458 
3459 // <type> ::= R <type>   # reference-to
3460 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3461   Out << 'R';
3462   mangleType(T->getPointeeType());
3463 }
3464 
3465 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3466 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3467   Out << 'O';
3468   mangleType(T->getPointeeType());
3469 }
3470 
3471 // <type> ::= C <type>   # complex pair (C 2000)
3472 void CXXNameMangler::mangleType(const ComplexType *T) {
3473   Out << 'C';
3474   mangleType(T->getElementType());
3475 }
3476 
3477 // ARM's ABI for Neon vector types specifies that they should be mangled as
3478 // if they are structs (to match ARM's initial implementation).  The
3479 // vector type must be one of the special types predefined by ARM.
3480 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3481   QualType EltType = T->getElementType();
3482   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3483   const char *EltName = nullptr;
3484   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3485     switch (cast<BuiltinType>(EltType)->getKind()) {
3486     case BuiltinType::SChar:
3487     case BuiltinType::UChar:
3488       EltName = "poly8_t";
3489       break;
3490     case BuiltinType::Short:
3491     case BuiltinType::UShort:
3492       EltName = "poly16_t";
3493       break;
3494     case BuiltinType::LongLong:
3495     case BuiltinType::ULongLong:
3496       EltName = "poly64_t";
3497       break;
3498     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3499     }
3500   } else {
3501     switch (cast<BuiltinType>(EltType)->getKind()) {
3502     case BuiltinType::SChar:     EltName = "int8_t"; break;
3503     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3504     case BuiltinType::Short:     EltName = "int16_t"; break;
3505     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3506     case BuiltinType::Int:       EltName = "int32_t"; break;
3507     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3508     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3509     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3510     case BuiltinType::Double:    EltName = "float64_t"; break;
3511     case BuiltinType::Float:     EltName = "float32_t"; break;
3512     case BuiltinType::Half:      EltName = "float16_t"; break;
3513     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3514     default:
3515       llvm_unreachable("unexpected Neon vector element type");
3516     }
3517   }
3518   const char *BaseName = nullptr;
3519   unsigned BitSize = (T->getNumElements() *
3520                       getASTContext().getTypeSize(EltType));
3521   if (BitSize == 64)
3522     BaseName = "__simd64_";
3523   else {
3524     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3525     BaseName = "__simd128_";
3526   }
3527   Out << strlen(BaseName) + strlen(EltName);
3528   Out << BaseName << EltName;
3529 }
3530 
3531 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3532   DiagnosticsEngine &Diags = Context.getDiags();
3533   unsigned DiagID = Diags.getCustomDiagID(
3534       DiagnosticsEngine::Error,
3535       "cannot mangle this dependent neon vector type yet");
3536   Diags.Report(T->getAttributeLoc(), DiagID);
3537 }
3538 
3539 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3540   switch (EltType->getKind()) {
3541   case BuiltinType::SChar:
3542     return "Int8";
3543   case BuiltinType::Short:
3544     return "Int16";
3545   case BuiltinType::Int:
3546     return "Int32";
3547   case BuiltinType::Long:
3548   case BuiltinType::LongLong:
3549     return "Int64";
3550   case BuiltinType::UChar:
3551     return "Uint8";
3552   case BuiltinType::UShort:
3553     return "Uint16";
3554   case BuiltinType::UInt:
3555     return "Uint32";
3556   case BuiltinType::ULong:
3557   case BuiltinType::ULongLong:
3558     return "Uint64";
3559   case BuiltinType::Half:
3560     return "Float16";
3561   case BuiltinType::Float:
3562     return "Float32";
3563   case BuiltinType::Double:
3564     return "Float64";
3565   case BuiltinType::BFloat16:
3566     return "Bfloat16";
3567   default:
3568     llvm_unreachable("Unexpected vector element base type");
3569   }
3570 }
3571 
3572 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3573 // the equivalent internal name. The vector type must be one of the special
3574 // types predefined by ARM.
3575 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3576   QualType EltType = T->getElementType();
3577   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3578   unsigned BitSize =
3579       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3580   (void)BitSize; // Silence warning.
3581 
3582   assert((BitSize == 64 || BitSize == 128) &&
3583          "Neon vector type not 64 or 128 bits");
3584 
3585   StringRef EltName;
3586   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3587     switch (cast<BuiltinType>(EltType)->getKind()) {
3588     case BuiltinType::UChar:
3589       EltName = "Poly8";
3590       break;
3591     case BuiltinType::UShort:
3592       EltName = "Poly16";
3593       break;
3594     case BuiltinType::ULong:
3595     case BuiltinType::ULongLong:
3596       EltName = "Poly64";
3597       break;
3598     default:
3599       llvm_unreachable("unexpected Neon polynomial vector element type");
3600     }
3601   } else
3602     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3603 
3604   std::string TypeName =
3605       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3606   Out << TypeName.length() << TypeName;
3607 }
3608 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3609   DiagnosticsEngine &Diags = Context.getDiags();
3610   unsigned DiagID = Diags.getCustomDiagID(
3611       DiagnosticsEngine::Error,
3612       "cannot mangle this dependent neon vector type yet");
3613   Diags.Report(T->getAttributeLoc(), DiagID);
3614 }
3615 
3616 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3617 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3618 // type as the sizeless variants.
3619 //
3620 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3621 //
3622 //   '__SVE_VLS<<type>, <vector length>>'
3623 //
3624 // Combining the existing SVE type and a specific vector length (in bits).
3625 // For example:
3626 //
3627 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3628 //
3629 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3630 //
3631 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3632 //
3633 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3634 //
3635 // The latest ACLE specification (00bet5) does not contain details of this
3636 // mangling scheme, it will be specified in the next revision. The mangling
3637 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3638 // for the Arm Architecture, see
3639 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling
3640 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3641   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3642           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3643          "expected fixed-length SVE vector!");
3644 
3645   QualType EltType = T->getElementType();
3646   assert(EltType->isBuiltinType() &&
3647          "expected builtin type for fixed-length SVE vector!");
3648 
3649   StringRef TypeName;
3650   switch (cast<BuiltinType>(EltType)->getKind()) {
3651   case BuiltinType::SChar:
3652     TypeName = "__SVInt8_t";
3653     break;
3654   case BuiltinType::UChar: {
3655     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3656       TypeName = "__SVUint8_t";
3657     else
3658       TypeName = "__SVBool_t";
3659     break;
3660   }
3661   case BuiltinType::Short:
3662     TypeName = "__SVInt16_t";
3663     break;
3664   case BuiltinType::UShort:
3665     TypeName = "__SVUint16_t";
3666     break;
3667   case BuiltinType::Int:
3668     TypeName = "__SVInt32_t";
3669     break;
3670   case BuiltinType::UInt:
3671     TypeName = "__SVUint32_t";
3672     break;
3673   case BuiltinType::Long:
3674     TypeName = "__SVInt64_t";
3675     break;
3676   case BuiltinType::ULong:
3677     TypeName = "__SVUint64_t";
3678     break;
3679   case BuiltinType::Half:
3680     TypeName = "__SVFloat16_t";
3681     break;
3682   case BuiltinType::Float:
3683     TypeName = "__SVFloat32_t";
3684     break;
3685   case BuiltinType::Double:
3686     TypeName = "__SVFloat64_t";
3687     break;
3688   case BuiltinType::BFloat16:
3689     TypeName = "__SVBfloat16_t";
3690     break;
3691   default:
3692     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3693   }
3694 
3695   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3696 
3697   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3698     VecSizeInBits *= 8;
3699 
3700   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3701       << VecSizeInBits << "EE";
3702 }
3703 
3704 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3705     const DependentVectorType *T) {
3706   DiagnosticsEngine &Diags = Context.getDiags();
3707   unsigned DiagID = Diags.getCustomDiagID(
3708       DiagnosticsEngine::Error,
3709       "cannot mangle this dependent fixed-length SVE vector type yet");
3710   Diags.Report(T->getAttributeLoc(), DiagID);
3711 }
3712 
3713 // GNU extension: vector types
3714 // <type>                  ::= <vector-type>
3715 // <vector-type>           ::= Dv <positive dimension number> _
3716 //                                    <extended element type>
3717 //                         ::= Dv [<dimension expression>] _ <element type>
3718 // <extended element type> ::= <element type>
3719 //                         ::= p # AltiVec vector pixel
3720 //                         ::= b # Altivec vector bool
3721 void CXXNameMangler::mangleType(const VectorType *T) {
3722   if ((T->getVectorKind() == VectorType::NeonVector ||
3723        T->getVectorKind() == VectorType::NeonPolyVector)) {
3724     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3725     llvm::Triple::ArchType Arch =
3726         getASTContext().getTargetInfo().getTriple().getArch();
3727     if ((Arch == llvm::Triple::aarch64 ||
3728          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3729       mangleAArch64NeonVectorType(T);
3730     else
3731       mangleNeonVectorType(T);
3732     return;
3733   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3734              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3735     mangleAArch64FixedSveVectorType(T);
3736     return;
3737   }
3738   Out << "Dv" << T->getNumElements() << '_';
3739   if (T->getVectorKind() == VectorType::AltiVecPixel)
3740     Out << 'p';
3741   else if (T->getVectorKind() == VectorType::AltiVecBool)
3742     Out << 'b';
3743   else
3744     mangleType(T->getElementType());
3745 }
3746 
3747 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3748   if ((T->getVectorKind() == VectorType::NeonVector ||
3749        T->getVectorKind() == VectorType::NeonPolyVector)) {
3750     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3751     llvm::Triple::ArchType Arch =
3752         getASTContext().getTargetInfo().getTriple().getArch();
3753     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3754         !Target.isOSDarwin())
3755       mangleAArch64NeonVectorType(T);
3756     else
3757       mangleNeonVectorType(T);
3758     return;
3759   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3760              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3761     mangleAArch64FixedSveVectorType(T);
3762     return;
3763   }
3764 
3765   Out << "Dv";
3766   mangleExpression(T->getSizeExpr());
3767   Out << '_';
3768   if (T->getVectorKind() == VectorType::AltiVecPixel)
3769     Out << 'p';
3770   else if (T->getVectorKind() == VectorType::AltiVecBool)
3771     Out << 'b';
3772   else
3773     mangleType(T->getElementType());
3774 }
3775 
3776 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3777   mangleType(static_cast<const VectorType*>(T));
3778 }
3779 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3780   Out << "Dv";
3781   mangleExpression(T->getSizeExpr());
3782   Out << '_';
3783   mangleType(T->getElementType());
3784 }
3785 
3786 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3787   // Mangle matrix types as a vendor extended type:
3788   // u<Len>matrix_typeI<Rows><Columns><element type>E
3789 
3790   StringRef VendorQualifier = "matrix_type";
3791   Out << "u" << VendorQualifier.size() << VendorQualifier;
3792 
3793   Out << "I";
3794   auto &ASTCtx = getASTContext();
3795   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3796   llvm::APSInt Rows(BitWidth);
3797   Rows = T->getNumRows();
3798   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3799   llvm::APSInt Columns(BitWidth);
3800   Columns = T->getNumColumns();
3801   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3802   mangleType(T->getElementType());
3803   Out << "E";
3804 }
3805 
3806 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3807   // Mangle matrix types as a vendor extended type:
3808   // u<Len>matrix_typeI<row expr><column expr><element type>E
3809   StringRef VendorQualifier = "matrix_type";
3810   Out << "u" << VendorQualifier.size() << VendorQualifier;
3811 
3812   Out << "I";
3813   mangleTemplateArgExpr(T->getRowExpr());
3814   mangleTemplateArgExpr(T->getColumnExpr());
3815   mangleType(T->getElementType());
3816   Out << "E";
3817 }
3818 
3819 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3820   SplitQualType split = T->getPointeeType().split();
3821   mangleQualifiers(split.Quals, T);
3822   mangleType(QualType(split.Ty, 0));
3823 }
3824 
3825 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3826   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3827   Out << "Dp";
3828   mangleType(T->getPattern());
3829 }
3830 
3831 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3832   mangleSourceName(T->getDecl()->getIdentifier());
3833 }
3834 
3835 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3836   // Treat __kindof as a vendor extended type qualifier.
3837   if (T->isKindOfType())
3838     Out << "U8__kindof";
3839 
3840   if (!T->qual_empty()) {
3841     // Mangle protocol qualifiers.
3842     SmallString<64> QualStr;
3843     llvm::raw_svector_ostream QualOS(QualStr);
3844     QualOS << "objcproto";
3845     for (const auto *I : T->quals()) {
3846       StringRef name = I->getName();
3847       QualOS << name.size() << name;
3848     }
3849     Out << 'U' << QualStr.size() << QualStr;
3850   }
3851 
3852   mangleType(T->getBaseType());
3853 
3854   if (T->isSpecialized()) {
3855     // Mangle type arguments as I <type>+ E
3856     Out << 'I';
3857     for (auto typeArg : T->getTypeArgs())
3858       mangleType(typeArg);
3859     Out << 'E';
3860   }
3861 }
3862 
3863 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3864   Out << "U13block_pointer";
3865   mangleType(T->getPointeeType());
3866 }
3867 
3868 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3869   // Mangle injected class name types as if the user had written the
3870   // specialization out fully.  It may not actually be possible to see
3871   // this mangling, though.
3872   mangleType(T->getInjectedSpecializationType());
3873 }
3874 
3875 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3876   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3877     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3878   } else {
3879     if (mangleSubstitution(QualType(T, 0)))
3880       return;
3881 
3882     mangleTemplatePrefix(T->getTemplateName());
3883 
3884     // FIXME: GCC does not appear to mangle the template arguments when
3885     // the template in question is a dependent template name. Should we
3886     // emulate that badness?
3887     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3888     addSubstitution(QualType(T, 0));
3889   }
3890 }
3891 
3892 void CXXNameMangler::mangleType(const DependentNameType *T) {
3893   // Proposal by cxx-abi-dev, 2014-03-26
3894   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3895   //                                 # dependent elaborated type specifier using
3896   //                                 # 'typename'
3897   //                   ::= Ts <name> # dependent elaborated type specifier using
3898   //                                 # 'struct' or 'class'
3899   //                   ::= Tu <name> # dependent elaborated type specifier using
3900   //                                 # 'union'
3901   //                   ::= Te <name> # dependent elaborated type specifier using
3902   //                                 # 'enum'
3903   switch (T->getKeyword()) {
3904     case ETK_None:
3905     case ETK_Typename:
3906       break;
3907     case ETK_Struct:
3908     case ETK_Class:
3909     case ETK_Interface:
3910       Out << "Ts";
3911       break;
3912     case ETK_Union:
3913       Out << "Tu";
3914       break;
3915     case ETK_Enum:
3916       Out << "Te";
3917       break;
3918   }
3919   // Typename types are always nested
3920   Out << 'N';
3921   manglePrefix(T->getQualifier());
3922   mangleSourceName(T->getIdentifier());
3923   Out << 'E';
3924 }
3925 
3926 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3927   // Dependently-scoped template types are nested if they have a prefix.
3928   Out << 'N';
3929 
3930   // TODO: avoid making this TemplateName.
3931   TemplateName Prefix =
3932     getASTContext().getDependentTemplateName(T->getQualifier(),
3933                                              T->getIdentifier());
3934   mangleTemplatePrefix(Prefix);
3935 
3936   // FIXME: GCC does not appear to mangle the template arguments when
3937   // the template in question is a dependent template name. Should we
3938   // emulate that badness?
3939   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3940   Out << 'E';
3941 }
3942 
3943 void CXXNameMangler::mangleType(const TypeOfType *T) {
3944   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3945   // "extension with parameters" mangling.
3946   Out << "u6typeof";
3947 }
3948 
3949 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3950   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3951   // "extension with parameters" mangling.
3952   Out << "u6typeof";
3953 }
3954 
3955 void CXXNameMangler::mangleType(const DecltypeType *T) {
3956   Expr *E = T->getUnderlyingExpr();
3957 
3958   // type ::= Dt <expression> E  # decltype of an id-expression
3959   //                             #   or class member access
3960   //      ::= DT <expression> E  # decltype of an expression
3961 
3962   // This purports to be an exhaustive list of id-expressions and
3963   // class member accesses.  Note that we do not ignore parentheses;
3964   // parentheses change the semantics of decltype for these
3965   // expressions (and cause the mangler to use the other form).
3966   if (isa<DeclRefExpr>(E) ||
3967       isa<MemberExpr>(E) ||
3968       isa<UnresolvedLookupExpr>(E) ||
3969       isa<DependentScopeDeclRefExpr>(E) ||
3970       isa<CXXDependentScopeMemberExpr>(E) ||
3971       isa<UnresolvedMemberExpr>(E))
3972     Out << "Dt";
3973   else
3974     Out << "DT";
3975   mangleExpression(E);
3976   Out << 'E';
3977 }
3978 
3979 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3980   // If this is dependent, we need to record that. If not, we simply
3981   // mangle it as the underlying type since they are equivalent.
3982   if (T->isDependentType()) {
3983     Out << 'U';
3984 
3985     switch (T->getUTTKind()) {
3986       case UnaryTransformType::EnumUnderlyingType:
3987         Out << "3eut";
3988         break;
3989     }
3990   }
3991 
3992   mangleType(T->getBaseType());
3993 }
3994 
3995 void CXXNameMangler::mangleType(const AutoType *T) {
3996   assert(T->getDeducedType().isNull() &&
3997          "Deduced AutoType shouldn't be handled here!");
3998   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3999          "shouldn't need to mangle __auto_type!");
4000   // <builtin-type> ::= Da # auto
4001   //                ::= Dc # decltype(auto)
4002   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
4003 }
4004 
4005 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
4006   QualType Deduced = T->getDeducedType();
4007   if (!Deduced.isNull())
4008     return mangleType(Deduced);
4009 
4010   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
4011   assert(TD && "shouldn't form deduced TST unless we know we have a template");
4012 
4013   if (mangleSubstitution(TD))
4014     return;
4015 
4016   mangleName(GlobalDecl(TD));
4017   addSubstitution(TD);
4018 }
4019 
4020 void CXXNameMangler::mangleType(const AtomicType *T) {
4021   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
4022   // (Until there's a standardized mangling...)
4023   Out << "U7_Atomic";
4024   mangleType(T->getValueType());
4025 }
4026 
4027 void CXXNameMangler::mangleType(const PipeType *T) {
4028   // Pipe type mangling rules are described in SPIR 2.0 specification
4029   // A.1 Data types and A.3 Summary of changes
4030   // <type> ::= 8ocl_pipe
4031   Out << "8ocl_pipe";
4032 }
4033 
4034 void CXXNameMangler::mangleType(const BitIntType *T) {
4035   // 5.1.5.2 Builtin types
4036   // <type> ::= DB <number | instantiation-dependent expression> _
4037   //        ::= DU <number | instantiation-dependent expression> _
4038   Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_";
4039 }
4040 
4041 void CXXNameMangler::mangleType(const DependentBitIntType *T) {
4042   // 5.1.5.2 Builtin types
4043   // <type> ::= DB <number | instantiation-dependent expression> _
4044   //        ::= DU <number | instantiation-dependent expression> _
4045   Out << "D" << (T->isUnsigned() ? "U" : "B");
4046   mangleExpression(T->getNumBitsExpr());
4047   Out << "_";
4048 }
4049 
4050 void CXXNameMangler::mangleIntegerLiteral(QualType T,
4051                                           const llvm::APSInt &Value) {
4052   //  <expr-primary> ::= L <type> <value number> E # integer literal
4053   Out << 'L';
4054 
4055   mangleType(T);
4056   if (T->isBooleanType()) {
4057     // Boolean values are encoded as 0/1.
4058     Out << (Value.getBoolValue() ? '1' : '0');
4059   } else {
4060     mangleNumber(Value);
4061   }
4062   Out << 'E';
4063 
4064 }
4065 
4066 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
4067   // Ignore member expressions involving anonymous unions.
4068   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4069     if (!RT->getDecl()->isAnonymousStructOrUnion())
4070       break;
4071     const auto *ME = dyn_cast<MemberExpr>(Base);
4072     if (!ME)
4073       break;
4074     Base = ME->getBase();
4075     IsArrow = ME->isArrow();
4076   }
4077 
4078   if (Base->isImplicitCXXThis()) {
4079     // Note: GCC mangles member expressions to the implicit 'this' as
4080     // *this., whereas we represent them as this->. The Itanium C++ ABI
4081     // does not specify anything here, so we follow GCC.
4082     Out << "dtdefpT";
4083   } else {
4084     Out << (IsArrow ? "pt" : "dt");
4085     mangleExpression(Base);
4086   }
4087 }
4088 
4089 /// Mangles a member expression.
4090 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4091                                       bool isArrow,
4092                                       NestedNameSpecifier *qualifier,
4093                                       NamedDecl *firstQualifierLookup,
4094                                       DeclarationName member,
4095                                       const TemplateArgumentLoc *TemplateArgs,
4096                                       unsigned NumTemplateArgs,
4097                                       unsigned arity) {
4098   // <expression> ::= dt <expression> <unresolved-name>
4099   //              ::= pt <expression> <unresolved-name>
4100   if (base)
4101     mangleMemberExprBase(base, isArrow);
4102   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4103 }
4104 
4105 /// Look at the callee of the given call expression and determine if
4106 /// it's a parenthesized id-expression which would have triggered ADL
4107 /// otherwise.
4108 static bool isParenthesizedADLCallee(const CallExpr *call) {
4109   const Expr *callee = call->getCallee();
4110   const Expr *fn = callee->IgnoreParens();
4111 
4112   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
4113   // too, but for those to appear in the callee, it would have to be
4114   // parenthesized.
4115   if (callee == fn) return false;
4116 
4117   // Must be an unresolved lookup.
4118   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4119   if (!lookup) return false;
4120 
4121   assert(!lookup->requiresADL());
4122 
4123   // Must be an unqualified lookup.
4124   if (lookup->getQualifier()) return false;
4125 
4126   // Must not have found a class member.  Note that if one is a class
4127   // member, they're all class members.
4128   if (lookup->getNumDecls() > 0 &&
4129       (*lookup->decls_begin())->isCXXClassMember())
4130     return false;
4131 
4132   // Otherwise, ADL would have been triggered.
4133   return true;
4134 }
4135 
4136 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4137   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4138   Out << CastEncoding;
4139   mangleType(ECE->getType());
4140   mangleExpression(ECE->getSubExpr());
4141 }
4142 
4143 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4144   if (auto *Syntactic = InitList->getSyntacticForm())
4145     InitList = Syntactic;
4146   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4147     mangleExpression(InitList->getInit(i));
4148 }
4149 
4150 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4151                                       bool AsTemplateArg) {
4152   // <expression> ::= <unary operator-name> <expression>
4153   //              ::= <binary operator-name> <expression> <expression>
4154   //              ::= <trinary operator-name> <expression> <expression> <expression>
4155   //              ::= cv <type> expression           # conversion with one argument
4156   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4157   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
4158   //              ::= sc <type> <expression>         # static_cast<type> (expression)
4159   //              ::= cc <type> <expression>         # const_cast<type> (expression)
4160   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
4161   //              ::= st <type>                      # sizeof (a type)
4162   //              ::= at <type>                      # alignof (a type)
4163   //              ::= <template-param>
4164   //              ::= <function-param>
4165   //              ::= fpT                            # 'this' expression (part of <function-param>)
4166   //              ::= sr <type> <unqualified-name>                   # dependent name
4167   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
4168   //              ::= ds <expression> <expression>                   # expr.*expr
4169   //              ::= sZ <template-param>                            # size of a parameter pack
4170   //              ::= sZ <function-param>    # size of a function parameter pack
4171   //              ::= u <source-name> <template-arg>* E # vendor extended expression
4172   //              ::= <expr-primary>
4173   // <expr-primary> ::= L <type> <value number> E    # integer literal
4174   //                ::= L <type> <value float> E     # floating literal
4175   //                ::= L <type> <string type> E     # string literal
4176   //                ::= L <nullptr type> E           # nullptr literal "LDnE"
4177   //                ::= L <pointer type> 0 E         # null pointer template argument
4178   //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
4179   //                ::= L <mangled-name> E           # external name
4180   QualType ImplicitlyConvertedToType;
4181 
4182   // A top-level expression that's not <expr-primary> needs to be wrapped in
4183   // X...E in a template arg.
4184   bool IsPrimaryExpr = true;
4185   auto NotPrimaryExpr = [&] {
4186     if (AsTemplateArg && IsPrimaryExpr)
4187       Out << 'X';
4188     IsPrimaryExpr = false;
4189   };
4190 
4191   auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4192     switch (D->getKind()) {
4193     default:
4194       //  <expr-primary> ::= L <mangled-name> E # external name
4195       Out << 'L';
4196       mangle(D);
4197       Out << 'E';
4198       break;
4199 
4200     case Decl::ParmVar:
4201       NotPrimaryExpr();
4202       mangleFunctionParam(cast<ParmVarDecl>(D));
4203       break;
4204 
4205     case Decl::EnumConstant: {
4206       // <expr-primary>
4207       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4208       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4209       break;
4210     }
4211 
4212     case Decl::NonTypeTemplateParm:
4213       NotPrimaryExpr();
4214       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4215       mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4216       break;
4217     }
4218   };
4219 
4220   // 'goto recurse' is used when handling a simple "unwrapping" node which
4221   // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4222   // to be preserved.
4223 recurse:
4224   switch (E->getStmtClass()) {
4225   case Expr::NoStmtClass:
4226 #define ABSTRACT_STMT(Type)
4227 #define EXPR(Type, Base)
4228 #define STMT(Type, Base) \
4229   case Expr::Type##Class:
4230 #include "clang/AST/StmtNodes.inc"
4231     // fallthrough
4232 
4233   // These all can only appear in local or variable-initialization
4234   // contexts and so should never appear in a mangling.
4235   case Expr::AddrLabelExprClass:
4236   case Expr::DesignatedInitUpdateExprClass:
4237   case Expr::ImplicitValueInitExprClass:
4238   case Expr::ArrayInitLoopExprClass:
4239   case Expr::ArrayInitIndexExprClass:
4240   case Expr::NoInitExprClass:
4241   case Expr::ParenListExprClass:
4242   case Expr::MSPropertyRefExprClass:
4243   case Expr::MSPropertySubscriptExprClass:
4244   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4245   case Expr::RecoveryExprClass:
4246   case Expr::OMPArraySectionExprClass:
4247   case Expr::OMPArrayShapingExprClass:
4248   case Expr::OMPIteratorExprClass:
4249   case Expr::CXXInheritedCtorInitExprClass:
4250     llvm_unreachable("unexpected statement kind");
4251 
4252   case Expr::ConstantExprClass:
4253     E = cast<ConstantExpr>(E)->getSubExpr();
4254     goto recurse;
4255 
4256   // FIXME: invent manglings for all these.
4257   case Expr::BlockExprClass:
4258   case Expr::ChooseExprClass:
4259   case Expr::CompoundLiteralExprClass:
4260   case Expr::ExtVectorElementExprClass:
4261   case Expr::GenericSelectionExprClass:
4262   case Expr::ObjCEncodeExprClass:
4263   case Expr::ObjCIsaExprClass:
4264   case Expr::ObjCIvarRefExprClass:
4265   case Expr::ObjCMessageExprClass:
4266   case Expr::ObjCPropertyRefExprClass:
4267   case Expr::ObjCProtocolExprClass:
4268   case Expr::ObjCSelectorExprClass:
4269   case Expr::ObjCStringLiteralClass:
4270   case Expr::ObjCBoxedExprClass:
4271   case Expr::ObjCArrayLiteralClass:
4272   case Expr::ObjCDictionaryLiteralClass:
4273   case Expr::ObjCSubscriptRefExprClass:
4274   case Expr::ObjCIndirectCopyRestoreExprClass:
4275   case Expr::ObjCAvailabilityCheckExprClass:
4276   case Expr::OffsetOfExprClass:
4277   case Expr::PredefinedExprClass:
4278   case Expr::ShuffleVectorExprClass:
4279   case Expr::ConvertVectorExprClass:
4280   case Expr::StmtExprClass:
4281   case Expr::TypeTraitExprClass:
4282   case Expr::RequiresExprClass:
4283   case Expr::ArrayTypeTraitExprClass:
4284   case Expr::ExpressionTraitExprClass:
4285   case Expr::VAArgExprClass:
4286   case Expr::CUDAKernelCallExprClass:
4287   case Expr::AsTypeExprClass:
4288   case Expr::PseudoObjectExprClass:
4289   case Expr::AtomicExprClass:
4290   case Expr::SourceLocExprClass:
4291   case Expr::BuiltinBitCastExprClass:
4292   {
4293     NotPrimaryExpr();
4294     if (!NullOut) {
4295       // As bad as this diagnostic is, it's better than crashing.
4296       DiagnosticsEngine &Diags = Context.getDiags();
4297       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4298                                        "cannot yet mangle expression type %0");
4299       Diags.Report(E->getExprLoc(), DiagID)
4300         << E->getStmtClassName() << E->getSourceRange();
4301       return;
4302     }
4303     break;
4304   }
4305 
4306   case Expr::CXXUuidofExprClass: {
4307     NotPrimaryExpr();
4308     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4309     // As of clang 12, uuidof uses the vendor extended expression
4310     // mangling. Previously, it used a special-cased nonstandard extension.
4311     if (Context.getASTContext().getLangOpts().getClangABICompat() >
4312         LangOptions::ClangABI::Ver11) {
4313       Out << "u8__uuidof";
4314       if (UE->isTypeOperand())
4315         mangleType(UE->getTypeOperand(Context.getASTContext()));
4316       else
4317         mangleTemplateArgExpr(UE->getExprOperand());
4318       Out << 'E';
4319     } else {
4320       if (UE->isTypeOperand()) {
4321         QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4322         Out << "u8__uuidoft";
4323         mangleType(UuidT);
4324       } else {
4325         Expr *UuidExp = UE->getExprOperand();
4326         Out << "u8__uuidofz";
4327         mangleExpression(UuidExp);
4328       }
4329     }
4330     break;
4331   }
4332 
4333   // Even gcc-4.5 doesn't mangle this.
4334   case Expr::BinaryConditionalOperatorClass: {
4335     NotPrimaryExpr();
4336     DiagnosticsEngine &Diags = Context.getDiags();
4337     unsigned DiagID =
4338       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4339                 "?: operator with omitted middle operand cannot be mangled");
4340     Diags.Report(E->getExprLoc(), DiagID)
4341       << E->getStmtClassName() << E->getSourceRange();
4342     return;
4343   }
4344 
4345   // These are used for internal purposes and cannot be meaningfully mangled.
4346   case Expr::OpaqueValueExprClass:
4347     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4348 
4349   case Expr::InitListExprClass: {
4350     NotPrimaryExpr();
4351     Out << "il";
4352     mangleInitListElements(cast<InitListExpr>(E));
4353     Out << "E";
4354     break;
4355   }
4356 
4357   case Expr::DesignatedInitExprClass: {
4358     NotPrimaryExpr();
4359     auto *DIE = cast<DesignatedInitExpr>(E);
4360     for (const auto &Designator : DIE->designators()) {
4361       if (Designator.isFieldDesignator()) {
4362         Out << "di";
4363         mangleSourceName(Designator.getFieldName());
4364       } else if (Designator.isArrayDesignator()) {
4365         Out << "dx";
4366         mangleExpression(DIE->getArrayIndex(Designator));
4367       } else {
4368         assert(Designator.isArrayRangeDesignator() &&
4369                "unknown designator kind");
4370         Out << "dX";
4371         mangleExpression(DIE->getArrayRangeStart(Designator));
4372         mangleExpression(DIE->getArrayRangeEnd(Designator));
4373       }
4374     }
4375     mangleExpression(DIE->getInit());
4376     break;
4377   }
4378 
4379   case Expr::CXXDefaultArgExprClass:
4380     E = cast<CXXDefaultArgExpr>(E)->getExpr();
4381     goto recurse;
4382 
4383   case Expr::CXXDefaultInitExprClass:
4384     E = cast<CXXDefaultInitExpr>(E)->getExpr();
4385     goto recurse;
4386 
4387   case Expr::CXXStdInitializerListExprClass:
4388     E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4389     goto recurse;
4390 
4391   case Expr::SubstNonTypeTemplateParmExprClass:
4392     E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4393     goto recurse;
4394 
4395   case Expr::UserDefinedLiteralClass:
4396     // We follow g++'s approach of mangling a UDL as a call to the literal
4397     // operator.
4398   case Expr::CXXMemberCallExprClass: // fallthrough
4399   case Expr::CallExprClass: {
4400     NotPrimaryExpr();
4401     const CallExpr *CE = cast<CallExpr>(E);
4402 
4403     // <expression> ::= cp <simple-id> <expression>* E
4404     // We use this mangling only when the call would use ADL except
4405     // for being parenthesized.  Per discussion with David
4406     // Vandervoorde, 2011.04.25.
4407     if (isParenthesizedADLCallee(CE)) {
4408       Out << "cp";
4409       // The callee here is a parenthesized UnresolvedLookupExpr with
4410       // no qualifier and should always get mangled as a <simple-id>
4411       // anyway.
4412 
4413     // <expression> ::= cl <expression>* E
4414     } else {
4415       Out << "cl";
4416     }
4417 
4418     unsigned CallArity = CE->getNumArgs();
4419     for (const Expr *Arg : CE->arguments())
4420       if (isa<PackExpansionExpr>(Arg))
4421         CallArity = UnknownArity;
4422 
4423     mangleExpression(CE->getCallee(), CallArity);
4424     for (const Expr *Arg : CE->arguments())
4425       mangleExpression(Arg);
4426     Out << 'E';
4427     break;
4428   }
4429 
4430   case Expr::CXXNewExprClass: {
4431     NotPrimaryExpr();
4432     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4433     if (New->isGlobalNew()) Out << "gs";
4434     Out << (New->isArray() ? "na" : "nw");
4435     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4436            E = New->placement_arg_end(); I != E; ++I)
4437       mangleExpression(*I);
4438     Out << '_';
4439     mangleType(New->getAllocatedType());
4440     if (New->hasInitializer()) {
4441       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4442         Out << "il";
4443       else
4444         Out << "pi";
4445       const Expr *Init = New->getInitializer();
4446       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4447         // Directly inline the initializers.
4448         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4449                                                   E = CCE->arg_end();
4450              I != E; ++I)
4451           mangleExpression(*I);
4452       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4453         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4454           mangleExpression(PLE->getExpr(i));
4455       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4456                  isa<InitListExpr>(Init)) {
4457         // Only take InitListExprs apart for list-initialization.
4458         mangleInitListElements(cast<InitListExpr>(Init));
4459       } else
4460         mangleExpression(Init);
4461     }
4462     Out << 'E';
4463     break;
4464   }
4465 
4466   case Expr::CXXPseudoDestructorExprClass: {
4467     NotPrimaryExpr();
4468     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4469     if (const Expr *Base = PDE->getBase())
4470       mangleMemberExprBase(Base, PDE->isArrow());
4471     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4472     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4473       if (Qualifier) {
4474         mangleUnresolvedPrefix(Qualifier,
4475                                /*recursive=*/true);
4476         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4477         Out << 'E';
4478       } else {
4479         Out << "sr";
4480         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4481           Out << 'E';
4482       }
4483     } else if (Qualifier) {
4484       mangleUnresolvedPrefix(Qualifier);
4485     }
4486     // <base-unresolved-name> ::= dn <destructor-name>
4487     Out << "dn";
4488     QualType DestroyedType = PDE->getDestroyedType();
4489     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4490     break;
4491   }
4492 
4493   case Expr::MemberExprClass: {
4494     NotPrimaryExpr();
4495     const MemberExpr *ME = cast<MemberExpr>(E);
4496     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4497                      ME->getQualifier(), nullptr,
4498                      ME->getMemberDecl()->getDeclName(),
4499                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4500                      Arity);
4501     break;
4502   }
4503 
4504   case Expr::UnresolvedMemberExprClass: {
4505     NotPrimaryExpr();
4506     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4507     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4508                      ME->isArrow(), ME->getQualifier(), nullptr,
4509                      ME->getMemberName(),
4510                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4511                      Arity);
4512     break;
4513   }
4514 
4515   case Expr::CXXDependentScopeMemberExprClass: {
4516     NotPrimaryExpr();
4517     const CXXDependentScopeMemberExpr *ME
4518       = cast<CXXDependentScopeMemberExpr>(E);
4519     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4520                      ME->isArrow(), ME->getQualifier(),
4521                      ME->getFirstQualifierFoundInScope(),
4522                      ME->getMember(),
4523                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4524                      Arity);
4525     break;
4526   }
4527 
4528   case Expr::UnresolvedLookupExprClass: {
4529     NotPrimaryExpr();
4530     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4531     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4532                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4533                          Arity);
4534     break;
4535   }
4536 
4537   case Expr::CXXUnresolvedConstructExprClass: {
4538     NotPrimaryExpr();
4539     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4540     unsigned N = CE->getNumArgs();
4541 
4542     if (CE->isListInitialization()) {
4543       assert(N == 1 && "unexpected form for list initialization");
4544       auto *IL = cast<InitListExpr>(CE->getArg(0));
4545       Out << "tl";
4546       mangleType(CE->getType());
4547       mangleInitListElements(IL);
4548       Out << "E";
4549       break;
4550     }
4551 
4552     Out << "cv";
4553     mangleType(CE->getType());
4554     if (N != 1) Out << '_';
4555     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4556     if (N != 1) Out << 'E';
4557     break;
4558   }
4559 
4560   case Expr::CXXConstructExprClass: {
4561     // An implicit cast is silent, thus may contain <expr-primary>.
4562     const auto *CE = cast<CXXConstructExpr>(E);
4563     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4564       assert(
4565           CE->getNumArgs() >= 1 &&
4566           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4567           "implicit CXXConstructExpr must have one argument");
4568       E = cast<CXXConstructExpr>(E)->getArg(0);
4569       goto recurse;
4570     }
4571     NotPrimaryExpr();
4572     Out << "il";
4573     for (auto *E : CE->arguments())
4574       mangleExpression(E);
4575     Out << "E";
4576     break;
4577   }
4578 
4579   case Expr::CXXTemporaryObjectExprClass: {
4580     NotPrimaryExpr();
4581     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4582     unsigned N = CE->getNumArgs();
4583     bool List = CE->isListInitialization();
4584 
4585     if (List)
4586       Out << "tl";
4587     else
4588       Out << "cv";
4589     mangleType(CE->getType());
4590     if (!List && N != 1)
4591       Out << '_';
4592     if (CE->isStdInitListInitialization()) {
4593       // We implicitly created a std::initializer_list<T> for the first argument
4594       // of a constructor of type U in an expression of the form U{a, b, c}.
4595       // Strip all the semantic gunk off the initializer list.
4596       auto *SILE =
4597           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4598       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4599       mangleInitListElements(ILE);
4600     } else {
4601       for (auto *E : CE->arguments())
4602         mangleExpression(E);
4603     }
4604     if (List || N != 1)
4605       Out << 'E';
4606     break;
4607   }
4608 
4609   case Expr::CXXScalarValueInitExprClass:
4610     NotPrimaryExpr();
4611     Out << "cv";
4612     mangleType(E->getType());
4613     Out << "_E";
4614     break;
4615 
4616   case Expr::CXXNoexceptExprClass:
4617     NotPrimaryExpr();
4618     Out << "nx";
4619     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4620     break;
4621 
4622   case Expr::UnaryExprOrTypeTraitExprClass: {
4623     // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4624     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4625 
4626     if (!SAE->isInstantiationDependent()) {
4627       // Itanium C++ ABI:
4628       //   If the operand of a sizeof or alignof operator is not
4629       //   instantiation-dependent it is encoded as an integer literal
4630       //   reflecting the result of the operator.
4631       //
4632       //   If the result of the operator is implicitly converted to a known
4633       //   integer type, that type is used for the literal; otherwise, the type
4634       //   of std::size_t or std::ptrdiff_t is used.
4635       QualType T = (ImplicitlyConvertedToType.isNull() ||
4636                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4637                                                     : ImplicitlyConvertedToType;
4638       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4639       mangleIntegerLiteral(T, V);
4640       break;
4641     }
4642 
4643     NotPrimaryExpr(); // But otherwise, they are not.
4644 
4645     auto MangleAlignofSizeofArg = [&] {
4646       if (SAE->isArgumentType()) {
4647         Out << 't';
4648         mangleType(SAE->getArgumentType());
4649       } else {
4650         Out << 'z';
4651         mangleExpression(SAE->getArgumentExpr());
4652       }
4653     };
4654 
4655     switch(SAE->getKind()) {
4656     case UETT_SizeOf:
4657       Out << 's';
4658       MangleAlignofSizeofArg();
4659       break;
4660     case UETT_PreferredAlignOf:
4661       // As of clang 12, we mangle __alignof__ differently than alignof. (They
4662       // have acted differently since Clang 8, but were previously mangled the
4663       // same.)
4664       if (Context.getASTContext().getLangOpts().getClangABICompat() >
4665           LangOptions::ClangABI::Ver11) {
4666         Out << "u11__alignof__";
4667         if (SAE->isArgumentType())
4668           mangleType(SAE->getArgumentType());
4669         else
4670           mangleTemplateArgExpr(SAE->getArgumentExpr());
4671         Out << 'E';
4672         break;
4673       }
4674       LLVM_FALLTHROUGH;
4675     case UETT_AlignOf:
4676       Out << 'a';
4677       MangleAlignofSizeofArg();
4678       break;
4679     case UETT_VecStep: {
4680       DiagnosticsEngine &Diags = Context.getDiags();
4681       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4682                                      "cannot yet mangle vec_step expression");
4683       Diags.Report(DiagID);
4684       return;
4685     }
4686     case UETT_OpenMPRequiredSimdAlign: {
4687       DiagnosticsEngine &Diags = Context.getDiags();
4688       unsigned DiagID = Diags.getCustomDiagID(
4689           DiagnosticsEngine::Error,
4690           "cannot yet mangle __builtin_omp_required_simd_align expression");
4691       Diags.Report(DiagID);
4692       return;
4693     }
4694     }
4695     break;
4696   }
4697 
4698   case Expr::CXXThrowExprClass: {
4699     NotPrimaryExpr();
4700     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4701     //  <expression> ::= tw <expression>  # throw expression
4702     //               ::= tr               # rethrow
4703     if (TE->getSubExpr()) {
4704       Out << "tw";
4705       mangleExpression(TE->getSubExpr());
4706     } else {
4707       Out << "tr";
4708     }
4709     break;
4710   }
4711 
4712   case Expr::CXXTypeidExprClass: {
4713     NotPrimaryExpr();
4714     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4715     //  <expression> ::= ti <type>        # typeid (type)
4716     //               ::= te <expression>  # typeid (expression)
4717     if (TIE->isTypeOperand()) {
4718       Out << "ti";
4719       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4720     } else {
4721       Out << "te";
4722       mangleExpression(TIE->getExprOperand());
4723     }
4724     break;
4725   }
4726 
4727   case Expr::CXXDeleteExprClass: {
4728     NotPrimaryExpr();
4729     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4730     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4731     //               ::= [gs] da <expression>  # [::] delete [] expr
4732     if (DE->isGlobalDelete()) Out << "gs";
4733     Out << (DE->isArrayForm() ? "da" : "dl");
4734     mangleExpression(DE->getArgument());
4735     break;
4736   }
4737 
4738   case Expr::UnaryOperatorClass: {
4739     NotPrimaryExpr();
4740     const UnaryOperator *UO = cast<UnaryOperator>(E);
4741     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4742                        /*Arity=*/1);
4743     mangleExpression(UO->getSubExpr());
4744     break;
4745   }
4746 
4747   case Expr::ArraySubscriptExprClass: {
4748     NotPrimaryExpr();
4749     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4750 
4751     // Array subscript is treated as a syntactically weird form of
4752     // binary operator.
4753     Out << "ix";
4754     mangleExpression(AE->getLHS());
4755     mangleExpression(AE->getRHS());
4756     break;
4757   }
4758 
4759   case Expr::MatrixSubscriptExprClass: {
4760     NotPrimaryExpr();
4761     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4762     Out << "ixix";
4763     mangleExpression(ME->getBase());
4764     mangleExpression(ME->getRowIdx());
4765     mangleExpression(ME->getColumnIdx());
4766     break;
4767   }
4768 
4769   case Expr::CompoundAssignOperatorClass: // fallthrough
4770   case Expr::BinaryOperatorClass: {
4771     NotPrimaryExpr();
4772     const BinaryOperator *BO = cast<BinaryOperator>(E);
4773     if (BO->getOpcode() == BO_PtrMemD)
4774       Out << "ds";
4775     else
4776       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4777                          /*Arity=*/2);
4778     mangleExpression(BO->getLHS());
4779     mangleExpression(BO->getRHS());
4780     break;
4781   }
4782 
4783   case Expr::CXXRewrittenBinaryOperatorClass: {
4784     NotPrimaryExpr();
4785     // The mangled form represents the original syntax.
4786     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4787         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4788     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4789                        /*Arity=*/2);
4790     mangleExpression(Decomposed.LHS);
4791     mangleExpression(Decomposed.RHS);
4792     break;
4793   }
4794 
4795   case Expr::ConditionalOperatorClass: {
4796     NotPrimaryExpr();
4797     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4798     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4799     mangleExpression(CO->getCond());
4800     mangleExpression(CO->getLHS(), Arity);
4801     mangleExpression(CO->getRHS(), Arity);
4802     break;
4803   }
4804 
4805   case Expr::ImplicitCastExprClass: {
4806     ImplicitlyConvertedToType = E->getType();
4807     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4808     goto recurse;
4809   }
4810 
4811   case Expr::ObjCBridgedCastExprClass: {
4812     NotPrimaryExpr();
4813     // Mangle ownership casts as a vendor extended operator __bridge,
4814     // __bridge_transfer, or __bridge_retain.
4815     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4816     Out << "v1U" << Kind.size() << Kind;
4817     mangleCastExpression(E, "cv");
4818     break;
4819   }
4820 
4821   case Expr::CStyleCastExprClass:
4822     NotPrimaryExpr();
4823     mangleCastExpression(E, "cv");
4824     break;
4825 
4826   case Expr::CXXFunctionalCastExprClass: {
4827     NotPrimaryExpr();
4828     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4829     // FIXME: Add isImplicit to CXXConstructExpr.
4830     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4831       if (CCE->getParenOrBraceRange().isInvalid())
4832         Sub = CCE->getArg(0)->IgnoreImplicit();
4833     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4834       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4835     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4836       Out << "tl";
4837       mangleType(E->getType());
4838       mangleInitListElements(IL);
4839       Out << "E";
4840     } else {
4841       mangleCastExpression(E, "cv");
4842     }
4843     break;
4844   }
4845 
4846   case Expr::CXXStaticCastExprClass:
4847     NotPrimaryExpr();
4848     mangleCastExpression(E, "sc");
4849     break;
4850   case Expr::CXXDynamicCastExprClass:
4851     NotPrimaryExpr();
4852     mangleCastExpression(E, "dc");
4853     break;
4854   case Expr::CXXReinterpretCastExprClass:
4855     NotPrimaryExpr();
4856     mangleCastExpression(E, "rc");
4857     break;
4858   case Expr::CXXConstCastExprClass:
4859     NotPrimaryExpr();
4860     mangleCastExpression(E, "cc");
4861     break;
4862   case Expr::CXXAddrspaceCastExprClass:
4863     NotPrimaryExpr();
4864     mangleCastExpression(E, "ac");
4865     break;
4866 
4867   case Expr::CXXOperatorCallExprClass: {
4868     NotPrimaryExpr();
4869     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4870     unsigned NumArgs = CE->getNumArgs();
4871     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4872     // (the enclosing MemberExpr covers the syntactic portion).
4873     if (CE->getOperator() != OO_Arrow)
4874       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4875     // Mangle the arguments.
4876     for (unsigned i = 0; i != NumArgs; ++i)
4877       mangleExpression(CE->getArg(i));
4878     break;
4879   }
4880 
4881   case Expr::ParenExprClass:
4882     E = cast<ParenExpr>(E)->getSubExpr();
4883     goto recurse;
4884 
4885   case Expr::ConceptSpecializationExprClass: {
4886     //  <expr-primary> ::= L <mangled-name> E # external name
4887     Out << "L_Z";
4888     auto *CSE = cast<ConceptSpecializationExpr>(E);
4889     mangleTemplateName(CSE->getNamedConcept(),
4890                        CSE->getTemplateArguments().data(),
4891                        CSE->getTemplateArguments().size());
4892     Out << 'E';
4893     break;
4894   }
4895 
4896   case Expr::DeclRefExprClass:
4897     // MangleDeclRefExpr helper handles primary-vs-nonprimary
4898     MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4899     break;
4900 
4901   case Expr::SubstNonTypeTemplateParmPackExprClass:
4902     NotPrimaryExpr();
4903     // FIXME: not clear how to mangle this!
4904     // template <unsigned N...> class A {
4905     //   template <class U...> void foo(U (&x)[N]...);
4906     // };
4907     Out << "_SUBSTPACK_";
4908     break;
4909 
4910   case Expr::FunctionParmPackExprClass: {
4911     NotPrimaryExpr();
4912     // FIXME: not clear how to mangle this!
4913     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4914     Out << "v110_SUBSTPACK";
4915     MangleDeclRefExpr(FPPE->getParameterPack());
4916     break;
4917   }
4918 
4919   case Expr::DependentScopeDeclRefExprClass: {
4920     NotPrimaryExpr();
4921     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4922     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4923                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4924                          Arity);
4925     break;
4926   }
4927 
4928   case Expr::CXXBindTemporaryExprClass:
4929     E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4930     goto recurse;
4931 
4932   case Expr::ExprWithCleanupsClass:
4933     E = cast<ExprWithCleanups>(E)->getSubExpr();
4934     goto recurse;
4935 
4936   case Expr::FloatingLiteralClass: {
4937     // <expr-primary>
4938     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4939     mangleFloatLiteral(FL->getType(), FL->getValue());
4940     break;
4941   }
4942 
4943   case Expr::FixedPointLiteralClass:
4944     // Currently unimplemented -- might be <expr-primary> in future?
4945     mangleFixedPointLiteral();
4946     break;
4947 
4948   case Expr::CharacterLiteralClass:
4949     // <expr-primary>
4950     Out << 'L';
4951     mangleType(E->getType());
4952     Out << cast<CharacterLiteral>(E)->getValue();
4953     Out << 'E';
4954     break;
4955 
4956   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4957   case Expr::ObjCBoolLiteralExprClass:
4958     // <expr-primary>
4959     Out << "Lb";
4960     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4961     Out << 'E';
4962     break;
4963 
4964   case Expr::CXXBoolLiteralExprClass:
4965     // <expr-primary>
4966     Out << "Lb";
4967     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4968     Out << 'E';
4969     break;
4970 
4971   case Expr::IntegerLiteralClass: {
4972     // <expr-primary>
4973     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4974     if (E->getType()->isSignedIntegerType())
4975       Value.setIsSigned(true);
4976     mangleIntegerLiteral(E->getType(), Value);
4977     break;
4978   }
4979 
4980   case Expr::ImaginaryLiteralClass: {
4981     // <expr-primary>
4982     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4983     // Mangle as if a complex literal.
4984     // Proposal from David Vandevoorde, 2010.06.30.
4985     Out << 'L';
4986     mangleType(E->getType());
4987     if (const FloatingLiteral *Imag =
4988           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4989       // Mangle a floating-point zero of the appropriate type.
4990       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4991       Out << '_';
4992       mangleFloat(Imag->getValue());
4993     } else {
4994       Out << "0_";
4995       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4996       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4997         Value.setIsSigned(true);
4998       mangleNumber(Value);
4999     }
5000     Out << 'E';
5001     break;
5002   }
5003 
5004   case Expr::StringLiteralClass: {
5005     // <expr-primary>
5006     // Revised proposal from David Vandervoorde, 2010.07.15.
5007     Out << 'L';
5008     assert(isa<ConstantArrayType>(E->getType()));
5009     mangleType(E->getType());
5010     Out << 'E';
5011     break;
5012   }
5013 
5014   case Expr::GNUNullExprClass:
5015     // <expr-primary>
5016     // Mangle as if an integer literal 0.
5017     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
5018     break;
5019 
5020   case Expr::CXXNullPtrLiteralExprClass: {
5021     // <expr-primary>
5022     Out << "LDnE";
5023     break;
5024   }
5025 
5026   case Expr::LambdaExprClass: {
5027     // A lambda-expression can't appear in the signature of an
5028     // externally-visible declaration, so there's no standard mangling for
5029     // this, but mangling as a literal of the closure type seems reasonable.
5030     Out << "L";
5031     mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
5032     Out << "E";
5033     break;
5034   }
5035 
5036   case Expr::PackExpansionExprClass:
5037     NotPrimaryExpr();
5038     Out << "sp";
5039     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
5040     break;
5041 
5042   case Expr::SizeOfPackExprClass: {
5043     NotPrimaryExpr();
5044     auto *SPE = cast<SizeOfPackExpr>(E);
5045     if (SPE->isPartiallySubstituted()) {
5046       Out << "sP";
5047       for (const auto &A : SPE->getPartialArguments())
5048         mangleTemplateArg(A, false);
5049       Out << "E";
5050       break;
5051     }
5052 
5053     Out << "sZ";
5054     const NamedDecl *Pack = SPE->getPack();
5055     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
5056       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
5057     else if (const NonTypeTemplateParmDecl *NTTP
5058                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
5059       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
5060     else if (const TemplateTemplateParmDecl *TempTP
5061                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
5062       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
5063     else
5064       mangleFunctionParam(cast<ParmVarDecl>(Pack));
5065     break;
5066   }
5067 
5068   case Expr::MaterializeTemporaryExprClass:
5069     E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5070     goto recurse;
5071 
5072   case Expr::CXXFoldExprClass: {
5073     NotPrimaryExpr();
5074     auto *FE = cast<CXXFoldExpr>(E);
5075     if (FE->isLeftFold())
5076       Out << (FE->getInit() ? "fL" : "fl");
5077     else
5078       Out << (FE->getInit() ? "fR" : "fr");
5079 
5080     if (FE->getOperator() == BO_PtrMemD)
5081       Out << "ds";
5082     else
5083       mangleOperatorName(
5084           BinaryOperator::getOverloadedOperator(FE->getOperator()),
5085           /*Arity=*/2);
5086 
5087     if (FE->getLHS())
5088       mangleExpression(FE->getLHS());
5089     if (FE->getRHS())
5090       mangleExpression(FE->getRHS());
5091     break;
5092   }
5093 
5094   case Expr::CXXThisExprClass:
5095     NotPrimaryExpr();
5096     Out << "fpT";
5097     break;
5098 
5099   case Expr::CoawaitExprClass:
5100     // FIXME: Propose a non-vendor mangling.
5101     NotPrimaryExpr();
5102     Out << "v18co_await";
5103     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5104     break;
5105 
5106   case Expr::DependentCoawaitExprClass:
5107     // FIXME: Propose a non-vendor mangling.
5108     NotPrimaryExpr();
5109     Out << "v18co_await";
5110     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5111     break;
5112 
5113   case Expr::CoyieldExprClass:
5114     // FIXME: Propose a non-vendor mangling.
5115     NotPrimaryExpr();
5116     Out << "v18co_yield";
5117     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5118     break;
5119   case Expr::SYCLUniqueStableNameExprClass: {
5120     const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5121     NotPrimaryExpr();
5122 
5123     Out << "u33__builtin_sycl_unique_stable_name";
5124     mangleType(USN->getTypeSourceInfo()->getType());
5125 
5126     Out << "E";
5127     break;
5128   }
5129   }
5130 
5131   if (AsTemplateArg && !IsPrimaryExpr)
5132     Out << 'E';
5133 }
5134 
5135 /// Mangle an expression which refers to a parameter variable.
5136 ///
5137 /// <expression>     ::= <function-param>
5138 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
5139 /// <function-param> ::= fp <top-level CV-qualifiers>
5140 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
5141 /// <function-param> ::= fL <L-1 non-negative number>
5142 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
5143 /// <function-param> ::= fL <L-1 non-negative number>
5144 ///                      p <top-level CV-qualifiers>
5145 ///                      <I-1 non-negative number> _         # L > 0, I > 0
5146 ///
5147 /// L is the nesting depth of the parameter, defined as 1 if the
5148 /// parameter comes from the innermost function prototype scope
5149 /// enclosing the current context, 2 if from the next enclosing
5150 /// function prototype scope, and so on, with one special case: if
5151 /// we've processed the full parameter clause for the innermost
5152 /// function type, then L is one less.  This definition conveniently
5153 /// makes it irrelevant whether a function's result type was written
5154 /// trailing or leading, but is otherwise overly complicated; the
5155 /// numbering was first designed without considering references to
5156 /// parameter in locations other than return types, and then the
5157 /// mangling had to be generalized without changing the existing
5158 /// manglings.
5159 ///
5160 /// I is the zero-based index of the parameter within its parameter
5161 /// declaration clause.  Note that the original ABI document describes
5162 /// this using 1-based ordinals.
5163 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5164   unsigned parmDepth = parm->getFunctionScopeDepth();
5165   unsigned parmIndex = parm->getFunctionScopeIndex();
5166 
5167   // Compute 'L'.
5168   // parmDepth does not include the declaring function prototype.
5169   // FunctionTypeDepth does account for that.
5170   assert(parmDepth < FunctionTypeDepth.getDepth());
5171   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5172   if (FunctionTypeDepth.isInResultType())
5173     nestingDepth--;
5174 
5175   if (nestingDepth == 0) {
5176     Out << "fp";
5177   } else {
5178     Out << "fL" << (nestingDepth - 1) << 'p';
5179   }
5180 
5181   // Top-level qualifiers.  We don't have to worry about arrays here,
5182   // because parameters declared as arrays should already have been
5183   // transformed to have pointer type. FIXME: apparently these don't
5184   // get mangled if used as an rvalue of a known non-class type?
5185   assert(!parm->getType()->isArrayType()
5186          && "parameter's type is still an array type?");
5187 
5188   if (const DependentAddressSpaceType *DAST =
5189       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5190     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5191   } else {
5192     mangleQualifiers(parm->getType().getQualifiers());
5193   }
5194 
5195   // Parameter index.
5196   if (parmIndex != 0) {
5197     Out << (parmIndex - 1);
5198   }
5199   Out << '_';
5200 }
5201 
5202 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5203                                        const CXXRecordDecl *InheritedFrom) {
5204   // <ctor-dtor-name> ::= C1  # complete object constructor
5205   //                  ::= C2  # base object constructor
5206   //                  ::= CI1 <type> # complete inheriting constructor
5207   //                  ::= CI2 <type> # base inheriting constructor
5208   //
5209   // In addition, C5 is a comdat name with C1 and C2 in it.
5210   Out << 'C';
5211   if (InheritedFrom)
5212     Out << 'I';
5213   switch (T) {
5214   case Ctor_Complete:
5215     Out << '1';
5216     break;
5217   case Ctor_Base:
5218     Out << '2';
5219     break;
5220   case Ctor_Comdat:
5221     Out << '5';
5222     break;
5223   case Ctor_DefaultClosure:
5224   case Ctor_CopyingClosure:
5225     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5226   }
5227   if (InheritedFrom)
5228     mangleName(InheritedFrom);
5229 }
5230 
5231 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5232   // <ctor-dtor-name> ::= D0  # deleting destructor
5233   //                  ::= D1  # complete object destructor
5234   //                  ::= D2  # base object destructor
5235   //
5236   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5237   switch (T) {
5238   case Dtor_Deleting:
5239     Out << "D0";
5240     break;
5241   case Dtor_Complete:
5242     Out << "D1";
5243     break;
5244   case Dtor_Base:
5245     Out << "D2";
5246     break;
5247   case Dtor_Comdat:
5248     Out << "D5";
5249     break;
5250   }
5251 }
5252 
5253 namespace {
5254 // Helper to provide ancillary information on a template used to mangle its
5255 // arguments.
5256 struct TemplateArgManglingInfo {
5257   TemplateDecl *ResolvedTemplate = nullptr;
5258   bool SeenPackExpansionIntoNonPack = false;
5259   const NamedDecl *UnresolvedExpandedPack = nullptr;
5260 
5261   TemplateArgManglingInfo(TemplateName TN) {
5262     if (TemplateDecl *TD = TN.getAsTemplateDecl())
5263       ResolvedTemplate = TD;
5264   }
5265 
5266   /// Do we need to mangle template arguments with exactly correct types?
5267   ///
5268   /// This should be called exactly once for each parameter / argument pair, in
5269   /// order.
5270   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5271     // We need correct types when the template-name is unresolved or when it
5272     // names a template that is able to be overloaded.
5273     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5274       return true;
5275 
5276     // Move to the next parameter.
5277     const NamedDecl *Param = UnresolvedExpandedPack;
5278     if (!Param) {
5279       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5280              "no parameter for argument");
5281       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5282 
5283       // If we reach an expanded parameter pack whose argument isn't in pack
5284       // form, that means Sema couldn't figure out which arguments belonged to
5285       // it, because it contains a pack expansion. Track the expanded pack for
5286       // all further template arguments until we hit that pack expansion.
5287       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5288         assert(getExpandedPackSize(Param) &&
5289                "failed to form pack argument for parameter pack");
5290         UnresolvedExpandedPack = Param;
5291       }
5292     }
5293 
5294     // If we encounter a pack argument that is expanded into a non-pack
5295     // parameter, we can no longer track parameter / argument correspondence,
5296     // and need to use exact types from this point onwards.
5297     if (Arg.isPackExpansion() &&
5298         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5299       SeenPackExpansionIntoNonPack = true;
5300       return true;
5301     }
5302 
5303     // We need exact types for function template arguments because they might be
5304     // overloaded on template parameter type. As a special case, a member
5305     // function template of a generic lambda is not overloadable.
5306     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5307       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5308       if (!RD || !RD->isGenericLambda())
5309         return true;
5310     }
5311 
5312     // Otherwise, we only need a correct type if the parameter has a deduced
5313     // type.
5314     //
5315     // Note: for an expanded parameter pack, getType() returns the type prior
5316     // to expansion. We could ask for the expanded type with getExpansionType(),
5317     // but it doesn't matter because substitution and expansion don't affect
5318     // whether a deduced type appears in the type.
5319     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5320     return NTTP && NTTP->getType()->getContainedDeducedType();
5321   }
5322 };
5323 }
5324 
5325 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5326                                         const TemplateArgumentLoc *TemplateArgs,
5327                                         unsigned NumTemplateArgs) {
5328   // <template-args> ::= I <template-arg>+ E
5329   Out << 'I';
5330   TemplateArgManglingInfo Info(TN);
5331   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5332     mangleTemplateArg(TemplateArgs[i].getArgument(),
5333                       Info.needExactType(i, TemplateArgs[i].getArgument()));
5334   Out << 'E';
5335 }
5336 
5337 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5338                                         const TemplateArgumentList &AL) {
5339   // <template-args> ::= I <template-arg>+ E
5340   Out << 'I';
5341   TemplateArgManglingInfo Info(TN);
5342   for (unsigned i = 0, e = AL.size(); i != e; ++i)
5343     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5344   Out << 'E';
5345 }
5346 
5347 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5348                                         const TemplateArgument *TemplateArgs,
5349                                         unsigned NumTemplateArgs) {
5350   // <template-args> ::= I <template-arg>+ E
5351   Out << 'I';
5352   TemplateArgManglingInfo Info(TN);
5353   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5354     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5355   Out << 'E';
5356 }
5357 
5358 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5359   // <template-arg> ::= <type>              # type or template
5360   //                ::= X <expression> E    # expression
5361   //                ::= <expr-primary>      # simple expressions
5362   //                ::= J <template-arg>* E # argument pack
5363   if (!A.isInstantiationDependent() || A.isDependent())
5364     A = Context.getASTContext().getCanonicalTemplateArgument(A);
5365 
5366   switch (A.getKind()) {
5367   case TemplateArgument::Null:
5368     llvm_unreachable("Cannot mangle NULL template argument");
5369 
5370   case TemplateArgument::Type:
5371     mangleType(A.getAsType());
5372     break;
5373   case TemplateArgument::Template:
5374     // This is mangled as <type>.
5375     mangleType(A.getAsTemplate());
5376     break;
5377   case TemplateArgument::TemplateExpansion:
5378     // <type>  ::= Dp <type>          # pack expansion (C++0x)
5379     Out << "Dp";
5380     mangleType(A.getAsTemplateOrTemplatePattern());
5381     break;
5382   case TemplateArgument::Expression:
5383     mangleTemplateArgExpr(A.getAsExpr());
5384     break;
5385   case TemplateArgument::Integral:
5386     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5387     break;
5388   case TemplateArgument::Declaration: {
5389     //  <expr-primary> ::= L <mangled-name> E # external name
5390     ValueDecl *D = A.getAsDecl();
5391 
5392     // Template parameter objects are modeled by reproducing a source form
5393     // produced as if by aggregate initialization.
5394     if (A.getParamTypeForDecl()->isRecordType()) {
5395       auto *TPO = cast<TemplateParamObjectDecl>(D);
5396       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5397                                TPO->getValue(), /*TopLevel=*/true,
5398                                NeedExactType);
5399       break;
5400     }
5401 
5402     ASTContext &Ctx = Context.getASTContext();
5403     APValue Value;
5404     if (D->isCXXInstanceMember())
5405       // Simple pointer-to-member with no conversion.
5406       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5407     else if (D->getType()->isArrayType() &&
5408              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5409                                 A.getParamTypeForDecl()) &&
5410              Ctx.getLangOpts().getClangABICompat() >
5411                  LangOptions::ClangABI::Ver11)
5412       // Build a value corresponding to this implicit array-to-pointer decay.
5413       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5414                       {APValue::LValuePathEntry::ArrayIndex(0)},
5415                       /*OnePastTheEnd=*/false);
5416     else
5417       // Regular pointer or reference to a declaration.
5418       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5419                       ArrayRef<APValue::LValuePathEntry>(),
5420                       /*OnePastTheEnd=*/false);
5421     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5422                              NeedExactType);
5423     break;
5424   }
5425   case TemplateArgument::NullPtr: {
5426     mangleNullPointer(A.getNullPtrType());
5427     break;
5428   }
5429   case TemplateArgument::Pack: {
5430     //  <template-arg> ::= J <template-arg>* E
5431     Out << 'J';
5432     for (const auto &P : A.pack_elements())
5433       mangleTemplateArg(P, NeedExactType);
5434     Out << 'E';
5435   }
5436   }
5437 }
5438 
5439 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5440   ASTContext &Ctx = Context.getASTContext();
5441   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5442     mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5443     return;
5444   }
5445 
5446   // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5447   // correctly in cases where the template argument was
5448   // constructed from an expression rather than an already-evaluated
5449   // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5450   // 'Li0E'.
5451   //
5452   // We did special-case DeclRefExpr to attempt to DTRT for that one
5453   // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5454   // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5455   // the proper 'Xfp_E'.
5456   E = E->IgnoreParenImpCasts();
5457   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5458     const ValueDecl *D = DRE->getDecl();
5459     if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5460       Out << 'L';
5461       mangle(D);
5462       Out << 'E';
5463       return;
5464     }
5465   }
5466   Out << 'X';
5467   mangleExpression(E);
5468   Out << 'E';
5469 }
5470 
5471 /// Determine whether a given value is equivalent to zero-initialization for
5472 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5473 ///
5474 /// Note that this is not in general equivalent to determining whether the
5475 /// value has an all-zeroes bit pattern.
5476 static bool isZeroInitialized(QualType T, const APValue &V) {
5477   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5478   // pathological cases due to using this, but it's a little awkward
5479   // to do this in linear time in general.
5480   switch (V.getKind()) {
5481   case APValue::None:
5482   case APValue::Indeterminate:
5483   case APValue::AddrLabelDiff:
5484     return false;
5485 
5486   case APValue::Struct: {
5487     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5488     assert(RD && "unexpected type for record value");
5489     unsigned I = 0;
5490     for (const CXXBaseSpecifier &BS : RD->bases()) {
5491       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5492         return false;
5493       ++I;
5494     }
5495     I = 0;
5496     for (const FieldDecl *FD : RD->fields()) {
5497       if (!FD->isUnnamedBitfield() &&
5498           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5499         return false;
5500       ++I;
5501     }
5502     return true;
5503   }
5504 
5505   case APValue::Union: {
5506     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5507     assert(RD && "unexpected type for union value");
5508     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5509     for (const FieldDecl *FD : RD->fields()) {
5510       if (!FD->isUnnamedBitfield())
5511         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5512                isZeroInitialized(FD->getType(), V.getUnionValue());
5513     }
5514     // If there are no fields (other than unnamed bitfields), the value is
5515     // necessarily zero-initialized.
5516     return true;
5517   }
5518 
5519   case APValue::Array: {
5520     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5521     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5522       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5523         return false;
5524     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5525   }
5526 
5527   case APValue::Vector: {
5528     const VectorType *VT = T->castAs<VectorType>();
5529     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5530       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5531         return false;
5532     return true;
5533   }
5534 
5535   case APValue::Int:
5536     return !V.getInt();
5537 
5538   case APValue::Float:
5539     return V.getFloat().isPosZero();
5540 
5541   case APValue::FixedPoint:
5542     return !V.getFixedPoint().getValue();
5543 
5544   case APValue::ComplexFloat:
5545     return V.getComplexFloatReal().isPosZero() &&
5546            V.getComplexFloatImag().isPosZero();
5547 
5548   case APValue::ComplexInt:
5549     return !V.getComplexIntReal() && !V.getComplexIntImag();
5550 
5551   case APValue::LValue:
5552     return V.isNullPointer();
5553 
5554   case APValue::MemberPointer:
5555     return !V.getMemberPointerDecl();
5556   }
5557 
5558   llvm_unreachable("Unhandled APValue::ValueKind enum");
5559 }
5560 
5561 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5562   QualType T = LV.getLValueBase().getType();
5563   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5564     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5565       T = AT->getElementType();
5566     else if (const FieldDecl *FD =
5567                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5568       T = FD->getType();
5569     else
5570       T = Ctx.getRecordType(
5571           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5572   }
5573   return T;
5574 }
5575 
5576 static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc,
5577                                         DiagnosticsEngine &Diags,
5578                                         const FieldDecl *FD) {
5579   // According to:
5580   // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous
5581   // For the purposes of mangling, the name of an anonymous union is considered
5582   // to be the name of the first named data member found by a pre-order,
5583   // depth-first, declaration-order walk of the data members of the anonymous
5584   // union.
5585 
5586   if (FD->getIdentifier())
5587     return FD->getIdentifier();
5588 
5589   // The only cases where the identifer of a FieldDecl would be blank is if the
5590   // field represents an anonymous record type or if it is an unnamed bitfield.
5591   // There is no type to descend into in the case of a bitfield, so we can just
5592   // return nullptr in that case.
5593   if (FD->isBitField())
5594     return nullptr;
5595   const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl();
5596 
5597   // Consider only the fields in declaration order, searched depth-first.  We
5598   // don't care about the active member of the union, as all we are doing is
5599   // looking for a valid name. We also don't check bases, due to guidance from
5600   // the Itanium ABI folks.
5601   for (const FieldDecl *RDField : RD->fields()) {
5602     if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField))
5603       return II;
5604   }
5605 
5606   // According to the Itanium ABI: If there is no such data member (i.e., if all
5607   // of the data members in the union are unnamed), then there is no way for a
5608   // program to refer to the anonymous union, and there is therefore no need to
5609   // mangle its name. However, we should diagnose this anyway.
5610   unsigned DiagID = Diags.getCustomDiagID(
5611       DiagnosticsEngine::Error, "cannot mangle this unnamed union NTTP yet");
5612   Diags.Report(UnionLoc, DiagID);
5613 
5614   return nullptr;
5615 }
5616 
5617 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5618                                               bool TopLevel,
5619                                               bool NeedExactType) {
5620   // Ignore all top-level cv-qualifiers, to match GCC.
5621   Qualifiers Quals;
5622   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5623 
5624   // A top-level expression that's not a primary expression is wrapped in X...E.
5625   bool IsPrimaryExpr = true;
5626   auto NotPrimaryExpr = [&] {
5627     if (TopLevel && IsPrimaryExpr)
5628       Out << 'X';
5629     IsPrimaryExpr = false;
5630   };
5631 
5632   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5633   switch (V.getKind()) {
5634   case APValue::None:
5635   case APValue::Indeterminate:
5636     Out << 'L';
5637     mangleType(T);
5638     Out << 'E';
5639     break;
5640 
5641   case APValue::AddrLabelDiff:
5642     llvm_unreachable("unexpected value kind in template argument");
5643 
5644   case APValue::Struct: {
5645     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5646     assert(RD && "unexpected type for record value");
5647 
5648     // Drop trailing zero-initialized elements.
5649     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields());
5650     while (
5651         !Fields.empty() &&
5652         (Fields.back()->isUnnamedBitfield() ||
5653          isZeroInitialized(Fields.back()->getType(),
5654                            V.getStructField(Fields.back()->getFieldIndex())))) {
5655       Fields.pop_back();
5656     }
5657     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5658     if (Fields.empty()) {
5659       while (!Bases.empty() &&
5660              isZeroInitialized(Bases.back().getType(),
5661                                V.getStructBase(Bases.size() - 1)))
5662         Bases = Bases.drop_back();
5663     }
5664 
5665     // <expression> ::= tl <type> <braced-expression>* E
5666     NotPrimaryExpr();
5667     Out << "tl";
5668     mangleType(T);
5669     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5670       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5671     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5672       if (Fields[I]->isUnnamedBitfield())
5673         continue;
5674       mangleValueInTemplateArg(Fields[I]->getType(),
5675                                V.getStructField(Fields[I]->getFieldIndex()),
5676                                false);
5677     }
5678     Out << 'E';
5679     break;
5680   }
5681 
5682   case APValue::Union: {
5683     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5684     const FieldDecl *FD = V.getUnionField();
5685 
5686     if (!FD) {
5687       Out << 'L';
5688       mangleType(T);
5689       Out << 'E';
5690       break;
5691     }
5692 
5693     // <braced-expression> ::= di <field source-name> <braced-expression>
5694     NotPrimaryExpr();
5695     Out << "tl";
5696     mangleType(T);
5697     if (!isZeroInitialized(T, V)) {
5698       Out << "di";
5699       IdentifierInfo *II = (getUnionInitName(
5700           T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD));
5701       if (II)
5702         mangleSourceName(II);
5703       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5704     }
5705     Out << 'E';
5706     break;
5707   }
5708 
5709   case APValue::Array: {
5710     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5711 
5712     NotPrimaryExpr();
5713     Out << "tl";
5714     mangleType(T);
5715 
5716     // Drop trailing zero-initialized elements.
5717     unsigned N = V.getArraySize();
5718     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5719       N = V.getArrayInitializedElts();
5720       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5721         --N;
5722     }
5723 
5724     for (unsigned I = 0; I != N; ++I) {
5725       const APValue &Elem = I < V.getArrayInitializedElts()
5726                                 ? V.getArrayInitializedElt(I)
5727                                 : V.getArrayFiller();
5728       mangleValueInTemplateArg(ElemT, Elem, false);
5729     }
5730     Out << 'E';
5731     break;
5732   }
5733 
5734   case APValue::Vector: {
5735     const VectorType *VT = T->castAs<VectorType>();
5736 
5737     NotPrimaryExpr();
5738     Out << "tl";
5739     mangleType(T);
5740     unsigned N = V.getVectorLength();
5741     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5742       --N;
5743     for (unsigned I = 0; I != N; ++I)
5744       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5745     Out << 'E';
5746     break;
5747   }
5748 
5749   case APValue::Int:
5750     mangleIntegerLiteral(T, V.getInt());
5751     break;
5752 
5753   case APValue::Float:
5754     mangleFloatLiteral(T, V.getFloat());
5755     break;
5756 
5757   case APValue::FixedPoint:
5758     mangleFixedPointLiteral();
5759     break;
5760 
5761   case APValue::ComplexFloat: {
5762     const ComplexType *CT = T->castAs<ComplexType>();
5763     NotPrimaryExpr();
5764     Out << "tl";
5765     mangleType(T);
5766     if (!V.getComplexFloatReal().isPosZero() ||
5767         !V.getComplexFloatImag().isPosZero())
5768       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5769     if (!V.getComplexFloatImag().isPosZero())
5770       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5771     Out << 'E';
5772     break;
5773   }
5774 
5775   case APValue::ComplexInt: {
5776     const ComplexType *CT = T->castAs<ComplexType>();
5777     NotPrimaryExpr();
5778     Out << "tl";
5779     mangleType(T);
5780     if (V.getComplexIntReal().getBoolValue() ||
5781         V.getComplexIntImag().getBoolValue())
5782       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5783     if (V.getComplexIntImag().getBoolValue())
5784       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5785     Out << 'E';
5786     break;
5787   }
5788 
5789   case APValue::LValue: {
5790     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5791     assert((T->isPointerType() || T->isReferenceType()) &&
5792            "unexpected type for LValue template arg");
5793 
5794     if (V.isNullPointer()) {
5795       mangleNullPointer(T);
5796       break;
5797     }
5798 
5799     APValue::LValueBase B = V.getLValueBase();
5800     if (!B) {
5801       // Non-standard mangling for integer cast to a pointer; this can only
5802       // occur as an extension.
5803       CharUnits Offset = V.getLValueOffset();
5804       if (Offset.isZero()) {
5805         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5806         // a cast, because L <type> 0 E means something else.
5807         NotPrimaryExpr();
5808         Out << "rc";
5809         mangleType(T);
5810         Out << "Li0E";
5811         if (TopLevel)
5812           Out << 'E';
5813       } else {
5814         Out << "L";
5815         mangleType(T);
5816         Out << Offset.getQuantity() << 'E';
5817       }
5818       break;
5819     }
5820 
5821     ASTContext &Ctx = Context.getASTContext();
5822 
5823     enum { Base, Offset, Path } Kind;
5824     if (!V.hasLValuePath()) {
5825       // Mangle as (T*)((char*)&base + N).
5826       if (T->isReferenceType()) {
5827         NotPrimaryExpr();
5828         Out << "decvP";
5829         mangleType(T->getPointeeType());
5830       } else {
5831         NotPrimaryExpr();
5832         Out << "cv";
5833         mangleType(T);
5834       }
5835       Out << "plcvPcad";
5836       Kind = Offset;
5837     } else {
5838       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5839         NotPrimaryExpr();
5840         // A final conversion to the template parameter's type is usually
5841         // folded into the 'so' mangling, but we can't do that for 'void*'
5842         // parameters without introducing collisions.
5843         if (NeedExactType && T->isVoidPointerType()) {
5844           Out << "cv";
5845           mangleType(T);
5846         }
5847         if (T->isPointerType())
5848           Out << "ad";
5849         Out << "so";
5850         mangleType(T->isVoidPointerType()
5851                        ? getLValueType(Ctx, V).getUnqualifiedType()
5852                        : T->getPointeeType());
5853         Kind = Path;
5854       } else {
5855         if (NeedExactType &&
5856             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5857             Ctx.getLangOpts().getClangABICompat() >
5858                 LangOptions::ClangABI::Ver11) {
5859           NotPrimaryExpr();
5860           Out << "cv";
5861           mangleType(T);
5862         }
5863         if (T->isPointerType()) {
5864           NotPrimaryExpr();
5865           Out << "ad";
5866         }
5867         Kind = Base;
5868       }
5869     }
5870 
5871     QualType TypeSoFar = B.getType();
5872     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5873       Out << 'L';
5874       mangle(VD);
5875       Out << 'E';
5876     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5877       NotPrimaryExpr();
5878       mangleExpression(E);
5879     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5880       NotPrimaryExpr();
5881       Out << "ti";
5882       mangleType(QualType(TI.getType(), 0));
5883     } else {
5884       // We should never see dynamic allocations here.
5885       llvm_unreachable("unexpected lvalue base kind in template argument");
5886     }
5887 
5888     switch (Kind) {
5889     case Base:
5890       break;
5891 
5892     case Offset:
5893       Out << 'L';
5894       mangleType(Ctx.getPointerDiffType());
5895       mangleNumber(V.getLValueOffset().getQuantity());
5896       Out << 'E';
5897       break;
5898 
5899     case Path:
5900       // <expression> ::= so <referent type> <expr> [<offset number>]
5901       //                  <union-selector>* [p] E
5902       if (!V.getLValueOffset().isZero())
5903         mangleNumber(V.getLValueOffset().getQuantity());
5904 
5905       // We model a past-the-end array pointer as array indexing with index N,
5906       // not with the "past the end" flag. Compensate for that.
5907       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5908 
5909       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5910         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5911           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5912             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5913           TypeSoFar = AT->getElementType();
5914         } else {
5915           const Decl *D = E.getAsBaseOrMember().getPointer();
5916           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5917             // <union-selector> ::= _ <number>
5918             if (FD->getParent()->isUnion()) {
5919               Out << '_';
5920               if (FD->getFieldIndex())
5921                 Out << (FD->getFieldIndex() - 1);
5922             }
5923             TypeSoFar = FD->getType();
5924           } else {
5925             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5926           }
5927         }
5928       }
5929 
5930       if (OnePastTheEnd)
5931         Out << 'p';
5932       Out << 'E';
5933       break;
5934     }
5935 
5936     break;
5937   }
5938 
5939   case APValue::MemberPointer:
5940     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5941     if (!V.getMemberPointerDecl()) {
5942       mangleNullPointer(T);
5943       break;
5944     }
5945 
5946     ASTContext &Ctx = Context.getASTContext();
5947 
5948     NotPrimaryExpr();
5949     if (!V.getMemberPointerPath().empty()) {
5950       Out << "mc";
5951       mangleType(T);
5952     } else if (NeedExactType &&
5953                !Ctx.hasSameType(
5954                    T->castAs<MemberPointerType>()->getPointeeType(),
5955                    V.getMemberPointerDecl()->getType()) &&
5956                Ctx.getLangOpts().getClangABICompat() >
5957                    LangOptions::ClangABI::Ver11) {
5958       Out << "cv";
5959       mangleType(T);
5960     }
5961     Out << "adL";
5962     mangle(V.getMemberPointerDecl());
5963     Out << 'E';
5964     if (!V.getMemberPointerPath().empty()) {
5965       CharUnits Offset =
5966           Context.getASTContext().getMemberPointerPathAdjustment(V);
5967       if (!Offset.isZero())
5968         mangleNumber(Offset.getQuantity());
5969       Out << 'E';
5970     }
5971     break;
5972   }
5973 
5974   if (TopLevel && !IsPrimaryExpr)
5975     Out << 'E';
5976 }
5977 
5978 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5979   // <template-param> ::= T_    # first template parameter
5980   //                  ::= T <parameter-2 non-negative number> _
5981   //                  ::= TL <L-1 non-negative number> __
5982   //                  ::= TL <L-1 non-negative number> _
5983   //                         <parameter-2 non-negative number> _
5984   //
5985   // The latter two manglings are from a proposal here:
5986   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5987   Out << 'T';
5988   if (Depth != 0)
5989     Out << 'L' << (Depth - 1) << '_';
5990   if (Index != 0)
5991     Out << (Index - 1);
5992   Out << '_';
5993 }
5994 
5995 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5996   if (SeqID == 0) {
5997     // Nothing.
5998   } else if (SeqID == 1) {
5999     Out << '0';
6000   } else {
6001     SeqID--;
6002 
6003     // <seq-id> is encoded in base-36, using digits and upper case letters.
6004     char Buffer[7]; // log(2**32) / log(36) ~= 7
6005     MutableArrayRef<char> BufferRef(Buffer);
6006     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
6007 
6008     for (; SeqID != 0; SeqID /= 36) {
6009       unsigned C = SeqID % 36;
6010       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
6011     }
6012 
6013     Out.write(I.base(), I - BufferRef.rbegin());
6014   }
6015   Out << '_';
6016 }
6017 
6018 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
6019   bool result = mangleSubstitution(tname);
6020   assert(result && "no existing substitution for template name");
6021   (void) result;
6022 }
6023 
6024 // <substitution> ::= S <seq-id> _
6025 //                ::= S_
6026 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
6027   // Try one of the standard substitutions first.
6028   if (mangleStandardSubstitution(ND))
6029     return true;
6030 
6031   ND = cast<NamedDecl>(ND->getCanonicalDecl());
6032   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
6033 }
6034 
6035 bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) {
6036   assert(NNS->getKind() == NestedNameSpecifier::Identifier &&
6037          "mangleSubstitution(NestedNameSpecifier *) is only used for "
6038          "identifier nested name specifiers.");
6039   NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
6040   return mangleSubstitution(reinterpret_cast<uintptr_t>(NNS));
6041 }
6042 
6043 /// Determine whether the given type has any qualifiers that are relevant for
6044 /// substitutions.
6045 static bool hasMangledSubstitutionQualifiers(QualType T) {
6046   Qualifiers Qs = T.getQualifiers();
6047   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
6048 }
6049 
6050 bool CXXNameMangler::mangleSubstitution(QualType T) {
6051   if (!hasMangledSubstitutionQualifiers(T)) {
6052     if (const RecordType *RT = T->getAs<RecordType>())
6053       return mangleSubstitution(RT->getDecl());
6054   }
6055 
6056   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6057 
6058   return mangleSubstitution(TypePtr);
6059 }
6060 
6061 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
6062   if (TemplateDecl *TD = Template.getAsTemplateDecl())
6063     return mangleSubstitution(TD);
6064 
6065   Template = Context.getASTContext().getCanonicalTemplateName(Template);
6066   return mangleSubstitution(
6067                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6068 }
6069 
6070 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
6071   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
6072   if (I == Substitutions.end())
6073     return false;
6074 
6075   unsigned SeqID = I->second;
6076   Out << 'S';
6077   mangleSeqID(SeqID);
6078 
6079   return true;
6080 }
6081 
6082 /// Returns whether S is a template specialization of std::Name with a single
6083 /// argument of type A.
6084 bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name,
6085                                      QualType A) {
6086   if (S.isNull())
6087     return false;
6088 
6089   const RecordType *RT = S->getAs<RecordType>();
6090   if (!RT)
6091     return false;
6092 
6093   const ClassTemplateSpecializationDecl *SD =
6094     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6095   if (!SD || !SD->getIdentifier()->isStr(Name))
6096     return false;
6097 
6098   if (!isStdNamespace(Context.getEffectiveDeclContext(SD)))
6099     return false;
6100 
6101   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6102   if (TemplateArgs.size() != 1)
6103     return false;
6104 
6105   if (TemplateArgs[0].getAsType() != A)
6106     return false;
6107 
6108   if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6109     return false;
6110 
6111   return true;
6112 }
6113 
6114 /// Returns whether SD is a template specialization std::Name<char,
6115 /// std::char_traits<char> [, std::allocator<char>]>
6116 /// HasAllocator controls whether the 3rd template argument is needed.
6117 bool CXXNameMangler::isStdCharSpecialization(
6118     const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name,
6119     bool HasAllocator) {
6120   if (!SD->getIdentifier()->isStr(Name))
6121     return false;
6122 
6123   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6124   if (TemplateArgs.size() != (HasAllocator ? 3 : 2))
6125     return false;
6126 
6127   QualType A = TemplateArgs[0].getAsType();
6128   if (A.isNull())
6129     return false;
6130   // Plain 'char' is named Char_S or Char_U depending on the target ABI.
6131   if (!A->isSpecificBuiltinType(BuiltinType::Char_S) &&
6132       !A->isSpecificBuiltinType(BuiltinType::Char_U))
6133     return false;
6134 
6135   if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A))
6136     return false;
6137 
6138   if (HasAllocator &&
6139       !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A))
6140     return false;
6141 
6142   if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6143     return false;
6144 
6145   return true;
6146 }
6147 
6148 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
6149   // <substitution> ::= St # ::std::
6150   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
6151     if (isStd(NS)) {
6152       Out << "St";
6153       return true;
6154     }
6155     return false;
6156   }
6157 
6158   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
6159     if (!isStdNamespace(Context.getEffectiveDeclContext(TD)))
6160       return false;
6161 
6162     if (TD->getOwningModuleForLinkage())
6163       return false;
6164 
6165     // <substitution> ::= Sa # ::std::allocator
6166     if (TD->getIdentifier()->isStr("allocator")) {
6167       Out << "Sa";
6168       return true;
6169     }
6170 
6171     // <<substitution> ::= Sb # ::std::basic_string
6172     if (TD->getIdentifier()->isStr("basic_string")) {
6173       Out << "Sb";
6174       return true;
6175     }
6176     return false;
6177   }
6178 
6179   if (const ClassTemplateSpecializationDecl *SD =
6180         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6181     if (!isStdNamespace(Context.getEffectiveDeclContext(SD)))
6182       return false;
6183 
6184     if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6185       return false;
6186 
6187     //    <substitution> ::= Ss # ::std::basic_string<char,
6188     //                            ::std::char_traits<char>,
6189     //                            ::std::allocator<char> >
6190     if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) {
6191       Out << "Ss";
6192       return true;
6193     }
6194 
6195     //    <substitution> ::= Si # ::std::basic_istream<char,
6196     //                            ::std::char_traits<char> >
6197     if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) {
6198       Out << "Si";
6199       return true;
6200     }
6201 
6202     //    <substitution> ::= So # ::std::basic_ostream<char,
6203     //                            ::std::char_traits<char> >
6204     if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) {
6205       Out << "So";
6206       return true;
6207     }
6208 
6209     //    <substitution> ::= Sd # ::std::basic_iostream<char,
6210     //                            ::std::char_traits<char> >
6211     if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) {
6212       Out << "Sd";
6213       return true;
6214     }
6215     return false;
6216   }
6217 
6218   return false;
6219 }
6220 
6221 void CXXNameMangler::addSubstitution(QualType T) {
6222   if (!hasMangledSubstitutionQualifiers(T)) {
6223     if (const RecordType *RT = T->getAs<RecordType>()) {
6224       addSubstitution(RT->getDecl());
6225       return;
6226     }
6227   }
6228 
6229   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6230   addSubstitution(TypePtr);
6231 }
6232 
6233 void CXXNameMangler::addSubstitution(TemplateName Template) {
6234   if (TemplateDecl *TD = Template.getAsTemplateDecl())
6235     return addSubstitution(TD);
6236 
6237   Template = Context.getASTContext().getCanonicalTemplateName(Template);
6238   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6239 }
6240 
6241 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
6242   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
6243   Substitutions[Ptr] = SeqID++;
6244 }
6245 
6246 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
6247   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
6248   if (Other->SeqID > SeqID) {
6249     Substitutions.swap(Other->Substitutions);
6250     SeqID = Other->SeqID;
6251   }
6252 }
6253 
6254 CXXNameMangler::AbiTagList
6255 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
6256   // When derived abi tags are disabled there is no need to make any list.
6257   if (DisableDerivedAbiTags)
6258     return AbiTagList();
6259 
6260   llvm::raw_null_ostream NullOutStream;
6261   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
6262   TrackReturnTypeTags.disableDerivedAbiTags();
6263 
6264   const FunctionProtoType *Proto =
6265       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
6266   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
6267   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
6268   TrackReturnTypeTags.mangleType(Proto->getReturnType());
6269   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
6270   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
6271 
6272   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6273 }
6274 
6275 CXXNameMangler::AbiTagList
6276 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
6277   // When derived abi tags are disabled there is no need to make any list.
6278   if (DisableDerivedAbiTags)
6279     return AbiTagList();
6280 
6281   llvm::raw_null_ostream NullOutStream;
6282   CXXNameMangler TrackVariableType(*this, NullOutStream);
6283   TrackVariableType.disableDerivedAbiTags();
6284 
6285   TrackVariableType.mangleType(VD->getType());
6286 
6287   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6288 }
6289 
6290 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
6291                                        const VarDecl *VD) {
6292   llvm::raw_null_ostream NullOutStream;
6293   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
6294   TrackAbiTags.mangle(VD);
6295   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
6296 }
6297 
6298 //
6299 
6300 /// Mangles the name of the declaration D and emits that name to the given
6301 /// output stream.
6302 ///
6303 /// If the declaration D requires a mangled name, this routine will emit that
6304 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
6305 /// and this routine will return false. In this case, the caller should just
6306 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
6307 /// name.
6308 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
6309                                              raw_ostream &Out) {
6310   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
6311   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
6312          "Invalid mangleName() call, argument is not a variable or function!");
6313 
6314   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
6315                                  getASTContext().getSourceManager(),
6316                                  "Mangling declaration");
6317 
6318   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
6319     auto Type = GD.getCtorType();
6320     CXXNameMangler Mangler(*this, Out, CD, Type);
6321     return Mangler.mangle(GlobalDecl(CD, Type));
6322   }
6323 
6324   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
6325     auto Type = GD.getDtorType();
6326     CXXNameMangler Mangler(*this, Out, DD, Type);
6327     return Mangler.mangle(GlobalDecl(DD, Type));
6328   }
6329 
6330   CXXNameMangler Mangler(*this, Out, D);
6331   Mangler.mangle(GD);
6332 }
6333 
6334 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
6335                                                    raw_ostream &Out) {
6336   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
6337   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
6338 }
6339 
6340 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
6341                                                    raw_ostream &Out) {
6342   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
6343   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
6344 }
6345 
6346 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
6347                                            const ThunkInfo &Thunk,
6348                                            raw_ostream &Out) {
6349   //  <special-name> ::= T <call-offset> <base encoding>
6350   //                      # base is the nominal target function of thunk
6351   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
6352   //                      # base is the nominal target function of thunk
6353   //                      # first call-offset is 'this' adjustment
6354   //                      # second call-offset is result adjustment
6355 
6356   assert(!isa<CXXDestructorDecl>(MD) &&
6357          "Use mangleCXXDtor for destructor decls!");
6358   CXXNameMangler Mangler(*this, Out);
6359   Mangler.getStream() << "_ZT";
6360   if (!Thunk.Return.isEmpty())
6361     Mangler.getStream() << 'c';
6362 
6363   // Mangle the 'this' pointer adjustment.
6364   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
6365                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
6366 
6367   // Mangle the return pointer adjustment if there is one.
6368   if (!Thunk.Return.isEmpty())
6369     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
6370                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
6371 
6372   Mangler.mangleFunctionEncoding(MD);
6373 }
6374 
6375 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
6376     const CXXDestructorDecl *DD, CXXDtorType Type,
6377     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
6378   //  <special-name> ::= T <call-offset> <base encoding>
6379   //                      # base is the nominal target function of thunk
6380   CXXNameMangler Mangler(*this, Out, DD, Type);
6381   Mangler.getStream() << "_ZT";
6382 
6383   // Mangle the 'this' pointer adjustment.
6384   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
6385                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
6386 
6387   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
6388 }
6389 
6390 /// Returns the mangled name for a guard variable for the passed in VarDecl.
6391 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
6392                                                          raw_ostream &Out) {
6393   //  <special-name> ::= GV <object name>       # Guard variable for one-time
6394   //                                            # initialization
6395   CXXNameMangler Mangler(*this, Out);
6396   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
6397   // be a bug that is fixed in trunk.
6398   Mangler.getStream() << "_ZGV";
6399   Mangler.mangleName(D);
6400 }
6401 
6402 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
6403                                                         raw_ostream &Out) {
6404   // These symbols are internal in the Itanium ABI, so the names don't matter.
6405   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
6406   // avoid duplicate symbols.
6407   Out << "__cxx_global_var_init";
6408 }
6409 
6410 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
6411                                                              raw_ostream &Out) {
6412   // Prefix the mangling of D with __dtor_.
6413   CXXNameMangler Mangler(*this, Out);
6414   Mangler.getStream() << "__dtor_";
6415   if (shouldMangleDeclName(D))
6416     Mangler.mangle(D);
6417   else
6418     Mangler.getStream() << D->getName();
6419 }
6420 
6421 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
6422                                                            raw_ostream &Out) {
6423   // Clang generates these internal-linkage functions as part of its
6424   // implementation of the XL ABI.
6425   CXXNameMangler Mangler(*this, Out);
6426   Mangler.getStream() << "__finalize_";
6427   if (shouldMangleDeclName(D))
6428     Mangler.mangle(D);
6429   else
6430     Mangler.getStream() << D->getName();
6431 }
6432 
6433 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
6434     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6435   CXXNameMangler Mangler(*this, Out);
6436   Mangler.getStream() << "__filt_";
6437   if (shouldMangleDeclName(EnclosingDecl))
6438     Mangler.mangle(EnclosingDecl);
6439   else
6440     Mangler.getStream() << EnclosingDecl->getName();
6441 }
6442 
6443 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
6444     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6445   CXXNameMangler Mangler(*this, Out);
6446   Mangler.getStream() << "__fin_";
6447   if (shouldMangleDeclName(EnclosingDecl))
6448     Mangler.mangle(EnclosingDecl);
6449   else
6450     Mangler.getStream() << EnclosingDecl->getName();
6451 }
6452 
6453 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
6454                                                             raw_ostream &Out) {
6455   //  <special-name> ::= TH <object name>
6456   CXXNameMangler Mangler(*this, Out);
6457   Mangler.getStream() << "_ZTH";
6458   Mangler.mangleName(D);
6459 }
6460 
6461 void
6462 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
6463                                                           raw_ostream &Out) {
6464   //  <special-name> ::= TW <object name>
6465   CXXNameMangler Mangler(*this, Out);
6466   Mangler.getStream() << "_ZTW";
6467   Mangler.mangleName(D);
6468 }
6469 
6470 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
6471                                                         unsigned ManglingNumber,
6472                                                         raw_ostream &Out) {
6473   // We match the GCC mangling here.
6474   //  <special-name> ::= GR <object name>
6475   CXXNameMangler Mangler(*this, Out);
6476   Mangler.getStream() << "_ZGR";
6477   Mangler.mangleName(D);
6478   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
6479   Mangler.mangleSeqID(ManglingNumber - 1);
6480 }
6481 
6482 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
6483                                                raw_ostream &Out) {
6484   // <special-name> ::= TV <type>  # virtual table
6485   CXXNameMangler Mangler(*this, Out);
6486   Mangler.getStream() << "_ZTV";
6487   Mangler.mangleNameOrStandardSubstitution(RD);
6488 }
6489 
6490 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6491                                             raw_ostream &Out) {
6492   // <special-name> ::= TT <type>  # VTT structure
6493   CXXNameMangler Mangler(*this, Out);
6494   Mangler.getStream() << "_ZTT";
6495   Mangler.mangleNameOrStandardSubstitution(RD);
6496 }
6497 
6498 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6499                                                    int64_t Offset,
6500                                                    const CXXRecordDecl *Type,
6501                                                    raw_ostream &Out) {
6502   // <special-name> ::= TC <type> <offset number> _ <base type>
6503   CXXNameMangler Mangler(*this, Out);
6504   Mangler.getStream() << "_ZTC";
6505   Mangler.mangleNameOrStandardSubstitution(RD);
6506   Mangler.getStream() << Offset;
6507   Mangler.getStream() << '_';
6508   Mangler.mangleNameOrStandardSubstitution(Type);
6509 }
6510 
6511 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6512   // <special-name> ::= TI <type>  # typeinfo structure
6513   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6514   CXXNameMangler Mangler(*this, Out);
6515   Mangler.getStream() << "_ZTI";
6516   Mangler.mangleType(Ty);
6517 }
6518 
6519 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6520                                                  raw_ostream &Out) {
6521   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6522   CXXNameMangler Mangler(*this, Out);
6523   Mangler.getStream() << "_ZTS";
6524   Mangler.mangleType(Ty);
6525 }
6526 
6527 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6528   mangleCXXRTTIName(Ty, Out);
6529 }
6530 
6531 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6532   llvm_unreachable("Can't mangle string literals");
6533 }
6534 
6535 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6536                                                raw_ostream &Out) {
6537   CXXNameMangler Mangler(*this, Out);
6538   Mangler.mangleLambdaSig(Lambda);
6539 }
6540 
6541 void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M,
6542                                                        raw_ostream &Out) {
6543   // <special-name> ::= GI <module-name>  # module initializer function
6544   CXXNameMangler Mangler(*this, Out);
6545   Mangler.getStream() << "_ZGI";
6546   Mangler.mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
6547   if (M->isModulePartition()) {
6548     // The partition needs including, as partitions can have them too.
6549     auto Partition = M->Name.find(':');
6550     Mangler.mangleModuleNamePrefix(
6551         StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1),
6552         /*IsPartition*/ true);
6553   }
6554 }
6555 
6556 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
6557                                                    DiagnosticsEngine &Diags,
6558                                                    bool IsAux) {
6559   return new ItaniumMangleContextImpl(
6560       Context, Diags,
6561       [](ASTContext &, const NamedDecl *) -> llvm::Optional<unsigned> {
6562         return llvm::None;
6563       },
6564       IsAux);
6565 }
6566 
6567 ItaniumMangleContext *
6568 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags,
6569                              DiscriminatorOverrideTy DiscriminatorOverride,
6570                              bool IsAux) {
6571   return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride,
6572                                       IsAux);
6573 }
6574