1 //===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Program.h" 10 #include "Context.h" 11 #include "Function.h" 12 #include "Integral.h" 13 #include "Opcode.h" 14 #include "PrimType.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclCXX.h" 17 18 using namespace clang; 19 using namespace clang::interp; 20 21 unsigned Program::getOrCreateNativePointer(const void *Ptr) { 22 auto It = NativePointerIndices.find(Ptr); 23 if (It != NativePointerIndices.end()) 24 return It->second; 25 26 unsigned Idx = NativePointers.size(); 27 NativePointers.push_back(Ptr); 28 NativePointerIndices[Ptr] = Idx; 29 return Idx; 30 } 31 32 const void *Program::getNativePointer(unsigned Idx) { 33 return NativePointers[Idx]; 34 } 35 36 unsigned Program::createGlobalString(const StringLiteral *S) { 37 const size_t CharWidth = S->getCharByteWidth(); 38 const size_t BitWidth = CharWidth * Ctx.getCharBit(); 39 40 PrimType CharType; 41 switch (CharWidth) { 42 case 1: 43 CharType = PT_Sint8; 44 break; 45 case 2: 46 CharType = PT_Uint16; 47 break; 48 case 4: 49 CharType = PT_Uint32; 50 break; 51 default: 52 llvm_unreachable("unsupported character width"); 53 } 54 55 // Create a descriptor for the string. 56 Descriptor *Desc = 57 allocateDescriptor(S, CharType, Descriptor::GlobalMD, S->getLength() + 1, 58 /*isConst=*/true, 59 /*isTemporary=*/false, 60 /*isMutable=*/false); 61 62 // Allocate storage for the string. 63 // The byte length does not include the null terminator. 64 unsigned I = Globals.size(); 65 unsigned Sz = Desc->getAllocSize(); 66 auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true, 67 /*isExtern=*/false); 68 G->block()->invokeCtor(); 69 70 new (G->block()->rawData()) InlineDescriptor(Desc); 71 Globals.push_back(G); 72 73 // Construct the string in storage. 74 const Pointer Ptr(G->block()); 75 for (unsigned I = 0, N = S->getLength(); I <= N; ++I) { 76 Pointer Field = Ptr.atIndex(I).narrow(); 77 const uint32_t CodePoint = I == N ? 0 : S->getCodeUnit(I); 78 switch (CharType) { 79 case PT_Sint8: { 80 using T = PrimConv<PT_Sint8>::T; 81 Field.deref<T>() = T::from(CodePoint, BitWidth); 82 Field.initialize(); 83 break; 84 } 85 case PT_Uint16: { 86 using T = PrimConv<PT_Uint16>::T; 87 Field.deref<T>() = T::from(CodePoint, BitWidth); 88 Field.initialize(); 89 break; 90 } 91 case PT_Uint32: { 92 using T = PrimConv<PT_Uint32>::T; 93 Field.deref<T>() = T::from(CodePoint, BitWidth); 94 Field.initialize(); 95 break; 96 } 97 default: 98 llvm_unreachable("unsupported character type"); 99 } 100 } 101 return I; 102 } 103 104 Pointer Program::getPtrGlobal(unsigned Idx) const { 105 assert(Idx < Globals.size()); 106 return Pointer(Globals[Idx]->block()); 107 } 108 109 std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) { 110 if (auto It = GlobalIndices.find(VD); It != GlobalIndices.end()) 111 return It->second; 112 113 // Find any previous declarations which were already evaluated. 114 std::optional<unsigned> Index; 115 for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) { 116 if (auto It = GlobalIndices.find(P); It != GlobalIndices.end()) { 117 Index = It->second; 118 break; 119 } 120 } 121 122 // Map the decl to the existing index. 123 if (Index) 124 GlobalIndices[VD] = *Index; 125 126 return std::nullopt; 127 } 128 129 std::optional<unsigned> Program::getGlobal(const Expr *E) { 130 if (auto It = GlobalIndices.find(E); It != GlobalIndices.end()) 131 return It->second; 132 return std::nullopt; 133 } 134 135 std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD, 136 const Expr *Init) { 137 if (auto Idx = getGlobal(VD)) 138 return Idx; 139 140 if (auto Idx = createGlobal(VD, Init)) { 141 GlobalIndices[VD] = *Idx; 142 return Idx; 143 } 144 return std::nullopt; 145 } 146 147 std::optional<unsigned> Program::getOrCreateDummy(const ValueDecl *VD) { 148 // Dedup blocks since they are immutable and pointers cannot be compared. 149 if (auto It = DummyVariables.find(VD); It != DummyVariables.end()) 150 return It->second; 151 152 QualType QT = VD->getType(); 153 if (const auto *RT = QT->getAs<ReferenceType>()) 154 QT = RT->getPointeeType(); 155 156 Descriptor *Desc; 157 if (std::optional<PrimType> T = Ctx.classify(QT)) 158 Desc = createDescriptor(VD, *T, std::nullopt, true, false); 159 else 160 Desc = createDescriptor(VD, QT.getTypePtr(), std::nullopt, true, false); 161 if (!Desc) 162 Desc = allocateDescriptor(VD); 163 164 assert(Desc); 165 Desc->makeDummy(); 166 167 assert(Desc->isDummy()); 168 169 // Allocate a block for storage. 170 unsigned I = Globals.size(); 171 172 auto *G = new (Allocator, Desc->getAllocSize()) 173 Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true, 174 /*IsExtern=*/false); 175 G->block()->invokeCtor(); 176 177 Globals.push_back(G); 178 DummyVariables[VD] = I; 179 return I; 180 } 181 182 std::optional<unsigned> Program::createGlobal(const ValueDecl *VD, 183 const Expr *Init) { 184 bool IsStatic, IsExtern; 185 if (const auto *Var = dyn_cast<VarDecl>(VD)) { 186 IsStatic = Context::shouldBeGloballyIndexed(VD); 187 IsExtern = Var->hasExternalStorage(); 188 } else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl, 189 TemplateParamObjectDecl>(VD)) { 190 IsStatic = true; 191 IsExtern = false; 192 } else { 193 IsStatic = false; 194 IsExtern = true; 195 } 196 if (auto Idx = createGlobal(VD, VD->getType(), IsStatic, IsExtern, Init)) { 197 for (const Decl *P = VD; P; P = P->getPreviousDecl()) 198 GlobalIndices[P] = *Idx; 199 return *Idx; 200 } 201 return std::nullopt; 202 } 203 204 std::optional<unsigned> Program::createGlobal(const Expr *E) { 205 if (auto Idx = getGlobal(E)) 206 return Idx; 207 if (auto Idx = createGlobal(E, E->getType(), /*isStatic=*/true, 208 /*isExtern=*/false)) { 209 GlobalIndices[E] = *Idx; 210 return *Idx; 211 } 212 return std::nullopt; 213 } 214 215 std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty, 216 bool IsStatic, bool IsExtern, 217 const Expr *Init) { 218 // Create a descriptor for the global. 219 Descriptor *Desc; 220 const bool IsConst = Ty.isConstQualified(); 221 const bool IsTemporary = D.dyn_cast<const Expr *>(); 222 if (std::optional<PrimType> T = Ctx.classify(Ty)) 223 Desc = createDescriptor(D, *T, Descriptor::GlobalMD, IsConst, IsTemporary); 224 else 225 Desc = createDescriptor(D, Ty.getTypePtr(), Descriptor::GlobalMD, IsConst, 226 IsTemporary); 227 228 if (!Desc) 229 return std::nullopt; 230 231 // Allocate a block for storage. 232 unsigned I = Globals.size(); 233 234 auto *G = new (Allocator, Desc->getAllocSize()) 235 Global(Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern); 236 G->block()->invokeCtor(); 237 238 // Initialize InlineDescriptor fields. 239 auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor(); 240 if (!Init) 241 GD->InitState = GlobalInitState::NoInitializer; 242 Globals.push_back(G); 243 244 return I; 245 } 246 247 Function *Program::getFunction(const FunctionDecl *F) { 248 F = F->getCanonicalDecl(); 249 assert(F); 250 auto It = Funcs.find(F); 251 return It == Funcs.end() ? nullptr : It->second.get(); 252 } 253 254 Record *Program::getOrCreateRecord(const RecordDecl *RD) { 255 // Use the actual definition as a key. 256 RD = RD->getDefinition(); 257 if (!RD) 258 return nullptr; 259 260 if (!RD->isCompleteDefinition()) 261 return nullptr; 262 263 // Deduplicate records. 264 if (auto It = Records.find(RD); It != Records.end()) 265 return It->second; 266 267 // We insert nullptr now and replace that later, so recursive calls 268 // to this function with the same RecordDecl don't run into 269 // infinite recursion. 270 Records.insert({RD, nullptr}); 271 272 // Number of bytes required by fields and base classes. 273 unsigned BaseSize = 0; 274 // Number of bytes required by virtual base. 275 unsigned VirtSize = 0; 276 277 // Helper to get a base descriptor. 278 auto GetBaseDesc = [this](const RecordDecl *BD, 279 const Record *BR) -> const Descriptor * { 280 if (!BR) 281 return nullptr; 282 return allocateDescriptor(BD, BR, std::nullopt, /*isConst=*/false, 283 /*isTemporary=*/false, 284 /*isMutable=*/false); 285 }; 286 287 // Reserve space for base classes. 288 Record::BaseList Bases; 289 Record::VirtualBaseList VirtBases; 290 if (const auto *CD = dyn_cast<CXXRecordDecl>(RD)) { 291 for (const CXXBaseSpecifier &Spec : CD->bases()) { 292 if (Spec.isVirtual()) 293 continue; 294 295 // In error cases, the base might not be a RecordType. 296 const auto *RT = Spec.getType()->getAs<RecordType>(); 297 if (!RT) 298 return nullptr; 299 const RecordDecl *BD = RT->getDecl(); 300 const Record *BR = getOrCreateRecord(BD); 301 302 const Descriptor *Desc = GetBaseDesc(BD, BR); 303 if (!Desc) 304 return nullptr; 305 306 BaseSize += align(sizeof(InlineDescriptor)); 307 Bases.push_back({BD, BaseSize, Desc, BR}); 308 BaseSize += align(BR->getSize()); 309 } 310 311 for (const CXXBaseSpecifier &Spec : CD->vbases()) { 312 const auto *RT = Spec.getType()->getAs<RecordType>(); 313 if (!RT) 314 return nullptr; 315 316 const RecordDecl *BD = RT->getDecl(); 317 const Record *BR = getOrCreateRecord(BD); 318 319 const Descriptor *Desc = GetBaseDesc(BD, BR); 320 if (!Desc) 321 return nullptr; 322 323 VirtSize += align(sizeof(InlineDescriptor)); 324 VirtBases.push_back({BD, VirtSize, Desc, BR}); 325 VirtSize += align(BR->getSize()); 326 } 327 } 328 329 // Reserve space for fields. 330 Record::FieldList Fields; 331 for (const FieldDecl *FD : RD->fields()) { 332 // Note that we DO create fields and descriptors 333 // for unnamed bitfields here, even though we later ignore 334 // them everywhere. That's so the FieldDecl's getFieldIndex() matches. 335 336 // Reserve space for the field's descriptor and the offset. 337 BaseSize += align(sizeof(InlineDescriptor)); 338 339 // Classify the field and add its metadata. 340 QualType FT = FD->getType(); 341 const bool IsConst = FT.isConstQualified(); 342 const bool IsMutable = FD->isMutable(); 343 const Descriptor *Desc; 344 if (std::optional<PrimType> T = Ctx.classify(FT)) { 345 Desc = createDescriptor(FD, *T, std::nullopt, IsConst, 346 /*isTemporary=*/false, IsMutable); 347 } else { 348 Desc = createDescriptor(FD, FT.getTypePtr(), std::nullopt, IsConst, 349 /*isTemporary=*/false, IsMutable); 350 } 351 if (!Desc) 352 return nullptr; 353 Fields.push_back({FD, BaseSize, Desc}); 354 BaseSize += align(Desc->getAllocSize()); 355 } 356 357 Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields), 358 std::move(VirtBases), VirtSize, BaseSize); 359 Records[RD] = R; 360 return R; 361 } 362 363 Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty, 364 Descriptor::MetadataSize MDSize, 365 bool IsConst, bool IsTemporary, 366 bool IsMutable, const Expr *Init) { 367 368 // Classes and structures. 369 if (const auto *RT = Ty->getAs<RecordType>()) { 370 if (const auto *Record = getOrCreateRecord(RT->getDecl())) 371 return allocateDescriptor(D, Record, MDSize, IsConst, IsTemporary, 372 IsMutable); 373 } 374 375 // Arrays. 376 if (const auto ArrayType = Ty->getAsArrayTypeUnsafe()) { 377 QualType ElemTy = ArrayType->getElementType(); 378 // Array of well-known bounds. 379 if (auto CAT = dyn_cast<ConstantArrayType>(ArrayType)) { 380 size_t NumElems = CAT->getZExtSize(); 381 if (std::optional<PrimType> T = Ctx.classify(ElemTy)) { 382 // Arrays of primitives. 383 unsigned ElemSize = primSize(*T); 384 if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) { 385 return {}; 386 } 387 return allocateDescriptor(D, *T, MDSize, NumElems, IsConst, IsTemporary, 388 IsMutable); 389 } else { 390 // Arrays of composites. In this case, the array is a list of pointers, 391 // followed by the actual elements. 392 const Descriptor *ElemDesc = createDescriptor( 393 D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary); 394 if (!ElemDesc) 395 return nullptr; 396 unsigned ElemSize = 397 ElemDesc->getAllocSize() + sizeof(InlineDescriptor); 398 if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) 399 return {}; 400 return allocateDescriptor(D, ElemDesc, MDSize, NumElems, IsConst, 401 IsTemporary, IsMutable); 402 } 403 } 404 405 // Array of unknown bounds - cannot be accessed and pointer arithmetic 406 // is forbidden on pointers to such objects. 407 if (isa<IncompleteArrayType>(ArrayType) || 408 isa<VariableArrayType>(ArrayType)) { 409 if (std::optional<PrimType> T = Ctx.classify(ElemTy)) { 410 return allocateDescriptor(D, *T, MDSize, IsTemporary, 411 Descriptor::UnknownSize{}); 412 } else { 413 const Descriptor *Desc = createDescriptor(D, ElemTy.getTypePtr(), 414 MDSize, IsConst, IsTemporary); 415 if (!Desc) 416 return nullptr; 417 return allocateDescriptor(D, Desc, MDSize, IsTemporary, 418 Descriptor::UnknownSize{}); 419 } 420 } 421 } 422 423 // Atomic types. 424 if (const auto *AT = Ty->getAs<AtomicType>()) { 425 const Type *InnerTy = AT->getValueType().getTypePtr(); 426 return createDescriptor(D, InnerTy, MDSize, IsConst, IsTemporary, 427 IsMutable); 428 } 429 430 // Complex types - represented as arrays of elements. 431 if (const auto *CT = Ty->getAs<ComplexType>()) { 432 PrimType ElemTy = *Ctx.classify(CT->getElementType()); 433 return allocateDescriptor(D, ElemTy, MDSize, 2, IsConst, IsTemporary, 434 IsMutable); 435 } 436 437 // Same with vector types. 438 if (const auto *VT = Ty->getAs<VectorType>()) { 439 PrimType ElemTy = *Ctx.classify(VT->getElementType()); 440 return allocateDescriptor(D, ElemTy, MDSize, VT->getNumElements(), IsConst, 441 IsTemporary, IsMutable); 442 } 443 444 return nullptr; 445 } 446