xref: /freebsd/contrib/llvm-project/clang/lib/AST/Interp/EvalEmitter.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- EvalEmitter.cpp - Instruction emitter for the VM -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "EvalEmitter.h"
10 #include "ByteCodeGenError.h"
11 #include "Context.h"
12 #include "IntegralAP.h"
13 #include "Interp.h"
14 #include "Opcode.h"
15 #include "clang/AST/DeclCXX.h"
16 
17 using namespace clang;
18 using namespace clang::interp;
19 
20 EvalEmitter::EvalEmitter(Context &Ctx, Program &P, State &Parent,
21                          InterpStack &Stk, APValue &Result)
22     : Ctx(Ctx), P(P), S(Parent, P, Stk, Ctx, this), Result(Result) {
23   // Create a dummy frame for the interpreter which does not have locals.
24   S.Current =
25       new InterpFrame(S, /*Func=*/nullptr, /*Caller=*/nullptr, CodePtr());
26 }
27 
28 EvalEmitter::~EvalEmitter() {
29   for (auto &[K, V] : Locals) {
30     Block *B = reinterpret_cast<Block *>(V.get());
31     if (B->isInitialized())
32       B->invokeDtor();
33   }
34 }
35 
36 llvm::Expected<bool> EvalEmitter::interpretExpr(const Expr *E) {
37   if (this->visitExpr(E))
38     return true;
39   if (BailLocation)
40     return llvm::make_error<ByteCodeGenError>(*BailLocation);
41   return false;
42 }
43 
44 llvm::Expected<bool> EvalEmitter::interpretDecl(const VarDecl *VD) {
45   if (this->visitDecl(VD))
46     return true;
47   if (BailLocation)
48     return llvm::make_error<ByteCodeGenError>(*BailLocation);
49   return false;
50 }
51 
52 void EvalEmitter::emitLabel(LabelTy Label) {
53   CurrentLabel = Label;
54 }
55 
56 EvalEmitter::LabelTy EvalEmitter::getLabel() { return NextLabel++; }
57 
58 Scope::Local EvalEmitter::createLocal(Descriptor *D) {
59   // Allocate memory for a local.
60   auto Memory = std::make_unique<char[]>(sizeof(Block) + D->getAllocSize());
61   auto *B = new (Memory.get()) Block(D, /*isStatic=*/false);
62   B->invokeCtor();
63 
64   // Initialize local variable inline descriptor.
65   InlineDescriptor &Desc = *reinterpret_cast<InlineDescriptor *>(B->rawData());
66   Desc.Desc = D;
67   Desc.Offset = sizeof(InlineDescriptor);
68   Desc.IsActive = true;
69   Desc.IsBase = false;
70   Desc.IsFieldMutable = false;
71   Desc.IsConst = false;
72   Desc.IsInitialized = false;
73 
74   // Register the local.
75   unsigned Off = Locals.size();
76   Locals.insert({Off, std::move(Memory)});
77   return {Off, D};
78 }
79 
80 bool EvalEmitter::bail(const SourceLocation &Loc) {
81   if (!BailLocation)
82     BailLocation = Loc;
83   return false;
84 }
85 
86 bool EvalEmitter::jumpTrue(const LabelTy &Label) {
87   if (isActive()) {
88     if (S.Stk.pop<bool>())
89       ActiveLabel = Label;
90   }
91   return true;
92 }
93 
94 bool EvalEmitter::jumpFalse(const LabelTy &Label) {
95   if (isActive()) {
96     if (!S.Stk.pop<bool>())
97       ActiveLabel = Label;
98   }
99   return true;
100 }
101 
102 bool EvalEmitter::jump(const LabelTy &Label) {
103   if (isActive())
104     CurrentLabel = ActiveLabel = Label;
105   return true;
106 }
107 
108 bool EvalEmitter::fallthrough(const LabelTy &Label) {
109   if (isActive())
110     ActiveLabel = Label;
111   CurrentLabel = Label;
112   return true;
113 }
114 
115 template <PrimType OpType> bool EvalEmitter::emitRet(const SourceInfo &Info) {
116   if (!isActive())
117     return true;
118   using T = typename PrimConv<OpType>::T;
119   return ReturnValue<T>(S.Stk.pop<T>(), Result);
120 }
121 
122 bool EvalEmitter::emitRetVoid(const SourceInfo &Info) { return true; }
123 
124 bool EvalEmitter::emitRetValue(const SourceInfo &Info) {
125   // Method to recursively traverse composites.
126   std::function<bool(QualType, const Pointer &, APValue &)> Composite;
127   Composite = [this, &Composite](QualType Ty, const Pointer &Ptr, APValue &R) {
128     if (const auto *AT = Ty->getAs<AtomicType>())
129       Ty = AT->getValueType();
130 
131     if (const auto *RT = Ty->getAs<RecordType>()) {
132       const auto *Record = Ptr.getRecord();
133       assert(Record && "Missing record descriptor");
134 
135       bool Ok = true;
136       if (RT->getDecl()->isUnion()) {
137         const FieldDecl *ActiveField = nullptr;
138         APValue Value;
139         for (const auto &F : Record->fields()) {
140           const Pointer &FP = Ptr.atField(F.Offset);
141           QualType FieldTy = F.Decl->getType();
142           if (FP.isActive()) {
143             if (std::optional<PrimType> T = Ctx.classify(FieldTy)) {
144               TYPE_SWITCH(*T, Ok &= ReturnValue<T>(FP.deref<T>(), Value));
145             } else {
146               Ok &= Composite(FieldTy, FP, Value);
147             }
148             break;
149           }
150         }
151         R = APValue(ActiveField, Value);
152       } else {
153         unsigned NF = Record->getNumFields();
154         unsigned NB = Record->getNumBases();
155         unsigned NV = Ptr.isBaseClass() ? 0 : Record->getNumVirtualBases();
156 
157         R = APValue(APValue::UninitStruct(), NB, NF);
158 
159         for (unsigned I = 0; I < NF; ++I) {
160           const Record::Field *FD = Record->getField(I);
161           QualType FieldTy = FD->Decl->getType();
162           const Pointer &FP = Ptr.atField(FD->Offset);
163           APValue &Value = R.getStructField(I);
164 
165           if (std::optional<PrimType> T = Ctx.classify(FieldTy)) {
166             TYPE_SWITCH(*T, Ok &= ReturnValue<T>(FP.deref<T>(), Value));
167           } else {
168             Ok &= Composite(FieldTy, FP, Value);
169           }
170         }
171 
172         for (unsigned I = 0; I < NB; ++I) {
173           const Record::Base *BD = Record->getBase(I);
174           QualType BaseTy = Ctx.getASTContext().getRecordType(BD->Decl);
175           const Pointer &BP = Ptr.atField(BD->Offset);
176           Ok &= Composite(BaseTy, BP, R.getStructBase(I));
177         }
178 
179         for (unsigned I = 0; I < NV; ++I) {
180           const Record::Base *VD = Record->getVirtualBase(I);
181           QualType VirtBaseTy = Ctx.getASTContext().getRecordType(VD->Decl);
182           const Pointer &VP = Ptr.atField(VD->Offset);
183           Ok &= Composite(VirtBaseTy, VP, R.getStructBase(NB + I));
184         }
185       }
186       return Ok;
187     }
188 
189     if (Ty->isIncompleteArrayType()) {
190       R = APValue(APValue::UninitArray(), 0, 0);
191       return true;
192     }
193 
194     if (const auto *AT = Ty->getAsArrayTypeUnsafe()) {
195       const size_t NumElems = Ptr.getNumElems();
196       QualType ElemTy = AT->getElementType();
197       R = APValue(APValue::UninitArray{}, NumElems, NumElems);
198 
199       bool Ok = true;
200       for (unsigned I = 0; I < NumElems; ++I) {
201         APValue &Slot = R.getArrayInitializedElt(I);
202         const Pointer &EP = Ptr.atIndex(I);
203         if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
204           TYPE_SWITCH(*T, Ok &= ReturnValue<T>(EP.deref<T>(), Slot));
205         } else {
206           Ok &= Composite(ElemTy, EP.narrow(), Slot);
207         }
208       }
209       return Ok;
210     }
211 
212     // Complex types.
213     if (const auto *CT = Ty->getAs<ComplexType>()) {
214       QualType ElemTy = CT->getElementType();
215       std::optional<PrimType> ElemT = Ctx.classify(ElemTy);
216       assert(ElemT);
217 
218       if (ElemTy->isIntegerType()) {
219         INT_TYPE_SWITCH(*ElemT, {
220           auto V1 = Ptr.atIndex(0).deref<T>();
221           auto V2 = Ptr.atIndex(1).deref<T>();
222           Result = APValue(V1.toAPSInt(), V2.toAPSInt());
223           return true;
224         });
225       } else if (ElemTy->isFloatingType()) {
226         Result = APValue(Ptr.atIndex(0).deref<Floating>().getAPFloat(),
227                          Ptr.atIndex(1).deref<Floating>().getAPFloat());
228         return true;
229       }
230       return false;
231     }
232     llvm_unreachable("invalid value to return");
233   };
234 
235   // Return the composite type.
236   const auto &Ptr = S.Stk.pop<Pointer>();
237   return Composite(Ptr.getType(), Ptr, Result);
238 }
239 
240 bool EvalEmitter::emitGetPtrLocal(uint32_t I, const SourceInfo &Info) {
241   if (!isActive())
242     return true;
243 
244   Block *B = getLocal(I);
245   S.Stk.push<Pointer>(B, sizeof(InlineDescriptor));
246   return true;
247 }
248 
249 template <PrimType OpType>
250 bool EvalEmitter::emitGetLocal(uint32_t I, const SourceInfo &Info) {
251   if (!isActive())
252     return true;
253 
254   using T = typename PrimConv<OpType>::T;
255 
256   Block *B = getLocal(I);
257   S.Stk.push<T>(*reinterpret_cast<T *>(B->data()));
258   return true;
259 }
260 
261 template <PrimType OpType>
262 bool EvalEmitter::emitSetLocal(uint32_t I, const SourceInfo &Info) {
263   if (!isActive())
264     return true;
265 
266   using T = typename PrimConv<OpType>::T;
267 
268   Block *B = getLocal(I);
269   *reinterpret_cast<T *>(B->data()) = S.Stk.pop<T>();
270   InlineDescriptor &Desc = *reinterpret_cast<InlineDescriptor *>(B->rawData());
271   Desc.IsInitialized = true;
272 
273   return true;
274 }
275 
276 bool EvalEmitter::emitDestroy(uint32_t I, const SourceInfo &Info) {
277   if (!isActive())
278     return true;
279 
280   for (auto &Local : Descriptors[I]) {
281     Block *B = getLocal(Local.Offset);
282     S.deallocate(B);
283   }
284 
285   return true;
286 }
287 
288 //===----------------------------------------------------------------------===//
289 // Opcode evaluators
290 //===----------------------------------------------------------------------===//
291 
292 #define GET_EVAL_IMPL
293 #include "Opcodes.inc"
294 #undef GET_EVAL_IMPL
295