xref: /freebsd/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision cfe333b850cee184f0658cdf4e3001b537d8f120)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/FixedPoint.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 
63 #define DEBUG_TYPE "exprconstant"
64 
65 using namespace clang;
66 using llvm::APInt;
67 using llvm::APSInt;
68 using llvm::APFloat;
69 using llvm::Optional;
70 
71 namespace {
72   struct LValue;
73   class CallStackFrame;
74   class EvalInfo;
75 
76   using SourceLocExprScopeGuard =
77       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
78 
79   static QualType getType(APValue::LValueBase B) {
80     if (!B) return QualType();
81     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
82       // FIXME: It's unclear where we're supposed to take the type from, and
83       // this actually matters for arrays of unknown bound. Eg:
84       //
85       // extern int arr[]; void f() { extern int arr[3]; };
86       // constexpr int *p = &arr[1]; // valid?
87       //
88       // For now, we take the array bound from the most recent declaration.
89       for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
90            Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
91         QualType T = Redecl->getType();
92         if (!T->isIncompleteArrayType())
93           return T;
94       }
95       return D->getType();
96     }
97 
98     if (B.is<TypeInfoLValue>())
99       return B.getTypeInfoType();
100 
101     if (B.is<DynamicAllocLValue>())
102       return B.getDynamicAllocType();
103 
104     const Expr *Base = B.get<const Expr*>();
105 
106     // For a materialized temporary, the type of the temporary we materialized
107     // may not be the type of the expression.
108     if (const MaterializeTemporaryExpr *MTE =
109             dyn_cast<MaterializeTemporaryExpr>(Base)) {
110       SmallVector<const Expr *, 2> CommaLHSs;
111       SmallVector<SubobjectAdjustment, 2> Adjustments;
112       const Expr *Temp = MTE->getSubExpr();
113       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
114                                                                Adjustments);
115       // Keep any cv-qualifiers from the reference if we generated a temporary
116       // for it directly. Otherwise use the type after adjustment.
117       if (!Adjustments.empty())
118         return Inner->getType();
119     }
120 
121     return Base->getType();
122   }
123 
124   /// Get an LValue path entry, which is known to not be an array index, as a
125   /// field declaration.
126   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
127     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
128   }
129   /// Get an LValue path entry, which is known to not be an array index, as a
130   /// base class declaration.
131   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
132     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
133   }
134   /// Determine whether this LValue path entry for a base class names a virtual
135   /// base class.
136   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
137     return E.getAsBaseOrMember().getInt();
138   }
139 
140   /// Given an expression, determine the type used to store the result of
141   /// evaluating that expression.
142   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
143     if (E->isRValue())
144       return E->getType();
145     return Ctx.getLValueReferenceType(E->getType());
146   }
147 
148   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
149   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
150     const FunctionDecl *Callee = CE->getDirectCallee();
151     return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
152   }
153 
154   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
155   /// This will look through a single cast.
156   ///
157   /// Returns null if we couldn't unwrap a function with alloc_size.
158   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
159     if (!E->getType()->isPointerType())
160       return nullptr;
161 
162     E = E->IgnoreParens();
163     // If we're doing a variable assignment from e.g. malloc(N), there will
164     // probably be a cast of some kind. In exotic cases, we might also see a
165     // top-level ExprWithCleanups. Ignore them either way.
166     if (const auto *FE = dyn_cast<FullExpr>(E))
167       E = FE->getSubExpr()->IgnoreParens();
168 
169     if (const auto *Cast = dyn_cast<CastExpr>(E))
170       E = Cast->getSubExpr()->IgnoreParens();
171 
172     if (const auto *CE = dyn_cast<CallExpr>(E))
173       return getAllocSizeAttr(CE) ? CE : nullptr;
174     return nullptr;
175   }
176 
177   /// Determines whether or not the given Base contains a call to a function
178   /// with the alloc_size attribute.
179   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
180     const auto *E = Base.dyn_cast<const Expr *>();
181     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
182   }
183 
184   /// The bound to claim that an array of unknown bound has.
185   /// The value in MostDerivedArraySize is undefined in this case. So, set it
186   /// to an arbitrary value that's likely to loudly break things if it's used.
187   static const uint64_t AssumedSizeForUnsizedArray =
188       std::numeric_limits<uint64_t>::max() / 2;
189 
190   /// Determines if an LValue with the given LValueBase will have an unsized
191   /// array in its designator.
192   /// Find the path length and type of the most-derived subobject in the given
193   /// path, and find the size of the containing array, if any.
194   static unsigned
195   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
196                            ArrayRef<APValue::LValuePathEntry> Path,
197                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
198                            bool &FirstEntryIsUnsizedArray) {
199     // This only accepts LValueBases from APValues, and APValues don't support
200     // arrays that lack size info.
201     assert(!isBaseAnAllocSizeCall(Base) &&
202            "Unsized arrays shouldn't appear here");
203     unsigned MostDerivedLength = 0;
204     Type = getType(Base);
205 
206     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
207       if (Type->isArrayType()) {
208         const ArrayType *AT = Ctx.getAsArrayType(Type);
209         Type = AT->getElementType();
210         MostDerivedLength = I + 1;
211         IsArray = true;
212 
213         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
214           ArraySize = CAT->getSize().getZExtValue();
215         } else {
216           assert(I == 0 && "unexpected unsized array designator");
217           FirstEntryIsUnsizedArray = true;
218           ArraySize = AssumedSizeForUnsizedArray;
219         }
220       } else if (Type->isAnyComplexType()) {
221         const ComplexType *CT = Type->castAs<ComplexType>();
222         Type = CT->getElementType();
223         ArraySize = 2;
224         MostDerivedLength = I + 1;
225         IsArray = true;
226       } else if (const FieldDecl *FD = getAsField(Path[I])) {
227         Type = FD->getType();
228         ArraySize = 0;
229         MostDerivedLength = I + 1;
230         IsArray = false;
231       } else {
232         // Path[I] describes a base class.
233         ArraySize = 0;
234         IsArray = false;
235       }
236     }
237     return MostDerivedLength;
238   }
239 
240   /// A path from a glvalue to a subobject of that glvalue.
241   struct SubobjectDesignator {
242     /// True if the subobject was named in a manner not supported by C++11. Such
243     /// lvalues can still be folded, but they are not core constant expressions
244     /// and we cannot perform lvalue-to-rvalue conversions on them.
245     unsigned Invalid : 1;
246 
247     /// Is this a pointer one past the end of an object?
248     unsigned IsOnePastTheEnd : 1;
249 
250     /// Indicator of whether the first entry is an unsized array.
251     unsigned FirstEntryIsAnUnsizedArray : 1;
252 
253     /// Indicator of whether the most-derived object is an array element.
254     unsigned MostDerivedIsArrayElement : 1;
255 
256     /// The length of the path to the most-derived object of which this is a
257     /// subobject.
258     unsigned MostDerivedPathLength : 28;
259 
260     /// The size of the array of which the most-derived object is an element.
261     /// This will always be 0 if the most-derived object is not an array
262     /// element. 0 is not an indicator of whether or not the most-derived object
263     /// is an array, however, because 0-length arrays are allowed.
264     ///
265     /// If the current array is an unsized array, the value of this is
266     /// undefined.
267     uint64_t MostDerivedArraySize;
268 
269     /// The type of the most derived object referred to by this address.
270     QualType MostDerivedType;
271 
272     typedef APValue::LValuePathEntry PathEntry;
273 
274     /// The entries on the path from the glvalue to the designated subobject.
275     SmallVector<PathEntry, 8> Entries;
276 
277     SubobjectDesignator() : Invalid(true) {}
278 
279     explicit SubobjectDesignator(QualType T)
280         : Invalid(false), IsOnePastTheEnd(false),
281           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
282           MostDerivedPathLength(0), MostDerivedArraySize(0),
283           MostDerivedType(T) {}
284 
285     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
286         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
287           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
288           MostDerivedPathLength(0), MostDerivedArraySize(0) {
289       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
290       if (!Invalid) {
291         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
292         ArrayRef<PathEntry> VEntries = V.getLValuePath();
293         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
294         if (V.getLValueBase()) {
295           bool IsArray = false;
296           bool FirstIsUnsizedArray = false;
297           MostDerivedPathLength = findMostDerivedSubobject(
298               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
299               MostDerivedType, IsArray, FirstIsUnsizedArray);
300           MostDerivedIsArrayElement = IsArray;
301           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
302         }
303       }
304     }
305 
306     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
307                   unsigned NewLength) {
308       if (Invalid)
309         return;
310 
311       assert(Base && "cannot truncate path for null pointer");
312       assert(NewLength <= Entries.size() && "not a truncation");
313 
314       if (NewLength == Entries.size())
315         return;
316       Entries.resize(NewLength);
317 
318       bool IsArray = false;
319       bool FirstIsUnsizedArray = false;
320       MostDerivedPathLength = findMostDerivedSubobject(
321           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
322           FirstIsUnsizedArray);
323       MostDerivedIsArrayElement = IsArray;
324       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
325     }
326 
327     void setInvalid() {
328       Invalid = true;
329       Entries.clear();
330     }
331 
332     /// Determine whether the most derived subobject is an array without a
333     /// known bound.
334     bool isMostDerivedAnUnsizedArray() const {
335       assert(!Invalid && "Calling this makes no sense on invalid designators");
336       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
337     }
338 
339     /// Determine what the most derived array's size is. Results in an assertion
340     /// failure if the most derived array lacks a size.
341     uint64_t getMostDerivedArraySize() const {
342       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
343       return MostDerivedArraySize;
344     }
345 
346     /// Determine whether this is a one-past-the-end pointer.
347     bool isOnePastTheEnd() const {
348       assert(!Invalid);
349       if (IsOnePastTheEnd)
350         return true;
351       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
352           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
353               MostDerivedArraySize)
354         return true;
355       return false;
356     }
357 
358     /// Get the range of valid index adjustments in the form
359     ///   {maximum value that can be subtracted from this pointer,
360     ///    maximum value that can be added to this pointer}
361     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
362       if (Invalid || isMostDerivedAnUnsizedArray())
363         return {0, 0};
364 
365       // [expr.add]p4: For the purposes of these operators, a pointer to a
366       // nonarray object behaves the same as a pointer to the first element of
367       // an array of length one with the type of the object as its element type.
368       bool IsArray = MostDerivedPathLength == Entries.size() &&
369                      MostDerivedIsArrayElement;
370       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
371                                     : (uint64_t)IsOnePastTheEnd;
372       uint64_t ArraySize =
373           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
374       return {ArrayIndex, ArraySize - ArrayIndex};
375     }
376 
377     /// Check that this refers to a valid subobject.
378     bool isValidSubobject() const {
379       if (Invalid)
380         return false;
381       return !isOnePastTheEnd();
382     }
383     /// Check that this refers to a valid subobject, and if not, produce a
384     /// relevant diagnostic and set the designator as invalid.
385     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
386 
387     /// Get the type of the designated object.
388     QualType getType(ASTContext &Ctx) const {
389       assert(!Invalid && "invalid designator has no subobject type");
390       return MostDerivedPathLength == Entries.size()
391                  ? MostDerivedType
392                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
393     }
394 
395     /// Update this designator to refer to the first element within this array.
396     void addArrayUnchecked(const ConstantArrayType *CAT) {
397       Entries.push_back(PathEntry::ArrayIndex(0));
398 
399       // This is a most-derived object.
400       MostDerivedType = CAT->getElementType();
401       MostDerivedIsArrayElement = true;
402       MostDerivedArraySize = CAT->getSize().getZExtValue();
403       MostDerivedPathLength = Entries.size();
404     }
405     /// Update this designator to refer to the first element within the array of
406     /// elements of type T. This is an array of unknown size.
407     void addUnsizedArrayUnchecked(QualType ElemTy) {
408       Entries.push_back(PathEntry::ArrayIndex(0));
409 
410       MostDerivedType = ElemTy;
411       MostDerivedIsArrayElement = true;
412       // The value in MostDerivedArraySize is undefined in this case. So, set it
413       // to an arbitrary value that's likely to loudly break things if it's
414       // used.
415       MostDerivedArraySize = AssumedSizeForUnsizedArray;
416       MostDerivedPathLength = Entries.size();
417     }
418     /// Update this designator to refer to the given base or member of this
419     /// object.
420     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
421       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
422 
423       // If this isn't a base class, it's a new most-derived object.
424       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
425         MostDerivedType = FD->getType();
426         MostDerivedIsArrayElement = false;
427         MostDerivedArraySize = 0;
428         MostDerivedPathLength = Entries.size();
429       }
430     }
431     /// Update this designator to refer to the given complex component.
432     void addComplexUnchecked(QualType EltTy, bool Imag) {
433       Entries.push_back(PathEntry::ArrayIndex(Imag));
434 
435       // This is technically a most-derived object, though in practice this
436       // is unlikely to matter.
437       MostDerivedType = EltTy;
438       MostDerivedIsArrayElement = true;
439       MostDerivedArraySize = 2;
440       MostDerivedPathLength = Entries.size();
441     }
442     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
443     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
444                                    const APSInt &N);
445     /// Add N to the address of this subobject.
446     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
447       if (Invalid || !N) return;
448       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
449       if (isMostDerivedAnUnsizedArray()) {
450         diagnoseUnsizedArrayPointerArithmetic(Info, E);
451         // Can't verify -- trust that the user is doing the right thing (or if
452         // not, trust that the caller will catch the bad behavior).
453         // FIXME: Should we reject if this overflows, at least?
454         Entries.back() = PathEntry::ArrayIndex(
455             Entries.back().getAsArrayIndex() + TruncatedN);
456         return;
457       }
458 
459       // [expr.add]p4: For the purposes of these operators, a pointer to a
460       // nonarray object behaves the same as a pointer to the first element of
461       // an array of length one with the type of the object as its element type.
462       bool IsArray = MostDerivedPathLength == Entries.size() &&
463                      MostDerivedIsArrayElement;
464       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
465                                     : (uint64_t)IsOnePastTheEnd;
466       uint64_t ArraySize =
467           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
468 
469       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
470         // Calculate the actual index in a wide enough type, so we can include
471         // it in the note.
472         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
473         (llvm::APInt&)N += ArrayIndex;
474         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
475         diagnosePointerArithmetic(Info, E, N);
476         setInvalid();
477         return;
478       }
479 
480       ArrayIndex += TruncatedN;
481       assert(ArrayIndex <= ArraySize &&
482              "bounds check succeeded for out-of-bounds index");
483 
484       if (IsArray)
485         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
486       else
487         IsOnePastTheEnd = (ArrayIndex != 0);
488     }
489   };
490 
491   /// A stack frame in the constexpr call stack.
492   class CallStackFrame : public interp::Frame {
493   public:
494     EvalInfo &Info;
495 
496     /// Parent - The caller of this stack frame.
497     CallStackFrame *Caller;
498 
499     /// Callee - The function which was called.
500     const FunctionDecl *Callee;
501 
502     /// This - The binding for the this pointer in this call, if any.
503     const LValue *This;
504 
505     /// Arguments - Parameter bindings for this function call, indexed by
506     /// parameters' function scope indices.
507     APValue *Arguments;
508 
509     /// Source location information about the default argument or default
510     /// initializer expression we're evaluating, if any.
511     CurrentSourceLocExprScope CurSourceLocExprScope;
512 
513     // Note that we intentionally use std::map here so that references to
514     // values are stable.
515     typedef std::pair<const void *, unsigned> MapKeyTy;
516     typedef std::map<MapKeyTy, APValue> MapTy;
517     /// Temporaries - Temporary lvalues materialized within this stack frame.
518     MapTy Temporaries;
519 
520     /// CallLoc - The location of the call expression for this call.
521     SourceLocation CallLoc;
522 
523     /// Index - The call index of this call.
524     unsigned Index;
525 
526     /// The stack of integers for tracking version numbers for temporaries.
527     SmallVector<unsigned, 2> TempVersionStack = {1};
528     unsigned CurTempVersion = TempVersionStack.back();
529 
530     unsigned getTempVersion() const { return TempVersionStack.back(); }
531 
532     void pushTempVersion() {
533       TempVersionStack.push_back(++CurTempVersion);
534     }
535 
536     void popTempVersion() {
537       TempVersionStack.pop_back();
538     }
539 
540     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
541     // on the overall stack usage of deeply-recursing constexpr evaluations.
542     // (We should cache this map rather than recomputing it repeatedly.)
543     // But let's try this and see how it goes; we can look into caching the map
544     // as a later change.
545 
546     /// LambdaCaptureFields - Mapping from captured variables/this to
547     /// corresponding data members in the closure class.
548     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
549     FieldDecl *LambdaThisCaptureField;
550 
551     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
552                    const FunctionDecl *Callee, const LValue *This,
553                    APValue *Arguments);
554     ~CallStackFrame();
555 
556     // Return the temporary for Key whose version number is Version.
557     APValue *getTemporary(const void *Key, unsigned Version) {
558       MapKeyTy KV(Key, Version);
559       auto LB = Temporaries.lower_bound(KV);
560       if (LB != Temporaries.end() && LB->first == KV)
561         return &LB->second;
562       // Pair (Key,Version) wasn't found in the map. Check that no elements
563       // in the map have 'Key' as their key.
564       assert((LB == Temporaries.end() || LB->first.first != Key) &&
565              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
566              "Element with key 'Key' found in map");
567       return nullptr;
568     }
569 
570     // Return the current temporary for Key in the map.
571     APValue *getCurrentTemporary(const void *Key) {
572       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
573       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
574         return &std::prev(UB)->second;
575       return nullptr;
576     }
577 
578     // Return the version number of the current temporary for Key.
579     unsigned getCurrentTemporaryVersion(const void *Key) const {
580       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
581       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
582         return std::prev(UB)->first.second;
583       return 0;
584     }
585 
586     /// Allocate storage for an object of type T in this stack frame.
587     /// Populates LV with a handle to the created object. Key identifies
588     /// the temporary within the stack frame, and must not be reused without
589     /// bumping the temporary version number.
590     template<typename KeyT>
591     APValue &createTemporary(const KeyT *Key, QualType T,
592                              bool IsLifetimeExtended, LValue &LV);
593 
594     void describe(llvm::raw_ostream &OS) override;
595 
596     Frame *getCaller() const override { return Caller; }
597     SourceLocation getCallLocation() const override { return CallLoc; }
598     const FunctionDecl *getCallee() const override { return Callee; }
599 
600     bool isStdFunction() const {
601       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
602         if (DC->isStdNamespace())
603           return true;
604       return false;
605     }
606   };
607 
608   /// Temporarily override 'this'.
609   class ThisOverrideRAII {
610   public:
611     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
612         : Frame(Frame), OldThis(Frame.This) {
613       if (Enable)
614         Frame.This = NewThis;
615     }
616     ~ThisOverrideRAII() {
617       Frame.This = OldThis;
618     }
619   private:
620     CallStackFrame &Frame;
621     const LValue *OldThis;
622   };
623 }
624 
625 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
626                               const LValue &This, QualType ThisType);
627 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
628                               APValue::LValueBase LVBase, APValue &Value,
629                               QualType T);
630 
631 namespace {
632   /// A cleanup, and a flag indicating whether it is lifetime-extended.
633   class Cleanup {
634     llvm::PointerIntPair<APValue*, 1, bool> Value;
635     APValue::LValueBase Base;
636     QualType T;
637 
638   public:
639     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
640             bool IsLifetimeExtended)
641         : Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
642 
643     bool isLifetimeExtended() const { return Value.getInt(); }
644     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
645       if (RunDestructors) {
646         SourceLocation Loc;
647         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
648           Loc = VD->getLocation();
649         else if (const Expr *E = Base.dyn_cast<const Expr*>())
650           Loc = E->getExprLoc();
651         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
652       }
653       *Value.getPointer() = APValue();
654       return true;
655     }
656 
657     bool hasSideEffect() {
658       return T.isDestructedType();
659     }
660   };
661 
662   /// A reference to an object whose construction we are currently evaluating.
663   struct ObjectUnderConstruction {
664     APValue::LValueBase Base;
665     ArrayRef<APValue::LValuePathEntry> Path;
666     friend bool operator==(const ObjectUnderConstruction &LHS,
667                            const ObjectUnderConstruction &RHS) {
668       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
669     }
670     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
671       return llvm::hash_combine(Obj.Base, Obj.Path);
672     }
673   };
674   enum class ConstructionPhase {
675     None,
676     Bases,
677     AfterBases,
678     AfterFields,
679     Destroying,
680     DestroyingBases
681   };
682 }
683 
684 namespace llvm {
685 template<> struct DenseMapInfo<ObjectUnderConstruction> {
686   using Base = DenseMapInfo<APValue::LValueBase>;
687   static ObjectUnderConstruction getEmptyKey() {
688     return {Base::getEmptyKey(), {}}; }
689   static ObjectUnderConstruction getTombstoneKey() {
690     return {Base::getTombstoneKey(), {}};
691   }
692   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
693     return hash_value(Object);
694   }
695   static bool isEqual(const ObjectUnderConstruction &LHS,
696                       const ObjectUnderConstruction &RHS) {
697     return LHS == RHS;
698   }
699 };
700 }
701 
702 namespace {
703   /// A dynamically-allocated heap object.
704   struct DynAlloc {
705     /// The value of this heap-allocated object.
706     APValue Value;
707     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
708     /// or a CallExpr (the latter is for direct calls to operator new inside
709     /// std::allocator<T>::allocate).
710     const Expr *AllocExpr = nullptr;
711 
712     enum Kind {
713       New,
714       ArrayNew,
715       StdAllocator
716     };
717 
718     /// Get the kind of the allocation. This must match between allocation
719     /// and deallocation.
720     Kind getKind() const {
721       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
722         return NE->isArray() ? ArrayNew : New;
723       assert(isa<CallExpr>(AllocExpr));
724       return StdAllocator;
725     }
726   };
727 
728   struct DynAllocOrder {
729     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
730       return L.getIndex() < R.getIndex();
731     }
732   };
733 
734   /// EvalInfo - This is a private struct used by the evaluator to capture
735   /// information about a subexpression as it is folded.  It retains information
736   /// about the AST context, but also maintains information about the folded
737   /// expression.
738   ///
739   /// If an expression could be evaluated, it is still possible it is not a C
740   /// "integer constant expression" or constant expression.  If not, this struct
741   /// captures information about how and why not.
742   ///
743   /// One bit of information passed *into* the request for constant folding
744   /// indicates whether the subexpression is "evaluated" or not according to C
745   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
746   /// evaluate the expression regardless of what the RHS is, but C only allows
747   /// certain things in certain situations.
748   class EvalInfo : public interp::State {
749   public:
750     ASTContext &Ctx;
751 
752     /// EvalStatus - Contains information about the evaluation.
753     Expr::EvalStatus &EvalStatus;
754 
755     /// CurrentCall - The top of the constexpr call stack.
756     CallStackFrame *CurrentCall;
757 
758     /// CallStackDepth - The number of calls in the call stack right now.
759     unsigned CallStackDepth;
760 
761     /// NextCallIndex - The next call index to assign.
762     unsigned NextCallIndex;
763 
764     /// StepsLeft - The remaining number of evaluation steps we're permitted
765     /// to perform. This is essentially a limit for the number of statements
766     /// we will evaluate.
767     unsigned StepsLeft;
768 
769     /// Enable the experimental new constant interpreter. If an expression is
770     /// not supported by the interpreter, an error is triggered.
771     bool EnableNewConstInterp;
772 
773     /// BottomFrame - The frame in which evaluation started. This must be
774     /// initialized after CurrentCall and CallStackDepth.
775     CallStackFrame BottomFrame;
776 
777     /// A stack of values whose lifetimes end at the end of some surrounding
778     /// evaluation frame.
779     llvm::SmallVector<Cleanup, 16> CleanupStack;
780 
781     /// EvaluatingDecl - This is the declaration whose initializer is being
782     /// evaluated, if any.
783     APValue::LValueBase EvaluatingDecl;
784 
785     enum class EvaluatingDeclKind {
786       None,
787       /// We're evaluating the construction of EvaluatingDecl.
788       Ctor,
789       /// We're evaluating the destruction of EvaluatingDecl.
790       Dtor,
791     };
792     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
793 
794     /// EvaluatingDeclValue - This is the value being constructed for the
795     /// declaration whose initializer is being evaluated, if any.
796     APValue *EvaluatingDeclValue;
797 
798     /// Set of objects that are currently being constructed.
799     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
800         ObjectsUnderConstruction;
801 
802     /// Current heap allocations, along with the location where each was
803     /// allocated. We use std::map here because we need stable addresses
804     /// for the stored APValues.
805     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
806 
807     /// The number of heap allocations performed so far in this evaluation.
808     unsigned NumHeapAllocs = 0;
809 
810     struct EvaluatingConstructorRAII {
811       EvalInfo &EI;
812       ObjectUnderConstruction Object;
813       bool DidInsert;
814       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
815                                 bool HasBases)
816           : EI(EI), Object(Object) {
817         DidInsert =
818             EI.ObjectsUnderConstruction
819                 .insert({Object, HasBases ? ConstructionPhase::Bases
820                                           : ConstructionPhase::AfterBases})
821                 .second;
822       }
823       void finishedConstructingBases() {
824         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
825       }
826       void finishedConstructingFields() {
827         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
828       }
829       ~EvaluatingConstructorRAII() {
830         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
831       }
832     };
833 
834     struct EvaluatingDestructorRAII {
835       EvalInfo &EI;
836       ObjectUnderConstruction Object;
837       bool DidInsert;
838       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
839           : EI(EI), Object(Object) {
840         DidInsert = EI.ObjectsUnderConstruction
841                         .insert({Object, ConstructionPhase::Destroying})
842                         .second;
843       }
844       void startedDestroyingBases() {
845         EI.ObjectsUnderConstruction[Object] =
846             ConstructionPhase::DestroyingBases;
847       }
848       ~EvaluatingDestructorRAII() {
849         if (DidInsert)
850           EI.ObjectsUnderConstruction.erase(Object);
851       }
852     };
853 
854     ConstructionPhase
855     isEvaluatingCtorDtor(APValue::LValueBase Base,
856                          ArrayRef<APValue::LValuePathEntry> Path) {
857       return ObjectsUnderConstruction.lookup({Base, Path});
858     }
859 
860     /// If we're currently speculatively evaluating, the outermost call stack
861     /// depth at which we can mutate state, otherwise 0.
862     unsigned SpeculativeEvaluationDepth = 0;
863 
864     /// The current array initialization index, if we're performing array
865     /// initialization.
866     uint64_t ArrayInitIndex = -1;
867 
868     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
869     /// notes attached to it will also be stored, otherwise they will not be.
870     bool HasActiveDiagnostic;
871 
872     /// Have we emitted a diagnostic explaining why we couldn't constant
873     /// fold (not just why it's not strictly a constant expression)?
874     bool HasFoldFailureDiagnostic;
875 
876     /// Whether or not we're in a context where the front end requires a
877     /// constant value.
878     bool InConstantContext;
879 
880     /// Whether we're checking that an expression is a potential constant
881     /// expression. If so, do not fail on constructs that could become constant
882     /// later on (such as a use of an undefined global).
883     bool CheckingPotentialConstantExpression = false;
884 
885     /// Whether we're checking for an expression that has undefined behavior.
886     /// If so, we will produce warnings if we encounter an operation that is
887     /// always undefined.
888     bool CheckingForUndefinedBehavior = false;
889 
890     enum EvaluationMode {
891       /// Evaluate as a constant expression. Stop if we find that the expression
892       /// is not a constant expression.
893       EM_ConstantExpression,
894 
895       /// Evaluate as a constant expression. Stop if we find that the expression
896       /// is not a constant expression. Some expressions can be retried in the
897       /// optimizer if we don't constant fold them here, but in an unevaluated
898       /// context we try to fold them immediately since the optimizer never
899       /// gets a chance to look at it.
900       EM_ConstantExpressionUnevaluated,
901 
902       /// Fold the expression to a constant. Stop if we hit a side-effect that
903       /// we can't model.
904       EM_ConstantFold,
905 
906       /// Evaluate in any way we know how. Don't worry about side-effects that
907       /// can't be modeled.
908       EM_IgnoreSideEffects,
909     } EvalMode;
910 
911     /// Are we checking whether the expression is a potential constant
912     /// expression?
913     bool checkingPotentialConstantExpression() const override  {
914       return CheckingPotentialConstantExpression;
915     }
916 
917     /// Are we checking an expression for overflow?
918     // FIXME: We should check for any kind of undefined or suspicious behavior
919     // in such constructs, not just overflow.
920     bool checkingForUndefinedBehavior() const override {
921       return CheckingForUndefinedBehavior;
922     }
923 
924     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
925         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
926           CallStackDepth(0), NextCallIndex(1),
927           StepsLeft(C.getLangOpts().ConstexprStepLimit),
928           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
929           BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
930           EvaluatingDecl((const ValueDecl *)nullptr),
931           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
932           HasFoldFailureDiagnostic(false), InConstantContext(false),
933           EvalMode(Mode) {}
934 
935     ~EvalInfo() {
936       discardCleanups();
937     }
938 
939     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
940                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
941       EvaluatingDecl = Base;
942       IsEvaluatingDecl = EDK;
943       EvaluatingDeclValue = &Value;
944     }
945 
946     bool CheckCallLimit(SourceLocation Loc) {
947       // Don't perform any constexpr calls (other than the call we're checking)
948       // when checking a potential constant expression.
949       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
950         return false;
951       if (NextCallIndex == 0) {
952         // NextCallIndex has wrapped around.
953         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
954         return false;
955       }
956       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
957         return true;
958       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
959         << getLangOpts().ConstexprCallDepth;
960       return false;
961     }
962 
963     std::pair<CallStackFrame *, unsigned>
964     getCallFrameAndDepth(unsigned CallIndex) {
965       assert(CallIndex && "no call index in getCallFrameAndDepth");
966       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
967       // be null in this loop.
968       unsigned Depth = CallStackDepth;
969       CallStackFrame *Frame = CurrentCall;
970       while (Frame->Index > CallIndex) {
971         Frame = Frame->Caller;
972         --Depth;
973       }
974       if (Frame->Index == CallIndex)
975         return {Frame, Depth};
976       return {nullptr, 0};
977     }
978 
979     bool nextStep(const Stmt *S) {
980       if (!StepsLeft) {
981         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
982         return false;
983       }
984       --StepsLeft;
985       return true;
986     }
987 
988     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
989 
990     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
991       Optional<DynAlloc*> Result;
992       auto It = HeapAllocs.find(DA);
993       if (It != HeapAllocs.end())
994         Result = &It->second;
995       return Result;
996     }
997 
998     /// Information about a stack frame for std::allocator<T>::[de]allocate.
999     struct StdAllocatorCaller {
1000       unsigned FrameIndex;
1001       QualType ElemType;
1002       explicit operator bool() const { return FrameIndex != 0; };
1003     };
1004 
1005     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1006       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1007            Call = Call->Caller) {
1008         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1009         if (!MD)
1010           continue;
1011         const IdentifierInfo *FnII = MD->getIdentifier();
1012         if (!FnII || !FnII->isStr(FnName))
1013           continue;
1014 
1015         const auto *CTSD =
1016             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1017         if (!CTSD)
1018           continue;
1019 
1020         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1021         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1022         if (CTSD->isInStdNamespace() && ClassII &&
1023             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1024             TAL[0].getKind() == TemplateArgument::Type)
1025           return {Call->Index, TAL[0].getAsType()};
1026       }
1027 
1028       return {};
1029     }
1030 
1031     void performLifetimeExtension() {
1032       // Disable the cleanups for lifetime-extended temporaries.
1033       CleanupStack.erase(
1034           std::remove_if(CleanupStack.begin(), CleanupStack.end(),
1035                          [](Cleanup &C) { return C.isLifetimeExtended(); }),
1036           CleanupStack.end());
1037      }
1038 
1039     /// Throw away any remaining cleanups at the end of evaluation. If any
1040     /// cleanups would have had a side-effect, note that as an unmodeled
1041     /// side-effect and return false. Otherwise, return true.
1042     bool discardCleanups() {
1043       for (Cleanup &C : CleanupStack) {
1044         if (C.hasSideEffect() && !noteSideEffect()) {
1045           CleanupStack.clear();
1046           return false;
1047         }
1048       }
1049       CleanupStack.clear();
1050       return true;
1051     }
1052 
1053   private:
1054     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1055     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1056 
1057     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1058     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1059 
1060     void setFoldFailureDiagnostic(bool Flag) override {
1061       HasFoldFailureDiagnostic = Flag;
1062     }
1063 
1064     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1065 
1066     ASTContext &getCtx() const override { return Ctx; }
1067 
1068     // If we have a prior diagnostic, it will be noting that the expression
1069     // isn't a constant expression. This diagnostic is more important,
1070     // unless we require this evaluation to produce a constant expression.
1071     //
1072     // FIXME: We might want to show both diagnostics to the user in
1073     // EM_ConstantFold mode.
1074     bool hasPriorDiagnostic() override {
1075       if (!EvalStatus.Diag->empty()) {
1076         switch (EvalMode) {
1077         case EM_ConstantFold:
1078         case EM_IgnoreSideEffects:
1079           if (!HasFoldFailureDiagnostic)
1080             break;
1081           // We've already failed to fold something. Keep that diagnostic.
1082           LLVM_FALLTHROUGH;
1083         case EM_ConstantExpression:
1084         case EM_ConstantExpressionUnevaluated:
1085           setActiveDiagnostic(false);
1086           return true;
1087         }
1088       }
1089       return false;
1090     }
1091 
1092     unsigned getCallStackDepth() override { return CallStackDepth; }
1093 
1094   public:
1095     /// Should we continue evaluation after encountering a side-effect that we
1096     /// couldn't model?
1097     bool keepEvaluatingAfterSideEffect() {
1098       switch (EvalMode) {
1099       case EM_IgnoreSideEffects:
1100         return true;
1101 
1102       case EM_ConstantExpression:
1103       case EM_ConstantExpressionUnevaluated:
1104       case EM_ConstantFold:
1105         // By default, assume any side effect might be valid in some other
1106         // evaluation of this expression from a different context.
1107         return checkingPotentialConstantExpression() ||
1108                checkingForUndefinedBehavior();
1109       }
1110       llvm_unreachable("Missed EvalMode case");
1111     }
1112 
1113     /// Note that we have had a side-effect, and determine whether we should
1114     /// keep evaluating.
1115     bool noteSideEffect() {
1116       EvalStatus.HasSideEffects = true;
1117       return keepEvaluatingAfterSideEffect();
1118     }
1119 
1120     /// Should we continue evaluation after encountering undefined behavior?
1121     bool keepEvaluatingAfterUndefinedBehavior() {
1122       switch (EvalMode) {
1123       case EM_IgnoreSideEffects:
1124       case EM_ConstantFold:
1125         return true;
1126 
1127       case EM_ConstantExpression:
1128       case EM_ConstantExpressionUnevaluated:
1129         return checkingForUndefinedBehavior();
1130       }
1131       llvm_unreachable("Missed EvalMode case");
1132     }
1133 
1134     /// Note that we hit something that was technically undefined behavior, but
1135     /// that we can evaluate past it (such as signed overflow or floating-point
1136     /// division by zero.)
1137     bool noteUndefinedBehavior() override {
1138       EvalStatus.HasUndefinedBehavior = true;
1139       return keepEvaluatingAfterUndefinedBehavior();
1140     }
1141 
1142     /// Should we continue evaluation as much as possible after encountering a
1143     /// construct which can't be reduced to a value?
1144     bool keepEvaluatingAfterFailure() const override {
1145       if (!StepsLeft)
1146         return false;
1147 
1148       switch (EvalMode) {
1149       case EM_ConstantExpression:
1150       case EM_ConstantExpressionUnevaluated:
1151       case EM_ConstantFold:
1152       case EM_IgnoreSideEffects:
1153         return checkingPotentialConstantExpression() ||
1154                checkingForUndefinedBehavior();
1155       }
1156       llvm_unreachable("Missed EvalMode case");
1157     }
1158 
1159     /// Notes that we failed to evaluate an expression that other expressions
1160     /// directly depend on, and determine if we should keep evaluating. This
1161     /// should only be called if we actually intend to keep evaluating.
1162     ///
1163     /// Call noteSideEffect() instead if we may be able to ignore the value that
1164     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1165     ///
1166     /// (Foo(), 1)      // use noteSideEffect
1167     /// (Foo() || true) // use noteSideEffect
1168     /// Foo() + 1       // use noteFailure
1169     LLVM_NODISCARD bool noteFailure() {
1170       // Failure when evaluating some expression often means there is some
1171       // subexpression whose evaluation was skipped. Therefore, (because we
1172       // don't track whether we skipped an expression when unwinding after an
1173       // evaluation failure) every evaluation failure that bubbles up from a
1174       // subexpression implies that a side-effect has potentially happened. We
1175       // skip setting the HasSideEffects flag to true until we decide to
1176       // continue evaluating after that point, which happens here.
1177       bool KeepGoing = keepEvaluatingAfterFailure();
1178       EvalStatus.HasSideEffects |= KeepGoing;
1179       return KeepGoing;
1180     }
1181 
1182     class ArrayInitLoopIndex {
1183       EvalInfo &Info;
1184       uint64_t OuterIndex;
1185 
1186     public:
1187       ArrayInitLoopIndex(EvalInfo &Info)
1188           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1189         Info.ArrayInitIndex = 0;
1190       }
1191       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1192 
1193       operator uint64_t&() { return Info.ArrayInitIndex; }
1194     };
1195   };
1196 
1197   /// Object used to treat all foldable expressions as constant expressions.
1198   struct FoldConstant {
1199     EvalInfo &Info;
1200     bool Enabled;
1201     bool HadNoPriorDiags;
1202     EvalInfo::EvaluationMode OldMode;
1203 
1204     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1205       : Info(Info),
1206         Enabled(Enabled),
1207         HadNoPriorDiags(Info.EvalStatus.Diag &&
1208                         Info.EvalStatus.Diag->empty() &&
1209                         !Info.EvalStatus.HasSideEffects),
1210         OldMode(Info.EvalMode) {
1211       if (Enabled)
1212         Info.EvalMode = EvalInfo::EM_ConstantFold;
1213     }
1214     void keepDiagnostics() { Enabled = false; }
1215     ~FoldConstant() {
1216       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1217           !Info.EvalStatus.HasSideEffects)
1218         Info.EvalStatus.Diag->clear();
1219       Info.EvalMode = OldMode;
1220     }
1221   };
1222 
1223   /// RAII object used to set the current evaluation mode to ignore
1224   /// side-effects.
1225   struct IgnoreSideEffectsRAII {
1226     EvalInfo &Info;
1227     EvalInfo::EvaluationMode OldMode;
1228     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1229         : Info(Info), OldMode(Info.EvalMode) {
1230       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1231     }
1232 
1233     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1234   };
1235 
1236   /// RAII object used to optionally suppress diagnostics and side-effects from
1237   /// a speculative evaluation.
1238   class SpeculativeEvaluationRAII {
1239     EvalInfo *Info = nullptr;
1240     Expr::EvalStatus OldStatus;
1241     unsigned OldSpeculativeEvaluationDepth;
1242 
1243     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1244       Info = Other.Info;
1245       OldStatus = Other.OldStatus;
1246       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1247       Other.Info = nullptr;
1248     }
1249 
1250     void maybeRestoreState() {
1251       if (!Info)
1252         return;
1253 
1254       Info->EvalStatus = OldStatus;
1255       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1256     }
1257 
1258   public:
1259     SpeculativeEvaluationRAII() = default;
1260 
1261     SpeculativeEvaluationRAII(
1262         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1263         : Info(&Info), OldStatus(Info.EvalStatus),
1264           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1265       Info.EvalStatus.Diag = NewDiag;
1266       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1267     }
1268 
1269     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1270     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1271       moveFromAndCancel(std::move(Other));
1272     }
1273 
1274     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1275       maybeRestoreState();
1276       moveFromAndCancel(std::move(Other));
1277       return *this;
1278     }
1279 
1280     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1281   };
1282 
1283   /// RAII object wrapping a full-expression or block scope, and handling
1284   /// the ending of the lifetime of temporaries created within it.
1285   template<bool IsFullExpression>
1286   class ScopeRAII {
1287     EvalInfo &Info;
1288     unsigned OldStackSize;
1289   public:
1290     ScopeRAII(EvalInfo &Info)
1291         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1292       // Push a new temporary version. This is needed to distinguish between
1293       // temporaries created in different iterations of a loop.
1294       Info.CurrentCall->pushTempVersion();
1295     }
1296     bool destroy(bool RunDestructors = true) {
1297       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1298       OldStackSize = -1U;
1299       return OK;
1300     }
1301     ~ScopeRAII() {
1302       if (OldStackSize != -1U)
1303         destroy(false);
1304       // Body moved to a static method to encourage the compiler to inline away
1305       // instances of this class.
1306       Info.CurrentCall->popTempVersion();
1307     }
1308   private:
1309     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1310                         unsigned OldStackSize) {
1311       assert(OldStackSize <= Info.CleanupStack.size() &&
1312              "running cleanups out of order?");
1313 
1314       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1315       // for a full-expression scope.
1316       bool Success = true;
1317       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1318         if (!(IsFullExpression &&
1319               Info.CleanupStack[I - 1].isLifetimeExtended())) {
1320           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1321             Success = false;
1322             break;
1323           }
1324         }
1325       }
1326 
1327       // Compact lifetime-extended cleanups.
1328       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1329       if (IsFullExpression)
1330         NewEnd =
1331             std::remove_if(NewEnd, Info.CleanupStack.end(),
1332                            [](Cleanup &C) { return !C.isLifetimeExtended(); });
1333       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1334       return Success;
1335     }
1336   };
1337   typedef ScopeRAII<false> BlockScopeRAII;
1338   typedef ScopeRAII<true> FullExpressionRAII;
1339 }
1340 
1341 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1342                                          CheckSubobjectKind CSK) {
1343   if (Invalid)
1344     return false;
1345   if (isOnePastTheEnd()) {
1346     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1347       << CSK;
1348     setInvalid();
1349     return false;
1350   }
1351   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1352   // must actually be at least one array element; even a VLA cannot have a
1353   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1354   return true;
1355 }
1356 
1357 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1358                                                                 const Expr *E) {
1359   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1360   // Do not set the designator as invalid: we can represent this situation,
1361   // and correct handling of __builtin_object_size requires us to do so.
1362 }
1363 
1364 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1365                                                     const Expr *E,
1366                                                     const APSInt &N) {
1367   // If we're complaining, we must be able to statically determine the size of
1368   // the most derived array.
1369   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1370     Info.CCEDiag(E, diag::note_constexpr_array_index)
1371       << N << /*array*/ 0
1372       << static_cast<unsigned>(getMostDerivedArraySize());
1373   else
1374     Info.CCEDiag(E, diag::note_constexpr_array_index)
1375       << N << /*non-array*/ 1;
1376   setInvalid();
1377 }
1378 
1379 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1380                                const FunctionDecl *Callee, const LValue *This,
1381                                APValue *Arguments)
1382     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1383       Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1384   Info.CurrentCall = this;
1385   ++Info.CallStackDepth;
1386 }
1387 
1388 CallStackFrame::~CallStackFrame() {
1389   assert(Info.CurrentCall == this && "calls retired out of order");
1390   --Info.CallStackDepth;
1391   Info.CurrentCall = Caller;
1392 }
1393 
1394 static bool isRead(AccessKinds AK) {
1395   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1396 }
1397 
1398 static bool isModification(AccessKinds AK) {
1399   switch (AK) {
1400   case AK_Read:
1401   case AK_ReadObjectRepresentation:
1402   case AK_MemberCall:
1403   case AK_DynamicCast:
1404   case AK_TypeId:
1405     return false;
1406   case AK_Assign:
1407   case AK_Increment:
1408   case AK_Decrement:
1409   case AK_Construct:
1410   case AK_Destroy:
1411     return true;
1412   }
1413   llvm_unreachable("unknown access kind");
1414 }
1415 
1416 static bool isAnyAccess(AccessKinds AK) {
1417   return isRead(AK) || isModification(AK);
1418 }
1419 
1420 /// Is this an access per the C++ definition?
1421 static bool isFormalAccess(AccessKinds AK) {
1422   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1423 }
1424 
1425 /// Is this kind of axcess valid on an indeterminate object value?
1426 static bool isValidIndeterminateAccess(AccessKinds AK) {
1427   switch (AK) {
1428   case AK_Read:
1429   case AK_Increment:
1430   case AK_Decrement:
1431     // These need the object's value.
1432     return false;
1433 
1434   case AK_ReadObjectRepresentation:
1435   case AK_Assign:
1436   case AK_Construct:
1437   case AK_Destroy:
1438     // Construction and destruction don't need the value.
1439     return true;
1440 
1441   case AK_MemberCall:
1442   case AK_DynamicCast:
1443   case AK_TypeId:
1444     // These aren't really meaningful on scalars.
1445     return true;
1446   }
1447   llvm_unreachable("unknown access kind");
1448 }
1449 
1450 namespace {
1451   struct ComplexValue {
1452   private:
1453     bool IsInt;
1454 
1455   public:
1456     APSInt IntReal, IntImag;
1457     APFloat FloatReal, FloatImag;
1458 
1459     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1460 
1461     void makeComplexFloat() { IsInt = false; }
1462     bool isComplexFloat() const { return !IsInt; }
1463     APFloat &getComplexFloatReal() { return FloatReal; }
1464     APFloat &getComplexFloatImag() { return FloatImag; }
1465 
1466     void makeComplexInt() { IsInt = true; }
1467     bool isComplexInt() const { return IsInt; }
1468     APSInt &getComplexIntReal() { return IntReal; }
1469     APSInt &getComplexIntImag() { return IntImag; }
1470 
1471     void moveInto(APValue &v) const {
1472       if (isComplexFloat())
1473         v = APValue(FloatReal, FloatImag);
1474       else
1475         v = APValue(IntReal, IntImag);
1476     }
1477     void setFrom(const APValue &v) {
1478       assert(v.isComplexFloat() || v.isComplexInt());
1479       if (v.isComplexFloat()) {
1480         makeComplexFloat();
1481         FloatReal = v.getComplexFloatReal();
1482         FloatImag = v.getComplexFloatImag();
1483       } else {
1484         makeComplexInt();
1485         IntReal = v.getComplexIntReal();
1486         IntImag = v.getComplexIntImag();
1487       }
1488     }
1489   };
1490 
1491   struct LValue {
1492     APValue::LValueBase Base;
1493     CharUnits Offset;
1494     SubobjectDesignator Designator;
1495     bool IsNullPtr : 1;
1496     bool InvalidBase : 1;
1497 
1498     const APValue::LValueBase getLValueBase() const { return Base; }
1499     CharUnits &getLValueOffset() { return Offset; }
1500     const CharUnits &getLValueOffset() const { return Offset; }
1501     SubobjectDesignator &getLValueDesignator() { return Designator; }
1502     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1503     bool isNullPointer() const { return IsNullPtr;}
1504 
1505     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1506     unsigned getLValueVersion() const { return Base.getVersion(); }
1507 
1508     void moveInto(APValue &V) const {
1509       if (Designator.Invalid)
1510         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1511       else {
1512         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1513         V = APValue(Base, Offset, Designator.Entries,
1514                     Designator.IsOnePastTheEnd, IsNullPtr);
1515       }
1516     }
1517     void setFrom(ASTContext &Ctx, const APValue &V) {
1518       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1519       Base = V.getLValueBase();
1520       Offset = V.getLValueOffset();
1521       InvalidBase = false;
1522       Designator = SubobjectDesignator(Ctx, V);
1523       IsNullPtr = V.isNullPointer();
1524     }
1525 
1526     void set(APValue::LValueBase B, bool BInvalid = false) {
1527 #ifndef NDEBUG
1528       // We only allow a few types of invalid bases. Enforce that here.
1529       if (BInvalid) {
1530         const auto *E = B.get<const Expr *>();
1531         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1532                "Unexpected type of invalid base");
1533       }
1534 #endif
1535 
1536       Base = B;
1537       Offset = CharUnits::fromQuantity(0);
1538       InvalidBase = BInvalid;
1539       Designator = SubobjectDesignator(getType(B));
1540       IsNullPtr = false;
1541     }
1542 
1543     void setNull(ASTContext &Ctx, QualType PointerTy) {
1544       Base = (Expr *)nullptr;
1545       Offset =
1546           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1547       InvalidBase = false;
1548       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1549       IsNullPtr = true;
1550     }
1551 
1552     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1553       set(B, true);
1554     }
1555 
1556     std::string toString(ASTContext &Ctx, QualType T) const {
1557       APValue Printable;
1558       moveInto(Printable);
1559       return Printable.getAsString(Ctx, T);
1560     }
1561 
1562   private:
1563     // Check that this LValue is not based on a null pointer. If it is, produce
1564     // a diagnostic and mark the designator as invalid.
1565     template <typename GenDiagType>
1566     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1567       if (Designator.Invalid)
1568         return false;
1569       if (IsNullPtr) {
1570         GenDiag();
1571         Designator.setInvalid();
1572         return false;
1573       }
1574       return true;
1575     }
1576 
1577   public:
1578     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1579                           CheckSubobjectKind CSK) {
1580       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1581         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1582       });
1583     }
1584 
1585     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1586                                        AccessKinds AK) {
1587       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1588         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1589       });
1590     }
1591 
1592     // Check this LValue refers to an object. If not, set the designator to be
1593     // invalid and emit a diagnostic.
1594     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1595       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1596              Designator.checkSubobject(Info, E, CSK);
1597     }
1598 
1599     void addDecl(EvalInfo &Info, const Expr *E,
1600                  const Decl *D, bool Virtual = false) {
1601       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1602         Designator.addDeclUnchecked(D, Virtual);
1603     }
1604     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1605       if (!Designator.Entries.empty()) {
1606         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1607         Designator.setInvalid();
1608         return;
1609       }
1610       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1611         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1612         Designator.FirstEntryIsAnUnsizedArray = true;
1613         Designator.addUnsizedArrayUnchecked(ElemTy);
1614       }
1615     }
1616     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1617       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1618         Designator.addArrayUnchecked(CAT);
1619     }
1620     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1621       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1622         Designator.addComplexUnchecked(EltTy, Imag);
1623     }
1624     void clearIsNullPointer() {
1625       IsNullPtr = false;
1626     }
1627     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1628                               const APSInt &Index, CharUnits ElementSize) {
1629       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1630       // but we're not required to diagnose it and it's valid in C++.)
1631       if (!Index)
1632         return;
1633 
1634       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1635       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1636       // offsets.
1637       uint64_t Offset64 = Offset.getQuantity();
1638       uint64_t ElemSize64 = ElementSize.getQuantity();
1639       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1640       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1641 
1642       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1643         Designator.adjustIndex(Info, E, Index);
1644       clearIsNullPointer();
1645     }
1646     void adjustOffset(CharUnits N) {
1647       Offset += N;
1648       if (N.getQuantity())
1649         clearIsNullPointer();
1650     }
1651   };
1652 
1653   struct MemberPtr {
1654     MemberPtr() {}
1655     explicit MemberPtr(const ValueDecl *Decl) :
1656       DeclAndIsDerivedMember(Decl, false), Path() {}
1657 
1658     /// The member or (direct or indirect) field referred to by this member
1659     /// pointer, or 0 if this is a null member pointer.
1660     const ValueDecl *getDecl() const {
1661       return DeclAndIsDerivedMember.getPointer();
1662     }
1663     /// Is this actually a member of some type derived from the relevant class?
1664     bool isDerivedMember() const {
1665       return DeclAndIsDerivedMember.getInt();
1666     }
1667     /// Get the class which the declaration actually lives in.
1668     const CXXRecordDecl *getContainingRecord() const {
1669       return cast<CXXRecordDecl>(
1670           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1671     }
1672 
1673     void moveInto(APValue &V) const {
1674       V = APValue(getDecl(), isDerivedMember(), Path);
1675     }
1676     void setFrom(const APValue &V) {
1677       assert(V.isMemberPointer());
1678       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1679       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1680       Path.clear();
1681       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1682       Path.insert(Path.end(), P.begin(), P.end());
1683     }
1684 
1685     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1686     /// whether the member is a member of some class derived from the class type
1687     /// of the member pointer.
1688     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1689     /// Path - The path of base/derived classes from the member declaration's
1690     /// class (exclusive) to the class type of the member pointer (inclusive).
1691     SmallVector<const CXXRecordDecl*, 4> Path;
1692 
1693     /// Perform a cast towards the class of the Decl (either up or down the
1694     /// hierarchy).
1695     bool castBack(const CXXRecordDecl *Class) {
1696       assert(!Path.empty());
1697       const CXXRecordDecl *Expected;
1698       if (Path.size() >= 2)
1699         Expected = Path[Path.size() - 2];
1700       else
1701         Expected = getContainingRecord();
1702       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1703         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1704         // if B does not contain the original member and is not a base or
1705         // derived class of the class containing the original member, the result
1706         // of the cast is undefined.
1707         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1708         // (D::*). We consider that to be a language defect.
1709         return false;
1710       }
1711       Path.pop_back();
1712       return true;
1713     }
1714     /// Perform a base-to-derived member pointer cast.
1715     bool castToDerived(const CXXRecordDecl *Derived) {
1716       if (!getDecl())
1717         return true;
1718       if (!isDerivedMember()) {
1719         Path.push_back(Derived);
1720         return true;
1721       }
1722       if (!castBack(Derived))
1723         return false;
1724       if (Path.empty())
1725         DeclAndIsDerivedMember.setInt(false);
1726       return true;
1727     }
1728     /// Perform a derived-to-base member pointer cast.
1729     bool castToBase(const CXXRecordDecl *Base) {
1730       if (!getDecl())
1731         return true;
1732       if (Path.empty())
1733         DeclAndIsDerivedMember.setInt(true);
1734       if (isDerivedMember()) {
1735         Path.push_back(Base);
1736         return true;
1737       }
1738       return castBack(Base);
1739     }
1740   };
1741 
1742   /// Compare two member pointers, which are assumed to be of the same type.
1743   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1744     if (!LHS.getDecl() || !RHS.getDecl())
1745       return !LHS.getDecl() && !RHS.getDecl();
1746     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1747       return false;
1748     return LHS.Path == RHS.Path;
1749   }
1750 }
1751 
1752 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1753 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1754                             const LValue &This, const Expr *E,
1755                             bool AllowNonLiteralTypes = false);
1756 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1757                            bool InvalidBaseOK = false);
1758 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1759                             bool InvalidBaseOK = false);
1760 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1761                                   EvalInfo &Info);
1762 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1763 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1764 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1765                                     EvalInfo &Info);
1766 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1767 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1768 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1769                            EvalInfo &Info);
1770 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1771 
1772 /// Evaluate an integer or fixed point expression into an APResult.
1773 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1774                                         EvalInfo &Info);
1775 
1776 /// Evaluate only a fixed point expression into an APResult.
1777 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1778                                EvalInfo &Info);
1779 
1780 //===----------------------------------------------------------------------===//
1781 // Misc utilities
1782 //===----------------------------------------------------------------------===//
1783 
1784 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1785 /// preserving its value (by extending by up to one bit as needed).
1786 static void negateAsSigned(APSInt &Int) {
1787   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1788     Int = Int.extend(Int.getBitWidth() + 1);
1789     Int.setIsSigned(true);
1790   }
1791   Int = -Int;
1792 }
1793 
1794 template<typename KeyT>
1795 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1796                                          bool IsLifetimeExtended, LValue &LV) {
1797   unsigned Version = getTempVersion();
1798   APValue::LValueBase Base(Key, Index, Version);
1799   LV.set(Base);
1800   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1801   assert(Result.isAbsent() && "temporary created multiple times");
1802 
1803   // If we're creating a temporary immediately in the operand of a speculative
1804   // evaluation, don't register a cleanup to be run outside the speculative
1805   // evaluation context, since we won't actually be able to initialize this
1806   // object.
1807   if (Index <= Info.SpeculativeEvaluationDepth) {
1808     if (T.isDestructedType())
1809       Info.noteSideEffect();
1810   } else {
1811     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
1812   }
1813   return Result;
1814 }
1815 
1816 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1817   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1818     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1819     return nullptr;
1820   }
1821 
1822   DynamicAllocLValue DA(NumHeapAllocs++);
1823   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1824   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1825                                    std::forward_as_tuple(DA), std::tuple<>());
1826   assert(Result.second && "reused a heap alloc index?");
1827   Result.first->second.AllocExpr = E;
1828   return &Result.first->second.Value;
1829 }
1830 
1831 /// Produce a string describing the given constexpr call.
1832 void CallStackFrame::describe(raw_ostream &Out) {
1833   unsigned ArgIndex = 0;
1834   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1835                       !isa<CXXConstructorDecl>(Callee) &&
1836                       cast<CXXMethodDecl>(Callee)->isInstance();
1837 
1838   if (!IsMemberCall)
1839     Out << *Callee << '(';
1840 
1841   if (This && IsMemberCall) {
1842     APValue Val;
1843     This->moveInto(Val);
1844     Val.printPretty(Out, Info.Ctx,
1845                     This->Designator.MostDerivedType);
1846     // FIXME: Add parens around Val if needed.
1847     Out << "->" << *Callee << '(';
1848     IsMemberCall = false;
1849   }
1850 
1851   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1852        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1853     if (ArgIndex > (unsigned)IsMemberCall)
1854       Out << ", ";
1855 
1856     const ParmVarDecl *Param = *I;
1857     const APValue &Arg = Arguments[ArgIndex];
1858     Arg.printPretty(Out, Info.Ctx, Param->getType());
1859 
1860     if (ArgIndex == 0 && IsMemberCall)
1861       Out << "->" << *Callee << '(';
1862   }
1863 
1864   Out << ')';
1865 }
1866 
1867 /// Evaluate an expression to see if it had side-effects, and discard its
1868 /// result.
1869 /// \return \c true if the caller should keep evaluating.
1870 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1871   APValue Scratch;
1872   if (!Evaluate(Scratch, Info, E))
1873     // We don't need the value, but we might have skipped a side effect here.
1874     return Info.noteSideEffect();
1875   return true;
1876 }
1877 
1878 /// Should this call expression be treated as a string literal?
1879 static bool IsStringLiteralCall(const CallExpr *E) {
1880   unsigned Builtin = E->getBuiltinCallee();
1881   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1882           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1883 }
1884 
1885 static bool IsGlobalLValue(APValue::LValueBase B) {
1886   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1887   // constant expression of pointer type that evaluates to...
1888 
1889   // ... a null pointer value, or a prvalue core constant expression of type
1890   // std::nullptr_t.
1891   if (!B) return true;
1892 
1893   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1894     // ... the address of an object with static storage duration,
1895     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1896       return VD->hasGlobalStorage();
1897     // ... the address of a function,
1898     // ... the address of a GUID [MS extension],
1899     return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1900   }
1901 
1902   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1903     return true;
1904 
1905   const Expr *E = B.get<const Expr*>();
1906   switch (E->getStmtClass()) {
1907   default:
1908     return false;
1909   case Expr::CompoundLiteralExprClass: {
1910     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1911     return CLE->isFileScope() && CLE->isLValue();
1912   }
1913   case Expr::MaterializeTemporaryExprClass:
1914     // A materialized temporary might have been lifetime-extended to static
1915     // storage duration.
1916     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1917   // A string literal has static storage duration.
1918   case Expr::StringLiteralClass:
1919   case Expr::PredefinedExprClass:
1920   case Expr::ObjCStringLiteralClass:
1921   case Expr::ObjCEncodeExprClass:
1922     return true;
1923   case Expr::ObjCBoxedExprClass:
1924     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
1925   case Expr::CallExprClass:
1926     return IsStringLiteralCall(cast<CallExpr>(E));
1927   // For GCC compatibility, &&label has static storage duration.
1928   case Expr::AddrLabelExprClass:
1929     return true;
1930   // A Block literal expression may be used as the initialization value for
1931   // Block variables at global or local static scope.
1932   case Expr::BlockExprClass:
1933     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1934   case Expr::ImplicitValueInitExprClass:
1935     // FIXME:
1936     // We can never form an lvalue with an implicit value initialization as its
1937     // base through expression evaluation, so these only appear in one case: the
1938     // implicit variable declaration we invent when checking whether a constexpr
1939     // constructor can produce a constant expression. We must assume that such
1940     // an expression might be a global lvalue.
1941     return true;
1942   }
1943 }
1944 
1945 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1946   return LVal.Base.dyn_cast<const ValueDecl*>();
1947 }
1948 
1949 static bool IsLiteralLValue(const LValue &Value) {
1950   if (Value.getLValueCallIndex())
1951     return false;
1952   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1953   return E && !isa<MaterializeTemporaryExpr>(E);
1954 }
1955 
1956 static bool IsWeakLValue(const LValue &Value) {
1957   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1958   return Decl && Decl->isWeak();
1959 }
1960 
1961 static bool isZeroSized(const LValue &Value) {
1962   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1963   if (Decl && isa<VarDecl>(Decl)) {
1964     QualType Ty = Decl->getType();
1965     if (Ty->isArrayType())
1966       return Ty->isIncompleteType() ||
1967              Decl->getASTContext().getTypeSize(Ty) == 0;
1968   }
1969   return false;
1970 }
1971 
1972 static bool HasSameBase(const LValue &A, const LValue &B) {
1973   if (!A.getLValueBase())
1974     return !B.getLValueBase();
1975   if (!B.getLValueBase())
1976     return false;
1977 
1978   if (A.getLValueBase().getOpaqueValue() !=
1979       B.getLValueBase().getOpaqueValue()) {
1980     const Decl *ADecl = GetLValueBaseDecl(A);
1981     if (!ADecl)
1982       return false;
1983     const Decl *BDecl = GetLValueBaseDecl(B);
1984     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
1985       return false;
1986   }
1987 
1988   return IsGlobalLValue(A.getLValueBase()) ||
1989          (A.getLValueCallIndex() == B.getLValueCallIndex() &&
1990           A.getLValueVersion() == B.getLValueVersion());
1991 }
1992 
1993 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1994   assert(Base && "no location for a null lvalue");
1995   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1996   if (VD)
1997     Info.Note(VD->getLocation(), diag::note_declared_at);
1998   else if (const Expr *E = Base.dyn_cast<const Expr*>())
1999     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2000   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2001     // FIXME: Produce a note for dangling pointers too.
2002     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2003       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2004                 diag::note_constexpr_dynamic_alloc_here);
2005   }
2006   // We have no information to show for a typeid(T) object.
2007 }
2008 
2009 enum class CheckEvaluationResultKind {
2010   ConstantExpression,
2011   FullyInitialized,
2012 };
2013 
2014 /// Materialized temporaries that we've already checked to determine if they're
2015 /// initializsed by a constant expression.
2016 using CheckedTemporaries =
2017     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2018 
2019 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2020                                   EvalInfo &Info, SourceLocation DiagLoc,
2021                                   QualType Type, const APValue &Value,
2022                                   Expr::ConstExprUsage Usage,
2023                                   SourceLocation SubobjectLoc,
2024                                   CheckedTemporaries &CheckedTemps);
2025 
2026 /// Check that this reference or pointer core constant expression is a valid
2027 /// value for an address or reference constant expression. Return true if we
2028 /// can fold this expression, whether or not it's a constant expression.
2029 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2030                                           QualType Type, const LValue &LVal,
2031                                           Expr::ConstExprUsage Usage,
2032                                           CheckedTemporaries &CheckedTemps) {
2033   bool IsReferenceType = Type->isReferenceType();
2034 
2035   APValue::LValueBase Base = LVal.getLValueBase();
2036   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2037 
2038   if (auto *VD = LVal.getLValueBase().dyn_cast<const ValueDecl *>()) {
2039     if (auto *FD = dyn_cast<FunctionDecl>(VD)) {
2040       if (FD->isConsteval()) {
2041         Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2042             << !Type->isAnyPointerType();
2043         Info.Note(FD->getLocation(), diag::note_declared_at);
2044         return false;
2045       }
2046     }
2047   }
2048 
2049   // Check that the object is a global. Note that the fake 'this' object we
2050   // manufacture when checking potential constant expressions is conservatively
2051   // assumed to be global here.
2052   if (!IsGlobalLValue(Base)) {
2053     if (Info.getLangOpts().CPlusPlus11) {
2054       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2055       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2056         << IsReferenceType << !Designator.Entries.empty()
2057         << !!VD << VD;
2058       NoteLValueLocation(Info, Base);
2059     } else {
2060       Info.FFDiag(Loc);
2061     }
2062     // Don't allow references to temporaries to escape.
2063     return false;
2064   }
2065   assert((Info.checkingPotentialConstantExpression() ||
2066           LVal.getLValueCallIndex() == 0) &&
2067          "have call index for global lvalue");
2068 
2069   if (Base.is<DynamicAllocLValue>()) {
2070     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2071         << IsReferenceType << !Designator.Entries.empty();
2072     NoteLValueLocation(Info, Base);
2073     return false;
2074   }
2075 
2076   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
2077     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
2078       // Check if this is a thread-local variable.
2079       if (Var->getTLSKind())
2080         // FIXME: Diagnostic!
2081         return false;
2082 
2083       // A dllimport variable never acts like a constant.
2084       if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
2085         // FIXME: Diagnostic!
2086         return false;
2087     }
2088     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
2089       // __declspec(dllimport) must be handled very carefully:
2090       // We must never initialize an expression with the thunk in C++.
2091       // Doing otherwise would allow the same id-expression to yield
2092       // different addresses for the same function in different translation
2093       // units.  However, this means that we must dynamically initialize the
2094       // expression with the contents of the import address table at runtime.
2095       //
2096       // The C language has no notion of ODR; furthermore, it has no notion of
2097       // dynamic initialization.  This means that we are permitted to
2098       // perform initialization with the address of the thunk.
2099       if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
2100           FD->hasAttr<DLLImportAttr>())
2101         // FIXME: Diagnostic!
2102         return false;
2103     }
2104   } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(
2105                  Base.dyn_cast<const Expr *>())) {
2106     if (CheckedTemps.insert(MTE).second) {
2107       QualType TempType = getType(Base);
2108       if (TempType.isDestructedType()) {
2109         Info.FFDiag(MTE->getExprLoc(),
2110                     diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor)
2111             << TempType;
2112         return false;
2113       }
2114 
2115       APValue *V = MTE->getOrCreateValue(false);
2116       assert(V && "evasluation result refers to uninitialised temporary");
2117       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2118                                  Info, MTE->getExprLoc(), TempType, *V,
2119                                  Usage, SourceLocation(), CheckedTemps))
2120         return false;
2121     }
2122   }
2123 
2124   // Allow address constant expressions to be past-the-end pointers. This is
2125   // an extension: the standard requires them to point to an object.
2126   if (!IsReferenceType)
2127     return true;
2128 
2129   // A reference constant expression must refer to an object.
2130   if (!Base) {
2131     // FIXME: diagnostic
2132     Info.CCEDiag(Loc);
2133     return true;
2134   }
2135 
2136   // Does this refer one past the end of some object?
2137   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2138     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2139     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2140       << !Designator.Entries.empty() << !!VD << VD;
2141     NoteLValueLocation(Info, Base);
2142   }
2143 
2144   return true;
2145 }
2146 
2147 /// Member pointers are constant expressions unless they point to a
2148 /// non-virtual dllimport member function.
2149 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2150                                                  SourceLocation Loc,
2151                                                  QualType Type,
2152                                                  const APValue &Value,
2153                                                  Expr::ConstExprUsage Usage) {
2154   const ValueDecl *Member = Value.getMemberPointerDecl();
2155   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2156   if (!FD)
2157     return true;
2158   if (FD->isConsteval()) {
2159     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2160     Info.Note(FD->getLocation(), diag::note_declared_at);
2161     return false;
2162   }
2163   return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
2164          !FD->hasAttr<DLLImportAttr>();
2165 }
2166 
2167 /// Check that this core constant expression is of literal type, and if not,
2168 /// produce an appropriate diagnostic.
2169 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2170                              const LValue *This = nullptr) {
2171   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2172     return true;
2173 
2174   // C++1y: A constant initializer for an object o [...] may also invoke
2175   // constexpr constructors for o and its subobjects even if those objects
2176   // are of non-literal class types.
2177   //
2178   // C++11 missed this detail for aggregates, so classes like this:
2179   //   struct foo_t { union { int i; volatile int j; } u; };
2180   // are not (obviously) initializable like so:
2181   //   __attribute__((__require_constant_initialization__))
2182   //   static const foo_t x = {{0}};
2183   // because "i" is a subobject with non-literal initialization (due to the
2184   // volatile member of the union). See:
2185   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2186   // Therefore, we use the C++1y behavior.
2187   if (This && Info.EvaluatingDecl == This->getLValueBase())
2188     return true;
2189 
2190   // Prvalue constant expressions must be of literal types.
2191   if (Info.getLangOpts().CPlusPlus11)
2192     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2193       << E->getType();
2194   else
2195     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2196   return false;
2197 }
2198 
2199 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2200                                   EvalInfo &Info, SourceLocation DiagLoc,
2201                                   QualType Type, const APValue &Value,
2202                                   Expr::ConstExprUsage Usage,
2203                                   SourceLocation SubobjectLoc,
2204                                   CheckedTemporaries &CheckedTemps) {
2205   if (!Value.hasValue()) {
2206     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2207       << true << Type;
2208     if (SubobjectLoc.isValid())
2209       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2210     return false;
2211   }
2212 
2213   // We allow _Atomic(T) to be initialized from anything that T can be
2214   // initialized from.
2215   if (const AtomicType *AT = Type->getAs<AtomicType>())
2216     Type = AT->getValueType();
2217 
2218   // Core issue 1454: For a literal constant expression of array or class type,
2219   // each subobject of its value shall have been initialized by a constant
2220   // expression.
2221   if (Value.isArray()) {
2222     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2223     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2224       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2225                                  Value.getArrayInitializedElt(I), Usage,
2226                                  SubobjectLoc, CheckedTemps))
2227         return false;
2228     }
2229     if (!Value.hasArrayFiller())
2230       return true;
2231     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2232                                  Value.getArrayFiller(), Usage, SubobjectLoc,
2233                                  CheckedTemps);
2234   }
2235   if (Value.isUnion() && Value.getUnionField()) {
2236     return CheckEvaluationResult(
2237         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2238         Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(),
2239         CheckedTemps);
2240   }
2241   if (Value.isStruct()) {
2242     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2243     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2244       unsigned BaseIndex = 0;
2245       for (const CXXBaseSpecifier &BS : CD->bases()) {
2246         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2247                                    Value.getStructBase(BaseIndex), Usage,
2248                                    BS.getBeginLoc(), CheckedTemps))
2249           return false;
2250         ++BaseIndex;
2251       }
2252     }
2253     for (const auto *I : RD->fields()) {
2254       if (I->isUnnamedBitfield())
2255         continue;
2256 
2257       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2258                                  Value.getStructField(I->getFieldIndex()),
2259                                  Usage, I->getLocation(), CheckedTemps))
2260         return false;
2261     }
2262   }
2263 
2264   if (Value.isLValue() &&
2265       CERK == CheckEvaluationResultKind::ConstantExpression) {
2266     LValue LVal;
2267     LVal.setFrom(Info.Ctx, Value);
2268     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage,
2269                                          CheckedTemps);
2270   }
2271 
2272   if (Value.isMemberPointer() &&
2273       CERK == CheckEvaluationResultKind::ConstantExpression)
2274     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
2275 
2276   // Everything else is fine.
2277   return true;
2278 }
2279 
2280 /// Check that this core constant expression value is a valid value for a
2281 /// constant expression. If not, report an appropriate diagnostic. Does not
2282 /// check that the expression is of literal type.
2283 static bool
2284 CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
2285                         const APValue &Value,
2286                         Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
2287   CheckedTemporaries CheckedTemps;
2288   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2289                                Info, DiagLoc, Type, Value, Usage,
2290                                SourceLocation(), CheckedTemps);
2291 }
2292 
2293 /// Check that this evaluated value is fully-initialized and can be loaded by
2294 /// an lvalue-to-rvalue conversion.
2295 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2296                                   QualType Type, const APValue &Value) {
2297   CheckedTemporaries CheckedTemps;
2298   return CheckEvaluationResult(
2299       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2300       Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps);
2301 }
2302 
2303 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2304 /// "the allocated storage is deallocated within the evaluation".
2305 static bool CheckMemoryLeaks(EvalInfo &Info) {
2306   if (!Info.HeapAllocs.empty()) {
2307     // We can still fold to a constant despite a compile-time memory leak,
2308     // so long as the heap allocation isn't referenced in the result (we check
2309     // that in CheckConstantExpression).
2310     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2311                  diag::note_constexpr_memory_leak)
2312         << unsigned(Info.HeapAllocs.size() - 1);
2313   }
2314   return true;
2315 }
2316 
2317 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2318   // A null base expression indicates a null pointer.  These are always
2319   // evaluatable, and they are false unless the offset is zero.
2320   if (!Value.getLValueBase()) {
2321     Result = !Value.getLValueOffset().isZero();
2322     return true;
2323   }
2324 
2325   // We have a non-null base.  These are generally known to be true, but if it's
2326   // a weak declaration it can be null at runtime.
2327   Result = true;
2328   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2329   return !Decl || !Decl->isWeak();
2330 }
2331 
2332 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2333   switch (Val.getKind()) {
2334   case APValue::None:
2335   case APValue::Indeterminate:
2336     return false;
2337   case APValue::Int:
2338     Result = Val.getInt().getBoolValue();
2339     return true;
2340   case APValue::FixedPoint:
2341     Result = Val.getFixedPoint().getBoolValue();
2342     return true;
2343   case APValue::Float:
2344     Result = !Val.getFloat().isZero();
2345     return true;
2346   case APValue::ComplexInt:
2347     Result = Val.getComplexIntReal().getBoolValue() ||
2348              Val.getComplexIntImag().getBoolValue();
2349     return true;
2350   case APValue::ComplexFloat:
2351     Result = !Val.getComplexFloatReal().isZero() ||
2352              !Val.getComplexFloatImag().isZero();
2353     return true;
2354   case APValue::LValue:
2355     return EvalPointerValueAsBool(Val, Result);
2356   case APValue::MemberPointer:
2357     Result = Val.getMemberPointerDecl();
2358     return true;
2359   case APValue::Vector:
2360   case APValue::Array:
2361   case APValue::Struct:
2362   case APValue::Union:
2363   case APValue::AddrLabelDiff:
2364     return false;
2365   }
2366 
2367   llvm_unreachable("unknown APValue kind");
2368 }
2369 
2370 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2371                                        EvalInfo &Info) {
2372   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
2373   APValue Val;
2374   if (!Evaluate(Val, Info, E))
2375     return false;
2376   return HandleConversionToBool(Val, Result);
2377 }
2378 
2379 template<typename T>
2380 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2381                            const T &SrcValue, QualType DestType) {
2382   Info.CCEDiag(E, diag::note_constexpr_overflow)
2383     << SrcValue << DestType;
2384   return Info.noteUndefinedBehavior();
2385 }
2386 
2387 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2388                                  QualType SrcType, const APFloat &Value,
2389                                  QualType DestType, APSInt &Result) {
2390   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2391   // Determine whether we are converting to unsigned or signed.
2392   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2393 
2394   Result = APSInt(DestWidth, !DestSigned);
2395   bool ignored;
2396   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2397       & APFloat::opInvalidOp)
2398     return HandleOverflow(Info, E, Value, DestType);
2399   return true;
2400 }
2401 
2402 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2403                                    QualType SrcType, QualType DestType,
2404                                    APFloat &Result) {
2405   APFloat Value = Result;
2406   bool ignored;
2407   Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
2408                  APFloat::rmNearestTiesToEven, &ignored);
2409   return true;
2410 }
2411 
2412 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2413                                  QualType DestType, QualType SrcType,
2414                                  const APSInt &Value) {
2415   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2416   // Figure out if this is a truncate, extend or noop cast.
2417   // If the input is signed, do a sign extend, noop, or truncate.
2418   APSInt Result = Value.extOrTrunc(DestWidth);
2419   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2420   if (DestType->isBooleanType())
2421     Result = Value.getBoolValue();
2422   return Result;
2423 }
2424 
2425 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2426                                  QualType SrcType, const APSInt &Value,
2427                                  QualType DestType, APFloat &Result) {
2428   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2429   Result.convertFromAPInt(Value, Value.isSigned(),
2430                           APFloat::rmNearestTiesToEven);
2431   return true;
2432 }
2433 
2434 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2435                                   APValue &Value, const FieldDecl *FD) {
2436   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2437 
2438   if (!Value.isInt()) {
2439     // Trying to store a pointer-cast-to-integer into a bitfield.
2440     // FIXME: In this case, we should provide the diagnostic for casting
2441     // a pointer to an integer.
2442     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2443     Info.FFDiag(E);
2444     return false;
2445   }
2446 
2447   APSInt &Int = Value.getInt();
2448   unsigned OldBitWidth = Int.getBitWidth();
2449   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2450   if (NewBitWidth < OldBitWidth)
2451     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2452   return true;
2453 }
2454 
2455 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2456                                   llvm::APInt &Res) {
2457   APValue SVal;
2458   if (!Evaluate(SVal, Info, E))
2459     return false;
2460   if (SVal.isInt()) {
2461     Res = SVal.getInt();
2462     return true;
2463   }
2464   if (SVal.isFloat()) {
2465     Res = SVal.getFloat().bitcastToAPInt();
2466     return true;
2467   }
2468   if (SVal.isVector()) {
2469     QualType VecTy = E->getType();
2470     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2471     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2472     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2473     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2474     Res = llvm::APInt::getNullValue(VecSize);
2475     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2476       APValue &Elt = SVal.getVectorElt(i);
2477       llvm::APInt EltAsInt;
2478       if (Elt.isInt()) {
2479         EltAsInt = Elt.getInt();
2480       } else if (Elt.isFloat()) {
2481         EltAsInt = Elt.getFloat().bitcastToAPInt();
2482       } else {
2483         // Don't try to handle vectors of anything other than int or float
2484         // (not sure if it's possible to hit this case).
2485         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2486         return false;
2487       }
2488       unsigned BaseEltSize = EltAsInt.getBitWidth();
2489       if (BigEndian)
2490         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2491       else
2492         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2493     }
2494     return true;
2495   }
2496   // Give up if the input isn't an int, float, or vector.  For example, we
2497   // reject "(v4i16)(intptr_t)&a".
2498   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2499   return false;
2500 }
2501 
2502 /// Perform the given integer operation, which is known to need at most BitWidth
2503 /// bits, and check for overflow in the original type (if that type was not an
2504 /// unsigned type).
2505 template<typename Operation>
2506 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2507                                  const APSInt &LHS, const APSInt &RHS,
2508                                  unsigned BitWidth, Operation Op,
2509                                  APSInt &Result) {
2510   if (LHS.isUnsigned()) {
2511     Result = Op(LHS, RHS);
2512     return true;
2513   }
2514 
2515   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2516   Result = Value.trunc(LHS.getBitWidth());
2517   if (Result.extend(BitWidth) != Value) {
2518     if (Info.checkingForUndefinedBehavior())
2519       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2520                                        diag::warn_integer_constant_overflow)
2521           << Result.toString(10) << E->getType();
2522     else
2523       return HandleOverflow(Info, E, Value, E->getType());
2524   }
2525   return true;
2526 }
2527 
2528 /// Perform the given binary integer operation.
2529 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2530                               BinaryOperatorKind Opcode, APSInt RHS,
2531                               APSInt &Result) {
2532   switch (Opcode) {
2533   default:
2534     Info.FFDiag(E);
2535     return false;
2536   case BO_Mul:
2537     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2538                                 std::multiplies<APSInt>(), Result);
2539   case BO_Add:
2540     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2541                                 std::plus<APSInt>(), Result);
2542   case BO_Sub:
2543     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2544                                 std::minus<APSInt>(), Result);
2545   case BO_And: Result = LHS & RHS; return true;
2546   case BO_Xor: Result = LHS ^ RHS; return true;
2547   case BO_Or:  Result = LHS | RHS; return true;
2548   case BO_Div:
2549   case BO_Rem:
2550     if (RHS == 0) {
2551       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2552       return false;
2553     }
2554     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2555     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2556     // this operation and gives the two's complement result.
2557     if (RHS.isNegative() && RHS.isAllOnesValue() &&
2558         LHS.isSigned() && LHS.isMinSignedValue())
2559       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2560                             E->getType());
2561     return true;
2562   case BO_Shl: {
2563     if (Info.getLangOpts().OpenCL)
2564       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2565       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2566                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2567                     RHS.isUnsigned());
2568     else if (RHS.isSigned() && RHS.isNegative()) {
2569       // During constant-folding, a negative shift is an opposite shift. Such
2570       // a shift is not a constant expression.
2571       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2572       RHS = -RHS;
2573       goto shift_right;
2574     }
2575   shift_left:
2576     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2577     // the shifted type.
2578     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2579     if (SA != RHS) {
2580       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2581         << RHS << E->getType() << LHS.getBitWidth();
2582     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2583       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2584       // operand, and must not overflow the corresponding unsigned type.
2585       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2586       // E1 x 2^E2 module 2^N.
2587       if (LHS.isNegative())
2588         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2589       else if (LHS.countLeadingZeros() < SA)
2590         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2591     }
2592     Result = LHS << SA;
2593     return true;
2594   }
2595   case BO_Shr: {
2596     if (Info.getLangOpts().OpenCL)
2597       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2598       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2599                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2600                     RHS.isUnsigned());
2601     else if (RHS.isSigned() && RHS.isNegative()) {
2602       // During constant-folding, a negative shift is an opposite shift. Such a
2603       // shift is not a constant expression.
2604       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2605       RHS = -RHS;
2606       goto shift_left;
2607     }
2608   shift_right:
2609     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2610     // shifted type.
2611     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2612     if (SA != RHS)
2613       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2614         << RHS << E->getType() << LHS.getBitWidth();
2615     Result = LHS >> SA;
2616     return true;
2617   }
2618 
2619   case BO_LT: Result = LHS < RHS; return true;
2620   case BO_GT: Result = LHS > RHS; return true;
2621   case BO_LE: Result = LHS <= RHS; return true;
2622   case BO_GE: Result = LHS >= RHS; return true;
2623   case BO_EQ: Result = LHS == RHS; return true;
2624   case BO_NE: Result = LHS != RHS; return true;
2625   case BO_Cmp:
2626     llvm_unreachable("BO_Cmp should be handled elsewhere");
2627   }
2628 }
2629 
2630 /// Perform the given binary floating-point operation, in-place, on LHS.
2631 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
2632                                   APFloat &LHS, BinaryOperatorKind Opcode,
2633                                   const APFloat &RHS) {
2634   switch (Opcode) {
2635   default:
2636     Info.FFDiag(E);
2637     return false;
2638   case BO_Mul:
2639     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
2640     break;
2641   case BO_Add:
2642     LHS.add(RHS, APFloat::rmNearestTiesToEven);
2643     break;
2644   case BO_Sub:
2645     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
2646     break;
2647   case BO_Div:
2648     // [expr.mul]p4:
2649     //   If the second operand of / or % is zero the behavior is undefined.
2650     if (RHS.isZero())
2651       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2652     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
2653     break;
2654   }
2655 
2656   // [expr.pre]p4:
2657   //   If during the evaluation of an expression, the result is not
2658   //   mathematically defined [...], the behavior is undefined.
2659   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2660   if (LHS.isNaN()) {
2661     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2662     return Info.noteUndefinedBehavior();
2663   }
2664   return true;
2665 }
2666 
2667 static bool handleLogicalOpForVector(const APInt &LHSValue,
2668                                      BinaryOperatorKind Opcode,
2669                                      const APInt &RHSValue, APInt &Result) {
2670   bool LHS = (LHSValue != 0);
2671   bool RHS = (RHSValue != 0);
2672 
2673   if (Opcode == BO_LAnd)
2674     Result = LHS && RHS;
2675   else
2676     Result = LHS || RHS;
2677   return true;
2678 }
2679 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2680                                      BinaryOperatorKind Opcode,
2681                                      const APFloat &RHSValue, APInt &Result) {
2682   bool LHS = !LHSValue.isZero();
2683   bool RHS = !RHSValue.isZero();
2684 
2685   if (Opcode == BO_LAnd)
2686     Result = LHS && RHS;
2687   else
2688     Result = LHS || RHS;
2689   return true;
2690 }
2691 
2692 static bool handleLogicalOpForVector(const APValue &LHSValue,
2693                                      BinaryOperatorKind Opcode,
2694                                      const APValue &RHSValue, APInt &Result) {
2695   // The result is always an int type, however operands match the first.
2696   if (LHSValue.getKind() == APValue::Int)
2697     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2698                                     RHSValue.getInt(), Result);
2699   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2700   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2701                                   RHSValue.getFloat(), Result);
2702 }
2703 
2704 template <typename APTy>
2705 static bool
2706 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2707                                const APTy &RHSValue, APInt &Result) {
2708   switch (Opcode) {
2709   default:
2710     llvm_unreachable("unsupported binary operator");
2711   case BO_EQ:
2712     Result = (LHSValue == RHSValue);
2713     break;
2714   case BO_NE:
2715     Result = (LHSValue != RHSValue);
2716     break;
2717   case BO_LT:
2718     Result = (LHSValue < RHSValue);
2719     break;
2720   case BO_GT:
2721     Result = (LHSValue > RHSValue);
2722     break;
2723   case BO_LE:
2724     Result = (LHSValue <= RHSValue);
2725     break;
2726   case BO_GE:
2727     Result = (LHSValue >= RHSValue);
2728     break;
2729   }
2730 
2731   return true;
2732 }
2733 
2734 static bool handleCompareOpForVector(const APValue &LHSValue,
2735                                      BinaryOperatorKind Opcode,
2736                                      const APValue &RHSValue, APInt &Result) {
2737   // The result is always an int type, however operands match the first.
2738   if (LHSValue.getKind() == APValue::Int)
2739     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2740                                           RHSValue.getInt(), Result);
2741   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2742   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2743                                         RHSValue.getFloat(), Result);
2744 }
2745 
2746 // Perform binary operations for vector types, in place on the LHS.
2747 static bool handleVectorVectorBinOp(EvalInfo &Info, const Expr *E,
2748                                     BinaryOperatorKind Opcode,
2749                                     APValue &LHSValue,
2750                                     const APValue &RHSValue) {
2751   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2752          "Operation not supported on vector types");
2753 
2754   const auto *VT = E->getType()->castAs<VectorType>();
2755   unsigned NumElements = VT->getNumElements();
2756   QualType EltTy = VT->getElementType();
2757 
2758   // In the cases (typically C as I've observed) where we aren't evaluating
2759   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2760   // just give up.
2761   if (!LHSValue.isVector()) {
2762     assert(LHSValue.isLValue() &&
2763            "A vector result that isn't a vector OR uncalculated LValue");
2764     Info.FFDiag(E);
2765     return false;
2766   }
2767 
2768   assert(LHSValue.getVectorLength() == NumElements &&
2769          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2770 
2771   SmallVector<APValue, 4> ResultElements;
2772 
2773   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2774     APValue LHSElt = LHSValue.getVectorElt(EltNum);
2775     APValue RHSElt = RHSValue.getVectorElt(EltNum);
2776 
2777     if (EltTy->isIntegerType()) {
2778       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
2779                        EltTy->isUnsignedIntegerType()};
2780       bool Success = true;
2781 
2782       if (BinaryOperator::isLogicalOp(Opcode))
2783         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2784       else if (BinaryOperator::isComparisonOp(Opcode))
2785         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2786       else
2787         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
2788                                     RHSElt.getInt(), EltResult);
2789 
2790       if (!Success) {
2791         Info.FFDiag(E);
2792         return false;
2793       }
2794       ResultElements.emplace_back(EltResult);
2795 
2796     } else if (EltTy->isFloatingType()) {
2797       assert(LHSElt.getKind() == APValue::Float &&
2798              RHSElt.getKind() == APValue::Float &&
2799              "Mismatched LHS/RHS/Result Type");
2800       APFloat LHSFloat = LHSElt.getFloat();
2801 
2802       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
2803                                  RHSElt.getFloat())) {
2804         Info.FFDiag(E);
2805         return false;
2806       }
2807 
2808       ResultElements.emplace_back(LHSFloat);
2809     }
2810   }
2811 
2812   LHSValue = APValue(ResultElements.data(), ResultElements.size());
2813   return true;
2814 }
2815 
2816 /// Cast an lvalue referring to a base subobject to a derived class, by
2817 /// truncating the lvalue's path to the given length.
2818 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
2819                                const RecordDecl *TruncatedType,
2820                                unsigned TruncatedElements) {
2821   SubobjectDesignator &D = Result.Designator;
2822 
2823   // Check we actually point to a derived class object.
2824   if (TruncatedElements == D.Entries.size())
2825     return true;
2826   assert(TruncatedElements >= D.MostDerivedPathLength &&
2827          "not casting to a derived class");
2828   if (!Result.checkSubobject(Info, E, CSK_Derived))
2829     return false;
2830 
2831   // Truncate the path to the subobject, and remove any derived-to-base offsets.
2832   const RecordDecl *RD = TruncatedType;
2833   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
2834     if (RD->isInvalidDecl()) return false;
2835     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2836     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
2837     if (isVirtualBaseClass(D.Entries[I]))
2838       Result.Offset -= Layout.getVBaseClassOffset(Base);
2839     else
2840       Result.Offset -= Layout.getBaseClassOffset(Base);
2841     RD = Base;
2842   }
2843   D.Entries.resize(TruncatedElements);
2844   return true;
2845 }
2846 
2847 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2848                                    const CXXRecordDecl *Derived,
2849                                    const CXXRecordDecl *Base,
2850                                    const ASTRecordLayout *RL = nullptr) {
2851   if (!RL) {
2852     if (Derived->isInvalidDecl()) return false;
2853     RL = &Info.Ctx.getASTRecordLayout(Derived);
2854   }
2855 
2856   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
2857   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
2858   return true;
2859 }
2860 
2861 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2862                              const CXXRecordDecl *DerivedDecl,
2863                              const CXXBaseSpecifier *Base) {
2864   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
2865 
2866   if (!Base->isVirtual())
2867     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
2868 
2869   SubobjectDesignator &D = Obj.Designator;
2870   if (D.Invalid)
2871     return false;
2872 
2873   // Extract most-derived object and corresponding type.
2874   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
2875   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
2876     return false;
2877 
2878   // Find the virtual base class.
2879   if (DerivedDecl->isInvalidDecl()) return false;
2880   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
2881   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
2882   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
2883   return true;
2884 }
2885 
2886 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
2887                                  QualType Type, LValue &Result) {
2888   for (CastExpr::path_const_iterator PathI = E->path_begin(),
2889                                      PathE = E->path_end();
2890        PathI != PathE; ++PathI) {
2891     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2892                           *PathI))
2893       return false;
2894     Type = (*PathI)->getType();
2895   }
2896   return true;
2897 }
2898 
2899 /// Cast an lvalue referring to a derived class to a known base subobject.
2900 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
2901                             const CXXRecordDecl *DerivedRD,
2902                             const CXXRecordDecl *BaseRD) {
2903   CXXBasePaths Paths(/*FindAmbiguities=*/false,
2904                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
2905   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
2906     llvm_unreachable("Class must be derived from the passed in base class!");
2907 
2908   for (CXXBasePathElement &Elem : Paths.front())
2909     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
2910       return false;
2911   return true;
2912 }
2913 
2914 /// Update LVal to refer to the given field, which must be a member of the type
2915 /// currently described by LVal.
2916 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2917                                const FieldDecl *FD,
2918                                const ASTRecordLayout *RL = nullptr) {
2919   if (!RL) {
2920     if (FD->getParent()->isInvalidDecl()) return false;
2921     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2922   }
2923 
2924   unsigned I = FD->getFieldIndex();
2925   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
2926   LVal.addDecl(Info, E, FD);
2927   return true;
2928 }
2929 
2930 /// Update LVal to refer to the given indirect field.
2931 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2932                                        LValue &LVal,
2933                                        const IndirectFieldDecl *IFD) {
2934   for (const auto *C : IFD->chain())
2935     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2936       return false;
2937   return true;
2938 }
2939 
2940 /// Get the size of the given type in char units.
2941 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2942                          QualType Type, CharUnits &Size) {
2943   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2944   // extension.
2945   if (Type->isVoidType() || Type->isFunctionType()) {
2946     Size = CharUnits::One();
2947     return true;
2948   }
2949 
2950   if (Type->isDependentType()) {
2951     Info.FFDiag(Loc);
2952     return false;
2953   }
2954 
2955   if (!Type->isConstantSizeType()) {
2956     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2957     // FIXME: Better diagnostic.
2958     Info.FFDiag(Loc);
2959     return false;
2960   }
2961 
2962   Size = Info.Ctx.getTypeSizeInChars(Type);
2963   return true;
2964 }
2965 
2966 /// Update a pointer value to model pointer arithmetic.
2967 /// \param Info - Information about the ongoing evaluation.
2968 /// \param E - The expression being evaluated, for diagnostic purposes.
2969 /// \param LVal - The pointer value to be updated.
2970 /// \param EltTy - The pointee type represented by LVal.
2971 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
2972 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2973                                         LValue &LVal, QualType EltTy,
2974                                         APSInt Adjustment) {
2975   CharUnits SizeOfPointee;
2976   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2977     return false;
2978 
2979   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
2980   return true;
2981 }
2982 
2983 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2984                                         LValue &LVal, QualType EltTy,
2985                                         int64_t Adjustment) {
2986   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
2987                                      APSInt::get(Adjustment));
2988 }
2989 
2990 /// Update an lvalue to refer to a component of a complex number.
2991 /// \param Info - Information about the ongoing evaluation.
2992 /// \param LVal - The lvalue to be updated.
2993 /// \param EltTy - The complex number's component type.
2994 /// \param Imag - False for the real component, true for the imaginary.
2995 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2996                                        LValue &LVal, QualType EltTy,
2997                                        bool Imag) {
2998   if (Imag) {
2999     CharUnits SizeOfComponent;
3000     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3001       return false;
3002     LVal.Offset += SizeOfComponent;
3003   }
3004   LVal.addComplex(Info, E, EltTy, Imag);
3005   return true;
3006 }
3007 
3008 /// Try to evaluate the initializer for a variable declaration.
3009 ///
3010 /// \param Info   Information about the ongoing evaluation.
3011 /// \param E      An expression to be used when printing diagnostics.
3012 /// \param VD     The variable whose initializer should be obtained.
3013 /// \param Frame  The frame in which the variable was created. Must be null
3014 ///               if this variable is not local to the evaluation.
3015 /// \param Result Filled in with a pointer to the value of the variable.
3016 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3017                                 const VarDecl *VD, CallStackFrame *Frame,
3018                                 APValue *&Result, const LValue *LVal) {
3019 
3020   // If this is a parameter to an active constexpr function call, perform
3021   // argument substitution.
3022   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
3023     // Assume arguments of a potential constant expression are unknown
3024     // constant expressions.
3025     if (Info.checkingPotentialConstantExpression())
3026       return false;
3027     if (!Frame || !Frame->Arguments) {
3028       Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) << VD;
3029       return false;
3030     }
3031     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
3032     return true;
3033   }
3034 
3035   // If this is a local variable, dig out its value.
3036   if (Frame) {
3037     Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
3038                   : Frame->getCurrentTemporary(VD);
3039     if (!Result) {
3040       // Assume variables referenced within a lambda's call operator that were
3041       // not declared within the call operator are captures and during checking
3042       // of a potential constant expression, assume they are unknown constant
3043       // expressions.
3044       assert(isLambdaCallOperator(Frame->Callee) &&
3045              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3046              "missing value for local variable");
3047       if (Info.checkingPotentialConstantExpression())
3048         return false;
3049       // FIXME: implement capture evaluation during constant expr evaluation.
3050       Info.FFDiag(E->getBeginLoc(),
3051                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3052           << "captures not currently allowed";
3053       return false;
3054     }
3055     return true;
3056   }
3057 
3058   // Dig out the initializer, and use the declaration which it's attached to.
3059   // FIXME: We should eventually check whether the variable has a reachable
3060   // initializing declaration.
3061   const Expr *Init = VD->getAnyInitializer(VD);
3062   if (!Init) {
3063     // Don't diagnose during potential constant expression checking; an
3064     // initializer might be added later.
3065     if (!Info.checkingPotentialConstantExpression()) {
3066       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3067         << VD;
3068       Info.Note(VD->getLocation(), diag::note_declared_at);
3069     }
3070     return false;
3071   }
3072 
3073   if (Init->isValueDependent()) {
3074     // The DeclRefExpr is not value-dependent, but the variable it refers to
3075     // has a value-dependent initializer. This should only happen in
3076     // constant-folding cases, where the variable is not actually of a suitable
3077     // type for use in a constant expression (otherwise the DeclRefExpr would
3078     // have been value-dependent too), so diagnose that.
3079     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3080     if (!Info.checkingPotentialConstantExpression()) {
3081       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3082                          ? diag::note_constexpr_ltor_non_constexpr
3083                          : diag::note_constexpr_ltor_non_integral, 1)
3084           << VD << VD->getType();
3085       Info.Note(VD->getLocation(), diag::note_declared_at);
3086     }
3087     return false;
3088   }
3089 
3090   // If we're currently evaluating the initializer of this declaration, use that
3091   // in-flight value.
3092   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
3093     Result = Info.EvaluatingDeclValue;
3094     return true;
3095   }
3096 
3097   // Check that we can fold the initializer. In C++, we will have already done
3098   // this in the cases where it matters for conformance.
3099   SmallVector<PartialDiagnosticAt, 8> Notes;
3100   if (!VD->evaluateValue(Notes)) {
3101     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
3102               Notes.size() + 1) << VD;
3103     Info.Note(VD->getLocation(), diag::note_declared_at);
3104     Info.addNotes(Notes);
3105     return false;
3106   }
3107 
3108   // Check that the variable is actually usable in constant expressions.
3109   if (!VD->checkInitIsICE()) {
3110     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
3111                  Notes.size() + 1) << VD;
3112     Info.Note(VD->getLocation(), diag::note_declared_at);
3113     Info.addNotes(Notes);
3114   }
3115 
3116   // Never use the initializer of a weak variable, not even for constant
3117   // folding. We can't be sure that this is the definition that will be used.
3118   if (VD->isWeak()) {
3119     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3120     Info.Note(VD->getLocation(), diag::note_declared_at);
3121     return false;
3122   }
3123 
3124   Result = VD->getEvaluatedValue();
3125   return true;
3126 }
3127 
3128 static bool IsConstNonVolatile(QualType T) {
3129   Qualifiers Quals = T.getQualifiers();
3130   return Quals.hasConst() && !Quals.hasVolatile();
3131 }
3132 
3133 /// Get the base index of the given base class within an APValue representing
3134 /// the given derived class.
3135 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3136                              const CXXRecordDecl *Base) {
3137   Base = Base->getCanonicalDecl();
3138   unsigned Index = 0;
3139   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3140          E = Derived->bases_end(); I != E; ++I, ++Index) {
3141     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3142       return Index;
3143   }
3144 
3145   llvm_unreachable("base class missing from derived class's bases list");
3146 }
3147 
3148 /// Extract the value of a character from a string literal.
3149 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3150                                             uint64_t Index) {
3151   assert(!isa<SourceLocExpr>(Lit) &&
3152          "SourceLocExpr should have already been converted to a StringLiteral");
3153 
3154   // FIXME: Support MakeStringConstant
3155   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3156     std::string Str;
3157     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3158     assert(Index <= Str.size() && "Index too large");
3159     return APSInt::getUnsigned(Str.c_str()[Index]);
3160   }
3161 
3162   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3163     Lit = PE->getFunctionName();
3164   const StringLiteral *S = cast<StringLiteral>(Lit);
3165   const ConstantArrayType *CAT =
3166       Info.Ctx.getAsConstantArrayType(S->getType());
3167   assert(CAT && "string literal isn't an array");
3168   QualType CharType = CAT->getElementType();
3169   assert(CharType->isIntegerType() && "unexpected character type");
3170 
3171   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3172                CharType->isUnsignedIntegerType());
3173   if (Index < S->getLength())
3174     Value = S->getCodeUnit(Index);
3175   return Value;
3176 }
3177 
3178 // Expand a string literal into an array of characters.
3179 //
3180 // FIXME: This is inefficient; we should probably introduce something similar
3181 // to the LLVM ConstantDataArray to make this cheaper.
3182 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3183                                 APValue &Result,
3184                                 QualType AllocType = QualType()) {
3185   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3186       AllocType.isNull() ? S->getType() : AllocType);
3187   assert(CAT && "string literal isn't an array");
3188   QualType CharType = CAT->getElementType();
3189   assert(CharType->isIntegerType() && "unexpected character type");
3190 
3191   unsigned Elts = CAT->getSize().getZExtValue();
3192   Result = APValue(APValue::UninitArray(),
3193                    std::min(S->getLength(), Elts), Elts);
3194   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3195                CharType->isUnsignedIntegerType());
3196   if (Result.hasArrayFiller())
3197     Result.getArrayFiller() = APValue(Value);
3198   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3199     Value = S->getCodeUnit(I);
3200     Result.getArrayInitializedElt(I) = APValue(Value);
3201   }
3202 }
3203 
3204 // Expand an array so that it has more than Index filled elements.
3205 static void expandArray(APValue &Array, unsigned Index) {
3206   unsigned Size = Array.getArraySize();
3207   assert(Index < Size);
3208 
3209   // Always at least double the number of elements for which we store a value.
3210   unsigned OldElts = Array.getArrayInitializedElts();
3211   unsigned NewElts = std::max(Index+1, OldElts * 2);
3212   NewElts = std::min(Size, std::max(NewElts, 8u));
3213 
3214   // Copy the data across.
3215   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3216   for (unsigned I = 0; I != OldElts; ++I)
3217     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3218   for (unsigned I = OldElts; I != NewElts; ++I)
3219     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3220   if (NewValue.hasArrayFiller())
3221     NewValue.getArrayFiller() = Array.getArrayFiller();
3222   Array.swap(NewValue);
3223 }
3224 
3225 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3226 /// conversion. If it's of class type, we may assume that the copy operation
3227 /// is trivial. Note that this is never true for a union type with fields
3228 /// (because the copy always "reads" the active member) and always true for
3229 /// a non-class type.
3230 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3231 static bool isReadByLvalueToRvalueConversion(QualType T) {
3232   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3233   return !RD || isReadByLvalueToRvalueConversion(RD);
3234 }
3235 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3236   // FIXME: A trivial copy of a union copies the object representation, even if
3237   // the union is empty.
3238   if (RD->isUnion())
3239     return !RD->field_empty();
3240   if (RD->isEmpty())
3241     return false;
3242 
3243   for (auto *Field : RD->fields())
3244     if (!Field->isUnnamedBitfield() &&
3245         isReadByLvalueToRvalueConversion(Field->getType()))
3246       return true;
3247 
3248   for (auto &BaseSpec : RD->bases())
3249     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3250       return true;
3251 
3252   return false;
3253 }
3254 
3255 /// Diagnose an attempt to read from any unreadable field within the specified
3256 /// type, which might be a class type.
3257 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3258                                   QualType T) {
3259   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3260   if (!RD)
3261     return false;
3262 
3263   if (!RD->hasMutableFields())
3264     return false;
3265 
3266   for (auto *Field : RD->fields()) {
3267     // If we're actually going to read this field in some way, then it can't
3268     // be mutable. If we're in a union, then assigning to a mutable field
3269     // (even an empty one) can change the active member, so that's not OK.
3270     // FIXME: Add core issue number for the union case.
3271     if (Field->isMutable() &&
3272         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3273       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3274       Info.Note(Field->getLocation(), diag::note_declared_at);
3275       return true;
3276     }
3277 
3278     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3279       return true;
3280   }
3281 
3282   for (auto &BaseSpec : RD->bases())
3283     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3284       return true;
3285 
3286   // All mutable fields were empty, and thus not actually read.
3287   return false;
3288 }
3289 
3290 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3291                                         APValue::LValueBase Base,
3292                                         bool MutableSubobject = false) {
3293   // A temporary we created.
3294   if (Base.getCallIndex())
3295     return true;
3296 
3297   auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
3298   if (!Evaluating)
3299     return false;
3300 
3301   auto *BaseD = Base.dyn_cast<const ValueDecl*>();
3302 
3303   switch (Info.IsEvaluatingDecl) {
3304   case EvalInfo::EvaluatingDeclKind::None:
3305     return false;
3306 
3307   case EvalInfo::EvaluatingDeclKind::Ctor:
3308     // The variable whose initializer we're evaluating.
3309     if (BaseD)
3310       return declaresSameEntity(Evaluating, BaseD);
3311 
3312     // A temporary lifetime-extended by the variable whose initializer we're
3313     // evaluating.
3314     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3315       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3316         return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating);
3317     return false;
3318 
3319   case EvalInfo::EvaluatingDeclKind::Dtor:
3320     // C++2a [expr.const]p6:
3321     //   [during constant destruction] the lifetime of a and its non-mutable
3322     //   subobjects (but not its mutable subobjects) [are] considered to start
3323     //   within e.
3324     //
3325     // FIXME: We can meaningfully extend this to cover non-const objects, but
3326     // we will need special handling: we should be able to access only
3327     // subobjects of such objects that are themselves declared const.
3328     if (!BaseD ||
3329         !(BaseD->getType().isConstQualified() ||
3330           BaseD->getType()->isReferenceType()) ||
3331         MutableSubobject)
3332       return false;
3333     return declaresSameEntity(Evaluating, BaseD);
3334   }
3335 
3336   llvm_unreachable("unknown evaluating decl kind");
3337 }
3338 
3339 namespace {
3340 /// A handle to a complete object (an object that is not a subobject of
3341 /// another object).
3342 struct CompleteObject {
3343   /// The identity of the object.
3344   APValue::LValueBase Base;
3345   /// The value of the complete object.
3346   APValue *Value;
3347   /// The type of the complete object.
3348   QualType Type;
3349 
3350   CompleteObject() : Value(nullptr) {}
3351   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3352       : Base(Base), Value(Value), Type(Type) {}
3353 
3354   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3355     // If this isn't a "real" access (eg, if it's just accessing the type
3356     // info), allow it. We assume the type doesn't change dynamically for
3357     // subobjects of constexpr objects (even though we'd hit UB here if it
3358     // did). FIXME: Is this right?
3359     if (!isAnyAccess(AK))
3360       return true;
3361 
3362     // In C++14 onwards, it is permitted to read a mutable member whose
3363     // lifetime began within the evaluation.
3364     // FIXME: Should we also allow this in C++11?
3365     if (!Info.getLangOpts().CPlusPlus14)
3366       return false;
3367     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3368   }
3369 
3370   explicit operator bool() const { return !Type.isNull(); }
3371 };
3372 } // end anonymous namespace
3373 
3374 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3375                                  bool IsMutable = false) {
3376   // C++ [basic.type.qualifier]p1:
3377   // - A const object is an object of type const T or a non-mutable subobject
3378   //   of a const object.
3379   if (ObjType.isConstQualified() && !IsMutable)
3380     SubobjType.addConst();
3381   // - A volatile object is an object of type const T or a subobject of a
3382   //   volatile object.
3383   if (ObjType.isVolatileQualified())
3384     SubobjType.addVolatile();
3385   return SubobjType;
3386 }
3387 
3388 /// Find the designated sub-object of an rvalue.
3389 template<typename SubobjectHandler>
3390 typename SubobjectHandler::result_type
3391 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3392               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3393   if (Sub.Invalid)
3394     // A diagnostic will have already been produced.
3395     return handler.failed();
3396   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3397     if (Info.getLangOpts().CPlusPlus11)
3398       Info.FFDiag(E, Sub.isOnePastTheEnd()
3399                          ? diag::note_constexpr_access_past_end
3400                          : diag::note_constexpr_access_unsized_array)
3401           << handler.AccessKind;
3402     else
3403       Info.FFDiag(E);
3404     return handler.failed();
3405   }
3406 
3407   APValue *O = Obj.Value;
3408   QualType ObjType = Obj.Type;
3409   const FieldDecl *LastField = nullptr;
3410   const FieldDecl *VolatileField = nullptr;
3411 
3412   // Walk the designator's path to find the subobject.
3413   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3414     // Reading an indeterminate value is undefined, but assigning over one is OK.
3415     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3416         (O->isIndeterminate() &&
3417          !isValidIndeterminateAccess(handler.AccessKind))) {
3418       if (!Info.checkingPotentialConstantExpression())
3419         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3420             << handler.AccessKind << O->isIndeterminate();
3421       return handler.failed();
3422     }
3423 
3424     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3425     //    const and volatile semantics are not applied on an object under
3426     //    {con,de}struction.
3427     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3428         ObjType->isRecordType() &&
3429         Info.isEvaluatingCtorDtor(
3430             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3431                                          Sub.Entries.begin() + I)) !=
3432                           ConstructionPhase::None) {
3433       ObjType = Info.Ctx.getCanonicalType(ObjType);
3434       ObjType.removeLocalConst();
3435       ObjType.removeLocalVolatile();
3436     }
3437 
3438     // If this is our last pass, check that the final object type is OK.
3439     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3440       // Accesses to volatile objects are prohibited.
3441       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3442         if (Info.getLangOpts().CPlusPlus) {
3443           int DiagKind;
3444           SourceLocation Loc;
3445           const NamedDecl *Decl = nullptr;
3446           if (VolatileField) {
3447             DiagKind = 2;
3448             Loc = VolatileField->getLocation();
3449             Decl = VolatileField;
3450           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3451             DiagKind = 1;
3452             Loc = VD->getLocation();
3453             Decl = VD;
3454           } else {
3455             DiagKind = 0;
3456             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3457               Loc = E->getExprLoc();
3458           }
3459           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3460               << handler.AccessKind << DiagKind << Decl;
3461           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3462         } else {
3463           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3464         }
3465         return handler.failed();
3466       }
3467 
3468       // If we are reading an object of class type, there may still be more
3469       // things we need to check: if there are any mutable subobjects, we
3470       // cannot perform this read. (This only happens when performing a trivial
3471       // copy or assignment.)
3472       if (ObjType->isRecordType() &&
3473           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3474           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3475         return handler.failed();
3476     }
3477 
3478     if (I == N) {
3479       if (!handler.found(*O, ObjType))
3480         return false;
3481 
3482       // If we modified a bit-field, truncate it to the right width.
3483       if (isModification(handler.AccessKind) &&
3484           LastField && LastField->isBitField() &&
3485           !truncateBitfieldValue(Info, E, *O, LastField))
3486         return false;
3487 
3488       return true;
3489     }
3490 
3491     LastField = nullptr;
3492     if (ObjType->isArrayType()) {
3493       // Next subobject is an array element.
3494       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3495       assert(CAT && "vla in literal type?");
3496       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3497       if (CAT->getSize().ule(Index)) {
3498         // Note, it should not be possible to form a pointer with a valid
3499         // designator which points more than one past the end of the array.
3500         if (Info.getLangOpts().CPlusPlus11)
3501           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3502             << handler.AccessKind;
3503         else
3504           Info.FFDiag(E);
3505         return handler.failed();
3506       }
3507 
3508       ObjType = CAT->getElementType();
3509 
3510       if (O->getArrayInitializedElts() > Index)
3511         O = &O->getArrayInitializedElt(Index);
3512       else if (!isRead(handler.AccessKind)) {
3513         expandArray(*O, Index);
3514         O = &O->getArrayInitializedElt(Index);
3515       } else
3516         O = &O->getArrayFiller();
3517     } else if (ObjType->isAnyComplexType()) {
3518       // Next subobject is a complex number.
3519       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3520       if (Index > 1) {
3521         if (Info.getLangOpts().CPlusPlus11)
3522           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3523             << handler.AccessKind;
3524         else
3525           Info.FFDiag(E);
3526         return handler.failed();
3527       }
3528 
3529       ObjType = getSubobjectType(
3530           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3531 
3532       assert(I == N - 1 && "extracting subobject of scalar?");
3533       if (O->isComplexInt()) {
3534         return handler.found(Index ? O->getComplexIntImag()
3535                                    : O->getComplexIntReal(), ObjType);
3536       } else {
3537         assert(O->isComplexFloat());
3538         return handler.found(Index ? O->getComplexFloatImag()
3539                                    : O->getComplexFloatReal(), ObjType);
3540       }
3541     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3542       if (Field->isMutable() &&
3543           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3544         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3545           << handler.AccessKind << Field;
3546         Info.Note(Field->getLocation(), diag::note_declared_at);
3547         return handler.failed();
3548       }
3549 
3550       // Next subobject is a class, struct or union field.
3551       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3552       if (RD->isUnion()) {
3553         const FieldDecl *UnionField = O->getUnionField();
3554         if (!UnionField ||
3555             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3556           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3557             // Placement new onto an inactive union member makes it active.
3558             O->setUnion(Field, APValue());
3559           } else {
3560             // FIXME: If O->getUnionValue() is absent, report that there's no
3561             // active union member rather than reporting the prior active union
3562             // member. We'll need to fix nullptr_t to not use APValue() as its
3563             // representation first.
3564             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3565                 << handler.AccessKind << Field << !UnionField << UnionField;
3566             return handler.failed();
3567           }
3568         }
3569         O = &O->getUnionValue();
3570       } else
3571         O = &O->getStructField(Field->getFieldIndex());
3572 
3573       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3574       LastField = Field;
3575       if (Field->getType().isVolatileQualified())
3576         VolatileField = Field;
3577     } else {
3578       // Next subobject is a base class.
3579       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3580       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3581       O = &O->getStructBase(getBaseIndex(Derived, Base));
3582 
3583       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3584     }
3585   }
3586 }
3587 
3588 namespace {
3589 struct ExtractSubobjectHandler {
3590   EvalInfo &Info;
3591   const Expr *E;
3592   APValue &Result;
3593   const AccessKinds AccessKind;
3594 
3595   typedef bool result_type;
3596   bool failed() { return false; }
3597   bool found(APValue &Subobj, QualType SubobjType) {
3598     Result = Subobj;
3599     if (AccessKind == AK_ReadObjectRepresentation)
3600       return true;
3601     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3602   }
3603   bool found(APSInt &Value, QualType SubobjType) {
3604     Result = APValue(Value);
3605     return true;
3606   }
3607   bool found(APFloat &Value, QualType SubobjType) {
3608     Result = APValue(Value);
3609     return true;
3610   }
3611 };
3612 } // end anonymous namespace
3613 
3614 /// Extract the designated sub-object of an rvalue.
3615 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3616                              const CompleteObject &Obj,
3617                              const SubobjectDesignator &Sub, APValue &Result,
3618                              AccessKinds AK = AK_Read) {
3619   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3620   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3621   return findSubobject(Info, E, Obj, Sub, Handler);
3622 }
3623 
3624 namespace {
3625 struct ModifySubobjectHandler {
3626   EvalInfo &Info;
3627   APValue &NewVal;
3628   const Expr *E;
3629 
3630   typedef bool result_type;
3631   static const AccessKinds AccessKind = AK_Assign;
3632 
3633   bool checkConst(QualType QT) {
3634     // Assigning to a const object has undefined behavior.
3635     if (QT.isConstQualified()) {
3636       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3637       return false;
3638     }
3639     return true;
3640   }
3641 
3642   bool failed() { return false; }
3643   bool found(APValue &Subobj, QualType SubobjType) {
3644     if (!checkConst(SubobjType))
3645       return false;
3646     // We've been given ownership of NewVal, so just swap it in.
3647     Subobj.swap(NewVal);
3648     return true;
3649   }
3650   bool found(APSInt &Value, QualType SubobjType) {
3651     if (!checkConst(SubobjType))
3652       return false;
3653     if (!NewVal.isInt()) {
3654       // Maybe trying to write a cast pointer value into a complex?
3655       Info.FFDiag(E);
3656       return false;
3657     }
3658     Value = NewVal.getInt();
3659     return true;
3660   }
3661   bool found(APFloat &Value, QualType SubobjType) {
3662     if (!checkConst(SubobjType))
3663       return false;
3664     Value = NewVal.getFloat();
3665     return true;
3666   }
3667 };
3668 } // end anonymous namespace
3669 
3670 const AccessKinds ModifySubobjectHandler::AccessKind;
3671 
3672 /// Update the designated sub-object of an rvalue to the given value.
3673 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3674                             const CompleteObject &Obj,
3675                             const SubobjectDesignator &Sub,
3676                             APValue &NewVal) {
3677   ModifySubobjectHandler Handler = { Info, NewVal, E };
3678   return findSubobject(Info, E, Obj, Sub, Handler);
3679 }
3680 
3681 /// Find the position where two subobject designators diverge, or equivalently
3682 /// the length of the common initial subsequence.
3683 static unsigned FindDesignatorMismatch(QualType ObjType,
3684                                        const SubobjectDesignator &A,
3685                                        const SubobjectDesignator &B,
3686                                        bool &WasArrayIndex) {
3687   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3688   for (/**/; I != N; ++I) {
3689     if (!ObjType.isNull() &&
3690         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3691       // Next subobject is an array element.
3692       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3693         WasArrayIndex = true;
3694         return I;
3695       }
3696       if (ObjType->isAnyComplexType())
3697         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3698       else
3699         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3700     } else {
3701       if (A.Entries[I].getAsBaseOrMember() !=
3702           B.Entries[I].getAsBaseOrMember()) {
3703         WasArrayIndex = false;
3704         return I;
3705       }
3706       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3707         // Next subobject is a field.
3708         ObjType = FD->getType();
3709       else
3710         // Next subobject is a base class.
3711         ObjType = QualType();
3712     }
3713   }
3714   WasArrayIndex = false;
3715   return I;
3716 }
3717 
3718 /// Determine whether the given subobject designators refer to elements of the
3719 /// same array object.
3720 static bool AreElementsOfSameArray(QualType ObjType,
3721                                    const SubobjectDesignator &A,
3722                                    const SubobjectDesignator &B) {
3723   if (A.Entries.size() != B.Entries.size())
3724     return false;
3725 
3726   bool IsArray = A.MostDerivedIsArrayElement;
3727   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3728     // A is a subobject of the array element.
3729     return false;
3730 
3731   // If A (and B) designates an array element, the last entry will be the array
3732   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3733   // of length 1' case, and the entire path must match.
3734   bool WasArrayIndex;
3735   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3736   return CommonLength >= A.Entries.size() - IsArray;
3737 }
3738 
3739 /// Find the complete object to which an LValue refers.
3740 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3741                                          AccessKinds AK, const LValue &LVal,
3742                                          QualType LValType) {
3743   if (LVal.InvalidBase) {
3744     Info.FFDiag(E);
3745     return CompleteObject();
3746   }
3747 
3748   if (!LVal.Base) {
3749     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3750     return CompleteObject();
3751   }
3752 
3753   CallStackFrame *Frame = nullptr;
3754   unsigned Depth = 0;
3755   if (LVal.getLValueCallIndex()) {
3756     std::tie(Frame, Depth) =
3757         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3758     if (!Frame) {
3759       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3760         << AK << LVal.Base.is<const ValueDecl*>();
3761       NoteLValueLocation(Info, LVal.Base);
3762       return CompleteObject();
3763     }
3764   }
3765 
3766   bool IsAccess = isAnyAccess(AK);
3767 
3768   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3769   // is not a constant expression (even if the object is non-volatile). We also
3770   // apply this rule to C++98, in order to conform to the expected 'volatile'
3771   // semantics.
3772   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3773     if (Info.getLangOpts().CPlusPlus)
3774       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3775         << AK << LValType;
3776     else
3777       Info.FFDiag(E);
3778     return CompleteObject();
3779   }
3780 
3781   // Compute value storage location and type of base object.
3782   APValue *BaseVal = nullptr;
3783   QualType BaseType = getType(LVal.Base);
3784 
3785   if (const ConstantExpr *CE =
3786           dyn_cast_or_null<ConstantExpr>(LVal.Base.dyn_cast<const Expr *>())) {
3787     /// Nested immediate invocation have been previously removed so if we found
3788     /// a ConstantExpr it can only be the EvaluatingDecl.
3789     assert(CE->isImmediateInvocation() && CE == Info.EvaluatingDecl);
3790     (void)CE;
3791     BaseVal = Info.EvaluatingDeclValue;
3792   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
3793     // Allow reading from a GUID declaration.
3794     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
3795       if (isModification(AK)) {
3796         // All the remaining cases do not permit modification of the object.
3797         Info.FFDiag(E, diag::note_constexpr_modify_global);
3798         return CompleteObject();
3799       }
3800       APValue &V = GD->getAsAPValue();
3801       if (V.isAbsent()) {
3802         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
3803             << GD->getType();
3804         return CompleteObject();
3805       }
3806       return CompleteObject(LVal.Base, &V, GD->getType());
3807     }
3808 
3809     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
3810     // In C++11, constexpr, non-volatile variables initialized with constant
3811     // expressions are constant expressions too. Inside constexpr functions,
3812     // parameters are constant expressions even if they're non-const.
3813     // In C++1y, objects local to a constant expression (those with a Frame) are
3814     // both readable and writable inside constant expressions.
3815     // In C, such things can also be folded, although they are not ICEs.
3816     const VarDecl *VD = dyn_cast<VarDecl>(D);
3817     if (VD) {
3818       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
3819         VD = VDef;
3820     }
3821     if (!VD || VD->isInvalidDecl()) {
3822       Info.FFDiag(E);
3823       return CompleteObject();
3824     }
3825 
3826     // In OpenCL if a variable is in constant address space it is a const value.
3827     bool IsConstant = BaseType.isConstQualified() ||
3828                       (Info.getLangOpts().OpenCL &&
3829                        BaseType.getAddressSpace() == LangAS::opencl_constant);
3830 
3831     // Unless we're looking at a local variable or argument in a constexpr call,
3832     // the variable we're reading must be const.
3833     if (!Frame) {
3834       if (Info.getLangOpts().CPlusPlus14 &&
3835           lifetimeStartedInEvaluation(Info, LVal.Base)) {
3836         // OK, we can read and modify an object if we're in the process of
3837         // evaluating its initializer, because its lifetime began in this
3838         // evaluation.
3839       } else if (isModification(AK)) {
3840         // All the remaining cases do not permit modification of the object.
3841         Info.FFDiag(E, diag::note_constexpr_modify_global);
3842         return CompleteObject();
3843       } else if (VD->isConstexpr()) {
3844         // OK, we can read this variable.
3845       } else if (BaseType->isIntegralOrEnumerationType()) {
3846         // In OpenCL if a variable is in constant address space it is a const
3847         // value.
3848         if (!IsConstant) {
3849           if (!IsAccess)
3850             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3851           if (Info.getLangOpts().CPlusPlus) {
3852             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
3853             Info.Note(VD->getLocation(), diag::note_declared_at);
3854           } else {
3855             Info.FFDiag(E);
3856           }
3857           return CompleteObject();
3858         }
3859       } else if (!IsAccess) {
3860         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3861       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
3862                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
3863         // This variable might end up being constexpr. Don't diagnose it yet.
3864       } else if (IsConstant) {
3865         // Keep evaluating to see what we can do. In particular, we support
3866         // folding of const floating-point types, in order to make static const
3867         // data members of such types (supported as an extension) more useful.
3868         if (Info.getLangOpts().CPlusPlus) {
3869           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
3870                               ? diag::note_constexpr_ltor_non_constexpr
3871                               : diag::note_constexpr_ltor_non_integral, 1)
3872               << VD << BaseType;
3873           Info.Note(VD->getLocation(), diag::note_declared_at);
3874         } else {
3875           Info.CCEDiag(E);
3876         }
3877       } else {
3878         // Never allow reading a non-const value.
3879         if (Info.getLangOpts().CPlusPlus) {
3880           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3881                              ? diag::note_constexpr_ltor_non_constexpr
3882                              : diag::note_constexpr_ltor_non_integral, 1)
3883               << VD << BaseType;
3884           Info.Note(VD->getLocation(), diag::note_declared_at);
3885         } else {
3886           Info.FFDiag(E);
3887         }
3888         return CompleteObject();
3889       }
3890     }
3891 
3892     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
3893       return CompleteObject();
3894   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
3895     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
3896     if (!Alloc) {
3897       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
3898       return CompleteObject();
3899     }
3900     return CompleteObject(LVal.Base, &(*Alloc)->Value,
3901                           LVal.Base.getDynamicAllocType());
3902   } else {
3903     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3904 
3905     if (!Frame) {
3906       if (const MaterializeTemporaryExpr *MTE =
3907               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
3908         assert(MTE->getStorageDuration() == SD_Static &&
3909                "should have a frame for a non-global materialized temporary");
3910 
3911         // Per C++1y [expr.const]p2:
3912         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
3913         //   - a [...] glvalue of integral or enumeration type that refers to
3914         //     a non-volatile const object [...]
3915         //   [...]
3916         //   - a [...] glvalue of literal type that refers to a non-volatile
3917         //     object whose lifetime began within the evaluation of e.
3918         //
3919         // C++11 misses the 'began within the evaluation of e' check and
3920         // instead allows all temporaries, including things like:
3921         //   int &&r = 1;
3922         //   int x = ++r;
3923         //   constexpr int k = r;
3924         // Therefore we use the C++14 rules in C++11 too.
3925         //
3926         // Note that temporaries whose lifetimes began while evaluating a
3927         // variable's constructor are not usable while evaluating the
3928         // corresponding destructor, not even if they're of const-qualified
3929         // types.
3930         if (!(BaseType.isConstQualified() &&
3931               BaseType->isIntegralOrEnumerationType()) &&
3932             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
3933           if (!IsAccess)
3934             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3935           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
3936           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
3937           return CompleteObject();
3938         }
3939 
3940         BaseVal = MTE->getOrCreateValue(false);
3941         assert(BaseVal && "got reference to unevaluated temporary");
3942       } else {
3943         if (!IsAccess)
3944           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3945         APValue Val;
3946         LVal.moveInto(Val);
3947         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
3948             << AK
3949             << Val.getAsString(Info.Ctx,
3950                                Info.Ctx.getLValueReferenceType(LValType));
3951         NoteLValueLocation(Info, LVal.Base);
3952         return CompleteObject();
3953       }
3954     } else {
3955       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
3956       assert(BaseVal && "missing value for temporary");
3957     }
3958   }
3959 
3960   // In C++14, we can't safely access any mutable state when we might be
3961   // evaluating after an unmodeled side effect.
3962   //
3963   // FIXME: Not all local state is mutable. Allow local constant subobjects
3964   // to be read here (but take care with 'mutable' fields).
3965   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
3966        Info.EvalStatus.HasSideEffects) ||
3967       (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
3968     return CompleteObject();
3969 
3970   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
3971 }
3972 
3973 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
3974 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
3975 /// glvalue referred to by an entity of reference type.
3976 ///
3977 /// \param Info - Information about the ongoing evaluation.
3978 /// \param Conv - The expression for which we are performing the conversion.
3979 ///               Used for diagnostics.
3980 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
3981 ///               case of a non-class type).
3982 /// \param LVal - The glvalue on which we are attempting to perform this action.
3983 /// \param RVal - The produced value will be placed here.
3984 /// \param WantObjectRepresentation - If true, we're looking for the object
3985 ///               representation rather than the value, and in particular,
3986 ///               there is no requirement that the result be fully initialized.
3987 static bool
3988 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
3989                                const LValue &LVal, APValue &RVal,
3990                                bool WantObjectRepresentation = false) {
3991   if (LVal.Designator.Invalid)
3992     return false;
3993 
3994   // Check for special cases where there is no existing APValue to look at.
3995   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3996 
3997   AccessKinds AK =
3998       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
3999 
4000   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4001     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4002       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4003       // initializer until now for such expressions. Such an expression can't be
4004       // an ICE in C, so this only matters for fold.
4005       if (Type.isVolatileQualified()) {
4006         Info.FFDiag(Conv);
4007         return false;
4008       }
4009       APValue Lit;
4010       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4011         return false;
4012       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4013       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4014     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4015       // Special-case character extraction so we don't have to construct an
4016       // APValue for the whole string.
4017       assert(LVal.Designator.Entries.size() <= 1 &&
4018              "Can only read characters from string literals");
4019       if (LVal.Designator.Entries.empty()) {
4020         // Fail for now for LValue to RValue conversion of an array.
4021         // (This shouldn't show up in C/C++, but it could be triggered by a
4022         // weird EvaluateAsRValue call from a tool.)
4023         Info.FFDiag(Conv);
4024         return false;
4025       }
4026       if (LVal.Designator.isOnePastTheEnd()) {
4027         if (Info.getLangOpts().CPlusPlus11)
4028           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4029         else
4030           Info.FFDiag(Conv);
4031         return false;
4032       }
4033       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4034       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4035       return true;
4036     }
4037   }
4038 
4039   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4040   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4041 }
4042 
4043 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4044 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4045                              QualType LValType, APValue &Val) {
4046   if (LVal.Designator.Invalid)
4047     return false;
4048 
4049   if (!Info.getLangOpts().CPlusPlus14) {
4050     Info.FFDiag(E);
4051     return false;
4052   }
4053 
4054   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4055   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4056 }
4057 
4058 namespace {
4059 struct CompoundAssignSubobjectHandler {
4060   EvalInfo &Info;
4061   const Expr *E;
4062   QualType PromotedLHSType;
4063   BinaryOperatorKind Opcode;
4064   const APValue &RHS;
4065 
4066   static const AccessKinds AccessKind = AK_Assign;
4067 
4068   typedef bool result_type;
4069 
4070   bool checkConst(QualType QT) {
4071     // Assigning to a const object has undefined behavior.
4072     if (QT.isConstQualified()) {
4073       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4074       return false;
4075     }
4076     return true;
4077   }
4078 
4079   bool failed() { return false; }
4080   bool found(APValue &Subobj, QualType SubobjType) {
4081     switch (Subobj.getKind()) {
4082     case APValue::Int:
4083       return found(Subobj.getInt(), SubobjType);
4084     case APValue::Float:
4085       return found(Subobj.getFloat(), SubobjType);
4086     case APValue::ComplexInt:
4087     case APValue::ComplexFloat:
4088       // FIXME: Implement complex compound assignment.
4089       Info.FFDiag(E);
4090       return false;
4091     case APValue::LValue:
4092       return foundPointer(Subobj, SubobjType);
4093     case APValue::Vector:
4094       return foundVector(Subobj, SubobjType);
4095     default:
4096       // FIXME: can this happen?
4097       Info.FFDiag(E);
4098       return false;
4099     }
4100   }
4101 
4102   bool foundVector(APValue &Value, QualType SubobjType) {
4103     if (!checkConst(SubobjType))
4104       return false;
4105 
4106     if (!SubobjType->isVectorType()) {
4107       Info.FFDiag(E);
4108       return false;
4109     }
4110     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4111   }
4112 
4113   bool found(APSInt &Value, QualType SubobjType) {
4114     if (!checkConst(SubobjType))
4115       return false;
4116 
4117     if (!SubobjType->isIntegerType()) {
4118       // We don't support compound assignment on integer-cast-to-pointer
4119       // values.
4120       Info.FFDiag(E);
4121       return false;
4122     }
4123 
4124     if (RHS.isInt()) {
4125       APSInt LHS =
4126           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4127       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4128         return false;
4129       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4130       return true;
4131     } else if (RHS.isFloat()) {
4132       APFloat FValue(0.0);
4133       return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
4134                                   FValue) &&
4135              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4136              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4137                                   Value);
4138     }
4139 
4140     Info.FFDiag(E);
4141     return false;
4142   }
4143   bool found(APFloat &Value, QualType SubobjType) {
4144     return checkConst(SubobjType) &&
4145            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4146                                   Value) &&
4147            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4148            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4149   }
4150   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4151     if (!checkConst(SubobjType))
4152       return false;
4153 
4154     QualType PointeeType;
4155     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4156       PointeeType = PT->getPointeeType();
4157 
4158     if (PointeeType.isNull() || !RHS.isInt() ||
4159         (Opcode != BO_Add && Opcode != BO_Sub)) {
4160       Info.FFDiag(E);
4161       return false;
4162     }
4163 
4164     APSInt Offset = RHS.getInt();
4165     if (Opcode == BO_Sub)
4166       negateAsSigned(Offset);
4167 
4168     LValue LVal;
4169     LVal.setFrom(Info.Ctx, Subobj);
4170     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4171       return false;
4172     LVal.moveInto(Subobj);
4173     return true;
4174   }
4175 };
4176 } // end anonymous namespace
4177 
4178 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4179 
4180 /// Perform a compound assignment of LVal <op>= RVal.
4181 static bool handleCompoundAssignment(
4182     EvalInfo &Info, const Expr *E,
4183     const LValue &LVal, QualType LValType, QualType PromotedLValType,
4184     BinaryOperatorKind Opcode, const APValue &RVal) {
4185   if (LVal.Designator.Invalid)
4186     return false;
4187 
4188   if (!Info.getLangOpts().CPlusPlus14) {
4189     Info.FFDiag(E);
4190     return false;
4191   }
4192 
4193   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4194   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4195                                              RVal };
4196   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4197 }
4198 
4199 namespace {
4200 struct IncDecSubobjectHandler {
4201   EvalInfo &Info;
4202   const UnaryOperator *E;
4203   AccessKinds AccessKind;
4204   APValue *Old;
4205 
4206   typedef bool result_type;
4207 
4208   bool checkConst(QualType QT) {
4209     // Assigning to a const object has undefined behavior.
4210     if (QT.isConstQualified()) {
4211       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4212       return false;
4213     }
4214     return true;
4215   }
4216 
4217   bool failed() { return false; }
4218   bool found(APValue &Subobj, QualType SubobjType) {
4219     // Stash the old value. Also clear Old, so we don't clobber it later
4220     // if we're post-incrementing a complex.
4221     if (Old) {
4222       *Old = Subobj;
4223       Old = nullptr;
4224     }
4225 
4226     switch (Subobj.getKind()) {
4227     case APValue::Int:
4228       return found(Subobj.getInt(), SubobjType);
4229     case APValue::Float:
4230       return found(Subobj.getFloat(), SubobjType);
4231     case APValue::ComplexInt:
4232       return found(Subobj.getComplexIntReal(),
4233                    SubobjType->castAs<ComplexType>()->getElementType()
4234                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4235     case APValue::ComplexFloat:
4236       return found(Subobj.getComplexFloatReal(),
4237                    SubobjType->castAs<ComplexType>()->getElementType()
4238                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4239     case APValue::LValue:
4240       return foundPointer(Subobj, SubobjType);
4241     default:
4242       // FIXME: can this happen?
4243       Info.FFDiag(E);
4244       return false;
4245     }
4246   }
4247   bool found(APSInt &Value, QualType SubobjType) {
4248     if (!checkConst(SubobjType))
4249       return false;
4250 
4251     if (!SubobjType->isIntegerType()) {
4252       // We don't support increment / decrement on integer-cast-to-pointer
4253       // values.
4254       Info.FFDiag(E);
4255       return false;
4256     }
4257 
4258     if (Old) *Old = APValue(Value);
4259 
4260     // bool arithmetic promotes to int, and the conversion back to bool
4261     // doesn't reduce mod 2^n, so special-case it.
4262     if (SubobjType->isBooleanType()) {
4263       if (AccessKind == AK_Increment)
4264         Value = 1;
4265       else
4266         Value = !Value;
4267       return true;
4268     }
4269 
4270     bool WasNegative = Value.isNegative();
4271     if (AccessKind == AK_Increment) {
4272       ++Value;
4273 
4274       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4275         APSInt ActualValue(Value, /*IsUnsigned*/true);
4276         return HandleOverflow(Info, E, ActualValue, SubobjType);
4277       }
4278     } else {
4279       --Value;
4280 
4281       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4282         unsigned BitWidth = Value.getBitWidth();
4283         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4284         ActualValue.setBit(BitWidth);
4285         return HandleOverflow(Info, E, ActualValue, SubobjType);
4286       }
4287     }
4288     return true;
4289   }
4290   bool found(APFloat &Value, QualType SubobjType) {
4291     if (!checkConst(SubobjType))
4292       return false;
4293 
4294     if (Old) *Old = APValue(Value);
4295 
4296     APFloat One(Value.getSemantics(), 1);
4297     if (AccessKind == AK_Increment)
4298       Value.add(One, APFloat::rmNearestTiesToEven);
4299     else
4300       Value.subtract(One, APFloat::rmNearestTiesToEven);
4301     return true;
4302   }
4303   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4304     if (!checkConst(SubobjType))
4305       return false;
4306 
4307     QualType PointeeType;
4308     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4309       PointeeType = PT->getPointeeType();
4310     else {
4311       Info.FFDiag(E);
4312       return false;
4313     }
4314 
4315     LValue LVal;
4316     LVal.setFrom(Info.Ctx, Subobj);
4317     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4318                                      AccessKind == AK_Increment ? 1 : -1))
4319       return false;
4320     LVal.moveInto(Subobj);
4321     return true;
4322   }
4323 };
4324 } // end anonymous namespace
4325 
4326 /// Perform an increment or decrement on LVal.
4327 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4328                          QualType LValType, bool IsIncrement, APValue *Old) {
4329   if (LVal.Designator.Invalid)
4330     return false;
4331 
4332   if (!Info.getLangOpts().CPlusPlus14) {
4333     Info.FFDiag(E);
4334     return false;
4335   }
4336 
4337   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4338   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4339   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4340   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4341 }
4342 
4343 /// Build an lvalue for the object argument of a member function call.
4344 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4345                                    LValue &This) {
4346   if (Object->getType()->isPointerType() && Object->isRValue())
4347     return EvaluatePointer(Object, This, Info);
4348 
4349   if (Object->isGLValue())
4350     return EvaluateLValue(Object, This, Info);
4351 
4352   if (Object->getType()->isLiteralType(Info.Ctx))
4353     return EvaluateTemporary(Object, This, Info);
4354 
4355   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4356   return false;
4357 }
4358 
4359 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4360 /// lvalue referring to the result.
4361 ///
4362 /// \param Info - Information about the ongoing evaluation.
4363 /// \param LV - An lvalue referring to the base of the member pointer.
4364 /// \param RHS - The member pointer expression.
4365 /// \param IncludeMember - Specifies whether the member itself is included in
4366 ///        the resulting LValue subobject designator. This is not possible when
4367 ///        creating a bound member function.
4368 /// \return The field or method declaration to which the member pointer refers,
4369 ///         or 0 if evaluation fails.
4370 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4371                                                   QualType LVType,
4372                                                   LValue &LV,
4373                                                   const Expr *RHS,
4374                                                   bool IncludeMember = true) {
4375   MemberPtr MemPtr;
4376   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4377     return nullptr;
4378 
4379   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4380   // member value, the behavior is undefined.
4381   if (!MemPtr.getDecl()) {
4382     // FIXME: Specific diagnostic.
4383     Info.FFDiag(RHS);
4384     return nullptr;
4385   }
4386 
4387   if (MemPtr.isDerivedMember()) {
4388     // This is a member of some derived class. Truncate LV appropriately.
4389     // The end of the derived-to-base path for the base object must match the
4390     // derived-to-base path for the member pointer.
4391     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4392         LV.Designator.Entries.size()) {
4393       Info.FFDiag(RHS);
4394       return nullptr;
4395     }
4396     unsigned PathLengthToMember =
4397         LV.Designator.Entries.size() - MemPtr.Path.size();
4398     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4399       const CXXRecordDecl *LVDecl = getAsBaseClass(
4400           LV.Designator.Entries[PathLengthToMember + I]);
4401       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4402       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4403         Info.FFDiag(RHS);
4404         return nullptr;
4405       }
4406     }
4407 
4408     // Truncate the lvalue to the appropriate derived class.
4409     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4410                             PathLengthToMember))
4411       return nullptr;
4412   } else if (!MemPtr.Path.empty()) {
4413     // Extend the LValue path with the member pointer's path.
4414     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4415                                   MemPtr.Path.size() + IncludeMember);
4416 
4417     // Walk down to the appropriate base class.
4418     if (const PointerType *PT = LVType->getAs<PointerType>())
4419       LVType = PT->getPointeeType();
4420     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4421     assert(RD && "member pointer access on non-class-type expression");
4422     // The first class in the path is that of the lvalue.
4423     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4424       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4425       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4426         return nullptr;
4427       RD = Base;
4428     }
4429     // Finally cast to the class containing the member.
4430     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4431                                 MemPtr.getContainingRecord()))
4432       return nullptr;
4433   }
4434 
4435   // Add the member. Note that we cannot build bound member functions here.
4436   if (IncludeMember) {
4437     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4438       if (!HandleLValueMember(Info, RHS, LV, FD))
4439         return nullptr;
4440     } else if (const IndirectFieldDecl *IFD =
4441                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4442       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4443         return nullptr;
4444     } else {
4445       llvm_unreachable("can't construct reference to bound member function");
4446     }
4447   }
4448 
4449   return MemPtr.getDecl();
4450 }
4451 
4452 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4453                                                   const BinaryOperator *BO,
4454                                                   LValue &LV,
4455                                                   bool IncludeMember = true) {
4456   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4457 
4458   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4459     if (Info.noteFailure()) {
4460       MemberPtr MemPtr;
4461       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4462     }
4463     return nullptr;
4464   }
4465 
4466   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4467                                    BO->getRHS(), IncludeMember);
4468 }
4469 
4470 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4471 /// the provided lvalue, which currently refers to the base object.
4472 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4473                                     LValue &Result) {
4474   SubobjectDesignator &D = Result.Designator;
4475   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4476     return false;
4477 
4478   QualType TargetQT = E->getType();
4479   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4480     TargetQT = PT->getPointeeType();
4481 
4482   // Check this cast lands within the final derived-to-base subobject path.
4483   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4484     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4485       << D.MostDerivedType << TargetQT;
4486     return false;
4487   }
4488 
4489   // Check the type of the final cast. We don't need to check the path,
4490   // since a cast can only be formed if the path is unique.
4491   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4492   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4493   const CXXRecordDecl *FinalType;
4494   if (NewEntriesSize == D.MostDerivedPathLength)
4495     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4496   else
4497     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4498   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4499     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4500       << D.MostDerivedType << TargetQT;
4501     return false;
4502   }
4503 
4504   // Truncate the lvalue to the appropriate derived class.
4505   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4506 }
4507 
4508 /// Get the value to use for a default-initialized object of type T.
4509 /// Return false if it encounters something invalid.
4510 static bool getDefaultInitValue(QualType T, APValue &Result) {
4511   bool Success = true;
4512   if (auto *RD = T->getAsCXXRecordDecl()) {
4513     if (RD->isInvalidDecl()) {
4514       Result = APValue();
4515       return false;
4516     }
4517     if (RD->isUnion()) {
4518       Result = APValue((const FieldDecl *)nullptr);
4519       return true;
4520     }
4521     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4522                      std::distance(RD->field_begin(), RD->field_end()));
4523 
4524     unsigned Index = 0;
4525     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4526                                                   End = RD->bases_end();
4527          I != End; ++I, ++Index)
4528       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4529 
4530     for (const auto *I : RD->fields()) {
4531       if (I->isUnnamedBitfield())
4532         continue;
4533       Success &= getDefaultInitValue(I->getType(),
4534                                      Result.getStructField(I->getFieldIndex()));
4535     }
4536     return Success;
4537   }
4538 
4539   if (auto *AT =
4540           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4541     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4542     if (Result.hasArrayFiller())
4543       Success &=
4544           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4545 
4546     return Success;
4547   }
4548 
4549   Result = APValue::IndeterminateValue();
4550   return true;
4551 }
4552 
4553 namespace {
4554 enum EvalStmtResult {
4555   /// Evaluation failed.
4556   ESR_Failed,
4557   /// Hit a 'return' statement.
4558   ESR_Returned,
4559   /// Evaluation succeeded.
4560   ESR_Succeeded,
4561   /// Hit a 'continue' statement.
4562   ESR_Continue,
4563   /// Hit a 'break' statement.
4564   ESR_Break,
4565   /// Still scanning for 'case' or 'default' statement.
4566   ESR_CaseNotFound
4567 };
4568 }
4569 
4570 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4571   // We don't need to evaluate the initializer for a static local.
4572   if (!VD->hasLocalStorage())
4573     return true;
4574 
4575   LValue Result;
4576   APValue &Val =
4577       Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
4578 
4579   const Expr *InitE = VD->getInit();
4580   if (!InitE)
4581     return getDefaultInitValue(VD->getType(), Val);
4582 
4583   if (InitE->isValueDependent())
4584     return false;
4585 
4586   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4587     // Wipe out any partially-computed value, to allow tracking that this
4588     // evaluation failed.
4589     Val = APValue();
4590     return false;
4591   }
4592 
4593   return true;
4594 }
4595 
4596 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4597   bool OK = true;
4598 
4599   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4600     OK &= EvaluateVarDecl(Info, VD);
4601 
4602   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4603     for (auto *BD : DD->bindings())
4604       if (auto *VD = BD->getHoldingVar())
4605         OK &= EvaluateDecl(Info, VD);
4606 
4607   return OK;
4608 }
4609 
4610 
4611 /// Evaluate a condition (either a variable declaration or an expression).
4612 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4613                          const Expr *Cond, bool &Result) {
4614   FullExpressionRAII Scope(Info);
4615   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4616     return false;
4617   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4618     return false;
4619   return Scope.destroy();
4620 }
4621 
4622 namespace {
4623 /// A location where the result (returned value) of evaluating a
4624 /// statement should be stored.
4625 struct StmtResult {
4626   /// The APValue that should be filled in with the returned value.
4627   APValue &Value;
4628   /// The location containing the result, if any (used to support RVO).
4629   const LValue *Slot;
4630 };
4631 
4632 struct TempVersionRAII {
4633   CallStackFrame &Frame;
4634 
4635   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4636     Frame.pushTempVersion();
4637   }
4638 
4639   ~TempVersionRAII() {
4640     Frame.popTempVersion();
4641   }
4642 };
4643 
4644 }
4645 
4646 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4647                                    const Stmt *S,
4648                                    const SwitchCase *SC = nullptr);
4649 
4650 /// Evaluate the body of a loop, and translate the result as appropriate.
4651 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4652                                        const Stmt *Body,
4653                                        const SwitchCase *Case = nullptr) {
4654   BlockScopeRAII Scope(Info);
4655 
4656   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4657   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4658     ESR = ESR_Failed;
4659 
4660   switch (ESR) {
4661   case ESR_Break:
4662     return ESR_Succeeded;
4663   case ESR_Succeeded:
4664   case ESR_Continue:
4665     return ESR_Continue;
4666   case ESR_Failed:
4667   case ESR_Returned:
4668   case ESR_CaseNotFound:
4669     return ESR;
4670   }
4671   llvm_unreachable("Invalid EvalStmtResult!");
4672 }
4673 
4674 /// Evaluate a switch statement.
4675 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4676                                      const SwitchStmt *SS) {
4677   BlockScopeRAII Scope(Info);
4678 
4679   // Evaluate the switch condition.
4680   APSInt Value;
4681   {
4682     if (const Stmt *Init = SS->getInit()) {
4683       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4684       if (ESR != ESR_Succeeded) {
4685         if (ESR != ESR_Failed && !Scope.destroy())
4686           ESR = ESR_Failed;
4687         return ESR;
4688       }
4689     }
4690 
4691     FullExpressionRAII CondScope(Info);
4692     if (SS->getConditionVariable() &&
4693         !EvaluateDecl(Info, SS->getConditionVariable()))
4694       return ESR_Failed;
4695     if (!EvaluateInteger(SS->getCond(), Value, Info))
4696       return ESR_Failed;
4697     if (!CondScope.destroy())
4698       return ESR_Failed;
4699   }
4700 
4701   // Find the switch case corresponding to the value of the condition.
4702   // FIXME: Cache this lookup.
4703   const SwitchCase *Found = nullptr;
4704   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4705        SC = SC->getNextSwitchCase()) {
4706     if (isa<DefaultStmt>(SC)) {
4707       Found = SC;
4708       continue;
4709     }
4710 
4711     const CaseStmt *CS = cast<CaseStmt>(SC);
4712     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4713     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4714                               : LHS;
4715     if (LHS <= Value && Value <= RHS) {
4716       Found = SC;
4717       break;
4718     }
4719   }
4720 
4721   if (!Found)
4722     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4723 
4724   // Search the switch body for the switch case and evaluate it from there.
4725   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4726   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4727     return ESR_Failed;
4728 
4729   switch (ESR) {
4730   case ESR_Break:
4731     return ESR_Succeeded;
4732   case ESR_Succeeded:
4733   case ESR_Continue:
4734   case ESR_Failed:
4735   case ESR_Returned:
4736     return ESR;
4737   case ESR_CaseNotFound:
4738     // This can only happen if the switch case is nested within a statement
4739     // expression. We have no intention of supporting that.
4740     Info.FFDiag(Found->getBeginLoc(),
4741                 diag::note_constexpr_stmt_expr_unsupported);
4742     return ESR_Failed;
4743   }
4744   llvm_unreachable("Invalid EvalStmtResult!");
4745 }
4746 
4747 // Evaluate a statement.
4748 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4749                                    const Stmt *S, const SwitchCase *Case) {
4750   if (!Info.nextStep(S))
4751     return ESR_Failed;
4752 
4753   // If we're hunting down a 'case' or 'default' label, recurse through
4754   // substatements until we hit the label.
4755   if (Case) {
4756     switch (S->getStmtClass()) {
4757     case Stmt::CompoundStmtClass:
4758       // FIXME: Precompute which substatement of a compound statement we
4759       // would jump to, and go straight there rather than performing a
4760       // linear scan each time.
4761     case Stmt::LabelStmtClass:
4762     case Stmt::AttributedStmtClass:
4763     case Stmt::DoStmtClass:
4764       break;
4765 
4766     case Stmt::CaseStmtClass:
4767     case Stmt::DefaultStmtClass:
4768       if (Case == S)
4769         Case = nullptr;
4770       break;
4771 
4772     case Stmt::IfStmtClass: {
4773       // FIXME: Precompute which side of an 'if' we would jump to, and go
4774       // straight there rather than scanning both sides.
4775       const IfStmt *IS = cast<IfStmt>(S);
4776 
4777       // Wrap the evaluation in a block scope, in case it's a DeclStmt
4778       // preceded by our switch label.
4779       BlockScopeRAII Scope(Info);
4780 
4781       // Step into the init statement in case it brings an (uninitialized)
4782       // variable into scope.
4783       if (const Stmt *Init = IS->getInit()) {
4784         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4785         if (ESR != ESR_CaseNotFound) {
4786           assert(ESR != ESR_Succeeded);
4787           return ESR;
4788         }
4789       }
4790 
4791       // Condition variable must be initialized if it exists.
4792       // FIXME: We can skip evaluating the body if there's a condition
4793       // variable, as there can't be any case labels within it.
4794       // (The same is true for 'for' statements.)
4795 
4796       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
4797       if (ESR == ESR_Failed)
4798         return ESR;
4799       if (ESR != ESR_CaseNotFound)
4800         return Scope.destroy() ? ESR : ESR_Failed;
4801       if (!IS->getElse())
4802         return ESR_CaseNotFound;
4803 
4804       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
4805       if (ESR == ESR_Failed)
4806         return ESR;
4807       if (ESR != ESR_CaseNotFound)
4808         return Scope.destroy() ? ESR : ESR_Failed;
4809       return ESR_CaseNotFound;
4810     }
4811 
4812     case Stmt::WhileStmtClass: {
4813       EvalStmtResult ESR =
4814           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
4815       if (ESR != ESR_Continue)
4816         return ESR;
4817       break;
4818     }
4819 
4820     case Stmt::ForStmtClass: {
4821       const ForStmt *FS = cast<ForStmt>(S);
4822       BlockScopeRAII Scope(Info);
4823 
4824       // Step into the init statement in case it brings an (uninitialized)
4825       // variable into scope.
4826       if (const Stmt *Init = FS->getInit()) {
4827         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4828         if (ESR != ESR_CaseNotFound) {
4829           assert(ESR != ESR_Succeeded);
4830           return ESR;
4831         }
4832       }
4833 
4834       EvalStmtResult ESR =
4835           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
4836       if (ESR != ESR_Continue)
4837         return ESR;
4838       if (FS->getInc()) {
4839         FullExpressionRAII IncScope(Info);
4840         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4841           return ESR_Failed;
4842       }
4843       break;
4844     }
4845 
4846     case Stmt::DeclStmtClass: {
4847       // Start the lifetime of any uninitialized variables we encounter. They
4848       // might be used by the selected branch of the switch.
4849       const DeclStmt *DS = cast<DeclStmt>(S);
4850       for (const auto *D : DS->decls()) {
4851         if (const auto *VD = dyn_cast<VarDecl>(D)) {
4852           if (VD->hasLocalStorage() && !VD->getInit())
4853             if (!EvaluateVarDecl(Info, VD))
4854               return ESR_Failed;
4855           // FIXME: If the variable has initialization that can't be jumped
4856           // over, bail out of any immediately-surrounding compound-statement
4857           // too. There can't be any case labels here.
4858         }
4859       }
4860       return ESR_CaseNotFound;
4861     }
4862 
4863     default:
4864       return ESR_CaseNotFound;
4865     }
4866   }
4867 
4868   switch (S->getStmtClass()) {
4869   default:
4870     if (const Expr *E = dyn_cast<Expr>(S)) {
4871       // Don't bother evaluating beyond an expression-statement which couldn't
4872       // be evaluated.
4873       // FIXME: Do we need the FullExpressionRAII object here?
4874       // VisitExprWithCleanups should create one when necessary.
4875       FullExpressionRAII Scope(Info);
4876       if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
4877         return ESR_Failed;
4878       return ESR_Succeeded;
4879     }
4880 
4881     Info.FFDiag(S->getBeginLoc());
4882     return ESR_Failed;
4883 
4884   case Stmt::NullStmtClass:
4885     return ESR_Succeeded;
4886 
4887   case Stmt::DeclStmtClass: {
4888     const DeclStmt *DS = cast<DeclStmt>(S);
4889     for (const auto *D : DS->decls()) {
4890       // Each declaration initialization is its own full-expression.
4891       FullExpressionRAII Scope(Info);
4892       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
4893         return ESR_Failed;
4894       if (!Scope.destroy())
4895         return ESR_Failed;
4896     }
4897     return ESR_Succeeded;
4898   }
4899 
4900   case Stmt::ReturnStmtClass: {
4901     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
4902     FullExpressionRAII Scope(Info);
4903     if (RetExpr &&
4904         !(Result.Slot
4905               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
4906               : Evaluate(Result.Value, Info, RetExpr)))
4907       return ESR_Failed;
4908     return Scope.destroy() ? ESR_Returned : ESR_Failed;
4909   }
4910 
4911   case Stmt::CompoundStmtClass: {
4912     BlockScopeRAII Scope(Info);
4913 
4914     const CompoundStmt *CS = cast<CompoundStmt>(S);
4915     for (const auto *BI : CS->body()) {
4916       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
4917       if (ESR == ESR_Succeeded)
4918         Case = nullptr;
4919       else if (ESR != ESR_CaseNotFound) {
4920         if (ESR != ESR_Failed && !Scope.destroy())
4921           return ESR_Failed;
4922         return ESR;
4923       }
4924     }
4925     if (Case)
4926       return ESR_CaseNotFound;
4927     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4928   }
4929 
4930   case Stmt::IfStmtClass: {
4931     const IfStmt *IS = cast<IfStmt>(S);
4932 
4933     // Evaluate the condition, as either a var decl or as an expression.
4934     BlockScopeRAII Scope(Info);
4935     if (const Stmt *Init = IS->getInit()) {
4936       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4937       if (ESR != ESR_Succeeded) {
4938         if (ESR != ESR_Failed && !Scope.destroy())
4939           return ESR_Failed;
4940         return ESR;
4941       }
4942     }
4943     bool Cond;
4944     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
4945       return ESR_Failed;
4946 
4947     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
4948       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
4949       if (ESR != ESR_Succeeded) {
4950         if (ESR != ESR_Failed && !Scope.destroy())
4951           return ESR_Failed;
4952         return ESR;
4953       }
4954     }
4955     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4956   }
4957 
4958   case Stmt::WhileStmtClass: {
4959     const WhileStmt *WS = cast<WhileStmt>(S);
4960     while (true) {
4961       BlockScopeRAII Scope(Info);
4962       bool Continue;
4963       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
4964                         Continue))
4965         return ESR_Failed;
4966       if (!Continue)
4967         break;
4968 
4969       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
4970       if (ESR != ESR_Continue) {
4971         if (ESR != ESR_Failed && !Scope.destroy())
4972           return ESR_Failed;
4973         return ESR;
4974       }
4975       if (!Scope.destroy())
4976         return ESR_Failed;
4977     }
4978     return ESR_Succeeded;
4979   }
4980 
4981   case Stmt::DoStmtClass: {
4982     const DoStmt *DS = cast<DoStmt>(S);
4983     bool Continue;
4984     do {
4985       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
4986       if (ESR != ESR_Continue)
4987         return ESR;
4988       Case = nullptr;
4989 
4990       FullExpressionRAII CondScope(Info);
4991       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
4992           !CondScope.destroy())
4993         return ESR_Failed;
4994     } while (Continue);
4995     return ESR_Succeeded;
4996   }
4997 
4998   case Stmt::ForStmtClass: {
4999     const ForStmt *FS = cast<ForStmt>(S);
5000     BlockScopeRAII ForScope(Info);
5001     if (FS->getInit()) {
5002       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5003       if (ESR != ESR_Succeeded) {
5004         if (ESR != ESR_Failed && !ForScope.destroy())
5005           return ESR_Failed;
5006         return ESR;
5007       }
5008     }
5009     while (true) {
5010       BlockScopeRAII IterScope(Info);
5011       bool Continue = true;
5012       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5013                                          FS->getCond(), Continue))
5014         return ESR_Failed;
5015       if (!Continue)
5016         break;
5017 
5018       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5019       if (ESR != ESR_Continue) {
5020         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5021           return ESR_Failed;
5022         return ESR;
5023       }
5024 
5025       if (FS->getInc()) {
5026         FullExpressionRAII IncScope(Info);
5027         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
5028           return ESR_Failed;
5029       }
5030 
5031       if (!IterScope.destroy())
5032         return ESR_Failed;
5033     }
5034     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5035   }
5036 
5037   case Stmt::CXXForRangeStmtClass: {
5038     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5039     BlockScopeRAII Scope(Info);
5040 
5041     // Evaluate the init-statement if present.
5042     if (FS->getInit()) {
5043       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5044       if (ESR != ESR_Succeeded) {
5045         if (ESR != ESR_Failed && !Scope.destroy())
5046           return ESR_Failed;
5047         return ESR;
5048       }
5049     }
5050 
5051     // Initialize the __range variable.
5052     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5053     if (ESR != ESR_Succeeded) {
5054       if (ESR != ESR_Failed && !Scope.destroy())
5055         return ESR_Failed;
5056       return ESR;
5057     }
5058 
5059     // Create the __begin and __end iterators.
5060     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5061     if (ESR != ESR_Succeeded) {
5062       if (ESR != ESR_Failed && !Scope.destroy())
5063         return ESR_Failed;
5064       return ESR;
5065     }
5066     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5067     if (ESR != ESR_Succeeded) {
5068       if (ESR != ESR_Failed && !Scope.destroy())
5069         return ESR_Failed;
5070       return ESR;
5071     }
5072 
5073     while (true) {
5074       // Condition: __begin != __end.
5075       {
5076         bool Continue = true;
5077         FullExpressionRAII CondExpr(Info);
5078         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5079           return ESR_Failed;
5080         if (!Continue)
5081           break;
5082       }
5083 
5084       // User's variable declaration, initialized by *__begin.
5085       BlockScopeRAII InnerScope(Info);
5086       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5087       if (ESR != ESR_Succeeded) {
5088         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5089           return ESR_Failed;
5090         return ESR;
5091       }
5092 
5093       // Loop body.
5094       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5095       if (ESR != ESR_Continue) {
5096         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5097           return ESR_Failed;
5098         return ESR;
5099       }
5100 
5101       // Increment: ++__begin
5102       if (!EvaluateIgnoredValue(Info, FS->getInc()))
5103         return ESR_Failed;
5104 
5105       if (!InnerScope.destroy())
5106         return ESR_Failed;
5107     }
5108 
5109     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5110   }
5111 
5112   case Stmt::SwitchStmtClass:
5113     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5114 
5115   case Stmt::ContinueStmtClass:
5116     return ESR_Continue;
5117 
5118   case Stmt::BreakStmtClass:
5119     return ESR_Break;
5120 
5121   case Stmt::LabelStmtClass:
5122     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5123 
5124   case Stmt::AttributedStmtClass:
5125     // As a general principle, C++11 attributes can be ignored without
5126     // any semantic impact.
5127     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5128                         Case);
5129 
5130   case Stmt::CaseStmtClass:
5131   case Stmt::DefaultStmtClass:
5132     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5133   case Stmt::CXXTryStmtClass:
5134     // Evaluate try blocks by evaluating all sub statements.
5135     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5136   }
5137 }
5138 
5139 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5140 /// default constructor. If so, we'll fold it whether or not it's marked as
5141 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5142 /// so we need special handling.
5143 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5144                                            const CXXConstructorDecl *CD,
5145                                            bool IsValueInitialization) {
5146   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5147     return false;
5148 
5149   // Value-initialization does not call a trivial default constructor, so such a
5150   // call is a core constant expression whether or not the constructor is
5151   // constexpr.
5152   if (!CD->isConstexpr() && !IsValueInitialization) {
5153     if (Info.getLangOpts().CPlusPlus11) {
5154       // FIXME: If DiagDecl is an implicitly-declared special member function,
5155       // we should be much more explicit about why it's not constexpr.
5156       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5157         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5158       Info.Note(CD->getLocation(), diag::note_declared_at);
5159     } else {
5160       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5161     }
5162   }
5163   return true;
5164 }
5165 
5166 /// CheckConstexprFunction - Check that a function can be called in a constant
5167 /// expression.
5168 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5169                                    const FunctionDecl *Declaration,
5170                                    const FunctionDecl *Definition,
5171                                    const Stmt *Body) {
5172   // Potential constant expressions can contain calls to declared, but not yet
5173   // defined, constexpr functions.
5174   if (Info.checkingPotentialConstantExpression() && !Definition &&
5175       Declaration->isConstexpr())
5176     return false;
5177 
5178   // Bail out if the function declaration itself is invalid.  We will
5179   // have produced a relevant diagnostic while parsing it, so just
5180   // note the problematic sub-expression.
5181   if (Declaration->isInvalidDecl()) {
5182     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5183     return false;
5184   }
5185 
5186   // DR1872: An instantiated virtual constexpr function can't be called in a
5187   // constant expression (prior to C++20). We can still constant-fold such a
5188   // call.
5189   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5190       cast<CXXMethodDecl>(Declaration)->isVirtual())
5191     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5192 
5193   if (Definition && Definition->isInvalidDecl()) {
5194     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5195     return false;
5196   }
5197 
5198   if (const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(Definition)) {
5199     for (const auto *InitExpr : CtorDecl->inits()) {
5200       if (InitExpr->getInit() && InitExpr->getInit()->containsErrors())
5201         return false;
5202     }
5203   }
5204 
5205   // Can we evaluate this function call?
5206   if (Definition && Definition->isConstexpr() && Body)
5207     return true;
5208 
5209   if (Info.getLangOpts().CPlusPlus11) {
5210     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5211 
5212     // If this function is not constexpr because it is an inherited
5213     // non-constexpr constructor, diagnose that directly.
5214     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5215     if (CD && CD->isInheritingConstructor()) {
5216       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5217       if (!Inherited->isConstexpr())
5218         DiagDecl = CD = Inherited;
5219     }
5220 
5221     // FIXME: If DiagDecl is an implicitly-declared special member function
5222     // or an inheriting constructor, we should be much more explicit about why
5223     // it's not constexpr.
5224     if (CD && CD->isInheritingConstructor())
5225       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5226         << CD->getInheritedConstructor().getConstructor()->getParent();
5227     else
5228       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5229         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5230     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5231   } else {
5232     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5233   }
5234   return false;
5235 }
5236 
5237 namespace {
5238 struct CheckDynamicTypeHandler {
5239   AccessKinds AccessKind;
5240   typedef bool result_type;
5241   bool failed() { return false; }
5242   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5243   bool found(APSInt &Value, QualType SubobjType) { return true; }
5244   bool found(APFloat &Value, QualType SubobjType) { return true; }
5245 };
5246 } // end anonymous namespace
5247 
5248 /// Check that we can access the notional vptr of an object / determine its
5249 /// dynamic type.
5250 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5251                              AccessKinds AK, bool Polymorphic) {
5252   if (This.Designator.Invalid)
5253     return false;
5254 
5255   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5256 
5257   if (!Obj)
5258     return false;
5259 
5260   if (!Obj.Value) {
5261     // The object is not usable in constant expressions, so we can't inspect
5262     // its value to see if it's in-lifetime or what the active union members
5263     // are. We can still check for a one-past-the-end lvalue.
5264     if (This.Designator.isOnePastTheEnd() ||
5265         This.Designator.isMostDerivedAnUnsizedArray()) {
5266       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5267                          ? diag::note_constexpr_access_past_end
5268                          : diag::note_constexpr_access_unsized_array)
5269           << AK;
5270       return false;
5271     } else if (Polymorphic) {
5272       // Conservatively refuse to perform a polymorphic operation if we would
5273       // not be able to read a notional 'vptr' value.
5274       APValue Val;
5275       This.moveInto(Val);
5276       QualType StarThisType =
5277           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5278       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5279           << AK << Val.getAsString(Info.Ctx, StarThisType);
5280       return false;
5281     }
5282     return true;
5283   }
5284 
5285   CheckDynamicTypeHandler Handler{AK};
5286   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5287 }
5288 
5289 /// Check that the pointee of the 'this' pointer in a member function call is
5290 /// either within its lifetime or in its period of construction or destruction.
5291 static bool
5292 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5293                                      const LValue &This,
5294                                      const CXXMethodDecl *NamedMember) {
5295   return checkDynamicType(
5296       Info, E, This,
5297       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5298 }
5299 
5300 struct DynamicType {
5301   /// The dynamic class type of the object.
5302   const CXXRecordDecl *Type;
5303   /// The corresponding path length in the lvalue.
5304   unsigned PathLength;
5305 };
5306 
5307 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5308                                              unsigned PathLength) {
5309   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5310       Designator.Entries.size() && "invalid path length");
5311   return (PathLength == Designator.MostDerivedPathLength)
5312              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5313              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5314 }
5315 
5316 /// Determine the dynamic type of an object.
5317 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5318                                                 LValue &This, AccessKinds AK) {
5319   // If we don't have an lvalue denoting an object of class type, there is no
5320   // meaningful dynamic type. (We consider objects of non-class type to have no
5321   // dynamic type.)
5322   if (!checkDynamicType(Info, E, This, AK, true))
5323     return None;
5324 
5325   // Refuse to compute a dynamic type in the presence of virtual bases. This
5326   // shouldn't happen other than in constant-folding situations, since literal
5327   // types can't have virtual bases.
5328   //
5329   // Note that consumers of DynamicType assume that the type has no virtual
5330   // bases, and will need modifications if this restriction is relaxed.
5331   const CXXRecordDecl *Class =
5332       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5333   if (!Class || Class->getNumVBases()) {
5334     Info.FFDiag(E);
5335     return None;
5336   }
5337 
5338   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5339   // binary search here instead. But the overwhelmingly common case is that
5340   // we're not in the middle of a constructor, so it probably doesn't matter
5341   // in practice.
5342   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5343   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5344        PathLength <= Path.size(); ++PathLength) {
5345     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5346                                       Path.slice(0, PathLength))) {
5347     case ConstructionPhase::Bases:
5348     case ConstructionPhase::DestroyingBases:
5349       // We're constructing or destroying a base class. This is not the dynamic
5350       // type.
5351       break;
5352 
5353     case ConstructionPhase::None:
5354     case ConstructionPhase::AfterBases:
5355     case ConstructionPhase::AfterFields:
5356     case ConstructionPhase::Destroying:
5357       // We've finished constructing the base classes and not yet started
5358       // destroying them again, so this is the dynamic type.
5359       return DynamicType{getBaseClassType(This.Designator, PathLength),
5360                          PathLength};
5361     }
5362   }
5363 
5364   // CWG issue 1517: we're constructing a base class of the object described by
5365   // 'This', so that object has not yet begun its period of construction and
5366   // any polymorphic operation on it results in undefined behavior.
5367   Info.FFDiag(E);
5368   return None;
5369 }
5370 
5371 /// Perform virtual dispatch.
5372 static const CXXMethodDecl *HandleVirtualDispatch(
5373     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5374     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5375   Optional<DynamicType> DynType = ComputeDynamicType(
5376       Info, E, This,
5377       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5378   if (!DynType)
5379     return nullptr;
5380 
5381   // Find the final overrider. It must be declared in one of the classes on the
5382   // path from the dynamic type to the static type.
5383   // FIXME: If we ever allow literal types to have virtual base classes, that
5384   // won't be true.
5385   const CXXMethodDecl *Callee = Found;
5386   unsigned PathLength = DynType->PathLength;
5387   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5388     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5389     const CXXMethodDecl *Overrider =
5390         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5391     if (Overrider) {
5392       Callee = Overrider;
5393       break;
5394     }
5395   }
5396 
5397   // C++2a [class.abstract]p6:
5398   //   the effect of making a virtual call to a pure virtual function [...] is
5399   //   undefined
5400   if (Callee->isPure()) {
5401     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5402     Info.Note(Callee->getLocation(), diag::note_declared_at);
5403     return nullptr;
5404   }
5405 
5406   // If necessary, walk the rest of the path to determine the sequence of
5407   // covariant adjustment steps to apply.
5408   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5409                                        Found->getReturnType())) {
5410     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5411     for (unsigned CovariantPathLength = PathLength + 1;
5412          CovariantPathLength != This.Designator.Entries.size();
5413          ++CovariantPathLength) {
5414       const CXXRecordDecl *NextClass =
5415           getBaseClassType(This.Designator, CovariantPathLength);
5416       const CXXMethodDecl *Next =
5417           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5418       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5419                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5420         CovariantAdjustmentPath.push_back(Next->getReturnType());
5421     }
5422     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5423                                          CovariantAdjustmentPath.back()))
5424       CovariantAdjustmentPath.push_back(Found->getReturnType());
5425   }
5426 
5427   // Perform 'this' adjustment.
5428   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5429     return nullptr;
5430 
5431   return Callee;
5432 }
5433 
5434 /// Perform the adjustment from a value returned by a virtual function to
5435 /// a value of the statically expected type, which may be a pointer or
5436 /// reference to a base class of the returned type.
5437 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5438                                             APValue &Result,
5439                                             ArrayRef<QualType> Path) {
5440   assert(Result.isLValue() &&
5441          "unexpected kind of APValue for covariant return");
5442   if (Result.isNullPointer())
5443     return true;
5444 
5445   LValue LVal;
5446   LVal.setFrom(Info.Ctx, Result);
5447 
5448   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5449   for (unsigned I = 1; I != Path.size(); ++I) {
5450     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5451     assert(OldClass && NewClass && "unexpected kind of covariant return");
5452     if (OldClass != NewClass &&
5453         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5454       return false;
5455     OldClass = NewClass;
5456   }
5457 
5458   LVal.moveInto(Result);
5459   return true;
5460 }
5461 
5462 /// Determine whether \p Base, which is known to be a direct base class of
5463 /// \p Derived, is a public base class.
5464 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5465                               const CXXRecordDecl *Base) {
5466   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5467     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5468     if (BaseClass && declaresSameEntity(BaseClass, Base))
5469       return BaseSpec.getAccessSpecifier() == AS_public;
5470   }
5471   llvm_unreachable("Base is not a direct base of Derived");
5472 }
5473 
5474 /// Apply the given dynamic cast operation on the provided lvalue.
5475 ///
5476 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5477 /// to find a suitable target subobject.
5478 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5479                               LValue &Ptr) {
5480   // We can't do anything with a non-symbolic pointer value.
5481   SubobjectDesignator &D = Ptr.Designator;
5482   if (D.Invalid)
5483     return false;
5484 
5485   // C++ [expr.dynamic.cast]p6:
5486   //   If v is a null pointer value, the result is a null pointer value.
5487   if (Ptr.isNullPointer() && !E->isGLValue())
5488     return true;
5489 
5490   // For all the other cases, we need the pointer to point to an object within
5491   // its lifetime / period of construction / destruction, and we need to know
5492   // its dynamic type.
5493   Optional<DynamicType> DynType =
5494       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5495   if (!DynType)
5496     return false;
5497 
5498   // C++ [expr.dynamic.cast]p7:
5499   //   If T is "pointer to cv void", then the result is a pointer to the most
5500   //   derived object
5501   if (E->getType()->isVoidPointerType())
5502     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5503 
5504   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5505   assert(C && "dynamic_cast target is not void pointer nor class");
5506   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5507 
5508   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5509     // C++ [expr.dynamic.cast]p9:
5510     if (!E->isGLValue()) {
5511       //   The value of a failed cast to pointer type is the null pointer value
5512       //   of the required result type.
5513       Ptr.setNull(Info.Ctx, E->getType());
5514       return true;
5515     }
5516 
5517     //   A failed cast to reference type throws [...] std::bad_cast.
5518     unsigned DiagKind;
5519     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5520                    DynType->Type->isDerivedFrom(C)))
5521       DiagKind = 0;
5522     else if (!Paths || Paths->begin() == Paths->end())
5523       DiagKind = 1;
5524     else if (Paths->isAmbiguous(CQT))
5525       DiagKind = 2;
5526     else {
5527       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5528       DiagKind = 3;
5529     }
5530     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5531         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5532         << Info.Ctx.getRecordType(DynType->Type)
5533         << E->getType().getUnqualifiedType();
5534     return false;
5535   };
5536 
5537   // Runtime check, phase 1:
5538   //   Walk from the base subobject towards the derived object looking for the
5539   //   target type.
5540   for (int PathLength = Ptr.Designator.Entries.size();
5541        PathLength >= (int)DynType->PathLength; --PathLength) {
5542     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5543     if (declaresSameEntity(Class, C))
5544       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5545     // We can only walk across public inheritance edges.
5546     if (PathLength > (int)DynType->PathLength &&
5547         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5548                            Class))
5549       return RuntimeCheckFailed(nullptr);
5550   }
5551 
5552   // Runtime check, phase 2:
5553   //   Search the dynamic type for an unambiguous public base of type C.
5554   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5555                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5556   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5557       Paths.front().Access == AS_public) {
5558     // Downcast to the dynamic type...
5559     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5560       return false;
5561     // ... then upcast to the chosen base class subobject.
5562     for (CXXBasePathElement &Elem : Paths.front())
5563       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5564         return false;
5565     return true;
5566   }
5567 
5568   // Otherwise, the runtime check fails.
5569   return RuntimeCheckFailed(&Paths);
5570 }
5571 
5572 namespace {
5573 struct StartLifetimeOfUnionMemberHandler {
5574   EvalInfo &Info;
5575   const Expr *LHSExpr;
5576   const FieldDecl *Field;
5577   bool DuringInit;
5578   bool Failed = false;
5579   static const AccessKinds AccessKind = AK_Assign;
5580 
5581   typedef bool result_type;
5582   bool failed() { return Failed; }
5583   bool found(APValue &Subobj, QualType SubobjType) {
5584     // We are supposed to perform no initialization but begin the lifetime of
5585     // the object. We interpret that as meaning to do what default
5586     // initialization of the object would do if all constructors involved were
5587     // trivial:
5588     //  * All base, non-variant member, and array element subobjects' lifetimes
5589     //    begin
5590     //  * No variant members' lifetimes begin
5591     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5592     assert(SubobjType->isUnionType());
5593     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5594       // This union member is already active. If it's also in-lifetime, there's
5595       // nothing to do.
5596       if (Subobj.getUnionValue().hasValue())
5597         return true;
5598     } else if (DuringInit) {
5599       // We're currently in the process of initializing a different union
5600       // member.  If we carried on, that initialization would attempt to
5601       // store to an inactive union member, resulting in undefined behavior.
5602       Info.FFDiag(LHSExpr,
5603                   diag::note_constexpr_union_member_change_during_init);
5604       return false;
5605     }
5606     APValue Result;
5607     Failed = !getDefaultInitValue(Field->getType(), Result);
5608     Subobj.setUnion(Field, Result);
5609     return true;
5610   }
5611   bool found(APSInt &Value, QualType SubobjType) {
5612     llvm_unreachable("wrong value kind for union object");
5613   }
5614   bool found(APFloat &Value, QualType SubobjType) {
5615     llvm_unreachable("wrong value kind for union object");
5616   }
5617 };
5618 } // end anonymous namespace
5619 
5620 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5621 
5622 /// Handle a builtin simple-assignment or a call to a trivial assignment
5623 /// operator whose left-hand side might involve a union member access. If it
5624 /// does, implicitly start the lifetime of any accessed union elements per
5625 /// C++20 [class.union]5.
5626 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5627                                           const LValue &LHS) {
5628   if (LHS.InvalidBase || LHS.Designator.Invalid)
5629     return false;
5630 
5631   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5632   // C++ [class.union]p5:
5633   //   define the set S(E) of subexpressions of E as follows:
5634   unsigned PathLength = LHS.Designator.Entries.size();
5635   for (const Expr *E = LHSExpr; E != nullptr;) {
5636     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5637     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5638       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5639       // Note that we can't implicitly start the lifetime of a reference,
5640       // so we don't need to proceed any further if we reach one.
5641       if (!FD || FD->getType()->isReferenceType())
5642         break;
5643 
5644       //    ... and also contains A.B if B names a union member ...
5645       if (FD->getParent()->isUnion()) {
5646         //    ... of a non-class, non-array type, or of a class type with a
5647         //    trivial default constructor that is not deleted, or an array of
5648         //    such types.
5649         auto *RD =
5650             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5651         if (!RD || RD->hasTrivialDefaultConstructor())
5652           UnionPathLengths.push_back({PathLength - 1, FD});
5653       }
5654 
5655       E = ME->getBase();
5656       --PathLength;
5657       assert(declaresSameEntity(FD,
5658                                 LHS.Designator.Entries[PathLength]
5659                                     .getAsBaseOrMember().getPointer()));
5660 
5661       //   -- If E is of the form A[B] and is interpreted as a built-in array
5662       //      subscripting operator, S(E) is [S(the array operand, if any)].
5663     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5664       // Step over an ArrayToPointerDecay implicit cast.
5665       auto *Base = ASE->getBase()->IgnoreImplicit();
5666       if (!Base->getType()->isArrayType())
5667         break;
5668 
5669       E = Base;
5670       --PathLength;
5671 
5672     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5673       // Step over a derived-to-base conversion.
5674       E = ICE->getSubExpr();
5675       if (ICE->getCastKind() == CK_NoOp)
5676         continue;
5677       if (ICE->getCastKind() != CK_DerivedToBase &&
5678           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5679         break;
5680       // Walk path backwards as we walk up from the base to the derived class.
5681       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5682         --PathLength;
5683         (void)Elt;
5684         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5685                                   LHS.Designator.Entries[PathLength]
5686                                       .getAsBaseOrMember().getPointer()));
5687       }
5688 
5689     //   -- Otherwise, S(E) is empty.
5690     } else {
5691       break;
5692     }
5693   }
5694 
5695   // Common case: no unions' lifetimes are started.
5696   if (UnionPathLengths.empty())
5697     return true;
5698 
5699   //   if modification of X [would access an inactive union member], an object
5700   //   of the type of X is implicitly created
5701   CompleteObject Obj =
5702       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5703   if (!Obj)
5704     return false;
5705   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5706            llvm::reverse(UnionPathLengths)) {
5707     // Form a designator for the union object.
5708     SubobjectDesignator D = LHS.Designator;
5709     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5710 
5711     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
5712                       ConstructionPhase::AfterBases;
5713     StartLifetimeOfUnionMemberHandler StartLifetime{
5714         Info, LHSExpr, LengthAndField.second, DuringInit};
5715     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5716       return false;
5717   }
5718 
5719   return true;
5720 }
5721 
5722 namespace {
5723 typedef SmallVector<APValue, 8> ArgVector;
5724 }
5725 
5726 /// EvaluateArgs - Evaluate the arguments to a function call.
5727 static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
5728                          EvalInfo &Info, const FunctionDecl *Callee) {
5729   bool Success = true;
5730   llvm::SmallBitVector ForbiddenNullArgs;
5731   if (Callee->hasAttr<NonNullAttr>()) {
5732     ForbiddenNullArgs.resize(Args.size());
5733     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
5734       if (!Attr->args_size()) {
5735         ForbiddenNullArgs.set();
5736         break;
5737       } else
5738         for (auto Idx : Attr->args()) {
5739           unsigned ASTIdx = Idx.getASTIndex();
5740           if (ASTIdx >= Args.size())
5741             continue;
5742           ForbiddenNullArgs[ASTIdx] = 1;
5743         }
5744     }
5745   }
5746   // FIXME: This is the wrong evaluation order for an assignment operator
5747   // called via operator syntax.
5748   for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
5749     if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
5750       // If we're checking for a potential constant expression, evaluate all
5751       // initializers even if some of them fail.
5752       if (!Info.noteFailure())
5753         return false;
5754       Success = false;
5755     } else if (!ForbiddenNullArgs.empty() &&
5756                ForbiddenNullArgs[Idx] &&
5757                ArgValues[Idx].isLValue() &&
5758                ArgValues[Idx].isNullPointer()) {
5759       Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
5760       if (!Info.noteFailure())
5761         return false;
5762       Success = false;
5763     }
5764   }
5765   return Success;
5766 }
5767 
5768 /// Evaluate a function call.
5769 static bool HandleFunctionCall(SourceLocation CallLoc,
5770                                const FunctionDecl *Callee, const LValue *This,
5771                                ArrayRef<const Expr*> Args, const Stmt *Body,
5772                                EvalInfo &Info, APValue &Result,
5773                                const LValue *ResultSlot) {
5774   ArgVector ArgValues(Args.size());
5775   if (!EvaluateArgs(Args, ArgValues, Info, Callee))
5776     return false;
5777 
5778   if (!Info.CheckCallLimit(CallLoc))
5779     return false;
5780 
5781   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
5782 
5783   // For a trivial copy or move assignment, perform an APValue copy. This is
5784   // essential for unions, where the operations performed by the assignment
5785   // operator cannot be represented as statements.
5786   //
5787   // Skip this for non-union classes with no fields; in that case, the defaulted
5788   // copy/move does not actually read the object.
5789   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
5790   if (MD && MD->isDefaulted() &&
5791       (MD->getParent()->isUnion() ||
5792        (MD->isTrivial() &&
5793         isReadByLvalueToRvalueConversion(MD->getParent())))) {
5794     assert(This &&
5795            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
5796     LValue RHS;
5797     RHS.setFrom(Info.Ctx, ArgValues[0]);
5798     APValue RHSValue;
5799     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
5800                                         RHSValue, MD->getParent()->isUnion()))
5801       return false;
5802     if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
5803         !HandleUnionActiveMemberChange(Info, Args[0], *This))
5804       return false;
5805     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
5806                           RHSValue))
5807       return false;
5808     This->moveInto(Result);
5809     return true;
5810   } else if (MD && isLambdaCallOperator(MD)) {
5811     // We're in a lambda; determine the lambda capture field maps unless we're
5812     // just constexpr checking a lambda's call operator. constexpr checking is
5813     // done before the captures have been added to the closure object (unless
5814     // we're inferring constexpr-ness), so we don't have access to them in this
5815     // case. But since we don't need the captures to constexpr check, we can
5816     // just ignore them.
5817     if (!Info.checkingPotentialConstantExpression())
5818       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
5819                                         Frame.LambdaThisCaptureField);
5820   }
5821 
5822   StmtResult Ret = {Result, ResultSlot};
5823   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
5824   if (ESR == ESR_Succeeded) {
5825     if (Callee->getReturnType()->isVoidType())
5826       return true;
5827     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
5828   }
5829   return ESR == ESR_Returned;
5830 }
5831 
5832 /// Evaluate a constructor call.
5833 static bool HandleConstructorCall(const Expr *E, const LValue &This,
5834                                   APValue *ArgValues,
5835                                   const CXXConstructorDecl *Definition,
5836                                   EvalInfo &Info, APValue &Result) {
5837   SourceLocation CallLoc = E->getExprLoc();
5838   if (!Info.CheckCallLimit(CallLoc))
5839     return false;
5840 
5841   const CXXRecordDecl *RD = Definition->getParent();
5842   if (RD->getNumVBases()) {
5843     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5844     return false;
5845   }
5846 
5847   EvalInfo::EvaluatingConstructorRAII EvalObj(
5848       Info,
5849       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
5850       RD->getNumBases());
5851   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
5852 
5853   // FIXME: Creating an APValue just to hold a nonexistent return value is
5854   // wasteful.
5855   APValue RetVal;
5856   StmtResult Ret = {RetVal, nullptr};
5857 
5858   // If it's a delegating constructor, delegate.
5859   if (Definition->isDelegatingConstructor()) {
5860     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
5861     {
5862       FullExpressionRAII InitScope(Info);
5863       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
5864           !InitScope.destroy())
5865         return false;
5866     }
5867     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
5868   }
5869 
5870   // For a trivial copy or move constructor, perform an APValue copy. This is
5871   // essential for unions (or classes with anonymous union members), where the
5872   // operations performed by the constructor cannot be represented by
5873   // ctor-initializers.
5874   //
5875   // Skip this for empty non-union classes; we should not perform an
5876   // lvalue-to-rvalue conversion on them because their copy constructor does not
5877   // actually read them.
5878   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
5879       (Definition->getParent()->isUnion() ||
5880        (Definition->isTrivial() &&
5881         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
5882     LValue RHS;
5883     RHS.setFrom(Info.Ctx, ArgValues[0]);
5884     return handleLValueToRValueConversion(
5885         Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
5886         RHS, Result, Definition->getParent()->isUnion());
5887   }
5888 
5889   // Reserve space for the struct members.
5890   if (!Result.hasValue()) {
5891     if (!RD->isUnion())
5892       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
5893                        std::distance(RD->field_begin(), RD->field_end()));
5894     else
5895       // A union starts with no active member.
5896       Result = APValue((const FieldDecl*)nullptr);
5897   }
5898 
5899   if (RD->isInvalidDecl()) return false;
5900   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5901 
5902   // A scope for temporaries lifetime-extended by reference members.
5903   BlockScopeRAII LifetimeExtendedScope(Info);
5904 
5905   bool Success = true;
5906   unsigned BasesSeen = 0;
5907 #ifndef NDEBUG
5908   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
5909 #endif
5910   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
5911   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
5912     // We might be initializing the same field again if this is an indirect
5913     // field initialization.
5914     if (FieldIt == RD->field_end() ||
5915         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
5916       assert(Indirect && "fields out of order?");
5917       return;
5918     }
5919 
5920     // Default-initialize any fields with no explicit initializer.
5921     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
5922       assert(FieldIt != RD->field_end() && "missing field?");
5923       if (!FieldIt->isUnnamedBitfield())
5924         Success &= getDefaultInitValue(
5925             FieldIt->getType(),
5926             Result.getStructField(FieldIt->getFieldIndex()));
5927     }
5928     ++FieldIt;
5929   };
5930   for (const auto *I : Definition->inits()) {
5931     LValue Subobject = This;
5932     LValue SubobjectParent = This;
5933     APValue *Value = &Result;
5934 
5935     // Determine the subobject to initialize.
5936     FieldDecl *FD = nullptr;
5937     if (I->isBaseInitializer()) {
5938       QualType BaseType(I->getBaseClass(), 0);
5939 #ifndef NDEBUG
5940       // Non-virtual base classes are initialized in the order in the class
5941       // definition. We have already checked for virtual base classes.
5942       assert(!BaseIt->isVirtual() && "virtual base for literal type");
5943       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
5944              "base class initializers not in expected order");
5945       ++BaseIt;
5946 #endif
5947       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
5948                                   BaseType->getAsCXXRecordDecl(), &Layout))
5949         return false;
5950       Value = &Result.getStructBase(BasesSeen++);
5951     } else if ((FD = I->getMember())) {
5952       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
5953         return false;
5954       if (RD->isUnion()) {
5955         Result = APValue(FD);
5956         Value = &Result.getUnionValue();
5957       } else {
5958         SkipToField(FD, false);
5959         Value = &Result.getStructField(FD->getFieldIndex());
5960       }
5961     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
5962       // Walk the indirect field decl's chain to find the object to initialize,
5963       // and make sure we've initialized every step along it.
5964       auto IndirectFieldChain = IFD->chain();
5965       for (auto *C : IndirectFieldChain) {
5966         FD = cast<FieldDecl>(C);
5967         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
5968         // Switch the union field if it differs. This happens if we had
5969         // preceding zero-initialization, and we're now initializing a union
5970         // subobject other than the first.
5971         // FIXME: In this case, the values of the other subobjects are
5972         // specified, since zero-initialization sets all padding bits to zero.
5973         if (!Value->hasValue() ||
5974             (Value->isUnion() && Value->getUnionField() != FD)) {
5975           if (CD->isUnion())
5976             *Value = APValue(FD);
5977           else
5978             // FIXME: This immediately starts the lifetime of all members of
5979             // an anonymous struct. It would be preferable to strictly start
5980             // member lifetime in initialization order.
5981             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
5982         }
5983         // Store Subobject as its parent before updating it for the last element
5984         // in the chain.
5985         if (C == IndirectFieldChain.back())
5986           SubobjectParent = Subobject;
5987         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
5988           return false;
5989         if (CD->isUnion())
5990           Value = &Value->getUnionValue();
5991         else {
5992           if (C == IndirectFieldChain.front() && !RD->isUnion())
5993             SkipToField(FD, true);
5994           Value = &Value->getStructField(FD->getFieldIndex());
5995         }
5996       }
5997     } else {
5998       llvm_unreachable("unknown base initializer kind");
5999     }
6000 
6001     // Need to override This for implicit field initializers as in this case
6002     // This refers to innermost anonymous struct/union containing initializer,
6003     // not to currently constructed class.
6004     const Expr *Init = I->getInit();
6005     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6006                                   isa<CXXDefaultInitExpr>(Init));
6007     FullExpressionRAII InitScope(Info);
6008     if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6009         (FD && FD->isBitField() &&
6010          !truncateBitfieldValue(Info, Init, *Value, FD))) {
6011       // If we're checking for a potential constant expression, evaluate all
6012       // initializers even if some of them fail.
6013       if (!Info.noteFailure())
6014         return false;
6015       Success = false;
6016     }
6017 
6018     // This is the point at which the dynamic type of the object becomes this
6019     // class type.
6020     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6021       EvalObj.finishedConstructingBases();
6022   }
6023 
6024   // Default-initialize any remaining fields.
6025   if (!RD->isUnion()) {
6026     for (; FieldIt != RD->field_end(); ++FieldIt) {
6027       if (!FieldIt->isUnnamedBitfield())
6028         Success &= getDefaultInitValue(
6029             FieldIt->getType(),
6030             Result.getStructField(FieldIt->getFieldIndex()));
6031     }
6032   }
6033 
6034   EvalObj.finishedConstructingFields();
6035 
6036   return Success &&
6037          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6038          LifetimeExtendedScope.destroy();
6039 }
6040 
6041 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6042                                   ArrayRef<const Expr*> Args,
6043                                   const CXXConstructorDecl *Definition,
6044                                   EvalInfo &Info, APValue &Result) {
6045   ArgVector ArgValues(Args.size());
6046   if (!EvaluateArgs(Args, ArgValues, Info, Definition))
6047     return false;
6048 
6049   return HandleConstructorCall(E, This, ArgValues.data(), Definition,
6050                                Info, Result);
6051 }
6052 
6053 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6054                                   const LValue &This, APValue &Value,
6055                                   QualType T) {
6056   // Objects can only be destroyed while they're within their lifetimes.
6057   // FIXME: We have no representation for whether an object of type nullptr_t
6058   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6059   // as indeterminate instead?
6060   if (Value.isAbsent() && !T->isNullPtrType()) {
6061     APValue Printable;
6062     This.moveInto(Printable);
6063     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6064       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6065     return false;
6066   }
6067 
6068   // Invent an expression for location purposes.
6069   // FIXME: We shouldn't need to do this.
6070   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
6071 
6072   // For arrays, destroy elements right-to-left.
6073   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6074     uint64_t Size = CAT->getSize().getZExtValue();
6075     QualType ElemT = CAT->getElementType();
6076 
6077     LValue ElemLV = This;
6078     ElemLV.addArray(Info, &LocE, CAT);
6079     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6080       return false;
6081 
6082     // Ensure that we have actual array elements available to destroy; the
6083     // destructors might mutate the value, so we can't run them on the array
6084     // filler.
6085     if (Size && Size > Value.getArrayInitializedElts())
6086       expandArray(Value, Value.getArraySize() - 1);
6087 
6088     for (; Size != 0; --Size) {
6089       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6090       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6091           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6092         return false;
6093     }
6094 
6095     // End the lifetime of this array now.
6096     Value = APValue();
6097     return true;
6098   }
6099 
6100   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6101   if (!RD) {
6102     if (T.isDestructedType()) {
6103       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6104       return false;
6105     }
6106 
6107     Value = APValue();
6108     return true;
6109   }
6110 
6111   if (RD->getNumVBases()) {
6112     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6113     return false;
6114   }
6115 
6116   const CXXDestructorDecl *DD = RD->getDestructor();
6117   if (!DD && !RD->hasTrivialDestructor()) {
6118     Info.FFDiag(CallLoc);
6119     return false;
6120   }
6121 
6122   if (!DD || DD->isTrivial() ||
6123       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6124     // A trivial destructor just ends the lifetime of the object. Check for
6125     // this case before checking for a body, because we might not bother
6126     // building a body for a trivial destructor. Note that it doesn't matter
6127     // whether the destructor is constexpr in this case; all trivial
6128     // destructors are constexpr.
6129     //
6130     // If an anonymous union would be destroyed, some enclosing destructor must
6131     // have been explicitly defined, and the anonymous union destruction should
6132     // have no effect.
6133     Value = APValue();
6134     return true;
6135   }
6136 
6137   if (!Info.CheckCallLimit(CallLoc))
6138     return false;
6139 
6140   const FunctionDecl *Definition = nullptr;
6141   const Stmt *Body = DD->getBody(Definition);
6142 
6143   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6144     return false;
6145 
6146   CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
6147 
6148   // We're now in the period of destruction of this object.
6149   unsigned BasesLeft = RD->getNumBases();
6150   EvalInfo::EvaluatingDestructorRAII EvalObj(
6151       Info,
6152       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6153   if (!EvalObj.DidInsert) {
6154     // C++2a [class.dtor]p19:
6155     //   the behavior is undefined if the destructor is invoked for an object
6156     //   whose lifetime has ended
6157     // (Note that formally the lifetime ends when the period of destruction
6158     // begins, even though certain uses of the object remain valid until the
6159     // period of destruction ends.)
6160     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6161     return false;
6162   }
6163 
6164   // FIXME: Creating an APValue just to hold a nonexistent return value is
6165   // wasteful.
6166   APValue RetVal;
6167   StmtResult Ret = {RetVal, nullptr};
6168   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6169     return false;
6170 
6171   // A union destructor does not implicitly destroy its members.
6172   if (RD->isUnion())
6173     return true;
6174 
6175   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6176 
6177   // We don't have a good way to iterate fields in reverse, so collect all the
6178   // fields first and then walk them backwards.
6179   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6180   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6181     if (FD->isUnnamedBitfield())
6182       continue;
6183 
6184     LValue Subobject = This;
6185     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6186       return false;
6187 
6188     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6189     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6190                                FD->getType()))
6191       return false;
6192   }
6193 
6194   if (BasesLeft != 0)
6195     EvalObj.startedDestroyingBases();
6196 
6197   // Destroy base classes in reverse order.
6198   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6199     --BasesLeft;
6200 
6201     QualType BaseType = Base.getType();
6202     LValue Subobject = This;
6203     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6204                                 BaseType->getAsCXXRecordDecl(), &Layout))
6205       return false;
6206 
6207     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6208     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6209                                BaseType))
6210       return false;
6211   }
6212   assert(BasesLeft == 0 && "NumBases was wrong?");
6213 
6214   // The period of destruction ends now. The object is gone.
6215   Value = APValue();
6216   return true;
6217 }
6218 
6219 namespace {
6220 struct DestroyObjectHandler {
6221   EvalInfo &Info;
6222   const Expr *E;
6223   const LValue &This;
6224   const AccessKinds AccessKind;
6225 
6226   typedef bool result_type;
6227   bool failed() { return false; }
6228   bool found(APValue &Subobj, QualType SubobjType) {
6229     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6230                                  SubobjType);
6231   }
6232   bool found(APSInt &Value, QualType SubobjType) {
6233     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6234     return false;
6235   }
6236   bool found(APFloat &Value, QualType SubobjType) {
6237     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6238     return false;
6239   }
6240 };
6241 }
6242 
6243 /// Perform a destructor or pseudo-destructor call on the given object, which
6244 /// might in general not be a complete object.
6245 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6246                               const LValue &This, QualType ThisType) {
6247   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6248   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6249   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6250 }
6251 
6252 /// Destroy and end the lifetime of the given complete object.
6253 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6254                               APValue::LValueBase LVBase, APValue &Value,
6255                               QualType T) {
6256   // If we've had an unmodeled side-effect, we can't rely on mutable state
6257   // (such as the object we're about to destroy) being correct.
6258   if (Info.EvalStatus.HasSideEffects)
6259     return false;
6260 
6261   LValue LV;
6262   LV.set({LVBase});
6263   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6264 }
6265 
6266 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6267 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6268                                   LValue &Result) {
6269   if (Info.checkingPotentialConstantExpression() ||
6270       Info.SpeculativeEvaluationDepth)
6271     return false;
6272 
6273   // This is permitted only within a call to std::allocator<T>::allocate.
6274   auto Caller = Info.getStdAllocatorCaller("allocate");
6275   if (!Caller) {
6276     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6277                                      ? diag::note_constexpr_new_untyped
6278                                      : diag::note_constexpr_new);
6279     return false;
6280   }
6281 
6282   QualType ElemType = Caller.ElemType;
6283   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6284     Info.FFDiag(E->getExprLoc(),
6285                 diag::note_constexpr_new_not_complete_object_type)
6286         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6287     return false;
6288   }
6289 
6290   APSInt ByteSize;
6291   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6292     return false;
6293   bool IsNothrow = false;
6294   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6295     EvaluateIgnoredValue(Info, E->getArg(I));
6296     IsNothrow |= E->getType()->isNothrowT();
6297   }
6298 
6299   CharUnits ElemSize;
6300   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6301     return false;
6302   APInt Size, Remainder;
6303   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6304   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6305   if (Remainder != 0) {
6306     // This likely indicates a bug in the implementation of 'std::allocator'.
6307     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6308         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6309     return false;
6310   }
6311 
6312   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6313     if (IsNothrow) {
6314       Result.setNull(Info.Ctx, E->getType());
6315       return true;
6316     }
6317 
6318     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6319     return false;
6320   }
6321 
6322   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6323                                                      ArrayType::Normal, 0);
6324   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6325   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6326   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6327   return true;
6328 }
6329 
6330 static bool hasVirtualDestructor(QualType T) {
6331   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6332     if (CXXDestructorDecl *DD = RD->getDestructor())
6333       return DD->isVirtual();
6334   return false;
6335 }
6336 
6337 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6338   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6339     if (CXXDestructorDecl *DD = RD->getDestructor())
6340       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6341   return nullptr;
6342 }
6343 
6344 /// Check that the given object is a suitable pointer to a heap allocation that
6345 /// still exists and is of the right kind for the purpose of a deletion.
6346 ///
6347 /// On success, returns the heap allocation to deallocate. On failure, produces
6348 /// a diagnostic and returns None.
6349 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6350                                             const LValue &Pointer,
6351                                             DynAlloc::Kind DeallocKind) {
6352   auto PointerAsString = [&] {
6353     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6354   };
6355 
6356   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6357   if (!DA) {
6358     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6359         << PointerAsString();
6360     if (Pointer.Base)
6361       NoteLValueLocation(Info, Pointer.Base);
6362     return None;
6363   }
6364 
6365   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6366   if (!Alloc) {
6367     Info.FFDiag(E, diag::note_constexpr_double_delete);
6368     return None;
6369   }
6370 
6371   QualType AllocType = Pointer.Base.getDynamicAllocType();
6372   if (DeallocKind != (*Alloc)->getKind()) {
6373     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6374         << DeallocKind << (*Alloc)->getKind() << AllocType;
6375     NoteLValueLocation(Info, Pointer.Base);
6376     return None;
6377   }
6378 
6379   bool Subobject = false;
6380   if (DeallocKind == DynAlloc::New) {
6381     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6382                 Pointer.Designator.isOnePastTheEnd();
6383   } else {
6384     Subobject = Pointer.Designator.Entries.size() != 1 ||
6385                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6386   }
6387   if (Subobject) {
6388     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6389         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6390     return None;
6391   }
6392 
6393   return Alloc;
6394 }
6395 
6396 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6397 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6398   if (Info.checkingPotentialConstantExpression() ||
6399       Info.SpeculativeEvaluationDepth)
6400     return false;
6401 
6402   // This is permitted only within a call to std::allocator<T>::deallocate.
6403   if (!Info.getStdAllocatorCaller("deallocate")) {
6404     Info.FFDiag(E->getExprLoc());
6405     return true;
6406   }
6407 
6408   LValue Pointer;
6409   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6410     return false;
6411   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6412     EvaluateIgnoredValue(Info, E->getArg(I));
6413 
6414   if (Pointer.Designator.Invalid)
6415     return false;
6416 
6417   // Deleting a null pointer has no effect.
6418   if (Pointer.isNullPointer())
6419     return true;
6420 
6421   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6422     return false;
6423 
6424   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6425   return true;
6426 }
6427 
6428 //===----------------------------------------------------------------------===//
6429 // Generic Evaluation
6430 //===----------------------------------------------------------------------===//
6431 namespace {
6432 
6433 class BitCastBuffer {
6434   // FIXME: We're going to need bit-level granularity when we support
6435   // bit-fields.
6436   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6437   // we don't support a host or target where that is the case. Still, we should
6438   // use a more generic type in case we ever do.
6439   SmallVector<Optional<unsigned char>, 32> Bytes;
6440 
6441   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6442                 "Need at least 8 bit unsigned char");
6443 
6444   bool TargetIsLittleEndian;
6445 
6446 public:
6447   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6448       : Bytes(Width.getQuantity()),
6449         TargetIsLittleEndian(TargetIsLittleEndian) {}
6450 
6451   LLVM_NODISCARD
6452   bool readObject(CharUnits Offset, CharUnits Width,
6453                   SmallVectorImpl<unsigned char> &Output) const {
6454     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6455       // If a byte of an integer is uninitialized, then the whole integer is
6456       // uninitalized.
6457       if (!Bytes[I.getQuantity()])
6458         return false;
6459       Output.push_back(*Bytes[I.getQuantity()]);
6460     }
6461     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6462       std::reverse(Output.begin(), Output.end());
6463     return true;
6464   }
6465 
6466   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6467     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6468       std::reverse(Input.begin(), Input.end());
6469 
6470     size_t Index = 0;
6471     for (unsigned char Byte : Input) {
6472       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6473       Bytes[Offset.getQuantity() + Index] = Byte;
6474       ++Index;
6475     }
6476   }
6477 
6478   size_t size() { return Bytes.size(); }
6479 };
6480 
6481 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6482 /// target would represent the value at runtime.
6483 class APValueToBufferConverter {
6484   EvalInfo &Info;
6485   BitCastBuffer Buffer;
6486   const CastExpr *BCE;
6487 
6488   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6489                            const CastExpr *BCE)
6490       : Info(Info),
6491         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6492         BCE(BCE) {}
6493 
6494   bool visit(const APValue &Val, QualType Ty) {
6495     return visit(Val, Ty, CharUnits::fromQuantity(0));
6496   }
6497 
6498   // Write out Val with type Ty into Buffer starting at Offset.
6499   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6500     assert((size_t)Offset.getQuantity() <= Buffer.size());
6501 
6502     // As a special case, nullptr_t has an indeterminate value.
6503     if (Ty->isNullPtrType())
6504       return true;
6505 
6506     // Dig through Src to find the byte at SrcOffset.
6507     switch (Val.getKind()) {
6508     case APValue::Indeterminate:
6509     case APValue::None:
6510       return true;
6511 
6512     case APValue::Int:
6513       return visitInt(Val.getInt(), Ty, Offset);
6514     case APValue::Float:
6515       return visitFloat(Val.getFloat(), Ty, Offset);
6516     case APValue::Array:
6517       return visitArray(Val, Ty, Offset);
6518     case APValue::Struct:
6519       return visitRecord(Val, Ty, Offset);
6520 
6521     case APValue::ComplexInt:
6522     case APValue::ComplexFloat:
6523     case APValue::Vector:
6524     case APValue::FixedPoint:
6525       // FIXME: We should support these.
6526 
6527     case APValue::Union:
6528     case APValue::MemberPointer:
6529     case APValue::AddrLabelDiff: {
6530       Info.FFDiag(BCE->getBeginLoc(),
6531                   diag::note_constexpr_bit_cast_unsupported_type)
6532           << Ty;
6533       return false;
6534     }
6535 
6536     case APValue::LValue:
6537       llvm_unreachable("LValue subobject in bit_cast?");
6538     }
6539     llvm_unreachable("Unhandled APValue::ValueKind");
6540   }
6541 
6542   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6543     const RecordDecl *RD = Ty->getAsRecordDecl();
6544     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6545 
6546     // Visit the base classes.
6547     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6548       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6549         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6550         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6551 
6552         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6553                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6554           return false;
6555       }
6556     }
6557 
6558     // Visit the fields.
6559     unsigned FieldIdx = 0;
6560     for (FieldDecl *FD : RD->fields()) {
6561       if (FD->isBitField()) {
6562         Info.FFDiag(BCE->getBeginLoc(),
6563                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6564         return false;
6565       }
6566 
6567       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6568 
6569       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6570              "only bit-fields can have sub-char alignment");
6571       CharUnits FieldOffset =
6572           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6573       QualType FieldTy = FD->getType();
6574       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6575         return false;
6576       ++FieldIdx;
6577     }
6578 
6579     return true;
6580   }
6581 
6582   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6583     const auto *CAT =
6584         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6585     if (!CAT)
6586       return false;
6587 
6588     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6589     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6590     unsigned ArraySize = Val.getArraySize();
6591     // First, initialize the initialized elements.
6592     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6593       const APValue &SubObj = Val.getArrayInitializedElt(I);
6594       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6595         return false;
6596     }
6597 
6598     // Next, initialize the rest of the array using the filler.
6599     if (Val.hasArrayFiller()) {
6600       const APValue &Filler = Val.getArrayFiller();
6601       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6602         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6603           return false;
6604       }
6605     }
6606 
6607     return true;
6608   }
6609 
6610   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6611     CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
6612     SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
6613     llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
6614     Buffer.writeObject(Offset, Bytes);
6615     return true;
6616   }
6617 
6618   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6619     APSInt AsInt(Val.bitcastToAPInt());
6620     return visitInt(AsInt, Ty, Offset);
6621   }
6622 
6623 public:
6624   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6625                                          const CastExpr *BCE) {
6626     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6627     APValueToBufferConverter Converter(Info, DstSize, BCE);
6628     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6629       return None;
6630     return Converter.Buffer;
6631   }
6632 };
6633 
6634 /// Write an BitCastBuffer into an APValue.
6635 class BufferToAPValueConverter {
6636   EvalInfo &Info;
6637   const BitCastBuffer &Buffer;
6638   const CastExpr *BCE;
6639 
6640   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6641                            const CastExpr *BCE)
6642       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6643 
6644   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6645   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6646   // Ideally this will be unreachable.
6647   llvm::NoneType unsupportedType(QualType Ty) {
6648     Info.FFDiag(BCE->getBeginLoc(),
6649                 diag::note_constexpr_bit_cast_unsupported_type)
6650         << Ty;
6651     return None;
6652   }
6653 
6654   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6655                           const EnumType *EnumSugar = nullptr) {
6656     if (T->isNullPtrType()) {
6657       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6658       return APValue((Expr *)nullptr,
6659                      /*Offset=*/CharUnits::fromQuantity(NullValue),
6660                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6661     }
6662 
6663     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6664     SmallVector<uint8_t, 8> Bytes;
6665     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6666       // If this is std::byte or unsigned char, then its okay to store an
6667       // indeterminate value.
6668       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
6669       bool IsUChar =
6670           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
6671                          T->isSpecificBuiltinType(BuiltinType::Char_U));
6672       if (!IsStdByte && !IsUChar) {
6673         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
6674         Info.FFDiag(BCE->getExprLoc(),
6675                     diag::note_constexpr_bit_cast_indet_dest)
6676             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
6677         return None;
6678       }
6679 
6680       return APValue::IndeterminateValue();
6681     }
6682 
6683     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
6684     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
6685 
6686     if (T->isIntegralOrEnumerationType()) {
6687       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
6688       return APValue(Val);
6689     }
6690 
6691     if (T->isRealFloatingType()) {
6692       const llvm::fltSemantics &Semantics =
6693           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6694       return APValue(APFloat(Semantics, Val));
6695     }
6696 
6697     return unsupportedType(QualType(T, 0));
6698   }
6699 
6700   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
6701     const RecordDecl *RD = RTy->getAsRecordDecl();
6702     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6703 
6704     unsigned NumBases = 0;
6705     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6706       NumBases = CXXRD->getNumBases();
6707 
6708     APValue ResultVal(APValue::UninitStruct(), NumBases,
6709                       std::distance(RD->field_begin(), RD->field_end()));
6710 
6711     // Visit the base classes.
6712     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6713       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6714         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6715         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6716         if (BaseDecl->isEmpty() ||
6717             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
6718           continue;
6719 
6720         Optional<APValue> SubObj = visitType(
6721             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
6722         if (!SubObj)
6723           return None;
6724         ResultVal.getStructBase(I) = *SubObj;
6725       }
6726     }
6727 
6728     // Visit the fields.
6729     unsigned FieldIdx = 0;
6730     for (FieldDecl *FD : RD->fields()) {
6731       // FIXME: We don't currently support bit-fields. A lot of the logic for
6732       // this is in CodeGen, so we need to factor it around.
6733       if (FD->isBitField()) {
6734         Info.FFDiag(BCE->getBeginLoc(),
6735                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6736         return None;
6737       }
6738 
6739       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6740       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
6741 
6742       CharUnits FieldOffset =
6743           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
6744           Offset;
6745       QualType FieldTy = FD->getType();
6746       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
6747       if (!SubObj)
6748         return None;
6749       ResultVal.getStructField(FieldIdx) = *SubObj;
6750       ++FieldIdx;
6751     }
6752 
6753     return ResultVal;
6754   }
6755 
6756   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
6757     QualType RepresentationType = Ty->getDecl()->getIntegerType();
6758     assert(!RepresentationType.isNull() &&
6759            "enum forward decl should be caught by Sema");
6760     const auto *AsBuiltin =
6761         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
6762     // Recurse into the underlying type. Treat std::byte transparently as
6763     // unsigned char.
6764     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
6765   }
6766 
6767   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
6768     size_t Size = Ty->getSize().getLimitedValue();
6769     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
6770 
6771     APValue ArrayValue(APValue::UninitArray(), Size, Size);
6772     for (size_t I = 0; I != Size; ++I) {
6773       Optional<APValue> ElementValue =
6774           visitType(Ty->getElementType(), Offset + I * ElementWidth);
6775       if (!ElementValue)
6776         return None;
6777       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
6778     }
6779 
6780     return ArrayValue;
6781   }
6782 
6783   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
6784     return unsupportedType(QualType(Ty, 0));
6785   }
6786 
6787   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
6788     QualType Can = Ty.getCanonicalType();
6789 
6790     switch (Can->getTypeClass()) {
6791 #define TYPE(Class, Base)                                                      \
6792   case Type::Class:                                                            \
6793     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
6794 #define ABSTRACT_TYPE(Class, Base)
6795 #define NON_CANONICAL_TYPE(Class, Base)                                        \
6796   case Type::Class:                                                            \
6797     llvm_unreachable("non-canonical type should be impossible!");
6798 #define DEPENDENT_TYPE(Class, Base)                                            \
6799   case Type::Class:                                                            \
6800     llvm_unreachable(                                                          \
6801         "dependent types aren't supported in the constant evaluator!");
6802 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
6803   case Type::Class:                                                            \
6804     llvm_unreachable("either dependent or not canonical!");
6805 #include "clang/AST/TypeNodes.inc"
6806     }
6807     llvm_unreachable("Unhandled Type::TypeClass");
6808   }
6809 
6810 public:
6811   // Pull out a full value of type DstType.
6812   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
6813                                    const CastExpr *BCE) {
6814     BufferToAPValueConverter Converter(Info, Buffer, BCE);
6815     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
6816   }
6817 };
6818 
6819 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
6820                                                  QualType Ty, EvalInfo *Info,
6821                                                  const ASTContext &Ctx,
6822                                                  bool CheckingDest) {
6823   Ty = Ty.getCanonicalType();
6824 
6825   auto diag = [&](int Reason) {
6826     if (Info)
6827       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
6828           << CheckingDest << (Reason == 4) << Reason;
6829     return false;
6830   };
6831   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
6832     if (Info)
6833       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
6834           << NoteTy << Construct << Ty;
6835     return false;
6836   };
6837 
6838   if (Ty->isUnionType())
6839     return diag(0);
6840   if (Ty->isPointerType())
6841     return diag(1);
6842   if (Ty->isMemberPointerType())
6843     return diag(2);
6844   if (Ty.isVolatileQualified())
6845     return diag(3);
6846 
6847   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
6848     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
6849       for (CXXBaseSpecifier &BS : CXXRD->bases())
6850         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
6851                                                   CheckingDest))
6852           return note(1, BS.getType(), BS.getBeginLoc());
6853     }
6854     for (FieldDecl *FD : Record->fields()) {
6855       if (FD->getType()->isReferenceType())
6856         return diag(4);
6857       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
6858                                                 CheckingDest))
6859         return note(0, FD->getType(), FD->getBeginLoc());
6860     }
6861   }
6862 
6863   if (Ty->isArrayType() &&
6864       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
6865                                             Info, Ctx, CheckingDest))
6866     return false;
6867 
6868   return true;
6869 }
6870 
6871 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
6872                                              const ASTContext &Ctx,
6873                                              const CastExpr *BCE) {
6874   bool DestOK = checkBitCastConstexprEligibilityType(
6875       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
6876   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
6877                                 BCE->getBeginLoc(),
6878                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
6879   return SourceOK;
6880 }
6881 
6882 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
6883                                         APValue &SourceValue,
6884                                         const CastExpr *BCE) {
6885   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
6886          "no host or target supports non 8-bit chars");
6887   assert(SourceValue.isLValue() &&
6888          "LValueToRValueBitcast requires an lvalue operand!");
6889 
6890   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
6891     return false;
6892 
6893   LValue SourceLValue;
6894   APValue SourceRValue;
6895   SourceLValue.setFrom(Info.Ctx, SourceValue);
6896   if (!handleLValueToRValueConversion(
6897           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
6898           SourceRValue, /*WantObjectRepresentation=*/true))
6899     return false;
6900 
6901   // Read out SourceValue into a char buffer.
6902   Optional<BitCastBuffer> Buffer =
6903       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
6904   if (!Buffer)
6905     return false;
6906 
6907   // Write out the buffer into a new APValue.
6908   Optional<APValue> MaybeDestValue =
6909       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
6910   if (!MaybeDestValue)
6911     return false;
6912 
6913   DestValue = std::move(*MaybeDestValue);
6914   return true;
6915 }
6916 
6917 template <class Derived>
6918 class ExprEvaluatorBase
6919   : public ConstStmtVisitor<Derived, bool> {
6920 private:
6921   Derived &getDerived() { return static_cast<Derived&>(*this); }
6922   bool DerivedSuccess(const APValue &V, const Expr *E) {
6923     return getDerived().Success(V, E);
6924   }
6925   bool DerivedZeroInitialization(const Expr *E) {
6926     return getDerived().ZeroInitialization(E);
6927   }
6928 
6929   // Check whether a conditional operator with a non-constant condition is a
6930   // potential constant expression. If neither arm is a potential constant
6931   // expression, then the conditional operator is not either.
6932   template<typename ConditionalOperator>
6933   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
6934     assert(Info.checkingPotentialConstantExpression());
6935 
6936     // Speculatively evaluate both arms.
6937     SmallVector<PartialDiagnosticAt, 8> Diag;
6938     {
6939       SpeculativeEvaluationRAII Speculate(Info, &Diag);
6940       StmtVisitorTy::Visit(E->getFalseExpr());
6941       if (Diag.empty())
6942         return;
6943     }
6944 
6945     {
6946       SpeculativeEvaluationRAII Speculate(Info, &Diag);
6947       Diag.clear();
6948       StmtVisitorTy::Visit(E->getTrueExpr());
6949       if (Diag.empty())
6950         return;
6951     }
6952 
6953     Error(E, diag::note_constexpr_conditional_never_const);
6954   }
6955 
6956 
6957   template<typename ConditionalOperator>
6958   bool HandleConditionalOperator(const ConditionalOperator *E) {
6959     bool BoolResult;
6960     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
6961       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
6962         CheckPotentialConstantConditional(E);
6963         return false;
6964       }
6965       if (Info.noteFailure()) {
6966         StmtVisitorTy::Visit(E->getTrueExpr());
6967         StmtVisitorTy::Visit(E->getFalseExpr());
6968       }
6969       return false;
6970     }
6971 
6972     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
6973     return StmtVisitorTy::Visit(EvalExpr);
6974   }
6975 
6976 protected:
6977   EvalInfo &Info;
6978   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
6979   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
6980 
6981   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6982     return Info.CCEDiag(E, D);
6983   }
6984 
6985   bool ZeroInitialization(const Expr *E) { return Error(E); }
6986 
6987 public:
6988   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
6989 
6990   EvalInfo &getEvalInfo() { return Info; }
6991 
6992   /// Report an evaluation error. This should only be called when an error is
6993   /// first discovered. When propagating an error, just return false.
6994   bool Error(const Expr *E, diag::kind D) {
6995     Info.FFDiag(E, D);
6996     return false;
6997   }
6998   bool Error(const Expr *E) {
6999     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7000   }
7001 
7002   bool VisitStmt(const Stmt *) {
7003     llvm_unreachable("Expression evaluator should not be called on stmts");
7004   }
7005   bool VisitExpr(const Expr *E) {
7006     return Error(E);
7007   }
7008 
7009   bool VisitConstantExpr(const ConstantExpr *E) {
7010     if (E->hasAPValueResult())
7011       return DerivedSuccess(E->getAPValueResult(), E);
7012 
7013     return StmtVisitorTy::Visit(E->getSubExpr());
7014   }
7015 
7016   bool VisitParenExpr(const ParenExpr *E)
7017     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7018   bool VisitUnaryExtension(const UnaryOperator *E)
7019     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7020   bool VisitUnaryPlus(const UnaryOperator *E)
7021     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7022   bool VisitChooseExpr(const ChooseExpr *E)
7023     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7024   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7025     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7026   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7027     { return StmtVisitorTy::Visit(E->getReplacement()); }
7028   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7029     TempVersionRAII RAII(*Info.CurrentCall);
7030     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7031     return StmtVisitorTy::Visit(E->getExpr());
7032   }
7033   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7034     TempVersionRAII RAII(*Info.CurrentCall);
7035     // The initializer may not have been parsed yet, or might be erroneous.
7036     if (!E->getExpr())
7037       return Error(E);
7038     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7039     return StmtVisitorTy::Visit(E->getExpr());
7040   }
7041 
7042   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7043     FullExpressionRAII Scope(Info);
7044     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7045   }
7046 
7047   // Temporaries are registered when created, so we don't care about
7048   // CXXBindTemporaryExpr.
7049   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7050     return StmtVisitorTy::Visit(E->getSubExpr());
7051   }
7052 
7053   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7054     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7055     return static_cast<Derived*>(this)->VisitCastExpr(E);
7056   }
7057   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7058     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7059       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7060     return static_cast<Derived*>(this)->VisitCastExpr(E);
7061   }
7062   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7063     return static_cast<Derived*>(this)->VisitCastExpr(E);
7064   }
7065 
7066   bool VisitBinaryOperator(const BinaryOperator *E) {
7067     switch (E->getOpcode()) {
7068     default:
7069       return Error(E);
7070 
7071     case BO_Comma:
7072       VisitIgnoredValue(E->getLHS());
7073       return StmtVisitorTy::Visit(E->getRHS());
7074 
7075     case BO_PtrMemD:
7076     case BO_PtrMemI: {
7077       LValue Obj;
7078       if (!HandleMemberPointerAccess(Info, E, Obj))
7079         return false;
7080       APValue Result;
7081       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7082         return false;
7083       return DerivedSuccess(Result, E);
7084     }
7085     }
7086   }
7087 
7088   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7089     return StmtVisitorTy::Visit(E->getSemanticForm());
7090   }
7091 
7092   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7093     // Evaluate and cache the common expression. We treat it as a temporary,
7094     // even though it's not quite the same thing.
7095     LValue CommonLV;
7096     if (!Evaluate(Info.CurrentCall->createTemporary(
7097                       E->getOpaqueValue(),
7098                       getStorageType(Info.Ctx, E->getOpaqueValue()), false,
7099                       CommonLV),
7100                   Info, E->getCommon()))
7101       return false;
7102 
7103     return HandleConditionalOperator(E);
7104   }
7105 
7106   bool VisitConditionalOperator(const ConditionalOperator *E) {
7107     bool IsBcpCall = false;
7108     // If the condition (ignoring parens) is a __builtin_constant_p call,
7109     // the result is a constant expression if it can be folded without
7110     // side-effects. This is an important GNU extension. See GCC PR38377
7111     // for discussion.
7112     if (const CallExpr *CallCE =
7113           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7114       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7115         IsBcpCall = true;
7116 
7117     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7118     // constant expression; we can't check whether it's potentially foldable.
7119     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7120     // it would return 'false' in this mode.
7121     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7122       return false;
7123 
7124     FoldConstant Fold(Info, IsBcpCall);
7125     if (!HandleConditionalOperator(E)) {
7126       Fold.keepDiagnostics();
7127       return false;
7128     }
7129 
7130     return true;
7131   }
7132 
7133   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7134     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7135       return DerivedSuccess(*Value, E);
7136 
7137     const Expr *Source = E->getSourceExpr();
7138     if (!Source)
7139       return Error(E);
7140     if (Source == E) { // sanity checking.
7141       assert(0 && "OpaqueValueExpr recursively refers to itself");
7142       return Error(E);
7143     }
7144     return StmtVisitorTy::Visit(Source);
7145   }
7146 
7147   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7148     for (const Expr *SemE : E->semantics()) {
7149       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7150         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7151         // result expression: there could be two different LValues that would
7152         // refer to the same object in that case, and we can't model that.
7153         if (SemE == E->getResultExpr())
7154           return Error(E);
7155 
7156         // Unique OVEs get evaluated if and when we encounter them when
7157         // emitting the rest of the semantic form, rather than eagerly.
7158         if (OVE->isUnique())
7159           continue;
7160 
7161         LValue LV;
7162         if (!Evaluate(Info.CurrentCall->createTemporary(
7163                           OVE, getStorageType(Info.Ctx, OVE), false, LV),
7164                       Info, OVE->getSourceExpr()))
7165           return false;
7166       } else if (SemE == E->getResultExpr()) {
7167         if (!StmtVisitorTy::Visit(SemE))
7168           return false;
7169       } else {
7170         if (!EvaluateIgnoredValue(Info, SemE))
7171           return false;
7172       }
7173     }
7174     return true;
7175   }
7176 
7177   bool VisitCallExpr(const CallExpr *E) {
7178     APValue Result;
7179     if (!handleCallExpr(E, Result, nullptr))
7180       return false;
7181     return DerivedSuccess(Result, E);
7182   }
7183 
7184   bool handleCallExpr(const CallExpr *E, APValue &Result,
7185                      const LValue *ResultSlot) {
7186     const Expr *Callee = E->getCallee()->IgnoreParens();
7187     QualType CalleeType = Callee->getType();
7188 
7189     const FunctionDecl *FD = nullptr;
7190     LValue *This = nullptr, ThisVal;
7191     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7192     bool HasQualifier = false;
7193 
7194     // Extract function decl and 'this' pointer from the callee.
7195     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7196       const CXXMethodDecl *Member = nullptr;
7197       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7198         // Explicit bound member calls, such as x.f() or p->g();
7199         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7200           return false;
7201         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7202         if (!Member)
7203           return Error(Callee);
7204         This = &ThisVal;
7205         HasQualifier = ME->hasQualifier();
7206       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7207         // Indirect bound member calls ('.*' or '->*').
7208         const ValueDecl *D =
7209             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7210         if (!D)
7211           return false;
7212         Member = dyn_cast<CXXMethodDecl>(D);
7213         if (!Member)
7214           return Error(Callee);
7215         This = &ThisVal;
7216       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7217         if (!Info.getLangOpts().CPlusPlus20)
7218           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7219         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7220                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7221       } else
7222         return Error(Callee);
7223       FD = Member;
7224     } else if (CalleeType->isFunctionPointerType()) {
7225       LValue Call;
7226       if (!EvaluatePointer(Callee, Call, Info))
7227         return false;
7228 
7229       if (!Call.getLValueOffset().isZero())
7230         return Error(Callee);
7231       FD = dyn_cast_or_null<FunctionDecl>(
7232                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
7233       if (!FD)
7234         return Error(Callee);
7235       // Don't call function pointers which have been cast to some other type.
7236       // Per DR (no number yet), the caller and callee can differ in noexcept.
7237       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7238         CalleeType->getPointeeType(), FD->getType())) {
7239         return Error(E);
7240       }
7241 
7242       // Overloaded operator calls to member functions are represented as normal
7243       // calls with '*this' as the first argument.
7244       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7245       if (MD && !MD->isStatic()) {
7246         // FIXME: When selecting an implicit conversion for an overloaded
7247         // operator delete, we sometimes try to evaluate calls to conversion
7248         // operators without a 'this' parameter!
7249         if (Args.empty())
7250           return Error(E);
7251 
7252         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7253           return false;
7254         This = &ThisVal;
7255         Args = Args.slice(1);
7256       } else if (MD && MD->isLambdaStaticInvoker()) {
7257         // Map the static invoker for the lambda back to the call operator.
7258         // Conveniently, we don't have to slice out the 'this' argument (as is
7259         // being done for the non-static case), since a static member function
7260         // doesn't have an implicit argument passed in.
7261         const CXXRecordDecl *ClosureClass = MD->getParent();
7262         assert(
7263             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7264             "Number of captures must be zero for conversion to function-ptr");
7265 
7266         const CXXMethodDecl *LambdaCallOp =
7267             ClosureClass->getLambdaCallOperator();
7268 
7269         // Set 'FD', the function that will be called below, to the call
7270         // operator.  If the closure object represents a generic lambda, find
7271         // the corresponding specialization of the call operator.
7272 
7273         if (ClosureClass->isGenericLambda()) {
7274           assert(MD->isFunctionTemplateSpecialization() &&
7275                  "A generic lambda's static-invoker function must be a "
7276                  "template specialization");
7277           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7278           FunctionTemplateDecl *CallOpTemplate =
7279               LambdaCallOp->getDescribedFunctionTemplate();
7280           void *InsertPos = nullptr;
7281           FunctionDecl *CorrespondingCallOpSpecialization =
7282               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7283           assert(CorrespondingCallOpSpecialization &&
7284                  "We must always have a function call operator specialization "
7285                  "that corresponds to our static invoker specialization");
7286           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7287         } else
7288           FD = LambdaCallOp;
7289       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7290         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7291             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7292           LValue Ptr;
7293           if (!HandleOperatorNewCall(Info, E, Ptr))
7294             return false;
7295           Ptr.moveInto(Result);
7296           return true;
7297         } else {
7298           return HandleOperatorDeleteCall(Info, E);
7299         }
7300       }
7301     } else
7302       return Error(E);
7303 
7304     SmallVector<QualType, 4> CovariantAdjustmentPath;
7305     if (This) {
7306       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7307       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7308         // Perform virtual dispatch, if necessary.
7309         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7310                                    CovariantAdjustmentPath);
7311         if (!FD)
7312           return false;
7313       } else {
7314         // Check that the 'this' pointer points to an object of the right type.
7315         // FIXME: If this is an assignment operator call, we may need to change
7316         // the active union member before we check this.
7317         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7318           return false;
7319       }
7320     }
7321 
7322     // Destructor calls are different enough that they have their own codepath.
7323     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7324       assert(This && "no 'this' pointer for destructor call");
7325       return HandleDestruction(Info, E, *This,
7326                                Info.Ctx.getRecordType(DD->getParent()));
7327     }
7328 
7329     const FunctionDecl *Definition = nullptr;
7330     Stmt *Body = FD->getBody(Definition);
7331 
7332     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7333         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
7334                             Result, ResultSlot))
7335       return false;
7336 
7337     if (!CovariantAdjustmentPath.empty() &&
7338         !HandleCovariantReturnAdjustment(Info, E, Result,
7339                                          CovariantAdjustmentPath))
7340       return false;
7341 
7342     return true;
7343   }
7344 
7345   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7346     return StmtVisitorTy::Visit(E->getInitializer());
7347   }
7348   bool VisitInitListExpr(const InitListExpr *E) {
7349     if (E->getNumInits() == 0)
7350       return DerivedZeroInitialization(E);
7351     if (E->getNumInits() == 1)
7352       return StmtVisitorTy::Visit(E->getInit(0));
7353     return Error(E);
7354   }
7355   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7356     return DerivedZeroInitialization(E);
7357   }
7358   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7359     return DerivedZeroInitialization(E);
7360   }
7361   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7362     return DerivedZeroInitialization(E);
7363   }
7364 
7365   /// A member expression where the object is a prvalue is itself a prvalue.
7366   bool VisitMemberExpr(const MemberExpr *E) {
7367     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7368            "missing temporary materialization conversion");
7369     assert(!E->isArrow() && "missing call to bound member function?");
7370 
7371     APValue Val;
7372     if (!Evaluate(Val, Info, E->getBase()))
7373       return false;
7374 
7375     QualType BaseTy = E->getBase()->getType();
7376 
7377     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7378     if (!FD) return Error(E);
7379     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7380     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7381            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7382 
7383     // Note: there is no lvalue base here. But this case should only ever
7384     // happen in C or in C++98, where we cannot be evaluating a constexpr
7385     // constructor, which is the only case the base matters.
7386     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7387     SubobjectDesignator Designator(BaseTy);
7388     Designator.addDeclUnchecked(FD);
7389 
7390     APValue Result;
7391     return extractSubobject(Info, E, Obj, Designator, Result) &&
7392            DerivedSuccess(Result, E);
7393   }
7394 
7395   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7396     APValue Val;
7397     if (!Evaluate(Val, Info, E->getBase()))
7398       return false;
7399 
7400     if (Val.isVector()) {
7401       SmallVector<uint32_t, 4> Indices;
7402       E->getEncodedElementAccess(Indices);
7403       if (Indices.size() == 1) {
7404         // Return scalar.
7405         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7406       } else {
7407         // Construct new APValue vector.
7408         SmallVector<APValue, 4> Elts;
7409         for (unsigned I = 0; I < Indices.size(); ++I) {
7410           Elts.push_back(Val.getVectorElt(Indices[I]));
7411         }
7412         APValue VecResult(Elts.data(), Indices.size());
7413         return DerivedSuccess(VecResult, E);
7414       }
7415     }
7416 
7417     return false;
7418   }
7419 
7420   bool VisitCastExpr(const CastExpr *E) {
7421     switch (E->getCastKind()) {
7422     default:
7423       break;
7424 
7425     case CK_AtomicToNonAtomic: {
7426       APValue AtomicVal;
7427       // This does not need to be done in place even for class/array types:
7428       // atomic-to-non-atomic conversion implies copying the object
7429       // representation.
7430       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7431         return false;
7432       return DerivedSuccess(AtomicVal, E);
7433     }
7434 
7435     case CK_NoOp:
7436     case CK_UserDefinedConversion:
7437       return StmtVisitorTy::Visit(E->getSubExpr());
7438 
7439     case CK_LValueToRValue: {
7440       LValue LVal;
7441       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7442         return false;
7443       APValue RVal;
7444       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7445       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7446                                           LVal, RVal))
7447         return false;
7448       return DerivedSuccess(RVal, E);
7449     }
7450     case CK_LValueToRValueBitCast: {
7451       APValue DestValue, SourceValue;
7452       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7453         return false;
7454       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7455         return false;
7456       return DerivedSuccess(DestValue, E);
7457     }
7458 
7459     case CK_AddressSpaceConversion: {
7460       APValue Value;
7461       if (!Evaluate(Value, Info, E->getSubExpr()))
7462         return false;
7463       return DerivedSuccess(Value, E);
7464     }
7465     }
7466 
7467     return Error(E);
7468   }
7469 
7470   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7471     return VisitUnaryPostIncDec(UO);
7472   }
7473   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7474     return VisitUnaryPostIncDec(UO);
7475   }
7476   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7477     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7478       return Error(UO);
7479 
7480     LValue LVal;
7481     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7482       return false;
7483     APValue RVal;
7484     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7485                       UO->isIncrementOp(), &RVal))
7486       return false;
7487     return DerivedSuccess(RVal, UO);
7488   }
7489 
7490   bool VisitStmtExpr(const StmtExpr *E) {
7491     // We will have checked the full-expressions inside the statement expression
7492     // when they were completed, and don't need to check them again now.
7493     if (Info.checkingForUndefinedBehavior())
7494       return Error(E);
7495 
7496     const CompoundStmt *CS = E->getSubStmt();
7497     if (CS->body_empty())
7498       return true;
7499 
7500     BlockScopeRAII Scope(Info);
7501     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7502                                            BE = CS->body_end();
7503          /**/; ++BI) {
7504       if (BI + 1 == BE) {
7505         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7506         if (!FinalExpr) {
7507           Info.FFDiag((*BI)->getBeginLoc(),
7508                       diag::note_constexpr_stmt_expr_unsupported);
7509           return false;
7510         }
7511         return this->Visit(FinalExpr) && Scope.destroy();
7512       }
7513 
7514       APValue ReturnValue;
7515       StmtResult Result = { ReturnValue, nullptr };
7516       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7517       if (ESR != ESR_Succeeded) {
7518         // FIXME: If the statement-expression terminated due to 'return',
7519         // 'break', or 'continue', it would be nice to propagate that to
7520         // the outer statement evaluation rather than bailing out.
7521         if (ESR != ESR_Failed)
7522           Info.FFDiag((*BI)->getBeginLoc(),
7523                       diag::note_constexpr_stmt_expr_unsupported);
7524         return false;
7525       }
7526     }
7527 
7528     llvm_unreachable("Return from function from the loop above.");
7529   }
7530 
7531   /// Visit a value which is evaluated, but whose value is ignored.
7532   void VisitIgnoredValue(const Expr *E) {
7533     EvaluateIgnoredValue(Info, E);
7534   }
7535 
7536   /// Potentially visit a MemberExpr's base expression.
7537   void VisitIgnoredBaseExpression(const Expr *E) {
7538     // While MSVC doesn't evaluate the base expression, it does diagnose the
7539     // presence of side-effecting behavior.
7540     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7541       return;
7542     VisitIgnoredValue(E);
7543   }
7544 };
7545 
7546 } // namespace
7547 
7548 //===----------------------------------------------------------------------===//
7549 // Common base class for lvalue and temporary evaluation.
7550 //===----------------------------------------------------------------------===//
7551 namespace {
7552 template<class Derived>
7553 class LValueExprEvaluatorBase
7554   : public ExprEvaluatorBase<Derived> {
7555 protected:
7556   LValue &Result;
7557   bool InvalidBaseOK;
7558   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7559   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7560 
7561   bool Success(APValue::LValueBase B) {
7562     Result.set(B);
7563     return true;
7564   }
7565 
7566   bool evaluatePointer(const Expr *E, LValue &Result) {
7567     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7568   }
7569 
7570 public:
7571   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7572       : ExprEvaluatorBaseTy(Info), Result(Result),
7573         InvalidBaseOK(InvalidBaseOK) {}
7574 
7575   bool Success(const APValue &V, const Expr *E) {
7576     Result.setFrom(this->Info.Ctx, V);
7577     return true;
7578   }
7579 
7580   bool VisitMemberExpr(const MemberExpr *E) {
7581     // Handle non-static data members.
7582     QualType BaseTy;
7583     bool EvalOK;
7584     if (E->isArrow()) {
7585       EvalOK = evaluatePointer(E->getBase(), Result);
7586       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7587     } else if (E->getBase()->isRValue()) {
7588       assert(E->getBase()->getType()->isRecordType());
7589       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7590       BaseTy = E->getBase()->getType();
7591     } else {
7592       EvalOK = this->Visit(E->getBase());
7593       BaseTy = E->getBase()->getType();
7594     }
7595     if (!EvalOK) {
7596       if (!InvalidBaseOK)
7597         return false;
7598       Result.setInvalid(E);
7599       return true;
7600     }
7601 
7602     const ValueDecl *MD = E->getMemberDecl();
7603     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7604       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7605              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7606       (void)BaseTy;
7607       if (!HandleLValueMember(this->Info, E, Result, FD))
7608         return false;
7609     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7610       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7611         return false;
7612     } else
7613       return this->Error(E);
7614 
7615     if (MD->getType()->isReferenceType()) {
7616       APValue RefValue;
7617       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7618                                           RefValue))
7619         return false;
7620       return Success(RefValue, E);
7621     }
7622     return true;
7623   }
7624 
7625   bool VisitBinaryOperator(const BinaryOperator *E) {
7626     switch (E->getOpcode()) {
7627     default:
7628       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7629 
7630     case BO_PtrMemD:
7631     case BO_PtrMemI:
7632       return HandleMemberPointerAccess(this->Info, E, Result);
7633     }
7634   }
7635 
7636   bool VisitCastExpr(const CastExpr *E) {
7637     switch (E->getCastKind()) {
7638     default:
7639       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7640 
7641     case CK_DerivedToBase:
7642     case CK_UncheckedDerivedToBase:
7643       if (!this->Visit(E->getSubExpr()))
7644         return false;
7645 
7646       // Now figure out the necessary offset to add to the base LV to get from
7647       // the derived class to the base class.
7648       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
7649                                   Result);
7650     }
7651   }
7652 };
7653 }
7654 
7655 //===----------------------------------------------------------------------===//
7656 // LValue Evaluation
7657 //
7658 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
7659 // function designators (in C), decl references to void objects (in C), and
7660 // temporaries (if building with -Wno-address-of-temporary).
7661 //
7662 // LValue evaluation produces values comprising a base expression of one of the
7663 // following types:
7664 // - Declarations
7665 //  * VarDecl
7666 //  * FunctionDecl
7667 // - Literals
7668 //  * CompoundLiteralExpr in C (and in global scope in C++)
7669 //  * StringLiteral
7670 //  * PredefinedExpr
7671 //  * ObjCStringLiteralExpr
7672 //  * ObjCEncodeExpr
7673 //  * AddrLabelExpr
7674 //  * BlockExpr
7675 //  * CallExpr for a MakeStringConstant builtin
7676 // - typeid(T) expressions, as TypeInfoLValues
7677 // - Locals and temporaries
7678 //  * MaterializeTemporaryExpr
7679 //  * Any Expr, with a CallIndex indicating the function in which the temporary
7680 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
7681 //    from the AST (FIXME).
7682 //  * A MaterializeTemporaryExpr that has static storage duration, with no
7683 //    CallIndex, for a lifetime-extended temporary.
7684 //  * The ConstantExpr that is currently being evaluated during evaluation of an
7685 //    immediate invocation.
7686 // plus an offset in bytes.
7687 //===----------------------------------------------------------------------===//
7688 namespace {
7689 class LValueExprEvaluator
7690   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
7691 public:
7692   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
7693     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
7694 
7695   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
7696   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
7697 
7698   bool VisitDeclRefExpr(const DeclRefExpr *E);
7699   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
7700   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
7701   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
7702   bool VisitMemberExpr(const MemberExpr *E);
7703   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
7704   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
7705   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
7706   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
7707   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
7708   bool VisitUnaryDeref(const UnaryOperator *E);
7709   bool VisitUnaryReal(const UnaryOperator *E);
7710   bool VisitUnaryImag(const UnaryOperator *E);
7711   bool VisitUnaryPreInc(const UnaryOperator *UO) {
7712     return VisitUnaryPreIncDec(UO);
7713   }
7714   bool VisitUnaryPreDec(const UnaryOperator *UO) {
7715     return VisitUnaryPreIncDec(UO);
7716   }
7717   bool VisitBinAssign(const BinaryOperator *BO);
7718   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
7719 
7720   bool VisitCastExpr(const CastExpr *E) {
7721     switch (E->getCastKind()) {
7722     default:
7723       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
7724 
7725     case CK_LValueBitCast:
7726       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7727       if (!Visit(E->getSubExpr()))
7728         return false;
7729       Result.Designator.setInvalid();
7730       return true;
7731 
7732     case CK_BaseToDerived:
7733       if (!Visit(E->getSubExpr()))
7734         return false;
7735       return HandleBaseToDerivedCast(Info, E, Result);
7736 
7737     case CK_Dynamic:
7738       if (!Visit(E->getSubExpr()))
7739         return false;
7740       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
7741     }
7742   }
7743 };
7744 } // end anonymous namespace
7745 
7746 /// Evaluate an expression as an lvalue. This can be legitimately called on
7747 /// expressions which are not glvalues, in three cases:
7748 ///  * function designators in C, and
7749 ///  * "extern void" objects
7750 ///  * @selector() expressions in Objective-C
7751 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
7752                            bool InvalidBaseOK) {
7753   assert(E->isGLValue() || E->getType()->isFunctionType() ||
7754          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
7755   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7756 }
7757 
7758 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
7759   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
7760     return Success(FD);
7761   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
7762     return VisitVarDecl(E, VD);
7763   if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
7764     return Visit(BD->getBinding());
7765   if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(E->getDecl()))
7766     return Success(GD);
7767   return Error(E);
7768 }
7769 
7770 
7771 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
7772 
7773   // If we are within a lambda's call operator, check whether the 'VD' referred
7774   // to within 'E' actually represents a lambda-capture that maps to a
7775   // data-member/field within the closure object, and if so, evaluate to the
7776   // field or what the field refers to.
7777   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
7778       isa<DeclRefExpr>(E) &&
7779       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
7780     // We don't always have a complete capture-map when checking or inferring if
7781     // the function call operator meets the requirements of a constexpr function
7782     // - but we don't need to evaluate the captures to determine constexprness
7783     // (dcl.constexpr C++17).
7784     if (Info.checkingPotentialConstantExpression())
7785       return false;
7786 
7787     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
7788       // Start with 'Result' referring to the complete closure object...
7789       Result = *Info.CurrentCall->This;
7790       // ... then update it to refer to the field of the closure object
7791       // that represents the capture.
7792       if (!HandleLValueMember(Info, E, Result, FD))
7793         return false;
7794       // And if the field is of reference type, update 'Result' to refer to what
7795       // the field refers to.
7796       if (FD->getType()->isReferenceType()) {
7797         APValue RVal;
7798         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
7799                                             RVal))
7800           return false;
7801         Result.setFrom(Info.Ctx, RVal);
7802       }
7803       return true;
7804     }
7805   }
7806   CallStackFrame *Frame = nullptr;
7807   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
7808     // Only if a local variable was declared in the function currently being
7809     // evaluated, do we expect to be able to find its value in the current
7810     // frame. (Otherwise it was likely declared in an enclosing context and
7811     // could either have a valid evaluatable value (for e.g. a constexpr
7812     // variable) or be ill-formed (and trigger an appropriate evaluation
7813     // diagnostic)).
7814     if (Info.CurrentCall->Callee &&
7815         Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
7816       Frame = Info.CurrentCall;
7817     }
7818   }
7819 
7820   if (!VD->getType()->isReferenceType()) {
7821     if (Frame) {
7822       Result.set({VD, Frame->Index,
7823                   Info.CurrentCall->getCurrentTemporaryVersion(VD)});
7824       return true;
7825     }
7826     return Success(VD);
7827   }
7828 
7829   APValue *V;
7830   if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
7831     return false;
7832   if (!V->hasValue()) {
7833     // FIXME: Is it possible for V to be indeterminate here? If so, we should
7834     // adjust the diagnostic to say that.
7835     if (!Info.checkingPotentialConstantExpression())
7836       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
7837     return false;
7838   }
7839   return Success(*V, E);
7840 }
7841 
7842 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
7843     const MaterializeTemporaryExpr *E) {
7844   // Walk through the expression to find the materialized temporary itself.
7845   SmallVector<const Expr *, 2> CommaLHSs;
7846   SmallVector<SubobjectAdjustment, 2> Adjustments;
7847   const Expr *Inner =
7848       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
7849 
7850   // If we passed any comma operators, evaluate their LHSs.
7851   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
7852     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
7853       return false;
7854 
7855   // A materialized temporary with static storage duration can appear within the
7856   // result of a constant expression evaluation, so we need to preserve its
7857   // value for use outside this evaluation.
7858   APValue *Value;
7859   if (E->getStorageDuration() == SD_Static) {
7860     Value = E->getOrCreateValue(true);
7861     *Value = APValue();
7862     Result.set(E);
7863   } else {
7864     Value = &Info.CurrentCall->createTemporary(
7865         E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
7866   }
7867 
7868   QualType Type = Inner->getType();
7869 
7870   // Materialize the temporary itself.
7871   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
7872     *Value = APValue();
7873     return false;
7874   }
7875 
7876   // Adjust our lvalue to refer to the desired subobject.
7877   for (unsigned I = Adjustments.size(); I != 0; /**/) {
7878     --I;
7879     switch (Adjustments[I].Kind) {
7880     case SubobjectAdjustment::DerivedToBaseAdjustment:
7881       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
7882                                 Type, Result))
7883         return false;
7884       Type = Adjustments[I].DerivedToBase.BasePath->getType();
7885       break;
7886 
7887     case SubobjectAdjustment::FieldAdjustment:
7888       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
7889         return false;
7890       Type = Adjustments[I].Field->getType();
7891       break;
7892 
7893     case SubobjectAdjustment::MemberPointerAdjustment:
7894       if (!HandleMemberPointerAccess(this->Info, Type, Result,
7895                                      Adjustments[I].Ptr.RHS))
7896         return false;
7897       Type = Adjustments[I].Ptr.MPT->getPointeeType();
7898       break;
7899     }
7900   }
7901 
7902   return true;
7903 }
7904 
7905 bool
7906 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7907   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
7908          "lvalue compound literal in c++?");
7909   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
7910   // only see this when folding in C, so there's no standard to follow here.
7911   return Success(E);
7912 }
7913 
7914 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
7915   TypeInfoLValue TypeInfo;
7916 
7917   if (!E->isPotentiallyEvaluated()) {
7918     if (E->isTypeOperand())
7919       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
7920     else
7921       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
7922   } else {
7923     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
7924       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
7925         << E->getExprOperand()->getType()
7926         << E->getExprOperand()->getSourceRange();
7927     }
7928 
7929     if (!Visit(E->getExprOperand()))
7930       return false;
7931 
7932     Optional<DynamicType> DynType =
7933         ComputeDynamicType(Info, E, Result, AK_TypeId);
7934     if (!DynType)
7935       return false;
7936 
7937     TypeInfo =
7938         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
7939   }
7940 
7941   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
7942 }
7943 
7944 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
7945   return Success(E->getGuidDecl());
7946 }
7947 
7948 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
7949   // Handle static data members.
7950   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
7951     VisitIgnoredBaseExpression(E->getBase());
7952     return VisitVarDecl(E, VD);
7953   }
7954 
7955   // Handle static member functions.
7956   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
7957     if (MD->isStatic()) {
7958       VisitIgnoredBaseExpression(E->getBase());
7959       return Success(MD);
7960     }
7961   }
7962 
7963   // Handle non-static data members.
7964   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
7965 }
7966 
7967 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
7968   // FIXME: Deal with vectors as array subscript bases.
7969   if (E->getBase()->getType()->isVectorType())
7970     return Error(E);
7971 
7972   bool Success = true;
7973   if (!evaluatePointer(E->getBase(), Result)) {
7974     if (!Info.noteFailure())
7975       return false;
7976     Success = false;
7977   }
7978 
7979   APSInt Index;
7980   if (!EvaluateInteger(E->getIdx(), Index, Info))
7981     return false;
7982 
7983   return Success &&
7984          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
7985 }
7986 
7987 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
7988   return evaluatePointer(E->getSubExpr(), Result);
7989 }
7990 
7991 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7992   if (!Visit(E->getSubExpr()))
7993     return false;
7994   // __real is a no-op on scalar lvalues.
7995   if (E->getSubExpr()->getType()->isAnyComplexType())
7996     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
7997   return true;
7998 }
7999 
8000 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8001   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8002          "lvalue __imag__ on scalar?");
8003   if (!Visit(E->getSubExpr()))
8004     return false;
8005   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8006   return true;
8007 }
8008 
8009 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8010   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8011     return Error(UO);
8012 
8013   if (!this->Visit(UO->getSubExpr()))
8014     return false;
8015 
8016   return handleIncDec(
8017       this->Info, UO, Result, UO->getSubExpr()->getType(),
8018       UO->isIncrementOp(), nullptr);
8019 }
8020 
8021 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8022     const CompoundAssignOperator *CAO) {
8023   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8024     return Error(CAO);
8025 
8026   APValue RHS;
8027 
8028   // The overall lvalue result is the result of evaluating the LHS.
8029   if (!this->Visit(CAO->getLHS())) {
8030     if (Info.noteFailure())
8031       Evaluate(RHS, this->Info, CAO->getRHS());
8032     return false;
8033   }
8034 
8035   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
8036     return false;
8037 
8038   return handleCompoundAssignment(
8039       this->Info, CAO,
8040       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8041       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8042 }
8043 
8044 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8045   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8046     return Error(E);
8047 
8048   APValue NewVal;
8049 
8050   if (!this->Visit(E->getLHS())) {
8051     if (Info.noteFailure())
8052       Evaluate(NewVal, this->Info, E->getRHS());
8053     return false;
8054   }
8055 
8056   if (!Evaluate(NewVal, this->Info, E->getRHS()))
8057     return false;
8058 
8059   if (Info.getLangOpts().CPlusPlus20 &&
8060       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8061     return false;
8062 
8063   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8064                           NewVal);
8065 }
8066 
8067 //===----------------------------------------------------------------------===//
8068 // Pointer Evaluation
8069 //===----------------------------------------------------------------------===//
8070 
8071 /// Attempts to compute the number of bytes available at the pointer
8072 /// returned by a function with the alloc_size attribute. Returns true if we
8073 /// were successful. Places an unsigned number into `Result`.
8074 ///
8075 /// This expects the given CallExpr to be a call to a function with an
8076 /// alloc_size attribute.
8077 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8078                                             const CallExpr *Call,
8079                                             llvm::APInt &Result) {
8080   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8081 
8082   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8083   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8084   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8085   if (Call->getNumArgs() <= SizeArgNo)
8086     return false;
8087 
8088   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8089     Expr::EvalResult ExprResult;
8090     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8091       return false;
8092     Into = ExprResult.Val.getInt();
8093     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8094       return false;
8095     Into = Into.zextOrSelf(BitsInSizeT);
8096     return true;
8097   };
8098 
8099   APSInt SizeOfElem;
8100   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8101     return false;
8102 
8103   if (!AllocSize->getNumElemsParam().isValid()) {
8104     Result = std::move(SizeOfElem);
8105     return true;
8106   }
8107 
8108   APSInt NumberOfElems;
8109   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8110   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8111     return false;
8112 
8113   bool Overflow;
8114   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8115   if (Overflow)
8116     return false;
8117 
8118   Result = std::move(BytesAvailable);
8119   return true;
8120 }
8121 
8122 /// Convenience function. LVal's base must be a call to an alloc_size
8123 /// function.
8124 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8125                                             const LValue &LVal,
8126                                             llvm::APInt &Result) {
8127   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8128          "Can't get the size of a non alloc_size function");
8129   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8130   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8131   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8132 }
8133 
8134 /// Attempts to evaluate the given LValueBase as the result of a call to
8135 /// a function with the alloc_size attribute. If it was possible to do so, this
8136 /// function will return true, make Result's Base point to said function call,
8137 /// and mark Result's Base as invalid.
8138 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8139                                       LValue &Result) {
8140   if (Base.isNull())
8141     return false;
8142 
8143   // Because we do no form of static analysis, we only support const variables.
8144   //
8145   // Additionally, we can't support parameters, nor can we support static
8146   // variables (in the latter case, use-before-assign isn't UB; in the former,
8147   // we have no clue what they'll be assigned to).
8148   const auto *VD =
8149       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8150   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8151     return false;
8152 
8153   const Expr *Init = VD->getAnyInitializer();
8154   if (!Init)
8155     return false;
8156 
8157   const Expr *E = Init->IgnoreParens();
8158   if (!tryUnwrapAllocSizeCall(E))
8159     return false;
8160 
8161   // Store E instead of E unwrapped so that the type of the LValue's base is
8162   // what the user wanted.
8163   Result.setInvalid(E);
8164 
8165   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8166   Result.addUnsizedArray(Info, E, Pointee);
8167   return true;
8168 }
8169 
8170 namespace {
8171 class PointerExprEvaluator
8172   : public ExprEvaluatorBase<PointerExprEvaluator> {
8173   LValue &Result;
8174   bool InvalidBaseOK;
8175 
8176   bool Success(const Expr *E) {
8177     Result.set(E);
8178     return true;
8179   }
8180 
8181   bool evaluateLValue(const Expr *E, LValue &Result) {
8182     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8183   }
8184 
8185   bool evaluatePointer(const Expr *E, LValue &Result) {
8186     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8187   }
8188 
8189   bool visitNonBuiltinCallExpr(const CallExpr *E);
8190 public:
8191 
8192   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8193       : ExprEvaluatorBaseTy(info), Result(Result),
8194         InvalidBaseOK(InvalidBaseOK) {}
8195 
8196   bool Success(const APValue &V, const Expr *E) {
8197     Result.setFrom(Info.Ctx, V);
8198     return true;
8199   }
8200   bool ZeroInitialization(const Expr *E) {
8201     Result.setNull(Info.Ctx, E->getType());
8202     return true;
8203   }
8204 
8205   bool VisitBinaryOperator(const BinaryOperator *E);
8206   bool VisitCastExpr(const CastExpr* E);
8207   bool VisitUnaryAddrOf(const UnaryOperator *E);
8208   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8209       { return Success(E); }
8210   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8211     if (E->isExpressibleAsConstantInitializer())
8212       return Success(E);
8213     if (Info.noteFailure())
8214       EvaluateIgnoredValue(Info, E->getSubExpr());
8215     return Error(E);
8216   }
8217   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8218       { return Success(E); }
8219   bool VisitCallExpr(const CallExpr *E);
8220   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8221   bool VisitBlockExpr(const BlockExpr *E) {
8222     if (!E->getBlockDecl()->hasCaptures())
8223       return Success(E);
8224     return Error(E);
8225   }
8226   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8227     // Can't look at 'this' when checking a potential constant expression.
8228     if (Info.checkingPotentialConstantExpression())
8229       return false;
8230     if (!Info.CurrentCall->This) {
8231       if (Info.getLangOpts().CPlusPlus11)
8232         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8233       else
8234         Info.FFDiag(E);
8235       return false;
8236     }
8237     Result = *Info.CurrentCall->This;
8238     // If we are inside a lambda's call operator, the 'this' expression refers
8239     // to the enclosing '*this' object (either by value or reference) which is
8240     // either copied into the closure object's field that represents the '*this'
8241     // or refers to '*this'.
8242     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8243       // Ensure we actually have captured 'this'. (an error will have
8244       // been previously reported if not).
8245       if (!Info.CurrentCall->LambdaThisCaptureField)
8246         return false;
8247 
8248       // Update 'Result' to refer to the data member/field of the closure object
8249       // that represents the '*this' capture.
8250       if (!HandleLValueMember(Info, E, Result,
8251                              Info.CurrentCall->LambdaThisCaptureField))
8252         return false;
8253       // If we captured '*this' by reference, replace the field with its referent.
8254       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8255               ->isPointerType()) {
8256         APValue RVal;
8257         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8258                                             RVal))
8259           return false;
8260 
8261         Result.setFrom(Info.Ctx, RVal);
8262       }
8263     }
8264     return true;
8265   }
8266 
8267   bool VisitCXXNewExpr(const CXXNewExpr *E);
8268 
8269   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8270     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
8271     APValue LValResult = E->EvaluateInContext(
8272         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8273     Result.setFrom(Info.Ctx, LValResult);
8274     return true;
8275   }
8276 
8277   // FIXME: Missing: @protocol, @selector
8278 };
8279 } // end anonymous namespace
8280 
8281 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8282                             bool InvalidBaseOK) {
8283   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
8284   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8285 }
8286 
8287 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8288   if (E->getOpcode() != BO_Add &&
8289       E->getOpcode() != BO_Sub)
8290     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8291 
8292   const Expr *PExp = E->getLHS();
8293   const Expr *IExp = E->getRHS();
8294   if (IExp->getType()->isPointerType())
8295     std::swap(PExp, IExp);
8296 
8297   bool EvalPtrOK = evaluatePointer(PExp, Result);
8298   if (!EvalPtrOK && !Info.noteFailure())
8299     return false;
8300 
8301   llvm::APSInt Offset;
8302   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8303     return false;
8304 
8305   if (E->getOpcode() == BO_Sub)
8306     negateAsSigned(Offset);
8307 
8308   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8309   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8310 }
8311 
8312 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8313   return evaluateLValue(E->getSubExpr(), Result);
8314 }
8315 
8316 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8317   const Expr *SubExpr = E->getSubExpr();
8318 
8319   switch (E->getCastKind()) {
8320   default:
8321     break;
8322   case CK_BitCast:
8323   case CK_CPointerToObjCPointerCast:
8324   case CK_BlockPointerToObjCPointerCast:
8325   case CK_AnyPointerToBlockPointerCast:
8326   case CK_AddressSpaceConversion:
8327     if (!Visit(SubExpr))
8328       return false;
8329     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8330     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8331     // also static_casts, but we disallow them as a resolution to DR1312.
8332     if (!E->getType()->isVoidPointerType()) {
8333       if (!Result.InvalidBase && !Result.Designator.Invalid &&
8334           !Result.IsNullPtr &&
8335           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8336                                           E->getType()->getPointeeType()) &&
8337           Info.getStdAllocatorCaller("allocate")) {
8338         // Inside a call to std::allocator::allocate and friends, we permit
8339         // casting from void* back to cv1 T* for a pointer that points to a
8340         // cv2 T.
8341       } else {
8342         Result.Designator.setInvalid();
8343         if (SubExpr->getType()->isVoidPointerType())
8344           CCEDiag(E, diag::note_constexpr_invalid_cast)
8345             << 3 << SubExpr->getType();
8346         else
8347           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8348       }
8349     }
8350     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8351       ZeroInitialization(E);
8352     return true;
8353 
8354   case CK_DerivedToBase:
8355   case CK_UncheckedDerivedToBase:
8356     if (!evaluatePointer(E->getSubExpr(), Result))
8357       return false;
8358     if (!Result.Base && Result.Offset.isZero())
8359       return true;
8360 
8361     // Now figure out the necessary offset to add to the base LV to get from
8362     // the derived class to the base class.
8363     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8364                                   castAs<PointerType>()->getPointeeType(),
8365                                 Result);
8366 
8367   case CK_BaseToDerived:
8368     if (!Visit(E->getSubExpr()))
8369       return false;
8370     if (!Result.Base && Result.Offset.isZero())
8371       return true;
8372     return HandleBaseToDerivedCast(Info, E, Result);
8373 
8374   case CK_Dynamic:
8375     if (!Visit(E->getSubExpr()))
8376       return false;
8377     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8378 
8379   case CK_NullToPointer:
8380     VisitIgnoredValue(E->getSubExpr());
8381     return ZeroInitialization(E);
8382 
8383   case CK_IntegralToPointer: {
8384     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8385 
8386     APValue Value;
8387     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8388       break;
8389 
8390     if (Value.isInt()) {
8391       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8392       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8393       Result.Base = (Expr*)nullptr;
8394       Result.InvalidBase = false;
8395       Result.Offset = CharUnits::fromQuantity(N);
8396       Result.Designator.setInvalid();
8397       Result.IsNullPtr = false;
8398       return true;
8399     } else {
8400       // Cast is of an lvalue, no need to change value.
8401       Result.setFrom(Info.Ctx, Value);
8402       return true;
8403     }
8404   }
8405 
8406   case CK_ArrayToPointerDecay: {
8407     if (SubExpr->isGLValue()) {
8408       if (!evaluateLValue(SubExpr, Result))
8409         return false;
8410     } else {
8411       APValue &Value = Info.CurrentCall->createTemporary(
8412           SubExpr, SubExpr->getType(), false, Result);
8413       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8414         return false;
8415     }
8416     // The result is a pointer to the first element of the array.
8417     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8418     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8419       Result.addArray(Info, E, CAT);
8420     else
8421       Result.addUnsizedArray(Info, E, AT->getElementType());
8422     return true;
8423   }
8424 
8425   case CK_FunctionToPointerDecay:
8426     return evaluateLValue(SubExpr, Result);
8427 
8428   case CK_LValueToRValue: {
8429     LValue LVal;
8430     if (!evaluateLValue(E->getSubExpr(), LVal))
8431       return false;
8432 
8433     APValue RVal;
8434     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8435     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8436                                         LVal, RVal))
8437       return InvalidBaseOK &&
8438              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8439     return Success(RVal, E);
8440   }
8441   }
8442 
8443   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8444 }
8445 
8446 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8447                                 UnaryExprOrTypeTrait ExprKind) {
8448   // C++ [expr.alignof]p3:
8449   //     When alignof is applied to a reference type, the result is the
8450   //     alignment of the referenced type.
8451   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8452     T = Ref->getPointeeType();
8453 
8454   if (T.getQualifiers().hasUnaligned())
8455     return CharUnits::One();
8456 
8457   const bool AlignOfReturnsPreferred =
8458       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8459 
8460   // __alignof is defined to return the preferred alignment.
8461   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8462   // as well.
8463   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8464     return Info.Ctx.toCharUnitsFromBits(
8465       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8466   // alignof and _Alignof are defined to return the ABI alignment.
8467   else if (ExprKind == UETT_AlignOf)
8468     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8469   else
8470     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8471 }
8472 
8473 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8474                                 UnaryExprOrTypeTrait ExprKind) {
8475   E = E->IgnoreParens();
8476 
8477   // The kinds of expressions that we have special-case logic here for
8478   // should be kept up to date with the special checks for those
8479   // expressions in Sema.
8480 
8481   // alignof decl is always accepted, even if it doesn't make sense: we default
8482   // to 1 in those cases.
8483   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8484     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8485                                  /*RefAsPointee*/true);
8486 
8487   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8488     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8489                                  /*RefAsPointee*/true);
8490 
8491   return GetAlignOfType(Info, E->getType(), ExprKind);
8492 }
8493 
8494 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8495   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8496     return Info.Ctx.getDeclAlign(VD);
8497   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8498     return GetAlignOfExpr(Info, E, UETT_AlignOf);
8499   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8500 }
8501 
8502 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8503 /// __builtin_is_aligned and __builtin_assume_aligned.
8504 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8505                                  EvalInfo &Info, APSInt &Alignment) {
8506   if (!EvaluateInteger(E, Alignment, Info))
8507     return false;
8508   if (Alignment < 0 || !Alignment.isPowerOf2()) {
8509     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8510     return false;
8511   }
8512   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8513   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8514   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8515     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8516         << MaxValue << ForType << Alignment;
8517     return false;
8518   }
8519   // Ensure both alignment and source value have the same bit width so that we
8520   // don't assert when computing the resulting value.
8521   APSInt ExtAlignment =
8522       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8523   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8524          "Alignment should not be changed by ext/trunc");
8525   Alignment = ExtAlignment;
8526   assert(Alignment.getBitWidth() == SrcWidth);
8527   return true;
8528 }
8529 
8530 // To be clear: this happily visits unsupported builtins. Better name welcomed.
8531 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8532   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8533     return true;
8534 
8535   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8536     return false;
8537 
8538   Result.setInvalid(E);
8539   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8540   Result.addUnsizedArray(Info, E, PointeeTy);
8541   return true;
8542 }
8543 
8544 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8545   if (IsStringLiteralCall(E))
8546     return Success(E);
8547 
8548   if (unsigned BuiltinOp = E->getBuiltinCallee())
8549     return VisitBuiltinCallExpr(E, BuiltinOp);
8550 
8551   return visitNonBuiltinCallExpr(E);
8552 }
8553 
8554 // Determine if T is a character type for which we guarantee that
8555 // sizeof(T) == 1.
8556 static bool isOneByteCharacterType(QualType T) {
8557   return T->isCharType() || T->isChar8Type();
8558 }
8559 
8560 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8561                                                 unsigned BuiltinOp) {
8562   switch (BuiltinOp) {
8563   case Builtin::BI__builtin_addressof:
8564     return evaluateLValue(E->getArg(0), Result);
8565   case Builtin::BI__builtin_assume_aligned: {
8566     // We need to be very careful here because: if the pointer does not have the
8567     // asserted alignment, then the behavior is undefined, and undefined
8568     // behavior is non-constant.
8569     if (!evaluatePointer(E->getArg(0), Result))
8570       return false;
8571 
8572     LValue OffsetResult(Result);
8573     APSInt Alignment;
8574     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8575                               Alignment))
8576       return false;
8577     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8578 
8579     if (E->getNumArgs() > 2) {
8580       APSInt Offset;
8581       if (!EvaluateInteger(E->getArg(2), Offset, Info))
8582         return false;
8583 
8584       int64_t AdditionalOffset = -Offset.getZExtValue();
8585       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8586     }
8587 
8588     // If there is a base object, then it must have the correct alignment.
8589     if (OffsetResult.Base) {
8590       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
8591 
8592       if (BaseAlignment < Align) {
8593         Result.Designator.setInvalid();
8594         // FIXME: Add support to Diagnostic for long / long long.
8595         CCEDiag(E->getArg(0),
8596                 diag::note_constexpr_baa_insufficient_alignment) << 0
8597           << (unsigned)BaseAlignment.getQuantity()
8598           << (unsigned)Align.getQuantity();
8599         return false;
8600       }
8601     }
8602 
8603     // The offset must also have the correct alignment.
8604     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
8605       Result.Designator.setInvalid();
8606 
8607       (OffsetResult.Base
8608            ? CCEDiag(E->getArg(0),
8609                      diag::note_constexpr_baa_insufficient_alignment) << 1
8610            : CCEDiag(E->getArg(0),
8611                      diag::note_constexpr_baa_value_insufficient_alignment))
8612         << (int)OffsetResult.Offset.getQuantity()
8613         << (unsigned)Align.getQuantity();
8614       return false;
8615     }
8616 
8617     return true;
8618   }
8619   case Builtin::BI__builtin_align_up:
8620   case Builtin::BI__builtin_align_down: {
8621     if (!evaluatePointer(E->getArg(0), Result))
8622       return false;
8623     APSInt Alignment;
8624     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8625                               Alignment))
8626       return false;
8627     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
8628     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
8629     // For align_up/align_down, we can return the same value if the alignment
8630     // is known to be greater or equal to the requested value.
8631     if (PtrAlign.getQuantity() >= Alignment)
8632       return true;
8633 
8634     // The alignment could be greater than the minimum at run-time, so we cannot
8635     // infer much about the resulting pointer value. One case is possible:
8636     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
8637     // can infer the correct index if the requested alignment is smaller than
8638     // the base alignment so we can perform the computation on the offset.
8639     if (BaseAlignment.getQuantity() >= Alignment) {
8640       assert(Alignment.getBitWidth() <= 64 &&
8641              "Cannot handle > 64-bit address-space");
8642       uint64_t Alignment64 = Alignment.getZExtValue();
8643       CharUnits NewOffset = CharUnits::fromQuantity(
8644           BuiltinOp == Builtin::BI__builtin_align_down
8645               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
8646               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
8647       Result.adjustOffset(NewOffset - Result.Offset);
8648       // TODO: diagnose out-of-bounds values/only allow for arrays?
8649       return true;
8650     }
8651     // Otherwise, we cannot constant-evaluate the result.
8652     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
8653         << Alignment;
8654     return false;
8655   }
8656   case Builtin::BI__builtin_operator_new:
8657     return HandleOperatorNewCall(Info, E, Result);
8658   case Builtin::BI__builtin_launder:
8659     return evaluatePointer(E->getArg(0), Result);
8660   case Builtin::BIstrchr:
8661   case Builtin::BIwcschr:
8662   case Builtin::BImemchr:
8663   case Builtin::BIwmemchr:
8664     if (Info.getLangOpts().CPlusPlus11)
8665       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8666         << /*isConstexpr*/0 << /*isConstructor*/0
8667         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8668     else
8669       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8670     LLVM_FALLTHROUGH;
8671   case Builtin::BI__builtin_strchr:
8672   case Builtin::BI__builtin_wcschr:
8673   case Builtin::BI__builtin_memchr:
8674   case Builtin::BI__builtin_char_memchr:
8675   case Builtin::BI__builtin_wmemchr: {
8676     if (!Visit(E->getArg(0)))
8677       return false;
8678     APSInt Desired;
8679     if (!EvaluateInteger(E->getArg(1), Desired, Info))
8680       return false;
8681     uint64_t MaxLength = uint64_t(-1);
8682     if (BuiltinOp != Builtin::BIstrchr &&
8683         BuiltinOp != Builtin::BIwcschr &&
8684         BuiltinOp != Builtin::BI__builtin_strchr &&
8685         BuiltinOp != Builtin::BI__builtin_wcschr) {
8686       APSInt N;
8687       if (!EvaluateInteger(E->getArg(2), N, Info))
8688         return false;
8689       MaxLength = N.getExtValue();
8690     }
8691     // We cannot find the value if there are no candidates to match against.
8692     if (MaxLength == 0u)
8693       return ZeroInitialization(E);
8694     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
8695         Result.Designator.Invalid)
8696       return false;
8697     QualType CharTy = Result.Designator.getType(Info.Ctx);
8698     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
8699                      BuiltinOp == Builtin::BI__builtin_memchr;
8700     assert(IsRawByte ||
8701            Info.Ctx.hasSameUnqualifiedType(
8702                CharTy, E->getArg(0)->getType()->getPointeeType()));
8703     // Pointers to const void may point to objects of incomplete type.
8704     if (IsRawByte && CharTy->isIncompleteType()) {
8705       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
8706       return false;
8707     }
8708     // Give up on byte-oriented matching against multibyte elements.
8709     // FIXME: We can compare the bytes in the correct order.
8710     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
8711       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
8712           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
8713           << CharTy;
8714       return false;
8715     }
8716     // Figure out what value we're actually looking for (after converting to
8717     // the corresponding unsigned type if necessary).
8718     uint64_t DesiredVal;
8719     bool StopAtNull = false;
8720     switch (BuiltinOp) {
8721     case Builtin::BIstrchr:
8722     case Builtin::BI__builtin_strchr:
8723       // strchr compares directly to the passed integer, and therefore
8724       // always fails if given an int that is not a char.
8725       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
8726                                                   E->getArg(1)->getType(),
8727                                                   Desired),
8728                                Desired))
8729         return ZeroInitialization(E);
8730       StopAtNull = true;
8731       LLVM_FALLTHROUGH;
8732     case Builtin::BImemchr:
8733     case Builtin::BI__builtin_memchr:
8734     case Builtin::BI__builtin_char_memchr:
8735       // memchr compares by converting both sides to unsigned char. That's also
8736       // correct for strchr if we get this far (to cope with plain char being
8737       // unsigned in the strchr case).
8738       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
8739       break;
8740 
8741     case Builtin::BIwcschr:
8742     case Builtin::BI__builtin_wcschr:
8743       StopAtNull = true;
8744       LLVM_FALLTHROUGH;
8745     case Builtin::BIwmemchr:
8746     case Builtin::BI__builtin_wmemchr:
8747       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
8748       DesiredVal = Desired.getZExtValue();
8749       break;
8750     }
8751 
8752     for (; MaxLength; --MaxLength) {
8753       APValue Char;
8754       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
8755           !Char.isInt())
8756         return false;
8757       if (Char.getInt().getZExtValue() == DesiredVal)
8758         return true;
8759       if (StopAtNull && !Char.getInt())
8760         break;
8761       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
8762         return false;
8763     }
8764     // Not found: return nullptr.
8765     return ZeroInitialization(E);
8766   }
8767 
8768   case Builtin::BImemcpy:
8769   case Builtin::BImemmove:
8770   case Builtin::BIwmemcpy:
8771   case Builtin::BIwmemmove:
8772     if (Info.getLangOpts().CPlusPlus11)
8773       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8774         << /*isConstexpr*/0 << /*isConstructor*/0
8775         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8776     else
8777       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8778     LLVM_FALLTHROUGH;
8779   case Builtin::BI__builtin_memcpy:
8780   case Builtin::BI__builtin_memmove:
8781   case Builtin::BI__builtin_wmemcpy:
8782   case Builtin::BI__builtin_wmemmove: {
8783     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
8784                  BuiltinOp == Builtin::BIwmemmove ||
8785                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
8786                  BuiltinOp == Builtin::BI__builtin_wmemmove;
8787     bool Move = BuiltinOp == Builtin::BImemmove ||
8788                 BuiltinOp == Builtin::BIwmemmove ||
8789                 BuiltinOp == Builtin::BI__builtin_memmove ||
8790                 BuiltinOp == Builtin::BI__builtin_wmemmove;
8791 
8792     // The result of mem* is the first argument.
8793     if (!Visit(E->getArg(0)))
8794       return false;
8795     LValue Dest = Result;
8796 
8797     LValue Src;
8798     if (!EvaluatePointer(E->getArg(1), Src, Info))
8799       return false;
8800 
8801     APSInt N;
8802     if (!EvaluateInteger(E->getArg(2), N, Info))
8803       return false;
8804     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
8805 
8806     // If the size is zero, we treat this as always being a valid no-op.
8807     // (Even if one of the src and dest pointers is null.)
8808     if (!N)
8809       return true;
8810 
8811     // Otherwise, if either of the operands is null, we can't proceed. Don't
8812     // try to determine the type of the copied objects, because there aren't
8813     // any.
8814     if (!Src.Base || !Dest.Base) {
8815       APValue Val;
8816       (!Src.Base ? Src : Dest).moveInto(Val);
8817       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
8818           << Move << WChar << !!Src.Base
8819           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
8820       return false;
8821     }
8822     if (Src.Designator.Invalid || Dest.Designator.Invalid)
8823       return false;
8824 
8825     // We require that Src and Dest are both pointers to arrays of
8826     // trivially-copyable type. (For the wide version, the designator will be
8827     // invalid if the designated object is not a wchar_t.)
8828     QualType T = Dest.Designator.getType(Info.Ctx);
8829     QualType SrcT = Src.Designator.getType(Info.Ctx);
8830     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
8831       // FIXME: Consider using our bit_cast implementation to support this.
8832       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
8833       return false;
8834     }
8835     if (T->isIncompleteType()) {
8836       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
8837       return false;
8838     }
8839     if (!T.isTriviallyCopyableType(Info.Ctx)) {
8840       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
8841       return false;
8842     }
8843 
8844     // Figure out how many T's we're copying.
8845     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
8846     if (!WChar) {
8847       uint64_t Remainder;
8848       llvm::APInt OrigN = N;
8849       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
8850       if (Remainder) {
8851         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8852             << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
8853             << (unsigned)TSize;
8854         return false;
8855       }
8856     }
8857 
8858     // Check that the copying will remain within the arrays, just so that we
8859     // can give a more meaningful diagnostic. This implicitly also checks that
8860     // N fits into 64 bits.
8861     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
8862     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
8863     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
8864       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8865           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
8866           << N.toString(10, /*Signed*/false);
8867       return false;
8868     }
8869     uint64_t NElems = N.getZExtValue();
8870     uint64_t NBytes = NElems * TSize;
8871 
8872     // Check for overlap.
8873     int Direction = 1;
8874     if (HasSameBase(Src, Dest)) {
8875       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
8876       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
8877       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
8878         // Dest is inside the source region.
8879         if (!Move) {
8880           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8881           return false;
8882         }
8883         // For memmove and friends, copy backwards.
8884         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
8885             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
8886           return false;
8887         Direction = -1;
8888       } else if (!Move && SrcOffset >= DestOffset &&
8889                  SrcOffset - DestOffset < NBytes) {
8890         // Src is inside the destination region for memcpy: invalid.
8891         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8892         return false;
8893       }
8894     }
8895 
8896     while (true) {
8897       APValue Val;
8898       // FIXME: Set WantObjectRepresentation to true if we're copying a
8899       // char-like type?
8900       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
8901           !handleAssignment(Info, E, Dest, T, Val))
8902         return false;
8903       // Do not iterate past the last element; if we're copying backwards, that
8904       // might take us off the start of the array.
8905       if (--NElems == 0)
8906         return true;
8907       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
8908           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
8909         return false;
8910     }
8911   }
8912 
8913   default:
8914     break;
8915   }
8916 
8917   return visitNonBuiltinCallExpr(E);
8918 }
8919 
8920 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
8921                                      APValue &Result, const InitListExpr *ILE,
8922                                      QualType AllocType);
8923 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
8924                                           APValue &Result,
8925                                           const CXXConstructExpr *CCE,
8926                                           QualType AllocType);
8927 
8928 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
8929   if (!Info.getLangOpts().CPlusPlus20)
8930     Info.CCEDiag(E, diag::note_constexpr_new);
8931 
8932   // We cannot speculatively evaluate a delete expression.
8933   if (Info.SpeculativeEvaluationDepth)
8934     return false;
8935 
8936   FunctionDecl *OperatorNew = E->getOperatorNew();
8937 
8938   bool IsNothrow = false;
8939   bool IsPlacement = false;
8940   if (OperatorNew->isReservedGlobalPlacementOperator() &&
8941       Info.CurrentCall->isStdFunction() && !E->isArray()) {
8942     // FIXME Support array placement new.
8943     assert(E->getNumPlacementArgs() == 1);
8944     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
8945       return false;
8946     if (Result.Designator.Invalid)
8947       return false;
8948     IsPlacement = true;
8949   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
8950     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
8951         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
8952     return false;
8953   } else if (E->getNumPlacementArgs()) {
8954     // The only new-placement list we support is of the form (std::nothrow).
8955     //
8956     // FIXME: There is no restriction on this, but it's not clear that any
8957     // other form makes any sense. We get here for cases such as:
8958     //
8959     //   new (std::align_val_t{N}) X(int)
8960     //
8961     // (which should presumably be valid only if N is a multiple of
8962     // alignof(int), and in any case can't be deallocated unless N is
8963     // alignof(X) and X has new-extended alignment).
8964     if (E->getNumPlacementArgs() != 1 ||
8965         !E->getPlacementArg(0)->getType()->isNothrowT())
8966       return Error(E, diag::note_constexpr_new_placement);
8967 
8968     LValue Nothrow;
8969     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
8970       return false;
8971     IsNothrow = true;
8972   }
8973 
8974   const Expr *Init = E->getInitializer();
8975   const InitListExpr *ResizedArrayILE = nullptr;
8976   const CXXConstructExpr *ResizedArrayCCE = nullptr;
8977 
8978   QualType AllocType = E->getAllocatedType();
8979   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
8980     const Expr *Stripped = *ArraySize;
8981     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
8982          Stripped = ICE->getSubExpr())
8983       if (ICE->getCastKind() != CK_NoOp &&
8984           ICE->getCastKind() != CK_IntegralCast)
8985         break;
8986 
8987     llvm::APSInt ArrayBound;
8988     if (!EvaluateInteger(Stripped, ArrayBound, Info))
8989       return false;
8990 
8991     // C++ [expr.new]p9:
8992     //   The expression is erroneous if:
8993     //   -- [...] its value before converting to size_t [or] applying the
8994     //      second standard conversion sequence is less than zero
8995     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
8996       if (IsNothrow)
8997         return ZeroInitialization(E);
8998 
8999       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9000           << ArrayBound << (*ArraySize)->getSourceRange();
9001       return false;
9002     }
9003 
9004     //   -- its value is such that the size of the allocated object would
9005     //      exceed the implementation-defined limit
9006     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9007                                                 ArrayBound) >
9008         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9009       if (IsNothrow)
9010         return ZeroInitialization(E);
9011 
9012       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9013         << ArrayBound << (*ArraySize)->getSourceRange();
9014       return false;
9015     }
9016 
9017     //   -- the new-initializer is a braced-init-list and the number of
9018     //      array elements for which initializers are provided [...]
9019     //      exceeds the number of elements to initialize
9020     if (Init && !isa<CXXConstructExpr>(Init)) {
9021       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9022       assert(CAT && "unexpected type for array initializer");
9023 
9024       unsigned Bits =
9025           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9026       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9027       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9028       if (InitBound.ugt(AllocBound)) {
9029         if (IsNothrow)
9030           return ZeroInitialization(E);
9031 
9032         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9033             << AllocBound.toString(10, /*Signed=*/false)
9034             << InitBound.toString(10, /*Signed=*/false)
9035             << (*ArraySize)->getSourceRange();
9036         return false;
9037       }
9038 
9039       // If the sizes differ, we must have an initializer list, and we need
9040       // special handling for this case when we initialize.
9041       if (InitBound != AllocBound)
9042         ResizedArrayILE = cast<InitListExpr>(Init);
9043     } else if (Init) {
9044       ResizedArrayCCE = cast<CXXConstructExpr>(Init);
9045     }
9046 
9047     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9048                                               ArrayType::Normal, 0);
9049   } else {
9050     assert(!AllocType->isArrayType() &&
9051            "array allocation with non-array new");
9052   }
9053 
9054   APValue *Val;
9055   if (IsPlacement) {
9056     AccessKinds AK = AK_Construct;
9057     struct FindObjectHandler {
9058       EvalInfo &Info;
9059       const Expr *E;
9060       QualType AllocType;
9061       const AccessKinds AccessKind;
9062       APValue *Value;
9063 
9064       typedef bool result_type;
9065       bool failed() { return false; }
9066       bool found(APValue &Subobj, QualType SubobjType) {
9067         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9068         // old name of the object to be used to name the new object.
9069         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9070           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9071             SubobjType << AllocType;
9072           return false;
9073         }
9074         Value = &Subobj;
9075         return true;
9076       }
9077       bool found(APSInt &Value, QualType SubobjType) {
9078         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9079         return false;
9080       }
9081       bool found(APFloat &Value, QualType SubobjType) {
9082         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9083         return false;
9084       }
9085     } Handler = {Info, E, AllocType, AK, nullptr};
9086 
9087     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9088     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9089       return false;
9090 
9091     Val = Handler.Value;
9092 
9093     // [basic.life]p1:
9094     //   The lifetime of an object o of type T ends when [...] the storage
9095     //   which the object occupies is [...] reused by an object that is not
9096     //   nested within o (6.6.2).
9097     *Val = APValue();
9098   } else {
9099     // Perform the allocation and obtain a pointer to the resulting object.
9100     Val = Info.createHeapAlloc(E, AllocType, Result);
9101     if (!Val)
9102       return false;
9103   }
9104 
9105   if (ResizedArrayILE) {
9106     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9107                                   AllocType))
9108       return false;
9109   } else if (ResizedArrayCCE) {
9110     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9111                                        AllocType))
9112       return false;
9113   } else if (Init) {
9114     if (!EvaluateInPlace(*Val, Info, Result, Init))
9115       return false;
9116   } else if (!getDefaultInitValue(AllocType, *Val)) {
9117     return false;
9118   }
9119 
9120   // Array new returns a pointer to the first element, not a pointer to the
9121   // array.
9122   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9123     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9124 
9125   return true;
9126 }
9127 //===----------------------------------------------------------------------===//
9128 // Member Pointer Evaluation
9129 //===----------------------------------------------------------------------===//
9130 
9131 namespace {
9132 class MemberPointerExprEvaluator
9133   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9134   MemberPtr &Result;
9135 
9136   bool Success(const ValueDecl *D) {
9137     Result = MemberPtr(D);
9138     return true;
9139   }
9140 public:
9141 
9142   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9143     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9144 
9145   bool Success(const APValue &V, const Expr *E) {
9146     Result.setFrom(V);
9147     return true;
9148   }
9149   bool ZeroInitialization(const Expr *E) {
9150     return Success((const ValueDecl*)nullptr);
9151   }
9152 
9153   bool VisitCastExpr(const CastExpr *E);
9154   bool VisitUnaryAddrOf(const UnaryOperator *E);
9155 };
9156 } // end anonymous namespace
9157 
9158 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9159                                   EvalInfo &Info) {
9160   assert(E->isRValue() && E->getType()->isMemberPointerType());
9161   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9162 }
9163 
9164 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9165   switch (E->getCastKind()) {
9166   default:
9167     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9168 
9169   case CK_NullToMemberPointer:
9170     VisitIgnoredValue(E->getSubExpr());
9171     return ZeroInitialization(E);
9172 
9173   case CK_BaseToDerivedMemberPointer: {
9174     if (!Visit(E->getSubExpr()))
9175       return false;
9176     if (E->path_empty())
9177       return true;
9178     // Base-to-derived member pointer casts store the path in derived-to-base
9179     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9180     // the wrong end of the derived->base arc, so stagger the path by one class.
9181     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9182     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9183          PathI != PathE; ++PathI) {
9184       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9185       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9186       if (!Result.castToDerived(Derived))
9187         return Error(E);
9188     }
9189     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9190     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9191       return Error(E);
9192     return true;
9193   }
9194 
9195   case CK_DerivedToBaseMemberPointer:
9196     if (!Visit(E->getSubExpr()))
9197       return false;
9198     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9199          PathE = E->path_end(); PathI != PathE; ++PathI) {
9200       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9201       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9202       if (!Result.castToBase(Base))
9203         return Error(E);
9204     }
9205     return true;
9206   }
9207 }
9208 
9209 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9210   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9211   // member can be formed.
9212   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9213 }
9214 
9215 //===----------------------------------------------------------------------===//
9216 // Record Evaluation
9217 //===----------------------------------------------------------------------===//
9218 
9219 namespace {
9220   class RecordExprEvaluator
9221   : public ExprEvaluatorBase<RecordExprEvaluator> {
9222     const LValue &This;
9223     APValue &Result;
9224   public:
9225 
9226     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9227       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9228 
9229     bool Success(const APValue &V, const Expr *E) {
9230       Result = V;
9231       return true;
9232     }
9233     bool ZeroInitialization(const Expr *E) {
9234       return ZeroInitialization(E, E->getType());
9235     }
9236     bool ZeroInitialization(const Expr *E, QualType T);
9237 
9238     bool VisitCallExpr(const CallExpr *E) {
9239       return handleCallExpr(E, Result, &This);
9240     }
9241     bool VisitCastExpr(const CastExpr *E);
9242     bool VisitInitListExpr(const InitListExpr *E);
9243     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9244       return VisitCXXConstructExpr(E, E->getType());
9245     }
9246     bool VisitLambdaExpr(const LambdaExpr *E);
9247     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9248     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9249     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9250     bool VisitBinCmp(const BinaryOperator *E);
9251   };
9252 }
9253 
9254 /// Perform zero-initialization on an object of non-union class type.
9255 /// C++11 [dcl.init]p5:
9256 ///  To zero-initialize an object or reference of type T means:
9257 ///    [...]
9258 ///    -- if T is a (possibly cv-qualified) non-union class type,
9259 ///       each non-static data member and each base-class subobject is
9260 ///       zero-initialized
9261 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9262                                           const RecordDecl *RD,
9263                                           const LValue &This, APValue &Result) {
9264   assert(!RD->isUnion() && "Expected non-union class type");
9265   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9266   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9267                    std::distance(RD->field_begin(), RD->field_end()));
9268 
9269   if (RD->isInvalidDecl()) return false;
9270   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9271 
9272   if (CD) {
9273     unsigned Index = 0;
9274     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9275            End = CD->bases_end(); I != End; ++I, ++Index) {
9276       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9277       LValue Subobject = This;
9278       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9279         return false;
9280       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9281                                          Result.getStructBase(Index)))
9282         return false;
9283     }
9284   }
9285 
9286   for (const auto *I : RD->fields()) {
9287     // -- if T is a reference type, no initialization is performed.
9288     if (I->getType()->isReferenceType())
9289       continue;
9290 
9291     LValue Subobject = This;
9292     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9293       return false;
9294 
9295     ImplicitValueInitExpr VIE(I->getType());
9296     if (!EvaluateInPlace(
9297           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9298       return false;
9299   }
9300 
9301   return true;
9302 }
9303 
9304 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9305   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9306   if (RD->isInvalidDecl()) return false;
9307   if (RD->isUnion()) {
9308     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9309     // object's first non-static named data member is zero-initialized
9310     RecordDecl::field_iterator I = RD->field_begin();
9311     if (I == RD->field_end()) {
9312       Result = APValue((const FieldDecl*)nullptr);
9313       return true;
9314     }
9315 
9316     LValue Subobject = This;
9317     if (!HandleLValueMember(Info, E, Subobject, *I))
9318       return false;
9319     Result = APValue(*I);
9320     ImplicitValueInitExpr VIE(I->getType());
9321     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9322   }
9323 
9324   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9325     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9326     return false;
9327   }
9328 
9329   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9330 }
9331 
9332 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9333   switch (E->getCastKind()) {
9334   default:
9335     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9336 
9337   case CK_ConstructorConversion:
9338     return Visit(E->getSubExpr());
9339 
9340   case CK_DerivedToBase:
9341   case CK_UncheckedDerivedToBase: {
9342     APValue DerivedObject;
9343     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9344       return false;
9345     if (!DerivedObject.isStruct())
9346       return Error(E->getSubExpr());
9347 
9348     // Derived-to-base rvalue conversion: just slice off the derived part.
9349     APValue *Value = &DerivedObject;
9350     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9351     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9352          PathE = E->path_end(); PathI != PathE; ++PathI) {
9353       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9354       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9355       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9356       RD = Base;
9357     }
9358     Result = *Value;
9359     return true;
9360   }
9361   }
9362 }
9363 
9364 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9365   if (E->isTransparent())
9366     return Visit(E->getInit(0));
9367 
9368   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9369   if (RD->isInvalidDecl()) return false;
9370   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9371   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9372 
9373   EvalInfo::EvaluatingConstructorRAII EvalObj(
9374       Info,
9375       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9376       CXXRD && CXXRD->getNumBases());
9377 
9378   if (RD->isUnion()) {
9379     const FieldDecl *Field = E->getInitializedFieldInUnion();
9380     Result = APValue(Field);
9381     if (!Field)
9382       return true;
9383 
9384     // If the initializer list for a union does not contain any elements, the
9385     // first element of the union is value-initialized.
9386     // FIXME: The element should be initialized from an initializer list.
9387     //        Is this difference ever observable for initializer lists which
9388     //        we don't build?
9389     ImplicitValueInitExpr VIE(Field->getType());
9390     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9391 
9392     LValue Subobject = This;
9393     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9394       return false;
9395 
9396     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9397     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9398                                   isa<CXXDefaultInitExpr>(InitExpr));
9399 
9400     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
9401   }
9402 
9403   if (!Result.hasValue())
9404     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9405                      std::distance(RD->field_begin(), RD->field_end()));
9406   unsigned ElementNo = 0;
9407   bool Success = true;
9408 
9409   // Initialize base classes.
9410   if (CXXRD && CXXRD->getNumBases()) {
9411     for (const auto &Base : CXXRD->bases()) {
9412       assert(ElementNo < E->getNumInits() && "missing init for base class");
9413       const Expr *Init = E->getInit(ElementNo);
9414 
9415       LValue Subobject = This;
9416       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9417         return false;
9418 
9419       APValue &FieldVal = Result.getStructBase(ElementNo);
9420       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9421         if (!Info.noteFailure())
9422           return false;
9423         Success = false;
9424       }
9425       ++ElementNo;
9426     }
9427 
9428     EvalObj.finishedConstructingBases();
9429   }
9430 
9431   // Initialize members.
9432   for (const auto *Field : RD->fields()) {
9433     // Anonymous bit-fields are not considered members of the class for
9434     // purposes of aggregate initialization.
9435     if (Field->isUnnamedBitfield())
9436       continue;
9437 
9438     LValue Subobject = This;
9439 
9440     bool HaveInit = ElementNo < E->getNumInits();
9441 
9442     // FIXME: Diagnostics here should point to the end of the initializer
9443     // list, not the start.
9444     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9445                             Subobject, Field, &Layout))
9446       return false;
9447 
9448     // Perform an implicit value-initialization for members beyond the end of
9449     // the initializer list.
9450     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9451     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9452 
9453     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9454     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9455                                   isa<CXXDefaultInitExpr>(Init));
9456 
9457     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9458     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9459         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9460                                                        FieldVal, Field))) {
9461       if (!Info.noteFailure())
9462         return false;
9463       Success = false;
9464     }
9465   }
9466 
9467   EvalObj.finishedConstructingFields();
9468 
9469   return Success;
9470 }
9471 
9472 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9473                                                 QualType T) {
9474   // Note that E's type is not necessarily the type of our class here; we might
9475   // be initializing an array element instead.
9476   const CXXConstructorDecl *FD = E->getConstructor();
9477   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9478 
9479   bool ZeroInit = E->requiresZeroInitialization();
9480   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9481     // If we've already performed zero-initialization, we're already done.
9482     if (Result.hasValue())
9483       return true;
9484 
9485     if (ZeroInit)
9486       return ZeroInitialization(E, T);
9487 
9488     return getDefaultInitValue(T, Result);
9489   }
9490 
9491   const FunctionDecl *Definition = nullptr;
9492   auto Body = FD->getBody(Definition);
9493 
9494   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9495     return false;
9496 
9497   // Avoid materializing a temporary for an elidable copy/move constructor.
9498   if (E->isElidable() && !ZeroInit)
9499     if (const MaterializeTemporaryExpr *ME
9500           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9501       return Visit(ME->getSubExpr());
9502 
9503   if (ZeroInit && !ZeroInitialization(E, T))
9504     return false;
9505 
9506   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9507   return HandleConstructorCall(E, This, Args,
9508                                cast<CXXConstructorDecl>(Definition), Info,
9509                                Result);
9510 }
9511 
9512 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9513     const CXXInheritedCtorInitExpr *E) {
9514   if (!Info.CurrentCall) {
9515     assert(Info.checkingPotentialConstantExpression());
9516     return false;
9517   }
9518 
9519   const CXXConstructorDecl *FD = E->getConstructor();
9520   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9521     return false;
9522 
9523   const FunctionDecl *Definition = nullptr;
9524   auto Body = FD->getBody(Definition);
9525 
9526   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9527     return false;
9528 
9529   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9530                                cast<CXXConstructorDecl>(Definition), Info,
9531                                Result);
9532 }
9533 
9534 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9535     const CXXStdInitializerListExpr *E) {
9536   const ConstantArrayType *ArrayType =
9537       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9538 
9539   LValue Array;
9540   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9541     return false;
9542 
9543   // Get a pointer to the first element of the array.
9544   Array.addArray(Info, E, ArrayType);
9545 
9546   auto InvalidType = [&] {
9547     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
9548       << E->getType();
9549     return false;
9550   };
9551 
9552   // FIXME: Perform the checks on the field types in SemaInit.
9553   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9554   RecordDecl::field_iterator Field = Record->field_begin();
9555   if (Field == Record->field_end())
9556     return InvalidType();
9557 
9558   // Start pointer.
9559   if (!Field->getType()->isPointerType() ||
9560       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9561                             ArrayType->getElementType()))
9562     return InvalidType();
9563 
9564   // FIXME: What if the initializer_list type has base classes, etc?
9565   Result = APValue(APValue::UninitStruct(), 0, 2);
9566   Array.moveInto(Result.getStructField(0));
9567 
9568   if (++Field == Record->field_end())
9569     return InvalidType();
9570 
9571   if (Field->getType()->isPointerType() &&
9572       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9573                            ArrayType->getElementType())) {
9574     // End pointer.
9575     if (!HandleLValueArrayAdjustment(Info, E, Array,
9576                                      ArrayType->getElementType(),
9577                                      ArrayType->getSize().getZExtValue()))
9578       return false;
9579     Array.moveInto(Result.getStructField(1));
9580   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9581     // Length.
9582     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9583   else
9584     return InvalidType();
9585 
9586   if (++Field != Record->field_end())
9587     return InvalidType();
9588 
9589   return true;
9590 }
9591 
9592 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
9593   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
9594   if (ClosureClass->isInvalidDecl())
9595     return false;
9596 
9597   const size_t NumFields =
9598       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
9599 
9600   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
9601                                             E->capture_init_end()) &&
9602          "The number of lambda capture initializers should equal the number of "
9603          "fields within the closure type");
9604 
9605   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
9606   // Iterate through all the lambda's closure object's fields and initialize
9607   // them.
9608   auto *CaptureInitIt = E->capture_init_begin();
9609   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
9610   bool Success = true;
9611   for (const auto *Field : ClosureClass->fields()) {
9612     assert(CaptureInitIt != E->capture_init_end());
9613     // Get the initializer for this field
9614     Expr *const CurFieldInit = *CaptureInitIt++;
9615 
9616     // If there is no initializer, either this is a VLA or an error has
9617     // occurred.
9618     if (!CurFieldInit)
9619       return Error(E);
9620 
9621     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9622     if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
9623       if (!Info.keepEvaluatingAfterFailure())
9624         return false;
9625       Success = false;
9626     }
9627     ++CaptureIt;
9628   }
9629   return Success;
9630 }
9631 
9632 static bool EvaluateRecord(const Expr *E, const LValue &This,
9633                            APValue &Result, EvalInfo &Info) {
9634   assert(E->isRValue() && E->getType()->isRecordType() &&
9635          "can't evaluate expression as a record rvalue");
9636   return RecordExprEvaluator(Info, This, Result).Visit(E);
9637 }
9638 
9639 //===----------------------------------------------------------------------===//
9640 // Temporary Evaluation
9641 //
9642 // Temporaries are represented in the AST as rvalues, but generally behave like
9643 // lvalues. The full-object of which the temporary is a subobject is implicitly
9644 // materialized so that a reference can bind to it.
9645 //===----------------------------------------------------------------------===//
9646 namespace {
9647 class TemporaryExprEvaluator
9648   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
9649 public:
9650   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
9651     LValueExprEvaluatorBaseTy(Info, Result, false) {}
9652 
9653   /// Visit an expression which constructs the value of this temporary.
9654   bool VisitConstructExpr(const Expr *E) {
9655     APValue &Value =
9656         Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
9657     return EvaluateInPlace(Value, Info, Result, E);
9658   }
9659 
9660   bool VisitCastExpr(const CastExpr *E) {
9661     switch (E->getCastKind()) {
9662     default:
9663       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
9664 
9665     case CK_ConstructorConversion:
9666       return VisitConstructExpr(E->getSubExpr());
9667     }
9668   }
9669   bool VisitInitListExpr(const InitListExpr *E) {
9670     return VisitConstructExpr(E);
9671   }
9672   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9673     return VisitConstructExpr(E);
9674   }
9675   bool VisitCallExpr(const CallExpr *E) {
9676     return VisitConstructExpr(E);
9677   }
9678   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
9679     return VisitConstructExpr(E);
9680   }
9681   bool VisitLambdaExpr(const LambdaExpr *E) {
9682     return VisitConstructExpr(E);
9683   }
9684 };
9685 } // end anonymous namespace
9686 
9687 /// Evaluate an expression of record type as a temporary.
9688 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
9689   assert(E->isRValue() && E->getType()->isRecordType());
9690   return TemporaryExprEvaluator(Info, Result).Visit(E);
9691 }
9692 
9693 //===----------------------------------------------------------------------===//
9694 // Vector Evaluation
9695 //===----------------------------------------------------------------------===//
9696 
9697 namespace {
9698   class VectorExprEvaluator
9699   : public ExprEvaluatorBase<VectorExprEvaluator> {
9700     APValue &Result;
9701   public:
9702 
9703     VectorExprEvaluator(EvalInfo &info, APValue &Result)
9704       : ExprEvaluatorBaseTy(info), Result(Result) {}
9705 
9706     bool Success(ArrayRef<APValue> V, const Expr *E) {
9707       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
9708       // FIXME: remove this APValue copy.
9709       Result = APValue(V.data(), V.size());
9710       return true;
9711     }
9712     bool Success(const APValue &V, const Expr *E) {
9713       assert(V.isVector());
9714       Result = V;
9715       return true;
9716     }
9717     bool ZeroInitialization(const Expr *E);
9718 
9719     bool VisitUnaryReal(const UnaryOperator *E)
9720       { return Visit(E->getSubExpr()); }
9721     bool VisitCastExpr(const CastExpr* E);
9722     bool VisitInitListExpr(const InitListExpr *E);
9723     bool VisitUnaryImag(const UnaryOperator *E);
9724     bool VisitBinaryOperator(const BinaryOperator *E);
9725     // FIXME: Missing: unary -, unary ~, conditional operator (for GNU
9726     //                 conditional select), shufflevector, ExtVectorElementExpr
9727   };
9728 } // end anonymous namespace
9729 
9730 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
9731   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
9732   return VectorExprEvaluator(Info, Result).Visit(E);
9733 }
9734 
9735 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
9736   const VectorType *VTy = E->getType()->castAs<VectorType>();
9737   unsigned NElts = VTy->getNumElements();
9738 
9739   const Expr *SE = E->getSubExpr();
9740   QualType SETy = SE->getType();
9741 
9742   switch (E->getCastKind()) {
9743   case CK_VectorSplat: {
9744     APValue Val = APValue();
9745     if (SETy->isIntegerType()) {
9746       APSInt IntResult;
9747       if (!EvaluateInteger(SE, IntResult, Info))
9748         return false;
9749       Val = APValue(std::move(IntResult));
9750     } else if (SETy->isRealFloatingType()) {
9751       APFloat FloatResult(0.0);
9752       if (!EvaluateFloat(SE, FloatResult, Info))
9753         return false;
9754       Val = APValue(std::move(FloatResult));
9755     } else {
9756       return Error(E);
9757     }
9758 
9759     // Splat and create vector APValue.
9760     SmallVector<APValue, 4> Elts(NElts, Val);
9761     return Success(Elts, E);
9762   }
9763   case CK_BitCast: {
9764     // Evaluate the operand into an APInt we can extract from.
9765     llvm::APInt SValInt;
9766     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
9767       return false;
9768     // Extract the elements
9769     QualType EltTy = VTy->getElementType();
9770     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
9771     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
9772     SmallVector<APValue, 4> Elts;
9773     if (EltTy->isRealFloatingType()) {
9774       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
9775       unsigned FloatEltSize = EltSize;
9776       if (&Sem == &APFloat::x87DoubleExtended())
9777         FloatEltSize = 80;
9778       for (unsigned i = 0; i < NElts; i++) {
9779         llvm::APInt Elt;
9780         if (BigEndian)
9781           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
9782         else
9783           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
9784         Elts.push_back(APValue(APFloat(Sem, Elt)));
9785       }
9786     } else if (EltTy->isIntegerType()) {
9787       for (unsigned i = 0; i < NElts; i++) {
9788         llvm::APInt Elt;
9789         if (BigEndian)
9790           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
9791         else
9792           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
9793         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
9794       }
9795     } else {
9796       return Error(E);
9797     }
9798     return Success(Elts, E);
9799   }
9800   default:
9801     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9802   }
9803 }
9804 
9805 bool
9806 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9807   const VectorType *VT = E->getType()->castAs<VectorType>();
9808   unsigned NumInits = E->getNumInits();
9809   unsigned NumElements = VT->getNumElements();
9810 
9811   QualType EltTy = VT->getElementType();
9812   SmallVector<APValue, 4> Elements;
9813 
9814   // The number of initializers can be less than the number of
9815   // vector elements. For OpenCL, this can be due to nested vector
9816   // initialization. For GCC compatibility, missing trailing elements
9817   // should be initialized with zeroes.
9818   unsigned CountInits = 0, CountElts = 0;
9819   while (CountElts < NumElements) {
9820     // Handle nested vector initialization.
9821     if (CountInits < NumInits
9822         && E->getInit(CountInits)->getType()->isVectorType()) {
9823       APValue v;
9824       if (!EvaluateVector(E->getInit(CountInits), v, Info))
9825         return Error(E);
9826       unsigned vlen = v.getVectorLength();
9827       for (unsigned j = 0; j < vlen; j++)
9828         Elements.push_back(v.getVectorElt(j));
9829       CountElts += vlen;
9830     } else if (EltTy->isIntegerType()) {
9831       llvm::APSInt sInt(32);
9832       if (CountInits < NumInits) {
9833         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
9834           return false;
9835       } else // trailing integer zero.
9836         sInt = Info.Ctx.MakeIntValue(0, EltTy);
9837       Elements.push_back(APValue(sInt));
9838       CountElts++;
9839     } else {
9840       llvm::APFloat f(0.0);
9841       if (CountInits < NumInits) {
9842         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
9843           return false;
9844       } else // trailing float zero.
9845         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
9846       Elements.push_back(APValue(f));
9847       CountElts++;
9848     }
9849     CountInits++;
9850   }
9851   return Success(Elements, E);
9852 }
9853 
9854 bool
9855 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
9856   const auto *VT = E->getType()->castAs<VectorType>();
9857   QualType EltTy = VT->getElementType();
9858   APValue ZeroElement;
9859   if (EltTy->isIntegerType())
9860     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
9861   else
9862     ZeroElement =
9863         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
9864 
9865   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
9866   return Success(Elements, E);
9867 }
9868 
9869 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9870   VisitIgnoredValue(E->getSubExpr());
9871   return ZeroInitialization(E);
9872 }
9873 
9874 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9875   BinaryOperatorKind Op = E->getOpcode();
9876   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
9877          "Operation not supported on vector types");
9878 
9879   if (Op == BO_Comma)
9880     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9881 
9882   Expr *LHS = E->getLHS();
9883   Expr *RHS = E->getRHS();
9884 
9885   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
9886          "Must both be vector types");
9887   // Checking JUST the types are the same would be fine, except shifts don't
9888   // need to have their types be the same (since you always shift by an int).
9889   assert(LHS->getType()->getAs<VectorType>()->getNumElements() ==
9890              E->getType()->getAs<VectorType>()->getNumElements() &&
9891          RHS->getType()->getAs<VectorType>()->getNumElements() ==
9892              E->getType()->getAs<VectorType>()->getNumElements() &&
9893          "All operands must be the same size.");
9894 
9895   APValue LHSValue;
9896   APValue RHSValue;
9897   bool LHSOK = Evaluate(LHSValue, Info, LHS);
9898   if (!LHSOK && !Info.noteFailure())
9899     return false;
9900   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
9901     return false;
9902 
9903   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
9904     return false;
9905 
9906   return Success(LHSValue, E);
9907 }
9908 
9909 //===----------------------------------------------------------------------===//
9910 // Array Evaluation
9911 //===----------------------------------------------------------------------===//
9912 
9913 namespace {
9914   class ArrayExprEvaluator
9915   : public ExprEvaluatorBase<ArrayExprEvaluator> {
9916     const LValue &This;
9917     APValue &Result;
9918   public:
9919 
9920     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
9921       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
9922 
9923     bool Success(const APValue &V, const Expr *E) {
9924       assert(V.isArray() && "expected array");
9925       Result = V;
9926       return true;
9927     }
9928 
9929     bool ZeroInitialization(const Expr *E) {
9930       const ConstantArrayType *CAT =
9931           Info.Ctx.getAsConstantArrayType(E->getType());
9932       if (!CAT) {
9933         if (E->getType()->isIncompleteArrayType()) {
9934           // We can be asked to zero-initialize a flexible array member; this
9935           // is represented as an ImplicitValueInitExpr of incomplete array
9936           // type. In this case, the array has zero elements.
9937           Result = APValue(APValue::UninitArray(), 0, 0);
9938           return true;
9939         }
9940         // FIXME: We could handle VLAs here.
9941         return Error(E);
9942       }
9943 
9944       Result = APValue(APValue::UninitArray(), 0,
9945                        CAT->getSize().getZExtValue());
9946       if (!Result.hasArrayFiller()) return true;
9947 
9948       // Zero-initialize all elements.
9949       LValue Subobject = This;
9950       Subobject.addArray(Info, E, CAT);
9951       ImplicitValueInitExpr VIE(CAT->getElementType());
9952       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
9953     }
9954 
9955     bool VisitCallExpr(const CallExpr *E) {
9956       return handleCallExpr(E, Result, &This);
9957     }
9958     bool VisitInitListExpr(const InitListExpr *E,
9959                            QualType AllocType = QualType());
9960     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
9961     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
9962     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
9963                                const LValue &Subobject,
9964                                APValue *Value, QualType Type);
9965     bool VisitStringLiteral(const StringLiteral *E,
9966                             QualType AllocType = QualType()) {
9967       expandStringLiteral(Info, E, Result, AllocType);
9968       return true;
9969     }
9970   };
9971 } // end anonymous namespace
9972 
9973 static bool EvaluateArray(const Expr *E, const LValue &This,
9974                           APValue &Result, EvalInfo &Info) {
9975   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
9976   return ArrayExprEvaluator(Info, This, Result).Visit(E);
9977 }
9978 
9979 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9980                                      APValue &Result, const InitListExpr *ILE,
9981                                      QualType AllocType) {
9982   assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
9983          "not an array rvalue");
9984   return ArrayExprEvaluator(Info, This, Result)
9985       .VisitInitListExpr(ILE, AllocType);
9986 }
9987 
9988 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9989                                           APValue &Result,
9990                                           const CXXConstructExpr *CCE,
9991                                           QualType AllocType) {
9992   assert(CCE->isRValue() && CCE->getType()->isArrayType() &&
9993          "not an array rvalue");
9994   return ArrayExprEvaluator(Info, This, Result)
9995       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
9996 }
9997 
9998 // Return true iff the given array filler may depend on the element index.
9999 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10000   // For now, just allow non-class value-initialization and initialization
10001   // lists comprised of them.
10002   if (isa<ImplicitValueInitExpr>(FillerExpr))
10003     return false;
10004   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10005     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10006       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10007         return true;
10008     }
10009     return false;
10010   }
10011   return true;
10012 }
10013 
10014 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10015                                            QualType AllocType) {
10016   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10017       AllocType.isNull() ? E->getType() : AllocType);
10018   if (!CAT)
10019     return Error(E);
10020 
10021   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10022   // an appropriately-typed string literal enclosed in braces.
10023   if (E->isStringLiteralInit()) {
10024     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
10025     // FIXME: Support ObjCEncodeExpr here once we support it in
10026     // ArrayExprEvaluator generally.
10027     if (!SL)
10028       return Error(E);
10029     return VisitStringLiteral(SL, AllocType);
10030   }
10031 
10032   bool Success = true;
10033 
10034   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10035          "zero-initialized array shouldn't have any initialized elts");
10036   APValue Filler;
10037   if (Result.isArray() && Result.hasArrayFiller())
10038     Filler = Result.getArrayFiller();
10039 
10040   unsigned NumEltsToInit = E->getNumInits();
10041   unsigned NumElts = CAT->getSize().getZExtValue();
10042   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10043 
10044   // If the initializer might depend on the array index, run it for each
10045   // array element.
10046   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10047     NumEltsToInit = NumElts;
10048 
10049   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10050                           << NumEltsToInit << ".\n");
10051 
10052   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10053 
10054   // If the array was previously zero-initialized, preserve the
10055   // zero-initialized values.
10056   if (Filler.hasValue()) {
10057     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10058       Result.getArrayInitializedElt(I) = Filler;
10059     if (Result.hasArrayFiller())
10060       Result.getArrayFiller() = Filler;
10061   }
10062 
10063   LValue Subobject = This;
10064   Subobject.addArray(Info, E, CAT);
10065   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10066     const Expr *Init =
10067         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10068     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10069                          Info, Subobject, Init) ||
10070         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10071                                      CAT->getElementType(), 1)) {
10072       if (!Info.noteFailure())
10073         return false;
10074       Success = false;
10075     }
10076   }
10077 
10078   if (!Result.hasArrayFiller())
10079     return Success;
10080 
10081   // If we get here, we have a trivial filler, which we can just evaluate
10082   // once and splat over the rest of the array elements.
10083   assert(FillerExpr && "no array filler for incomplete init list");
10084   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10085                          FillerExpr) && Success;
10086 }
10087 
10088 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10089   LValue CommonLV;
10090   if (E->getCommonExpr() &&
10091       !Evaluate(Info.CurrentCall->createTemporary(
10092                     E->getCommonExpr(),
10093                     getStorageType(Info.Ctx, E->getCommonExpr()), false,
10094                     CommonLV),
10095                 Info, E->getCommonExpr()->getSourceExpr()))
10096     return false;
10097 
10098   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10099 
10100   uint64_t Elements = CAT->getSize().getZExtValue();
10101   Result = APValue(APValue::UninitArray(), Elements, Elements);
10102 
10103   LValue Subobject = This;
10104   Subobject.addArray(Info, E, CAT);
10105 
10106   bool Success = true;
10107   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10108     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10109                          Info, Subobject, E->getSubExpr()) ||
10110         !HandleLValueArrayAdjustment(Info, E, Subobject,
10111                                      CAT->getElementType(), 1)) {
10112       if (!Info.noteFailure())
10113         return false;
10114       Success = false;
10115     }
10116   }
10117 
10118   return Success;
10119 }
10120 
10121 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10122   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10123 }
10124 
10125 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10126                                                const LValue &Subobject,
10127                                                APValue *Value,
10128                                                QualType Type) {
10129   bool HadZeroInit = Value->hasValue();
10130 
10131   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10132     unsigned N = CAT->getSize().getZExtValue();
10133 
10134     // Preserve the array filler if we had prior zero-initialization.
10135     APValue Filler =
10136       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10137                                              : APValue();
10138 
10139     *Value = APValue(APValue::UninitArray(), N, N);
10140 
10141     if (HadZeroInit)
10142       for (unsigned I = 0; I != N; ++I)
10143         Value->getArrayInitializedElt(I) = Filler;
10144 
10145     // Initialize the elements.
10146     LValue ArrayElt = Subobject;
10147     ArrayElt.addArray(Info, E, CAT);
10148     for (unsigned I = 0; I != N; ++I)
10149       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
10150                                  CAT->getElementType()) ||
10151           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10152                                        CAT->getElementType(), 1))
10153         return false;
10154 
10155     return true;
10156   }
10157 
10158   if (!Type->isRecordType())
10159     return Error(E);
10160 
10161   return RecordExprEvaluator(Info, Subobject, *Value)
10162              .VisitCXXConstructExpr(E, Type);
10163 }
10164 
10165 //===----------------------------------------------------------------------===//
10166 // Integer Evaluation
10167 //
10168 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10169 // types and back in constant folding. Integer values are thus represented
10170 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10171 //===----------------------------------------------------------------------===//
10172 
10173 namespace {
10174 class IntExprEvaluator
10175         : public ExprEvaluatorBase<IntExprEvaluator> {
10176   APValue &Result;
10177 public:
10178   IntExprEvaluator(EvalInfo &info, APValue &result)
10179       : ExprEvaluatorBaseTy(info), Result(result) {}
10180 
10181   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10182     assert(E->getType()->isIntegralOrEnumerationType() &&
10183            "Invalid evaluation result.");
10184     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10185            "Invalid evaluation result.");
10186     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10187            "Invalid evaluation result.");
10188     Result = APValue(SI);
10189     return true;
10190   }
10191   bool Success(const llvm::APSInt &SI, const Expr *E) {
10192     return Success(SI, E, Result);
10193   }
10194 
10195   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10196     assert(E->getType()->isIntegralOrEnumerationType() &&
10197            "Invalid evaluation result.");
10198     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10199            "Invalid evaluation result.");
10200     Result = APValue(APSInt(I));
10201     Result.getInt().setIsUnsigned(
10202                             E->getType()->isUnsignedIntegerOrEnumerationType());
10203     return true;
10204   }
10205   bool Success(const llvm::APInt &I, const Expr *E) {
10206     return Success(I, E, Result);
10207   }
10208 
10209   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10210     assert(E->getType()->isIntegralOrEnumerationType() &&
10211            "Invalid evaluation result.");
10212     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10213     return true;
10214   }
10215   bool Success(uint64_t Value, const Expr *E) {
10216     return Success(Value, E, Result);
10217   }
10218 
10219   bool Success(CharUnits Size, const Expr *E) {
10220     return Success(Size.getQuantity(), E);
10221   }
10222 
10223   bool Success(const APValue &V, const Expr *E) {
10224     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10225       Result = V;
10226       return true;
10227     }
10228     return Success(V.getInt(), E);
10229   }
10230 
10231   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10232 
10233   //===--------------------------------------------------------------------===//
10234   //                            Visitor Methods
10235   //===--------------------------------------------------------------------===//
10236 
10237   bool VisitIntegerLiteral(const IntegerLiteral *E) {
10238     return Success(E->getValue(), E);
10239   }
10240   bool VisitCharacterLiteral(const CharacterLiteral *E) {
10241     return Success(E->getValue(), E);
10242   }
10243 
10244   bool CheckReferencedDecl(const Expr *E, const Decl *D);
10245   bool VisitDeclRefExpr(const DeclRefExpr *E) {
10246     if (CheckReferencedDecl(E, E->getDecl()))
10247       return true;
10248 
10249     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10250   }
10251   bool VisitMemberExpr(const MemberExpr *E) {
10252     if (CheckReferencedDecl(E, E->getMemberDecl())) {
10253       VisitIgnoredBaseExpression(E->getBase());
10254       return true;
10255     }
10256 
10257     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10258   }
10259 
10260   bool VisitCallExpr(const CallExpr *E);
10261   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10262   bool VisitBinaryOperator(const BinaryOperator *E);
10263   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10264   bool VisitUnaryOperator(const UnaryOperator *E);
10265 
10266   bool VisitCastExpr(const CastExpr* E);
10267   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10268 
10269   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10270     return Success(E->getValue(), E);
10271   }
10272 
10273   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10274     return Success(E->getValue(), E);
10275   }
10276 
10277   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10278     if (Info.ArrayInitIndex == uint64_t(-1)) {
10279       // We were asked to evaluate this subexpression independent of the
10280       // enclosing ArrayInitLoopExpr. We can't do that.
10281       Info.FFDiag(E);
10282       return false;
10283     }
10284     return Success(Info.ArrayInitIndex, E);
10285   }
10286 
10287   // Note, GNU defines __null as an integer, not a pointer.
10288   bool VisitGNUNullExpr(const GNUNullExpr *E) {
10289     return ZeroInitialization(E);
10290   }
10291 
10292   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10293     return Success(E->getValue(), E);
10294   }
10295 
10296   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10297     return Success(E->getValue(), E);
10298   }
10299 
10300   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10301     return Success(E->getValue(), E);
10302   }
10303 
10304   bool VisitUnaryReal(const UnaryOperator *E);
10305   bool VisitUnaryImag(const UnaryOperator *E);
10306 
10307   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10308   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10309   bool VisitSourceLocExpr(const SourceLocExpr *E);
10310   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10311   bool VisitRequiresExpr(const RequiresExpr *E);
10312   // FIXME: Missing: array subscript of vector, member of vector
10313 };
10314 
10315 class FixedPointExprEvaluator
10316     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10317   APValue &Result;
10318 
10319  public:
10320   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10321       : ExprEvaluatorBaseTy(info), Result(result) {}
10322 
10323   bool Success(const llvm::APInt &I, const Expr *E) {
10324     return Success(
10325         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10326   }
10327 
10328   bool Success(uint64_t Value, const Expr *E) {
10329     return Success(
10330         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10331   }
10332 
10333   bool Success(const APValue &V, const Expr *E) {
10334     return Success(V.getFixedPoint(), E);
10335   }
10336 
10337   bool Success(const APFixedPoint &V, const Expr *E) {
10338     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
10339     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10340            "Invalid evaluation result.");
10341     Result = APValue(V);
10342     return true;
10343   }
10344 
10345   //===--------------------------------------------------------------------===//
10346   //                            Visitor Methods
10347   //===--------------------------------------------------------------------===//
10348 
10349   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10350     return Success(E->getValue(), E);
10351   }
10352 
10353   bool VisitCastExpr(const CastExpr *E);
10354   bool VisitUnaryOperator(const UnaryOperator *E);
10355   bool VisitBinaryOperator(const BinaryOperator *E);
10356 };
10357 } // end anonymous namespace
10358 
10359 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10360 /// produce either the integer value or a pointer.
10361 ///
10362 /// GCC has a heinous extension which folds casts between pointer types and
10363 /// pointer-sized integral types. We support this by allowing the evaluation of
10364 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10365 /// Some simple arithmetic on such values is supported (they are treated much
10366 /// like char*).
10367 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10368                                     EvalInfo &Info) {
10369   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
10370   return IntExprEvaluator(Info, Result).Visit(E);
10371 }
10372 
10373 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10374   APValue Val;
10375   if (!EvaluateIntegerOrLValue(E, Val, Info))
10376     return false;
10377   if (!Val.isInt()) {
10378     // FIXME: It would be better to produce the diagnostic for casting
10379     //        a pointer to an integer.
10380     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10381     return false;
10382   }
10383   Result = Val.getInt();
10384   return true;
10385 }
10386 
10387 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10388   APValue Evaluated = E->EvaluateInContext(
10389       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
10390   return Success(Evaluated, E);
10391 }
10392 
10393 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
10394                                EvalInfo &Info) {
10395   if (E->getType()->isFixedPointType()) {
10396     APValue Val;
10397     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
10398       return false;
10399     if (!Val.isFixedPoint())
10400       return false;
10401 
10402     Result = Val.getFixedPoint();
10403     return true;
10404   }
10405   return false;
10406 }
10407 
10408 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
10409                                         EvalInfo &Info) {
10410   if (E->getType()->isIntegerType()) {
10411     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
10412     APSInt Val;
10413     if (!EvaluateInteger(E, Val, Info))
10414       return false;
10415     Result = APFixedPoint(Val, FXSema);
10416     return true;
10417   } else if (E->getType()->isFixedPointType()) {
10418     return EvaluateFixedPoint(E, Result, Info);
10419   }
10420   return false;
10421 }
10422 
10423 /// Check whether the given declaration can be directly converted to an integral
10424 /// rvalue. If not, no diagnostic is produced; there are other things we can
10425 /// try.
10426 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
10427   // Enums are integer constant exprs.
10428   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
10429     // Check for signedness/width mismatches between E type and ECD value.
10430     bool SameSign = (ECD->getInitVal().isSigned()
10431                      == E->getType()->isSignedIntegerOrEnumerationType());
10432     bool SameWidth = (ECD->getInitVal().getBitWidth()
10433                       == Info.Ctx.getIntWidth(E->getType()));
10434     if (SameSign && SameWidth)
10435       return Success(ECD->getInitVal(), E);
10436     else {
10437       // Get rid of mismatch (otherwise Success assertions will fail)
10438       // by computing a new value matching the type of E.
10439       llvm::APSInt Val = ECD->getInitVal();
10440       if (!SameSign)
10441         Val.setIsSigned(!ECD->getInitVal().isSigned());
10442       if (!SameWidth)
10443         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
10444       return Success(Val, E);
10445     }
10446   }
10447   return false;
10448 }
10449 
10450 /// Values returned by __builtin_classify_type, chosen to match the values
10451 /// produced by GCC's builtin.
10452 enum class GCCTypeClass {
10453   None = -1,
10454   Void = 0,
10455   Integer = 1,
10456   // GCC reserves 2 for character types, but instead classifies them as
10457   // integers.
10458   Enum = 3,
10459   Bool = 4,
10460   Pointer = 5,
10461   // GCC reserves 6 for references, but appears to never use it (because
10462   // expressions never have reference type, presumably).
10463   PointerToDataMember = 7,
10464   RealFloat = 8,
10465   Complex = 9,
10466   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
10467   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
10468   // GCC claims to reserve 11 for pointers to member functions, but *actually*
10469   // uses 12 for that purpose, same as for a class or struct. Maybe it
10470   // internally implements a pointer to member as a struct?  Who knows.
10471   PointerToMemberFunction = 12, // Not a bug, see above.
10472   ClassOrStruct = 12,
10473   Union = 13,
10474   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
10475   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
10476   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
10477   // literals.
10478 };
10479 
10480 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10481 /// as GCC.
10482 static GCCTypeClass
10483 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
10484   assert(!T->isDependentType() && "unexpected dependent type");
10485 
10486   QualType CanTy = T.getCanonicalType();
10487   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
10488 
10489   switch (CanTy->getTypeClass()) {
10490 #define TYPE(ID, BASE)
10491 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
10492 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
10493 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
10494 #include "clang/AST/TypeNodes.inc"
10495   case Type::Auto:
10496   case Type::DeducedTemplateSpecialization:
10497       llvm_unreachable("unexpected non-canonical or dependent type");
10498 
10499   case Type::Builtin:
10500     switch (BT->getKind()) {
10501 #define BUILTIN_TYPE(ID, SINGLETON_ID)
10502 #define SIGNED_TYPE(ID, SINGLETON_ID) \
10503     case BuiltinType::ID: return GCCTypeClass::Integer;
10504 #define FLOATING_TYPE(ID, SINGLETON_ID) \
10505     case BuiltinType::ID: return GCCTypeClass::RealFloat;
10506 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
10507     case BuiltinType::ID: break;
10508 #include "clang/AST/BuiltinTypes.def"
10509     case BuiltinType::Void:
10510       return GCCTypeClass::Void;
10511 
10512     case BuiltinType::Bool:
10513       return GCCTypeClass::Bool;
10514 
10515     case BuiltinType::Char_U:
10516     case BuiltinType::UChar:
10517     case BuiltinType::WChar_U:
10518     case BuiltinType::Char8:
10519     case BuiltinType::Char16:
10520     case BuiltinType::Char32:
10521     case BuiltinType::UShort:
10522     case BuiltinType::UInt:
10523     case BuiltinType::ULong:
10524     case BuiltinType::ULongLong:
10525     case BuiltinType::UInt128:
10526       return GCCTypeClass::Integer;
10527 
10528     case BuiltinType::UShortAccum:
10529     case BuiltinType::UAccum:
10530     case BuiltinType::ULongAccum:
10531     case BuiltinType::UShortFract:
10532     case BuiltinType::UFract:
10533     case BuiltinType::ULongFract:
10534     case BuiltinType::SatUShortAccum:
10535     case BuiltinType::SatUAccum:
10536     case BuiltinType::SatULongAccum:
10537     case BuiltinType::SatUShortFract:
10538     case BuiltinType::SatUFract:
10539     case BuiltinType::SatULongFract:
10540       return GCCTypeClass::None;
10541 
10542     case BuiltinType::NullPtr:
10543 
10544     case BuiltinType::ObjCId:
10545     case BuiltinType::ObjCClass:
10546     case BuiltinType::ObjCSel:
10547 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10548     case BuiltinType::Id:
10549 #include "clang/Basic/OpenCLImageTypes.def"
10550 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10551     case BuiltinType::Id:
10552 #include "clang/Basic/OpenCLExtensionTypes.def"
10553     case BuiltinType::OCLSampler:
10554     case BuiltinType::OCLEvent:
10555     case BuiltinType::OCLClkEvent:
10556     case BuiltinType::OCLQueue:
10557     case BuiltinType::OCLReserveID:
10558 #define SVE_TYPE(Name, Id, SingletonId) \
10559     case BuiltinType::Id:
10560 #include "clang/Basic/AArch64SVEACLETypes.def"
10561       return GCCTypeClass::None;
10562 
10563     case BuiltinType::Dependent:
10564       llvm_unreachable("unexpected dependent type");
10565     };
10566     llvm_unreachable("unexpected placeholder type");
10567 
10568   case Type::Enum:
10569     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
10570 
10571   case Type::Pointer:
10572   case Type::ConstantArray:
10573   case Type::VariableArray:
10574   case Type::IncompleteArray:
10575   case Type::FunctionNoProto:
10576   case Type::FunctionProto:
10577     return GCCTypeClass::Pointer;
10578 
10579   case Type::MemberPointer:
10580     return CanTy->isMemberDataPointerType()
10581                ? GCCTypeClass::PointerToDataMember
10582                : GCCTypeClass::PointerToMemberFunction;
10583 
10584   case Type::Complex:
10585     return GCCTypeClass::Complex;
10586 
10587   case Type::Record:
10588     return CanTy->isUnionType() ? GCCTypeClass::Union
10589                                 : GCCTypeClass::ClassOrStruct;
10590 
10591   case Type::Atomic:
10592     // GCC classifies _Atomic T the same as T.
10593     return EvaluateBuiltinClassifyType(
10594         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
10595 
10596   case Type::BlockPointer:
10597   case Type::Vector:
10598   case Type::ExtVector:
10599   case Type::ConstantMatrix:
10600   case Type::ObjCObject:
10601   case Type::ObjCInterface:
10602   case Type::ObjCObjectPointer:
10603   case Type::Pipe:
10604   case Type::ExtInt:
10605     // GCC classifies vectors as None. We follow its lead and classify all
10606     // other types that don't fit into the regular classification the same way.
10607     return GCCTypeClass::None;
10608 
10609   case Type::LValueReference:
10610   case Type::RValueReference:
10611     llvm_unreachable("invalid type for expression");
10612   }
10613 
10614   llvm_unreachable("unexpected type class");
10615 }
10616 
10617 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10618 /// as GCC.
10619 static GCCTypeClass
10620 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
10621   // If no argument was supplied, default to None. This isn't
10622   // ideal, however it is what gcc does.
10623   if (E->getNumArgs() == 0)
10624     return GCCTypeClass::None;
10625 
10626   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
10627   // being an ICE, but still folds it to a constant using the type of the first
10628   // argument.
10629   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
10630 }
10631 
10632 /// EvaluateBuiltinConstantPForLValue - Determine the result of
10633 /// __builtin_constant_p when applied to the given pointer.
10634 ///
10635 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
10636 /// or it points to the first character of a string literal.
10637 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
10638   APValue::LValueBase Base = LV.getLValueBase();
10639   if (Base.isNull()) {
10640     // A null base is acceptable.
10641     return true;
10642   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
10643     if (!isa<StringLiteral>(E))
10644       return false;
10645     return LV.getLValueOffset().isZero();
10646   } else if (Base.is<TypeInfoLValue>()) {
10647     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
10648     // evaluate to true.
10649     return true;
10650   } else {
10651     // Any other base is not constant enough for GCC.
10652     return false;
10653   }
10654 }
10655 
10656 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
10657 /// GCC as we can manage.
10658 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
10659   // This evaluation is not permitted to have side-effects, so evaluate it in
10660   // a speculative evaluation context.
10661   SpeculativeEvaluationRAII SpeculativeEval(Info);
10662 
10663   // Constant-folding is always enabled for the operand of __builtin_constant_p
10664   // (even when the enclosing evaluation context otherwise requires a strict
10665   // language-specific constant expression).
10666   FoldConstant Fold(Info, true);
10667 
10668   QualType ArgType = Arg->getType();
10669 
10670   // __builtin_constant_p always has one operand. The rules which gcc follows
10671   // are not precisely documented, but are as follows:
10672   //
10673   //  - If the operand is of integral, floating, complex or enumeration type,
10674   //    and can be folded to a known value of that type, it returns 1.
10675   //  - If the operand can be folded to a pointer to the first character
10676   //    of a string literal (or such a pointer cast to an integral type)
10677   //    or to a null pointer or an integer cast to a pointer, it returns 1.
10678   //
10679   // Otherwise, it returns 0.
10680   //
10681   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
10682   // its support for this did not work prior to GCC 9 and is not yet well
10683   // understood.
10684   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
10685       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
10686       ArgType->isNullPtrType()) {
10687     APValue V;
10688     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
10689       Fold.keepDiagnostics();
10690       return false;
10691     }
10692 
10693     // For a pointer (possibly cast to integer), there are special rules.
10694     if (V.getKind() == APValue::LValue)
10695       return EvaluateBuiltinConstantPForLValue(V);
10696 
10697     // Otherwise, any constant value is good enough.
10698     return V.hasValue();
10699   }
10700 
10701   // Anything else isn't considered to be sufficiently constant.
10702   return false;
10703 }
10704 
10705 /// Retrieves the "underlying object type" of the given expression,
10706 /// as used by __builtin_object_size.
10707 static QualType getObjectType(APValue::LValueBase B) {
10708   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
10709     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
10710       return VD->getType();
10711   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
10712     if (isa<CompoundLiteralExpr>(E))
10713       return E->getType();
10714   } else if (B.is<TypeInfoLValue>()) {
10715     return B.getTypeInfoType();
10716   } else if (B.is<DynamicAllocLValue>()) {
10717     return B.getDynamicAllocType();
10718   }
10719 
10720   return QualType();
10721 }
10722 
10723 /// A more selective version of E->IgnoreParenCasts for
10724 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
10725 /// to change the type of E.
10726 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
10727 ///
10728 /// Always returns an RValue with a pointer representation.
10729 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
10730   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
10731 
10732   auto *NoParens = E->IgnoreParens();
10733   auto *Cast = dyn_cast<CastExpr>(NoParens);
10734   if (Cast == nullptr)
10735     return NoParens;
10736 
10737   // We only conservatively allow a few kinds of casts, because this code is
10738   // inherently a simple solution that seeks to support the common case.
10739   auto CastKind = Cast->getCastKind();
10740   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
10741       CastKind != CK_AddressSpaceConversion)
10742     return NoParens;
10743 
10744   auto *SubExpr = Cast->getSubExpr();
10745   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
10746     return NoParens;
10747   return ignorePointerCastsAndParens(SubExpr);
10748 }
10749 
10750 /// Checks to see if the given LValue's Designator is at the end of the LValue's
10751 /// record layout. e.g.
10752 ///   struct { struct { int a, b; } fst, snd; } obj;
10753 ///   obj.fst   // no
10754 ///   obj.snd   // yes
10755 ///   obj.fst.a // no
10756 ///   obj.fst.b // no
10757 ///   obj.snd.a // no
10758 ///   obj.snd.b // yes
10759 ///
10760 /// Please note: this function is specialized for how __builtin_object_size
10761 /// views "objects".
10762 ///
10763 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
10764 /// correct result, it will always return true.
10765 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
10766   assert(!LVal.Designator.Invalid);
10767 
10768   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
10769     const RecordDecl *Parent = FD->getParent();
10770     Invalid = Parent->isInvalidDecl();
10771     if (Invalid || Parent->isUnion())
10772       return true;
10773     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
10774     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
10775   };
10776 
10777   auto &Base = LVal.getLValueBase();
10778   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
10779     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
10780       bool Invalid;
10781       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10782         return Invalid;
10783     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
10784       for (auto *FD : IFD->chain()) {
10785         bool Invalid;
10786         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
10787           return Invalid;
10788       }
10789     }
10790   }
10791 
10792   unsigned I = 0;
10793   QualType BaseType = getType(Base);
10794   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
10795     // If we don't know the array bound, conservatively assume we're looking at
10796     // the final array element.
10797     ++I;
10798     if (BaseType->isIncompleteArrayType())
10799       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
10800     else
10801       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
10802   }
10803 
10804   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
10805     const auto &Entry = LVal.Designator.Entries[I];
10806     if (BaseType->isArrayType()) {
10807       // Because __builtin_object_size treats arrays as objects, we can ignore
10808       // the index iff this is the last array in the Designator.
10809       if (I + 1 == E)
10810         return true;
10811       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
10812       uint64_t Index = Entry.getAsArrayIndex();
10813       if (Index + 1 != CAT->getSize())
10814         return false;
10815       BaseType = CAT->getElementType();
10816     } else if (BaseType->isAnyComplexType()) {
10817       const auto *CT = BaseType->castAs<ComplexType>();
10818       uint64_t Index = Entry.getAsArrayIndex();
10819       if (Index != 1)
10820         return false;
10821       BaseType = CT->getElementType();
10822     } else if (auto *FD = getAsField(Entry)) {
10823       bool Invalid;
10824       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10825         return Invalid;
10826       BaseType = FD->getType();
10827     } else {
10828       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
10829       return false;
10830     }
10831   }
10832   return true;
10833 }
10834 
10835 /// Tests to see if the LValue has a user-specified designator (that isn't
10836 /// necessarily valid). Note that this always returns 'true' if the LValue has
10837 /// an unsized array as its first designator entry, because there's currently no
10838 /// way to tell if the user typed *foo or foo[0].
10839 static bool refersToCompleteObject(const LValue &LVal) {
10840   if (LVal.Designator.Invalid)
10841     return false;
10842 
10843   if (!LVal.Designator.Entries.empty())
10844     return LVal.Designator.isMostDerivedAnUnsizedArray();
10845 
10846   if (!LVal.InvalidBase)
10847     return true;
10848 
10849   // If `E` is a MemberExpr, then the first part of the designator is hiding in
10850   // the LValueBase.
10851   const auto *E = LVal.Base.dyn_cast<const Expr *>();
10852   return !E || !isa<MemberExpr>(E);
10853 }
10854 
10855 /// Attempts to detect a user writing into a piece of memory that's impossible
10856 /// to figure out the size of by just using types.
10857 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
10858   const SubobjectDesignator &Designator = LVal.Designator;
10859   // Notes:
10860   // - Users can only write off of the end when we have an invalid base. Invalid
10861   //   bases imply we don't know where the memory came from.
10862   // - We used to be a bit more aggressive here; we'd only be conservative if
10863   //   the array at the end was flexible, or if it had 0 or 1 elements. This
10864   //   broke some common standard library extensions (PR30346), but was
10865   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
10866   //   with some sort of list. OTOH, it seems that GCC is always
10867   //   conservative with the last element in structs (if it's an array), so our
10868   //   current behavior is more compatible than an explicit list approach would
10869   //   be.
10870   return LVal.InvalidBase &&
10871          Designator.Entries.size() == Designator.MostDerivedPathLength &&
10872          Designator.MostDerivedIsArrayElement &&
10873          isDesignatorAtObjectEnd(Ctx, LVal);
10874 }
10875 
10876 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
10877 /// Fails if the conversion would cause loss of precision.
10878 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
10879                                             CharUnits &Result) {
10880   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
10881   if (Int.ugt(CharUnitsMax))
10882     return false;
10883   Result = CharUnits::fromQuantity(Int.getZExtValue());
10884   return true;
10885 }
10886 
10887 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
10888 /// determine how many bytes exist from the beginning of the object to either
10889 /// the end of the current subobject, or the end of the object itself, depending
10890 /// on what the LValue looks like + the value of Type.
10891 ///
10892 /// If this returns false, the value of Result is undefined.
10893 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
10894                                unsigned Type, const LValue &LVal,
10895                                CharUnits &EndOffset) {
10896   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
10897 
10898   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
10899     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
10900       return false;
10901     return HandleSizeof(Info, ExprLoc, Ty, Result);
10902   };
10903 
10904   // We want to evaluate the size of the entire object. This is a valid fallback
10905   // for when Type=1 and the designator is invalid, because we're asked for an
10906   // upper-bound.
10907   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
10908     // Type=3 wants a lower bound, so we can't fall back to this.
10909     if (Type == 3 && !DetermineForCompleteObject)
10910       return false;
10911 
10912     llvm::APInt APEndOffset;
10913     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10914         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10915       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10916 
10917     if (LVal.InvalidBase)
10918       return false;
10919 
10920     QualType BaseTy = getObjectType(LVal.getLValueBase());
10921     return CheckedHandleSizeof(BaseTy, EndOffset);
10922   }
10923 
10924   // We want to evaluate the size of a subobject.
10925   const SubobjectDesignator &Designator = LVal.Designator;
10926 
10927   // The following is a moderately common idiom in C:
10928   //
10929   // struct Foo { int a; char c[1]; };
10930   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
10931   // strcpy(&F->c[0], Bar);
10932   //
10933   // In order to not break too much legacy code, we need to support it.
10934   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
10935     // If we can resolve this to an alloc_size call, we can hand that back,
10936     // because we know for certain how many bytes there are to write to.
10937     llvm::APInt APEndOffset;
10938     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10939         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10940       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10941 
10942     // If we cannot determine the size of the initial allocation, then we can't
10943     // given an accurate upper-bound. However, we are still able to give
10944     // conservative lower-bounds for Type=3.
10945     if (Type == 1)
10946       return false;
10947   }
10948 
10949   CharUnits BytesPerElem;
10950   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
10951     return false;
10952 
10953   // According to the GCC documentation, we want the size of the subobject
10954   // denoted by the pointer. But that's not quite right -- what we actually
10955   // want is the size of the immediately-enclosing array, if there is one.
10956   int64_t ElemsRemaining;
10957   if (Designator.MostDerivedIsArrayElement &&
10958       Designator.Entries.size() == Designator.MostDerivedPathLength) {
10959     uint64_t ArraySize = Designator.getMostDerivedArraySize();
10960     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
10961     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
10962   } else {
10963     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
10964   }
10965 
10966   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
10967   return true;
10968 }
10969 
10970 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
10971 /// returns true and stores the result in @p Size.
10972 ///
10973 /// If @p WasError is non-null, this will report whether the failure to evaluate
10974 /// is to be treated as an Error in IntExprEvaluator.
10975 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
10976                                          EvalInfo &Info, uint64_t &Size) {
10977   // Determine the denoted object.
10978   LValue LVal;
10979   {
10980     // The operand of __builtin_object_size is never evaluated for side-effects.
10981     // If there are any, but we can determine the pointed-to object anyway, then
10982     // ignore the side-effects.
10983     SpeculativeEvaluationRAII SpeculativeEval(Info);
10984     IgnoreSideEffectsRAII Fold(Info);
10985 
10986     if (E->isGLValue()) {
10987       // It's possible for us to be given GLValues if we're called via
10988       // Expr::tryEvaluateObjectSize.
10989       APValue RVal;
10990       if (!EvaluateAsRValue(Info, E, RVal))
10991         return false;
10992       LVal.setFrom(Info.Ctx, RVal);
10993     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
10994                                 /*InvalidBaseOK=*/true))
10995       return false;
10996   }
10997 
10998   // If we point to before the start of the object, there are no accessible
10999   // bytes.
11000   if (LVal.getLValueOffset().isNegative()) {
11001     Size = 0;
11002     return true;
11003   }
11004 
11005   CharUnits EndOffset;
11006   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11007     return false;
11008 
11009   // If we've fallen outside of the end offset, just pretend there's nothing to
11010   // write to/read from.
11011   if (EndOffset <= LVal.getLValueOffset())
11012     Size = 0;
11013   else
11014     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11015   return true;
11016 }
11017 
11018 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11019   if (unsigned BuiltinOp = E->getBuiltinCallee())
11020     return VisitBuiltinCallExpr(E, BuiltinOp);
11021 
11022   return ExprEvaluatorBaseTy::VisitCallExpr(E);
11023 }
11024 
11025 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11026                                      APValue &Val, APSInt &Alignment) {
11027   QualType SrcTy = E->getArg(0)->getType();
11028   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11029     return false;
11030   // Even though we are evaluating integer expressions we could get a pointer
11031   // argument for the __builtin_is_aligned() case.
11032   if (SrcTy->isPointerType()) {
11033     LValue Ptr;
11034     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11035       return false;
11036     Ptr.moveInto(Val);
11037   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11038     Info.FFDiag(E->getArg(0));
11039     return false;
11040   } else {
11041     APSInt SrcInt;
11042     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11043       return false;
11044     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11045            "Bit widths must be the same");
11046     Val = APValue(SrcInt);
11047   }
11048   assert(Val.hasValue());
11049   return true;
11050 }
11051 
11052 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11053                                             unsigned BuiltinOp) {
11054   switch (BuiltinOp) {
11055   default:
11056     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11057 
11058   case Builtin::BI__builtin_dynamic_object_size:
11059   case Builtin::BI__builtin_object_size: {
11060     // The type was checked when we built the expression.
11061     unsigned Type =
11062         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11063     assert(Type <= 3 && "unexpected type");
11064 
11065     uint64_t Size;
11066     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11067       return Success(Size, E);
11068 
11069     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11070       return Success((Type & 2) ? 0 : -1, E);
11071 
11072     // Expression had no side effects, but we couldn't statically determine the
11073     // size of the referenced object.
11074     switch (Info.EvalMode) {
11075     case EvalInfo::EM_ConstantExpression:
11076     case EvalInfo::EM_ConstantFold:
11077     case EvalInfo::EM_IgnoreSideEffects:
11078       // Leave it to IR generation.
11079       return Error(E);
11080     case EvalInfo::EM_ConstantExpressionUnevaluated:
11081       // Reduce it to a constant now.
11082       return Success((Type & 2) ? 0 : -1, E);
11083     }
11084 
11085     llvm_unreachable("unexpected EvalMode");
11086   }
11087 
11088   case Builtin::BI__builtin_os_log_format_buffer_size: {
11089     analyze_os_log::OSLogBufferLayout Layout;
11090     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11091     return Success(Layout.size().getQuantity(), E);
11092   }
11093 
11094   case Builtin::BI__builtin_is_aligned: {
11095     APValue Src;
11096     APSInt Alignment;
11097     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11098       return false;
11099     if (Src.isLValue()) {
11100       // If we evaluated a pointer, check the minimum known alignment.
11101       LValue Ptr;
11102       Ptr.setFrom(Info.Ctx, Src);
11103       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11104       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11105       // We can return true if the known alignment at the computed offset is
11106       // greater than the requested alignment.
11107       assert(PtrAlign.isPowerOfTwo());
11108       assert(Alignment.isPowerOf2());
11109       if (PtrAlign.getQuantity() >= Alignment)
11110         return Success(1, E);
11111       // If the alignment is not known to be sufficient, some cases could still
11112       // be aligned at run time. However, if the requested alignment is less or
11113       // equal to the base alignment and the offset is not aligned, we know that
11114       // the run-time value can never be aligned.
11115       if (BaseAlignment.getQuantity() >= Alignment &&
11116           PtrAlign.getQuantity() < Alignment)
11117         return Success(0, E);
11118       // Otherwise we can't infer whether the value is sufficiently aligned.
11119       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11120       //  in cases where we can't fully evaluate the pointer.
11121       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11122           << Alignment;
11123       return false;
11124     }
11125     assert(Src.isInt());
11126     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11127   }
11128   case Builtin::BI__builtin_align_up: {
11129     APValue Src;
11130     APSInt Alignment;
11131     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11132       return false;
11133     if (!Src.isInt())
11134       return Error(E);
11135     APSInt AlignedVal =
11136         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11137                Src.getInt().isUnsigned());
11138     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11139     return Success(AlignedVal, E);
11140   }
11141   case Builtin::BI__builtin_align_down: {
11142     APValue Src;
11143     APSInt Alignment;
11144     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11145       return false;
11146     if (!Src.isInt())
11147       return Error(E);
11148     APSInt AlignedVal =
11149         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11150     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11151     return Success(AlignedVal, E);
11152   }
11153 
11154   case Builtin::BI__builtin_bswap16:
11155   case Builtin::BI__builtin_bswap32:
11156   case Builtin::BI__builtin_bswap64: {
11157     APSInt Val;
11158     if (!EvaluateInteger(E->getArg(0), Val, Info))
11159       return false;
11160 
11161     return Success(Val.byteSwap(), E);
11162   }
11163 
11164   case Builtin::BI__builtin_classify_type:
11165     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11166 
11167   case Builtin::BI__builtin_clrsb:
11168   case Builtin::BI__builtin_clrsbl:
11169   case Builtin::BI__builtin_clrsbll: {
11170     APSInt Val;
11171     if (!EvaluateInteger(E->getArg(0), Val, Info))
11172       return false;
11173 
11174     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11175   }
11176 
11177   case Builtin::BI__builtin_clz:
11178   case Builtin::BI__builtin_clzl:
11179   case Builtin::BI__builtin_clzll:
11180   case Builtin::BI__builtin_clzs: {
11181     APSInt Val;
11182     if (!EvaluateInteger(E->getArg(0), Val, Info))
11183       return false;
11184     if (!Val)
11185       return Error(E);
11186 
11187     return Success(Val.countLeadingZeros(), E);
11188   }
11189 
11190   case Builtin::BI__builtin_constant_p: {
11191     const Expr *Arg = E->getArg(0);
11192     if (EvaluateBuiltinConstantP(Info, Arg))
11193       return Success(true, E);
11194     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11195       // Outside a constant context, eagerly evaluate to false in the presence
11196       // of side-effects in order to avoid -Wunsequenced false-positives in
11197       // a branch on __builtin_constant_p(expr).
11198       return Success(false, E);
11199     }
11200     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11201     return false;
11202   }
11203 
11204   case Builtin::BI__builtin_is_constant_evaluated: {
11205     const auto *Callee = Info.CurrentCall->getCallee();
11206     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11207         (Info.CallStackDepth == 1 ||
11208          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11209           Callee->getIdentifier() &&
11210           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11211       // FIXME: Find a better way to avoid duplicated diagnostics.
11212       if (Info.EvalStatus.Diag)
11213         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11214                                                : Info.CurrentCall->CallLoc,
11215                     diag::warn_is_constant_evaluated_always_true_constexpr)
11216             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11217                                          : "std::is_constant_evaluated");
11218     }
11219 
11220     return Success(Info.InConstantContext, E);
11221   }
11222 
11223   case Builtin::BI__builtin_ctz:
11224   case Builtin::BI__builtin_ctzl:
11225   case Builtin::BI__builtin_ctzll:
11226   case Builtin::BI__builtin_ctzs: {
11227     APSInt Val;
11228     if (!EvaluateInteger(E->getArg(0), Val, Info))
11229       return false;
11230     if (!Val)
11231       return Error(E);
11232 
11233     return Success(Val.countTrailingZeros(), E);
11234   }
11235 
11236   case Builtin::BI__builtin_eh_return_data_regno: {
11237     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11238     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11239     return Success(Operand, E);
11240   }
11241 
11242   case Builtin::BI__builtin_expect:
11243   case Builtin::BI__builtin_expect_with_probability:
11244     return Visit(E->getArg(0));
11245 
11246   case Builtin::BI__builtin_ffs:
11247   case Builtin::BI__builtin_ffsl:
11248   case Builtin::BI__builtin_ffsll: {
11249     APSInt Val;
11250     if (!EvaluateInteger(E->getArg(0), Val, Info))
11251       return false;
11252 
11253     unsigned N = Val.countTrailingZeros();
11254     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11255   }
11256 
11257   case Builtin::BI__builtin_fpclassify: {
11258     APFloat Val(0.0);
11259     if (!EvaluateFloat(E->getArg(5), Val, Info))
11260       return false;
11261     unsigned Arg;
11262     switch (Val.getCategory()) {
11263     case APFloat::fcNaN: Arg = 0; break;
11264     case APFloat::fcInfinity: Arg = 1; break;
11265     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11266     case APFloat::fcZero: Arg = 4; break;
11267     }
11268     return Visit(E->getArg(Arg));
11269   }
11270 
11271   case Builtin::BI__builtin_isinf_sign: {
11272     APFloat Val(0.0);
11273     return EvaluateFloat(E->getArg(0), Val, Info) &&
11274            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11275   }
11276 
11277   case Builtin::BI__builtin_isinf: {
11278     APFloat Val(0.0);
11279     return EvaluateFloat(E->getArg(0), Val, Info) &&
11280            Success(Val.isInfinity() ? 1 : 0, E);
11281   }
11282 
11283   case Builtin::BI__builtin_isfinite: {
11284     APFloat Val(0.0);
11285     return EvaluateFloat(E->getArg(0), Val, Info) &&
11286            Success(Val.isFinite() ? 1 : 0, E);
11287   }
11288 
11289   case Builtin::BI__builtin_isnan: {
11290     APFloat Val(0.0);
11291     return EvaluateFloat(E->getArg(0), Val, Info) &&
11292            Success(Val.isNaN() ? 1 : 0, E);
11293   }
11294 
11295   case Builtin::BI__builtin_isnormal: {
11296     APFloat Val(0.0);
11297     return EvaluateFloat(E->getArg(0), Val, Info) &&
11298            Success(Val.isNormal() ? 1 : 0, E);
11299   }
11300 
11301   case Builtin::BI__builtin_parity:
11302   case Builtin::BI__builtin_parityl:
11303   case Builtin::BI__builtin_parityll: {
11304     APSInt Val;
11305     if (!EvaluateInteger(E->getArg(0), Val, Info))
11306       return false;
11307 
11308     return Success(Val.countPopulation() % 2, E);
11309   }
11310 
11311   case Builtin::BI__builtin_popcount:
11312   case Builtin::BI__builtin_popcountl:
11313   case Builtin::BI__builtin_popcountll: {
11314     APSInt Val;
11315     if (!EvaluateInteger(E->getArg(0), Val, Info))
11316       return false;
11317 
11318     return Success(Val.countPopulation(), E);
11319   }
11320 
11321   case Builtin::BIstrlen:
11322   case Builtin::BIwcslen:
11323     // A call to strlen is not a constant expression.
11324     if (Info.getLangOpts().CPlusPlus11)
11325       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11326         << /*isConstexpr*/0 << /*isConstructor*/0
11327         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11328     else
11329       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11330     LLVM_FALLTHROUGH;
11331   case Builtin::BI__builtin_strlen:
11332   case Builtin::BI__builtin_wcslen: {
11333     // As an extension, we support __builtin_strlen() as a constant expression,
11334     // and support folding strlen() to a constant.
11335     LValue String;
11336     if (!EvaluatePointer(E->getArg(0), String, Info))
11337       return false;
11338 
11339     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
11340 
11341     // Fast path: if it's a string literal, search the string value.
11342     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
11343             String.getLValueBase().dyn_cast<const Expr *>())) {
11344       // The string literal may have embedded null characters. Find the first
11345       // one and truncate there.
11346       StringRef Str = S->getBytes();
11347       int64_t Off = String.Offset.getQuantity();
11348       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
11349           S->getCharByteWidth() == 1 &&
11350           // FIXME: Add fast-path for wchar_t too.
11351           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
11352         Str = Str.substr(Off);
11353 
11354         StringRef::size_type Pos = Str.find(0);
11355         if (Pos != StringRef::npos)
11356           Str = Str.substr(0, Pos);
11357 
11358         return Success(Str.size(), E);
11359       }
11360 
11361       // Fall through to slow path to issue appropriate diagnostic.
11362     }
11363 
11364     // Slow path: scan the bytes of the string looking for the terminating 0.
11365     for (uint64_t Strlen = 0; /**/; ++Strlen) {
11366       APValue Char;
11367       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
11368           !Char.isInt())
11369         return false;
11370       if (!Char.getInt())
11371         return Success(Strlen, E);
11372       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
11373         return false;
11374     }
11375   }
11376 
11377   case Builtin::BIstrcmp:
11378   case Builtin::BIwcscmp:
11379   case Builtin::BIstrncmp:
11380   case Builtin::BIwcsncmp:
11381   case Builtin::BImemcmp:
11382   case Builtin::BIbcmp:
11383   case Builtin::BIwmemcmp:
11384     // A call to strlen is not a constant expression.
11385     if (Info.getLangOpts().CPlusPlus11)
11386       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11387         << /*isConstexpr*/0 << /*isConstructor*/0
11388         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11389     else
11390       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11391     LLVM_FALLTHROUGH;
11392   case Builtin::BI__builtin_strcmp:
11393   case Builtin::BI__builtin_wcscmp:
11394   case Builtin::BI__builtin_strncmp:
11395   case Builtin::BI__builtin_wcsncmp:
11396   case Builtin::BI__builtin_memcmp:
11397   case Builtin::BI__builtin_bcmp:
11398   case Builtin::BI__builtin_wmemcmp: {
11399     LValue String1, String2;
11400     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
11401         !EvaluatePointer(E->getArg(1), String2, Info))
11402       return false;
11403 
11404     uint64_t MaxLength = uint64_t(-1);
11405     if (BuiltinOp != Builtin::BIstrcmp &&
11406         BuiltinOp != Builtin::BIwcscmp &&
11407         BuiltinOp != Builtin::BI__builtin_strcmp &&
11408         BuiltinOp != Builtin::BI__builtin_wcscmp) {
11409       APSInt N;
11410       if (!EvaluateInteger(E->getArg(2), N, Info))
11411         return false;
11412       MaxLength = N.getExtValue();
11413     }
11414 
11415     // Empty substrings compare equal by definition.
11416     if (MaxLength == 0u)
11417       return Success(0, E);
11418 
11419     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11420         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11421         String1.Designator.Invalid || String2.Designator.Invalid)
11422       return false;
11423 
11424     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
11425     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
11426 
11427     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
11428                      BuiltinOp == Builtin::BIbcmp ||
11429                      BuiltinOp == Builtin::BI__builtin_memcmp ||
11430                      BuiltinOp == Builtin::BI__builtin_bcmp;
11431 
11432     assert(IsRawByte ||
11433            (Info.Ctx.hasSameUnqualifiedType(
11434                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
11435             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
11436 
11437     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
11438     // 'char8_t', but no other types.
11439     if (IsRawByte &&
11440         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
11441       // FIXME: Consider using our bit_cast implementation to support this.
11442       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
11443           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
11444           << CharTy1 << CharTy2;
11445       return false;
11446     }
11447 
11448     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
11449       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
11450              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
11451              Char1.isInt() && Char2.isInt();
11452     };
11453     const auto &AdvanceElems = [&] {
11454       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
11455              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
11456     };
11457 
11458     bool StopAtNull =
11459         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
11460          BuiltinOp != Builtin::BIwmemcmp &&
11461          BuiltinOp != Builtin::BI__builtin_memcmp &&
11462          BuiltinOp != Builtin::BI__builtin_bcmp &&
11463          BuiltinOp != Builtin::BI__builtin_wmemcmp);
11464     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
11465                   BuiltinOp == Builtin::BIwcsncmp ||
11466                   BuiltinOp == Builtin::BIwmemcmp ||
11467                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
11468                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
11469                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
11470 
11471     for (; MaxLength; --MaxLength) {
11472       APValue Char1, Char2;
11473       if (!ReadCurElems(Char1, Char2))
11474         return false;
11475       if (Char1.getInt().ne(Char2.getInt())) {
11476         if (IsWide) // wmemcmp compares with wchar_t signedness.
11477           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
11478         // memcmp always compares unsigned chars.
11479         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
11480       }
11481       if (StopAtNull && !Char1.getInt())
11482         return Success(0, E);
11483       assert(!(StopAtNull && !Char2.getInt()));
11484       if (!AdvanceElems())
11485         return false;
11486     }
11487     // We hit the strncmp / memcmp limit.
11488     return Success(0, E);
11489   }
11490 
11491   case Builtin::BI__atomic_always_lock_free:
11492   case Builtin::BI__atomic_is_lock_free:
11493   case Builtin::BI__c11_atomic_is_lock_free: {
11494     APSInt SizeVal;
11495     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
11496       return false;
11497 
11498     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
11499     // of two less than the maximum inline atomic width, we know it is
11500     // lock-free.  If the size isn't a power of two, or greater than the
11501     // maximum alignment where we promote atomics, we know it is not lock-free
11502     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
11503     // the answer can only be determined at runtime; for example, 16-byte
11504     // atomics have lock-free implementations on some, but not all,
11505     // x86-64 processors.
11506 
11507     // Check power-of-two.
11508     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
11509     if (Size.isPowerOfTwo()) {
11510       // Check against inlining width.
11511       unsigned InlineWidthBits =
11512           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
11513       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
11514         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
11515             Size == CharUnits::One() ||
11516             E->getArg(1)->isNullPointerConstant(Info.Ctx,
11517                                                 Expr::NPC_NeverValueDependent))
11518           // OK, we will inline appropriately-aligned operations of this size,
11519           // and _Atomic(T) is appropriately-aligned.
11520           return Success(1, E);
11521 
11522         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
11523           castAs<PointerType>()->getPointeeType();
11524         if (!PointeeType->isIncompleteType() &&
11525             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
11526           // OK, we will inline operations on this object.
11527           return Success(1, E);
11528         }
11529       }
11530     }
11531 
11532     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
11533         Success(0, E) : Error(E);
11534   }
11535   case Builtin::BIomp_is_initial_device:
11536     // We can decide statically which value the runtime would return if called.
11537     return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
11538   case Builtin::BI__builtin_add_overflow:
11539   case Builtin::BI__builtin_sub_overflow:
11540   case Builtin::BI__builtin_mul_overflow:
11541   case Builtin::BI__builtin_sadd_overflow:
11542   case Builtin::BI__builtin_uadd_overflow:
11543   case Builtin::BI__builtin_uaddl_overflow:
11544   case Builtin::BI__builtin_uaddll_overflow:
11545   case Builtin::BI__builtin_usub_overflow:
11546   case Builtin::BI__builtin_usubl_overflow:
11547   case Builtin::BI__builtin_usubll_overflow:
11548   case Builtin::BI__builtin_umul_overflow:
11549   case Builtin::BI__builtin_umull_overflow:
11550   case Builtin::BI__builtin_umulll_overflow:
11551   case Builtin::BI__builtin_saddl_overflow:
11552   case Builtin::BI__builtin_saddll_overflow:
11553   case Builtin::BI__builtin_ssub_overflow:
11554   case Builtin::BI__builtin_ssubl_overflow:
11555   case Builtin::BI__builtin_ssubll_overflow:
11556   case Builtin::BI__builtin_smul_overflow:
11557   case Builtin::BI__builtin_smull_overflow:
11558   case Builtin::BI__builtin_smulll_overflow: {
11559     LValue ResultLValue;
11560     APSInt LHS, RHS;
11561 
11562     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
11563     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
11564         !EvaluateInteger(E->getArg(1), RHS, Info) ||
11565         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
11566       return false;
11567 
11568     APSInt Result;
11569     bool DidOverflow = false;
11570 
11571     // If the types don't have to match, enlarge all 3 to the largest of them.
11572     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11573         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11574         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11575       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
11576                       ResultType->isSignedIntegerOrEnumerationType();
11577       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
11578                       ResultType->isSignedIntegerOrEnumerationType();
11579       uint64_t LHSSize = LHS.getBitWidth();
11580       uint64_t RHSSize = RHS.getBitWidth();
11581       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
11582       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
11583 
11584       // Add an additional bit if the signedness isn't uniformly agreed to. We
11585       // could do this ONLY if there is a signed and an unsigned that both have
11586       // MaxBits, but the code to check that is pretty nasty.  The issue will be
11587       // caught in the shrink-to-result later anyway.
11588       if (IsSigned && !AllSigned)
11589         ++MaxBits;
11590 
11591       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
11592       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
11593       Result = APSInt(MaxBits, !IsSigned);
11594     }
11595 
11596     // Find largest int.
11597     switch (BuiltinOp) {
11598     default:
11599       llvm_unreachable("Invalid value for BuiltinOp");
11600     case Builtin::BI__builtin_add_overflow:
11601     case Builtin::BI__builtin_sadd_overflow:
11602     case Builtin::BI__builtin_saddl_overflow:
11603     case Builtin::BI__builtin_saddll_overflow:
11604     case Builtin::BI__builtin_uadd_overflow:
11605     case Builtin::BI__builtin_uaddl_overflow:
11606     case Builtin::BI__builtin_uaddll_overflow:
11607       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
11608                               : LHS.uadd_ov(RHS, DidOverflow);
11609       break;
11610     case Builtin::BI__builtin_sub_overflow:
11611     case Builtin::BI__builtin_ssub_overflow:
11612     case Builtin::BI__builtin_ssubl_overflow:
11613     case Builtin::BI__builtin_ssubll_overflow:
11614     case Builtin::BI__builtin_usub_overflow:
11615     case Builtin::BI__builtin_usubl_overflow:
11616     case Builtin::BI__builtin_usubll_overflow:
11617       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
11618                               : LHS.usub_ov(RHS, DidOverflow);
11619       break;
11620     case Builtin::BI__builtin_mul_overflow:
11621     case Builtin::BI__builtin_smul_overflow:
11622     case Builtin::BI__builtin_smull_overflow:
11623     case Builtin::BI__builtin_smulll_overflow:
11624     case Builtin::BI__builtin_umul_overflow:
11625     case Builtin::BI__builtin_umull_overflow:
11626     case Builtin::BI__builtin_umulll_overflow:
11627       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
11628                               : LHS.umul_ov(RHS, DidOverflow);
11629       break;
11630     }
11631 
11632     // In the case where multiple sizes are allowed, truncate and see if
11633     // the values are the same.
11634     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11635         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11636         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11637       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
11638       // since it will give us the behavior of a TruncOrSelf in the case where
11639       // its parameter <= its size.  We previously set Result to be at least the
11640       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
11641       // will work exactly like TruncOrSelf.
11642       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
11643       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
11644 
11645       if (!APSInt::isSameValue(Temp, Result))
11646         DidOverflow = true;
11647       Result = Temp;
11648     }
11649 
11650     APValue APV{Result};
11651     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
11652       return false;
11653     return Success(DidOverflow, E);
11654   }
11655   }
11656 }
11657 
11658 /// Determine whether this is a pointer past the end of the complete
11659 /// object referred to by the lvalue.
11660 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
11661                                             const LValue &LV) {
11662   // A null pointer can be viewed as being "past the end" but we don't
11663   // choose to look at it that way here.
11664   if (!LV.getLValueBase())
11665     return false;
11666 
11667   // If the designator is valid and refers to a subobject, we're not pointing
11668   // past the end.
11669   if (!LV.getLValueDesignator().Invalid &&
11670       !LV.getLValueDesignator().isOnePastTheEnd())
11671     return false;
11672 
11673   // A pointer to an incomplete type might be past-the-end if the type's size is
11674   // zero.  We cannot tell because the type is incomplete.
11675   QualType Ty = getType(LV.getLValueBase());
11676   if (Ty->isIncompleteType())
11677     return true;
11678 
11679   // We're a past-the-end pointer if we point to the byte after the object,
11680   // no matter what our type or path is.
11681   auto Size = Ctx.getTypeSizeInChars(Ty);
11682   return LV.getLValueOffset() == Size;
11683 }
11684 
11685 namespace {
11686 
11687 /// Data recursive integer evaluator of certain binary operators.
11688 ///
11689 /// We use a data recursive algorithm for binary operators so that we are able
11690 /// to handle extreme cases of chained binary operators without causing stack
11691 /// overflow.
11692 class DataRecursiveIntBinOpEvaluator {
11693   struct EvalResult {
11694     APValue Val;
11695     bool Failed;
11696 
11697     EvalResult() : Failed(false) { }
11698 
11699     void swap(EvalResult &RHS) {
11700       Val.swap(RHS.Val);
11701       Failed = RHS.Failed;
11702       RHS.Failed = false;
11703     }
11704   };
11705 
11706   struct Job {
11707     const Expr *E;
11708     EvalResult LHSResult; // meaningful only for binary operator expression.
11709     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
11710 
11711     Job() = default;
11712     Job(Job &&) = default;
11713 
11714     void startSpeculativeEval(EvalInfo &Info) {
11715       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
11716     }
11717 
11718   private:
11719     SpeculativeEvaluationRAII SpecEvalRAII;
11720   };
11721 
11722   SmallVector<Job, 16> Queue;
11723 
11724   IntExprEvaluator &IntEval;
11725   EvalInfo &Info;
11726   APValue &FinalResult;
11727 
11728 public:
11729   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
11730     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
11731 
11732   /// True if \param E is a binary operator that we are going to handle
11733   /// data recursively.
11734   /// We handle binary operators that are comma, logical, or that have operands
11735   /// with integral or enumeration type.
11736   static bool shouldEnqueue(const BinaryOperator *E) {
11737     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
11738            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
11739             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11740             E->getRHS()->getType()->isIntegralOrEnumerationType());
11741   }
11742 
11743   bool Traverse(const BinaryOperator *E) {
11744     enqueue(E);
11745     EvalResult PrevResult;
11746     while (!Queue.empty())
11747       process(PrevResult);
11748 
11749     if (PrevResult.Failed) return false;
11750 
11751     FinalResult.swap(PrevResult.Val);
11752     return true;
11753   }
11754 
11755 private:
11756   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11757     return IntEval.Success(Value, E, Result);
11758   }
11759   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
11760     return IntEval.Success(Value, E, Result);
11761   }
11762   bool Error(const Expr *E) {
11763     return IntEval.Error(E);
11764   }
11765   bool Error(const Expr *E, diag::kind D) {
11766     return IntEval.Error(E, D);
11767   }
11768 
11769   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
11770     return Info.CCEDiag(E, D);
11771   }
11772 
11773   // Returns true if visiting the RHS is necessary, false otherwise.
11774   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11775                          bool &SuppressRHSDiags);
11776 
11777   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11778                   const BinaryOperator *E, APValue &Result);
11779 
11780   void EvaluateExpr(const Expr *E, EvalResult &Result) {
11781     Result.Failed = !Evaluate(Result.Val, Info, E);
11782     if (Result.Failed)
11783       Result.Val = APValue();
11784   }
11785 
11786   void process(EvalResult &Result);
11787 
11788   void enqueue(const Expr *E) {
11789     E = E->IgnoreParens();
11790     Queue.resize(Queue.size()+1);
11791     Queue.back().E = E;
11792     Queue.back().Kind = Job::AnyExprKind;
11793   }
11794 };
11795 
11796 }
11797 
11798 bool DataRecursiveIntBinOpEvaluator::
11799        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11800                          bool &SuppressRHSDiags) {
11801   if (E->getOpcode() == BO_Comma) {
11802     // Ignore LHS but note if we could not evaluate it.
11803     if (LHSResult.Failed)
11804       return Info.noteSideEffect();
11805     return true;
11806   }
11807 
11808   if (E->isLogicalOp()) {
11809     bool LHSAsBool;
11810     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
11811       // We were able to evaluate the LHS, see if we can get away with not
11812       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
11813       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
11814         Success(LHSAsBool, E, LHSResult.Val);
11815         return false; // Ignore RHS
11816       }
11817     } else {
11818       LHSResult.Failed = true;
11819 
11820       // Since we weren't able to evaluate the left hand side, it
11821       // might have had side effects.
11822       if (!Info.noteSideEffect())
11823         return false;
11824 
11825       // We can't evaluate the LHS; however, sometimes the result
11826       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11827       // Don't ignore RHS and suppress diagnostics from this arm.
11828       SuppressRHSDiags = true;
11829     }
11830 
11831     return true;
11832   }
11833 
11834   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11835          E->getRHS()->getType()->isIntegralOrEnumerationType());
11836 
11837   if (LHSResult.Failed && !Info.noteFailure())
11838     return false; // Ignore RHS;
11839 
11840   return true;
11841 }
11842 
11843 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
11844                                     bool IsSub) {
11845   // Compute the new offset in the appropriate width, wrapping at 64 bits.
11846   // FIXME: When compiling for a 32-bit target, we should use 32-bit
11847   // offsets.
11848   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
11849   CharUnits &Offset = LVal.getLValueOffset();
11850   uint64_t Offset64 = Offset.getQuantity();
11851   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
11852   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
11853                                          : Offset64 + Index64);
11854 }
11855 
11856 bool DataRecursiveIntBinOpEvaluator::
11857        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11858                   const BinaryOperator *E, APValue &Result) {
11859   if (E->getOpcode() == BO_Comma) {
11860     if (RHSResult.Failed)
11861       return false;
11862     Result = RHSResult.Val;
11863     return true;
11864   }
11865 
11866   if (E->isLogicalOp()) {
11867     bool lhsResult, rhsResult;
11868     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
11869     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
11870 
11871     if (LHSIsOK) {
11872       if (RHSIsOK) {
11873         if (E->getOpcode() == BO_LOr)
11874           return Success(lhsResult || rhsResult, E, Result);
11875         else
11876           return Success(lhsResult && rhsResult, E, Result);
11877       }
11878     } else {
11879       if (RHSIsOK) {
11880         // We can't evaluate the LHS; however, sometimes the result
11881         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11882         if (rhsResult == (E->getOpcode() == BO_LOr))
11883           return Success(rhsResult, E, Result);
11884       }
11885     }
11886 
11887     return false;
11888   }
11889 
11890   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11891          E->getRHS()->getType()->isIntegralOrEnumerationType());
11892 
11893   if (LHSResult.Failed || RHSResult.Failed)
11894     return false;
11895 
11896   const APValue &LHSVal = LHSResult.Val;
11897   const APValue &RHSVal = RHSResult.Val;
11898 
11899   // Handle cases like (unsigned long)&a + 4.
11900   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
11901     Result = LHSVal;
11902     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
11903     return true;
11904   }
11905 
11906   // Handle cases like 4 + (unsigned long)&a
11907   if (E->getOpcode() == BO_Add &&
11908       RHSVal.isLValue() && LHSVal.isInt()) {
11909     Result = RHSVal;
11910     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
11911     return true;
11912   }
11913 
11914   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
11915     // Handle (intptr_t)&&A - (intptr_t)&&B.
11916     if (!LHSVal.getLValueOffset().isZero() ||
11917         !RHSVal.getLValueOffset().isZero())
11918       return false;
11919     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
11920     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
11921     if (!LHSExpr || !RHSExpr)
11922       return false;
11923     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
11924     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
11925     if (!LHSAddrExpr || !RHSAddrExpr)
11926       return false;
11927     // Make sure both labels come from the same function.
11928     if (LHSAddrExpr->getLabel()->getDeclContext() !=
11929         RHSAddrExpr->getLabel()->getDeclContext())
11930       return false;
11931     Result = APValue(LHSAddrExpr, RHSAddrExpr);
11932     return true;
11933   }
11934 
11935   // All the remaining cases expect both operands to be an integer
11936   if (!LHSVal.isInt() || !RHSVal.isInt())
11937     return Error(E);
11938 
11939   // Set up the width and signedness manually, in case it can't be deduced
11940   // from the operation we're performing.
11941   // FIXME: Don't do this in the cases where we can deduce it.
11942   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
11943                E->getType()->isUnsignedIntegerOrEnumerationType());
11944   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
11945                          RHSVal.getInt(), Value))
11946     return false;
11947   return Success(Value, E, Result);
11948 }
11949 
11950 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
11951   Job &job = Queue.back();
11952 
11953   switch (job.Kind) {
11954     case Job::AnyExprKind: {
11955       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
11956         if (shouldEnqueue(Bop)) {
11957           job.Kind = Job::BinOpKind;
11958           enqueue(Bop->getLHS());
11959           return;
11960         }
11961       }
11962 
11963       EvaluateExpr(job.E, Result);
11964       Queue.pop_back();
11965       return;
11966     }
11967 
11968     case Job::BinOpKind: {
11969       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11970       bool SuppressRHSDiags = false;
11971       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
11972         Queue.pop_back();
11973         return;
11974       }
11975       if (SuppressRHSDiags)
11976         job.startSpeculativeEval(Info);
11977       job.LHSResult.swap(Result);
11978       job.Kind = Job::BinOpVisitedLHSKind;
11979       enqueue(Bop->getRHS());
11980       return;
11981     }
11982 
11983     case Job::BinOpVisitedLHSKind: {
11984       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11985       EvalResult RHS;
11986       RHS.swap(Result);
11987       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
11988       Queue.pop_back();
11989       return;
11990     }
11991   }
11992 
11993   llvm_unreachable("Invalid Job::Kind!");
11994 }
11995 
11996 namespace {
11997 /// Used when we determine that we should fail, but can keep evaluating prior to
11998 /// noting that we had a failure.
11999 class DelayedNoteFailureRAII {
12000   EvalInfo &Info;
12001   bool NoteFailure;
12002 
12003 public:
12004   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
12005       : Info(Info), NoteFailure(NoteFailure) {}
12006   ~DelayedNoteFailureRAII() {
12007     if (NoteFailure) {
12008       bool ContinueAfterFailure = Info.noteFailure();
12009       (void)ContinueAfterFailure;
12010       assert(ContinueAfterFailure &&
12011              "Shouldn't have kept evaluating on failure.");
12012     }
12013   }
12014 };
12015 
12016 enum class CmpResult {
12017   Unequal,
12018   Less,
12019   Equal,
12020   Greater,
12021   Unordered,
12022 };
12023 }
12024 
12025 template <class SuccessCB, class AfterCB>
12026 static bool
12027 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12028                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12029   assert(E->isComparisonOp() && "expected comparison operator");
12030   assert((E->getOpcode() == BO_Cmp ||
12031           E->getType()->isIntegralOrEnumerationType()) &&
12032          "unsupported binary expression evaluation");
12033   auto Error = [&](const Expr *E) {
12034     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12035     return false;
12036   };
12037 
12038   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12039   bool IsEquality = E->isEqualityOp();
12040 
12041   QualType LHSTy = E->getLHS()->getType();
12042   QualType RHSTy = E->getRHS()->getType();
12043 
12044   if (LHSTy->isIntegralOrEnumerationType() &&
12045       RHSTy->isIntegralOrEnumerationType()) {
12046     APSInt LHS, RHS;
12047     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12048     if (!LHSOK && !Info.noteFailure())
12049       return false;
12050     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12051       return false;
12052     if (LHS < RHS)
12053       return Success(CmpResult::Less, E);
12054     if (LHS > RHS)
12055       return Success(CmpResult::Greater, E);
12056     return Success(CmpResult::Equal, E);
12057   }
12058 
12059   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12060     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12061     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12062 
12063     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12064     if (!LHSOK && !Info.noteFailure())
12065       return false;
12066     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12067       return false;
12068     if (LHSFX < RHSFX)
12069       return Success(CmpResult::Less, E);
12070     if (LHSFX > RHSFX)
12071       return Success(CmpResult::Greater, E);
12072     return Success(CmpResult::Equal, E);
12073   }
12074 
12075   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12076     ComplexValue LHS, RHS;
12077     bool LHSOK;
12078     if (E->isAssignmentOp()) {
12079       LValue LV;
12080       EvaluateLValue(E->getLHS(), LV, Info);
12081       LHSOK = false;
12082     } else if (LHSTy->isRealFloatingType()) {
12083       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12084       if (LHSOK) {
12085         LHS.makeComplexFloat();
12086         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12087       }
12088     } else {
12089       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12090     }
12091     if (!LHSOK && !Info.noteFailure())
12092       return false;
12093 
12094     if (E->getRHS()->getType()->isRealFloatingType()) {
12095       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12096         return false;
12097       RHS.makeComplexFloat();
12098       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12099     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12100       return false;
12101 
12102     if (LHS.isComplexFloat()) {
12103       APFloat::cmpResult CR_r =
12104         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12105       APFloat::cmpResult CR_i =
12106         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12107       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12108       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12109     } else {
12110       assert(IsEquality && "invalid complex comparison");
12111       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12112                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12113       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12114     }
12115   }
12116 
12117   if (LHSTy->isRealFloatingType() &&
12118       RHSTy->isRealFloatingType()) {
12119     APFloat RHS(0.0), LHS(0.0);
12120 
12121     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12122     if (!LHSOK && !Info.noteFailure())
12123       return false;
12124 
12125     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12126       return false;
12127 
12128     assert(E->isComparisonOp() && "Invalid binary operator!");
12129     auto GetCmpRes = [&]() {
12130       switch (LHS.compare(RHS)) {
12131       case APFloat::cmpEqual:
12132         return CmpResult::Equal;
12133       case APFloat::cmpLessThan:
12134         return CmpResult::Less;
12135       case APFloat::cmpGreaterThan:
12136         return CmpResult::Greater;
12137       case APFloat::cmpUnordered:
12138         return CmpResult::Unordered;
12139       }
12140       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12141     };
12142     return Success(GetCmpRes(), E);
12143   }
12144 
12145   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12146     LValue LHSValue, RHSValue;
12147 
12148     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12149     if (!LHSOK && !Info.noteFailure())
12150       return false;
12151 
12152     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12153       return false;
12154 
12155     // Reject differing bases from the normal codepath; we special-case
12156     // comparisons to null.
12157     if (!HasSameBase(LHSValue, RHSValue)) {
12158       // Inequalities and subtractions between unrelated pointers have
12159       // unspecified or undefined behavior.
12160       if (!IsEquality) {
12161         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12162         return false;
12163       }
12164       // A constant address may compare equal to the address of a symbol.
12165       // The one exception is that address of an object cannot compare equal
12166       // to a null pointer constant.
12167       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12168           (!RHSValue.Base && !RHSValue.Offset.isZero()))
12169         return Error(E);
12170       // It's implementation-defined whether distinct literals will have
12171       // distinct addresses. In clang, the result of such a comparison is
12172       // unspecified, so it is not a constant expression. However, we do know
12173       // that the address of a literal will be non-null.
12174       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12175           LHSValue.Base && RHSValue.Base)
12176         return Error(E);
12177       // We can't tell whether weak symbols will end up pointing to the same
12178       // object.
12179       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12180         return Error(E);
12181       // We can't compare the address of the start of one object with the
12182       // past-the-end address of another object, per C++ DR1652.
12183       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12184            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12185           (RHSValue.Base && RHSValue.Offset.isZero() &&
12186            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12187         return Error(E);
12188       // We can't tell whether an object is at the same address as another
12189       // zero sized object.
12190       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12191           (LHSValue.Base && isZeroSized(RHSValue)))
12192         return Error(E);
12193       return Success(CmpResult::Unequal, E);
12194     }
12195 
12196     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12197     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12198 
12199     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12200     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12201 
12202     // C++11 [expr.rel]p3:
12203     //   Pointers to void (after pointer conversions) can be compared, with a
12204     //   result defined as follows: If both pointers represent the same
12205     //   address or are both the null pointer value, the result is true if the
12206     //   operator is <= or >= and false otherwise; otherwise the result is
12207     //   unspecified.
12208     // We interpret this as applying to pointers to *cv* void.
12209     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12210       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12211 
12212     // C++11 [expr.rel]p2:
12213     // - If two pointers point to non-static data members of the same object,
12214     //   or to subobjects or array elements fo such members, recursively, the
12215     //   pointer to the later declared member compares greater provided the
12216     //   two members have the same access control and provided their class is
12217     //   not a union.
12218     //   [...]
12219     // - Otherwise pointer comparisons are unspecified.
12220     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12221       bool WasArrayIndex;
12222       unsigned Mismatch = FindDesignatorMismatch(
12223           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12224       // At the point where the designators diverge, the comparison has a
12225       // specified value if:
12226       //  - we are comparing array indices
12227       //  - we are comparing fields of a union, or fields with the same access
12228       // Otherwise, the result is unspecified and thus the comparison is not a
12229       // constant expression.
12230       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12231           Mismatch < RHSDesignator.Entries.size()) {
12232         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12233         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12234         if (!LF && !RF)
12235           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12236         else if (!LF)
12237           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12238               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12239               << RF->getParent() << RF;
12240         else if (!RF)
12241           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12242               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12243               << LF->getParent() << LF;
12244         else if (!LF->getParent()->isUnion() &&
12245                  LF->getAccess() != RF->getAccess())
12246           Info.CCEDiag(E,
12247                        diag::note_constexpr_pointer_comparison_differing_access)
12248               << LF << LF->getAccess() << RF << RF->getAccess()
12249               << LF->getParent();
12250       }
12251     }
12252 
12253     // The comparison here must be unsigned, and performed with the same
12254     // width as the pointer.
12255     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12256     uint64_t CompareLHS = LHSOffset.getQuantity();
12257     uint64_t CompareRHS = RHSOffset.getQuantity();
12258     assert(PtrSize <= 64 && "Unexpected pointer width");
12259     uint64_t Mask = ~0ULL >> (64 - PtrSize);
12260     CompareLHS &= Mask;
12261     CompareRHS &= Mask;
12262 
12263     // If there is a base and this is a relational operator, we can only
12264     // compare pointers within the object in question; otherwise, the result
12265     // depends on where the object is located in memory.
12266     if (!LHSValue.Base.isNull() && IsRelational) {
12267       QualType BaseTy = getType(LHSValue.Base);
12268       if (BaseTy->isIncompleteType())
12269         return Error(E);
12270       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12271       uint64_t OffsetLimit = Size.getQuantity();
12272       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12273         return Error(E);
12274     }
12275 
12276     if (CompareLHS < CompareRHS)
12277       return Success(CmpResult::Less, E);
12278     if (CompareLHS > CompareRHS)
12279       return Success(CmpResult::Greater, E);
12280     return Success(CmpResult::Equal, E);
12281   }
12282 
12283   if (LHSTy->isMemberPointerType()) {
12284     assert(IsEquality && "unexpected member pointer operation");
12285     assert(RHSTy->isMemberPointerType() && "invalid comparison");
12286 
12287     MemberPtr LHSValue, RHSValue;
12288 
12289     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12290     if (!LHSOK && !Info.noteFailure())
12291       return false;
12292 
12293     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12294       return false;
12295 
12296     // C++11 [expr.eq]p2:
12297     //   If both operands are null, they compare equal. Otherwise if only one is
12298     //   null, they compare unequal.
12299     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12300       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12301       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12302     }
12303 
12304     //   Otherwise if either is a pointer to a virtual member function, the
12305     //   result is unspecified.
12306     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12307       if (MD->isVirtual())
12308         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12309     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12310       if (MD->isVirtual())
12311         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12312 
12313     //   Otherwise they compare equal if and only if they would refer to the
12314     //   same member of the same most derived object or the same subobject if
12315     //   they were dereferenced with a hypothetical object of the associated
12316     //   class type.
12317     bool Equal = LHSValue == RHSValue;
12318     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12319   }
12320 
12321   if (LHSTy->isNullPtrType()) {
12322     assert(E->isComparisonOp() && "unexpected nullptr operation");
12323     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
12324     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12325     // are compared, the result is true of the operator is <=, >= or ==, and
12326     // false otherwise.
12327     return Success(CmpResult::Equal, E);
12328   }
12329 
12330   return DoAfter();
12331 }
12332 
12333 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12334   if (!CheckLiteralType(Info, E))
12335     return false;
12336 
12337   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12338     ComparisonCategoryResult CCR;
12339     switch (CR) {
12340     case CmpResult::Unequal:
12341       llvm_unreachable("should never produce Unequal for three-way comparison");
12342     case CmpResult::Less:
12343       CCR = ComparisonCategoryResult::Less;
12344       break;
12345     case CmpResult::Equal:
12346       CCR = ComparisonCategoryResult::Equal;
12347       break;
12348     case CmpResult::Greater:
12349       CCR = ComparisonCategoryResult::Greater;
12350       break;
12351     case CmpResult::Unordered:
12352       CCR = ComparisonCategoryResult::Unordered;
12353       break;
12354     }
12355     // Evaluation succeeded. Lookup the information for the comparison category
12356     // type and fetch the VarDecl for the result.
12357     const ComparisonCategoryInfo &CmpInfo =
12358         Info.Ctx.CompCategories.getInfoForType(E->getType());
12359     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12360     // Check and evaluate the result as a constant expression.
12361     LValue LV;
12362     LV.set(VD);
12363     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12364       return false;
12365     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
12366   };
12367   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12368     return ExprEvaluatorBaseTy::VisitBinCmp(E);
12369   });
12370 }
12371 
12372 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12373   // We don't call noteFailure immediately because the assignment happens after
12374   // we evaluate LHS and RHS.
12375   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
12376     return Error(E);
12377 
12378   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
12379   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12380     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12381 
12382   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12383           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
12384          "DataRecursiveIntBinOpEvaluator should have handled integral types");
12385 
12386   if (E->isComparisonOp()) {
12387     // Evaluate builtin binary comparisons by evaluating them as three-way
12388     // comparisons and then translating the result.
12389     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12390       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
12391              "should only produce Unequal for equality comparisons");
12392       bool IsEqual   = CR == CmpResult::Equal,
12393            IsLess    = CR == CmpResult::Less,
12394            IsGreater = CR == CmpResult::Greater;
12395       auto Op = E->getOpcode();
12396       switch (Op) {
12397       default:
12398         llvm_unreachable("unsupported binary operator");
12399       case BO_EQ:
12400       case BO_NE:
12401         return Success(IsEqual == (Op == BO_EQ), E);
12402       case BO_LT:
12403         return Success(IsLess, E);
12404       case BO_GT:
12405         return Success(IsGreater, E);
12406       case BO_LE:
12407         return Success(IsEqual || IsLess, E);
12408       case BO_GE:
12409         return Success(IsEqual || IsGreater, E);
12410       }
12411     };
12412     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12413       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12414     });
12415   }
12416 
12417   QualType LHSTy = E->getLHS()->getType();
12418   QualType RHSTy = E->getRHS()->getType();
12419 
12420   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
12421       E->getOpcode() == BO_Sub) {
12422     LValue LHSValue, RHSValue;
12423 
12424     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12425     if (!LHSOK && !Info.noteFailure())
12426       return false;
12427 
12428     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12429       return false;
12430 
12431     // Reject differing bases from the normal codepath; we special-case
12432     // comparisons to null.
12433     if (!HasSameBase(LHSValue, RHSValue)) {
12434       // Handle &&A - &&B.
12435       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
12436         return Error(E);
12437       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
12438       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
12439       if (!LHSExpr || !RHSExpr)
12440         return Error(E);
12441       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12442       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12443       if (!LHSAddrExpr || !RHSAddrExpr)
12444         return Error(E);
12445       // Make sure both labels come from the same function.
12446       if (LHSAddrExpr->getLabel()->getDeclContext() !=
12447           RHSAddrExpr->getLabel()->getDeclContext())
12448         return Error(E);
12449       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
12450     }
12451     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12452     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12453 
12454     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12455     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12456 
12457     // C++11 [expr.add]p6:
12458     //   Unless both pointers point to elements of the same array object, or
12459     //   one past the last element of the array object, the behavior is
12460     //   undefined.
12461     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
12462         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
12463                                 RHSDesignator))
12464       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
12465 
12466     QualType Type = E->getLHS()->getType();
12467     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
12468 
12469     CharUnits ElementSize;
12470     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
12471       return false;
12472 
12473     // As an extension, a type may have zero size (empty struct or union in
12474     // C, array of zero length). Pointer subtraction in such cases has
12475     // undefined behavior, so is not constant.
12476     if (ElementSize.isZero()) {
12477       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
12478           << ElementType;
12479       return false;
12480     }
12481 
12482     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
12483     // and produce incorrect results when it overflows. Such behavior
12484     // appears to be non-conforming, but is common, so perhaps we should
12485     // assume the standard intended for such cases to be undefined behavior
12486     // and check for them.
12487 
12488     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
12489     // overflow in the final conversion to ptrdiff_t.
12490     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
12491     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
12492     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
12493                     false);
12494     APSInt TrueResult = (LHS - RHS) / ElemSize;
12495     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
12496 
12497     if (Result.extend(65) != TrueResult &&
12498         !HandleOverflow(Info, E, TrueResult, E->getType()))
12499       return false;
12500     return Success(Result, E);
12501   }
12502 
12503   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12504 }
12505 
12506 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
12507 /// a result as the expression's type.
12508 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
12509                                     const UnaryExprOrTypeTraitExpr *E) {
12510   switch(E->getKind()) {
12511   case UETT_PreferredAlignOf:
12512   case UETT_AlignOf: {
12513     if (E->isArgumentType())
12514       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
12515                      E);
12516     else
12517       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
12518                      E);
12519   }
12520 
12521   case UETT_VecStep: {
12522     QualType Ty = E->getTypeOfArgument();
12523 
12524     if (Ty->isVectorType()) {
12525       unsigned n = Ty->castAs<VectorType>()->getNumElements();
12526 
12527       // The vec_step built-in functions that take a 3-component
12528       // vector return 4. (OpenCL 1.1 spec 6.11.12)
12529       if (n == 3)
12530         n = 4;
12531 
12532       return Success(n, E);
12533     } else
12534       return Success(1, E);
12535   }
12536 
12537   case UETT_SizeOf: {
12538     QualType SrcTy = E->getTypeOfArgument();
12539     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
12540     //   the result is the size of the referenced type."
12541     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
12542       SrcTy = Ref->getPointeeType();
12543 
12544     CharUnits Sizeof;
12545     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
12546       return false;
12547     return Success(Sizeof, E);
12548   }
12549   case UETT_OpenMPRequiredSimdAlign:
12550     assert(E->isArgumentType());
12551     return Success(
12552         Info.Ctx.toCharUnitsFromBits(
12553                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
12554             .getQuantity(),
12555         E);
12556   }
12557 
12558   llvm_unreachable("unknown expr/type trait");
12559 }
12560 
12561 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
12562   CharUnits Result;
12563   unsigned n = OOE->getNumComponents();
12564   if (n == 0)
12565     return Error(OOE);
12566   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
12567   for (unsigned i = 0; i != n; ++i) {
12568     OffsetOfNode ON = OOE->getComponent(i);
12569     switch (ON.getKind()) {
12570     case OffsetOfNode::Array: {
12571       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
12572       APSInt IdxResult;
12573       if (!EvaluateInteger(Idx, IdxResult, Info))
12574         return false;
12575       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
12576       if (!AT)
12577         return Error(OOE);
12578       CurrentType = AT->getElementType();
12579       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
12580       Result += IdxResult.getSExtValue() * ElementSize;
12581       break;
12582     }
12583 
12584     case OffsetOfNode::Field: {
12585       FieldDecl *MemberDecl = ON.getField();
12586       const RecordType *RT = CurrentType->getAs<RecordType>();
12587       if (!RT)
12588         return Error(OOE);
12589       RecordDecl *RD = RT->getDecl();
12590       if (RD->isInvalidDecl()) return false;
12591       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
12592       unsigned i = MemberDecl->getFieldIndex();
12593       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
12594       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
12595       CurrentType = MemberDecl->getType().getNonReferenceType();
12596       break;
12597     }
12598 
12599     case OffsetOfNode::Identifier:
12600       llvm_unreachable("dependent __builtin_offsetof");
12601 
12602     case OffsetOfNode::Base: {
12603       CXXBaseSpecifier *BaseSpec = ON.getBase();
12604       if (BaseSpec->isVirtual())
12605         return Error(OOE);
12606 
12607       // Find the layout of the class whose base we are looking into.
12608       const RecordType *RT = CurrentType->getAs<RecordType>();
12609       if (!RT)
12610         return Error(OOE);
12611       RecordDecl *RD = RT->getDecl();
12612       if (RD->isInvalidDecl()) return false;
12613       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
12614 
12615       // Find the base class itself.
12616       CurrentType = BaseSpec->getType();
12617       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
12618       if (!BaseRT)
12619         return Error(OOE);
12620 
12621       // Add the offset to the base.
12622       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
12623       break;
12624     }
12625     }
12626   }
12627   return Success(Result, OOE);
12628 }
12629 
12630 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12631   switch (E->getOpcode()) {
12632   default:
12633     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
12634     // See C99 6.6p3.
12635     return Error(E);
12636   case UO_Extension:
12637     // FIXME: Should extension allow i-c-e extension expressions in its scope?
12638     // If so, we could clear the diagnostic ID.
12639     return Visit(E->getSubExpr());
12640   case UO_Plus:
12641     // The result is just the value.
12642     return Visit(E->getSubExpr());
12643   case UO_Minus: {
12644     if (!Visit(E->getSubExpr()))
12645       return false;
12646     if (!Result.isInt()) return Error(E);
12647     const APSInt &Value = Result.getInt();
12648     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
12649         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
12650                         E->getType()))
12651       return false;
12652     return Success(-Value, E);
12653   }
12654   case UO_Not: {
12655     if (!Visit(E->getSubExpr()))
12656       return false;
12657     if (!Result.isInt()) return Error(E);
12658     return Success(~Result.getInt(), E);
12659   }
12660   case UO_LNot: {
12661     bool bres;
12662     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12663       return false;
12664     return Success(!bres, E);
12665   }
12666   }
12667 }
12668 
12669 /// HandleCast - This is used to evaluate implicit or explicit casts where the
12670 /// result type is integer.
12671 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
12672   const Expr *SubExpr = E->getSubExpr();
12673   QualType DestType = E->getType();
12674   QualType SrcType = SubExpr->getType();
12675 
12676   switch (E->getCastKind()) {
12677   case CK_BaseToDerived:
12678   case CK_DerivedToBase:
12679   case CK_UncheckedDerivedToBase:
12680   case CK_Dynamic:
12681   case CK_ToUnion:
12682   case CK_ArrayToPointerDecay:
12683   case CK_FunctionToPointerDecay:
12684   case CK_NullToPointer:
12685   case CK_NullToMemberPointer:
12686   case CK_BaseToDerivedMemberPointer:
12687   case CK_DerivedToBaseMemberPointer:
12688   case CK_ReinterpretMemberPointer:
12689   case CK_ConstructorConversion:
12690   case CK_IntegralToPointer:
12691   case CK_ToVoid:
12692   case CK_VectorSplat:
12693   case CK_IntegralToFloating:
12694   case CK_FloatingCast:
12695   case CK_CPointerToObjCPointerCast:
12696   case CK_BlockPointerToObjCPointerCast:
12697   case CK_AnyPointerToBlockPointerCast:
12698   case CK_ObjCObjectLValueCast:
12699   case CK_FloatingRealToComplex:
12700   case CK_FloatingComplexToReal:
12701   case CK_FloatingComplexCast:
12702   case CK_FloatingComplexToIntegralComplex:
12703   case CK_IntegralRealToComplex:
12704   case CK_IntegralComplexCast:
12705   case CK_IntegralComplexToFloatingComplex:
12706   case CK_BuiltinFnToFnPtr:
12707   case CK_ZeroToOCLOpaqueType:
12708   case CK_NonAtomicToAtomic:
12709   case CK_AddressSpaceConversion:
12710   case CK_IntToOCLSampler:
12711   case CK_FixedPointCast:
12712   case CK_IntegralToFixedPoint:
12713     llvm_unreachable("invalid cast kind for integral value");
12714 
12715   case CK_BitCast:
12716   case CK_Dependent:
12717   case CK_LValueBitCast:
12718   case CK_ARCProduceObject:
12719   case CK_ARCConsumeObject:
12720   case CK_ARCReclaimReturnedObject:
12721   case CK_ARCExtendBlockObject:
12722   case CK_CopyAndAutoreleaseBlockObject:
12723     return Error(E);
12724 
12725   case CK_UserDefinedConversion:
12726   case CK_LValueToRValue:
12727   case CK_AtomicToNonAtomic:
12728   case CK_NoOp:
12729   case CK_LValueToRValueBitCast:
12730     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12731 
12732   case CK_MemberPointerToBoolean:
12733   case CK_PointerToBoolean:
12734   case CK_IntegralToBoolean:
12735   case CK_FloatingToBoolean:
12736   case CK_BooleanToSignedIntegral:
12737   case CK_FloatingComplexToBoolean:
12738   case CK_IntegralComplexToBoolean: {
12739     bool BoolResult;
12740     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
12741       return false;
12742     uint64_t IntResult = BoolResult;
12743     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
12744       IntResult = (uint64_t)-1;
12745     return Success(IntResult, E);
12746   }
12747 
12748   case CK_FixedPointToIntegral: {
12749     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
12750     if (!EvaluateFixedPoint(SubExpr, Src, Info))
12751       return false;
12752     bool Overflowed;
12753     llvm::APSInt Result = Src.convertToInt(
12754         Info.Ctx.getIntWidth(DestType),
12755         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
12756     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12757       return false;
12758     return Success(Result, E);
12759   }
12760 
12761   case CK_FixedPointToBoolean: {
12762     // Unsigned padding does not affect this.
12763     APValue Val;
12764     if (!Evaluate(Val, Info, SubExpr))
12765       return false;
12766     return Success(Val.getFixedPoint().getBoolValue(), E);
12767   }
12768 
12769   case CK_IntegralCast: {
12770     if (!Visit(SubExpr))
12771       return false;
12772 
12773     if (!Result.isInt()) {
12774       // Allow casts of address-of-label differences if they are no-ops
12775       // or narrowing.  (The narrowing case isn't actually guaranteed to
12776       // be constant-evaluatable except in some narrow cases which are hard
12777       // to detect here.  We let it through on the assumption the user knows
12778       // what they are doing.)
12779       if (Result.isAddrLabelDiff())
12780         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
12781       // Only allow casts of lvalues if they are lossless.
12782       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
12783     }
12784 
12785     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
12786                                       Result.getInt()), E);
12787   }
12788 
12789   case CK_PointerToIntegral: {
12790     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
12791 
12792     LValue LV;
12793     if (!EvaluatePointer(SubExpr, LV, Info))
12794       return false;
12795 
12796     if (LV.getLValueBase()) {
12797       // Only allow based lvalue casts if they are lossless.
12798       // FIXME: Allow a larger integer size than the pointer size, and allow
12799       // narrowing back down to pointer width in subsequent integral casts.
12800       // FIXME: Check integer type's active bits, not its type size.
12801       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
12802         return Error(E);
12803 
12804       LV.Designator.setInvalid();
12805       LV.moveInto(Result);
12806       return true;
12807     }
12808 
12809     APSInt AsInt;
12810     APValue V;
12811     LV.moveInto(V);
12812     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
12813       llvm_unreachable("Can't cast this!");
12814 
12815     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
12816   }
12817 
12818   case CK_IntegralComplexToReal: {
12819     ComplexValue C;
12820     if (!EvaluateComplex(SubExpr, C, Info))
12821       return false;
12822     return Success(C.getComplexIntReal(), E);
12823   }
12824 
12825   case CK_FloatingToIntegral: {
12826     APFloat F(0.0);
12827     if (!EvaluateFloat(SubExpr, F, Info))
12828       return false;
12829 
12830     APSInt Value;
12831     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
12832       return false;
12833     return Success(Value, E);
12834   }
12835   }
12836 
12837   llvm_unreachable("unknown cast resulting in integral value");
12838 }
12839 
12840 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12841   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12842     ComplexValue LV;
12843     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12844       return false;
12845     if (!LV.isComplexInt())
12846       return Error(E);
12847     return Success(LV.getComplexIntReal(), E);
12848   }
12849 
12850   return Visit(E->getSubExpr());
12851 }
12852 
12853 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12854   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
12855     ComplexValue LV;
12856     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12857       return false;
12858     if (!LV.isComplexInt())
12859       return Error(E);
12860     return Success(LV.getComplexIntImag(), E);
12861   }
12862 
12863   VisitIgnoredValue(E->getSubExpr());
12864   return Success(0, E);
12865 }
12866 
12867 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
12868   return Success(E->getPackLength(), E);
12869 }
12870 
12871 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
12872   return Success(E->getValue(), E);
12873 }
12874 
12875 bool IntExprEvaluator::VisitConceptSpecializationExpr(
12876        const ConceptSpecializationExpr *E) {
12877   return Success(E->isSatisfied(), E);
12878 }
12879 
12880 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
12881   return Success(E->isSatisfied(), E);
12882 }
12883 
12884 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12885   switch (E->getOpcode()) {
12886     default:
12887       // Invalid unary operators
12888       return Error(E);
12889     case UO_Plus:
12890       // The result is just the value.
12891       return Visit(E->getSubExpr());
12892     case UO_Minus: {
12893       if (!Visit(E->getSubExpr())) return false;
12894       if (!Result.isFixedPoint())
12895         return Error(E);
12896       bool Overflowed;
12897       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
12898       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
12899         return false;
12900       return Success(Negated, E);
12901     }
12902     case UO_LNot: {
12903       bool bres;
12904       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12905         return false;
12906       return Success(!bres, E);
12907     }
12908   }
12909 }
12910 
12911 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
12912   const Expr *SubExpr = E->getSubExpr();
12913   QualType DestType = E->getType();
12914   assert(DestType->isFixedPointType() &&
12915          "Expected destination type to be a fixed point type");
12916   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
12917 
12918   switch (E->getCastKind()) {
12919   case CK_FixedPointCast: {
12920     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
12921     if (!EvaluateFixedPoint(SubExpr, Src, Info))
12922       return false;
12923     bool Overflowed;
12924     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
12925     if (Overflowed) {
12926       if (Info.checkingForUndefinedBehavior())
12927         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
12928                                          diag::warn_fixedpoint_constant_overflow)
12929           << Result.toString() << E->getType();
12930       else if (!HandleOverflow(Info, E, Result, E->getType()))
12931         return false;
12932     }
12933     return Success(Result, E);
12934   }
12935   case CK_IntegralToFixedPoint: {
12936     APSInt Src;
12937     if (!EvaluateInteger(SubExpr, Src, Info))
12938       return false;
12939 
12940     bool Overflowed;
12941     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
12942         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
12943 
12944     if (Overflowed) {
12945       if (Info.checkingForUndefinedBehavior())
12946         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
12947                                          diag::warn_fixedpoint_constant_overflow)
12948           << IntResult.toString() << E->getType();
12949       else if (!HandleOverflow(Info, E, IntResult, E->getType()))
12950         return false;
12951     }
12952 
12953     return Success(IntResult, E);
12954   }
12955   case CK_NoOp:
12956   case CK_LValueToRValue:
12957     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12958   default:
12959     return Error(E);
12960   }
12961 }
12962 
12963 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12964   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
12965     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12966 
12967   const Expr *LHS = E->getLHS();
12968   const Expr *RHS = E->getRHS();
12969   FixedPointSemantics ResultFXSema =
12970       Info.Ctx.getFixedPointSemantics(E->getType());
12971 
12972   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
12973   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
12974     return false;
12975   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
12976   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
12977     return false;
12978 
12979   bool OpOverflow = false, ConversionOverflow = false;
12980   APFixedPoint Result(LHSFX.getSemantics());
12981   switch (E->getOpcode()) {
12982   case BO_Add: {
12983     Result = LHSFX.add(RHSFX, &OpOverflow)
12984                   .convert(ResultFXSema, &ConversionOverflow);
12985     break;
12986   }
12987   case BO_Sub: {
12988     Result = LHSFX.sub(RHSFX, &OpOverflow)
12989                   .convert(ResultFXSema, &ConversionOverflow);
12990     break;
12991   }
12992   case BO_Mul: {
12993     Result = LHSFX.mul(RHSFX, &OpOverflow)
12994                   .convert(ResultFXSema, &ConversionOverflow);
12995     break;
12996   }
12997   case BO_Div: {
12998     if (RHSFX.getValue() == 0) {
12999       Info.FFDiag(E, diag::note_expr_divide_by_zero);
13000       return false;
13001     }
13002     Result = LHSFX.div(RHSFX, &OpOverflow)
13003                   .convert(ResultFXSema, &ConversionOverflow);
13004     break;
13005   }
13006   default:
13007     return false;
13008   }
13009   if (OpOverflow || ConversionOverflow) {
13010     if (Info.checkingForUndefinedBehavior())
13011       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13012                                        diag::warn_fixedpoint_constant_overflow)
13013         << Result.toString() << E->getType();
13014     else if (!HandleOverflow(Info, E, Result, E->getType()))
13015       return false;
13016   }
13017   return Success(Result, E);
13018 }
13019 
13020 //===----------------------------------------------------------------------===//
13021 // Float Evaluation
13022 //===----------------------------------------------------------------------===//
13023 
13024 namespace {
13025 class FloatExprEvaluator
13026   : public ExprEvaluatorBase<FloatExprEvaluator> {
13027   APFloat &Result;
13028 public:
13029   FloatExprEvaluator(EvalInfo &info, APFloat &result)
13030     : ExprEvaluatorBaseTy(info), Result(result) {}
13031 
13032   bool Success(const APValue &V, const Expr *e) {
13033     Result = V.getFloat();
13034     return true;
13035   }
13036 
13037   bool ZeroInitialization(const Expr *E) {
13038     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13039     return true;
13040   }
13041 
13042   bool VisitCallExpr(const CallExpr *E);
13043 
13044   bool VisitUnaryOperator(const UnaryOperator *E);
13045   bool VisitBinaryOperator(const BinaryOperator *E);
13046   bool VisitFloatingLiteral(const FloatingLiteral *E);
13047   bool VisitCastExpr(const CastExpr *E);
13048 
13049   bool VisitUnaryReal(const UnaryOperator *E);
13050   bool VisitUnaryImag(const UnaryOperator *E);
13051 
13052   // FIXME: Missing: array subscript of vector, member of vector
13053 };
13054 } // end anonymous namespace
13055 
13056 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13057   assert(E->isRValue() && E->getType()->isRealFloatingType());
13058   return FloatExprEvaluator(Info, Result).Visit(E);
13059 }
13060 
13061 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13062                                   QualType ResultTy,
13063                                   const Expr *Arg,
13064                                   bool SNaN,
13065                                   llvm::APFloat &Result) {
13066   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13067   if (!S) return false;
13068 
13069   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13070 
13071   llvm::APInt fill;
13072 
13073   // Treat empty strings as if they were zero.
13074   if (S->getString().empty())
13075     fill = llvm::APInt(32, 0);
13076   else if (S->getString().getAsInteger(0, fill))
13077     return false;
13078 
13079   if (Context.getTargetInfo().isNan2008()) {
13080     if (SNaN)
13081       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13082     else
13083       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13084   } else {
13085     // Prior to IEEE 754-2008, architectures were allowed to choose whether
13086     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13087     // a different encoding to what became a standard in 2008, and for pre-
13088     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13089     // sNaN. This is now known as "legacy NaN" encoding.
13090     if (SNaN)
13091       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13092     else
13093       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13094   }
13095 
13096   return true;
13097 }
13098 
13099 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13100   switch (E->getBuiltinCallee()) {
13101   default:
13102     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13103 
13104   case Builtin::BI__builtin_huge_val:
13105   case Builtin::BI__builtin_huge_valf:
13106   case Builtin::BI__builtin_huge_vall:
13107   case Builtin::BI__builtin_huge_valf128:
13108   case Builtin::BI__builtin_inf:
13109   case Builtin::BI__builtin_inff:
13110   case Builtin::BI__builtin_infl:
13111   case Builtin::BI__builtin_inff128: {
13112     const llvm::fltSemantics &Sem =
13113       Info.Ctx.getFloatTypeSemantics(E->getType());
13114     Result = llvm::APFloat::getInf(Sem);
13115     return true;
13116   }
13117 
13118   case Builtin::BI__builtin_nans:
13119   case Builtin::BI__builtin_nansf:
13120   case Builtin::BI__builtin_nansl:
13121   case Builtin::BI__builtin_nansf128:
13122     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13123                                true, Result))
13124       return Error(E);
13125     return true;
13126 
13127   case Builtin::BI__builtin_nan:
13128   case Builtin::BI__builtin_nanf:
13129   case Builtin::BI__builtin_nanl:
13130   case Builtin::BI__builtin_nanf128:
13131     // If this is __builtin_nan() turn this into a nan, otherwise we
13132     // can't constant fold it.
13133     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13134                                false, Result))
13135       return Error(E);
13136     return true;
13137 
13138   case Builtin::BI__builtin_fabs:
13139   case Builtin::BI__builtin_fabsf:
13140   case Builtin::BI__builtin_fabsl:
13141   case Builtin::BI__builtin_fabsf128:
13142     if (!EvaluateFloat(E->getArg(0), Result, Info))
13143       return false;
13144 
13145     if (Result.isNegative())
13146       Result.changeSign();
13147     return true;
13148 
13149   // FIXME: Builtin::BI__builtin_powi
13150   // FIXME: Builtin::BI__builtin_powif
13151   // FIXME: Builtin::BI__builtin_powil
13152 
13153   case Builtin::BI__builtin_copysign:
13154   case Builtin::BI__builtin_copysignf:
13155   case Builtin::BI__builtin_copysignl:
13156   case Builtin::BI__builtin_copysignf128: {
13157     APFloat RHS(0.);
13158     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13159         !EvaluateFloat(E->getArg(1), RHS, Info))
13160       return false;
13161     Result.copySign(RHS);
13162     return true;
13163   }
13164   }
13165 }
13166 
13167 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13168   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13169     ComplexValue CV;
13170     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13171       return false;
13172     Result = CV.FloatReal;
13173     return true;
13174   }
13175 
13176   return Visit(E->getSubExpr());
13177 }
13178 
13179 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13180   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13181     ComplexValue CV;
13182     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13183       return false;
13184     Result = CV.FloatImag;
13185     return true;
13186   }
13187 
13188   VisitIgnoredValue(E->getSubExpr());
13189   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13190   Result = llvm::APFloat::getZero(Sem);
13191   return true;
13192 }
13193 
13194 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13195   switch (E->getOpcode()) {
13196   default: return Error(E);
13197   case UO_Plus:
13198     return EvaluateFloat(E->getSubExpr(), Result, Info);
13199   case UO_Minus:
13200     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13201       return false;
13202     Result.changeSign();
13203     return true;
13204   }
13205 }
13206 
13207 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13208   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13209     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13210 
13211   APFloat RHS(0.0);
13212   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13213   if (!LHSOK && !Info.noteFailure())
13214     return false;
13215   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13216          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13217 }
13218 
13219 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13220   Result = E->getValue();
13221   return true;
13222 }
13223 
13224 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13225   const Expr* SubExpr = E->getSubExpr();
13226 
13227   switch (E->getCastKind()) {
13228   default:
13229     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13230 
13231   case CK_IntegralToFloating: {
13232     APSInt IntResult;
13233     return EvaluateInteger(SubExpr, IntResult, Info) &&
13234            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
13235                                 E->getType(), Result);
13236   }
13237 
13238   case CK_FloatingCast: {
13239     if (!Visit(SubExpr))
13240       return false;
13241     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13242                                   Result);
13243   }
13244 
13245   case CK_FloatingComplexToReal: {
13246     ComplexValue V;
13247     if (!EvaluateComplex(SubExpr, V, Info))
13248       return false;
13249     Result = V.getComplexFloatReal();
13250     return true;
13251   }
13252   }
13253 }
13254 
13255 //===----------------------------------------------------------------------===//
13256 // Complex Evaluation (for float and integer)
13257 //===----------------------------------------------------------------------===//
13258 
13259 namespace {
13260 class ComplexExprEvaluator
13261   : public ExprEvaluatorBase<ComplexExprEvaluator> {
13262   ComplexValue &Result;
13263 
13264 public:
13265   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13266     : ExprEvaluatorBaseTy(info), Result(Result) {}
13267 
13268   bool Success(const APValue &V, const Expr *e) {
13269     Result.setFrom(V);
13270     return true;
13271   }
13272 
13273   bool ZeroInitialization(const Expr *E);
13274 
13275   //===--------------------------------------------------------------------===//
13276   //                            Visitor Methods
13277   //===--------------------------------------------------------------------===//
13278 
13279   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13280   bool VisitCastExpr(const CastExpr *E);
13281   bool VisitBinaryOperator(const BinaryOperator *E);
13282   bool VisitUnaryOperator(const UnaryOperator *E);
13283   bool VisitInitListExpr(const InitListExpr *E);
13284 };
13285 } // end anonymous namespace
13286 
13287 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13288                             EvalInfo &Info) {
13289   assert(E->isRValue() && E->getType()->isAnyComplexType());
13290   return ComplexExprEvaluator(Info, Result).Visit(E);
13291 }
13292 
13293 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13294   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13295   if (ElemTy->isRealFloatingType()) {
13296     Result.makeComplexFloat();
13297     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13298     Result.FloatReal = Zero;
13299     Result.FloatImag = Zero;
13300   } else {
13301     Result.makeComplexInt();
13302     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13303     Result.IntReal = Zero;
13304     Result.IntImag = Zero;
13305   }
13306   return true;
13307 }
13308 
13309 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13310   const Expr* SubExpr = E->getSubExpr();
13311 
13312   if (SubExpr->getType()->isRealFloatingType()) {
13313     Result.makeComplexFloat();
13314     APFloat &Imag = Result.FloatImag;
13315     if (!EvaluateFloat(SubExpr, Imag, Info))
13316       return false;
13317 
13318     Result.FloatReal = APFloat(Imag.getSemantics());
13319     return true;
13320   } else {
13321     assert(SubExpr->getType()->isIntegerType() &&
13322            "Unexpected imaginary literal.");
13323 
13324     Result.makeComplexInt();
13325     APSInt &Imag = Result.IntImag;
13326     if (!EvaluateInteger(SubExpr, Imag, Info))
13327       return false;
13328 
13329     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
13330     return true;
13331   }
13332 }
13333 
13334 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
13335 
13336   switch (E->getCastKind()) {
13337   case CK_BitCast:
13338   case CK_BaseToDerived:
13339   case CK_DerivedToBase:
13340   case CK_UncheckedDerivedToBase:
13341   case CK_Dynamic:
13342   case CK_ToUnion:
13343   case CK_ArrayToPointerDecay:
13344   case CK_FunctionToPointerDecay:
13345   case CK_NullToPointer:
13346   case CK_NullToMemberPointer:
13347   case CK_BaseToDerivedMemberPointer:
13348   case CK_DerivedToBaseMemberPointer:
13349   case CK_MemberPointerToBoolean:
13350   case CK_ReinterpretMemberPointer:
13351   case CK_ConstructorConversion:
13352   case CK_IntegralToPointer:
13353   case CK_PointerToIntegral:
13354   case CK_PointerToBoolean:
13355   case CK_ToVoid:
13356   case CK_VectorSplat:
13357   case CK_IntegralCast:
13358   case CK_BooleanToSignedIntegral:
13359   case CK_IntegralToBoolean:
13360   case CK_IntegralToFloating:
13361   case CK_FloatingToIntegral:
13362   case CK_FloatingToBoolean:
13363   case CK_FloatingCast:
13364   case CK_CPointerToObjCPointerCast:
13365   case CK_BlockPointerToObjCPointerCast:
13366   case CK_AnyPointerToBlockPointerCast:
13367   case CK_ObjCObjectLValueCast:
13368   case CK_FloatingComplexToReal:
13369   case CK_FloatingComplexToBoolean:
13370   case CK_IntegralComplexToReal:
13371   case CK_IntegralComplexToBoolean:
13372   case CK_ARCProduceObject:
13373   case CK_ARCConsumeObject:
13374   case CK_ARCReclaimReturnedObject:
13375   case CK_ARCExtendBlockObject:
13376   case CK_CopyAndAutoreleaseBlockObject:
13377   case CK_BuiltinFnToFnPtr:
13378   case CK_ZeroToOCLOpaqueType:
13379   case CK_NonAtomicToAtomic:
13380   case CK_AddressSpaceConversion:
13381   case CK_IntToOCLSampler:
13382   case CK_FixedPointCast:
13383   case CK_FixedPointToBoolean:
13384   case CK_FixedPointToIntegral:
13385   case CK_IntegralToFixedPoint:
13386     llvm_unreachable("invalid cast kind for complex value");
13387 
13388   case CK_LValueToRValue:
13389   case CK_AtomicToNonAtomic:
13390   case CK_NoOp:
13391   case CK_LValueToRValueBitCast:
13392     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13393 
13394   case CK_Dependent:
13395   case CK_LValueBitCast:
13396   case CK_UserDefinedConversion:
13397     return Error(E);
13398 
13399   case CK_FloatingRealToComplex: {
13400     APFloat &Real = Result.FloatReal;
13401     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
13402       return false;
13403 
13404     Result.makeComplexFloat();
13405     Result.FloatImag = APFloat(Real.getSemantics());
13406     return true;
13407   }
13408 
13409   case CK_FloatingComplexCast: {
13410     if (!Visit(E->getSubExpr()))
13411       return false;
13412 
13413     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13414     QualType From
13415       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13416 
13417     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
13418            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
13419   }
13420 
13421   case CK_FloatingComplexToIntegralComplex: {
13422     if (!Visit(E->getSubExpr()))
13423       return false;
13424 
13425     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13426     QualType From
13427       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13428     Result.makeComplexInt();
13429     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
13430                                 To, Result.IntReal) &&
13431            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
13432                                 To, Result.IntImag);
13433   }
13434 
13435   case CK_IntegralRealToComplex: {
13436     APSInt &Real = Result.IntReal;
13437     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
13438       return false;
13439 
13440     Result.makeComplexInt();
13441     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
13442     return true;
13443   }
13444 
13445   case CK_IntegralComplexCast: {
13446     if (!Visit(E->getSubExpr()))
13447       return false;
13448 
13449     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13450     QualType From
13451       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13452 
13453     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
13454     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
13455     return true;
13456   }
13457 
13458   case CK_IntegralComplexToFloatingComplex: {
13459     if (!Visit(E->getSubExpr()))
13460       return false;
13461 
13462     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13463     QualType From
13464       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13465     Result.makeComplexFloat();
13466     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
13467                                 To, Result.FloatReal) &&
13468            HandleIntToFloatCast(Info, E, From, Result.IntImag,
13469                                 To, Result.FloatImag);
13470   }
13471   }
13472 
13473   llvm_unreachable("unknown cast resulting in complex value");
13474 }
13475 
13476 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13477   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13478     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13479 
13480   // Track whether the LHS or RHS is real at the type system level. When this is
13481   // the case we can simplify our evaluation strategy.
13482   bool LHSReal = false, RHSReal = false;
13483 
13484   bool LHSOK;
13485   if (E->getLHS()->getType()->isRealFloatingType()) {
13486     LHSReal = true;
13487     APFloat &Real = Result.FloatReal;
13488     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
13489     if (LHSOK) {
13490       Result.makeComplexFloat();
13491       Result.FloatImag = APFloat(Real.getSemantics());
13492     }
13493   } else {
13494     LHSOK = Visit(E->getLHS());
13495   }
13496   if (!LHSOK && !Info.noteFailure())
13497     return false;
13498 
13499   ComplexValue RHS;
13500   if (E->getRHS()->getType()->isRealFloatingType()) {
13501     RHSReal = true;
13502     APFloat &Real = RHS.FloatReal;
13503     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
13504       return false;
13505     RHS.makeComplexFloat();
13506     RHS.FloatImag = APFloat(Real.getSemantics());
13507   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
13508     return false;
13509 
13510   assert(!(LHSReal && RHSReal) &&
13511          "Cannot have both operands of a complex operation be real.");
13512   switch (E->getOpcode()) {
13513   default: return Error(E);
13514   case BO_Add:
13515     if (Result.isComplexFloat()) {
13516       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
13517                                        APFloat::rmNearestTiesToEven);
13518       if (LHSReal)
13519         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
13520       else if (!RHSReal)
13521         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
13522                                          APFloat::rmNearestTiesToEven);
13523     } else {
13524       Result.getComplexIntReal() += RHS.getComplexIntReal();
13525       Result.getComplexIntImag() += RHS.getComplexIntImag();
13526     }
13527     break;
13528   case BO_Sub:
13529     if (Result.isComplexFloat()) {
13530       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
13531                                             APFloat::rmNearestTiesToEven);
13532       if (LHSReal) {
13533         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
13534         Result.getComplexFloatImag().changeSign();
13535       } else if (!RHSReal) {
13536         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
13537                                               APFloat::rmNearestTiesToEven);
13538       }
13539     } else {
13540       Result.getComplexIntReal() -= RHS.getComplexIntReal();
13541       Result.getComplexIntImag() -= RHS.getComplexIntImag();
13542     }
13543     break;
13544   case BO_Mul:
13545     if (Result.isComplexFloat()) {
13546       // This is an implementation of complex multiplication according to the
13547       // constraints laid out in C11 Annex G. The implementation uses the
13548       // following naming scheme:
13549       //   (a + ib) * (c + id)
13550       ComplexValue LHS = Result;
13551       APFloat &A = LHS.getComplexFloatReal();
13552       APFloat &B = LHS.getComplexFloatImag();
13553       APFloat &C = RHS.getComplexFloatReal();
13554       APFloat &D = RHS.getComplexFloatImag();
13555       APFloat &ResR = Result.getComplexFloatReal();
13556       APFloat &ResI = Result.getComplexFloatImag();
13557       if (LHSReal) {
13558         assert(!RHSReal && "Cannot have two real operands for a complex op!");
13559         ResR = A * C;
13560         ResI = A * D;
13561       } else if (RHSReal) {
13562         ResR = C * A;
13563         ResI = C * B;
13564       } else {
13565         // In the fully general case, we need to handle NaNs and infinities
13566         // robustly.
13567         APFloat AC = A * C;
13568         APFloat BD = B * D;
13569         APFloat AD = A * D;
13570         APFloat BC = B * C;
13571         ResR = AC - BD;
13572         ResI = AD + BC;
13573         if (ResR.isNaN() && ResI.isNaN()) {
13574           bool Recalc = false;
13575           if (A.isInfinity() || B.isInfinity()) {
13576             A = APFloat::copySign(
13577                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
13578             B = APFloat::copySign(
13579                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
13580             if (C.isNaN())
13581               C = APFloat::copySign(APFloat(C.getSemantics()), C);
13582             if (D.isNaN())
13583               D = APFloat::copySign(APFloat(D.getSemantics()), D);
13584             Recalc = true;
13585           }
13586           if (C.isInfinity() || D.isInfinity()) {
13587             C = APFloat::copySign(
13588                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
13589             D = APFloat::copySign(
13590                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
13591             if (A.isNaN())
13592               A = APFloat::copySign(APFloat(A.getSemantics()), A);
13593             if (B.isNaN())
13594               B = APFloat::copySign(APFloat(B.getSemantics()), B);
13595             Recalc = true;
13596           }
13597           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
13598                           AD.isInfinity() || BC.isInfinity())) {
13599             if (A.isNaN())
13600               A = APFloat::copySign(APFloat(A.getSemantics()), A);
13601             if (B.isNaN())
13602               B = APFloat::copySign(APFloat(B.getSemantics()), B);
13603             if (C.isNaN())
13604               C = APFloat::copySign(APFloat(C.getSemantics()), C);
13605             if (D.isNaN())
13606               D = APFloat::copySign(APFloat(D.getSemantics()), D);
13607             Recalc = true;
13608           }
13609           if (Recalc) {
13610             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
13611             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
13612           }
13613         }
13614       }
13615     } else {
13616       ComplexValue LHS = Result;
13617       Result.getComplexIntReal() =
13618         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
13619          LHS.getComplexIntImag() * RHS.getComplexIntImag());
13620       Result.getComplexIntImag() =
13621         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
13622          LHS.getComplexIntImag() * RHS.getComplexIntReal());
13623     }
13624     break;
13625   case BO_Div:
13626     if (Result.isComplexFloat()) {
13627       // This is an implementation of complex division according to the
13628       // constraints laid out in C11 Annex G. The implementation uses the
13629       // following naming scheme:
13630       //   (a + ib) / (c + id)
13631       ComplexValue LHS = Result;
13632       APFloat &A = LHS.getComplexFloatReal();
13633       APFloat &B = LHS.getComplexFloatImag();
13634       APFloat &C = RHS.getComplexFloatReal();
13635       APFloat &D = RHS.getComplexFloatImag();
13636       APFloat &ResR = Result.getComplexFloatReal();
13637       APFloat &ResI = Result.getComplexFloatImag();
13638       if (RHSReal) {
13639         ResR = A / C;
13640         ResI = B / C;
13641       } else {
13642         if (LHSReal) {
13643           // No real optimizations we can do here, stub out with zero.
13644           B = APFloat::getZero(A.getSemantics());
13645         }
13646         int DenomLogB = 0;
13647         APFloat MaxCD = maxnum(abs(C), abs(D));
13648         if (MaxCD.isFinite()) {
13649           DenomLogB = ilogb(MaxCD);
13650           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
13651           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
13652         }
13653         APFloat Denom = C * C + D * D;
13654         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
13655                       APFloat::rmNearestTiesToEven);
13656         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
13657                       APFloat::rmNearestTiesToEven);
13658         if (ResR.isNaN() && ResI.isNaN()) {
13659           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
13660             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
13661             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
13662           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
13663                      D.isFinite()) {
13664             A = APFloat::copySign(
13665                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
13666             B = APFloat::copySign(
13667                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
13668             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
13669             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
13670           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
13671             C = APFloat::copySign(
13672                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
13673             D = APFloat::copySign(
13674                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
13675             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
13676             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
13677           }
13678         }
13679       }
13680     } else {
13681       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
13682         return Error(E, diag::note_expr_divide_by_zero);
13683 
13684       ComplexValue LHS = Result;
13685       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
13686         RHS.getComplexIntImag() * RHS.getComplexIntImag();
13687       Result.getComplexIntReal() =
13688         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
13689          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
13690       Result.getComplexIntImag() =
13691         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
13692          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
13693     }
13694     break;
13695   }
13696 
13697   return true;
13698 }
13699 
13700 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13701   // Get the operand value into 'Result'.
13702   if (!Visit(E->getSubExpr()))
13703     return false;
13704 
13705   switch (E->getOpcode()) {
13706   default:
13707     return Error(E);
13708   case UO_Extension:
13709     return true;
13710   case UO_Plus:
13711     // The result is always just the subexpr.
13712     return true;
13713   case UO_Minus:
13714     if (Result.isComplexFloat()) {
13715       Result.getComplexFloatReal().changeSign();
13716       Result.getComplexFloatImag().changeSign();
13717     }
13718     else {
13719       Result.getComplexIntReal() = -Result.getComplexIntReal();
13720       Result.getComplexIntImag() = -Result.getComplexIntImag();
13721     }
13722     return true;
13723   case UO_Not:
13724     if (Result.isComplexFloat())
13725       Result.getComplexFloatImag().changeSign();
13726     else
13727       Result.getComplexIntImag() = -Result.getComplexIntImag();
13728     return true;
13729   }
13730 }
13731 
13732 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
13733   if (E->getNumInits() == 2) {
13734     if (E->getType()->isComplexType()) {
13735       Result.makeComplexFloat();
13736       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
13737         return false;
13738       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
13739         return false;
13740     } else {
13741       Result.makeComplexInt();
13742       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
13743         return false;
13744       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
13745         return false;
13746     }
13747     return true;
13748   }
13749   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
13750 }
13751 
13752 //===----------------------------------------------------------------------===//
13753 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
13754 // implicit conversion.
13755 //===----------------------------------------------------------------------===//
13756 
13757 namespace {
13758 class AtomicExprEvaluator :
13759     public ExprEvaluatorBase<AtomicExprEvaluator> {
13760   const LValue *This;
13761   APValue &Result;
13762 public:
13763   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
13764       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
13765 
13766   bool Success(const APValue &V, const Expr *E) {
13767     Result = V;
13768     return true;
13769   }
13770 
13771   bool ZeroInitialization(const Expr *E) {
13772     ImplicitValueInitExpr VIE(
13773         E->getType()->castAs<AtomicType>()->getValueType());
13774     // For atomic-qualified class (and array) types in C++, initialize the
13775     // _Atomic-wrapped subobject directly, in-place.
13776     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
13777                 : Evaluate(Result, Info, &VIE);
13778   }
13779 
13780   bool VisitCastExpr(const CastExpr *E) {
13781     switch (E->getCastKind()) {
13782     default:
13783       return ExprEvaluatorBaseTy::VisitCastExpr(E);
13784     case CK_NonAtomicToAtomic:
13785       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
13786                   : Evaluate(Result, Info, E->getSubExpr());
13787     }
13788   }
13789 };
13790 } // end anonymous namespace
13791 
13792 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
13793                            EvalInfo &Info) {
13794   assert(E->isRValue() && E->getType()->isAtomicType());
13795   return AtomicExprEvaluator(Info, This, Result).Visit(E);
13796 }
13797 
13798 //===----------------------------------------------------------------------===//
13799 // Void expression evaluation, primarily for a cast to void on the LHS of a
13800 // comma operator
13801 //===----------------------------------------------------------------------===//
13802 
13803 namespace {
13804 class VoidExprEvaluator
13805   : public ExprEvaluatorBase<VoidExprEvaluator> {
13806 public:
13807   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
13808 
13809   bool Success(const APValue &V, const Expr *e) { return true; }
13810 
13811   bool ZeroInitialization(const Expr *E) { return true; }
13812 
13813   bool VisitCastExpr(const CastExpr *E) {
13814     switch (E->getCastKind()) {
13815     default:
13816       return ExprEvaluatorBaseTy::VisitCastExpr(E);
13817     case CK_ToVoid:
13818       VisitIgnoredValue(E->getSubExpr());
13819       return true;
13820     }
13821   }
13822 
13823   bool VisitCallExpr(const CallExpr *E) {
13824     switch (E->getBuiltinCallee()) {
13825     case Builtin::BI__assume:
13826     case Builtin::BI__builtin_assume:
13827       // The argument is not evaluated!
13828       return true;
13829 
13830     case Builtin::BI__builtin_operator_delete:
13831       return HandleOperatorDeleteCall(Info, E);
13832 
13833     default:
13834       break;
13835     }
13836 
13837     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13838   }
13839 
13840   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
13841 };
13842 } // end anonymous namespace
13843 
13844 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
13845   // We cannot speculatively evaluate a delete expression.
13846   if (Info.SpeculativeEvaluationDepth)
13847     return false;
13848 
13849   FunctionDecl *OperatorDelete = E->getOperatorDelete();
13850   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
13851     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13852         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
13853     return false;
13854   }
13855 
13856   const Expr *Arg = E->getArgument();
13857 
13858   LValue Pointer;
13859   if (!EvaluatePointer(Arg, Pointer, Info))
13860     return false;
13861   if (Pointer.Designator.Invalid)
13862     return false;
13863 
13864   // Deleting a null pointer has no effect.
13865   if (Pointer.isNullPointer()) {
13866     // This is the only case where we need to produce an extension warning:
13867     // the only other way we can succeed is if we find a dynamic allocation,
13868     // and we will have warned when we allocated it in that case.
13869     if (!Info.getLangOpts().CPlusPlus20)
13870       Info.CCEDiag(E, diag::note_constexpr_new);
13871     return true;
13872   }
13873 
13874   Optional<DynAlloc *> Alloc = CheckDeleteKind(
13875       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
13876   if (!Alloc)
13877     return false;
13878   QualType AllocType = Pointer.Base.getDynamicAllocType();
13879 
13880   // For the non-array case, the designator must be empty if the static type
13881   // does not have a virtual destructor.
13882   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
13883       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
13884     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
13885         << Arg->getType()->getPointeeType() << AllocType;
13886     return false;
13887   }
13888 
13889   // For a class type with a virtual destructor, the selected operator delete
13890   // is the one looked up when building the destructor.
13891   if (!E->isArrayForm() && !E->isGlobalDelete()) {
13892     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
13893     if (VirtualDelete &&
13894         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
13895       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13896           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
13897       return false;
13898     }
13899   }
13900 
13901   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
13902                          (*Alloc)->Value, AllocType))
13903     return false;
13904 
13905   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
13906     // The element was already erased. This means the destructor call also
13907     // deleted the object.
13908     // FIXME: This probably results in undefined behavior before we get this
13909     // far, and should be diagnosed elsewhere first.
13910     Info.FFDiag(E, diag::note_constexpr_double_delete);
13911     return false;
13912   }
13913 
13914   return true;
13915 }
13916 
13917 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
13918   assert(E->isRValue() && E->getType()->isVoidType());
13919   return VoidExprEvaluator(Info).Visit(E);
13920 }
13921 
13922 //===----------------------------------------------------------------------===//
13923 // Top level Expr::EvaluateAsRValue method.
13924 //===----------------------------------------------------------------------===//
13925 
13926 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
13927   // In C, function designators are not lvalues, but we evaluate them as if they
13928   // are.
13929   QualType T = E->getType();
13930   if (E->isGLValue() || T->isFunctionType()) {
13931     LValue LV;
13932     if (!EvaluateLValue(E, LV, Info))
13933       return false;
13934     LV.moveInto(Result);
13935   } else if (T->isVectorType()) {
13936     if (!EvaluateVector(E, Result, Info))
13937       return false;
13938   } else if (T->isIntegralOrEnumerationType()) {
13939     if (!IntExprEvaluator(Info, Result).Visit(E))
13940       return false;
13941   } else if (T->hasPointerRepresentation()) {
13942     LValue LV;
13943     if (!EvaluatePointer(E, LV, Info))
13944       return false;
13945     LV.moveInto(Result);
13946   } else if (T->isRealFloatingType()) {
13947     llvm::APFloat F(0.0);
13948     if (!EvaluateFloat(E, F, Info))
13949       return false;
13950     Result = APValue(F);
13951   } else if (T->isAnyComplexType()) {
13952     ComplexValue C;
13953     if (!EvaluateComplex(E, C, Info))
13954       return false;
13955     C.moveInto(Result);
13956   } else if (T->isFixedPointType()) {
13957     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
13958   } else if (T->isMemberPointerType()) {
13959     MemberPtr P;
13960     if (!EvaluateMemberPointer(E, P, Info))
13961       return false;
13962     P.moveInto(Result);
13963     return true;
13964   } else if (T->isArrayType()) {
13965     LValue LV;
13966     APValue &Value =
13967         Info.CurrentCall->createTemporary(E, T, false, LV);
13968     if (!EvaluateArray(E, LV, Value, Info))
13969       return false;
13970     Result = Value;
13971   } else if (T->isRecordType()) {
13972     LValue LV;
13973     APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
13974     if (!EvaluateRecord(E, LV, Value, Info))
13975       return false;
13976     Result = Value;
13977   } else if (T->isVoidType()) {
13978     if (!Info.getLangOpts().CPlusPlus11)
13979       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
13980         << E->getType();
13981     if (!EvaluateVoid(E, Info))
13982       return false;
13983   } else if (T->isAtomicType()) {
13984     QualType Unqual = T.getAtomicUnqualifiedType();
13985     if (Unqual->isArrayType() || Unqual->isRecordType()) {
13986       LValue LV;
13987       APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
13988       if (!EvaluateAtomic(E, &LV, Value, Info))
13989         return false;
13990     } else {
13991       if (!EvaluateAtomic(E, nullptr, Result, Info))
13992         return false;
13993     }
13994   } else if (Info.getLangOpts().CPlusPlus11) {
13995     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
13996     return false;
13997   } else {
13998     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13999     return false;
14000   }
14001 
14002   return true;
14003 }
14004 
14005 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14006 /// cases, the in-place evaluation is essential, since later initializers for
14007 /// an object can indirectly refer to subobjects which were initialized earlier.
14008 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14009                             const Expr *E, bool AllowNonLiteralTypes) {
14010   assert(!E->isValueDependent());
14011 
14012   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14013     return false;
14014 
14015   if (E->isRValue()) {
14016     // Evaluate arrays and record types in-place, so that later initializers can
14017     // refer to earlier-initialized members of the object.
14018     QualType T = E->getType();
14019     if (T->isArrayType())
14020       return EvaluateArray(E, This, Result, Info);
14021     else if (T->isRecordType())
14022       return EvaluateRecord(E, This, Result, Info);
14023     else if (T->isAtomicType()) {
14024       QualType Unqual = T.getAtomicUnqualifiedType();
14025       if (Unqual->isArrayType() || Unqual->isRecordType())
14026         return EvaluateAtomic(E, &This, Result, Info);
14027     }
14028   }
14029 
14030   // For any other type, in-place evaluation is unimportant.
14031   return Evaluate(Result, Info, E);
14032 }
14033 
14034 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14035 /// lvalue-to-rvalue cast if it is an lvalue.
14036 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14037   if (Info.EnableNewConstInterp) {
14038     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14039       return false;
14040   } else {
14041     if (E->getType().isNull())
14042       return false;
14043 
14044     if (!CheckLiteralType(Info, E))
14045       return false;
14046 
14047     if (!::Evaluate(Result, Info, E))
14048       return false;
14049 
14050     if (E->isGLValue()) {
14051       LValue LV;
14052       LV.setFrom(Info.Ctx, Result);
14053       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14054         return false;
14055     }
14056   }
14057 
14058   // Check this core constant expression is a constant expression.
14059   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) &&
14060          CheckMemoryLeaks(Info);
14061 }
14062 
14063 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14064                                  const ASTContext &Ctx, bool &IsConst) {
14065   // Fast-path evaluations of integer literals, since we sometimes see files
14066   // containing vast quantities of these.
14067   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14068     Result.Val = APValue(APSInt(L->getValue(),
14069                                 L->getType()->isUnsignedIntegerType()));
14070     IsConst = true;
14071     return true;
14072   }
14073 
14074   // This case should be rare, but we need to check it before we check on
14075   // the type below.
14076   if (Exp->getType().isNull()) {
14077     IsConst = false;
14078     return true;
14079   }
14080 
14081   // FIXME: Evaluating values of large array and record types can cause
14082   // performance problems. Only do so in C++11 for now.
14083   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
14084                           Exp->getType()->isRecordType()) &&
14085       !Ctx.getLangOpts().CPlusPlus11) {
14086     IsConst = false;
14087     return true;
14088   }
14089   return false;
14090 }
14091 
14092 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14093                                       Expr::SideEffectsKind SEK) {
14094   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14095          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14096 }
14097 
14098 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14099                              const ASTContext &Ctx, EvalInfo &Info) {
14100   bool IsConst;
14101   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14102     return IsConst;
14103 
14104   return EvaluateAsRValue(Info, E, Result.Val);
14105 }
14106 
14107 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14108                           const ASTContext &Ctx,
14109                           Expr::SideEffectsKind AllowSideEffects,
14110                           EvalInfo &Info) {
14111   if (!E->getType()->isIntegralOrEnumerationType())
14112     return false;
14113 
14114   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14115       !ExprResult.Val.isInt() ||
14116       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14117     return false;
14118 
14119   return true;
14120 }
14121 
14122 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14123                                  const ASTContext &Ctx,
14124                                  Expr::SideEffectsKind AllowSideEffects,
14125                                  EvalInfo &Info) {
14126   if (!E->getType()->isFixedPointType())
14127     return false;
14128 
14129   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14130     return false;
14131 
14132   if (!ExprResult.Val.isFixedPoint() ||
14133       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14134     return false;
14135 
14136   return true;
14137 }
14138 
14139 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14140 /// any crazy technique (that has nothing to do with language standards) that
14141 /// we want to.  If this function returns true, it returns the folded constant
14142 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14143 /// will be applied to the result.
14144 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14145                             bool InConstantContext) const {
14146   assert(!isValueDependent() &&
14147          "Expression evaluator can't be called on a dependent expression.");
14148   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14149   Info.InConstantContext = InConstantContext;
14150   return ::EvaluateAsRValue(this, Result, Ctx, Info);
14151 }
14152 
14153 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14154                                       bool InConstantContext) const {
14155   assert(!isValueDependent() &&
14156          "Expression evaluator can't be called on a dependent expression.");
14157   EvalResult Scratch;
14158   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14159          HandleConversionToBool(Scratch.Val, Result);
14160 }
14161 
14162 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14163                          SideEffectsKind AllowSideEffects,
14164                          bool InConstantContext) const {
14165   assert(!isValueDependent() &&
14166          "Expression evaluator can't be called on a dependent expression.");
14167   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14168   Info.InConstantContext = InConstantContext;
14169   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14170 }
14171 
14172 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14173                                 SideEffectsKind AllowSideEffects,
14174                                 bool InConstantContext) const {
14175   assert(!isValueDependent() &&
14176          "Expression evaluator can't be called on a dependent expression.");
14177   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14178   Info.InConstantContext = InConstantContext;
14179   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14180 }
14181 
14182 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14183                            SideEffectsKind AllowSideEffects,
14184                            bool InConstantContext) const {
14185   assert(!isValueDependent() &&
14186          "Expression evaluator can't be called on a dependent expression.");
14187 
14188   if (!getType()->isRealFloatingType())
14189     return false;
14190 
14191   EvalResult ExprResult;
14192   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14193       !ExprResult.Val.isFloat() ||
14194       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14195     return false;
14196 
14197   Result = ExprResult.Val.getFloat();
14198   return true;
14199 }
14200 
14201 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14202                             bool InConstantContext) const {
14203   assert(!isValueDependent() &&
14204          "Expression evaluator can't be called on a dependent expression.");
14205 
14206   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14207   Info.InConstantContext = InConstantContext;
14208   LValue LV;
14209   CheckedTemporaries CheckedTemps;
14210   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14211       Result.HasSideEffects ||
14212       !CheckLValueConstantExpression(Info, getExprLoc(),
14213                                      Ctx.getLValueReferenceType(getType()), LV,
14214                                      Expr::EvaluateForCodeGen, CheckedTemps))
14215     return false;
14216 
14217   LV.moveInto(Result.Val);
14218   return true;
14219 }
14220 
14221 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
14222                                   const ASTContext &Ctx, bool InPlace) const {
14223   assert(!isValueDependent() &&
14224          "Expression evaluator can't be called on a dependent expression.");
14225 
14226   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14227   EvalInfo Info(Ctx, Result, EM);
14228   Info.InConstantContext = true;
14229 
14230   if (InPlace) {
14231     Info.setEvaluatingDecl(this, Result.Val);
14232     LValue LVal;
14233     LVal.set(this);
14234     if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
14235         Result.HasSideEffects)
14236       return false;
14237   } else if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects)
14238     return false;
14239 
14240   if (!Info.discardCleanups())
14241     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14242 
14243   return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14244                                  Result.Val, Usage) &&
14245          CheckMemoryLeaks(Info);
14246 }
14247 
14248 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
14249                                  const VarDecl *VD,
14250                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
14251   assert(!isValueDependent() &&
14252          "Expression evaluator can't be called on a dependent expression.");
14253 
14254   // FIXME: Evaluating initializers for large array and record types can cause
14255   // performance problems. Only do so in C++11 for now.
14256   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
14257       !Ctx.getLangOpts().CPlusPlus11)
14258     return false;
14259 
14260   Expr::EvalStatus EStatus;
14261   EStatus.Diag = &Notes;
14262 
14263   EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
14264                                       ? EvalInfo::EM_ConstantExpression
14265                                       : EvalInfo::EM_ConstantFold);
14266   Info.setEvaluatingDecl(VD, Value);
14267   Info.InConstantContext = true;
14268 
14269   SourceLocation DeclLoc = VD->getLocation();
14270   QualType DeclTy = VD->getType();
14271 
14272   if (Info.EnableNewConstInterp) {
14273     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
14274     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
14275       return false;
14276   } else {
14277     LValue LVal;
14278     LVal.set(VD);
14279 
14280     if (!EvaluateInPlace(Value, Info, LVal, this,
14281                          /*AllowNonLiteralTypes=*/true) ||
14282         EStatus.HasSideEffects)
14283       return false;
14284 
14285     // At this point, any lifetime-extended temporaries are completely
14286     // initialized.
14287     Info.performLifetimeExtension();
14288 
14289     if (!Info.discardCleanups())
14290       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14291   }
14292   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) &&
14293          CheckMemoryLeaks(Info);
14294 }
14295 
14296 bool VarDecl::evaluateDestruction(
14297     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
14298   Expr::EvalStatus EStatus;
14299   EStatus.Diag = &Notes;
14300 
14301   // Make a copy of the value for the destructor to mutate, if we know it.
14302   // Otherwise, treat the value as default-initialized; if the destructor works
14303   // anyway, then the destruction is constant (and must be essentially empty).
14304   APValue DestroyedValue;
14305   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
14306     DestroyedValue = *getEvaluatedValue();
14307   else if (!getDefaultInitValue(getType(), DestroyedValue))
14308     return false;
14309 
14310   EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression);
14311   Info.setEvaluatingDecl(this, DestroyedValue,
14312                          EvalInfo::EvaluatingDeclKind::Dtor);
14313   Info.InConstantContext = true;
14314 
14315   SourceLocation DeclLoc = getLocation();
14316   QualType DeclTy = getType();
14317 
14318   LValue LVal;
14319   LVal.set(this);
14320 
14321   if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) ||
14322       EStatus.HasSideEffects)
14323     return false;
14324 
14325   if (!Info.discardCleanups())
14326     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14327 
14328   ensureEvaluatedStmt()->HasConstantDestruction = true;
14329   return true;
14330 }
14331 
14332 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
14333 /// constant folded, but discard the result.
14334 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
14335   assert(!isValueDependent() &&
14336          "Expression evaluator can't be called on a dependent expression.");
14337 
14338   EvalResult Result;
14339   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
14340          !hasUnacceptableSideEffect(Result, SEK);
14341 }
14342 
14343 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
14344                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14345   assert(!isValueDependent() &&
14346          "Expression evaluator can't be called on a dependent expression.");
14347 
14348   EvalResult EVResult;
14349   EVResult.Diag = Diag;
14350   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14351   Info.InConstantContext = true;
14352 
14353   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
14354   (void)Result;
14355   assert(Result && "Could not evaluate expression");
14356   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14357 
14358   return EVResult.Val.getInt();
14359 }
14360 
14361 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
14362     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14363   assert(!isValueDependent() &&
14364          "Expression evaluator can't be called on a dependent expression.");
14365 
14366   EvalResult EVResult;
14367   EVResult.Diag = Diag;
14368   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14369   Info.InConstantContext = true;
14370   Info.CheckingForUndefinedBehavior = true;
14371 
14372   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
14373   (void)Result;
14374   assert(Result && "Could not evaluate expression");
14375   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14376 
14377   return EVResult.Val.getInt();
14378 }
14379 
14380 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
14381   assert(!isValueDependent() &&
14382          "Expression evaluator can't be called on a dependent expression.");
14383 
14384   bool IsConst;
14385   EvalResult EVResult;
14386   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
14387     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14388     Info.CheckingForUndefinedBehavior = true;
14389     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
14390   }
14391 }
14392 
14393 bool Expr::EvalResult::isGlobalLValue() const {
14394   assert(Val.isLValue());
14395   return IsGlobalLValue(Val.getLValueBase());
14396 }
14397 
14398 
14399 /// isIntegerConstantExpr - this recursive routine will test if an expression is
14400 /// an integer constant expression.
14401 
14402 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
14403 /// comma, etc
14404 
14405 // CheckICE - This function does the fundamental ICE checking: the returned
14406 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
14407 // and a (possibly null) SourceLocation indicating the location of the problem.
14408 //
14409 // Note that to reduce code duplication, this helper does no evaluation
14410 // itself; the caller checks whether the expression is evaluatable, and
14411 // in the rare cases where CheckICE actually cares about the evaluated
14412 // value, it calls into Evaluate.
14413 
14414 namespace {
14415 
14416 enum ICEKind {
14417   /// This expression is an ICE.
14418   IK_ICE,
14419   /// This expression is not an ICE, but if it isn't evaluated, it's
14420   /// a legal subexpression for an ICE. This return value is used to handle
14421   /// the comma operator in C99 mode, and non-constant subexpressions.
14422   IK_ICEIfUnevaluated,
14423   /// This expression is not an ICE, and is not a legal subexpression for one.
14424   IK_NotICE
14425 };
14426 
14427 struct ICEDiag {
14428   ICEKind Kind;
14429   SourceLocation Loc;
14430 
14431   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
14432 };
14433 
14434 }
14435 
14436 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
14437 
14438 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
14439 
14440 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
14441   Expr::EvalResult EVResult;
14442   Expr::EvalStatus Status;
14443   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14444 
14445   Info.InConstantContext = true;
14446   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
14447       !EVResult.Val.isInt())
14448     return ICEDiag(IK_NotICE, E->getBeginLoc());
14449 
14450   return NoDiag();
14451 }
14452 
14453 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
14454   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
14455   if (!E->getType()->isIntegralOrEnumerationType())
14456     return ICEDiag(IK_NotICE, E->getBeginLoc());
14457 
14458   switch (E->getStmtClass()) {
14459 #define ABSTRACT_STMT(Node)
14460 #define STMT(Node, Base) case Expr::Node##Class:
14461 #define EXPR(Node, Base)
14462 #include "clang/AST/StmtNodes.inc"
14463   case Expr::PredefinedExprClass:
14464   case Expr::FloatingLiteralClass:
14465   case Expr::ImaginaryLiteralClass:
14466   case Expr::StringLiteralClass:
14467   case Expr::ArraySubscriptExprClass:
14468   case Expr::MatrixSubscriptExprClass:
14469   case Expr::OMPArraySectionExprClass:
14470   case Expr::OMPArrayShapingExprClass:
14471   case Expr::OMPIteratorExprClass:
14472   case Expr::MemberExprClass:
14473   case Expr::CompoundAssignOperatorClass:
14474   case Expr::CompoundLiteralExprClass:
14475   case Expr::ExtVectorElementExprClass:
14476   case Expr::DesignatedInitExprClass:
14477   case Expr::ArrayInitLoopExprClass:
14478   case Expr::ArrayInitIndexExprClass:
14479   case Expr::NoInitExprClass:
14480   case Expr::DesignatedInitUpdateExprClass:
14481   case Expr::ImplicitValueInitExprClass:
14482   case Expr::ParenListExprClass:
14483   case Expr::VAArgExprClass:
14484   case Expr::AddrLabelExprClass:
14485   case Expr::StmtExprClass:
14486   case Expr::CXXMemberCallExprClass:
14487   case Expr::CUDAKernelCallExprClass:
14488   case Expr::CXXAddrspaceCastExprClass:
14489   case Expr::CXXDynamicCastExprClass:
14490   case Expr::CXXTypeidExprClass:
14491   case Expr::CXXUuidofExprClass:
14492   case Expr::MSPropertyRefExprClass:
14493   case Expr::MSPropertySubscriptExprClass:
14494   case Expr::CXXNullPtrLiteralExprClass:
14495   case Expr::UserDefinedLiteralClass:
14496   case Expr::CXXThisExprClass:
14497   case Expr::CXXThrowExprClass:
14498   case Expr::CXXNewExprClass:
14499   case Expr::CXXDeleteExprClass:
14500   case Expr::CXXPseudoDestructorExprClass:
14501   case Expr::UnresolvedLookupExprClass:
14502   case Expr::TypoExprClass:
14503   case Expr::RecoveryExprClass:
14504   case Expr::DependentScopeDeclRefExprClass:
14505   case Expr::CXXConstructExprClass:
14506   case Expr::CXXInheritedCtorInitExprClass:
14507   case Expr::CXXStdInitializerListExprClass:
14508   case Expr::CXXBindTemporaryExprClass:
14509   case Expr::ExprWithCleanupsClass:
14510   case Expr::CXXTemporaryObjectExprClass:
14511   case Expr::CXXUnresolvedConstructExprClass:
14512   case Expr::CXXDependentScopeMemberExprClass:
14513   case Expr::UnresolvedMemberExprClass:
14514   case Expr::ObjCStringLiteralClass:
14515   case Expr::ObjCBoxedExprClass:
14516   case Expr::ObjCArrayLiteralClass:
14517   case Expr::ObjCDictionaryLiteralClass:
14518   case Expr::ObjCEncodeExprClass:
14519   case Expr::ObjCMessageExprClass:
14520   case Expr::ObjCSelectorExprClass:
14521   case Expr::ObjCProtocolExprClass:
14522   case Expr::ObjCIvarRefExprClass:
14523   case Expr::ObjCPropertyRefExprClass:
14524   case Expr::ObjCSubscriptRefExprClass:
14525   case Expr::ObjCIsaExprClass:
14526   case Expr::ObjCAvailabilityCheckExprClass:
14527   case Expr::ShuffleVectorExprClass:
14528   case Expr::ConvertVectorExprClass:
14529   case Expr::BlockExprClass:
14530   case Expr::NoStmtClass:
14531   case Expr::OpaqueValueExprClass:
14532   case Expr::PackExpansionExprClass:
14533   case Expr::SubstNonTypeTemplateParmPackExprClass:
14534   case Expr::FunctionParmPackExprClass:
14535   case Expr::AsTypeExprClass:
14536   case Expr::ObjCIndirectCopyRestoreExprClass:
14537   case Expr::MaterializeTemporaryExprClass:
14538   case Expr::PseudoObjectExprClass:
14539   case Expr::AtomicExprClass:
14540   case Expr::LambdaExprClass:
14541   case Expr::CXXFoldExprClass:
14542   case Expr::CoawaitExprClass:
14543   case Expr::DependentCoawaitExprClass:
14544   case Expr::CoyieldExprClass:
14545     return ICEDiag(IK_NotICE, E->getBeginLoc());
14546 
14547   case Expr::InitListExprClass: {
14548     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
14549     // form "T x = { a };" is equivalent to "T x = a;".
14550     // Unless we're initializing a reference, T is a scalar as it is known to be
14551     // of integral or enumeration type.
14552     if (E->isRValue())
14553       if (cast<InitListExpr>(E)->getNumInits() == 1)
14554         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
14555     return ICEDiag(IK_NotICE, E->getBeginLoc());
14556   }
14557 
14558   case Expr::SizeOfPackExprClass:
14559   case Expr::GNUNullExprClass:
14560   case Expr::SourceLocExprClass:
14561     return NoDiag();
14562 
14563   case Expr::SubstNonTypeTemplateParmExprClass:
14564     return
14565       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
14566 
14567   case Expr::ConstantExprClass:
14568     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
14569 
14570   case Expr::ParenExprClass:
14571     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
14572   case Expr::GenericSelectionExprClass:
14573     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
14574   case Expr::IntegerLiteralClass:
14575   case Expr::FixedPointLiteralClass:
14576   case Expr::CharacterLiteralClass:
14577   case Expr::ObjCBoolLiteralExprClass:
14578   case Expr::CXXBoolLiteralExprClass:
14579   case Expr::CXXScalarValueInitExprClass:
14580   case Expr::TypeTraitExprClass:
14581   case Expr::ConceptSpecializationExprClass:
14582   case Expr::RequiresExprClass:
14583   case Expr::ArrayTypeTraitExprClass:
14584   case Expr::ExpressionTraitExprClass:
14585   case Expr::CXXNoexceptExprClass:
14586     return NoDiag();
14587   case Expr::CallExprClass:
14588   case Expr::CXXOperatorCallExprClass: {
14589     // C99 6.6/3 allows function calls within unevaluated subexpressions of
14590     // constant expressions, but they can never be ICEs because an ICE cannot
14591     // contain an operand of (pointer to) function type.
14592     const CallExpr *CE = cast<CallExpr>(E);
14593     if (CE->getBuiltinCallee())
14594       return CheckEvalInICE(E, Ctx);
14595     return ICEDiag(IK_NotICE, E->getBeginLoc());
14596   }
14597   case Expr::CXXRewrittenBinaryOperatorClass:
14598     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
14599                     Ctx);
14600   case Expr::DeclRefExprClass: {
14601     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
14602       return NoDiag();
14603     const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
14604     if (Ctx.getLangOpts().CPlusPlus &&
14605         D && IsConstNonVolatile(D->getType())) {
14606       // Parameter variables are never constants.  Without this check,
14607       // getAnyInitializer() can find a default argument, which leads
14608       // to chaos.
14609       if (isa<ParmVarDecl>(D))
14610         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
14611 
14612       // C++ 7.1.5.1p2
14613       //   A variable of non-volatile const-qualified integral or enumeration
14614       //   type initialized by an ICE can be used in ICEs.
14615       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
14616         if (!Dcl->getType()->isIntegralOrEnumerationType())
14617           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
14618 
14619         const VarDecl *VD;
14620         // Look for a declaration of this variable that has an initializer, and
14621         // check whether it is an ICE.
14622         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
14623           return NoDiag();
14624         else
14625           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
14626       }
14627     }
14628     return ICEDiag(IK_NotICE, E->getBeginLoc());
14629   }
14630   case Expr::UnaryOperatorClass: {
14631     const UnaryOperator *Exp = cast<UnaryOperator>(E);
14632     switch (Exp->getOpcode()) {
14633     case UO_PostInc:
14634     case UO_PostDec:
14635     case UO_PreInc:
14636     case UO_PreDec:
14637     case UO_AddrOf:
14638     case UO_Deref:
14639     case UO_Coawait:
14640       // C99 6.6/3 allows increment and decrement within unevaluated
14641       // subexpressions of constant expressions, but they can never be ICEs
14642       // because an ICE cannot contain an lvalue operand.
14643       return ICEDiag(IK_NotICE, E->getBeginLoc());
14644     case UO_Extension:
14645     case UO_LNot:
14646     case UO_Plus:
14647     case UO_Minus:
14648     case UO_Not:
14649     case UO_Real:
14650     case UO_Imag:
14651       return CheckICE(Exp->getSubExpr(), Ctx);
14652     }
14653     llvm_unreachable("invalid unary operator class");
14654   }
14655   case Expr::OffsetOfExprClass: {
14656     // Note that per C99, offsetof must be an ICE. And AFAIK, using
14657     // EvaluateAsRValue matches the proposed gcc behavior for cases like
14658     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
14659     // compliance: we should warn earlier for offsetof expressions with
14660     // array subscripts that aren't ICEs, and if the array subscripts
14661     // are ICEs, the value of the offsetof must be an integer constant.
14662     return CheckEvalInICE(E, Ctx);
14663   }
14664   case Expr::UnaryExprOrTypeTraitExprClass: {
14665     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
14666     if ((Exp->getKind() ==  UETT_SizeOf) &&
14667         Exp->getTypeOfArgument()->isVariableArrayType())
14668       return ICEDiag(IK_NotICE, E->getBeginLoc());
14669     return NoDiag();
14670   }
14671   case Expr::BinaryOperatorClass: {
14672     const BinaryOperator *Exp = cast<BinaryOperator>(E);
14673     switch (Exp->getOpcode()) {
14674     case BO_PtrMemD:
14675     case BO_PtrMemI:
14676     case BO_Assign:
14677     case BO_MulAssign:
14678     case BO_DivAssign:
14679     case BO_RemAssign:
14680     case BO_AddAssign:
14681     case BO_SubAssign:
14682     case BO_ShlAssign:
14683     case BO_ShrAssign:
14684     case BO_AndAssign:
14685     case BO_XorAssign:
14686     case BO_OrAssign:
14687       // C99 6.6/3 allows assignments within unevaluated subexpressions of
14688       // constant expressions, but they can never be ICEs because an ICE cannot
14689       // contain an lvalue operand.
14690       return ICEDiag(IK_NotICE, E->getBeginLoc());
14691 
14692     case BO_Mul:
14693     case BO_Div:
14694     case BO_Rem:
14695     case BO_Add:
14696     case BO_Sub:
14697     case BO_Shl:
14698     case BO_Shr:
14699     case BO_LT:
14700     case BO_GT:
14701     case BO_LE:
14702     case BO_GE:
14703     case BO_EQ:
14704     case BO_NE:
14705     case BO_And:
14706     case BO_Xor:
14707     case BO_Or:
14708     case BO_Comma:
14709     case BO_Cmp: {
14710       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14711       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14712       if (Exp->getOpcode() == BO_Div ||
14713           Exp->getOpcode() == BO_Rem) {
14714         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
14715         // we don't evaluate one.
14716         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
14717           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
14718           if (REval == 0)
14719             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14720           if (REval.isSigned() && REval.isAllOnesValue()) {
14721             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
14722             if (LEval.isMinSignedValue())
14723               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14724           }
14725         }
14726       }
14727       if (Exp->getOpcode() == BO_Comma) {
14728         if (Ctx.getLangOpts().C99) {
14729           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
14730           // if it isn't evaluated.
14731           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
14732             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14733         } else {
14734           // In both C89 and C++, commas in ICEs are illegal.
14735           return ICEDiag(IK_NotICE, E->getBeginLoc());
14736         }
14737       }
14738       return Worst(LHSResult, RHSResult);
14739     }
14740     case BO_LAnd:
14741     case BO_LOr: {
14742       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14743       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14744       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
14745         // Rare case where the RHS has a comma "side-effect"; we need
14746         // to actually check the condition to see whether the side
14747         // with the comma is evaluated.
14748         if ((Exp->getOpcode() == BO_LAnd) !=
14749             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
14750           return RHSResult;
14751         return NoDiag();
14752       }
14753 
14754       return Worst(LHSResult, RHSResult);
14755     }
14756     }
14757     llvm_unreachable("invalid binary operator kind");
14758   }
14759   case Expr::ImplicitCastExprClass:
14760   case Expr::CStyleCastExprClass:
14761   case Expr::CXXFunctionalCastExprClass:
14762   case Expr::CXXStaticCastExprClass:
14763   case Expr::CXXReinterpretCastExprClass:
14764   case Expr::CXXConstCastExprClass:
14765   case Expr::ObjCBridgedCastExprClass: {
14766     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
14767     if (isa<ExplicitCastExpr>(E)) {
14768       if (const FloatingLiteral *FL
14769             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
14770         unsigned DestWidth = Ctx.getIntWidth(E->getType());
14771         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
14772         APSInt IgnoredVal(DestWidth, !DestSigned);
14773         bool Ignored;
14774         // If the value does not fit in the destination type, the behavior is
14775         // undefined, so we are not required to treat it as a constant
14776         // expression.
14777         if (FL->getValue().convertToInteger(IgnoredVal,
14778                                             llvm::APFloat::rmTowardZero,
14779                                             &Ignored) & APFloat::opInvalidOp)
14780           return ICEDiag(IK_NotICE, E->getBeginLoc());
14781         return NoDiag();
14782       }
14783     }
14784     switch (cast<CastExpr>(E)->getCastKind()) {
14785     case CK_LValueToRValue:
14786     case CK_AtomicToNonAtomic:
14787     case CK_NonAtomicToAtomic:
14788     case CK_NoOp:
14789     case CK_IntegralToBoolean:
14790     case CK_IntegralCast:
14791       return CheckICE(SubExpr, Ctx);
14792     default:
14793       return ICEDiag(IK_NotICE, E->getBeginLoc());
14794     }
14795   }
14796   case Expr::BinaryConditionalOperatorClass: {
14797     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
14798     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
14799     if (CommonResult.Kind == IK_NotICE) return CommonResult;
14800     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14801     if (FalseResult.Kind == IK_NotICE) return FalseResult;
14802     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
14803     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
14804         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
14805     return FalseResult;
14806   }
14807   case Expr::ConditionalOperatorClass: {
14808     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
14809     // If the condition (ignoring parens) is a __builtin_constant_p call,
14810     // then only the true side is actually considered in an integer constant
14811     // expression, and it is fully evaluated.  This is an important GNU
14812     // extension.  See GCC PR38377 for discussion.
14813     if (const CallExpr *CallCE
14814         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
14815       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
14816         return CheckEvalInICE(E, Ctx);
14817     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
14818     if (CondResult.Kind == IK_NotICE)
14819       return CondResult;
14820 
14821     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
14822     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14823 
14824     if (TrueResult.Kind == IK_NotICE)
14825       return TrueResult;
14826     if (FalseResult.Kind == IK_NotICE)
14827       return FalseResult;
14828     if (CondResult.Kind == IK_ICEIfUnevaluated)
14829       return CondResult;
14830     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
14831       return NoDiag();
14832     // Rare case where the diagnostics depend on which side is evaluated
14833     // Note that if we get here, CondResult is 0, and at least one of
14834     // TrueResult and FalseResult is non-zero.
14835     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
14836       return FalseResult;
14837     return TrueResult;
14838   }
14839   case Expr::CXXDefaultArgExprClass:
14840     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
14841   case Expr::CXXDefaultInitExprClass:
14842     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
14843   case Expr::ChooseExprClass: {
14844     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
14845   }
14846   case Expr::BuiltinBitCastExprClass: {
14847     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
14848       return ICEDiag(IK_NotICE, E->getBeginLoc());
14849     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
14850   }
14851   }
14852 
14853   llvm_unreachable("Invalid StmtClass!");
14854 }
14855 
14856 /// Evaluate an expression as a C++11 integral constant expression.
14857 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
14858                                                     const Expr *E,
14859                                                     llvm::APSInt *Value,
14860                                                     SourceLocation *Loc) {
14861   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
14862     if (Loc) *Loc = E->getExprLoc();
14863     return false;
14864   }
14865 
14866   APValue Result;
14867   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
14868     return false;
14869 
14870   if (!Result.isInt()) {
14871     if (Loc) *Loc = E->getExprLoc();
14872     return false;
14873   }
14874 
14875   if (Value) *Value = Result.getInt();
14876   return true;
14877 }
14878 
14879 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
14880                                  SourceLocation *Loc) const {
14881   assert(!isValueDependent() &&
14882          "Expression evaluator can't be called on a dependent expression.");
14883 
14884   if (Ctx.getLangOpts().CPlusPlus11)
14885     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
14886 
14887   ICEDiag D = CheckICE(this, Ctx);
14888   if (D.Kind != IK_ICE) {
14889     if (Loc) *Loc = D.Loc;
14890     return false;
14891   }
14892   return true;
14893 }
14894 
14895 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
14896                                  SourceLocation *Loc, bool isEvaluated) const {
14897   assert(!isValueDependent() &&
14898          "Expression evaluator can't be called on a dependent expression.");
14899 
14900   if (Ctx.getLangOpts().CPlusPlus11)
14901     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
14902 
14903   if (!isIntegerConstantExpr(Ctx, Loc))
14904     return false;
14905 
14906   // The only possible side-effects here are due to UB discovered in the
14907   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
14908   // required to treat the expression as an ICE, so we produce the folded
14909   // value.
14910   EvalResult ExprResult;
14911   Expr::EvalStatus Status;
14912   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
14913   Info.InConstantContext = true;
14914 
14915   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
14916     llvm_unreachable("ICE cannot be evaluated!");
14917 
14918   Value = ExprResult.Val.getInt();
14919   return true;
14920 }
14921 
14922 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
14923   assert(!isValueDependent() &&
14924          "Expression evaluator can't be called on a dependent expression.");
14925 
14926   return CheckICE(this, Ctx).Kind == IK_ICE;
14927 }
14928 
14929 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
14930                                SourceLocation *Loc) const {
14931   assert(!isValueDependent() &&
14932          "Expression evaluator can't be called on a dependent expression.");
14933 
14934   // We support this checking in C++98 mode in order to diagnose compatibility
14935   // issues.
14936   assert(Ctx.getLangOpts().CPlusPlus);
14937 
14938   // Build evaluation settings.
14939   Expr::EvalStatus Status;
14940   SmallVector<PartialDiagnosticAt, 8> Diags;
14941   Status.Diag = &Diags;
14942   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14943 
14944   APValue Scratch;
14945   bool IsConstExpr =
14946       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
14947       // FIXME: We don't produce a diagnostic for this, but the callers that
14948       // call us on arbitrary full-expressions should generally not care.
14949       Info.discardCleanups() && !Status.HasSideEffects;
14950 
14951   if (!Diags.empty()) {
14952     IsConstExpr = false;
14953     if (Loc) *Loc = Diags[0].first;
14954   } else if (!IsConstExpr) {
14955     // FIXME: This shouldn't happen.
14956     if (Loc) *Loc = getExprLoc();
14957   }
14958 
14959   return IsConstExpr;
14960 }
14961 
14962 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
14963                                     const FunctionDecl *Callee,
14964                                     ArrayRef<const Expr*> Args,
14965                                     const Expr *This) const {
14966   assert(!isValueDependent() &&
14967          "Expression evaluator can't be called on a dependent expression.");
14968 
14969   Expr::EvalStatus Status;
14970   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
14971   Info.InConstantContext = true;
14972 
14973   LValue ThisVal;
14974   const LValue *ThisPtr = nullptr;
14975   if (This) {
14976 #ifndef NDEBUG
14977     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
14978     assert(MD && "Don't provide `this` for non-methods.");
14979     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
14980 #endif
14981     if (!This->isValueDependent() &&
14982         EvaluateObjectArgument(Info, This, ThisVal) &&
14983         !Info.EvalStatus.HasSideEffects)
14984       ThisPtr = &ThisVal;
14985 
14986     // Ignore any side-effects from a failed evaluation. This is safe because
14987     // they can't interfere with any other argument evaluation.
14988     Info.EvalStatus.HasSideEffects = false;
14989   }
14990 
14991   ArgVector ArgValues(Args.size());
14992   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
14993        I != E; ++I) {
14994     if ((*I)->isValueDependent() ||
14995         !Evaluate(ArgValues[I - Args.begin()], Info, *I) ||
14996         Info.EvalStatus.HasSideEffects)
14997       // If evaluation fails, throw away the argument entirely.
14998       ArgValues[I - Args.begin()] = APValue();
14999 
15000     // Ignore any side-effects from a failed evaluation. This is safe because
15001     // they can't interfere with any other argument evaluation.
15002     Info.EvalStatus.HasSideEffects = false;
15003   }
15004 
15005   // Parameter cleanups happen in the caller and are not part of this
15006   // evaluation.
15007   Info.discardCleanups();
15008   Info.EvalStatus.HasSideEffects = false;
15009 
15010   // Build fake call to Callee.
15011   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
15012                        ArgValues.data());
15013   // FIXME: Missing ExprWithCleanups in enable_if conditions?
15014   FullExpressionRAII Scope(Info);
15015   return Evaluate(Value, Info, this) && Scope.destroy() &&
15016          !Info.EvalStatus.HasSideEffects;
15017 }
15018 
15019 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15020                                    SmallVectorImpl<
15021                                      PartialDiagnosticAt> &Diags) {
15022   // FIXME: It would be useful to check constexpr function templates, but at the
15023   // moment the constant expression evaluator cannot cope with the non-rigorous
15024   // ASTs which we build for dependent expressions.
15025   if (FD->isDependentContext())
15026     return true;
15027 
15028   // Bail out if a constexpr constructor has an initializer that contains an
15029   // error. We deliberately don't produce a diagnostic, as we have produced a
15030   // relevant diagnostic when parsing the error initializer.
15031   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15032     for (const auto *InitExpr : Ctor->inits()) {
15033       if (InitExpr->getInit() && InitExpr->getInit()->containsErrors())
15034         return false;
15035     }
15036   }
15037   Expr::EvalStatus Status;
15038   Status.Diag = &Diags;
15039 
15040   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15041   Info.InConstantContext = true;
15042   Info.CheckingPotentialConstantExpression = true;
15043 
15044   // The constexpr VM attempts to compile all methods to bytecode here.
15045   if (Info.EnableNewConstInterp) {
15046     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15047     return Diags.empty();
15048   }
15049 
15050   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15051   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15052 
15053   // Fabricate an arbitrary expression on the stack and pretend that it
15054   // is a temporary being used as the 'this' pointer.
15055   LValue This;
15056   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15057   This.set({&VIE, Info.CurrentCall->Index});
15058 
15059   ArrayRef<const Expr*> Args;
15060 
15061   APValue Scratch;
15062   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15063     // Evaluate the call as a constant initializer, to allow the construction
15064     // of objects of non-literal types.
15065     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15066     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15067   } else {
15068     SourceLocation Loc = FD->getLocation();
15069     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15070                        Args, FD->getBody(), Info, Scratch, nullptr);
15071   }
15072 
15073   return Diags.empty();
15074 }
15075 
15076 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15077                                               const FunctionDecl *FD,
15078                                               SmallVectorImpl<
15079                                                 PartialDiagnosticAt> &Diags) {
15080   assert(!E->isValueDependent() &&
15081          "Expression evaluator can't be called on a dependent expression.");
15082 
15083   Expr::EvalStatus Status;
15084   Status.Diag = &Diags;
15085 
15086   EvalInfo Info(FD->getASTContext(), Status,
15087                 EvalInfo::EM_ConstantExpressionUnevaluated);
15088   Info.InConstantContext = true;
15089   Info.CheckingPotentialConstantExpression = true;
15090 
15091   // Fabricate a call stack frame to give the arguments a plausible cover story.
15092   ArrayRef<const Expr*> Args;
15093   ArgVector ArgValues(0);
15094   bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
15095   (void)Success;
15096   assert(Success &&
15097          "Failed to set up arguments for potential constant evaluation");
15098   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
15099 
15100   APValue ResultScratch;
15101   Evaluate(ResultScratch, Info, E);
15102   return Diags.empty();
15103 }
15104 
15105 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15106                                  unsigned Type) const {
15107   if (!getType()->isPointerType())
15108     return false;
15109 
15110   Expr::EvalStatus Status;
15111   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15112   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15113 }
15114